WorldWideScience

Sample records for recombinant vegf bioconjugates

  1. Ligand-receptor assay for evaluation of functional activity of human recombinant VEGF and VEGFR-1 extracellular fragment.

    Science.gov (United States)

    Leopol'd, A V; Baklaushev, V P; Korchagina, A A; Shein, S A; Grinenko, N F; Pavlov, K A; Ryabukhin, I A; Chekhonin, V P

    2012-04-01

    cDNA encoding VEGF and Ig-like extracellular domains 2-4 of VEGFR-1 (sFlt-1(2-4)) were cloned into prokaryotic expression vectors pET32a and pQE60. Recombinant proteins were purified (metal affinity chromatography) and renatured. Chemiluminescent study for the interaction of recombinant VEGF and sFlt-1(2-4) showed that biotinylated VEGF specifically binds to the polystyrene-immobilized receptor extracellular fragment. Biotinylated recombinant sFlt-1 interacts with immobilized VEGF. Analysis of the interaction of immobilized recombinant VEGFR-1 and VEGF with C6 glioma cells labeled with CFDA-SE (vital fluorescent dye) showed that recombinant VEGFR-1 also binds to native membrane-associated VEGF. Recombinant VEGF was shown to bind to specific receptors expressed on the surface of C6 glioma cells. Functional activity of these proteins was confirmed by ligand-receptor assay for VEGF and VEGFR-1 (sFlt-1) and quantitative chemiluminescent detection.

  2. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis

    Directory of Open Access Journals (Sweden)

    Yang HW

    2012-10-01

    Full Text Available Hung-Wei Yang,1,* Mu-Yi Hua,1,* Kun-Ju Lin,2,* Shiaw-Pyng Wey,3 Rung-Ywan Tsai,4 Siao-Yun Wu,5 Yi-Ching Lu,5 Hao-Li Liu,6 Tony Wu,7 Yunn-Hwa Ma5 1Chang Gung Molecular Medicine Research Center, Department of Chemical and Materials Engineering, 2Molecular Imaging Center, Department of Nuclear Medicine, Chang Gung Memorial Hospital, Kuei-Shan, Tao-Yuan, Taiwan, Republic of China; 3Department of Medical Imaging and Radiological Sciences, 4Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsin-chu, Taiwan, Republic of China; 5Department of Physiology and Pharmacology and Healthy Aging Research Center, 6Department of Electrical Engineering, Chang Gung University, Kuei-Shan, Tao-Yuan, Taiwan, Republic of China; 7Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, Tao-Yuan, Taiwan, Republic of China*These authors contributed equally to this workAbstract: Low-toxicity magnetic nanocarriers (MNCs composed of a shell of poly [aniline-co-N-(1-one-butyric acid aniline] over a Fe3O4 magnetic nanoparticle core were developed to carry recombinant tissue plasminogen activator (rtPA in MNC-rtPA for targeted thrombolysis. With an average diameter of 14.8 nm, the MNCs exerted superparamagnetic properties. Up to 276 µg of active rtPA was immobilized per mg of MNCs, and the stability of the immobilized rtPA was greatly improved during storage at 4°C and 25°C. In vitro thrombolysis testing with a tubing system demonstrated that magnet-guided MNC-rtPA showed significantly improved thrombolysis compared with free rtPA and reduced the clot lysis time from 39.2 ± 3.2 minutes to 10.8 ± 4.2 minutes. In addition, magnet-guided MNC-rtPA at 20% of the regular rtPA dose restored blood flow within 15–25 minutes of treatment in a rat embolism model without triggering hematological toxicity. In conclusion, this improved system is based on magnetic targeting accelerated thrombolysis and is

  3. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  4. [Antitumor effect of recombinant Xenopus laevis vascular endothelial growth factor (VEGF) as a vaccine combined with adriamycin on EL4 lymphoma in mice].

    Science.gov (United States)

    Niu, Ting; Liu, Ting; Jia, Yong-Qian; Liu, Ji-Yan; Wu, Yang; Hu, Bing; Tian, Ling; Yang, Li; Kan, Bing; Wei, Yu-Quan

    2005-09-01

    To explore the antitumor effect of immunotherapy with recombinant Xenopus laevis vascular endothelial growth factor (xVEGF) as a vaccine combined with adriamycin on lymphoma model in mice. EL4 lymphoma model was established in C57BL/6 mice. Mice were randomized into four groups: combination therapy, adriamycin alone, xVEGF alone and normal saline (NS) groups, and then were given relevant treatments. The growth of tumor, the survival rate of tumor-bearing mice, and the potential toxicity of regimens above were observed. Anti-VEGF antibody-producing B cells (APBCs) were detected by enzyme-linked immunospot (ELISPOT) assay. In addition, microvessel density (MVD) of tumor was detected by immunohistochemistry, and tumor cell apoptosis was also detected by TUNEL staining. The tumor volumes of mice were significantly smaller in combination group than those in other three groups (P < 0.05). Complete regression of tumor was observed in 3 of 10 mice in combination group. Forty-eight days after inoculation of tumor cells, the survival rate of mice was significantly higher in combination group than in NS group (P < 0.01). The anti-VEGF APBC count in combination group or xVEGF group was significantly higher, compared with that in adriamycin group or NS group (P < 0.01). MVD in tumor tissues was significantly lower in combination group than those in other three groups (P < 0.05). Moreover, tumor cell apoptosis was significantly higher in combination group than those in other three groups (P < 0.05). In this experimental study, the use of xVEGF vaccine and adriamycin as a combination of immunotherapy with chemotherapy has sucessfully produced synergistic antitumor effect on lymphoma in mice.

  5. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.

    Science.gov (United States)

    Povysheva, Tatyana; Shmarov, Maksim; Logunov, Denis; Naroditsky, Boris; Shulman, Ilya; Ogurcov, Sergey; Kolesnikov, Pavel; Islamov, Rustem; Chelyshev, Yuri

    2017-07-01

    OBJECTIVE The most actively explored therapeutic strategy for overcoming spinal cord injury (SCI) is the delivery of genes encoding molecules that stimulate regeneration. In a mouse model of amyotrophic lateral sclerosis and in preliminary clinical trials in patients with amyotrophic lateral sclerosis, the combined administration of recombinant adenoviral vectors (Ad5-VEGF+Ad5-ANG) encoding the neurotrophic/angiogenic factors vascular endothelial growth factor ( VEGF) and angiogenin ( ANG) was found to slow the development of neurological deficits. These results suggest that there may be positive effects of this combination of genes in posttraumatic spinal cord regeneration. The objective of the present study was to determine the effects of Ad5-VEGF+Ad5-ANG combination therapy on motor function recovery and reactivity of astrocytes in a rat model of SCI. METHODS Spinal cord injury was induced in adult Wistar rats by the weight-drop method. Rats (n = 51) were divided into 2 groups: the experimental group (Ad5-VEGF+Ad5-ANG) and the control group (Ad5-GFP [green fluorescent protein]). Recovery of motor function was assessed using the Basso, Beattie, and Bresnahan scale. The duration and intensity of infectivity and gene expression from the injected vectors were assessed by immunofluorescent detection of GFP. Reactivity of glial cells was assessed by changes in the number of immunopositive cells expressing glial fibrillary acidic protein (GFAP), S100β, aquaporin 4 (AQP4), oligodendrocyte transcription factor 2, and chondroitin sulfate proteoglycan 4. The level of S100β mRNA expression in the spinal cord was estimated by real-time polymerase chain reaction. RESULTS Partial recovery of motor function was observed 30 days after surgery in both groups. However, Basso, Beattie, and Bresnahan scores were 35.9% higher in the Ad5-VEGF+Ad5-ANG group compared with the control group. Specific GFP signal was observed at distances of up to 5 mm in the rostral and caudal

  6. Novel Bioconjugation Strategy Using Elevated Hydrostatic Pressure: A Case Study for the Site-Specific Attachment of Polyethylene Glycol (PEGylation) of Recombinant Human Ciliary Neurotrophic Factor.

    Science.gov (United States)

    Wang, Qi; Zhang, Chun; Guo, Fangxia; Li, Zenglan; Liu, Yongdong; Su, Zhiguo

    2017-11-15

    In this paper, we reported a novel strategy for the site-specific attachment of polyethylene glycol (PEGylation) of proteins using elevated hydrostatic pressure. The process was similar to the conventional one except the reactor was under elevated hydrostatic pressure. The model protein was recombinant human ciliary neurotrophic factor (rhCNTF), and the reagent was monomethoxy-polyethylene glycol-maleimide (mPEG-MAL). PEGylation with mPEG (40 kDa)-MAL at pH 7.0 under normal pressure for 5 h achieved a less than 5% yield. In comparison, when the pressure was elevated, the PEGylation yield was increased dramatically, reaching nearly 90% at 250 MPa. Furthermore, the following phenomena were observed: (1) high-hydrostatic-pressure PEGylation (HHPP) could operate at a low reactant ratio of 1:1.2 (rhCNTF to mPEG-MAL), while the conventional process needs a much-higher ratio. (2) Short and long chains of PEG gave a similar yield of 90% in HHPP, while the conventional yield for the short chain of the PEG was higher than that of the long chain. (3) The reaction pH in the range of 7.0 to 8.0 had almost no influence upon the yield of HHPP, while the PEGylation yield was significantly increased by a factor of three from pH 7.0 to 8.0 at normal pressure. Surface accessibility analysis was performed using GRASP2 software, and we found that Cys17 of rhCNTF was located at the concave patches, which may have steric hindrance for the PEG to approach. The speculated benefit of HHPP was the facilitation of target-site exposure, reducing the steric hindrance and making the reaction much easier. Structure and activity analysis demonstrated that the HHPP product was comparable to the PEGylated rhCNTF prepared through a conventional method. Overall, this work demonstrated that HHPP, as we proposed, may have application potentials in various conjugations of biomacromolecules.

  7. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  8. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  9. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  10. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  11. Investigating bioconjugation by atomic force microscopy

    Science.gov (United States)

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  12. Enhanced mitogenic activity of recombinant human vascular endothelial growth factor VEGF121 expressed in E. coli Origami B (DE3) with molecular chaperones

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Ondřej; Zárubová, J.; Mikulová, Barbora; Filová, E.; Bártová, J.; Bačáková, L.; Brynda, Eduard

    2016-01-01

    Roč. 11, č. 10 (2016), s. 1-22, č. článku e0163697. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA MZd NV15-29153A Institutional support: RVO:61389013 ; RVO:61388971 Keywords : angiogenic gene-therapy * Escherichia coli * VEGF-A Subject RIV: EB - Genetics ; Molecular Biology; EE - Microbiology, Virology (MBU-M) Impact factor: 2.806, year: 2016

  13. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF(121) Expressed in E. coli Origami B (DE3) with Molecular Chaperones

    Czech Academy of Sciences Publication Activity Database

    Kaplan, Ondřej; Zárubová, Jana; Mikulová, Barbora; Filová, Elena; Bártová, J.; Bačáková, Lucie; Brynda, E.

    2016-01-01

    Roč. 11, č. 10 (2016), č. článku e0163697. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA MZd NV15-29153A; GA TA ČR(CZ) TA04011345 Institutional support: RVO:67985823 Keywords : angiogenic gene-therapy * Escherichia coli * VEGF-A Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.806, year: 2016

  14. Transformation of photoluminescence spectra at the bioconjugation of core-shell CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Macotela, L.G.V.; Douda, J. [UPIITA - Instituto Politecnico Nacional, Mexico (Mexico); Torchynska, T.V. [ESFM- Instituto Politecnico Nacional, Mexico (Mexico); Sierra, R.P. [CINVESTAV del IPN, Mexico (Mexico); Shcherbyna, L. [V. Lashkarev Institute of Semiconductor Physics at NASU, Kiev (Ukraine)

    2010-04-15

    The photoluminescence (PL) of nonconjugated and bioconjugated core-shell CdSe/ZnS quantum dots (QDs) has been discussed in this paper. Commercial CdSe/ZnS QDs with the size of 3.6-4.0 nm covered by polymer with emission at 560-565 nm (2.19-2.22 eV) have been used. The QD bioconjugation is performed with the mouse anti PSA (Prostate-Specific Antigen) antibody (mab). PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in the CdSe core (2.19-2.22 eV) and to hot electron-hole emission via surface states (2.37, 2.73 and 3.06 eV) at the CdSe/ZnS or ZnS/polymer interfaces. The PL spectrum of bioconjugated QDs has changed dramatically, with essential decreasing of the hot electron-hole recombination flow via interface states. This effect is explained on the base of re-charging of QD interface states at the bioconjugation. It is shown that the CdSe/ZnS QDs with interface states are very promising for the study of bioconjugation effects to antibodies (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  16. Development of Bioorthogonal Reactions and Their Applications in Bioconjugation

    Directory of Open Access Journals (Sweden)

    Mengmeng Zheng

    2015-02-01

    Full Text Available Biomolecule labeling using chemical probes with specific biological activities has played important roles for the elucidation of complicated biological processes. Selective bioconjugation strategies are highly-demanded in the construction of various small-molecule probes to explore complex biological systems. Bioorthogonal reactions that undergo fast and selective ligation under bio-compatible conditions have found diverse applications in the development of new bioconjugation strategies. The development of new bioorthogonal reactions in the past decade has been summarized with comments on their potentials as bioconjugation method in the construction of various biological probes for investigating their target biomolecules. For the applications of bioorthogonal reactions in the site-selective biomolecule conjugation, examples have been presented on the bioconjugation of protein, glycan, nucleic acids and lipids.

  17. Multicomponent Reactions in Ligation and Bioconjugation Chemistry.

    Science.gov (United States)

    Reguera, Leslie; Méndez, Yanira; Humpierre, Ana R; Valdés, Oscar; Rivera, Daniel G

    2018-05-25

    Multicomponent reactions (MCRs) encompass an exciting class of chemical transformations that have proven success in almost all fields of synthetic organic chemistry. These convergent procedures incorporate three or more reactants into a final product in one pot, thus combining high levels of complexity and diversity generation with low synthetic cost. Striking applications of these processes are found in heterocycle, peptidomimetic, and natural product syntheses. However, their potential in the preparation of large macro- and biomolecular constructs has been realized just recently. This Account describes the most relevant results of our group in the utilization of MCRs for ligation/conjugation of biomolecules along with significant contributions from other laboratories that validate the utility of this special class of bioconjugation process. Thus, MCRs have proven to be efficient in the ligation of lipids to peptides and oligosaccharides as well as the ligation of steroids, carbohydrates, and fluorescent and affinity tags to peptides and proteins. In the field of glycolipids, we highlight the power of isocyanide-based MCRs with the one-pot double lipidation of glycan fragments functionalized as either the carboxylic acid or amine. In peptide chemistry, the versatility of the multicomponent ligation strategy is demonstrated in both solution-phase lipidation protocols and solid-phase procedures enabling the simultaneous lipidation and biotinylation of peptides. In addition, we show that MCRs are powerful methods for synchronized lipidation/labeling and macrocyclization of peptides, thus accomplishing in one step what usually requires long sequences. In the realm of protein bioconjugation, MCRs have also proven to be effective in labeling, site-selective modification, immobilization, and glycoconjugation processes. For example, we illustrate a successful application of multicomponent polysaccharide-protein conjugation with the preparation of multivalent

  18. Synthesis of the human VEGF165 gene based on overlap PCR and ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... recombinant human VEGF165 (rhVEGF165) protein in CHO cells. ... The PCR program consisted of a denaturation step at 95°C for 3 min, then 25 cycles at ... PCR product for template and two oligos introduced at one end for.

  19. Amine-selective bioconjugation using arene diazonium salts.

    Science.gov (United States)

    Diethelm, Stefan; Schafroth, Michael A; Carreira, Erick M

    2014-08-01

    A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.

  20. Click-generated triazole based ferrocene-carbohydrate bioconjugates

    Indian Academy of Sciences (India)

    carbohydrate bioconjugates, 2,. C46H56O20N6Fe and 3, C28H33O10N3Fe were designed and synthesized in good yields. Both the compounds,. 2 and 3, behave as very selective and sensitive chromogenic and electrochemical chemosensor for Cu2+ ...

  1. Evaluation of anticancer peptide VEGF111b secretion in HEK293 human cells

    Directory of Open Access Journals (Sweden)

    Morteza Sadeghi

    2017-04-01

    Full Text Available Background: VEGF111b is a new isoform of vascular endothelial growth factor (VEGF recently considered as a new anticancer drug. The aim of this study was to evaluate the VEGF111b secretion from HEK293 cell wall in order to commercial production of this recombinant factor. Materials and Methods: After the design of VEGF111b sequence using OLIGO software and NCBI gene bank data, it was cloned into the pBUD.cE4.1 vector. The pBUD.VEGF111b recombinant vector was transfected into HEK293 cells using lipofectamine kit. Forty-eight hours after the transfection the production of VEGF111b was estimated by Western blotting and Human anti VEGF antibody. The VEGF111b secretion into cell culture and cell lysate extract was measured using ELISA. Results: The correct cloning of VEGF111b into pBUD.cE4.1vector was confirmed using enzymatic digestion and gel electrophoresis. The observed production of recombinant peptide in HEK293 was confirmed with 12KDa band in cell lysate extract of Western blotting. The ELISA results at 450 nanometer absorbance for cell culture media and cell lysate extract were 19.20±2.81 pg/ml and 32.87±7.42 pg/ml, respectively. However, no VEGF111b expression was observed in negative controls. Conclusion: The findings of this study indicate the powerful ability of transformation and secretion of VEGF111b from HEK293 cell wall to cell culture media with no breaking and proteolytic digestion. It seems that the commercial production and purification of this therapeutic peptide from HEK293 cell culture would be possible with high efficiency.

  2. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    -conjugation strategy, we designed a straightforward scheme to synthesize a suite of dialdehyde reagents. The dialdehyde molecules were used for applications in cell-surface engineering and for tailoring surfaces for material science applications. We anticipate the broad utility of the general dialdehyde click chemistry to primary amines in all areas of chemical research, ranging from polymers and bioconjugation to material science and nanoscience.

  3. VEGF Signaling in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Joon W. Shim

    2018-01-01

    Full Text Available Vascular endothelial growth factor (VEGF is a potent growth factor playing diverse roles in vasculogenesis and angiogenesis. In the brain, VEGF mediates angiogenesis, neural migration and neuroprotection. As a permeability factor, excessive VEGF disrupts intracellular barriers, increases leakage of the choroid plexus endothelia, evokes edema, and activates the inflammatory pathway. Recently, we discovered that a heparin binding epidermal growth factor like growth factor (HB-EGF—a class of EGF receptor (EGFR family ligands—contributes to the development of hydrocephalus with subarachnoid hemorrhage through activation of VEGF signaling. The objective of this review is to entail a recent update on causes of death due to neurological disorders involving cerebrovascular and age-related neurological conditions and to understand the mechanism by which angiogenesis-dependent pathological events can be treated with VEGF antagonisms. The Global Burden of Disease study indicates that cancer and cardiovascular disease including ischemic and hemorrhagic stroke are two leading causes of death worldwide. The literature suggests that VEGF signaling in ischemic brains highlights the importance of concentration, timing, and alternate route of modulating VEGF signaling pathway. Molecular targets distinguishing two distinct pathways of VEGF signaling may provide novel therapies for the treatment of neurological disorders and for maintaining lower mortality due to these conditions.

  4. Thymosin beta 10 Prompted the VEGF-C Expression in Lung Cancer Cell

    Directory of Open Access Journals (Sweden)

    Zixuan LI

    2014-05-01

    Full Text Available Background and objective Our previous study found that thymosin β10 overexpressed in lung cancer and positively correlated with differentiation, lymph node metastasis and stage of lung cancer. In this reasearch we aim to study the effects and mechanism of exogenous human recombinant Tβ10 on the expression of VEGF-C on non-small cell lung cancer. Methods After SPC, A549 and LK2 cells were treated with 100 ng/mL recombinant human Tβ10, the mRNA level of VEGF-C were detected by RT-PCR. The mean while the protein expression of VEGF-C, P-AKT and AKT were determined by Western blot assay. Results Exogenous recombinant human Tβ10 were significantly promote the expression levels of VEGF-C mRNA and protein while promoting the phosphorylation of AKT. Exogenous Tβ10 can promote the expression of VEGF-C mRNA and protein in lung cancer cell lines A549 and LK2 (P<0.05, and this effect can be inhibited by use AKT inhibitor LY294002 (P<0.05. Conclusion Tβ10 human recombinant proteins can promote the expression of VEGF-C by activating AKT phosphorylation in lung cancer cell lines.

  5. Soluble vascular endothelial growth factor (VEGF) receptor-1 inhibits migration of human monocytic THP-1 cells in response to VEGF.

    Science.gov (United States)

    Zhu, Cansheng; Xiong, Zhaojun; Chen, Xiaohong; Lu, Zhengqi; Zhou, Guoyu; Wang, Dunjing; Bao, Jian; Hu, Xueqiang

    2011-08-01

    We aimed to investigate the regulation and contribution of vascular endothelial growth factor (VEGF) and sFlt-1(1-3) to human monocytic THP-1 migration. Ad-sFlt-1/FLAG, a recombinant adenovirus carrying the human sFlt-1(1-3) (the first three extracellular domains of FLT-1, the hVEGF receptor-1) gene, was constructed. L929 cells were infected with Ad-sFlt-1/FLAG and the expression of sFlt-1 was detected by immunofluorescent assay and ELISA. Corning(®) Transwell(®) Filter Inserts containing polyethylene terephthalate (PET) membranes with pore sizes of 3 μm were used as an experimental model to simulate THP-1 migration. Five VEGF concentrations (0, 0.1, 1, 10 and 100 ng/ml), four concentrations of sFlt-1(1-3)/FLAG expression supernatants (0.1, 1, 10 and 100 ng/ml), and monocyte chemoattractant protein-1 (MCP-1, 10 ng/ml) were used to test the ability of THP-1 cells to migrate through PET membranes. The sFlt-1(1-3) gene was successfully recombined into Ad-sFlt-1/FLAG. sFlt-1(1-3) was expressed in L929 cells transfected with Ad-sFlt-1/FLAG. THP-1 cell migration increased with increasing concentrations of VEGF, while cell migration decreased with increasing concentrations of sFlt1(1-3)/FLAG. sFlt1(1-3)/FLAG had no effect on MCP-1-induced cell migration. This study demonstrated that VEGF is able to elicit a migratory response in THP-1 cells, and that sFlt-1(1-3) is an effective inhibitor of THP-1 migration towards VEGF.

  6. Linkable thiocarbamoylbenzamidines as ligands for bioconjugation of Rhenium and Technetium; Kopplungsfaehige Thiocarbamoylbenzamidine als Liganden zur Biokonjugation von Rhenium und Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Gomez, Juan Daniel

    2015-04-27

    Bioconjugation reactions with Rhenium and Technetium are of high importance for the development of novel radiopharmaceuticals for nuclear medicine. In this thesis the possibilities for bioconjugation using linkable Thiocarmbamoylbenzamidines as ligands for the complexation of Rhenium and Technetium were examined.

  7. Imaging pancreatic cancer using bioconjugated InP quantum dots.

    Science.gov (United States)

    Yong, Ken-Tye; Ding, Hong; Roy, Indrajit; Law, Wing-Cheung; Bergey, Earl J; Maitra, Anirban; Prasad, Paras N

    2009-03-24

    In this paper, we report the successful use of non-cadmium-based quantum dots (QDs) as highly efficient and nontoxic optical probes for imaging live pancreatic cancer cells. Indium phosphide (core)-zinc sulfide (shell), or InP/ZnS, QDs with high quality and bright luminescence were prepared by a hot colloidal synthesis method in nonaqueous media. The surfaces of these QDs were then functionalized with mercaptosuccinic acid to make them highly dispersible in aqueous media. Further bioconjugation with pancreatic cancer specific monoclonal antibodies, such as anticlaudin 4 and antiprostate stem cell antigen (anti-PSCA), to the functionalized InP/ZnS QDs, allowed specific in vitro targeting of pancreatic cancer cell lines (both immortalized and low passage ones). The receptor-mediated delivery of the bioconjugates was further confirmed by the observation of poor in vitro targeting in nonpancreatic cancer based cell lines which are negative for the claudin-4-receptor. These observations suggest the immense potential of InP/ZnS QDs as non-cadmium-based safe and efficient optical imaging nanoprobes in diagnostic imaging, particularly for early detection of cancer.

  8. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    Science.gov (United States)

    Jo, Dong Hyun; Park, Sung Wook; Cho, Chang Sik; Powner, Michael B; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  9. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    Directory of Open Access Journals (Sweden)

    Dong Hyun Jo

    Full Text Available Anti-vascular endothelial growth factor (VEGF agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  10. Anti-VEGF drugs: evidence for effectiveness

    OpenAIRE

    Evans, Jennifer; Virgili, Gianni

    2014-01-01

    Anti-vascular endothelial growth factors (anti-VEGF) are targeted biological drugs (e.g. monoclonal antibodies) that prevent the growth of new vessels by inhibiting VEGF. VEGF is a cytokine (cell-signalling protein) that promotes the growth of, and leakage from, new vessels. Currently there are three anti-VEGF drugs licensed for use in eye disease: pegaptanib, aflibercept, ranibizumab and one that is not licensed but is commonly used off-label (bevacizumab).

  11. Vascular endothelial growth factor ( VEGF ) receptor expression ...

    African Journals Online (AJOL)

    Avidin-biotin complex method was employed for immunohistochemical detection of VEGF. Results: VEGF immuno-expression was positive in 51.9% of CRC, while it was 18.2% in the normal colonic tissue (p<0.05). VEGF immunostaining was positively correlated with grade of colonic malignancy (p<0.05). Conclusion: ...

  12. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human vascular endothelial growth factor (VEGF is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF. We created seven N-terminal fusion tag constructs with hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, human protein disulfide isomerase (PDI, and the b'a' domain of PDI (PDIb'a', and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.

  13. Transcription regulation of the vegf gene by the BMP/Smad pathway in the angioblast of zebrafish embryos

    International Nuclear Information System (INIS)

    He Chen; Chen Xiaozhuo

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen that is critically involved in vasculogenesis, angiogenesis, and hematopoiesis. However, what and how transcription factors participate in the regulation of vegf gene expression are not fully understood. Here we report the cloning and sequencing of the zebrafish vegf promoter which revealed that the promoter contains a number of bone morphogenetic protein (BMP)-activated Smad binding elements (SBE), implicating Smad1 and Smad5 in the regulation of BMP-induced expression of vegf. Electrophoretic mobility shift assays of adding recombinant Smad proteins to the SBE-containing DNA oligonucleotides that represent portions of zebrafish vegf promoter resulted in mobility shift of the oligonucleotides. These changes demonstrate potential interactions between Smad1/5 and the vegf promoter. Reporter activity assays using the wild-type or SBE-deleted vegf promoters to drive the luciferase reporter gene expression revealed that Smad1 stimulated while Smad5 repressed the vegf promoter activity in zebrafish embryos. These data indicate that the BMP/Smad signaling pathway is involved in the regulation of zebrafish vegf transcription. In addition, we demonstrate that transgenic expression of human BMP4 in zebrafish embryos induced an expansion of the posterior intermediate cell mass (ICM, also commonly called blood island), a population of cells containing endothelial and hematopoietic precursors. In the expanded ICM, vegf and VEGF receptor 2 (flk-1) were ectopically co-expressed, suggesting that an autocrine/paracrine regulation of vegf expression may exist and contribute to the BMP-induced hemangiogenic cell proliferation

  14. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization.

    Science.gov (United States)

    Wortmann, Laura; Ilyas, Shaista; Niznansky, Daniel; Valldor, Martin; Arroub, Karim; Berger, Nadja; Rahme, Kamil; Holmes, Justin; Mathur, Sanjay

    2014-10-08

    A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.

  15. Photochemical Synthesis of the Bioconjugate Folic Acid-Gold Nanoparticles

    DEFF Research Database (Denmark)

    León, John Jairo Castillo; Bertel, Linda; Páez-Mozo, Edgar

    2013-01-01

    In this paper we present a rapid and simple onepot method to obtain gold nanoparticles functionalized with folic acid using a photochemistry method. The bioconjugate folic acid-gold nanoparticle was generated in one step using a photo-reduction method, mixing hydrogen tetrachloroaurate with folic...... at 4°C prolongs the stability of folic acid-gold nanoparticle suspensions to up to 26 days. Ultraviolet visible and Fourier transform infrared spectroscopy showed a surface plasmon band of around 534nm and fluorescence spectroscopy exhibited a quenching effect on gold nanoparticles in the fluorescence...... emission of folic acid and thus confirmed the conjugation of folic acid to the surface of gold nanoparticles. In this study we demonstrate the use of a photochemistry method to obtain folic acid-gold nanoparticles in a simple and rapid way without the use of surfactants and long reaction times...

  16. Biodistribution imaging of a paclitaxel-hyaluronan bioconjugate

    Energy Technology Data Exchange (ETDEWEB)

    Banzato, Alessandra; Rondina, Maria [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Melendez-Alafort, Laura; Zangoni, Elena; Nadali, Anna [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Renier, Davide [Fidia Farmaceutici, Abano Terme (Italy); Moschini, Giuliano [Department of Physics, University of Padua, Padova (Italy); Mazzi, Ulderico [Department of Pharmaceutical Sciences, University of Padua, Padova (Italy); Zanovello, Paola [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy); Rosato, Antonio [Department of Oncology and Surgical Sciences, University of Padua, I-35128 Padova (Italy); Istituto Oncologico Veneto, IOV-IRCCS, Padova (Italy)], E-mail: antonio.rosato@unipd.it

    2009-07-15

    Introduction: Gamma-ray detectors represent sensitive and noninvasive instruments to evaluate in vivo the metabolic trapping of radiopharmaceuticals. This study aimed to assess the imaging biodistribution of a [{sup 99m}Tc]-radiolabelled new prototype bioconjugate composed of paclitaxel linked to hyaluronan (ONCOFID-P). Methods: A small gamma camera providing high-resolution images was employed. Imaging of biodistribution following intravenous, intraperitoneal, intravesical and oral administration was carried out for a 2-h period in anesthetized mice receiving [{sup 99m}Tc]ONCOFID-P. At the end of the observation time, radioactivity in organs was directly measured. As a control, groups of mice were treated with free [{sup 3}H]paclitaxel given according to the same administration routes, and organ biodistribution of the drug was assessed after 2 h. Results: Intravenous inoculation of [{sup 99m}Tc]ONCOFID-P was followed by a rapid and strong liver uptake. In fact, almost 80% of the imaging signal was detected in this organ 10 min after injection and such value remained constant thereafter, thus indicating that the bioconjugate given through the intravenous route could be well suited to targeting primary or metastatic liver neoplasias. Imaging of the bladder, abdomen and gastrointestinal tract after local administration disclosed that the radiolabelled compound remained confined to the cavities, suggesting a potential regional application for transitional bladder cell carcinomas, ovarian cancers and gastric tumors, respectively. Free [{sup 3}H]paclitaxel biodistribution profoundly differed from that of [{sup 99m}Tc]ONCOFID-P. Conclusions: Conjugation of drugs with polymers results in new chemical entities characterized by a modified biodistribution pattern. Therefore, preclinical studies based on imaging analysis of such new compounds can suggest novel therapeutic applications.

  17. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing.

    Science.gov (United States)

    Khaki, Mohsen; Salmanian, Ali Hatef; Mosayebi, Ghasem; Baazm, Maryam; Babaei, Saeed; Molaee, Neda; Abtahi, Hamid

    2017-07-01

    Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli ( E. coli ) system and then biological activity of this protein was evaluated in animal wound healing. E. coli BL21 (DE3) competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG). The recombinant protein was purified by affinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w) was used for external wound (25×15mm thickness) healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. The recombinant protein with molecular weight of 45 kilodaltons (kDa) and concentration of 0.8 mg/ml was produced. Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Recombinant VEGF-A produced by pET32a in E. coli , possesses acceptable structure and has wound healing capability.

  18. Heterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing

    Directory of Open Access Journals (Sweden)

    Mohsen Khaki

    2017-07-01

    Full Text Available Objective(s: Vascular endothelial growth factor (VEGF is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli system and then biological activity of this protein was evaluated in animal wound healing. Materials and Methods: E. coli BL21 (DE3 competent cells were transformed with pET32a-VEGF clone and induced by isopropyl-β-D-thio-galactoside (IPTG. The recombinant protein was purified byaffinity chromatography. Recombinant VEGF-A-based ointment (VEGF/Vaseline 0.8 mg/100 w/w was used for external wound (25×15mm thickness healing in animal model. In vivo activity of ointment was evaluated by clinical evidences and cytological microscopic assessment. Results: The recombinant protein with molecular weight of 45 kilodaltons (kDa and concentration of 0.8 mg/ml was produced.Immunoblotting data showed that the antigenic region of VEGF can be expressed in E. coli and the recombinant protein has similar epitopes with close antigenic properties to the natural form. Macroscopic findings and microscopic data showed that the recombinant VEGF-A ointment was effective on excisional wound healing. Conclusion: Recombinant VEGF-A produced by pET32a in E. coli, possesses acceptable structure and has wound healing capability.

  19. Coumarin-gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells

    Science.gov (United States)

    Mahendran, Gokila; Ponnuchamy, Kumar

    2018-05-01

    In recent, the conjugation of gold nanoparticles (AuNPs) with biomolecules has shown great potential especially in disease diagnostics and treatment. Taking this in account, we report the methodology involved in the conjugation of coumarin onto the surface of citrate-capped AuNPs by a simple in situ method. Herein, we systematically performed UV-Vis spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements to characterize citrate-capped AuNPs and bioconjugates. Our results demonstrate in-depth surface chemistry of bioconjugates with improved surface plasmon resonance (529 nm), morphology (near spherical shape), hydrodynamic diameter (25.3 nm) as well as surface charge (- 35 mV). Furthermore, the bioconjugates displayed dose-dependent response in scavenging free radicals and exhibited cytotoxicity against MCF-7 breast cancer cell lines. In addition, phase-contrast microscopic analysis revealed that bioconjugates promote apoptosis in cancer cells in a time-dependent manner. Overall, we ascertain the fact that this kind of bioconjugation of AuNPs with coumarin further enhances the efficacy of inorganic nanomaterials and thus make them a better bio-therapeutic candidate.

  20. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    International Nuclear Information System (INIS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, Zainul; Singh, Harpal

    2016-01-01

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10"−"1"9 g or 21 × 10"4 bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10"2 cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract

  1. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Swati, E-mail: swatijain.iitd@gmail.com; Chattopadhyay, Sruti, E-mail: sruticiitd@gmail.com; Jackeray, Richa; Abid, Zainul; Singh, Harpal, E-mail: harpal2000@yahoo.com [Centre for Biomedical Engineering, Indian Institute of Technology-Delhi (India)

    2016-05-15

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10{sup −19} g or 21 × 10{sup 4} bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10{sup 2} cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract.

  2. VEGF immunoexpression in penile carcinoma

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Pereira Martins

    2002-01-01

    Full Text Available OBJECTIVE: To investigate the vessel endothelial growth factor (VEGF as a risk factor in squamous cell carcinoma of the penis (SCCP. METHODS: Forty-seven patients with penile carcinoma were evaluated retrospectively. The mean age and standard deviation were 61.1±11.7 years. All of them were treated by penectomy and those with positive nodes underwent groin lymphadenectomy. Tumor grading was 35 G1 and 12 G2/3. Primary lesion stage was 24 pT1 and 23 pT2-4. Positive inguinal nodes were observed in 15 patients. Selected paraffin embedded sections were submitted to VEGF immunohistochemical analysis by the avidin-biotin-immunoperoxidase method with antigen retrieval. All slides were examined using an automatic analyzer system and the proportion of labeled cells in 10 high magnification power fields (400X were recorded in a blind analysis. RESULTS: Median (% labeling index was 2.3 in G1 versus 2.2 in G2/3 tumors (p=0.60, and 4.0 in pT1 versus 1.8 pT2-4 tumors (p=0.10. The respective data for pN0 patients was 2.8 and for pN+ was 2.1 (p=0.20. Survival curves showed no association with patients survival. CONCLUSION: In squamous cell carcinoma of the penis the VEGF immunoexpression has no association with tumor grade or stage, as well as with patient survival.

  3. Advances in targeted delivery of small interfering RNA using simple bioconjugates

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Kjems, Jørgen; Sorensen, Kristine Rothaus

    2014-01-01

    with a targeting moiety, in a simple bioconjugate construct. We discuss the use of different types of targeting moieties, as well as the different conjugation strategies employed for preparing these bioconjugate constructs that deliver the siRNA to target cells. We focus especially on the in-built or passive......Introduction: Development of drugs based on RNA interference by small interfering RNA (siRNA) has been progressing slowly due to a number of challenges associated with the in vivo behavior of siRNA. A central problem is controlling siRNA delivery to specific cell types. Here, we review existing...... literature on one type of strategy for solving the issue of cell-specific delivery of siRNA, namely delivering the siRNA as part of simple bioconjugate constructs. Areas covered: This review presents current experience from strategies aimed at targeting siRNA to specific cell types, by associating the siRNA...

  4. VEGF(121)b, a new member of the VEGF(xxx)b family of VEGF-A splice isoforms, inhibits neovascularisation and tumour growth in vivo.

    Science.gov (United States)

    Rennel, E S; Varey, A H R; Churchill, A J; Wheatley, E R; Stewart, L; Mather, S; Bates, D O; Harper, S J

    2009-10-06

    The key mediator of new vessel formation in cancer and other diseases is VEGF-A. VEGF-A exists as alternatively spliced isoforms - the pro-angiogenic VEGF(xxx) family generated by exon 8 proximal splicing, and a sister family, termed VEGF(xxx)b, exemplified by VEGF(165)b, generated by distal splicing of exon 8. However, it is unknown whether this anti-angiogenic property of VEGF(165)b is a general property of the VEGF(xxx)b family of isoforms. The mRNA and protein expression of VEGF(121)b was studied in human tissue. The effect of VEGF(121)b was analysed by saturation binding to VEGF receptors, endothelial migration, apoptosis, xenograft tumour growth, pre-retinal neovascularisation and imaging of biodistribution in tumour-bearing mice with radioactive VEGF(121)b. The existence of VEGF(121)b was confirmed in normal human tissues. VEGF(121)b binds both VEGF receptors with similar affinity as other VEGF isoforms, but inhibits endothelial cell migration and is cytoprotective to endothelial cells through VEGFR-2 activation. Administration of VEGF(121)b normalised retinal vasculature by reducing both angiogenesis and ischaemia. VEGF(121)b reduced the growth of xenografted human colon tumours in association with reduced microvascular density, and an intravenous bolus of VEGF(121)b is taken up into colon tumour xenografts. Here we identify a second member of the family, VEGF(121)b, with similar properties to those of VEGF(165)b, and underline the importance of the six amino acids of exon 8b in the anti-angiogenic activity of the VEGF(xxx)b isoforms.

  5. VEGF regulates TRPC6 channels in podocytes

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Loddenkemper, Christoph

    2012-01-01

    increased TRPC6 mRNA expression and TRPC6 protein levels. The effects of VEGF165 were dose dependent and could be blocked by phosphoinositide-3-kinase inhibitors. In the presence of cycloheximide, an inhibitor of protein biosynthesis, we did not observe an effect of VEGF on TRPC6 protein levels, indicating...

  6. Bio-Conjugated Polycaprolactone Membranes: A Novel Wound Dressing

    Directory of Open Access Journals (Sweden)

    Elijah Zhengyang Cai

    2014-11-01

    Full Text Available BackgroundThe combination of polycaprolactone and hyaluronic acid creates an ideal environment for wound healing. Hyaluronic acid maintains a moist wound environment and accelerates the in-growth of granulation tissue. Polycaprolactone has excellent mechanical strength, limits inflammation and is biocompatible. This study evaluates the safety and efficacy of bio-conjugated polycaprolactone membranes (BPM as a wound dressing.Methods16 New Zealand white rabbits were sedated and local anaesthesia was administered. Two 3.0×3.0 cm full-thickness wounds were created on the dorsum of each rabbit, between the lowest rib and the pelvic bone. The wounds were dressed with either BPM (n=12 or Mepitel (n=12 (control, a polyamide-silicon wound dressing. These were evaluated macroscopically on the 7th, 14th, 21st, and 28th postoperative days for granulation, re-epithelialization, infection, and wound size, and histologically for epidermal and dermal regeneration.ResultsBoth groups showed a comparable extent of granulation and re-epithelialization. No signs of infection were observed. There was no significant difference (P>0.05 in wound size between the two groups. BPM (n=6: 8.33 cm2, 4.90 cm2, 3.12 cm2, 1.84 cm2; Mepitel (n=6: 10.29 cm2, 5.53 cm2, 3.63 cm2, 2.02 cm2; at the 7th, 14th, 21st, and 28th postoperative days. The extents of epidermal and dermal regeneration were comparable between the two groups.ConclusionsBPM is comparable to Mepitel as a safe and efficacious wound dressing.

  7. Genetics of VEGF serum variation in human isolated populations of cilento: importance of VEGF polymorphisms.

    Directory of Open Access Journals (Sweden)

    Daniela Ruggiero

    Full Text Available Vascular Endothelial Growth Factor (VEGF is the main player in angiogenesis. Because of its crucial role in this process, the study of the genetic factors controlling VEGF variability may be of particular interest for many angiogenesis-associated diseases. Although some polymorphisms in the VEGF gene have been associated with a susceptibility to several disorders, no genome-wide search on VEGF serum levels has been reported so far. We carried out a genome-wide linkage analysis in three isolated populations and we detected a strong linkage between VEGF serum levels and the 6p21.1 VEGF region in all samples. A new locus on chromosome 3p26.3 significantly linked to VEGF serum levels was also detected in a combined population sample. A sequencing of the gene followed by an association study identified three common single nucleotide polymorphisms (SNPs influencing VEGF serum levels in one population (Campora, two already reported in the literature (rs3025039, rs25648 and one new signal (rs3025020. A fourth SNP (rs41282644 was found to affect VEGF serum levels in another population (Cardile. All the identified SNPs contribute to the related population linkages (35% of the linkage explained in Campora and 15% in Cardile. Interestingly, none of the SNPs influencing VEGF serum levels in one population was found to be associated in the two other populations. These results allow us to exclude the hypothesis that the common variants located in the exons, intron-exon junctions, promoter and regulative regions of the VEGF gene may have a causal effect on the VEGF variation. The data support the alternative hypothesis of a multiple rare variant model, possibly consisting in distinct variants in different populations, influencing VEGF serum levels.

  8. Development of bioconjugated dye-doped poly(styrene-co-maleimide) nanoparticles as a new bioprobe

    CSIR Research Space (South Africa)

    Swanepoel, A

    2015-02-01

    Full Text Available -1 Journal of Materials Chemistry B Development of bioconjugated dye-doped poly(styrene-co- maleimide) nanoparticles as a new bioprobe A. Swanepoel, I. du Preez, T. Mahlangu, A. Chetty and B. Klumperman Abstract Fluorescent dye-doped poly...

  9. Collagen like peptide bioconjugates for targeted drug delivery applications

    Science.gov (United States)

    Luo, Tianzhi

    Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP), are short synthetic peptides which mimic the triple helical conformation of native collagens. In the past few decades, collagen like peptides and their conjugated hybrids have become a new class of biomaterials that possesses unique structures and properties. In addition to traditional applications of using CLPs to decipher the role of different amino acid residues and tripeptide motifs in stabilizing the collagen triple helix and mimicking collagen fibril formation, with the introduction of specific interactions including electrostatic interactions, pi-pi stacking interaction and metal-ligand coordination, a variety of artificial collagen-like peptides with well-defined sequences have been designed to create higher order assemblies with specific biological functions. The CLPs have also been widely used as bioactive domains or physical cross-linkers to fabricate hydrogels, which have shown potential to improve cell adhesion, proliferation and ECM macromolecule production. Despite this widespread use, the utilization of CLPs as domains in stimuli responsive bioconjugates represents a relatively new area for the development of functional polymeric materials. In this work, a new class of thermoresponsive diblock conjugates, containing collagen-like peptides and a thermoresponsive polymer, namely poly(diethylene glycol methyl ether methacrylate) (PDEGMEMA), is introduced. The CLP domain maintains its triple helix conformation after conjugation with the polymer. The engineered LCST of these conjugates has enabled temperature-induced assembly under aqueous conditions, at physiologically relevant temperatures, into well-defined vesicles with diameters of approximately 50-200 nm. The formation of nanostructures was driven by

  10. Recombinant Programming

    OpenAIRE

    Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman

    2004-01-01

    This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...

  11. Direct electrochemistry and electrocatalysis of a glucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin.

    Science.gov (United States)

    Bai, Lijuan; Yuan, Ruo; Chai, Yaqin; Yuan, Yali; Wang, Yan; Xie, Shunbi

    2012-11-18

    For the first time, a glucose oxidase-functionalized bioconjugate was prepared and served as a new trace label through its direct electrochemistry and electrocatalysis in a sandwich-type electrochemical aptasensor for ultrasensitive detection of thrombin.

  12. Poly(lactic-co-glycolide) polymer constructs cross-linked with human BMP-6 and VEGF protein significantly enhance rat mandible defect repair.

    Science.gov (United States)

    Das, Anusuya; Fishero, Brian A; Christophel, J Jared; Li, Ching-Ju; Kohli, Nikita; Lin, Yong; Dighe, Abhijit S; Cui, Quanjun

    2016-04-01

    We have previously shown that the combined delivery of mesenchymal stem cells (MSCs), vascular endothelial growth factor (VEGF) and bone morphogenetic protein 6 (BMP-6) induces significantly more bone formation than that induced by the delivery of any single factor or a combination of any two factors. We now determine whether the exogenous addition of VEGF and BMP-6 is sufficient for bone healing when MSCs are not provided. Poly(lactic-co-glycolic acid) (PLAGA) microsphere-based three-dimensional scaffolds (P) were fabricated by thermal sintering of PLAGA microspheres. The scaffolds were chemically cross-linked with 200 ng recombinant human VEGF (P(VEGF)) or BMP-6 (P(BMP-6)) or both (P(VEGF+BMP-6)) by the EDC-NHS-MES method. Release of the proteins from the scaffolds was detected for 21 days in vitro which confirmed their comparable potential to supply the proteins in vivo. The scaffolds were delivered to a critical-sized mandibular defect created in 32 Sprague Dawley rats. Significant bone regeneration was observed only in rats with P(VEGF+BMP-6) scaffolds at weeks 2, 8 and 12 as revealed by micro-computer tomography. Vascular ingrowth was higher in the P(VEGF+BMP-6) group as seen by microfil imaging than in other groups. Trichrome staining revealed that a soft callus formed in P(VEGF), P(BMP-6) and P(VEGF+BMP-6) but not in P. MSCs isolated from rat femurs displayed expression of the bone-specific marker osteocalcin when cultured with P(VEGF), P(BMP-6), or P(VEGF+BMP-6) but not with P. Robust mineralization and increased alkaline phosphatase gene expression were seen in rat MSCs when cultured on P(VEGF+BMP-6) but not on P, P(VEGF), or P(BMP-6). Thus, unlike the delivery of VEGF or BMP-6 alone, the combined delivery of VEGF and BMP-6 to the bone defect significantly enhanced bone repair through the enhancement of angiogenesis and the differentiation of endogenously recruited MSCs into the bone repair site.

  13. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials.

    Science.gov (United States)

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K; Qiao, Jennifer X; Zhang, Yong; Poss, Michael A; Ewing, William R; MacMillan, David W C

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  14. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages.

    Science.gov (United States)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M; Gao, Feng; Xia, Younan; Wang, Lihong V

    2010-08-24

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bioconjugated with [Nle(4),D-Phe(7)]-alpha-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bioconjugated AuNCs enhanced contrast approximately 300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS).

  15. In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages

    Science.gov (United States)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M.; Gao, Feng; Xia, Younan; Wang, Lihong V.

    2010-01-01

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bio-conjugated with [Nle4,D-Phe7]-α-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bio-conjugated AuNCs enhanced contrast ~300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS). PMID:20731439

  16. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials

    Science.gov (United States)

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K.; Qiao, Jennifer X.; Zhang, Yong; Poss, Michael A.; Ewing, William R.; MacMillan, David W. C.

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  17. Regulation of VEGF signaling by membrane traffic.

    Science.gov (United States)

    Horowitz, Arie; Seerapu, Himabindu Reddy

    2012-09-01

    Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58]. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Science.gov (United States)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface

  19. A Highly Efficient Catalyst for Oxime Ligation and Hydrazone-Oxime Exchange Suitable for Bioconjugation

    OpenAIRE

    Rashidian, Mohammad; Mahmoodi, Mohammad M.; Shah, Rachit; Dozier, Jonathan K.; Wagner, Carston R.; Distefano, Mark D.

    2013-01-01

    Imine-based reactions are useful for a wide range of bioconjugation applications. Although aniline is known to catalyze the oxime ligation reaction under physiological conditions, it suffers from slow reaction kinetics, specifically when a ketone is being used or when hydrazone-oxime exchange is performed. Here, we report on the discovery of a new catalyst that is up to 15 times more efficient than aniline. That catalyst, m-phenylenediamine (mPDA), was initially used to analyze the kinetics o...

  20. Variation of Raman spectra of CdSe/ZnS quantum dots at the bioconjugation

    Energy Technology Data Exchange (ETDEWEB)

    Macotela, L.G.V.; Douda, J. [UPIITA - Instituto Politecnico Nacional, Mexico (Mexico); Torchynska, T.V. [ESFM - Instituto Politecnico Nacional, Mexico (Mexico); Sierra, R.P. [CINVESTAV del IPN, Mexico (Mexico)

    2010-04-15

    This paper presents the results of comparative analysis of Raman scattering spectra of CdSe/ZnS QDs covered by polymer with and without bio-conjugation to the mouse anti PSA (Prostate-Specific Antigen) antibodies (mab). Commercial CdSe/ZnS QDs used in the study are characterized by the color emission with the maximum at 565 nm (2.19 eV) at 300 K. Raman scattering spectra measured at room temperature demonstrate two groups of peaks: (i) related to the Si substrate at 230-460, 522, 610, 670, 940-1040 cm{sup -1} and (2) to polymer on the QD surface in the spectral range 1268-3310 cm{sup -1}. It is revealed that the QD bio-conjugation to the anti PSA mab is accompanied by the variation dramatically in the intensity of Raman lines of both types. The explanation of Raman peak stimulation in bio-conjugated QDs has been proposed on the base of surface enhanced Raman scattering (SERS) effect (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Cytochrome P450 Bioconjugate as a Nanovehicle for Improved Chemotherapy Treatment.

    Science.gov (United States)

    Quester, Katrin; Juarez-Moreno, Karla; Secundino, Isamel; Roseinstein, Yvonne; Alejo, Karla P; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael

    2017-05-01

    Cancer is still a growing public health problem, especially breast cancer that is one of the most important cancers in women. Chemotherapy, even though a successful treatment, is accompanied by severe side effects. Moreover, most of the drugs used for chemotherapy are administered as prodrugs and need to be transformed to the active form by cytochromes P450 (CYPs). In addition, increasing numbers of cancer tissues show lower CYP activity than the surrounding healthy tissues in which prodrugs are preferentially activated causing cytotoxicity. Here, the design of a functionalized cytochrome P450 bioconjugate is reported as nanovehicle for the enzyme direct delivery to the tumor tissue in order to improve the local drug activation. MCF-7 breast cancer cells are treated with CYP-polyethylene glycol bioconjugate functionalized folic acid, where it activates the prodrug tamoxifen and significantly reduces the dose of tamoxifen needed to kill the tumor cells. The CYP bioconjugate covered with polyethylene glycol shows no immunogenic activity. The advantages of increasing the site-specific CYP activity in tumor tissues are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. In vitro cytotoxicity of the ternary PAMAM G3–pyridoxal–biotin bioconjugate

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2013-12-01

    Full Text Available Łukasz Uram, Magdalena Szuster, Krzysztof Gargasz, Aleksandra Filipowicz, Elżbieta Wałajtys-Rode, Stanisław Wołowiec Cosmetology Department, University of Information Technology and Management in Rzeszów, Rzeszów, Poland Abstract: A third-generation polyamidoamine dendrimer (PAMAM G3 was used as a macromolecular carrier for pyridoxal and biotin. The binary covalent bioconjugate of G3, with nine molecules of biotin per one molecule of G3 (G39B, and the ternary covalent bioconjugate of G3, with nine biotin and ten pyridoxal molecules (G39B10P, were synthesized. The biotin and pyridoxal residues of the bioconjugate were available for carboxylase and transaminase enzymes, as demonstrated in the conversion of pyruvate to oxaloacetate and alanine to pyruvate, respectively, by in vitro monitoring of the reactions, using 1H nuclear magnetic resonance spectroscopy. The toxicity of the ternary bioconjugate (BC-PAMAM was studied in vitro on BJ human normal skin fibroblasts and human squamous cell carcinoma (SCC-15 cell cultures in comparison with PAMAM G3, using three cytotoxicity assays (XTT, neutral red, and crystal violet and an estimation of apoptosis by confocal microscopy detection. The tests have shown that BC-PAMAM has significantly lower cytotoxicity compared with PAMAM. Nonconjugated PAMAM was not cytotoxic at concentrations up to 5 µM (NR and 10 µM (XTT, and BC-PAMAM was not cytotoxic up to 50 µM (both assays for both cell lines. It has been also found that normal fibroblasts were more sensitive than SCC to both PAMAM and BC-PAMAM. The effect of PAMAM and BC-PAMAM on the initiation of apoptosis (PAMAM in fibroblasts at 5 µM and BC-PAMAM at 10 µM in both cell lines corresponded with cytotoxicity assays for both cell lines. We concluded that normal fibroblasts are more sensitive to the cytotoxic effects of the PAMAM G3 dendrimer and that modification of its surface cationic groups by substitution with biologically active molecules

  3. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  4. Identification of functional VEGF receptors on human platelets.

    Science.gov (United States)

    Selheim, Frode; Holmsen, Holm; Vassbotn, Flemming S

    2002-02-13

    Platelets secrete platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) upon stimulation. We have demonstrated that platelets have functionally active PDGF alpha-receptors, a transmembrane tyrosine kinase involved in negative feedback regulation. Here we demonstrate the presence of the related VEGF receptors fms-like tyrosine kinase-1 and kinase-insert domain region on human platelets. VEGF itself did not cause platelet aggregation. However, addition of exogenous VEGF to SFRLLN or thrombin-stimulated platelets potentiated platelet aggregation. Moreover, thrombin-induced phosphoinositide 3-kinase and mitogen-activated protein kinase activity were enhanced in the presence of VEGF.

  5. AKT increases VEGF expression in tumor cells by transactivating the proximal VEGF promoter

    International Nuclear Information System (INIS)

    Pore, N.; Bernhard, E.J.; Shu, H.-K.; Li, B.; O'Rourke, D.M.; Maity, A.; Haas-Kogan, D.

    2003-01-01

    Vascular endothelial growth factor (VEGF) is overexpressed in many cancers including glioblastomas and may contribute to their growth. Epidermal growth factor receptor (EGFR) amplification and loss of PTEN, commonly found in glioblastomas leading to increase phosphatidylinositol-3-kinase (PI3K) activity and VEGF expression. In the current study we show that AKT, which is downstream of PI3K, regulates VEGF expression. U87MG human glioblastoma cells lack wildtype PTEN and express high levels of phosphorylated AKT. Over expression of AKT either by stable expression in immortalized human astrocytes or by transduction with adenovirus containing activated myristoylated AKT in SF188 glioblastoma cells increases VEGF expression. Moreover the elevation of angiogenesis by constitutively expressed AKT is further confirmed by in vivo matrigel plug assay in nude mice. The upregulation of VEGF by AKT is mediated through a region in the proximal promoter located between -88 and -70 (+1 is transcription start site). In transient transfection activity of a luciferase reporter containing the -88/+54 region of the VEGF promoter is increased by cotransfection with myristoylated AKT and downregulated by a dominant negative AKT expression vector. Mutation of the putative Sp1 binding sites located in the -88/-70 region we show that AKT acts through Sp1 to transactivate the VEGF promoter. Cotransfection of the VEGF promoter reporter with both Sp1 and myristoylated AKT expression vectors increases promoter activity to a greater extent than either Sp1 or Akt by itself. In vivo phosphate labeling of proteins reveals that AKT leads to increased Sp1 phosphorylation. Gel shift assays using a radio labeled probe corresponding to nucleotides -88 through -66 in the promoter show increased binding with nuclear extracts from cells transduced with adenovirus expressing myristoylated AKT. In conclusion, our results suggest that loss of PTEN leads to increased VEGF expression by increasing AKT

  6. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  7. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    Science.gov (United States)

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: semami@aut.ac.ir [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail: shahabeddin.faghihi@mail.mcgill.ca, E-mail: sfaghihi@nigeb.ac.ir [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)

    2015-02-15

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  9. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    International Nuclear Information System (INIS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-01-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  10. The influence of bio-conjugation on photoluminescence of CdSe/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Torchynska, Tetyana V. [ESFM Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, México, D.F. 07738 (Mexico); Vorobiev, Yuri V. [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV) Querétaro, Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230 Querétaro (Mexico); Makhniy, Victor P. [Yuri Fedkovych Chernivtsi National University, 2 Kotsyubynsky Str., 58012 Chernivtsi (Ukraine); Horley, Paul P., E-mail: paul.horley@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Chihuahua/Monterrey, 120 Avenida Miguel de Cervantes, 31109 Chihuahua (Mexico)

    2014-11-15

    We report a considerable blue shift in the luminescence spectra of CdSe/ZnS quantum dots conjugated to anti-interleukin-10 antibodies. This phenomenon can be explained theoretically by accounting for bio-conjugation as a process causing electrostatic interaction between a quantum dot and an antibody, which reduces effective volume of the dot core. To solve the Schrödinger equation for an exciton confined in the quantum dot, we use mirror boundary conditions that were successfully tested for different geometries of quantum wells.

  11. Synthesis and use of 2-[18F]fluoromalondialdehyde, an accessible synthon for bioconjugation

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Jacob M. [Massachusetts General Hospital, Boston, MA (United States)

    2017-03-16

    We proposed methods for the synthesis and purification of 2-[18F]fluoromalondialdehyde, which will be a readily accessible synthon for bioconjugation. Our achievements in these areas will specifically address a stated goal of the DOE providing a transformational technology for macromolecule radiolabeling. Accomplishment of our aims will serve both DOE mission-related research as well as nuclear medicine research supported by the NIH and industry. At the heart of our proposal is the aim to “improve synthetic methodology for rapidly and efficiently incorporating radionuclides into a wide range of organic compounds.”

  12. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  13. Bioconjugates of luminescent CdSe-ZnS quantum dots with an engineered two-domain protein G for use in fluoroimmunoassays

    Science.gov (United States)

    Tran, Phan T.; Goldman, Ellen R.; Mattoussi, Hedi M.; Anderson, George P.; Mauro, J. Matthew

    2001-06-01

    Colloidal semiconductor quantum dots (QDs) seem suitable for labeling certain biomolecules for use in fluorescent tagging applications, such as fluoro-immunoassays. Compared to organic dye labels, Qds are resistant to photo-degradation, and these luminescent nanoparticles have size-dependent emission spectra spanning a wide range of wavelengths in the visible and near IR. We previously described an electrostatic self-assembly approach for conjugating highly luminescent colloidal CdSe-ZnS core-shell Qds with engineered two-domain recombinant proteins. Here we describe the application of this approach to prepare QD conjugates with the (Beta) 2 immunoglobin G (IgG) binding domain of streptococcal protein G (PG) appended with a basic lucine zipper attachment domain (PG-zb). We also demonstrate that the QD/PG conjugates retain their ability to bind IgG antibodies, and that a specific antibody coupled to QD via the PG functional domain efficiently binds its antigen. These preliminary results indicate that electrostatically self-assembled QD/PG-zb/IgG bioconjugates can be used in fluoro-immunoassays.

  14. Expression of VEGF(xxx)b, the inhibitory isoforms of VEGF, in malignant melanoma.

    Science.gov (United States)

    Pritchard-Jones, R O; Dunn, D B A; Qiu, Y; Varey, A H R; Orlando, A; Rigby, H; Harper, S J; Bates, D O

    2007-07-16

    Malignant melanoma is the most lethal of the skin cancers and the UK incidence is rising faster than that of any other cancer. Angiogenesis - the growth of new vessels from preexisting vasculature - is an absolute requirement for tumour survival and progression beyond a few hundred microns in diameter. We previously described a class of anti-angiogenic isoforms of VEGF, VEGF(xxx)b, that inhibit tumour growth in animal models, and are downregulated in some cancers, but have not been investigated in melanoma. To determine whether VEGF(xxx)b expression was altered in melanoma, PCR and immunohistochemistry of archived human tumour samples were used. In normal epidermis and in a proportion of melanoma samples, VEGF(xxx)b staining was seen. Some melanomas had much weaker staining. Subsequent examination revealed that expression was significantly reduced in primary melanoma samples (both horizontal and vertical growth phases) from patients who subsequently developed tumour metastasis compared with those who did not (analysis of variance (ANOVA) Pxxx)b expression appears to predict metastatic spread in patients with primary melanoma. These results suggest that there is a switch in splicing as part of the metastatic process, from anti-angiogenic to pro-angiogenic VEGF isoforms. This may form part of a wider metastatic splicing phenotype.

  15. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium.

    Science.gov (United States)

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L; Brenner, Robert M; Giudice, Linda C; Nayak, Nihar R

    2008-10-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2-neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.

  16. Overexpression of decorin promoted angiogenesis in diabetic cardiomyopathy via IGF1R-AKT-VEGF signaling.

    Science.gov (United States)

    Lai, Jinsheng; Chen, Fuqiong; Chen, Jing; Ruan, Guoran; He, Mengying; Chen, Chen; Tang, Jiarong; Wang, Dao Wen

    2017-03-14

    Microcirculatory dysfunction is believed to play an important role in diabetic cardiomyopathy. The small leucine-rich proteoglycan decorin is generally considered a pro-angiogenic factor. Here, we investigate whether overexpression of decorin ameliorates diabetic cardiomyopathy and its effects on angiogenesis in vivo and in vitro. Diabetes was induced through intraperitoneal injection with streptozotocin combined with a high-fat diet, and decorin was overexpressed via recombinant adeno-associated virus in Wistar rats. Six months later, cardiac function was determined using an echocardiography and cardiac catheter system. The results showed that cardiac function was decreased in diabetic rats and restored by overexpression of decorin. In addition, overexpression of decorin upregulated the expression of VEGF and attenuated the reduction in the cardiac capillary density. In the in vitro study, high glucose induced apoptosis and inhibited the capabilities of tube formation, migration and proliferation, which were all ameliorated by decorin overexpression. Meanwhile, decorin overexpression increased the expression of VEGF and IGF1R, as well as the phosphorylation level of AKT and AP-1. Nonetheless, all of these effects were abolished by pretreatment with the IGF1R antibody or AKT inhibitor. In conclusion, overexpression of decorin ameliorated diabetic cardiomyopathy and promoted angiogenesis through the IGF1R-AKT-VEGF signaling pathway in vivo and in vitro.

  17. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    International Nuclear Information System (INIS)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N; Wu Fang; Zhao Weiwei

    2011-01-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l -1 . Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the α v β 3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  18. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    Science.gov (United States)

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  19. "Click" on PLGA-PEG and hyaluronic acid: Gaining access to anti-leishmanial pentamidine bioconjugates.

    Science.gov (United States)

    Scala, Angela; Piperno, Anna; Micale, Nicola; Mineo, Placido G; Abbadessa, Antonio; Risoluti, Roberta; Castelli, Germano; Bruno, Federica; Vitale, Fabrizio; Cascio, Antonio; Grassi, Giovanni

    2017-12-08

    Pentamidine (Pent), an antiparasitic drug used for the treatment of visceral leishmaniasis, has been modified with terminal azide groups and conjugated to two different polymer backbones (PLGA-PEG [PP] copolymer and hyaluronic acid [HA]) armed with alkyne end-groups. The conjugation has been performed by Copper Catalyzed Azido Alkyne Cycloaddition (CuAAC) using CuSO 4 /sodium ascorbate as metal source. The novel PP-Pent and HA-Pent bioconjugates are proposed, respectively, as non-targeted and targeted drug delivery systems against Leishmania infections. Moreover, Pent has been encapsulated into PP nanoparticles by the oil-in-water emulsion method, with the aim to compare the biological activity of the bioconjugates with that of the classical drug-loaded delivery system that physically entraps the therapeutic agent. Biological assays against Leishmania infantum amastigote-infected macrophages and primary macrophages revealed that Pent, either covalently conjugated with polymers or loaded into polymeric nanoparticles, turned out to be more potent and less toxic than the free Pent. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  20. Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation

    Directory of Open Access Journals (Sweden)

    Mariagrazia Di Marco

    2009-12-01

    Full Text Available Mariagrazia Di Marco1, Shaharum Shamsuddin2, Khairunisak Abdul Razak3, Azlan Abdul Aziz4, Corinne Devaux1, Elsa Borghi1, Laurent Levy1, Claudia Sadun51Nanobiotix, Paris, France; 2School of Health Sciences, Health Campus Universiti Sains Malaysia, Kelantan, Malaysia; 3School of Materials and Mineral Resources Engineering, Engineering Campus, 4School of Physics, Universiti Sains Malaysia, Penang, Malaysia; 5Department of Chemistry, Sapienza, University of Rome, Rome, ItalyAbstract: The latest development of protein engineering allows the production of proteins having desired properties and large potential markets, but the clinical advances of therapeutical proteins are still limited by their fragility. Nanotechnology could provide optimal vectors able to protect from degradation therapeutical biomolecules such as proteins, enzymes or specific polypeptides. On the other hand, some proteins can be also used as active ligands to help nanoparticles loaded with chemotherapeutic or other drugs to reach particular sites in the body. The aim of this review is to provide an overall picture of the general aspects of the most successful approaches used to combine proteins with nanosystems. This combination is mainly achieved by absorption, bioconjugation and encapsulation. Interactions of nanoparticles with biomolecules and caveats related to protein denaturation are also pointed out. A clear understanding of nanoparticle-protein interactions could make possible the design of precise and versatile hybrid nanosystems. This could further allow control of their pharmacokinetics as well as activity, and safety.Keywords: nanoparticles, drug delivery, proteins, polypeptides, absorption, bioconjugation, encapsulation

  1. Hemoglobin bioconjugates with surface-protected gold nanoparticles in aqueous media: The stability depends on solution pH and protein properties.

    Science.gov (United States)

    Del Caño, Rafael; Mateus, Lucia; Sánchez-Obrero, Guadalupe; Sevilla, José Manuel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa

    2017-11-01

    The identification of the factors that dictate the formation and physicochemical properties of protein-nanomaterial bioconjugates are important to understand their behavior in biological systems. The present work deals with the formation and characterization of bioconjugates made of the protein hemoglobin (Hb) and gold nanoparticles (AuNP) capped with three different molecular layers (citrate anions (c), 6-mercaptopurine (MP) and ω-mercaptoundecanoic acid (MUA)). The main focus is on the behavior of the bioconjugates in aqueous buffered solutions in a wide pH range. The stability of the bioconjugates have been studied by UV-visible spectroscopy by following the changes in the localized surface resonance plasmon band (LSRP), Dynamic light scattering (DLS) and zeta-potential pH titrations. It has been found that they are stable in neutral and alkaline solutions and, at pH lower than the protein isoelectric point, aggregation takes place. Although the surface chemical properties of the AuNPs confer different properties in respect to colloidal stability, once the bioconjugates are formed their properties are dictated by the Hb protein corona. The protein secondary structure, as analyzed by Attenuated total reflectance infrared (ATR-IR) spectroscopy, seems to be maintained under the conditions of colloidal stability but some small changes in protein conformation take place when the bioconjugates aggregate. These findings highlight the importance to keep the protein structure upon interaction with nanomaterials to drive the stability of the bioconjugates. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription*

    Science.gov (United States)

    E, Guangqi; Cao, Ying; Bhattacharya, Santanu; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis. PMID:22167188

  3. Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots

    Science.gov (United States)

    Torchynska, T. V.; Gomez, J. A. Jaramillo; Polupan, G.; Macotela, L. G. Vega

    2018-03-01

    The variation of the photoluminescence (PL) and Raman scattering spectra of CdSeTe/ZnS quantum dots (QDs) on conjugation to an antibody has been investigated. Two types of CdSeTe/ZnS QD with different emission wavelength (705 nm and 800 nm) were studied comparatively before and after conjugation to anti-pseudorabies virus antibody (AB). Nonconjugated QDs were characterized by Gaussian-type PL bands. PL shifts to higher energy and asymmetric shape of PL bands was detected in PL spectra of bioconjugated QDs. The surface-enhanced Raman scattering effect was exhibited by the bioconjugated CdSeTe/ZnS QDs, indicating that the excitation light used in the Raman study generated electric dipoles in the AB molecules. The optical bandgap of the CdSeTe core was calculated numerically as a function of its radius based on an effective mass approximation model. The energy band diagrams for non- and bioconjugated CdSeTe/ZnS QDs were obtained, revealing a type II quantum well in the CdSeTe core. The calculations show that AB dipoles, excited in the bioconjugated QDs, stimulate a change in the energy band diagram of the QDs that alters the PL spectrum. These results could be useful for improving the sensitivity of QD biosensors.

  4. Synthesis of Aldehyde-Linked Nucleotides and DNA and Their Bioconjugations with Lysine and Peptides through Reductive Amination

    Czech Academy of Sciences Publication Activity Database

    Raindlová, Veronika; Pohl, Radek; Hocek, Michal

    2012-01-01

    Roč. 18, č. 13 (2012), s. 4080-4087 ISSN 0947-6539 R&D Projects: GA ČR GA203/09/0317 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleotides * aldehydes * DNA * reductive amination * bioconjugations Subject RIV: CC - Organic Chemistry Impact factor: 5.831, year: 2012

  5. Renal Involvement in Preeclampsia: Similarities to VEGF Ablation Therapy

    Directory of Open Access Journals (Sweden)

    Janina Müller-Deile

    2011-01-01

    Full Text Available Glomerular VEGF expression is critical for the maintenance and function of an intact filtration barrier. Alterations in glomerular VEGF bioavailability result in endothelial as well as in podocyte damage. Renal involvement in preeclampsia includes proteinuria, podocyturia, elevated blood pressure, edema, glomerular capillary endotheliosis, and thrombotic microangiopathy. At least the renal signs, symptoms, and other evidence can sufficiently be explained by reduced VEGF levels. The aim of this paper was to summarize our pathophysiological understanding of the renal involvement of preeclampsia and point out similarities to the renal side effects of VEGF-ablation therapy.

  6. Physical reasons of emission transformation in infrared CdSeTe/ZnS quantum dots at bioconjugation

    Science.gov (United States)

    Torchynska, T. V.

    2015-04-01

    The core/shell CdSeTe/ZnS quantum dots (QDs) with emission at 780-800 nm (1.55-1.60 eV) have been studied by means of photoluminescence (PL) and Raman scattering methods in the nonconjugated state and after conjugation to different antibodies (Ab): (i) mouse monoclonal [8C9] human papilloma virus Ab, anti-HPV 16-E7 Ab, (ii) mouse monoclonal [C1P5] human papilloma virus HPV16 E6+HPV18 E6 Ab, and (iii) pseudo rabies virus (PRV) Ab. The transformations of PL and Raman scattering spectra of QDs, stimulated by conjugated antibodies, have been revealed and discussed. The energy band diagram of core/shell CdSeTe/ZnS QDs has been designed that helps to analyze the PL spectra and their transformations at the bioconjugation. It is shown that the core in CdSeTe/ZnS QDs is complex and including the type II quantum well. The last fact permits to explain the nature of infrared (IR) optical transitions (1.55-1.60 eV) and the high energy PL band (1.88-1.94 eV) in the nonconjugated and bioconjugated QDs. A set of physical reasons has been analyzed with the aim to explain the transformation of PL spectra in bioconjugated QDs. Finally it is shown that two factors are responsible for the PL spectrum transformation at bioconjugation to charged antibodies: (i) the change of energy band profile in QDs and (ii) the shift of QD energy levels in the strong quantum confinement case. The effect of PL spectrum transformation is useful for the study of QD bioconjugation to specific antibodies and can be a powerful technique for early medical diagnostics.

  7. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    Science.gov (United States)

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  8. Elevated IGFIR expression regulating VEGF and VEGF-C predicts lymph node metastasis in human colorectal cancer

    International Nuclear Information System (INIS)

    Zhang, Chunhui; Hao, Li; Wang, Liang; Xiao, Yichuan; Ge, Hailiang; Zhu, Zhenya; Luo, Yunbao; Zhang, Yi; Zhang, Yanyun

    2010-01-01

    Insulin-like growth factor-I receptor (IGFIR) has been shown to regulate the tumor development. The objective of the current study is to determine the association of IGFIR with lymph node metastasis and to explore the related mechanism in human colorectal cancer in clinic. In a random series of 98 colorectal cancer patients, the expressions of IGFIR, vascular endothelial growth factor (VEGF) and VEGF-C were investigated by immunohistochemistry, and the association of these expressions with lymph node metastasis was statistically analyzed. The expressions of VEGF and VEGF-C in colorectal cancer cells stimulated with IGF-I were also examined by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Higher rates of IGFIR (46%), VEGF (53%), and VEGF-C (46%) expression were found in colorectal cancer tissues than in normal and colorectal adenoma tissues. These expressions were significantly associated with clinicopathologic factors and lymph node status. We also found the concomitant high expressions of IGFIR/VEGF (P < 0.001) and IGFIR/VEGF-C (P = 0.001) had a stronger correlation with lymph node metastasis than did each alone or both low expressions. In addition, IGF-I could effectively induce the VEGF and VEGF-C mRNA expression and protein secretion in colorectal cancer cells expressing IGFIR molecules. Moreover, Patients who had strong staining for IGFIR, VEGF and VEGF-C showed significantly less favorable survival rates compared with patients who had low staining for these molecules (P < 0.001). The survival rates of patients who were both high expression of IGFIR/VEGF and IGFIR/VEGF-C also were significantly lower compared with patients who were negative or one of high expression of these molecules (P < 0.001). Together the findings indicated for the first time that simultaneous examination of the expressions of IGFIR, VEGF and VEGF-C will benefit the diagnosis of lymph node metastasis in order to assay the

  9. Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo.

    Directory of Open Access Journals (Sweden)

    Qin Wang

    Full Text Available VEGF family factors are known to be the principal stimulators of abnormal angiogenesis, which play a fundamental role in tumor and various ocular diseases. Inhibition of VEGF is widely applied in antiangiogenic therapy. Conbercept is a novel decoy receptor protein constructed by fusing VEGF receptor 1 and VEGF receptor 2 extracellular domains with the Fc region of human immunoglobulin. In this study, we systematically evaluated the binding affinity of conbercept with VEGF isoforms and PlGF by using anti-VEGF antibody (Avastin as reference. BIACORE and ELISA assay results indicated that conbercept could bind different VEGF-A isoforms with higher affinity than reference. Furthermore, conbercept could also bind VEGF-B and PlGF, whereas Avastin showed no binding. Oxygen-induced retinopathy model showed that conbercept could inhibit the formation of neovasularizations. In tumor-bearing nude mice, conbercept could also suppress tumor growth very effectively in vivo. Overall, our study have demonstrated that conbercept could bind with high affinity to multiple VEGF isoforms and consequently provide remarkable anti-angiogenic effect, suggesting the possibility to treat angiogenesis-related diseases such as cancer and wet AMD etc.

  10. Clinical significance of the VEGF level in urinary bladder carcinoma.

    Science.gov (United States)

    Sankhwar, Monica; Sankhwar, Satya Narayan; Abhishek, Amar; Rajender, Singh

    2015-01-01

    To investigate the correlation of Vascular Endothelial Growth Factor (VEGF) and micro-vessel density (MVD) with urinary bladder tumor and its stage. The study was conducted between January 2010 and December 2012. The study included screening of 122 patients at elevated risk for bladder cancer, of which 35 patients were finally enrolled in the study. Diagnosis was made on the basis of urine cytology, radiological investigation (ultrasound KUB, and CT-scan) and histopathology. Thirty-five normal cancer-free individuals were enrolled as controls. Human VEGF levels were measured using an enzyme linked immunoassay and protein content (pg/mg protein) by Lowry method. SPSS for Windows version 10.0.7 (SPSS, Chicago, IL, USA) was used for statistical analysis of the data. Mean urine VEGF level in the cases was significantly higher in comparison to the control group. There was a direct correlation between VEGF level and tumor stage. Mean urine VEGF values were minimum in the control group (22.75 ± 15.41 pg/mg creatinine) and maximum in stage IV patients (180.15 ± 75.93 pg/mg creatinine). Tissue VEGF levels also showed a similar trend of increase with increase in stage. Urine VEGF level also showed a correlation with tissue VEGF level. Similarly, MVD showed a significant increase with increase in tumor stage. A correlation between bladder cancer and MVD and VEGF suggest that the latter can serve as markers for therapeutic guidance. This is the first study from India on clinical and pathological correlation among urine VEGF, tumor tissue VEGF levels, and Micro Vessel Density (MVD) in urinary bladder cancer patients.

  11. Spectrum Recombination.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  12. Design, Synthesis and Applications of Hyaluronic Acid-Paclitaxel Bioconjugatesâ€

    Directory of Open Access Journals (Sweden)

    Rinaldo Marini Bettolo

    2008-02-01

    Full Text Available Paclitaxel (1a, a well known antitumor agent adopted mainly for the treatmentof breast and ovarian cancer, suffers from significant disadvantages such as low solubility,certain toxicity and specific drug-resistance of some tumor cells. To overcome theseproblems extensive research has been carried out. Among the various proposed strategies,the conjugation of paclitaxel (1a to a biocompatible polymer, such as hyaluronic acid(HA, 2, has also been considered. Coupling a bioactive compound to a biocompatiblepolymer offers, in general, many advantages such as better drug solubilization, betterstabilization, specific localization and controlled release. Hereafter the design, synthesisand applications of hyaluronic acid-paclitaxel bioconjugates are reviewed. An overview ofHA-paclitaxel combinations is also given.

  13. Stable Poly(methacrylic acid Brush Decorated Silica Nano-Particles by ARGET ATRP for Bioconjugation

    Directory of Open Access Journals (Sweden)

    Marcello Iacono

    2015-08-01

    Full Text Available The synthesis of polymer brush decorated silica nano-particles is demonstrated by activator regeneration by electron transfer atom transfer radical polymerization (ARGET ATRP grafting of poly(tert-butyl methacrylate. ATRP initiator decorated silica nano-particles were obtained using a novel trimethylsiloxane derivatised ATRP initiator obtained by click chemistry. Comparison of de-grafted polymers with polymer obtained from a sacrificial initiator demonstrated good agreement up to 55% monomer conversion. Subsequent mild deprotection of the tert-butyl ester groups using phosphoric acid yielded highly colloidal and pH stable hydrophilic nano-particles comprising approximately 50% methacrylic acid groups. The successful bio-conjugation was achieved by immobilization of Horseradish Peroxidase to the polymer brush decorated nano-particles and the enzyme activity demonstrated in a conversion of o-phenylene diamine dihydrochloride assay.

  14. Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.

    Science.gov (United States)

    Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F

    2014-11-01

    Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.

  15. The power of VEGF (vascular endothelial growth factor) family molecules.

    Science.gov (United States)

    Thomas, Jean-Leon; Eichmann, Anne

    2013-05-01

    Vascular endothelial growth factors (VEGFs) and their high-affinity tyrosine kinase VEGF receptors (VEGFRs) are key regulators of both angiogenesis and neurogenesis. The current issue of CMLS discusses recent literature and work implementing these signals in nervous system development, maintenance and disease pathology.

  16. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens A.; Souza, Michele L.; Bloisi, Georgia D.; Corio, Paolo; Petri, Denise F. S., E-mail: dfsp@iq.usp.br [Universidade de São Paulo, Instituto de Química (Brazil)

    2015-04-15

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (V{sub max}) values and turnover numbers (k{sub cat}) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l{sup −1}) or ChOx (at 0.03 g l{sup −1}) and G (0.012 g l{sup −1}) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l{sup −1}), bioconjugates of lipases with GO led to V{sub max} and k{sub cat} values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (K{sub m}) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared.

  17. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    Directory of Open Access Journals (Sweden)

    Kasra Saeedfar

    2013-12-01

    Full Text Available A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate (PnBA membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor’s sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor’s response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  18. Exploring the flexible chemistry of 4-fluoro-3-nitrophenyl azide for biomolecule immobilization and bioconjugation.

    Science.gov (United States)

    Kumar, Saroj; Kumar, Dileep; Ahirwar, Rajesh; Nahar, Pradip

    2016-10-01

    Bioconjugation and functionalization of polymer surfaces are two major tasks in materials chemistry which are accomplished using a variety of coupling agents. Immobilization of biomolecules onto polymer surfaces and the construction of bioconjugates are essential requirements of many biochemical assays and chemical syntheses. Different linkers with a variety of functional groups are used for these purposes. Among them, the benzophenones, aryldiazirines, and arylazides represent the most commonly used photolinker to produce the desired chemical linkage upon their photo-irradiation. In this review, we describe the versatile applications of 4-fluoro-3-nitrophenyl azide, one of the oldest photolinkers used for photoaffinity labeling in the late 1960s. Surprisingly, this photolinker, historically known as 1-fluoro-2-nitro-4-azidobenzene (FNAB), has remained unexplored for a long time because of apprehension that FNAB forms ring-expanded dehydroazepine as a major product and hence cannot activate an inert polymer. The first evidence of photochemical activation of an inert surface by FNAB through nitrene insertion reaction was reported in 2001, and the FNAB-activated surface was found to conjugate a biomolecule without any catalyst, reagent, or modification. FNAB has distinct advantages over perfluorophenyl azide derivatives, which are contemporary nitrene-generating photolinkers, because of its simple, single-step preparation and ease of thermochemical and photochemical reactions with versatile polymers and biomolecules. Covering these aspects, the present review highlights the flexible chemistry of FNAB and its applications in the field of surface engineering, immobilization of biomolecules such as antibodies, enzymes, cells, carbohydrates, oligonucleotides, and DNA aptamers, and rapid diagnostics. Graphical Abstract An overview of the FNAB-engineered activated polymer surfaces for covalent ligation of versatile biomolecules.

  19. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    International Nuclear Information System (INIS)

    Silva, Rubens A.; Souza, Michele L.; Bloisi, Georgia D.; Corio, Paolo; Petri, Denise F. S.

    2015-01-01

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (V max ) values and turnover numbers (k cat ) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l −1 ) or ChOx (at 0.03 g l −1 ) and G (0.012 g l −1 ) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l −1 ), bioconjugates of lipases with GO led to V max and k cat values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (K m ) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared

  20. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N [Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Wu Fang [Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Zhao Weiwei, E-mail: bergeye@buffalo.edu, E-mail: pnprasad@buffalo.edu [Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14215 (United States)

    2011-04-22

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l{sup -1}. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the {alpha}{sub v{beta}3} integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  1. Bioconjugate techniques

    National Research Council Canada - National Science Library

    Hermanson, Greg T

    2013-01-01

    ... may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the pu...

  2. Inhibition of RM-1 prostate carcinoma and eliciting robust immune responses in the mouse model by using VEGF-M2-GnRH3-hinge-MVP vaccine.

    Science.gov (United States)

    Wang, Yiqin; Alahdal, Murad; Ye, Jia; Jing, Liangliang; Liu, Xiaoxin; Chen, Huan; Jin, Liang; Cao, Rongyue

    2018-01-23

    GnRH and VEGF have been investigated as prostate carcinoma enhancers that support tumor spread and progression. Although both have documented roles in prostate carcinoma and many cancer types, the weak immunogenicity of these peptides has remained a major challenge for use in immunotherapy. Here, we describe a novel strategy to inhibit GnRH and VEGF production and assess the effect on the immune responses against these hormones using the RM-1 prostate cancer model. We designed a novel recombinant fusion protein which combined GnRH and VEGF as a vaccine against this tumor. The newly constructed fusion protein hVEGF121-M2-GnRH3-hinge-MVP contains the human vascular endothelial growth factor (hVEGF121) and three copies of GnRH in sequential linear alignment and T helper epitope MVP as an immunogenic vaccine. The effectiveness of the vaccine in eliciting an immune response and attenuating the prostate tumor growth was evaluated. Results showed that administration of a new vaccine effectively elicited humoral and cellular immune responses. We found that, a novel fusion protein, hVEGF121-M2-GnRH3-hinge-MVP, effectively inhibited growth of RM-1 prostate model and effectively promoted immune response. In conclusion, hVEGF121-M2-GnRH3-hinge-MVP is an effective dual mechanism tumor vaccine that limits RM-1 prostate growth. This vaccine may be a promising strategy for the treatment of hormone refractory prostate malignancies.

  3. Bioconjugated nano-bactericidal complex for potent activity against human and phytopathogens with concern of global drug resistant crisis.

    Science.gov (United States)

    Syed, Baker; Nagendra Prasad, M N; Mohan Kumar, K; Satish, S

    2018-05-09

    The present study emphasizes the need for novel antimicrobial agents to combat the global drug resistant crisis. The development of novel nanomaterials is reported to be of the alternative tool to combat drug resistant pathogens. In present investigation, bioconjugated nano-complex was developed from secondary metabolite secreted from endosymbiont. The endosymbiont capable of secreting antimicrobial metabolite was subjected to fermentation and the culture supernatant was assessed for purification of antimicrobial metabolite via bio-assay guided fraction techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and column chromatography. The metabolite was characterized as 2,4-Diacetylphloroglucinol (2,4 DAPG) which was used to develop bioconjugated nano-complex by treating with 1 mM silver nitrate under optimized conditions. The purified metabolite 2,4 DAPG reduced silver nitrate to form bioconjugated nano-complex to form association with silver nanoparticles. The oxidized form of DAPG consists of four hard ligands that can conjugate on to the surface of silver nanoparticles cluster. The bioconjugation was confirmed with UV-visible spectroscopy which displayed the shift and shoulder peak in the absorbance spectra. This biomolecular interaction was further determined by the Fourier-transform spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses which displayed different signals ascertaining the molecular binding of 2,4,DAPG with silver nanoparticles. The transmission electron microscopy (TEM) analysis revealed the cluster formation due to bioconjugation. The XRD analysis revealed the crystalline nature of nano-complex with the characteristic peaks indexed to Bragg's reflection occurring at 2θ angle which indicated the (111), (200), (220) and (311) planes. The activity of bioconjugated nano-complex was tested against 12 significant human and phytopathogens. Among all the test pathogens, Shigella flexneri (MTCC

  4. Changing paradigms of anti-VEGF in the Indian scenario

    Directory of Open Access Journals (Sweden)

    P Mahesh Shanmugam

    2014-01-01

    Full Text Available Anti-vascular endothelial growth factors (VEGF agents have revolutionized the treatment of retinal diseases. Use of anti-VEGF agents in the Indian Scenario present some unique challenges considering the absence of compounding pharmacies, poor penetrance of health insurance and limited affordability of the citizens of a developing economy. To study the changing paradigms of anti-VEGF use in the Indian scenario, all articles published by Indian authors, data from web-based surveys amongst Indian vitreo-retinal specialists were reviewed. In the paucity of compounding pharmacies in India, fractionation and injection techniques differ from those of developed countries. Frequent anti-VEGF monotherapy offers the best anatomical and visual results, but economics of scale do not allow the same in the Indian scenario, resulting in PRN dosing and combination of anti-VEGF with laser photocoagulation, being the commonly employed treatment protocols.

  5. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    International Nuclear Information System (INIS)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-01-01

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16 INK , p21 and p19 ARF . VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI

  6. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Differential expression of VEGF ligands and receptors in prostate cancer.

    Science.gov (United States)

    Woollard, David J; Opeskin, Kenneth; Coso, Sanja; Wu, Di; Baldwin, Megan E; Williams, Elizabeth D

    2013-05-01

    Prostate cancer disseminates to regional lymph nodes, however the molecular mechanisms responsible for lymph node metastasis are poorly understood. The vascular endothelial growth factor (VEGF) ligand and receptor family have been implicated in the growth and spread of prostate cancer via activation of the blood vasculature and lymphatic systems. The purpose of this study was to comprehensively examine the expression pattern of VEGF ligands and receptors in the glandular epithelium, stroma, lymphatic vasculature and blood vessels in prostate cancer. The localization of VEGF-A, VEGF-C, VEGF-D, VEGF receptor (VEGFR)-1, VEGFR-2, and VEGFR-3 was examined in cancerous and adjacent benign prostate tissue from 52 subjects representing various grades of prostate cancer. Except for VEGFR-2, extensive staining was observed for all ligands and receptors in the prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was higher in tumor tissue compared to benign tissue. VEGF-D and VEGFR-3 expression was significantly higher in benign tissue compared to tumor in the stroma and the endothelium of lymphatic and blood vessels. In addition, the frequency of lymphatic vessels, but not blood vessels, was lower in tumor tissue compared with benign tissue. These results suggest that activation of VEGFR-1 by VEGF-A within the carcinoma, and activation of lymphatic endothelial cell VEGFR-3 by VEGF-D within the adjacent benign stroma may be important signaling mechanisms involved in the progression and subsequent metastatic spread of prostate cancer. Thus inhibition of these pathways may contribute to therapeutic strategies for the management of prostate cancer. Copyright © 2012 Wiley Periodicals, Inc.

  8. Molecular characterization of multivalent bioconjugates by size-exclusion chromatography (SEC) with multi-angle laser light scattering (MALS)

    Science.gov (United States)

    Pollock, Jacob F.; Ashton, Randolph S.; Rode, Nikhil A.; Schaffer, David V.; Healy, Kevin E.

    2013-01-01

    The degree of substitution and valency of bioconjugate reaction products are often poorly judged or require multiple time- and product- consuming chemical characterization methods. These aspects become critical when analyzing and optimizing the potency of costly polyvalent bioactive conjugates. In this study, size-exclusion chromatography with multi-angle laser light scattering was paired with refractive index detection and ultraviolet spectroscopy (SEC-MALS-RI-UV) to characterize the reaction efficiency, degree of substitution, and valency of the products of conjugation of either peptides or proteins to a biopolymer scaffold, i.e., hyaluronic acid (HyA). Molecular characterization was more complete compared to estimates from a protein quantification assay, and exploitation of this method led to more accurate deduction of the molecular structures of polymer bioconjugates. Information obtained using this technique can improve macromolecular engineering design principles and better understand multivalent macromolecular interactions in biological systems. PMID:22794081

  9. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  10. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen, E-mail: delucas@u-bourgogne.fr

    2016-12-15

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  11. Protein–nanoparticle interaction in bioconjugated silver nanoparticles: A transmission electron microscopy and surface enhanced Raman spectroscopy study

    International Nuclear Information System (INIS)

    Reymond-Laruinaz, Sébastien; Saviot, Lucien; Potin, Valérie; Marco de Lucas, María del Carmen

    2016-01-01

    Highlights: • Synthesis of protein-conjugated Ag nanoparticles (NPs) in absence of citrates. • NPs size and protein layer thickness determined by TEM. • SERS spectra showed the chemisorption of proteins on the surface of Ag-NPs. - Abstract: Understanding the mechanisms of interaction between proteins and noble metal nanoparticles (NPs) is crucial to extend the use of NPs in biological applications and nanomedicine. We report the synthesis of Ag-NPs:protein bioconjugates synthesized in total absence of citrates or other stabilizing agents in order to study the NP-protein interaction. Four common proteins (lysozyme, bovine serum albumin, cytochrome-C and hemoglobin) were used in this work. Transmission electron microscopy (TEM) and surface enhanced Raman spectroscopy (SERS) were mainly used to study these bioconjugated NPs. TEM images showed Ag NPs with sizes in the 5–40 nm range. The presence of a protein layer surrounding the Ag NPs was also observed by TEM. Moreover, the composition at different points of single bioconjugated NPs was probed by electron energy loss spectroscopy (EELS). The thickness of the protein layer varies in the 3–15 nm range and the Ag NPs are a few nanometers away. This allowed to obtain an enhancement of the Raman signal of the proteins in the analysis of water suspensions of bioconjugates. SERS results showed a broadening of the Raman bands of the proteins which we attribute to the contribution of different configurations of the proteins adsorbed on the Ag NPs surface. Moreover, the assignment of an intense and sharp peak in the low-frequency range to Ag–N vibrations points to the chemisorption of the proteins on the Ag-NPs surface.

  12. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    Science.gov (United States)

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n = 14; VEGF, odds ratio 1.28, P = 0.01; effusion size, odds ratio 1.01, P = 0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC = 0.985, P Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE. PMID:25884029

  13. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    Directory of Open Access Journals (Sweden)

    Mauo-Ying Bien

    2015-01-01

    Full Text Available Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF, interleukin- (IL- 8, plasminogen activator inhibitor type-1 (PAI-1, and tissue type plasminogen activator (tPA were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT, were assessed at 6-month follow-up. Results. The effusion size and effusion lactate dehydrogenase (LDH, VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n=14; VEGF, odds ratio 1.28, P=0.01; effusion size, odds ratio 1.01, P=0.02, and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC=0.985, P<0.001. Conclusions. Effusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE.

  14. VEGF correlates with inflammation and fibrosis in tuberculous pleural effusion.

    Science.gov (United States)

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 (PAI-1), and tissue type plasminogen activator (tPA) were measured. Treatment outcome and pleural fibrosis, defined as radiological residual pleural thickening (RPT), were assessed at 6-month follow-up. The effusion size and effusion lactate dehydrogenase (LDH), VEGF, IL-8, PAI-1, and PAI-1/tPA ratio were significantly higher, while effusion glucose, pH value, and tPA were significantly lower, in loculated than in nonloculated TBPE. VEGF and IL-8 correlated positively with LDH and PAI-1/tPA ratio and negatively with tPA in both loculated and nonloculated TBPE. Patients with higher VEGF or greater effusion size were prone to develop RPT (n=14; VEGF, odds ratio 1.28, P=0.01; effusion size, odds ratio 1.01, P=0.02), and VEGF was an independent predictor of RPT in TBPE (receiver operating characteristic curve AUC=0.985, PEffusion VEGF correlates with pleural inflammation and fibrosis and may be targeted for adjunct therapy for TBPE.

  15. The mechanism of the photoluminescence changes in bio-conjugated CdSe/ZnS quantum dots

    Science.gov (United States)

    Borkovska, L.; Korsunska, N.; Stara, T.; Kolomys, O.; Strelchuk, V.; Rachkov, O.; Kryshtab, T.

    2013-09-01

    The change of the photoluminescence (PL) and optical characteristics in non-conjugated and conjugated with S6K2 antibody CdSe/ZnS core/shell quantum dots (QDs) during storage in air has been studied by the conventional PL, micro-PL and micro-Raman techniques. The QDs dried on a crystalline Si substrate were kept in the darkness and under illumination. In the PL spectra, the storage resulted in a blue shift of PL peak position, in the increasing of the full width at a half maximum (FWHM) of the PL band and in the decreasing of the PL intensity. In the Raman spectra, the shift of the CdSe LO peak position to the low frequency region and the increasing of its FWHM were observed. The transformations in the PL and optical characteristics correlate with each other and are found to be the largest in bio-conjugated QDs stored under illumination. The increase of the light intensity accelerated the changes occurred during storage. An oxidation of the QD core, which decreases the QD size, is supposed to be responsible for observed transformations. The bio-conjugation is assumed to promote QD oxidation that results in different PL peak position in stored non-conjugated and bio-conjugated QDs. The mechanism of the effect is discussed.

  16. Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods.

    Science.gov (United States)

    Sadeghi, Seyed M; Gutha, Rithvik R; Wing, Waylin J; Sharp, Christina; Capps, Lucas; Mao, Chuanbin

    2017-01-01

    We study biological sensing using plasmonic and photonic-plasmonic resonances of arrays of ultralong metallic nanorods and analyze the impact of these resonances on emission dynamics of quantum dot bioconjugates. We demonstrate that the LSPRs and plasmonic lattice modes of such array can be used to detect a single self-assembled monolayer of alkanethiol at the visible (550 nm) and near infrared (770 nm) range with well resolved shifts. We study adsorption of streptavidin-quantum dot conjugates to this monolayer, demonstrating that formation of nearly two dimensional arrays of quantum dots with limited emission blinking can lead to extra well-defined wavelength shifts in these modes. Using spectrally-resolved lifetime measurements we study the emission dynamics of such quantum dot bioconjugates within their monodispersed size distribution. We show that, despite their close vicinity to the nanorods, the rate of energy transfer from these quantum dots to nanorods is rather weak, while the plasmon field enhancement can be strong. Our results reveal that the nanorods present a strongly wavelength or size-dependent non-radiative decay channel to the quantum dot bioconjugates.

  17. VEGF expression in hepatectomized tumor-bearing mice.

    Science.gov (United States)

    Andrini, L; Blanco, A Fernandez; Inda, A; García, M; Garcia, A; Errecalde, A

    2011-01-01

    The experiments were designed in order to study the VEGF expression in intact (group I), hepatectomized (group II), and hepatectomized-tumor bearing mice (group III) throughout one complete circadian time span. Adult male mice were used for the VEGF expression study. The statistical analysis was performed using analysis of variance (ANOVA). The results showed statistical differences in the VEGF expression between groups I and II, but the most significant differences were found between groups I and III. In conclusion, these expressions have a circadian rhythm in all groups; moreover, in group III, this expression was higher and appeared before than in the others.

  18. The VEGF system and tie-2 are spatio-temporal expressed during tayassu placentation

    DEFF Research Database (Denmark)

    Miglino, M.A.; Santos, T.C.; Papa, P.C.

    Objectives: The vascular endothelial growth factor (VEGF) is one of the most important vascular mitogens, while the angiotensin receptor Tie-2 binds to the angiopoietin and stabilizes newly formed vessels. We therefore wanted to localize VEGF and its receptors VEGF-R1, VEGF-R2 and the Tie-2 recep...

  19. The immunohistochemical expression of endocrine gland-derived-VEGF (EG-VEGF) as a prognostic marker in ovarian cancer.

    Science.gov (United States)

    Bălu, Sevilla; Pirtea, L; Gaje, Puşa; Cîmpean, Anca Maria; Raica, M

    2012-01-01

    Ovarian cancer-related angiogenesis is a complex process orchestrated by many positive and negative regulators. Many growth factors are involved in the development of the tumor-associated vasculature, and from these, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) seems to play a crucial role. EG-VEGF is the first organ-specific angiogenic factor and its effects are restricted to the endothelial cells of the endocrine glands. Although EG-VEGF was detected in both normal and neoplastic ovaries, its clinical significance remains controversial. In the present study, we analyzed 30 patients with epithelial ovarian cancer, and the immunohistochemical expression of EG-VEGF was compared with the conventional clinico-pathological parameters of prognosis. Neoplastic cells of the ovarian carcinoma expressed EG-VEGF in 73.33% of the cases, as a cytoplasmic granular product of reaction. We found a strong correlation between the expression of EG-VEGF at protein level and tumor stage, grade, and microscopic type. The expression of EG-VEGF was found in patients with stage III and IV, but not in stage II. The majority of serous adenocarcinoma, half of the cases with clear cell carcinoma and two cases with endometrioid carcinoma showed definite expression in tumor cells. No positive reaction was found in the cases with mucinous carcinoma. Our results showed that EG-VEGF expression is an indicator not only of the advanced stage, but also of ovarian cancer progression. Based on these data, we concluded that EG-VEGF expression in tumor cells of the epithelial ovarian cancer is a good marker of unfavorable prognosis and could be an attractive therapeutic target in patients with advanced-stage tumors, refractory conventional chemotherapy.

  20. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... was quantified by means of western blot and immunohistochemistry technology. ... Key words: Vascular endothelial growth factor (VEGF), spinal cord injury, ... accordance with the National Institute of Health Guide for the Care.

  1. Increased vascular endothelial growth factor (VEGF) expression in ...

    African Journals Online (AJOL)

    User

    2011-05-16

    May 16, 2011 ... Vascular endothelial growth factor (VEGF), a well known angiogenic factor, has been shown to have direct and/or ... Endogenous repair efforts fail to repair ... Spinal cord injury model preparation and intramedullary spinal.

  2. EG-VEGF: a key endocrine factor in placental development.

    Science.gov (United States)

    Brouillet, Sophie; Hoffmann, Pascale; Feige, Jean-Jacques; Alfaidy, Nadia

    2012-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF), also named prokineticin 1, is the canonical member of the prokineticin family. Numerous reports suggest a direct involvement of this peptide in normal and pathological reproductive processes. Recent advances propose EG-VEGF as a key endocrine factor that controls many aspects of placental development and suggest its involvement in the development of preeclampsia (PE), the most threatening pathology of human pregnancy. This review describes the finely tuned action and regulation of EG-VEGF throughout human pregnancy, argues for its clinical relevance as a potential diagnostic marker of the onset of PE, and discusses future research directions for therapeutic targeting of EG-VEGF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. VEGF-A is increased in exogenous endophthalmitis.

    Science.gov (United States)

    Seamone, Mark E; Lewis, Darrell R; Haidl, Ian D; Gupta, R Rishi; O' Brien, Daniel M; Dickinson, John; Samad, Arif; Marshall, Jean S; Cruess, Alan F

    2017-06-01

    Exogenous endophthalmitis is an ophthalmologic emergency defined by panocular inflammation. Vascular endothelial growth factor A (VEGF-A) contributes to inflammation by promoting chemotaxis of monocytes and granulocytes and by increasing vascular permeability. The purpose of this article is to determine if VEGF-A is elevated in the vitreous samples obtained from individuals with exogenous endophthalmitis. Vitreous samples from individuals with exogenous endophthalmitis (n = 18) were analyzed via Luminex assay and enzyme-linked immunosorbent assay for the cytokines VEGF-A, tumor necrosis factor (TNF), interleukin 6 (IL-6), IL-8 (chemokine [CXCL]-8), IL-1β, IL-10, IL-12p70, IL-33, interferon (IFN)-γ, IFN-α, IFN-β, chemokine ligand (CCL)-3, IL-2, IL-5, IL-15, CXCL-10, CCL-2, IL-1Ra, CCL-5, IL-17, and CCL-11. Vitreous samples obtained at the time of macular hole surgery served as controls (n = 8). Concentrations of VEGF-A were significantly elevated in vitreous samples from individuals with exogenous endophthalmitis compared with macular hole (p exogenous endophthalmitis after cataract surgery (p = 0.001), vitrectomy (p = 0.024), and intravitreal injection (p = 0.012). VEGF-A concentrations were similar in both culture-positive and culture-negative populations (p > 0.05). In a linear regression model, levels of VEGF-A correlated significantly with the chemokine CXCL-8 (p = 0.028). We demonstrate that VEGF-A is potently upregulated in exogenous endophthalmitis. This observation provides a foundation for future studies of targeted VEGF-A blockade in the management of endophthalmitis. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Expression of Ang-2 and VEGF in the endometriosis

    Directory of Open Access Journals (Sweden)

    Xiao-Li Chen

    2016-01-01

    Full Text Available Objective: To detect the expression of Ang-2 and VEGF in the endometriosis (EMT, and to explore the correlation of Ang-2 and VEGF with the pathogenesis of EMT. Methods: A total of 60 patients with EMT who were confirmed by laparoscopy and admitted in our hospital from August, 2014 to August, 2015 were included in the study and served as the observation group; moreover, 60 women who came for laparoscopy at the same stage were served as the control group. A volume of 5mL morning fasting elbow venous blood in the two groups was extracted, standing in the room temperature for 1h, centrifuged at 3 500 r/min for 20 min. The supernatant was extracted and stored at -70 ℃ for inspection. During the laparoscopy, a volume of 5 mL peritoneal fluid was collected, standing in the room temperature for 1 h, centrifuged at 3 500 r/min for 20 min. The supernatant was extracted and stored at -70 ℃ for inspection. ELISA was used to detect the levels of Ang-2 and VEGF. Results: The levels of Ang-2 and VEGF in the serum and peritoneal fluid in the observation group were significantly higher than those in the control group (P<0.05. The serum Ang-2 level in the severe patients was significantly higher than that in the mild patients, while the comparison of VEGF was not statistically significant. The levels of Ang-2 and VEGF in the peritoneal fluid in the severe patients were significantly higher than those in the mild patients. Conclusions: Ang-2 and VEGF can promote the angiogenesis in EMT patients, and their high expressions in the serum and peritoneal fluid are correlated with the occurrence and development of EMT; therefore, detection of the levels of Ang-2 and VEGF is of great significance in estimating the progression of EMT in the clinic.

  5. Vascular endothelial growth factor (VEGF and prostate pathology

    Directory of Open Access Journals (Sweden)

    Francisco Botelho

    2010-08-01

    Full Text Available PURPOSE: Previous studies suggest that vascular endothelial growth factor (VEGF circulating levels might improve identification of patients with prostate cancer but results are conflicting. Our aim was to compare serum VEGF levels across different prostate pathologies (including benign prostatic hyperplasia, prostatitis, high grade prostate intraepithelial neoplasia and prostate cancer in patients at high risk of prostate cancer. MATERIALS AND METHODS: We consecutively enrolled 186 subjects with abnormal digital rectal examination and/or total PSA (tPSA = 2.5 ng/mL. Blood was collected before diagnostic ultrasound guided trans-rectal prostate biopsy, or any prostate oncology treatment, to measure PSA isoforms and VEGF. Unconditional logistic regression was used to compute age-, tPSA- and free/total PSA-adjusted odds ratios (OR and respective 95% confidence intervals (95% CI for the association between serum VEGF and different prostatic pathologies. RESULTS: Prostate biopsy main diagnoses were normal or benign prostatic hyperplasia (27.3%, prostatitis (16.6%, and prostatic cancer (55.0%. The median VEGF levels (ng/mL in these groups were 178.2, 261.3 and 266.4 (p = 0.029, respectively, but no significant differences were observed for benign vs. malignant pathologies (215.2 vs. 266.4, p = 0.551. No independent association was observed between VEGF (3rd vs. 1st third and prostate cancer, when compared to benign conditions (adjusted OR = 1.44; CI 95%: 0.64-3.26. CONCLUSIONS: In patients at high risk of prostate cancer, circulating VEGF levels have no clinical role in deciding which patients should be submitted to prostate biopsy. Prostatitis patients, often with higher PSA levels, also present high serum levels of VEGF, and their inclusion in control groups might explain the heterogeneous results in previous studies.

  6. Thrombospondin-1 and VEGF in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Canan Alkim

    2012-01-01

    Full Text Available Angiogenesis is an important process in the pathogenesis of chronic inflammation. We aimed to study the angiogeneic balance in inflammatory bowel disease (IBD by evaluating the expression of vascular endothelial growth factor (VEGF and thrombospondin-1 (TSP-1 on colonic epithelial cells, together with the expression of inducible nitric oxide synthase (iNOS.Twenty-one ulcerative colitis (UC, 14 Crohn's disease (CD, 11 colorectal cancer patients, and 11 healthy controls colonic biopsy samples were evaluated immunohistochemically.The expressions of TSP-1, VEGF, and iNOS in UC and CD groups were higher than expression in healthy control group, all with statistical significance. However, in colorectal cancer group, VEGF and iNOS expressions were increased importantly, but TSP-1 expression was not statistically different from healthy control group's expression. Both TSP-1 and VEGF expressions were correlated with iNOS expression distinctly but did not correlate with each other.Both pro-angiogeneic VEGF and antiangiogeneic TSP-1 expressions were found increased in our IBD groups, but in colorectal cancer group, only VEGF expression was increased. TSP-1 increases in IBD patients as a response to inflammatory condition, but this increase was not enough to suppress pathologic angiogenesis and inflammation in IBD.

  7. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Chemistry of Bioconjugation in Nanoparticles-Based Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Karolina Werengowska-Ciećwierz

    2015-01-01

    Full Text Available Nanomedicine is, generally, the application of nanotechnology to medicine. The term nanomedicine includes monitoring, construction of novel drug delivery systems, and any possible future applications of nanotechnology and nanovaccinology. In this review, the most important ligand-nanocarrier and drug-nanocarrier bioconjugations are described. The detailed characterizations of covalently formed bonds between targeted ligand and nanocarrier, including amide, thioether, disulfide, acetyl-hydrazone and polycyclic groups, are described. Also, the coupling of small elements and heteroatoms in the form of R-X-R the “click chemistry” groups is shown. Physical adsorption and chemical bonding of drug to nanocarrier surface involving drug on the internal or external surfaces of nanocarriers are described throughout possibility of the formation of the above-mentioned functionalities. Moreover, the most popular nanostructures (liposomes, micelles, polymeric nanoparticles, dendrimers, carbon nanotubes, and nanohorns are characterized as nanocarriers. Building of modern drug carrier is a new method which could be effectively applied in targeted anticancer therapy.

  9. Photoactivated bioconjugation between ortho-azidophenols and anilines: a facile approach to biomolecular photopatterning.

    Science.gov (United States)

    El Muslemany, Kareem M; Twite, Amy A; ElSohly, Adel M; Obermeyer, Allie C; Mathies, Richard A; Francis, Matthew B

    2014-09-10

    Methods for the surface patterning of small molecules and biomolecules can yield useful platforms for drug screening, synthetic biology applications, diagnostics, and the immobilization of live cells. However, new techniques are needed to achieve the ease, feature sizes, reliability, and patterning speed necessary for widespread adoption. Herein, we report an easily accessible and operationally simple photoinitiated reaction that can achieve patterned bioconjugation in a highly chemoselective manner. The reaction involves the photolysis of 2-azidophenols to generate iminoquinone intermediates that couple rapidly to aniline groups. We demonstrate the broad functional group compatibility of this reaction for the modification of proteins, polymers, oligonucleotides, peptides, and small molecules. As a specific application, the reaction was adapted for the photolithographic patterning of azidophenol DNA on aniline glass substrates. The presence of the DNA was confirmed by the ability of the surface to capture living cells bearing the sequence complement on their cell walls or cytoplasmic membranes. Compared to other light-based DNA patterning methods, this reaction offers higher speed and does not require the use of a photoresist or other blocking material.

  10. Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion.

    Science.gov (United States)

    Kuzmenko, Volodymyr; Sämfors, Sanna; Hägg, Daniel; Gatenholm, Paul

    2013-12-01

    Bacterial nanocellulose (BNC) is an emerging biomaterial since it is biocompatible, integrates well with host tissue and can be biosynthesized in desired architecture. However, being a hydrogel, it exhibits low affinity for cell attachment, which is crucial for the cellular fate process. To increase cell attachment, the surface of BNC scaffolds was modified with two proteins, fibronectin and collagen type I, using an effective bioconjugation method applying 1-cyano-4-dimethylaminopyridinium (CDAP) tetrafluoroborate as the intermediate catalytic agent. The effect of CDAP treatment on cell adhesion to the BNC surface is shown for human umbilical vein endothelial cells and the mouse mesenchymal stem cell line C3H10T1/2. In both cases, the surface modification increased the number of cells attached to the surfaces. In addition, the morphology of the cells indicated more healthy and viable cells. CDAP activation of bacterial nanocellulose is shown to be a convenient method to conjugate extracellular proteins to the scaffold surfaces. CDAP treatment can be performed in a short period of time in an aqueous environment under heterogeneous and mild conditions preserving the nanofibrillar network of cellulose. © 2013.

  11. Bioconjugate functionalization of thermally carbonized porous silicon using a radical coupling reaction†

    Science.gov (United States)

    Sciacca, Beniamino; Alvarez, Sara D.; Geobaldo, Francesco; Sailor, Michael J.

    2011-01-01

    The high stability of Salonen’s thermally carbonized porous silicon (TCPSi) has attracted attention for environmental and biochemical sensing applications, where corrosion-induced zero point drift of porous silicon-based sensor elements has historically been a significant problem. Prepared by the high temperature reaction of porous silicon with acetylene gas, the stability of this silicon carbide-like material also poses a challenge—many sensor applications require a functionalized surface, and the low reactivity of TCPSi has limited the ability to chemically modify its surface. This work presents a simple reaction to modify the surface of TCPSi with an alkyl carboxylate. The method involves radical coupling of a dicarboxylic acid (sebacic acid) to the TCPSi surface using a benzoyl peroxide initiator. The grafted carboxylic acid species provides a route for bioconjugate chemical modification, demonstrated in this work by coupling propylamine to the surface carboxylic acid group through the intermediacy of pentafluorophenol and 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC). The stability of the carbonized porous Si surface, both before and after chemical modification, is tested in phosphate buffered saline solution and found to be superior to either hydrosilylated (with undecylenic acid) or thermally oxidized porous Si surfaces. PMID:20967329

  12. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    Science.gov (United States)

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  13. AdVEGF-B186 and AdVEGF-DΔNΔC induce angiogenesis and increase perfusion in porcine myocardium.

    Science.gov (United States)

    Nurro, Jussi; Halonen, Paavo J; Kuivanen, Antti; Tarkia, Miikka; Saraste, Antti; Honkonen, Krista; Lähteenvuo, Johanna; Rissanen, Tuomas T; Knuuti, Juhani; Ylä-Herttuala, Seppo

    2016-11-01

    Coronary heart disease remains a significant clinical problem, and new therapies are needed especially for patients with refractory angina for whom the current therapies do not provide sufficient relief. The aim of this study was to find out if angiogenic gene therapy using new members of the vascular endothelial growth factor (VEGF) family, VEGF-B 186 and VEGF-D ΔNΔC , increase myocardial perfusion as measured by the positron emission tomography (PET) 15 O-imaging, and whether there would be coronary steal effect to the contralateral side. Furthermore, safety of intramyocardial angiogenic adenoviral gene transfer was evaluated. Intramyocardial adenoviral (Ad) VEGF-B 186 or AdVEGF-D ΔNΔC gene transfers were given endovascularly into the porcine posterolateral wall of the left ventricle (n=34). Six days later, PET 15 O-imaging for myocardial perfusion and coronary angiography were performed. AdVEGF-B 186 and AdVEGF-D ΔNΔC induced angiogenesis and increased total microvascular area 1.8-fold (95% CI 0.2 to 3.5) and 2.8-fold (95% CI 1.4 to 4.3), respectively. At rest, perfusion was maintained at normal levels, but at stress, relative perfusion was increased 1.4-fold (95% CI 1.1 to 1.7) for AdVEGF-B 186 and 1.3-fold (95% CI 1.0 to 1.7) for AdVEGF-D ΔNΔC , without causing coronary steal effect in the control area. The therapy was well tolerated and did not lead to any significant changes in laboratory safety parameters. Both AdVEGF-B 186 and AdVEGF-D ΔNΔC gene transfers induced efficient angiogenesis in the myocardium resulting in an increased myocardial perfusion measured by PET. Importantly, local perfusion increase did not induce any coronary steal effect. As such, both treatments seem suitable new candidates for the induction of therapeutic angiogenesis for the treatment of refractory angina. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. CXCL7-Mediated Stimulation of Lymphangiogenic Factors VEGF-C, VEGF-D in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minghuan Yu

    2010-01-01

    Full Text Available Increased expression of lymphangiogenesis factors VEGF-C/D and heparanase has been correlated with the invasion of cancer. Furthermore, chemokines may modify matrix to facilitate metastasis, and they are associated with VEGF-C and heparanase. The chemokine CXCL7 binds heparin and the G-protein-linked receptor CXCR2. We investigated the effect of CXCR2 blockade on the expression of VEGF-C/D, heparanase, and on invasion. CXCL7 siRNA and a specific antagonist of CXCR2 (SB225002 were used to treat CXCL7 stably transfected MCF10AT cells. Matrigel invasion assays were performed. VEGF-C/D expression and secretion were determined by real-time PCR and ELISA assay, and heparanase activity was quantified by ELISA. SB225002 blocked VEGF-C/D expression and secretion (P<.01. CXCL7 siRNA knockdown decreased heparanase (P<.01. Both SB225002 and CXCL7 siRNA reduced the Matrigel invasion (P<.01. The MAP kinase signaling pathway was not involved. The CXCL7/CXCR2 axis is important for cell invasion and the expression of VEGF-C/D and heparanase, all linked to invasion.

  15. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Fang; Li, Xiuli [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China); Kong, Jian [Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing (China); Pan, Bing [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Sun, Min [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xian (China); Zheng, Lemin, E-mail: zhengl@bjmu.edu.cn [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Yao, Yuanqing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China)

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  16. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Gu, Fang; Li, Xiuli; Kong, Jian; Pan, Bing; Sun, Min; Zheng, Lemin; Yao, Yuanqing

    2013-01-01

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA 3.1 empty vector, pcDNA 3.1 -VEGF111b or pcDNA 3.1 -VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  17. Recombinant spider silk genetically functionalized with affinity domains.

    Science.gov (United States)

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  18. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    Science.gov (United States)

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Immunogenicity and safety of a tetravalent E. coli O-antigen bioconjugate vaccine in animal models.

    Science.gov (United States)

    van den Dobbelsteen, Germie P J M; Faé, Kellen C; Serroyen, Jan; van den Nieuwenhof, Ingrid M; Braun, Martin; Haeuptle, Micha A; Sirena, Dominique; Schneider, Joerg; Alaimo, Cristina; Lipowsky, Gerd; Gambillara-Fonck, Veronica; Wacker, Michael; Poolman, Jan T

    2016-07-29

    Extra-intestinal pathogenic Escherichia coli (ExPEC) are major human pathogens; however, no protective vaccine is currently available. We assessed in animal models the immunogenicity and safety of a 4-valent E. coli conjugate vaccine (ExPEC-4V, serotypes O1, O2, O6 and O25 conjugated to Exotoxin A from Pseudomonas aeruginosa (EPA)) produced using a novel in vivo bioconjugation method. Three doses of ExPEC-4V (with or without aluminum hydroxide) were administered to rabbits (2μg or 20μg per O-antigen, subcutaneously), mice (0.2μg or 2μg per O-antigen, subcutaneously) and rats (0.4μg or 4μg per O-antigen, intramuscularly). Antibody persistence and boostability were evaluated in rats using O6-EPA monovalent conjugate (0.4μg O-antigen/dose, intramuscularly). Toxicity was assessed in rats (16μg total polysaccharide, intramuscularly). Serum IgG and IgM antibodies were measured by ELISA. Robust antigen-specific IgG responses were observed in all animal models, with increased responses in rabbits when administered with adjuvant. O antigen-specific antibody responses persisted up to 168days post-priming. Booster immunization induced a rapid recall response. Toxicity of ExPEC-4V when administered to rats was considered to be at the no observed adverse effect level. ExPEC-4V conjugate vaccine showed good immunogenicity and tolerability in animal models supporting progression to clinical evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. SREBP inhibits VEGF expression in human smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Motoyama, Koka [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Fukumoto, Shinya [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Koyama, Hidenori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Emoto, Masanori [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Shimano, Hitoshi [Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Ibaraki (Japan); Maemura, Koji [Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo (Japan); Nishizawa, Yoshiki [Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan)

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  1. SREBP inhibits VEGF expression in human smooth muscle cells

    International Nuclear Information System (INIS)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-01-01

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs

  2. DNA methylation regulates expression of VEGF-C, and S-adenosylmethionine is effective for VEGF-C methylation and for inhibiting cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Da, M.X. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Zhang, Y.B. [Department of Surgery, Ningxia Medical University, Yinchuan (China); Yao, J.B. [Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou (China); Duan, Y.X. [Department of Surgery, Ningxia Medical University, Yinchuan (China)

    2014-09-30

    DNA hypomethylation may activate oncogene transcription, thus promoting carcinogenesis and tumor development. S-adenosylmethionine (SAM) is a methyl donor in numerous methylation reactions and acts as an inhibitor of intracellular demethylase activity, which results in hypermethylation of DNA. The main objectives of this study were to determine whether DNA hypomethylation correlated with vascular endothelial growth factor-C (VEGF-C) expression, and the effect of SAM on VEGF-C methylation and gastric cancer growth inhibition. VEGF-C expression was assayed by Western blotting and RT-qPCR in gastric cancer cells, and by immunohistochemistry in tumor xenografts. VEGF-C methylation was assayed by bisulfite DNA sequencing. The effect of SAM on cell apoptosis was assayed by flow cytometry analyses and its effect on cancer growth was assessed in nude mice. The VEGF-C promoters of MGC-803, BGC-823, and SGC-7901 gastric cancer cells, which normally express VEGF-C, were nearly unmethylated. After SAM treatment, the VEGF-C promoters in these cells were highly methylated and VEGF-C expression was downregulated. SAM also significantly inhibited tumor growth in vitro and in vivo. DNA methylation regulates expression of VEGF-C. SAM can effectively induce VEGF-C methylation, reduce the expression of VEGF-C, and inhibit tumor growth. SAM has potential as a drug therapy to silence oncogenes and block the progression of gastric cancer.

  3. Effects of EG-VEGF, VEGF and TGF-β1 on pregnancy outcome in patients undergoing IVF-ET treatment.

    Science.gov (United States)

    Gao, Min-zhi; Zhao, Xiao-ming; Lin, Yi; Sun, Zhao-gui; Zhang, Hui-qin

    2012-10-01

    To investigate the correlation of endocrine gland-derived vascular endothelial growth factor (EG-VEGF), vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGF-β1) with the corresponding reproductive outcome in patients who received in vitro fertilization-embryo transfer (IVF-ET). Sixty-seven women undergoing IVF-ET at a university tertiary hospital were recruited for a prospective study. Concentrations of EG-VEGF, VEGF and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA) in follicular fluid (FF) collected during oocyte retrieval (OR) and in serum collected 2 days after OR. In FF, concentrations of both EG-VEGF and VEGF were negatively correlated with peak E2 and the number of MII oocytes retrieved, and positively correlated with each other. In serum, concentrations of all the three growth factors were positively correlated with the rate of good quality embryo, and with one another. Patients in the pregnancy group had lower peak E2 concentrations and higher serum EG-VEGF concentrations than those in the non-pregnancy group, but such tendency was not observed in the case of VEGF and TGF-β1. Both concentrations of EG-VEGF and VEGF in FF were negatively correlated with ovarian response and oocyte maturation. Concentrations of all the three growth factors in serum were positively correlated with embryo quality, but only serum concentrations of EG-VEGF were associated with the pregnancy outcome.

  4. VEGF-independent angiogenic pathways induced by PDGF-C

    Science.gov (United States)

    Kumar, Anil; Zhang, Fan; Lee, Chunsik; Li, Yang; Tang, Zhongshu; Arjunan, Pachiappan

    2010-01-01

    VEGF is believed to be a master regulator in both developmental and pathological angiogenesis. The role of PDGF-C in angiogenesis, however, is only at the beginning of being revealed. We and others have shown that PDGF-C is a critical player in pathological angiogenesis because of its pleiotropic effects on multiple cellular targets. The angiogenic pathways induced by PDGF-C are, to a large extent, VEGF-independent. These pathways may include, but not limited to, the direct effect of PDGF-C on vascular cells, the effect of PDGF-C on tissue stroma fibroblasts, and its effect on macrophages. Taken together, the pleiotropic, versatile and VEGF-independent angiogenic nature of PDGF-C has placed it among the most important target genes for antiangiogenic therapy. PMID:20871734

  5. VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2

    NARCIS (Netherlands)

    Garrett, Tiana A.; van Buul, Jaap D.; Burridge, Keith

    2007-01-01

    Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the

  6. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2.

    Science.gov (United States)

    Peach, Chloe J; Mignone, Viviane W; Arruda, Maria Augusta; Alcobia, Diana C; Hill, Stephen J; Kilpatrick, Laura E; Woolard, Jeanette

    2018-04-23

    Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGF xxx a or VEGF xxx b isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF 165 a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.

  7. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates

    International Nuclear Information System (INIS)

    Kim, Gang-Il; Sung, Yun-Mo; Kim, Kyung-Woo; Oh, Min-Kyu

    2009-01-01

    High-sensitivity, high-specificity detection of platelet derived growth factor (PDGF)-BB was realized using the change in fluorescence resonance energy transfer (FRET) occurring between quantum dot (QD) donors and black hole quencher (BHQ) acceptors. CdSe/ZnS QD/mercaptoacetic acid (MAA)/PDGF aptamer bioconjugates were successfully synthesized using ligand exchange. Black hole quencher (BHQ)-bearing oligonucleotide molecules showing partial sequence matching to PDGF aptamer were attached to PDGF aptamers and photoluminescence (PL) quenching was obtained through FRET. By adding target PDGF-BB to the bioconjugates containing BHQs, PL recovery was detected due to detachment of BHQ-bearing oligonucleotide from the PDGF aptamer as a result of the difference in affinity to the PDGF aptamer. The detection limit of the sensor was ∼0.4 nM and the linearity was maintained up to 1.6 nM in the PL intensity versus concentration curve. Measurement of PL recovery was suggested as a strong tool for high-sensitivity detection of PDGF-BB. Epidermal growth factor (EGF), the negative control molecule, did not contribute to PL recovery due to lack of binding affinity to the PDGF aptamers, which demonstrates the selectivity of the biosensor.

  8. Study on the correlation between VEGF and peritumoral edema and tumor border in astrocytoma by CT

    International Nuclear Information System (INIS)

    Ye Yuxiang; Tan Siping; Liu Bo; Liu Guorui; Zhen Zhichao; Fan Miao

    2004-01-01

    Objective: To study the correlation between VEGF and peritumoral edema and tumor border in human astrocytoma, investigate the significance of its CT features in molecular-biology. Methods: The VEGF was examined by means of SP immunohistochemical technique in 52 cases of astrocytoma proved by pathology. The correlation of tumor VEGF with peritumoral edema, and tumor border was analyzed. Results: The peritumoral edema, tumor border and mass effect of astrocytoma was positively correlated with its VEGF. The VEGF increased with peritumoral edema and mass effect (P<0.01). VEGF were significantly higher in uncertain border group than those the clear border group (P<0.05), which VEGF were 69.2 ± 19.0. Conclusion: The over expression of VEGF obviously effect CT features in astrocytoma, such as peritumoral edema and tumor border

  9. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture

    NARCIS (Netherlands)

    Poldervaart, Michelle T; Gremmels, Hendrik; van Deventer, Kelly; Fledderus, Joost O; Oner, F Cumhur; Verhaar, Marianne C; Dhert, Wouter J A; Alblas, Jacqueline

    2014-01-01

    Timely vascularization is essential for optimal performance of bone regenerative constructs. Vascularization is efficiently stimulated by vascular endothelial growth factor (VEGF), a substance with a short half-life time. This study investigates the controlled release of VEGF from gelatin

  10. Ovarian hyperstimulation syndrome is correlated with a reduction of soluble VEGF receptor protein level and a higher amount of VEGF-A.

    Science.gov (United States)

    Pietrowski, D; Szabo, L; Sator, M; Just, A; Egarter, C

    2012-01-01

    Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening condition associated with increased vascular permeability. The vascular endothelial growth factor (VEGF) system and its receptors have been identified as the main angiogenic factors responsible for increased capillary permeability and are therefore discussed as crucial for the occurrence of OHSS. Recently, a number of soluble receptors for the VEGFs have been detected (sVEGF-Rs) and it has been shown that these sVEGF-Rs compete with the membrane-standing VEGF-R to bind VEGFs. We analyzed the serum levels of soluble VEGF-R1, -R2 and -R3 in 34 patients suffering from OHSS and in 34 controls without this disease. In a subgroup analysis, we correlated the severity of the OHSS with the detected amounts of VEGF-R1, -R2 and -R3. In addition, we determined the amount of total VEGF-A in the samples. All the three soluble VEGF receptors tended to be higher in the control group compared with that in the OHSS group but this difference only reached significance for sVEGF-R2 (mean ± SEM: 15.5 ± 0.6 versus 13.8 ± 0.5 ng/ml, respectively, P< 0.05). In the subgroup analysis, sVEGF-R2 levels decreased as the severity of OHSS increased (OHSS-I: 16.8 ± 1.9 ng/ml and OHSS-III: 12.7 ± 1.0 ng/ml, P< 0.05) Moreover, the serum levels of total VEGF-A were higher in the OHSS group than those in the controls (537.7 ± 38.9 versus 351 ± 53.4 pg/ml, respectively P< 0.05). We propose that VEGF-A plays a role in the occurrence of OHSS, that the amount of biologically available VEGF-A is modulated by sVEGF-Rs and that different combinations of VEGF-A and sVEGF-R levels might contribute to the severity of OHSS.

  11. Enhancement effect of CdTe quantum dots-IgG bioconjugates on chemiluminescence of luminol-H2O2 system

    International Nuclear Information System (INIS)

    Kanwal, Shamsa; Traore, Zoumana; Zhao Chunfang; Su Xingguang

    2010-01-01

    In this paper we developed an entirely new and highly sensitive luminol-H 2 O 2 flow injection chemiluminescence system using the enhancement effect of CdTe quantum dots-IgG bioconjugates. Immunoglobulin G (IgG) as a kind of bio-molecule was conjugated to different sized CdTe semiconductor quantum dots (QDs). Using PL spectra and CL intensity profiles, it was found that chemiluminescence resonance energy transfer (CRET) was possibly occurring between CdTe-IgG bioconjugate and luminol. Under optimum conditions, increase of IgG concentration in CdTe-IgG bioconjugate resulted enhancing effect on CL intensity of luminol-H 2 O 2 system. Moreover quenching effects on CL intensity by addition of different proteases can construct turn off biosensor for these proteases with low detection limits and wide linear range. Furthermore, the effects of various organic and inorganic species on CdTe-IgG bioconjugates enhanced luminol-H 2 O 2 CL system were also studied in this paper.

  12. Protein expression profile of HT-29 human colon cancer cells after treatment with a cytotoxic daunorubicin-GnRH-III derivative bioconjugate.

    Directory of Open Access Journals (Sweden)

    Verena Natalie Schreier

    Full Text Available Targeted delivery of chemotherapeutic agents is a new approach for the treatment of cancer, which provides increased selectivity and decreased systemic toxicity. We have recently developed a promising drug delivery system, in which the anticancer drug daunorubicin (Dau was attached via oxime bond to a gonadotropin-releasing hormone-III (GnRH-III derivative used as a targeting moiety (Glp-His-Trp-Lys(Ac-His-Asp-Trp-Lys(Da  = Aoa-Pro-Gly-NH2; Glp = pyroglutamic acid, Ac = acetyl; Aoa = aminooxyacetyl. This bioconjugate exerted in vitro cytostatic/cytotoxic effect on human breast, prostate and colon cancer cells, as well as significant in vivo tumor growth inhibitory effect on colon carcinoma bearing mice. In our previous studies, H-Lys(Dau = Aoa-OH was identified as the smallest metabolite produced in the presence of rat liver lysosomal homogenate, which was able to bind to DNA in vitro. To get a deeper insight into the mechanism of action of the bioconjugate, changes in the protein expression profile of HT-29 human colon cancer cells after treatment with the bioconjugate or free daunorubicin were investigated by mass spectrometry-based proteomics. Our results indicate that several metabolism-related proteins, molecular chaperons and proteins involved in signaling are differently expressed after targeted chemotherapeutic treatment, leading to the conclusion that the bioconjugate exerts its cytotoxic action by interfering with multiple intracellular processes.

  13. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema

    OpenAIRE

    Yoon, Young-sup; Murayama, Toshinori; Gravereaux, Edwin; Tkebuchava, Tengiz; Silver, Marcy; Curry, Cynthia; Wecker, Andrea; Kirchmair, Rudolf; Hu, Chun Song; Kearney, Marianne; Ashare, Alan; Jackson, David G.; Kubo, Hajime; Isner, Jeffrey M.; Losordo, Douglas W.

    2003-01-01

    Although lymphedema is a common clinical condition, treatment for this disabling condition remains limited and largely ineffective. Recently, it has been reported that overexpression of VEGF-C correlates with increased lymphatic vessel growth (lymphangiogenesis). However, the effect of VEGF-C–induced lymphangiogenesis on lymphedema has yet to be demonstrated. Here we investigated the impact of local transfer of naked plasmid DNA encoding human VEGF-C (phVEGF-C) on two animal models of lymphed...

  14. Bioconjugation of trypsin onto gold nanoparticles: Effect of surface chemistry on bioactivity

    International Nuclear Information System (INIS)

    Hinterwirth, Helmut; Lindner, Wolfgang; Lämmerhofer, Michael

    2012-01-01

    Highlights: ► Size and spacer affect bioactivity of nanoparticulate trypsin reactor. ► Increase of GNP's size increases activity of bound trypsin. ► Increase of spacer length increases amount and activity of immobilized enzyme by factor 6. ► Decrease of digestion time up to less than 1 h when trypsin immobilized onto GNPs. ► Reduced auto-digestion compared to trypsin in-solution. - Abstract: The systematic study of activity, long-time stability and auto-digestion of trypsin immobilized onto gold nanoparticles (GNPs) is described in this paper and compared to trypsin in-solution. Thereby, the influence of GNP's size and immobilization chemistry by various linkers differing in lipophilicity/hydrophilicity and spacer lengths was investigated with regard to the bioactivity of the conjugated enzyme. GNPs with different sizes were prepared by reduction and simultaneous stabilization with trisodium citrate and characterized by UV/vis spectra, dynamic light scattering (DLS), ζ-potential measurements and transmission electron microscopy (TEM). GNPs were derivatized by self-assembling of bifunctional thiol reagents on the nanoparticle (NP) surface via dative thiol-gold bond yielding a carboxylic acid functionalized surface. Trypsin was either attached directly via hydrophobic and ionic interactions onto the citrate stabilized GNPs or immobilized via EDC/NHS bioconjugation onto the carboxylic functionalized GNPs, respectively. The amount of bound trypsin was quantified by measuring the absorbance at 280 nm. The activity of bound enzyme and its Michaelis Menten kinetic parameter K m and v max were measured by the standard chromogenic substrate N α -Benzoyl-DL-arginine 4-nitroanilide hydrochloride (BApNA). Finally, digestion of a standard protein mixture with the trypsin-conjugated NPs followed by analysis with LC–ESI-MS and successful MASCOT search demonstrated the applicability of the new heterogenous nano-structured biocatalyst. It could be shown that the

  15. Bioconjugation of trypsin onto gold nanoparticles: Effect of surface chemistry on bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hinterwirth, Helmut; Lindner, Wolfgang [Department of Analytical Chemistry, University of Vienna, Waehringerstrasse 38, 1090 Vienna (Austria); Laemmerhofer, Michael, E-mail: michael.laemmerhofer@uni-tuebingen.de [Department of Analytical Chemistry, University of Vienna, Waehringerstrasse 38, 1090 Vienna (Austria)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Size and spacer affect bioactivity of nanoparticulate trypsin reactor. Black-Right-Pointing-Pointer Increase of GNP's size increases activity of bound trypsin. Black-Right-Pointing-Pointer Increase of spacer length increases amount and activity of immobilized enzyme by factor 6. Black-Right-Pointing-Pointer Decrease of digestion time up to less than 1 h when trypsin immobilized onto GNPs. Black-Right-Pointing-Pointer Reduced auto-digestion compared to trypsin in-solution. - Abstract: The systematic study of activity, long-time stability and auto-digestion of trypsin immobilized onto gold nanoparticles (GNPs) is described in this paper and compared to trypsin in-solution. Thereby, the influence of GNP's size and immobilization chemistry by various linkers differing in lipophilicity/hydrophilicity and spacer lengths was investigated with regard to the bioactivity of the conjugated enzyme. GNPs with different sizes were prepared by reduction and simultaneous stabilization with trisodium citrate and characterized by UV/vis spectra, dynamic light scattering (DLS), {zeta}-potential measurements and transmission electron microscopy (TEM). GNPs were derivatized by self-assembling of bifunctional thiol reagents on the nanoparticle (NP) surface via dative thiol-gold bond yielding a carboxylic acid functionalized surface. Trypsin was either attached directly via hydrophobic and ionic interactions onto the citrate stabilized GNPs or immobilized via EDC/NHS bioconjugation onto the carboxylic functionalized GNPs, respectively. The amount of bound trypsin was quantified by measuring the absorbance at 280 nm. The activity of bound enzyme and its Michaelis Menten kinetic parameter K{sub m} and v{sub max} were measured by the standard chromogenic substrate N{sub {alpha}}-Benzoyl-DL-arginine 4-nitroanilide hydrochloride (BApNA). Finally, digestion of a standard protein mixture with the trypsin-conjugated NPs followed by analysis with

  16. Advantages of bioconjugated silica-coated nanoparticles as an innovative diagnosis for human toxoplasmosis.

    Science.gov (United States)

    Aly, Ibrahim; Taher, Eman E; El Nain, Gehan; El Sayed, Hoda; Mohammed, Faten A; Hamad, Rabab S; Bayoumy, Elsayed M

    2018-01-01

    Nanotechnology is a promising arena for generating new applications in Medicine. To successfully functionalised nanoparticles for a given biomedical application, a wide range of chemical, physical and biological factors have to be taken into account. Silica-coated nanoparticles, (SiO2NP) exhibit substantial diagnostic activity owing to their large surface to volume ratios and crystallographic surface structure. This work aimed to evaluate the advantage of bioconjugation of SiO2NP with PAb against Toxoplasma lyzate antigen (TLA) as an innovative diagnostic method for human toxoplasmosis. This cross-sectional study included 120 individuals, divided into Group I: 70 patients suspected for Toxoplasma gondii based on the presence of clinical manifestation. Group II: 30 patients harboring other parasites than T. gondii Group III: 20 apparently healthy individuals free from toxoplasmosis and other parasitic infections served as negative control. Detection of circulating Toxoplasma antigen was performed by Sandwich ELISA and Nano-sandwich ELISA on sera and pooled urine of human samples. Using Sandwich ELISA, 10 out of 70 suspected Toxoplasma-infected human serum samples showed false negative and 8 out of 30 of other parasites groups were false positive giving 85.7% sensitivity and 84.0% specificity, while the sensitivity and specificity were 78.6% and 70% respectively in urine samples. Using Nano-Sandwich ELISA, 7 out of 70 suspected Toxoplasma-infected human samples showed false negative results and the sensitivity of the assay was 90.0%, while 4 out of 30 of other parasites groups were false positive giving 92.0% specificity, while the sensitivity and specificity were 82.6% and 80% respectively in urine samples. In conclusion, our data demonstrated that loading SiO2 nanoparticles with pAb increased the sensitivity and specificity of Nano-sandwich ELISA for detection of T.gondii antigens in serum and urine samples, thus active (early) and light infections could be easily

  17. Biological variations in plasma VEGF and VEGFR-1 may compromise their biomarker value in colorectal cancer

    DEFF Research Database (Denmark)

    Svendsen, Mads N.; Brunner, Nils; Christensen, Ib Jarle

    2010-01-01

    Vascular Endothelial Growth Factor (VEGF) plays a prominent role in tumor angiogenesis and plasma VEGF concentration may carry prognostic information in colorectal cancer. The VEGF receptor 1 (VEGFR-1) is a regulatory receptor which is shredded into plasma of patients with colorectal cancer. For ....... For both molecules, large biological variation and lack of standardization of assay procedures are major challenges....

  18. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft

    NARCIS (Netherlands)

    Nagengast, Wouter B.; Hospers, Geke A.; Mulder, Nanno H.; de Jong, Johan R.; Hollema, Harry; Brouwers, Adrienne H.; van Dongen, Guns A.; Perk, Lars R.; Lub-de Hooge, Marjolijn N.

    Vascular endothelial growth factor (VEGF), released by tumor cells, is an important growth factor in tumor angiogenesis. The humanized monoclonal antibody bevacizumab blocks VEGF-induced tumor angiogenesis by binding, thereby neutralizing VEGF. Our aim was to develop radiolabeled bevacizumab for

  19. Polymorphism of the VEGF gene and its association with growth ...

    African Journals Online (AJOL)

    Thus, mutations of this gene may exert a significant influence on animal growth. We screened the exons of the caprine VEGF gene using PCR-SSCP and DNA sequencing methods in 459 individuals from four goat breeds to identify sequence variations that may have an effect on protein structure and function, and might be ...

  20. Polymorphism of the VEGF gene and its association with growth ...

    African Journals Online (AJOL)

    User

    Keywords: VEGF gene, caprine, single nucleotide polymorphism (SNP), genetic variation, PCR-SSCP ... This field is strongly focusing on gene loci and polymorphisms that have ..... Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal.

  1. [Systemic safety following intravitreal injections of anti-VEGF].

    Science.gov (United States)

    Baillif, S; Levy, B; Girmens, J-F; Dumas, S; Tadayoni, R

    2018-03-01

    The goal of this manuscript is to assess data suggesting that intravitreal injection of anti-vascular endothelial growth factors (anti-VEGFs) could result in systemic adverse events (AEs). The class-specific systemic AEs should be similar to those encountered in cancer trials. The most frequent AE observed in oncology, hypertension and proteinuria, should thus be the most common expected in ophthalmology, but their severity should be lower because of the much lower doses of anti-VEGFs administered intravitreally. Such AEs have not been frequently reported in ophthalmology trials. In addition, pharmacokinetic and pharmacodynamic data describing systemic diffusion of anti-VEGFs should be interpreted with caution because of significant inconsistencies reported. Thus, safety data reported in ophthalmology trials and pharmacokinetic/pharmacodynamic data provide robust evidence that systemic events after intravitreal injection are very unlikely. Additional studies are needed to explore this issue further, as much remains to be understood about local and systemic side effects of anti-VEGFs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Mural cell associated VEGF is required for organotypic vessel formation.

    Directory of Open Access Journals (Sweden)

    Lasse Evensen

    Full Text Available BACKGROUND: Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics. METHODS AND FINDINGS: To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF. CONCLUSIONS: These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.

  3. Thrombospondin-1 and VEGF in inflammatory bowel disease | Alkim ...

    African Journals Online (AJOL)

    Methods: Twenty-one ulcerative colitis (UC), 14 Crohn's disease (CD), 11 colorectal cancer patients, and 11 healthy controls colonic biopsy samples were evaluated immunohistochemically. Results: The expressions of TSP-1, VEGF, and iNOS in UC and CD groups were higher than expression in healthy control group, ...

  4. Elevated serum and tissue VEGF associated with poor outcome in ...

    African Journals Online (AJOL)

    Enas Mohamed Ali

    a Cancer Management and Research Department, Alexandria University, Egypt ... and followed for 4 years and 30 females with benign breast lesions matched with ... Results: The mean serum level of VEGF elevated in breast cancer patients .... 120 patients of non metastatic breast cancer. Number. Percent. Age. <50. 78.

  5. [VEGF expression in dog retina after chorioretinal venous anastomosis].

    Science.gov (United States)

    Lu, Ning; Li, Zhihui; Sun, Xianli; Wang, Guanglu; Zhang, Feng; Peng, Xiaoyan

    2002-09-01

    To identify changes in vascular endothelial growth factor (VEGF) expression in the dog retina after laser-induced chorioretinal venous anastomosis (CRVA), in order to find out the relationship between CRVA treatment and the related neovascular complications. Immediately after branch retinal vein occlusion (BRVO) model was made in 5 eyes of 5 normal dogs, CRVA treatment was done over a small tributary vein in the drainage distribution of the occluded vein. In each eye, there were 2 - 3 treatment sites. Four to six weeks later, a repeated treatment was given if the first treatment failed to show the anastomosis. The treatment sites with successful CRVA were divided into two groups: the small laser spot group, which received one treatment and the big laser spot group, which received more than one treatment. The expression of VEGF was investigated immunohistochemically in the treatment sites with successful anastomoses and in the 5 normal fellow eyes (control). There were totally 10 successful anastomoses in the 5 experimental eyes, among which, five received one treatment and the other 5 received more than one treatment. On fundus examination, the small laser spots were round and small, and the big laser spots were large with local proliferation. VEGF immunoreactivity was absent/weak in the normal dog retina, and remained unchanged in the small laser spot group, but somewhat increased in the big laser spot group. No neovascular complications occurred. All immunostaining experiments were accompanied by proper controls and none of the negative controls showed any immunoreactivity. Proper laser treatment can induce CRVA quite safely in nonischemic dog retina, which does not cause changes in the expression of VEGF, but severe laser damage in the treatment site can cause increased VEGF expression which may be related to neovascular complications.

  6. Radioiodinated VEGF to image tumor angiogenesis in a LS180 tumor xenograft model

    International Nuclear Information System (INIS)

    Yoshimoto, Mitsuyoshi; Kinuya, Seigo; Kawashima, Atsuhiro; Nishii, Ryuichi; Yokoyama, Kunihiko; Kawai, Keiichi

    2006-01-01

    Introduction: Angiogenesis is essential for tumor growth or metastasis. A method involving noninvasive detection of angiogenic activity in vivo would provide diagnostic information regarding antiangiogenic therapy targeting vascular endothelial cells as well as important insight into the role of vascular endothelial growth factor (VEGF) and its receptor (flt-1 and KDR) system in tumor biology. We evaluated radioiodinated VEGF 121 , which displays high binding affinity for KDR, and VEGF 165 , which possesses high binding affinity for flt-1 and low affinity for KDR, as angiogenesis imaging agents using the LS180 tumor xenograft model. Methods: VEGF 121 and VEGF 165 were labeled with 125 I by the chloramine-T method. Biodistribution was observed in an LS180 human colon cancer xenograft model. Additionally, autoradiographic imaging and immunohistochemical staining of tumors were performed with 125 I-VEGF 121 . Results: 125 I-VEGF 121 and 125 I-VEGF 165 exhibited strong, continuous uptake by tumors and the uterus, an organ characterized by angiogenesis. 125 I-VEGF 121 uptake in tumors was twofold higher than that of 125 I-VEGF 165 (9.12±98 and 4.79±1.08 %ID/g at 2 h, respectively). 125 I-VEGF 121 displayed higher tumor to nontumor (T/N) ratios in most normal organs in comparison with 125 I-VEGF 165 . 125 I-VEGF 121 accumulation in tumors decreased with increasing tumor volume. Autoradiographic and immunohistochemical analyses confirmed that the difference in 125 I-VEGF 121 tumor accumulation correlated with degree of tumor vascularity. Conclusion: Radioiodinated VEGF 121 is a promising tracer for noninvasive delineation of angiogenesis in vivo

  7. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  8. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  9. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2

    International Nuclear Information System (INIS)

    Miao, H.-Q.; Hu, Kun; Jimenez, Xenia; Navarro, Elizabeth; Zhang, Haifan; Lu Dan; Ludwig, Dale L.; Balderes, Paul; Zhu Zhenping

    2006-01-01

    Compelling evidence suggest that vascular endothelial growth factor (VEGF) and its receptors, especially receptor 2 (VEGFR2, or kinase insert domain-containing receptor, KDR), play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies such as age-related macular degeneration (AMD). To this end, inhibition of angiogenesis with antagonists to either VEGF or KDR has yielded significant therapeutic efficacy both in preclinical studies in animal models and in clinical trials in patients with cancer and AMD. We previously reported the identification of a high affinity, fully human anti-KDR antibody fragment, 1121B Fab, through a highly stringent affinity maturation process with a Fab originally isolated from a naive human antibody phage display library. In this study, we demonstrate that 1121B Fab is able to strongly block KDR/VEGF interaction, resulting in potent inhibition of an array of biological activities of VEGF, including activation of the receptor and its signaling pathway, intracellular calcium mobilization, and migration and proliferation of endothelial cells. Taken together, our data lend strong support to the further development of 1121B Fab fragment as an anti-angiogenesis agent in both cancer and angiogenic retinopathies

  10. Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide.

    Science.gov (United States)

    Ramanathan, S; Qiu, B; Pooyan, S; Zhang, G; Stein, S; Leibowitz, M J; Sinko, P J

    2001-12-13

    We previously described the enhanced cell uptake and transport of R.I-K(biotin)-Tat9, a large ( approximately 1500 Da) peptidic inhibitor of HIV-1 Tat protein, via SMVT, the intestinal biotin transporter. The aim of the present study was to investigate the feasibility of targeting biotinylated PEG-based conjugates to SMVT in order to enhance cell uptake and transport of Tat9. The 29 kDa peptide-loaded bioconjugate (PEG:(R.I-Cys-K(biotin)-Tat9)8) used in these studies contained eight copies of R.I-K(biotin)-Tat9 appended to PEG by means of a cysteine linkage. The absorptive transport of biotin-PEG-3400 (0.6-100 microM) and the bioconjugate (0.1-30 microM) was studied using Caco-2 cell monolayers. Inhibition of biotin-PEG-3400 by positive controls (biotin, biocytin, and desthiobiotin) was also determined. Uptake of these two compounds was also determined in CHO cells transfected with human SMVT (CHO/hSMVT) and control cells (CHO/pSPORT) over the concentration ranges of 0.05-12.5 microM and 0.003-30 microM, respectively. Nonbiotinylated forms of these two compounds, PEG-3350 and PEG:(R.I-Cys-K-Tat9)8, were used in the control studies. Biotin-PEG-3400 transport was found to be concentration-dependent and saturable in Caco-2 cells (K(m)=6.61 microM) and CHO/hSMVT cells (K(m)=1.26 microM). Transport/uptake was significantly inhibited by positive control substrates of SMVT. PEG:(R.I-Cys-K(biotin)Tat9)8 also showed saturable transport kinetics in Caco-2 cells (K(m)=6.13 microM) and CHO/hSMVT cells (K(m)=8.19 microM). Maximal uptake in molar equivalents of R.I-Cys-K(biotin)Tat9 was 5.7 times greater using the conjugate versus the biotinylated peptide alone. Transport of the nonbiotinylated forms was significantly lower (PPEG-3400 and PEG:(R.I-Cys-K(biotin)Tat9)8 interact with human SMVT to enhance the cellular uptake and transport of these larger molecules and that targeted bioconjugates may have potential for enhancing the cellular uptake and transport of small peptide

  11. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  12. Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF

    DEFF Research Database (Denmark)

    Høier, Birgitte; Hellsten, Ylva

    2014-01-01

    , such as shear stress and passive stretch, lead to cellular signalling, enhanced expression of angiogenic factors and initiation of capillary growth. The most central angiogenic factor in skeletal muscle capillary growth is vascular endothelial growth factor (VEGF). During muscle contraction, VEGF increases...... in the muscle interstitium, acts on VEGF receptors on the capillary endothelium and thereby stimulates angiogenic processes. A primary source of muscle interstitial VEGF during exercise is the skeletal muscle fibers which contain large stores of VEGF within vesicles. We propose that, during muscle activity...

  13. The prognosis was poorer in colorectal cancers that expressed both VEGF and PROK1 (No correlation coefficient between VEGF and PROK1).

    Science.gov (United States)

    Goi, Takanori; Nakazawa, Toshiyuki; Hirono, Yasuo; Yamaguchi, Akio

    2015-10-06

    The angiogenic proteins vascular endothelial growth factor (VEGF) and prokineticin1 (PROK1) proteins are considered important in colorectal cancer, the relationship between their simultaneous expression and prognosis was investigated in the present study. VEGF and PROK1 expression in 620 primary human colorectal cancer lesions was confirmed via immunohistochemical staining with anti-VEGF and anti-PROK1 antibodies, and the correlation between the expression of these 2 proteins and recurrence/prognosis were investigated. VEGF protein was expressed in 329 (53.1%) and PROK1 protein was expressed in 223 (36.0%). PROK1 and VEGF were simultaneously expressed in 116 (18.7%) of the 620 cases. The correlation coefficient between VEGF expression and PROK1 expression was r = 0.11, and therefore correlation was not observed. Clinical pathology revealed that substantially lymphnode matastasis, hematogenous metastasis, or TMN advanced-stage IV was significantly more prevalent in cases that expressed both VEGF and PROK1 than in the cases negative for both proteins or those positive for only 1 of the proteins. Also the cases positive for both proteins exhibited the worst recurrence and prognosis. In the Cox proportional hazards model, VEGF and PROK1 expression was an independent prognostic factor. The prognosis was poorer in colorectal cancers that expressed both PROK1 and VEGF relative to the cases that expressed only 1 protein, and the expression of both proteins was found to be an independent prognostic factor.

  14. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  15. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  16. Clinical significance of determination of serum VEGF and CEA levels in patients with colorectal cancer

    International Nuclear Information System (INIS)

    Du Xiaohui; Song Shaobai; Zheng Wei

    2007-01-01

    Objective: To study the applicability of combined determination of serum VEGF and CEA levels in the diagnosis of colorectal cancer as well as the relationship between VEGF level and stage of the disease. Methods: Serum VEGF (with ELISA) and CEA (with RIA) levels serum were detected in 28 patients with colorectal cancer of various stages and 29 controls. Results: The diagnostic positive rate was 53.6% (15/28), 39.3% (11/28), 71.4% (20/28) with CEA, VEGF and combined test for colorectal cancer, respectively. The serum VEGF levels in patients with advance colorectal cancer were significantly higher than those in patients with earlier stages diseases and controls, VEGF levels were positively correlated with CEA levels (P<0.05). Conclusion: Combined detection of the levels of serum VEGF and CEA could improve significantly the diagnostic positive rate in patients with colorectal cancer. (authors)

  17. Synthesis of aldehyde-linked nucleotides and DNA and their bioconjugations with lysine and peptides through reductive amination.

    Science.gov (United States)

    Raindlová, Veronika; Pohl, Radek; Hocek, Michal

    2012-03-26

    5-(5-Formylthienyl)-, 5-(4-formylphenyl)- and 5-(2-fluoro-5-formylphenyl)cytosine 2'-deoxyribonucleoside mono- (dC(R)MP) and triphosphates (dC(R)TP) were prepared by aqueous Suzuki-Miyaura cross-coupling of 5-iodocytosine nucleotides with the corresponding formylarylboronic acids. The dC(R)TPs were excellent substrates for DNA polymerases and were incorporated into DNA by primer extension or PCR. Reductive aminations of the model dC(R)MPs with lysine or lysine-containing tripeptide were studied and optimized. In aqueous phosphate buffer (pH 6.7) the yields of the reductive aminations with tripeptide III were up to 25 %. Bioconjugation of an aldehyde-containing DNA with a lysine-containing tripeptide was achieved through reductive amination in yields of up to 90 % in aqueous phosphate buffer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  19. VEGF-production by CCR2-dependent macrophages contributes to laser-induced choroidal neovascularization.

    Directory of Open Access Journals (Sweden)

    Torsten A Krause

    Full Text Available Age-related macular degeneration (AMD is the most prevalent cause of blindness in the elderly, and its exsudative subtype critically depends on local production of vascular endothelial growth factor A (VEGF. Mononuclear phagocytes, such as macrophages and microglia cells, can produce VEGF. Their precursors, for example monocytes, can be recruited to sites of inflammation by the chemokine receptor CCR2, and this has been proposed to be important in AMD. To investigate the role of macrophages and CCR2 in AMD, we studied intracellular VEGF content in a laser-induced murine model of choroidal neovascularisation. To this end, we established a technique to quantify the VEGF content in cell subsets from the laser-treated retina and choroid separately. 3 days after laser, macrophage numbers and their VEGF content were substantially elevated in the choroid. Macrophage accumulation was CCR2-dependent, indicating recruitment from the circulation. In the retina, microglia cells were the main VEGF+ phagocyte type. A greater proportion of microglia cells contained VEGF after laser, and this was CCR2-independent. On day 6, VEGF-expressing macrophage numbers had already declined, whereas numbers of VEGF+ microglia cells remained increased. Other sources of VEGF detectable by flow cytometry included in dendritic cells and endothelial cells in both retina and choroid, and Müller cells/astrocytes in the retina. However, their VEGF content was not increased after laser. When we analyzed flatmounts of laser-treated eyes, CCR2-deficient mice showed reduced neovascular areas after 2 weeks, but this difference was not evident 3 weeks after laser. In summary, CCR2-dependent influx of macrophages causes a transient VEGF increase in the choroid. However, macrophages augmented choroidal neovascularization only initially, presumably because VEGF production by CCR2-independent eye cells prevailed at later time points. These findings identify macrophages as a relevant source

  20. Metronomic chemotherapy in metastatic breast cancer Impact on VEGF

    International Nuclear Information System (INIS)

    Ezz El-Arab, L.R.; Menha Swellam, M.; El Mahdy, M.M.

    2012-01-01

    Background: Anticancer chemotherapy is thought to be effective by means of direct cytotoxicity on tumor cells. Alternative mechanisms of efficacy have been ascribed to several common anticancer agents; including cyclophosphamide (CTX) and capecitabine (Cap) when given at lower doses for prolonged period (metronomic chemotherapy) postulating an antiangiogenic activity as well, Aim of work :To evaluate the action and tolerability of metronomic chemotherapy (MC) and its impact on serum vascular endothetial growth factor (VEGF) levels in metastatic breast cancer (MBC) patients. Patients and methods: In this study we evaluated the clinical efficacy and tolerability of low dose, capecitabine (500 mg twice daily) together with oral cyclophosphamide (CTX) (a dose of 50 mg once daily) in patients with metastatic breast cancer. Vascular endothelial growth factor (VEGF), an angiogenic marker, was measured in the serum samples; at base line, and after 2 and 6 months of therapy. Results: Sixty patients were evaluable. One achieved complete response (CR), 12 partial responses (PR), and 21 stable diseases (SD), while 26 were with progressive disease (PD). The overall response rate was 21.7% with overall disease control (CR, PR, and SD) 56.7%. The median time to progression was 7±2.59 months and overall survival 16 ±8.02 months. Toxicity was mild, Palmar-plantar erythrodythesia was the must common side effect and was observed in 22 patients (37%), leucopenia (Gl + 2) was the most common hematological toxicity, and it was reported in 27% of the cases. The median VEGF level was significantly declined after 2 and 6 months of therapy compared to the base line among the patients with disease control (CR, PR, and SD). In multivariate logisatic regression analysis, patients with post-menopausal, positive hormonal receptors, negative HER-2/Neu, and one, metastatic site, were statistically significant and have a better disease control rate. Coclcusions: MC induced drop in VEGF, and was

  1. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  2. VEGF Correlates with Inflammation and Fibrosis in Tuberculous Pleural Effusion

    OpenAIRE

    Bien, Mauo-Ying; Wu, Ming-Ping; Chen, Wei-Lin; Chung, Chi-Li

    2015-01-01

    Objective. To investigate the relationship among angiogenic cytokines, inflammatory markers, and fibrinolytic activity in tuberculous pleural effusion (TBPE) and their clinical importance. Methods. Forty-two patients diagnosed with TBPE were studied. Based on chest ultrasonography, there were 26 loculated and 16 nonloculated TBPE patients. The effusion size radiological scores and effusion vascular endothelial growth factor (VEGF), interleukin- (IL-) 8, plasminogen activator inhibitor type-1 ...

  3. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis

    Science.gov (United States)

    Zhang, Fan; Tang, Zhongshu; Hou, Xu; Lennartsson, Johan; Li, Yang; Koch, Alexander W.; Scotney, Pierre; Lee, Chunsik; Arjunan, Pachiappan; Dong, Lijin; Kumar, Anil; Rissanen, Tuomas T.; Wang, Bin; Nagai, Nobuo; Fons, Pierre; Fariss, Robert; Zhang, Yongqing; Wawrousek, Eric; Tansey, Ginger; Raber, James; Fong, Guo-Hua; Ding, Hao; Greenberg, David A.; Becker, Kevin G.; Herbert, Jean-Marc; Nash, Andrew; Yla-Herttuala, Seppo; Cao, Yihai; Watts, Ryan J.; Li, Xuri

    2009-01-01

    VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases. PMID:19369214

  4. VEGF-A, cytoskeletal dynamics, and the pathological vascular phenotype

    International Nuclear Information System (INIS)

    Nagy, Janice A.; Senger, Donald R.

    2006-01-01

    Normal angiogenesis is a complex process involving the organization of proliferating and migrating endothelial cells (ECs) into a well-ordered and highly functional vascular network. In contrast, pathological angiogenesis, which is a conspicuous feature of tumor growth, ischemic diseases, and chronic inflammation, is characterized by vessels with aberrant angioarchitecture and compromised barrier function. Herein we review the subject of pathological angiogenesis, particularly that driven by vascular endothelial growth factor (VEGF-A), from a new perspective. We propose that the serious structural and functional anomalies associated with VEGF-A-elicited neovessels, reflect, at least in part, imbalances in the internal molecular cues that govern the ordered assembly of ECs into three dimensional vascular networks and preserve vessel barrier function. Adopting such a viewpoint widens the focus from solely on specific pro-angiogenic stimuli such as VEGF-A to include a key set of cytoskeletal regulatory molecules, the Rho GTPases, which are known to direct multiple aspects of vascular morphogenesis including EC motility, alignment, multi-cellular organization, as well as intercellular junction integrity. We offer this perspective to draw attention to the importance of endothelial cytoskeletal dynamics for proper neovascularization and to suggest new therapeutic strategies with the potential to improve the pathological vascular phenotype

  5. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    Science.gov (United States)

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  6. Clinicopathological and prognostic significance of HER-2/neu and VEGF expression in colon carcinomas

    Directory of Open Access Journals (Sweden)

    Li Jing

    2011-06-01

    Full Text Available Abstract Background HER-2/neu and VEGF expression is correlated with disease behaviors in various cancers. However, evidence for their expression in colon cancer is rather contradictory both for the protein expression status and prognostic value. HER-2/neu is found to participate in VEGF regulation, and has known correlation with VEGF expression in some tumors. In this study, we investigated HER-2/neu and VEGF expression in Chinese colon patients and explored whether there was any correlation between their expression patterns. Methods HER-2/neu and VEGF were investigated immunohistochemically using tumor samples obtained from 317 colon cancer patients with all tumor stages. Correlation of the degree of staining with clinicopathological parameters and survival was investigated. Results Positive expression rates of HER-2/neu and VEGF in colon cancer were 15.5% and 55.5% respectively. HER-2/neu expression was significantly correlated with tumor size and distant metastases (P (P > 0.05. Expression of VEGF was significantly correlated with tumor size, tumor stage, lymph node metastases, and distant metastases (P (P = 0.146. No correlation between HER-2/neu and VEGF expression was detected (P = 0.151. Conclusions HER-2/neu and VEGF are not important prognostic markers of colon cancer. The present results do not support any association between HER2/neu and VEGF expression in this setting.

  7. Crosstalk between VEGF-A/VEGFR2 and GDNF/RET signaling pathways

    International Nuclear Information System (INIS)

    Tufro, Alda; Teichman, Jason; Banu, Nazifa; Villegas, Guillermo

    2007-01-01

    Vascular endothelial growth factor (VEGF-A) plays multiple roles in kidney development: stimulates cell proliferation, survival, tubulogenesis, and branching morphogenesis. However, the mechanism that mediates VEGF-A induced ureteric bud branching is unclear. Glial-derived neurotrophic factor (GDNF) signaling through tyrosine kinase c-RET is the major regulator of ureteric bud branching. Here we examined whether VEGF-A regulates RET signaling. We determined that ureteric bud-derived cells express the main VEGF-A signaling receptor, VEGFR2 and RET, by RT-PCR, immunoblotting, and immunocytochemistry. We show that the VEGF-A isoform VEGF 165 induces RET-tyr 1062 phosphorylation in addition to VEGFR2 autophosphorylation, that VEGF 165 and GDNF have additive effects on RET-tyr 1062 phosphorylation, and that VEGFR2 and RET co-immunoprecipitate. Functionally, VEGF 165 induces ureteric bud cell proliferation and branching morphogenesis. Similarly, in embryonic kidney explants VEGF 165 induces RET-tyr 1062 phosphorylation and upregulates GDNF. These findings provide evidence for a novel cooperative interaction between VEGFR2 and RET that mediates VEGF-A functions in ureteric bud cells

  8. VEGF-121 plasma level as biomarker for response to anti-angiogenetic therapy in recurrent glioblastoma.

    Science.gov (United States)

    Martini, Maurizio; de Pascalis, Ivana; D'Alessandris, Quintino Giorgio; Fiorentino, Vincenzo; Pierconti, Francesco; Marei, Hany El-Sayed; Ricci-Vitiani, Lucia; Pallini, Roberto; Larocca, Luigi Maria

    2018-05-10

    Vascular endothelial growth factor (VEGF) isoforms, particularly the diffusible VEGF-121, could play a major role in the response of recurrent glioblastoma (GB) to anti-angiogenetic treatment with bevacizumab. We hypothesized that circulating VEGF-121 may reduce the amount of bevacizumab available to target the heavier isoforms of VEGF, which are the most clinically relevant. We assessed the plasma level of VEGF-121 in a brain xenograft model, in human healthy controls, and in patients suffering from recurrent GB before and after bevacizumab treatment. Data were matched with patients' clinical outcome. In athymic rats with U87MG brain xenografts, the level of plasma VEGF-121 relates with tumor volume and it significantly decreases after iv infusion of bevacizumab. Patients with recurrent GB show higher plasma VEGF-121 than healthy controls (p = 0.0002) and treatment with bevacizumab remarkably reduced the expression of VEGF-121 in plasma of these patients (p = 0.0002). Higher plasma level of VEGF-121 was significantly associated to worse PFS and OS (p = 0.0295 and p = 0.0246, respectively). Quantitative analysis of VEGF-121 isoform in the plasma of patients with recurrent GB could be a promising predictor of response to anti-angiogenetic treatment.

  9. The significance of VEGF expression in stage II carcinoma of uterine cervix treated with definitive radiotherapy

    International Nuclear Information System (INIS)

    Park, Won; Choi, Yoon La; Huh, Seung Jae; Yoon, Sang Min; Park, Young Je; Nam, Hee Rim; Ahn, Yong Chan; Lim, Do Hoon; Park, Hee Chul

    2006-01-01

    We wanted to determine the clinical characteristics and prognosis according to the VEGF expression in stage II cervical carcinoma patients treated with definitive radiotherapy. We enrolled 31 patients who were diagnosed with cervical cancer from 1995 to 2003 at Samsumg Medical Center and their paraffin block tissue samples were available for study. The median age of the patients was 65 years. The mean tumor size was 4.1 cm (range: 1.2 ∼8.2 cm). Seven patients (22.6%) were suspected of having pelvic lymph node metastasis. An external beam irradiation dose of 45-56.4 Gy was administered to the whole pelvis with a 15 MV linear accelerator, and an additional 24 Gy was given to point A by HDR intracavitary brachytherapy. VEGF staining was defined as positive when more than 10% of the tumor cells were stained. The median follow-up duration was 58 months. A positive VEGF expression was observed in 21 patients (67.7%). There was no significant correlation between the VEGF expression and pelvic lymph node metastasis, tumor size and the response of radiotherapy. During follow-up, 7 patients had recurrence. The complete response rate was not significant between the VEGF (-) and VEGF(+) tumors. However, the VEGF(+) tumors showed a significantly higher recurrence rate in comparison with the VEGF(-) tumors (ρ = 0.040). The three year disease-free survival rates were 100% and 66.7%, respectively, for patients with VEGF(-) or VEGF(+) tumor (ρ = 0.047). The VEGF expression was a significant factor for recurrence and disease-free survival. However, the significance of the VEGF expression is still controversial because of the various definitions of VEGF expression and the mismatches of the clinical data in the previous studies

  10. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model

    International Nuclear Information System (INIS)

    Jun, Hong Young; Yin, Hong Hua; Kim, Sun Hee; Park, Seong Hoon; Kim, Hun Soo; Yoon Kwon Ha Yoon

    2010-01-01

    To visualize tumor angiogenesis using the MRI contrast agent, Gd- DTPA-anti-VEGF receptor 2 antibody conjugate, with a 4.7-Tesla MRI instrument in a mouse model. We designed a tumor angiogenesis-targeting T1 contrast agent that was prepared by the bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and an anti-vascular endothelial growth factor receptor-2 (VEGFR2) antibody. The specific binding of the agent complex to cells that express VEGFR2 was examined in cultured murine endothelial cells (MS-1 cells) with a 4.7-Tesla magnetic resonance imaging scanner. Angiogenesis-specific T1 enhancement was imaged with the Gd-DTPA-anti-VEGFR2 antibody conjugate using a CT-26 adenocarcinoma tumor model in eight mice. As a control, the use of the Gd-DTPA-anti-rat immunoglobulin G (Gd-DTPA-anti-rat IgG) was imaged with a tumor model in eight mice. Statistical significance was assessed using the Mann-Whitney test. Tumor tissue was examined by immunohistochemical analysis. The Gd-DTPA-anti-VEGFR2 antibody conjugate showed predominant binding to cultured endothelial cells that expressed a high level of VEGFR2. Signal enhancement was approximately three-fold for in vivo T1-weighted MR imaging with the use of the Gd-DTPA-anti-VEGFR2 antibody conjugate as compared with the Gd-DTPA-rat IgG in the mouse tumor model (p < 0.05). VEGFR2 expression in CT-26 tumor vessels was demonstrated using immunohistochemical staining. MR imaging using the Gd-DTPA-anti-VEGFR2 antibody conjugate as a contrast agent is useful in visualizing noninvasively tumor angiogenesis in a murine tumor model

  11. Visualization of Tumor Angiogenesis Using MR Imaging Contrast Agent Gd-DTPA-anti-VEGF Receptor 2 Antibody Conjugate in a Mouse Tumor Model

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Hong Young; Yin, Hong Hua; Kim, Sun Hee; Park, Seong Hoon; Kim, Hun Soo; Yoon Kwon Ha Yoon [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2010-08-15

    To visualize tumor angiogenesis using the MRI contrast agent, Gd- DTPA-anti-VEGF receptor 2 antibody conjugate, with a 4.7-Tesla MRI instrument in a mouse model. We designed a tumor angiogenesis-targeting T1 contrast agent that was prepared by the bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and an anti-vascular endothelial growth factor receptor-2 (VEGFR2) antibody. The specific binding of the agent complex to cells that express VEGFR2 was examined in cultured murine endothelial cells (MS-1 cells) with a 4.7-Tesla magnetic resonance imaging scanner. Angiogenesis-specific T1 enhancement was imaged with the Gd-DTPA-anti-VEGFR2 antibody conjugate using a CT-26 adenocarcinoma tumor model in eight mice. As a control, the use of the Gd-DTPA-anti-rat immunoglobulin G (Gd-DTPA-anti-rat IgG) was imaged with a tumor model in eight mice. Statistical significance was assessed using the Mann-Whitney test. Tumor tissue was examined by immunohistochemical analysis. The Gd-DTPA-anti-VEGFR2 antibody conjugate showed predominant binding to cultured endothelial cells that expressed a high level of VEGFR2. Signal enhancement was approximately three-fold for in vivo T1-weighted MR imaging with the use of the Gd-DTPA-anti-VEGFR2 antibody conjugate as compared with the Gd-DTPA-rat IgG in the mouse tumor model (p < 0.05). VEGFR2 expression in CT-26 tumor vessels was demonstrated using immunohistochemical staining. MR imaging using the Gd-DTPA-anti-VEGFR2 antibody conjugate as a contrast agent is useful in visualizing noninvasively tumor angiogenesis in a murine tumor model

  12. Recombination of cluster ions

    Science.gov (United States)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  13. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I-catalyzed azide-alkyne cycloaddition with retained activity.

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    Full Text Available Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR, in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activity.

  14. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent.......The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...

  15. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    International Nuclear Information System (INIS)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-01-01

    Research highlights: → Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. → CoCl 2 -induced VEGF secretion in mast cells occurs by a Ca 2+ -insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. → Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits FcεRI-dependent anaphylactic degranulation in mast cells. → Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl 2 ) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl 2 promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl 2 -induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl 2 -induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl 2 in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals-dependent Fyn kinase activation.

  16. Differential regulation of ANG2 and VEGF-A in human granulosa lutein cells by choriogonadotropin.

    Science.gov (United States)

    Pietrowski, D; Keck, C

    2004-04-01

    The growth and development of the corpus luteum after rupture of the follicle is a highly regulated process characterised by a rapid vascularization of the follicle surrounding granulosa cells. Vascularization is regulated by a large number of growth factors and cytokines whereas members of the angiopoietin family and VEGF-A are reported to play a principal role. The gonadotropic hormones luteinizing hormone and choriogonadotropin are reported to be essential for corpus luteum formation. In this study we investigated by RT PCR if the growth factors PGF, PDGF-A, PDGF-B, VEGF-A, VEGF-B, VEGF-C, VEGF-D, ANG1, ANG2, ANG3 and ANG4 are expressed in granulosa cells. We show the expression of VEGF-A, VEGF-B, PDGF-A, ANG1 and ANG2 in granulosa cells. Using RT-PCR and Real-Time PCR we demonstrate that angiopoietin 2 is downregulated in human granulosa cells in vitro after choriogonadotropin treatment whereas the expression of angiopoietin 1 is not significantly altered. The expression of VEGF on the RNA- and on the protein level was determined. It was shown that in granulosa cells VEGF is upregulated after choriogonadotropin treatment on the RNA level and that increasing concentrations of choriogonadotropin from 0 to 10 U/ml leads to an increasing amount of VEGF in the cell culture supernatants. The amount of VEGF in the supernatants reaches a plateau at 0.5 U/ml and is increased only slightly and not significantly after treatment of the cells with 10 U/ml choriogonadotropin compared to 0.5 U/ml. In total these findings suggests that in granulosa cells the mRNA of various growth factors is detectable by RT-PCR and that VEGF-A and ANG2 is regulated by the gonadotropic hormone choriogonadotropin. These findings may add impact on the hypothesis of choriogonadotropin as a novel angiogenic factor.

  17. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico); Gonzalez Espinosa, Claudia, E-mail: cgonzal@cinvestav.mx [Departamento de Farmacobiologia, Centro de Investigacion y de Estudios Avanzados del IPN (Cinvestav, IPN) (Mexico)

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  18. Radiolabeling of VEGF165 with 99mTc to evaluate VEGFR expression in tumor angiogenesis.

    Science.gov (United States)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D; Szkudlinski, Mariusz W; Agostinelli, Enzo; Dierckx, Rudi A J O; Signore, Alberto

    2017-06-01

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.

  19. Alteration of protein expression pattern of vascular endothelial growth factor (VEGF) from soluble to cell-associated isoform during tumourigenesis

    International Nuclear Information System (INIS)

    Cressey, Ratchada; Wattananupong, Onusa; Lertprasertsuke, Nirush; Vinitketkumnuen, Usanee

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen for endothelial cells, and its expression has been correlated with increased tumour angiogenesis. Although numerous publications dealing with the measurement of circulating VEGF for diagnostic and therapeutic monitoring have been published, the relationship between the production of tissue VEGF and its concentration in blood is still unclear. The aims of this study were to determine: 1) The expression pattern of VEGF isoforms at the protein level in colorectal and lung adenocarcinoma in comparison to the pattern in corresponding adjacent normal tissues 2) The relationship between the expression pattern of VEGF and total level of circulating VEGF in the blood to clarify whether the results of measuring circulating VEGF can be used to predict VEGF expression in tumour tissues. Ninety-four tissue samples were obtained from patients, 76 colorectal tumour tissues and 18 lung tumour tissues. VEGF protein expression pattern and total circulating VEGF were examined using western blot and capture ELISA, respectively. Three major protein bands were predominately detected in tumour samples with an apparent molecular mass under reducing conditions of 18, 23 and 26 kDa. The 18 kDa VEGF protein was expressed equally in both normal and colorectal tumour tissues and predominately expressed in normal tissues of lung, whereas the 23 and 26 kDa protein was only detected at higher levels in tumour tissues. The 18, 23 and 26 kDa proteins are believed to represent the VEGF 121 , the VEGF 165 and the VEGF 189 , respectively. There was a significant correlation of the expression of VEGF 165 with a smaller tumour size maximum diameter <5 cm (p < 0.05), and there was a significant correlation of VEGF 189 with advanced clinical stage of colorectal tumours. The measurement of total circulating VEGF in serum revealed that cancer patients significantly (p < 0.001) possessed a higher level of circulating VEGF (1081 ± 652 pg/ml in

  20. Exposure of chick embryos to cadmium changes the extra-embryonic vascular branching pattern and alters expression of VEGF-A and VEGF-R2

    Energy Technology Data Exchange (ETDEWEB)

    Gheorghescu, Anna Kaskova [School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland); Tywoniuk, Bartlomiej [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 (Ireland); Duess, Johannes [School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland); National Children' s Research Centre, Our Lady' s Children' s Hospital, Crumlin, Dublin 12 (Ireland); Buchete, Nicolae-Viorel, E-mail: buchete@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 (Ireland); Thompson, Jennifer, E-mail: jennifer.thompson@ucd.ie [School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4 (Ireland)

    2015-11-15

    Cadmium (Cd) has several industrial applications, and is found in tobacco products, a notable source of human exposure. Vascular endothelial cells are key targets of Cd toxicity. Here, we aim to quantify the alteration to vascular branching pattern following Cd exposure in the chick extra-embryonic membrane (EEM) using fractal analysis, and explore molecular cues to angiogenesis such as VEGF-A and VEGF-R2 expression following Cd treatment. Chicken embryos were incubated for 60 h to Hamburger–Hamilton developmental stage 16–17, then explanted and treated with 50 μL of 50 μmol cadmium acetate (CdAc) or an equivalent volume of equimolar sodium acetate (NaAc). Images of embryos and their area vasculosa (AV) were captured and analyzed at 4 different time points (4, 8, 24 and 48 h) following treatment. Vascular branching in the AV was quantified using its fractal dimension (D{sub f}), estimated using a box counting method. Gallinaceous VEGF ELISA was used to measure the VEGF-A concentration in the EEM following treatment, with determination of the relative expression of VEGF-A and VEGF-R2 using quantitative real-time RT-PCR. Vascular branching increased monotonically in the control group at all time points. The anti-angiogenic effect of Cd exposure on the AV was reflected by a significant reduction in D{sub f} when compared with controls. D{sub f} was more markedly reduced in cultures with abnormal embryos. The expression of VEGF-A protein, and VEGF-A and VEGF-R2 mRNA were reduced in Cd-exposed EEMs. Both molecules contribute to growth, vessel sprouting and branching processes, which supports our findings using fractal analysis. - Highlights: • The chick area vasculosa was undersized in embryos exposed to 50 μM cadmium acetate. • Fractal dimension was reduced in the AV after Cd exposure, indicating decreased branching. • VEGF-A protein was decreased in Cd-treated extraembryonic membranes. • VEGF-A and VEGF-R2 mRNA was decreased in Cd-treated extraembryonic

  1. Detection of VEGF-A(xxx)b isoforms in human tissues.

    Science.gov (United States)

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  2. Monitoring PAI-1 and VEGF Levels in 6 Human Squamous Cell Carcinoma Xenografts During Fractionated Irradiation

    International Nuclear Information System (INIS)

    Bayer, Christine; Kielow, Achim; Schilling, Daniela; Maftei, Constantin-Alin; Zips, Daniel; Yaromina, Ala; Baumann, Michael; Molls, Michael; Multhoff, Gabriele

    2012-01-01

    Purpose: Previous studies have shown that the plasminogen activator inhibitor type-1 (PAI-1) and vascular endothelial growth factor (VEGF) are regulated by hypoxia and irradiation and are involved in neoangiogenesis. The aim of this study was to determine in vivo whether changes in PAI-1 and VEGF during fractionated irradiation could predict for radiation resistance. Methods and Materials: Six xenografted tumor lines from human squamous cell carcinomas (HSCC) of the head and neck were irradiated with 0, 3, 5, 10, and 15 daily fractions of 2 Gy. The PAI-1 and VEGF antigen levels in tumor lysates were determined by enzyme-linked immunosorbent assay kits. The amounts of PAI-1 and VEGF were compared with the dose to cure 50% of tumors (TCD 50 ). Colocalization of PAI-1, pimonidazole (hypoxia), CD31 (endothelium), and Hoechst 33342 (perfusion) was examined by immunofluorescence. Results: Human PAI-1 and VEGF (hVEGF) expression levels were induced by fractionated irradiation in UT-SCC-15, UT-SCC-14, and UT-SCC-5 tumors, and mouse VEGF (msVEGF) was induced only in UT-SCC-5 tumors. High hVEGF levels were significantly associated with radiation sensitivity after 5 fractions (P=.021), and high msVEGF levels were significantly associated with radiation resistance after 10 fractions (P=.007). PAI-1 staining was observed in the extracellular matrix, the cytoplasm of fibroblast-like stroma cells, and individual tumor cells at all doses of irradiation. Colocalization studies showed PAI-1 staining close to microvessels. Conclusions: These results indicate that the concentration of tumor-specific and host-specific VEGF during fractionated irradiation could provide considerably divergent information for the outcome of radiation therapy.

  3. A two-compartment model of VEGF distribution in the mouse.

    Directory of Open Access Journals (Sweden)

    Phillip Yen

    Full Text Available Vascular endothelial growth factor (VEGF is a key regulator of angiogenesis--the growth of new microvessels from existing microvasculature. Angiogenesis is a complex process involving numerous molecular species, and to better understand it, a systems biology approach is necessary. In vivo preclinical experiments in the area of angiogenesis are typically performed in mouse models; this includes drug development targeting VEGF. Thus, to quantitatively interpret such experimental results, a computational model of VEGF distribution in the mouse can be beneficial. In this paper, we present an in silico model of VEGF distribution in mice, determine model parameters from existing experimental data, conduct sensitivity analysis, and test the validity of the model. The multiscale model is comprised of two compartments: blood and tissue. The model accounts for interactions between two major VEGF isoforms (VEGF(120 and VEGF(164 and their endothelial cell receptors VEGFR-1, VEGFR-2, and co-receptor neuropilin-1. Neuropilin-1 is also expressed on the surface of parenchymal cells. The model includes transcapillary macromolecular permeability, lymphatic transport, and macromolecular plasma clearance. Simulations predict that the concentration of unbound VEGF in the tissue is approximately 50-fold greater than in the blood. These concentrations are highly dependent on the VEGF secretion rate. Parameter estimation was performed to fit the simulation results to available experimental data, and permitted the estimation of VEGF secretion rate in healthy tissue, which is difficult to measure experimentally. The model can provide quantitative interpretation of preclinical animal data and may be used in conjunction with experimental studies in the development of pro- and anti-angiogenic agents. The model approximates the normal tissue as skeletal muscle and includes endothelial cells to represent the vasculature. As the VEGF system becomes better characterized in

  4. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  5. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies

    Directory of Open Access Journals (Sweden)

    Duy Tien Ta

    2016-07-01

    Full Text Available Surface bioconjugation of biomolecules has gained enormous attention for developing advanced biomaterials including biosensors. While conventional immobilization (by physisorption or covalent couplings using the functional groups of the endogenous amino acids usually results in surfaces with low activity, reproducibility and reusability, the application of methods that allow for a covalent and uniformly oriented coupling can circumvent these limitations. In this study, the nanobody targeting Vascular Cell Adhesion Molecule-1 (NbVCAM1, an atherosclerotic biomarker, is engineered with a C-terminal alkyne function via Expressed Protein Ligation (EPL. Conjugation of this nanobody to azidified silicon wafers and Biacore™ C1 sensor chips is achieved via Copper(I-catalyzed azide-alkyne cycloaddition (CuAAC “click” chemistry to detect VCAM1 binding via ellipsometry and surface plasmon resonance (SPR, respectively. The resulting surfaces, covered with uniformly oriented nanobodies, clearly show an increased antigen binding affinity, sensitivity, detection limit, quantitation limit and reusability as compared to surfaces prepared by random conjugation. These findings demonstrate the added value of a combined EPL and CuAAC approach as it results in strong control over the surface orientation of the nanobodies and an improved detecting power of their targets—a must for the development of advanced miniaturized, multi-biomarker biosensor platforms.

  6. Purification, Characterization of Amylase from Indigenously Isolated Aureobasidium pullulans Cau 19 and Its Bioconjugates with Gold Nanoparticles.

    Science.gov (United States)

    Mulay, Y R; Deopurkar, R L

    2018-02-01

    The amylase from Aureobasidium pullulans Cau 19 was purified by ammonium sulfate precipitation and Sephadex G-100 chromatography with a 9.25-fold increase in specific activity as compared to crude enzyme. Km and turn over values of the enzyme were 6.25 mg/mL and 5.0 × 10 2 /min, respectively. Effect of different metal ions on the purified enzyme was investigated; 1 mM calcium (Ca) and cobalt (Co) enhanced enzyme activity by twofold; copper (Cu) had no effect on the activity of the enzyme. Mercury (Hg) 1 mM caused 90% inactivation whereas iron (Fe) and manganese (Mn) caused 10 to 16% inhibition. Amylase from A. pullulans Cau 19 was bioconjugated to gold nanoparticles synthesized using the biomass of A. pullulans Cau 19. Fourier transform infrared spectroscopy confirmed the conjugation of the enzyme to the gold nanoparticles. Though, only 20% of the added enzyme was adsorbed/conjugated on gold nanoparticles, 80% of the adsorbed activity could be estimated in the assay. The conjugated enzyme exhibited better tolerance to a broad pH range of 3.0-9.0 and higher temperatures compared with native enzyme.

  7. Controlled Release of Damascone from Poly(styrene-co-maleic anhydride-based Bioconjugates in Functional Perfumery

    Directory of Open Access Journals (Sweden)

    Andreas Herrmann

    2013-02-01

    Full Text Available Poly(styrene-co-maleic anhydrides were modified with poly(propylene oxide (PO-co-ethylene oxide (EO side chains (Jeffamine® with different EO/PO molar ratios, varying between 0.11 and 3.60. These copolymers were then further functionalized with a β-mercapto ketone of δ-damascone. The obtained poly(maleic acid monoamide-based β-mercapto ketones were then studied as delivery systems for the controlled release of δ-damascone by retro 1,4-addition. The release of δ-damascone, a volatile, bioactive molecule of the family of rose ketones, was studied by dynamic headspace analysis above a cotton surface after deposition of a cationic surfactant containing fabric softening formulation, as a function of the ethylene oxide (EO/propylene oxide (PO molar ratio of the grafted copolymer side chains. The polarity of the EO/PO side chain influenced the release efficiency of the damascone in a typical fabric softening application. PO-rich copolymers and the corresponding poly(styrene-co-maleic anhydride without Jeffamine® side chains were found to be less efficient for the desired fragrance release than the corresponding bioconjugate with a EO/PO ratio of 3.60 in the side chain. This copolymer conjugate seemed to represent a suitable balance between hydrophilicity and hydrophobicity to favor the release of the δ-damascone and to improve the deposition of the conjugate from an aqueous environment onto a cotton surface.

  8. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus.

    Science.gov (United States)

    He, Xiaoxiao; Li, Yuhong; He, Dinggen; Wang, Kemin; Shangguan, Jingfang; Shi, Hui

    2014-07-01

    This paper describes a sensitive and specific determination strategy for Staphylococcus aureus (S. aureus) detection using aptamer recognition and fluorescent silica nanoparticles (FSiNPs) label based dual-color flow cytometry assay (Aptamer/FSiNPs-DCFCM). In the protocol, an aptamer, having high affinity to S. aureus, was first covalently immobilized onto chloropropyl functionalized FSiNPs through a click chemistry approach to generate aptamer-nanoparticles bioconjugates (Aptamer/FSiNPs). Next, S. aureus was incubated with Aptamer/FSiNPs, and then stained with SYBR Green I (a special staining material for the duplex DNA). Upon target binding and nucleic acid staining with SYBR Green I, the S. aureus was determined using two-color flow cytometry. The method took advantage of the specificity of aptamer, signal amplification of FSiNPs label and decreased false positives of two-color flow cytometry assay. It was demonstrated that these Aptamer/FSiNPs could efficiently recognize and fluorescently label target S. aureus. Through multiparameter determination with flow cytometry, this assay allowed for detection of as low as 1.5 x 10(2) and 7.6 x 10(2) cells mL(-1) S. aureus in buffer and spiked milk, respectively, with higher sensitivity than the Aptamer/FITC based flow cytometry.

  9. A compartment model of VEGF distribution in humans in the presence of soluble VEGF receptor-1 acting as a ligand trap.

    Directory of Open Access Journals (Sweden)

    Florence T H Wu

    Full Text Available Vascular endothelial growth factor (VEGF, through its activation of cell surface receptor tyrosine kinases including VEGFR1 and VEGFR2, is a vital regulator of stimulatory and inhibitory processes that keep angiogenesis--new capillary growth from existing microvasculature--at a dynamic balance in normal physiology. Soluble VEGF receptor-1 (sVEGFR1--a naturally-occurring truncated version of VEGFR1 lacking the transmembrane and intracellular signaling domains--has been postulated to exert inhibitory effects on angiogenic signaling via two mechanisms: direct sequestration of angiogenic ligands such as VEGF; or dominant-negative heterodimerization with surface VEGFRs. In pre-clinical studies, sVEGFR1 gene and protein therapy have demonstrated efficacy in inhibiting tumor angiogenesis; while in clinical studies, sVEGFR1 has shown utility as a diagnostic or prognostic marker in a widening array of angiogenesis-dependent diseases. Here we developed a novel computational multi-tissue model for recapitulating the dynamic systemic distributions of VEGF and sVEGFR1. Model features included: physiologically-based multi-scale compartmentalization of the human body; inter-compartmental macromolecular biotransport processes (vascular permeability, lymphatic drainage; and molecularly-detailed binding interactions between the ligand isoforms VEGF(121 and VEGF(165, signaling receptors VEGFR1 and VEGFR2, non-signaling co-receptor neuropilin-1 (NRP1, as well as sVEGFR1. The model was parameterized to represent a healthy human subject, whereupon we investigated the effects of sVEGFR1 on the distribution and activation of VEGF ligands and receptors. We assessed the healthy baseline stability of circulating VEGF and sVEGFR1 levels in plasma, as well as their reliability in indicating tissue-level angiogenic signaling potential. Unexpectedly, simulated results showed that sVEGFR1 - acting as a diffusible VEGF sink alone, i.e., without sVEGFR1-VEGFR heterodimerization

  10. VEGF-C Is a Thyroid Marker of Malignancy Superior to VEGF-A in the Differential Diagnostics of Thyroid Lesions.

    Directory of Open Access Journals (Sweden)

    Kosma Woliński

    Full Text Available Thyroid nodular goiter is one of the most common medical conditions affecting even over a half of adult population. The risk of malignancy is rather small but noticeable-estimated by numerous studies to be about 3-10%. The definite differentiation between benign and malignant ones is a vital issue in endocrine practice. The aim of the current study was to assess the expression of vascular endothelial growth factor A (VEGF-A and VEGF-C on the mRNA level in FNAB washouts in case of benign and malignant thyroid nodules and to evaluate the diagnostic value of these markers of malignancy.Patients undergoing fine-needle aspiration biopsy (FNAB in our department between January 2013 and May 2014 were included. In case of all patients who gave the written consent, after ultrasonography (US and fine-needle aspiration biopsy (FNAB performed as routine medical procedure the needle was flushed with RNA Later solution, the washouts were frozen in -80 Celsius degrees. Expression of VEGF-A and VEGF-C and GADPH (reference gene was assessed in washouts on the mRNA level using the real-time PCR technique. Probes of patients who underwent subsequent thyroidectomy and were diagnosed with differentiated thyroid cancer (DTC; proved by post-surgical histopathology were analyzed. Similar number of patients with benign cytology were randomly selected to be a control group.Thirty one DTCs and 28 benign thyroid lesions were analyzed. Expression of VEGF-A was insignificantly higher in patients with DTCs (p = 0.13. Expression of VEGF-C was significantly higher in patients with DTC. The relative expression of VEGF-C (in comparison with GAPDH was 0.0049 for DTCs and 0.00070 for benign lesions, medians - 0.0036 and 0.000024 respectively (p<0.0001.Measurement of expression VEGF-C on the mRNA level in washouts from FNAB is more useful than more commonly investigated VEGF-A. Measurement of VEGF-C in FNAB washouts do not allow for fully reliable differentiation of benign and

  11. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism

    DEFF Research Database (Denmark)

    Yang, Yunlong; Zhang, Yin; Iwamoto, Hideki

    2016-01-01

    The impact of discontinuation of anti-VEGF cancer therapy in promoting cancer metastasis is unknown. Here we show discontinuation of anti-VEGF treatment creates a time-window of profound structural changes of liver sinusoidal vasculatures, exhibiting hyper-permeability and enlarged open-pore size...

  12. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema

    Science.gov (United States)

    Yoon, Young-sup; Murayama, Toshinori; Gravereaux, Edwin; Tkebuchava, Tengiz; Silver, Marcy; Curry, Cynthia; Wecker, Andrea; Kirchmair, Rudolf; Hu, Chun Song; Kearney, Marianne; Ashare, Alan; Jackson, David G.; Kubo, Hajime; Isner, Jeffrey M.; Losordo, Douglas W.

    2003-01-01

    Although lymphedema is a common clinical condition, treatment for this disabling condition remains limited and largely ineffective. Recently, it has been reported that overexpression of VEGF-C correlates with increased lymphatic vessel growth (lymphangiogenesis). However, the effect of VEGF-C–induced lymphangiogenesis on lymphedema has yet to be demonstrated. Here we investigated the impact of local transfer of naked plasmid DNA encoding human VEGF-C (phVEGF-C) on two animal models of lymphedema: one in the rabbit ear and the other in the mouse tail. In a rabbit model, following local phVEGF-C gene transfer, VEGFR-3 expression was significantly increased. This gene transfer led to a decrease in thickness and volume of lymphedema, improvement of lymphatic function demonstrated by serial lymphoscintigraphy, and finally, attenuation of the fibrofatty changes of the skin, the final consequences of lymphedema. The favorable effect of phVEGF-C on lymphedema was reconfirmed in a mouse tail model. Immunohistochemical analysis using lymphatic-specific markers: VEGFR-3, lymphatic endothelial hyaluronan receptor-1, together with the proliferation marker Ki-67 Ab revealed that phVEGF-C transfection potently induced new lymphatic vessel growth. This study, we believe for the first time, documents that gene transfer of phVEGF-C resolves lymphedema through direct augmentation of lymphangiogenesis. This novel therapeutic strategy may merit clinical investigation in patients with lymphedema. PMID:12618526

  13. Anti-VEGF agents in metastatic colorectal cancer (mCRC: are they all alike?

    Directory of Open Access Journals (Sweden)

    Saif MW

    2013-06-01

    Full Text Available Muhammad Wasif Saif GI Oncology Program, Tufts University School of Medicine, Boston, MA, USA Abstract: Bevacizumab is a monoclonal antibody that binds and neutralizes vascular endothelial growth factor (VEGF-A, a key player in the angiogenesis pathway. Despite benefits of bevacizumab in cancer therapy, it is clear that the VEGF pathway is complex, involving multiple isoforms, receptors, and alternative ligands such as VEGF-B, and placental growth factor, which could enable escape from VEGF-A-targeted angiogenesis inhibition. Recently developed therapies have targeted other ligands in the VEGF pathway (eg, aflibercept, known as ziv-aflibercept in the United States, VEGF receptors (eg, ramucirumab, and their tyrosine kinase signaling (ie, tyrosine kinase inhibitors. The goal of the current review was to identify comparative preclinical data for the currently available VEGF-targeted therapies. Sources were compiled using PubMed searches (2007 to 2012, using search terms including, but not limited to: “bevacizumab,” “aflibercept,” “ramucirumab,” and “IMC-18F1.” Two preclinical studies were identified that compared bevacizumab and the newer agent, aflibercept. These studies identified some important differences in binding and pharmacodynamic activity, although the potential clinical relevance of these findings is not known. Newer antiangiogenesis therapies should help further expand treatment options for colorectal and other cancers. Comparative preclinical data on these agents is currently lacking. Keywords: aflibercept, antiangiogenesis, metastatic colorectal cancer (mCRC, tyrosine kinase inhibitor (TKI, vascular endothelial growth factor (VEGF

  14. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2011-01-01

    Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial. We immunostained ...

  15. Activation of Protease-Activated Receptor 2 Induces VEGF Independently of HIF-1

    DEFF Research Database (Denmark)

    Rasmussen, J.G.; Riis, Simone Elkjær; Frøbert, O.

    2012-01-01

    Human adipose stem cells (hASCs) can promote angiogenesis through secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF). In other cell types, it has been shown that induction of VEGF is mediated by both protease activated receptor 2 (PAR2) and hypoxia inducible fact...

  16. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    DEFF Research Database (Denmark)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram

    2014-01-01

    Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production...

  17. Radiolabeling of VEGF(165) with Tc-99m to evaluate VEGFR expression in tumor angiogenesis

    NARCIS (Netherlands)

    Galli, Filippo; Artico, Marco; Taurone, Samanta; Manni, Isabella; Bianchi, Enrica; Piaggio, Giulia; Weintraub, Bruce D.; Szkudlinski, Mariusz W.; Agostinelli, Enzo; Dierckx, Rudi A. J. O.; Signore, Alberto

    Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool

  18. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension.

    Science.gov (United States)

    Li, Liwen; Pan, Hao; Wang, Handong; Li, Xiang; Bu, Xiaomin; Wang, Qiang; Gao, Yongyue; Wen, Guodao; Zhou, Yali; Cong, Zixiang; Yang, Youqing; Tang, Chao; Liu, Zhengwei

    2016-11-21

    Venous hypertension(VH) plays an important role in the pathogenesis of cerebral arteriovenous malformations (AVMs) and is closely associated with the HIF-1α/VEGF signaling pathway. Nuclear factor erythroid 2-related factor 2(Nrf2) significantly influences angiogenesis; however, the interplay between Nrf2 and VEGF under VH in brain AVMs remains unclear. Therefore, our study aimed to investigate the interplay between Nrf2 and VEGF due to VH in brain AVMs. Immunohistochemistry indicated that Nrf2 and VEGF were highly expressed in human brain AVM tissues. In vivo, we established a VH model in both wild-type (WT) and siRNA-mediated Nrf2 knockdown rats. VH significantly increased the expression of Nrf2 and VEGF. Loss of Nrf2 markedly inhibited the upregulation of VEGF, as determined by Western blot analysis and qRT-PCR. In vitro, primary brain microvascular endothelial cells (BMECs) were isolated from WT and Nrf2 -/- mice, and a VEGF-Nrf2 positive feed-back loop was observed in BMECs. By trans well assay and angiogenesis assay, Nrf2 knockout significantly inhibited the migration and vascular tube formation of BMECs. These findings suggest that the interplay between Nrf2 and VEGF can contribute to VH-induced angiogenesis in brain AVMs pathogenesis.

  19. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2011-01-01

    Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial. We immunostained...

  20. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2012-01-01

    Introduction: Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial...

  1. Identification and in vitro characterization of phage-displayed VHHs targeting VEGF

    DEFF Research Database (Denmark)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a potential target for cancer treatment because of its role in angiogenesis and its overexpression in most human cancers. Currently, anti-VEGF antibodies have been shown to be promising tools for therapeutic applications. However, large size, poor tumo...

  2. Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells.

    Science.gov (United States)

    Brouillet, Sophie; Hoffmann, Pascale; Benharouga, Mohamed; Salomon, Aude; Schaal, Jean-Patrick; Feige, Jean-Jacques; Alfaidy, Nadia

    2010-08-15

    Endocrine gland derived vascular endothelial growth factor (EG-VEGF) also called prokineticin (PK1), has been identified and linked to several biological processes including angiogenesis. EG-VEGF is abundantly expressed in the highest vascularized organ, the human placenta. Here we characterized its angiogenic effect using different experimental procedures. Immunohistochemistry was used to localize EG-VEGF receptors (PROKR1 and PROKR2) in placental and umbilical cord tissue. Primary microvascular placental endothelial cell (HPEC) and umbilical vein-derived macrovascular EC (HUVEC) were used to assess its effects on proliferation, migration, cell survival, pseudovascular organization, spheroid sprouting, permeability and paracellular transport. siRNA and neutralizing antibody strategies were used to differentiate PROKR1- from PROKR2-mediated effects. Our results show that 1) HPEC and HUVEC express both types of receptors 2) EG-VEGF stimulates HPEC's proliferation, migration and survival, but increases only survival in HUVECs. and 3) EG-VEGF was more potent than VEGF in stimulating HPEC sprout formation, pseudovascular organization, and it significantly increases HPEC permeability and paracellular transport. More importantly, we demonstrated that PROKR1 mediates EG-VEGF angiogenic effects, whereas PROKR2 mediates cellular permeability. Altogether, these data characterized angiogenic processes mediated by EG-VEGF, depicted a new angiogenic factor in the placenta, and suggest a novel view of the regulation of angiogenesis in placental pathologies.

  3. RELATIONSHIP BETWEEN THE PROANGIOGENIC ROLE OF EG-VEGF, CLINICOPATHOLOGICAL CHARACTERISTICS AND SURVIVAL IN TUMORAL OVARY.

    Science.gov (United States)

    Lozneanu, Ludmila; Avădănei, Roxana; Cîmpean, Anca Maria; Giuşcă, Simona Eliza; Amălinei, Cornelia; Căruntu, Irina-Draga

    2015-01-01

    To prove the presence of EG-VEGF in tumor ovary and to analyze its involvement in the ovarian carcinogenesis, as promoter of angiogenesis, in relationship with the clinicopathological prognostic factors and survival. The study group comprises tumor tissue specimens from 50 cases of surgically treated ovarian cancer that were immunohistochemically investigated. A scoring system based on the percentage of positive cells and the intensity of staining was applied for the semiquantitative assessment of EG-VEGF, as negative or positive. Statistics involved χ2 test, and Kaplan-Meier and log-rank test. EG-VEGF was positive in 35 cases (70%) and negative in 15 cases (30%). Our data confirmed the predominance of EG-VEGF positivity in the serous subiype as compared to endometrioid and clear cell subtypes, and its absence in mucinous subtype. Moreover, we demonstrated that EG-VEGF is overexpressed mainly in high-grade ovarian carcinomas (type II) than in low-grade ones. Significant differences were registered between the EG-VEGF positive or negative expression and tumor stage and histological subtypes, respectively. Survival analysis showed no differences in patient's survival and EG-VEGF positive and negative cases. The analysis of EG-VEGF expression in ovarian tumors points out the relationship between the enhanced potential for tumor angiogenesis and the tumor aggressivity.

  4. Activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  5. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  6. Tumour cells expressing single VEGF isoforms display distinct growth, survival and migration characteristics.

    Directory of Open Access Journals (Sweden)

    Chryso Kanthou

    Full Text Available Vascular endothelial growth factor-A (VEGF is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120 on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188 or wild type controls (fswt were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine

  7. Neutralizing VEGF bioactivity with a soluble chimeric VEGF receptor protein flt (1-3) IGG inhibits testosterone stimulated prostate growth in castrated mice

    International Nuclear Information System (INIS)

    Hammarsten, P.; Lissbrant, E.; Lissbrant, I.-F.; Haeggstroem-Rudolfsson, S.; Bergh, A.; Ferrara, N.

    2003-01-01

    Recent studies show that testosterone stimulated growth of the glandular tissue in the ventral prostate in adult castrated rats is preceded by increased epithelial VEGF synthesis, endothelial cell proliferation, vascular growth, and increased blood flow. These observations suggest that testosterone stimulated prostate growth could be angiogenesis dependent, and that VEGF could play a central role in this. To test this hypothesis adult male mice were castrated and after one week treated with testosterone and vehicle, or with testosterone and a soluble chimeric VEGF-receptor flt(1-3)IgG protein. Treatment with testosterone markedly increased endothelial cell proliferation, vascular volume and organ weight in the ventral prostate lobe in the vehicle groups, but these responses were inhibited but not fully prevented by anti-VEGF treatment. The testosterone stimulated increase in epithelial cell proliferation was unaffected by flt(1-3)IgG, but endothelial and epithelial cell apoptosis were increased in the anti-VEGF compared to the vehicle treated group. This study, together with our previous observations, suggest that testosterone stimulates vascular growth in the ventral prostate lobe indirectly by increasing epithelial VEGF synthesis and that this is a necessary component in testosterone stimulated prostate growth

  8. Effects of antibodies to EG-VEGF on angiogenesis in the chick embryo chorioallantoic membrane.

    Science.gov (United States)

    Feflea, Stefana; Cimpean, Anca Maria; Ceausu, Raluca Amalia; Gaje, Pusa; Raica, Marius

    2012-01-01

    Endocrine gland-related vascular endothelial growth factor (EG-VEGF), is an angiogenic factor specifically targeting endothelial cells derived from endocrine tissues. The inhibition of the EG-VEGF/prokineticin receptor pathway could represent a selective antiangiogenic and anticancer strategy. to evaluate the impact of an antibody to EG-VEGF on the rapidly growing capillary plexus of the chick embryo chorioallantoic membrane (CAM). The in ovo CAM assay was performed for the humanized EG-VEGF antibody. Hemorrhagic damage was induced in the capillaries, which led to early death of the embryos. Upon morphological staining, there was evidence of vascular disruption and extravasation of red blood cells in the chorion. Signs of vacuolization of the covering epithelium were also observed. Blocking endogenous EG-VEGF might represent a valuable approach of impairing or inhibiting angiogenesis in steroidogenic-derived embryonic tissues.

  9. Acute Podocyte Vascular Endothelial Growth Factor (VEGF-A) Knockdown Disrupts alphaVbeta3 Integrin Signaling in the Glomerulus

    Science.gov (United States)

    Veron, Delma; Villegas, Guillermo; Aggarwal, Pardeep Kumar; Bertuccio, Claudia; Jimenez, Juan; Velazquez, Heino; Reidy, Kimberly; Abrahamson, Dale R.; Moeckel, Gilbert; Kashgarian, Michael; Tufro, Alda

    2012-01-01

    Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGFKD) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ∼20% of non-induced controls and urine VEGF-A to ∼30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alphaVbeta3 integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta3 integrin and neuropilin-1 in the kidney in vivo and in VEGFKD podocytes. Podocyte VEGF knockdown disrupts alphaVbeta3 integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGFKD podocytes downregulates fibronectin and disrupts alphaVbeta3 integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alphaVbeta3 integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alphaVbeta3 integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure. PMID:22808199

  10. VEGF as a Survival Factor in Ex Vivo Models of Early Diabetic Retinopathy.

    Science.gov (United States)

    Amato, Rosario; Biagioni, Martina; Cammalleri, Maurizio; Dal Monte, Massimo; Casini, Giovanni

    2016-06-01

    Growing evidence indicates neuroprotection as a therapeutic target in diabetic retinopathy (DR). We tested the hypothesis that VEGF is released and acts as a survival factor in the retina in early DR. Ex vivo mouse retinal explants were exposed to stressors similar to those characterizing DR, that is, high glucose (HG), oxidative stress (OS), or advanced glycation end-products (AGE). Neuroprotection was provided using octreotide (OCT), a somatostatin analog, and pituitary adenylate cyclase activating peptide (PACAP), two well-documented neuroprotectants. Data were obtained with real-time RT-PCR, Western blot, ELISA, and immunohistochemistry. Apoptosis was induced in the retinal explants by HG, OS, or AGE treatments. At the same time, explants also showed increased VEGF expression and release. The data revealed that VEGF is released shortly after exposure of the explants to stressors and before the level of cell death reaches its maximum. Retinal cell apoptosis was inhibited by OCT and PACAP. At the same time, OCT and PACAP also reduced VEGF expression and release. Vascular endothelial growth factor turned out to be a protective factor for the stressed retinal explants, because inhibiting VEGF with a VEGF trap further increased cell death. These data show that protecting retinal neurons from diabetic stress also reduces VEGF expression and release, while inhibiting VEGF leads to exacerbation of apoptosis. These observations suggest that the retina in early DR releases VEGF as a prosurvival factor. Neuroprotective agents may decrease the need of VEGF production by the retina, therefore limiting the risk, in the long term, of pathologic angiogenesis.

  11. Role of EG-VEGF in human placentation: Physiological and pathological implications.

    Science.gov (United States)

    Hoffmann, Pascale; Saoudi, Yasmina; Benharouga, Mohamed; Graham, Charles H; Schaal, Jean-Patrick; Mazouni, Chafika; Feige, Jean-Jacques; Alfaidy, Nadia

    2009-08-01

    Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE.

  12. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    Science.gov (United States)

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  13. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation

    NARCIS (Netherlands)

    Gordon, Emma J; Fukuhara, Daisuke; Weström, Simone; Padhan, Narendra; Sjöström, Elisabet O; van Meeteren, Laurens|info:eu-repo/dai/nl/299142353; He, Liqun; Orsenigo, Fabrizio; Dejana, Elisabetta; Bentley, Katie; Spurkland, Anne; Claesson-Welsh, Lena

    2016-01-01

    Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the

  14. Suppression of Retinal Neovascularization in vivo by Inhibition of Vascular Endothelial Growth Factor (VEGF) Using Soluble VEGF-Receptor Chimeric Proteins

    Science.gov (United States)

    Aiello, Lloyd Paul; Pierce, Eric A.; Foley, Eliot D.; Takagi, Hitoshi; Chen, Helen; Riddle, Lavon; Ferrara, Napoleone; King, George L.; Smith, Lois E. H.

    1995-11-01

    The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-um section averaged 47% ± 4% (P < 0.001) and 37% ± 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66

  15. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  16. An improved process for the production of highly purified recombinant thaumatin tagged-variants.

    Science.gov (United States)

    Healey, Robert D; Lebhar, Helene; Hornung, Simon; Thordarson, Pall; Marquis, Christopher P

    2017-12-15

    The sweetest tasting molecule known is the protein thaumatin, first isolated from the katemfe fruit, Thaumatococcus daniellii. Thaumatin is used in the food and beverage industry as a low-calorie sugar substitute. Thaumatin interacts with taste receptors in the oral cavity eliciting a persistent sweet taste and a bitter, liquorice flavor. Recombinant thaumatin was expressed in Pichia pastoris and through a co-expression strategy with a molecular chaperone, yields of one engineered thaumatin variant increased by greater than two-fold. A detailed purification strategy for thaumatin is reported resulting in a homogenous sample recovered at a yield of 42%. The recombinant thaumatins were extensively characterised using size exclusion chromatography for homogeneity, reversed-phase HPLC for purity (99%), peptide digest LC-MS/MS for sequence determination, and circular dichroism and tryptophan fluorescence spectroscopies for conformational characterisation. These new thaumatin variants are amenable for bioconjugation, providing chemical biology tools for thaumatin:taste receptor interaction studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Polymorphisms of VEGF and VEGF receptors are associated with the occurrence of ovarian hyperstimulation syndrome (OHSS)-a retrospective case-control study.

    Science.gov (United States)

    Nouri, Kazem; Haslinger, Peter; Szabo, Ladislaus; Sator, Michael; Schreiber, Martin; Schneeberger, Christian; Pietrowski, Detlef

    2014-01-01

    Ovarian hyperstimulation syndrome (OHSS) is the most serious complication of IVF/ICSI therapy. The pathophysiology and etiology of the disease is still not fully clarified. To assess whether polymorphisms of the VEGF/VEGF-receptor system contribute to the occurrence of ovarian hyperstimulation syndrome (OHSS), we performed a retrospective analysis of 116 OHSS patients, and 124 female controls. The following SNPs were genotyped: Rs2071559 (VEGFR2-604); rs2305948 (VEGFR2-1192); rs1870377 (VEGFR2-1719); rs2010963 (VEGF-405); and rs111458691 (VEGFR1-519). Odds ratios (ORs) were estimated with a 95% confidence interval (CI). Linkage disequilibrium (LD) analysis was performed in the three loci of the VEGFR2 gene. We found an overrepresentation of the T allele of the VEGFR1-519 polymorphism in OHSS patients (P = 0.02, OR: 3.62, CI: 1.16 - 11.27). By genotype modeling, we found that polymorphism of VEGFR1-519 and VEGF-405 showed significant differences in patients and controls (p = 0.02, OR: 3.79 CI: 1.98 - 11.97 and p = 0.000005, OR: 0.29, CI: 0.17 - 0.50). LD analysis revealed significant linkage disequilibrium in VEGFR2. Polymorphisms in the VEGFR2 gene and in the VEGF gene are associated with the occurrence of OHSS. This strengthens the evidence for an important role of the VEGF/VEGF- receptor system in the occurrence of OHSS.

  18. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment.

    Science.gov (United States)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram; Ahmadvand, Davoud

    2014-03-28

    Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. VEGF and bFGF Gene Polymorphisms in Patients with Non-Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    Tomasz Wróbel

    2013-01-01

    Full Text Available Angiogenesis and lymphangiogenesis are important in the proliferation and survival of the malignant hematopoietic neoplasms, including non-Hodgkin’s lymphomas (NHLs. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor (bFGF play an important role in the initiation of angiogenesis. Both VEGF and bFGF have been reported to have prognostic significance in NHL. The present study aimed to determine an association between the VEGF and bFGF gene polymorphisms and disease susceptibility and progression. VEGF (rs3025039; 936 C>T and bFGF (rs308395, −921 G>C variants were determined in 78 NHL patients and 122 healthy individuals by PCR-RFLP technique. The presence of the VEGF 936T allele was found to significantly associate with worse prognosis of the disease (expressed by the highest International Prognostic Index (IPI (0.41 versus 0.20, for IPI 4 among patients having and lacking the T allele. The VEGF 936T variant was also more frequent among patients with IPI 4 than in controls (OR = 3.37, . The bFGF −921G variant was more frequently detected among patients with aggressive as compared to those with indolent histological subtype (0.37 versus 0.18, and healthy individuals (0.37 versus 0.19, OR = 2.51, . These results imply that VEGF and bFGF gene polymorphisms have prognostic significance in patients with NHL.

  20. VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing

    International Nuclear Information System (INIS)

    Constantino Rosa Santos, Susana; Miguel, Claudia; Domingues, Ines; Calado, Angelo; Zhu Zhenping; Wu Yan; Dias, Sergio

    2007-01-01

    Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention

  1. Increased expression of EMMPRIN and VEGF in the rat brain after gamma irradiation.

    Science.gov (United States)

    Wei, Ming; Li, Hong; Huang, Huiling; Xu, Desheng; Zhi, Dashi; Liu, Dong; Zhang, Yipei

    2012-03-01

    The extracellular matrix metalloproteinase inducer (EMMPRIN) has been known to play a key regulatory role in pathological angiogenesis. A elevated activation of vascular endothelial growth factor (VEGF) following radiation injury has been shown to mediate blood-brain barrier (BBB) breakdown. However, the roles of EMMPRIN and VEGF in radiation-induced brain injury after gamma knife surgery (GKS) are not clearly understood. In this study, we investigated EMMPRIN changes in a rat model of radiation injury following GKS and examined potential associations between EMMPRIN and VEGF expression. Adult male rats were subjected to cerebral radiation injury by GKS under anesthesia. We found that EMMPRIN and VEGF expression were markedly upregulated in the target area at 8-12 weeks after GKS compared with the control group by western blot, immunohistochemistry, and RT-PCR analysis. Immunofluorescent double staining demonstrated that EMMPRIN signals colocalized with caspase-3 and VEGF-positive cells. Our data also demonstrated that increased EMMPRIN expression was correlated with increased VEGF levels in a temporal manner. This is the first study to show that EMMPRIN and VEGF may play a role in radiation injuries of the central nervous system after GKS.

  2. Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF.

    Science.gov (United States)

    Zou, Jing; Pyykkö, Ilmari; Sutinen, Päivi; Toppila, Esko

    2005-04-01

    Transcranial vibration was applied for seven animals at a frequency of 250 Hz for 15 min, and five animals were used as normal controls to investigate cellular and molecular mechanism linked to vibration-induced hearing loss in animal model. Compound action potential (CAP) thresholds were measured by round window niche electrode. The expression of tumour necrosis factor alpha (TNF-alpha) and its receptors (TNF R1, TNF R2), vascular endothelium growth factor (VEGF) and its receptors (VEGF R1, VEGF R2) were analysed by immunohistochemistry. Transcranial vibration caused expression of TNF-alpha, TNF R1 and TNF R2 in the cochlea and the expression of TNF R2 was stronger than that of TNF R1. Vibration also induced VEGF and VEGF R2 expression in the cochlea. The average immediate hearing loss was 62 dB and after three days still 48 dB. It is concluded that transcranial vibration as during temporal bone drilling produces cochlear shear stress that is connected with up-regulation of TNF-alpha and its receptors. Also VEGF and VEGF R2 are up-regulated. These responses may be linked to both the damage and repair process of the cochlea.

  3. Expression and significance of HIF-1α and VEGF in rats with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Hong-Tao Yan; Guan-Fang Su

    2014-01-01

    Objective:To investigate the expression of hypoxia inducible factor-1α(HIF-1α) and vascular endothelial growth factor(VEGF) in diabetic retinopathy(DR) rats and its effect on theDR occurrence and development.Methods:A total of120SD rats were randomly divided into trial group and control group with60 in each.STZi.p. was used in the trial group to establish theDM model, citrate buffer salt of same amount was usedi.p. to the control group.1,3 and6 months after injection, respective20 rats were sacrificed in each group to observe expression ofHIF-1α andVEGF in the rat retina tissue at different time points.Results:Expression ofHIF-1α andVEGF were negative in the control group; expression ofHIF-1α andVEGF protein in retinal tissue were weak after1 month ofDR mold formation.It showed progressive enhancement along with the progression in different organizations, differences between groups were significant (P<0.05).Conclusions:Expressions ofHIF-1α andVEGF were correlated with disease progression in early diabetic retinopathy.Retinal oxygen can induce over-expression ofHIF-1α andVEGF.It shows thatHIF-1α andVEGF play an important role in the pathogenesis ofDR.

  4. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    Sun, Jinqiao; Sha, Bin; Zhou, Wenhao; Yang, Yi

    2010-01-01

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  5. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis

    International Nuclear Information System (INIS)

    Shibuya, Masabumi; Claesson-Welsh, Lena

    2006-01-01

    The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases

  6. Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.

    Science.gov (United States)

    Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz

    2017-06-01

    Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  8. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    International Nuclear Information System (INIS)

    Farajpour, Zahra; Rahbarizadeh, Fatemeh; Kazemi, Bahram; Ahmadvand, Davoud

    2014-01-01

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate

  9. Expression and significance of VEGF, CD34, Ki-67 and p21 in pterygium

    Directory of Open Access Journals (Sweden)

    Li-Bo Wang

    2014-07-01

    Full Text Available AIM: To investigate the expression of VEGF, CD34, Ki-67 and p21 in pterygium as well as the correlation between their expression and clinical pathological characteristics; explore its pathogenesis. METHODS: Immunohistochemical S-P staining method was adopted in detecting the expression of VEGF, CD34, Ki-67 and p21 in 62 cases of pterygia and 20 cases of normal conjunctival tissues. Relationship between these markers and clinical pathological characteristics was analyzed. RESULTS:(1The positive expression of VEGF, CD34, Ki-67 and p21 in 62 cases of pterygia was 74.2%(46/62, 77.4%(48/62, 66.1%(41/62and 40.3%(25/62respectively. The differences were statistically significant compared with normal conjunctival tissues(PPP>0.05; the expression of Ki-67 was correlated with clinical stages(PP>0.05; the expression of p21 was correlated with clinical stages and pterygium characters(PP>0.05.(3Spearman correlation showed that there was a positive correlation between VEGF and Ki-67(r=0.279, Pr=0.299, Pr=-0.267, PP>0.05.CONCLUSION:(1Overexpression of VEGF, Ki-67, CD34 and low expression of p21 suggest that these markers are concerned with the development and progression of pterygium.(2Expression of VEGF and CD34 increases along with the increase of clinical types and stages, expression of Ki-67 increases along with the increase of clinical stages, and expression of p21 decreases along with the improvement of clinical types or stages; they suggest that these markers may play important roles in the development and recurrence of pterygium.(3There is positive correlation between VEGF and Ki-67, VEGF and CD34 as well as negative correlation between VEGF and p21. They suggest that there may be synergistic action between two factors during the development and progression of pterygium.

  10. Hypoxia induced VEGF synthesis in visceral adipose depots of obese diabetic patients.

    Science.gov (United States)

    Fusaru, Ana Marina; Pisoschi, Cătălina Gabriela; Bold, Adriana; Taisescu, C; Stănescu, R; Hîncu, Mihaela; Crăiţoiu, Stefania; Baniţă, Ileana Monica

    2012-01-01

    VEGF is one the pro-inflammatory adipokines synthesized by the "adipose secretoma" of obese subjects as a response to hypoxic conditions; but the main function of VEGF is angiogenesis, being recognized as the most important factor increasing blood capillaries in the adipose tissue by stimulating endothelial cell growth. In this paper, we propose a comparative study of the vascular response to VEGF synthesis in the subcutaneous and central-peritoneal adipose depots in lean, obese and obese diabetic patients. We used CD31 to label the endothelial cells in order to evaluate the response of the vascular network to VEGF synthesis. Our results showed an increase of VEGF protein synthesis in obese and obese-diabetic patients compared to lean subjects where the protein was absent. The positivity for VEGF in obese diabetic samples was observed in numerous structures from the adipose depots, both in the stromal vascular fraction--blood vessels and stromal cells--as well as in the cytoplasm of adipocytes. Positivity in the vascular wall was observed more frequently in areas of perivascular and intralobular fibrosis. Obese and diabetic patients showed similar incidence of CD31 immunoreactivity with lean subjects in both subcutaneous and peritoneal depots. In conclusion, human adipose depots show a different incidence of VEGF positive cells in relation with their disposal and the metabolic status. VEGF synthesis in visceral adipose tissue is inefficient being not followed by angiogenesis to counterbalance tissue hypoxia. We suggest that may be a pathogenic link between the degrees of intralobular fibrosis in adipose depots and VEGF expression.

  11. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, Zahra [Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahbarizadeh, Fatemeh, E-mail: rahbarif@modares.ac.ir [Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Kazemi, Bahram [Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ahmadvand, Davoud [School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-03-28

    Highlights: • A novel nanobody directed to antigenic regions on VEGF was identified. • Our nanobody was successfully purified. • Our nanobody significantly inhibited VEGF-induced proliferation of HUVECs in a dose dependent manner. - Abstract: Compelling evidence suggests that vascular endothelial growth factor (VEGF), due to its essential role in angiogenesis, is a critical target for cancer treatment. Neutralizing monoclonal antibodies against VEGF are important class of drugs used in cancer therapy. However, the cost of production, large size, and immunogenicity are main drawbacks of conventional monoclonal therapy. Nanobodies are the smallest antigen-binding antibody fragments, which occur naturally in camelidae. Because of their remarkable features, we decided to use an immune library of nanobody to direct phage display to recognition of novel functional epitopes on VEGF. Four rounds of selection were performed and six phage-displayed nanobodies were obtained from an immune phage library. The most reactive clone in whole-cell ELISA experiments, was purified and assessed in proliferation inhibition assay. Purified ZFR-5 not only blocked interaction of VEGF with its receptor in cell ELISA experiments, but also was able to significantly inhibit proliferation response of human umbilical vein endothelial cells to VEGF in a dose-dependent manner. Taken together, our study demonstrates that by using whole-cell ELISA experiments, nanobodies against antigenic regions included in interaction of VEGF with its receptors can be directed. Because of unique and intrinsic properties of a nanobody and the ability of selected nanobody for blocking the epitope that is important for biological function of VEGF, it represents novel potential drug candidate.

  12. Anti-tumor effect of a recombinant plasmid expressing human interleukin-12: an initial research

    International Nuclear Information System (INIS)

    Zheng Chuansheng; Xia Xiangwen; Feng Gansheng; Li Xin; Liang Huimin; Liang Bin

    2010-01-01

    Objective: To study the anti-tumor effect of a recombinant plasmid expressing human interleukin-12 (pEGFP-CI I L- 12) in vivo and in vitro. Methods: We transduct the recombinant gene (pEGFP-CI I L-12) to liver cancer cell HepG 2 in vitro, and detect reproductive activity of the cell using MTT and the activity of expressing vascular endothelial growth factor(VEGF) using semiquantitative PCR. And then, we deliver the gene to rabbit liver tumor tissue intraarterial and combine with chemoembolization to observe the anti- tumor effect to VX 2 tumor in vivo. Results: There are no statistical difference compared With control group in activity of reproductive and expressing VEGF in vitro. In vivo, tumor growth rate significantly reduce in gene therapy combined with chemoembolization group. Conclusion: Recombinant gene (pEGFP-Cl I L-12) exhibit significant anti-tumor effect in vivo but not in vitro, perhaps the anti-tumor effect is associated with an indirect pathway instead of a direct pathway. (authors)

  13. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer

    Science.gov (United States)

    Willett, Christopher G; Boucher, Yves; di Tomaso, Emmanuelle; Duda, Dan G; Munn, Lance L; Tong, Ricky T; Chung, Daniel C; Sahani, Dushyant V; Kalva, Sanjeeva P; Kozin, Sergey V; Mino, Mari; Cohen, Kenneth S; Scadden, David T; Hartford, Alan C; Fischman, Alan J; Clark, Jeffrey W; Ryan, David P; Zhu, Andrew X; Blaszkowsky, Lawrence S; Chen, Helen X; Shellito, Paul C; Lauwers, Gregory Y; Jain, Rakesh K

    2009-01-01

    The effects of vascular endothelial growth factor (VEGF) blockade on the vascular biology of human tumors are not known. Here we show here that a single infusion of the VEGF-specific antibody bevacizumab decreases tumor perfusion, vascular volume, microvascular density, interstitial fluid pressure and the number of viable, circulating endothelial and progenitor cells, and increases the fraction of vessels with pericyte coverage in rectal carcinoma patients. These data indicate that VEGF blockade has a direct and rapid antivascular effect in human tumors. PMID:14745444

  14. Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera's key metabolite Withaferin A.

    Science.gov (United States)

    Saha, Sanjib; Islam, Md Khirul; Shilpi, Jamil A; Hasan, Shihab

    2013-01-01

    Angiogenesis, or new blood vessel formation from existing one, plays both beneficial and detrimental roles in living organisms in different aspects. Vascular endothelial growth factor (VEGF), a signal protein, well established as key regulator of vasculogenesis and angiogenesis. VEGF ensures oxygen supply to the tissues when blood supply is not adequate, or tissue environment is in hypoxic condition. Limited expression of VEGF is necessary, but if it is over expressed, then it can lead to serious disease like cancer. Cancers that have ability to express VEGF are more efficient to grow and metastasize because solid cancers cannot grow larger than a limited size without adequate blood and oxygen supply. Anti-VEGF drugs are already available in the market to control angiogenesis, but they are often associated with severe side-effects like fetal bleeding and proteinuria in the large number of patients. To avoid such side-effects, new insight is required to find potential compounds as anti-VEGF from natural sources. In the present investigation, molecular docking studies were carried out to find the potentiality of Withaferin A, a key metabolite of Withania somnifera, as an inhibitor of VEGF. Molecular Docking studies were performed in DockingServer and SwissDock. Bevacizumab, a commercial anti-VEGF drug, was used as reference to compare the activity of Withaferin A. X-ray crystallographic structure of VEGF, was retrieved from Protein Data Bank (PDB), and used as drug target protein. Structure of Withaferin A and Bevacizumab was obtained from PubChem and ZINC databases. Molecular visualization was performed using UCSF Chimera. Withaferin A showed favorable binding with VEGF with low binding energy in comparison to Bevacizumab. Molecular Docking studies also revealed potential protein-ligand interactions for both Withaferin A and Bevacizumab. Conclusively our results strongly suggest that Withaferin A is a potent anti-VEGF agent as ascertained by its potential

  15. VEGFR1-mediated pericyte ablation links VEGF and PlGF to cancer-associated retinopathy

    DEFF Research Database (Denmark)

    Cao, Renhai; Xue, Yuan; Hedlund, Eva-Maria

    2010-01-01

    . Moreover, blockade of VEGFR1 but not VEGFR2 significantly restores pericyte saturation in mature retinal vessels. Our findings link VEGF and PlGF to cancer-associated retinopathy, reveal the molecular mechanisms of VEGFR1 ligand-mediated retinopathy, and define VEGFR1 as an important target......, and adenoviral vectors ablates pericytes from the mature retinal vasculature through the VEGF receptor 1 (VEGFR1)-mediated signaling pathway, leading to increased vascular leakage. In contrast, we demonstrate VEGF receptor 2 (VEGFR2) is primarily expressed in nonvascular photoreceptors and ganglion cells...

  16. EG-VEGF Maintenance Over Early Gestation to Develop a Pregnancy-Induced Hypertensive Animal Model.

    Science.gov (United States)

    Reynaud, Déborah; Sergent, Frédéric; Abi Nahed, Roland; Brouillet, Sophie; Benharouga, Mohamed; Alfaidy, Nadia

    2018-01-01

    During the last decade, multiple animal models have been developed to mimic hallmarks of pregnancy-induced hypertension (PIH) diseases, which include gestational hypertension, preeclampsia (PE), or eclampsia. Converging in vitro, ex vivo, and clinical studies from our group strongly suggested the potential involvement of the new angiogenic factor EG-VEGF (endocrine gland-derived-VEGF) in the development of PIH. Here, we described the protocol that served to demonstrate that maintenance of EG-VEGF production over 11.5 days post coitus (dpc) in the gravid mice caused the development of PIH. The developed model exhibited most hallmarks of preeclampsia.

  17. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas.

    Science.gov (United States)

    Nayak, Lakshmi; de Groot, John; Wefel, Jeffrey S; Cloughesy, Timothy F; Lieberman, Frank; Chang, Susan M; Omuro, Antonio; Drappatz, Jan; Batchelor, Tracy T; DeAngelis, Lisa M; Gilbert, Mark R; Aldape, Kenneth D; Yung, Alfred W K; Fisher, Joy; Ye, Xiaobu; Chen, Alice; Grossman, Stuart; Prados, Michael; Wen, Patrick Y

    2017-03-01

    Anti-vascular endothelial growth factor (VEGF) therapy has shown promise in the treatment of high-grade gliomas (HGG). Aflibercept is a recombinant human fusion protein that acts as a soluble decoy receptor for VEGF-A, VEGF-B and placental growth factor, depleting circulating levels of these growth factors. The Adult Brain Tumor Consortium conducted a phase I trial of aflibercept and temozolomide (TMZ) in patients with newly diagnosed HGG with 2 dose levels and a 3+3 design. Three arms using aflibercept were examined; with radiation and concomitant temozolomide; with adjuvant temozolomide using the 5/28 regimen; and with adjuvant temozolomide using the 21/28 day regimen. Fifty-nine patients were enrolled, 21 in arm 1, 20 in arm 2 and 18 in arm 3. Median age was 56 years (24-69); median KPS 90 (60-100). The maximum tolerated dose (MTD) of aflibercept for all 3 arms was 4 mg/kg every 2 weeks. Dose limiting toxicities at the MTD were: Arm 1: 0/21 patients; Arm 2: 2/20 patients (G3 deep vein thrombosis, G4 neutropenia; Arm 3: 3/18 patients) (G4 biopsy-confirmed thrombotic microangiopathy, G3 rash, G4 thrombocytopenia). The median number of cycles of aflibercept was 5 (range, 1-16). All patients stopped treatment; 28 (47%) for disease progression, 21 (36%) for toxicities, 8 (14%) for other reasons, and 2 (3%) patients completed the full treatment course. This study met its primary endpoint and the MTD of aflibercept with radiation and concomitant and adjuvant temozolomide is 4 mg/kg every 2 weeks.

  18. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats.

    Science.gov (United States)

    Shi, Xudan; Doycheva, Desislava Met; Xu, Liang; Tang, Jiping; Yan, Min; Zhang, John H

    2016-11-01

    Hypoxic ischemic (HI) encephalopathy remains the leading cause of perinatal brain injury resulting in long term disabilities. Stabilization of blood brain barrier (BBB) after HI is an important target, therefore, in this study we aim to determine the role of sestrin2, a stress inducible protein which is elevated after various insults, on BBB stabilization after moderate and severe HI injuries. Rat pups underwent common carotid artery ligation followed by either 150min (severe model) or 100min (moderate model) of hypoxia. 1h post HI, rats were intranasally administered with recombinant human sestrin2 (rh-sestrin2) and sacrificed for infarct area, brain water content, righting reflex and geotaxis reflex. Sestrin2 was silenced using siRNA and an activator/inhibitor of hypoxia inducible factor1α (HIF1α) was used to examine their roles on BBB permeability. Rats subjected to severe HI exhibited larger infarct area and higher sestrin2 expression compared to rats in the moderate HI group. rh-sestrin2 attenuated brain infarct and edema, while silencing sestrin2 reversed these protective effects after severe HI. HIF1α induced sestrin2 activation in severe HI but not in moderate HI groups. A HIF1a agonist was shown to increase permeability of the BBB via vascular endothelial growth factor (VEGF) after moderate HI. However, after severe HI, HIF1α activated both VEGF and sestrin2. But HIF1α dependent sestrin2 activation was the predominant pathway after severe HI which inhibited VEGF and attenuated BBB permeability. rh-sestrin2 attenuated BBB permeability via upregulation of endogenous sestrin2 which was induced by HIF1α after severe HI. However, HIF1α's effects as a prodeath or prosurvival signal were influenced by the severity of HI injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo

    Directory of Open Access Journals (Sweden)

    Du B

    2015-03-01

    Full Text Available Bing Du,1,2 Weizhen Liu,1 Yue Deng,1,3 Shaobing Li,1 Xiangning Liu,4 Yan Gao,1 Lei Zhou1 1Department of Oral Implantology, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Center of Stomatology, The First People’s Hospital of Foshan, Foshan, Guangdong, People’s Republic of China; 3Department of Oral and Maxillofacial Surgery, Qingdao Stomatological Hospital, Qingdao, People’s Republic of China; 4Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, People’s Republic of China Abstract: To improve the regenerative performance of nano-hydroxyapatite/coralline (nHA/coral block grafting in a canine mandibular critical-size defect model, nHA/coral blocks were coated with recombinant human vascular endothelial growth factor165 (rhVEGF via physical adsorption (3 µg rhVEGF165 per nHA/coral block. After the nHA/coral blocks and VEGF/nHA/coral blocks were randomly implanted into the mandibular box-shaped defects in a split-mouth design, the healing process was evaluated by histological observation and histomorphometric and immunohistological analyses. The histological evaluations revealed the ingrowth of newly formed blood vessels and bone at the periphery and cores of the blocks in both groups at both 3 and 8 weeks postsurgery, respectively. In the histomorphometric analysis, the VEGF/nHA/coral group exhibited a larger quantity of new bone formation at 3 and 8 weeks postsurgery. The percentages of newly formed bone within the entire blocks in the VEGF/nHA/coral group were 27.3%±8.1% and 39.3%±12.8% at 3 weeks and 8 weeks, respectively, and these values were slightly greater than those of the nHA/coral group (21.7%±3.0% and 32.6%±10.3%, respectively, but the differences were not significant (P>0.05. The immunohistological evaluations revealed that the neovascular density in the VEGF/nHA/coral group (146±32.9 vessel/mm2 was much greater than

  20. Assessment of the systemic distribution of a bioconjugated anti-Her2 magnetic nanoparticle in a breast cancer model by means of magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Huerta-Núñez, L. F. E., E-mail: lidi-huerta@hotmail.com [Universidad del Ejercito y FAM/EMGS-Laboratorio Multidisciplinario de Investigación (Mexico); Villanueva-Lopez, G. Cleva, E-mail: villanuevacleva3@gmail.com [Instituto Politécnico Nacional-Escuela Superior de Medicina-Sección Investigación y Posgrado (Mexico); Morales-Guadarrama, A., E-mail: amorales@ci3m.mx [Centro Nacional de Investigacion en Imagenologia e Instrumentacion Medica-Universidad Autónoma (Mexico); Soto, S., E-mail: cuadrosdobles@hotmail.com; López, J., E-mail: jaimelocr@hotmail.com; Silva, J. G., E-mail: gabrielsilva173@gmail.com [Universidad del Ejercito y FAM/EMGS-Laboratorio Multidisciplinario de Investigación (Mexico); Perez-Vielma, N., E-mail: nadiampv@gmail.com [Instituto Politécnico Nacional - Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás (CICS-UST) (Mexico); Sacristán, E., E-mail: esacristan@ci3m.mx [Centro Nacional de Investigacion en Imagenologia e Instrumentacion Medica-Universidad Autónoma (Mexico); Gudiño-Zayas, Marco E., E-mail: gudino@unam.mx [UNAM, Departamento de Medicina Experimental, Facultad de Medicina (Mexico); González, C. A., E-mail: cgonzalezd@ipn.mx [Universidad del Ejercito y FAM/EMGS-Laboratorio Multidisciplinario de Investigación (Mexico)

    2016-09-15

    The aim of this study was to determine the systemic distribution of magnetic nanoparticles of 100 nm diameter (MNPs) coupled to a specific monoclonal antibody anti-Her2 in an experimental breast cancer (BC) model. The study was performed in two groups of Sprague–Dawley rats: control (n = 6) and BC chemically induced (n = 3). Bioconjugated “anti-Her2-MNPs” were intravenously administered, and magnetic resonance imaging (MRI) monitored its systemic distribution at seven times after administration. Non-heme iron presence associated with the location of the bioconjugated anti-Her2-MNPs in splenic, hepatic, cardiac and tumor tissues was detected by Perl’s Prussian blue (PPB) stain. Optical density measurements were used to semiquantitatively determine the iron presence in tissues on the basis of a grayscale values integration of T1 and T2 MRI sequence images. The results indicated a delayed systemic distribution of MNPs in cancer compared to healthy conditions with a maximum concentration of MNPs in cancer tissue at 24 h post-infusion.

  1. Ultra-sensitive detection of ibuprofen (IBP) by electrochemical aptasensor using the dendrimer-quantum dot (Den-QD) bioconjugate as an immobilization platform with special features

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: m.roushani@ilam.ac.ir; Shahdost-fard, Faezeh

    2017-06-01

    This study describes a high-performance electrochemical aptasensor which is employed to detect Ibuprofen (IBP) as a painkiller drug by using a novel platform as an integrated sensing interface. In order to make the aptasensor, the Den-QD bioconjugate was immobilized on the surface of a GC electrode and followed the Apt was incubated on this surface. The incubation of the IBP on the aptasensor surface and the formation of the Apt/IBP complex, led to a hindered electron transfer reaction on the sensing surface, which decreased the peak current of the redox probe. Under the optimum condition, the assay had two dynamic ranges with a detection limit down to 333 fM. The developed aptasensor reliably detects IBP in a real sample. Our results demonstrated that the proposed strategy has many advantages and the Den-QD bioconjugate may become a promising nanocomposite for the electrochemical sensing applications. - Highlights: • Fabrication of an ultrasensitive electrochemical nanotool based on target-including conformational switching of an Apt. • The covalent attachment of a 5'-NH2-3'-AgNPs terminated Apt on the surface of a GCE electrode with CdTe QDs. • The use of CdTe QDs as a platform and the elimination of antibodies or enzymes are the advantages of this aptasensor.

  2. Parton recombination model

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1978-08-01

    Low P/sub T/ meson production in hadronic collisions is described in the framework of the parton model. The recombination of quark and antiquark is suggested as the dominant mechanism in the large x region. Phenomenological evidences for the mechanism are given. The application to meson initiated reactions yields the quark distribution in mesons. 21 references

  3. [Suppression of VEGF protein expression by arctigenin in oral squamous cell carcinoma].

    Science.gov (United States)

    Pu, Guang-rui; Liu, Fa-yu; Wang, Bo

    2015-08-01

    To observe arctigenin's inhibitory effect on oral squamous cell carcinoma, and explore the possible mechanism. The expression of VEGF in 32 cases of oral squamous cell cancer and 20 adjacent tissue specimen were detected with immunohistochemistry. Human nude mouse transplantation tumor model of oral squamous cell cancer was prepared with HSC-3 cells line. Transplanted tumor growth and VEGF expression in transplanted tumor tissues were assayed after treatment with arctigenin. One-way ANOVA was used for comparison between groups with SPSS 16.0 software package. Compared with the adjacent tissue, immunohistochemical staining score of VEGF was significantly higher (Parctigenin, the growth of oral squamous cell transplanted tumors in nude mouse was inhibited (Parctigenin group (PArctigenin can dose-dependently inhibit the growth of oral squamous cell carcinomas, and this effect may be related to down regulation of VEGF expression.

  4. Anemia and elevated systemic levels of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Dunst, J.; Becker, A.; Lautenschlaeger, C.; Markau, S.; Becker, H.; Fischer, K.; Haensgen, G.

    2002-01-01

    Background: Tissue hypoxia is a major stimulus for the up-regulation of vascular endothelial growth factor (VEGF). Anemia might theoretically impact on angiogenesis via impairment of tissue oxygenation. We have investigated this hypothesis in patients with solid cancers and benign diseases. Patients and methods: 49 patients with untreated locoregionally confined solid cancers of the head and neck, cervix, rectum and lung and 59 additional patients with non-malignant diseases (36 normemic patients without serious diseases and 23 patients with renal anemia) were enrolled and the impact of anemia on plasma VEGF levels were determined. VEGF was measured with a commercially available sandwich enzyme immunoassay technique. Results: Plasma levels of VEGF were 16.2±12.7 pg/ml in 36 normemic patients without malignant disease, 49,2±34.5 pg/ml in 49 patients with cancers (p [de

  5. Estimation of Immunohistochemical Expression of VEGF in Ductal Carcinomas of the Breast

    DEFF Research Database (Denmark)

    Maae, Else; Nielsen, Martin; Dahl Steffensen, Karina

    2012-01-01

    Introduction: Vascular endothelial growth factor A (VEGF-A) is a very important growth factor in angiogenesis and holds the potential as both a predictive marker for anti-angiogenic cancer treatment and as a prognostic variable. Consequently, reliable estimation of VEGF expression is crucial...... an automated method for analyzing VEGF expression (so-called AI score) using the same tumor sections. Analysis of 100% of the tumor area was performed and the results were compared to the reduced analysis of 25% of the tumor area. These analyses were performed at 5x and 10x magnification and each analysis...... was repeated in a second run with a new delineation of the tumor area. Results: We found that the AI scores were correlated to the manual scoring of VEGF intensity, but the reproducibility of manual IHC scores was rather poor. The AI scores were reproducible and the restricted analysis of 25% of the tumor area...

  6. VEGF expression and microvascular density in relation to high-risk ...

    African Journals Online (AJOL)

    HPV)- related cancer mandates the search for new treatment modalities. Therapeutic targeting of tumor vasculature is a promising strategy. The aim was to study angiogenesis in cervical carcinoma in terms of VEGF expression and assessment ...

  7. VEGF expression and microvascular density in relation to high-risk ...

    African Journals Online (AJOL)

    Bassma M. El Sabaa

    2012-01-13

    Jan 13, 2012 ... Eleven cases were low grade and 19 were high-grade cases. VEGF expression .... increasing microvascular permeability,26 degradation of extra- ...... soluble receptors in pre-invasive, invasive and recurrent cervical cancer.

  8. Impact of VEGF and VEGF receptor 1 (FLT1) expression on the prognosis of stage III esophageal cancer patients after radiochemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Rades, D. [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf (Germany); Dept. of Radiation Oncology, Univ. Hospital Schleswig-Holstein, Luebeck (Germany); Golke, H. [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf (Germany); Inst. of Pathology, Univ. Medical Center Hamburg-Eppendorf (Germany); Schild, S.E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Kilic, E. [Inst. of Pathology, Univ. Medical Center Hamburg-Eppendorf (Germany); Inst. of Pathology, Univ. Hospital Basel-Stadt (Switzerland)

    2008-08-15

    Background and purpose: high expression of vascular endothelial growth factor (VEGF) is negatively associated with clinical outcome. The prognostic value of VEGF receptor 1 (FLT1) is unclear. This retrospective study investigated the impact of tumor expression of VEGF and FLT1 on outcome in 68 stage III esophageal cancer patients. Material and methods: the impact of tumor VEGF and FLT expression (< 10% vs. > 10%) and five additional potential prognostic factors on overall survival (OS) and locoregional control (LC) was retrospectively evaluated. These factors included T-stage (T3 vs. T4), N-stage (NO vs. N1), treatment (radiochemotherapy plus resection vs. radiochemotherapy alone), erythropoietin (ERYPO {sup registered} 10000, Janssen-Cilag, Neuss, Germany) administration during radiotherapy, and majority of hemoglobin levels during radiotherapy (< 12 vs. {>=} 12 g/dl). Subgroup analyses were performed for patients receiving resection (R0 vs. R1/2 resection). The factors found to be significant on univariate analyses (Kaplan-Meier method, log-rank test) were included in multivariate analyses performed with the Cox proportional hazard model. Results: on univariate analysis, improved OS was associated with T3 stage (p = 0.011), surgery (p = 0.019), and hemoglobin {>=} 12 g/dl (p < 0.001). Improved LC was associated with T3 stage (p = 0.025), hemoglobin {>=} 12 g/dl (p < 0.001), and VEGF negativity (p = 0.045). On multivariate analyses, only hemoglobin maintained significance. In patients having surgery, R0 resection was significantly better than R1/2 resection for OS (p < 0.001) and LC (p < 0.001). Conclusion: preradiotherapy tumor VEGF expression appears negatively correlated with outcomes, whereas FLT1 expression appears to have no significant impact on OS and LC. (orig.)

  9. Impact of VEGF and VEGF receptor 1 (FLT1) expression on the prognosis of stage III esophageal cancer patients after radiochemotherapy

    International Nuclear Information System (INIS)

    Rades, D.; Golke, H.; Schild, S.E.; Kilic, E.

    2008-01-01

    Background and purpose: high expression of vascular endothelial growth factor (VEGF) is negatively associated with clinical outcome. The prognostic value of VEGF receptor 1 (FLT1) is unclear. This retrospective study investigated the impact of tumor expression of VEGF and FLT1 on outcome in 68 stage III esophageal cancer patients. Material and methods: the impact of tumor VEGF and FLT expression ( 10%) and five additional potential prognostic factors on overall survival (OS) and locoregional control (LC) was retrospectively evaluated. These factors included T-stage (T3 vs. T4), N-stage (NO vs. N1), treatment (radiochemotherapy plus resection vs. radiochemotherapy alone), erythropoietin (ERYPO registered 10000, Janssen-Cilag, Neuss, Germany) administration during radiotherapy, and majority of hemoglobin levels during radiotherapy (< 12 vs. ≥ 12 g/dl). Subgroup analyses were performed for patients receiving resection (R0 vs. R1/2 resection). The factors found to be significant on univariate analyses (Kaplan-Meier method, log-rank test) were included in multivariate analyses performed with the Cox proportional hazard model. Results: on univariate analysis, improved OS was associated with T3 stage (p = 0.011), surgery (p = 0.019), and hemoglobin ≥ 12 g/dl (p < 0.001). Improved LC was associated with T3 stage (p = 0.025), hemoglobin ≥ 12 g/dl (p < 0.001), and VEGF negativity (p = 0.045). On multivariate analyses, only hemoglobin maintained significance. In patients having surgery, R0 resection was significantly better than R1/2 resection for OS (p < 0.001) and LC (p < 0.001). Conclusion: preradiotherapy tumor VEGF expression appears negatively correlated with outcomes, whereas FLT1 expression appears to have no significant impact on OS and LC. (orig.)

  10. In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF

    International Nuclear Information System (INIS)

    Blankenberg, Francis G.; Backer, Marina V.; Patel, Vimalkumar; Backer, Joseph M.; Levashova, Zoia

    2006-01-01

    We recently developed a cysteine-containing peptide tag (C-tag) that allows for site-specific modification of C-tag-containing fusion proteins with a bifunctional chelator, HYNIC (hydrazine nicotinamide)-maleimide. We then constructed and expressed C-tagged vascular endothelial growth factor (VEGF) and labeled it with HYNIC. We wished to test 99m Tc-HYNIC-C-tagged VEGF ( 99m Tc-HYNIC-VEGF) for the imaging of tumor vasculature before and after antiangiogenic (low continuous dosing, metronomic) and tumoricidal (high-dose) cyclophosphamide treatment. HYNIC-maleimide was reacted with the two thiol groups of C-tagged VEGF without any effect on biologic activity in vitro. 99m Tc-HYNIC-VEGF was prepared using tin/tricine as an exchange reagent, and injected via the tail vein (200-300 μCi, 1-2 μg protein) followed by microSPECT imaging 1 h later. Sequencing analysis of HYNIC-containing peptides obtained after digestion confirmed the site-specific labeling of the two accessible thiol groups of C-tagged VEGF. Tumor vascularity was easily visualized with 99m Tc/VEGF in Balb/c mice with 4T1 murine mammary carcinoma 10 days after implantation into the left axillary fat pad in controls (12.3±5.0 tumor/bkg, n=27) along with its decrease following treatment with high (150 mg/kg q.o.d. x 4; 1.14±0.48 tumor/bkg, n=9) or low (25 mg/kg q.d. x 7; 1.03±0.18 tumor/bkg, n=9) dose cyclophosphamide. Binding specificity was confirmed by observing a 75% decrease in tumor uptake of 99m Tc/biotin-inactivated VEGF, as compared with 99m Tc-HYNIC-VEGF. 99m Tc can be loaded onto C-tagged VEGF in a site-specific fashion without reducing its bioactivity. 99m Tc-HYNIC-VEGF can be rapidly prepared for the imaging of tumor vasculature and its response to different types of chemotherapy. (orig.)

  11. Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation.

    Directory of Open Access Journals (Sweden)

    Helen R Griffin

    Full Text Available Several previous studies have investigated the role of common promoter variants in the vascular endothelial growth factor (VEGF gene in causing congenital cardiovascular malformation (CVM. However, results have been discrepant between studies and no study to date has comprehensively characterised variation throughout the gene. We genotyped 771 CVM cases, of whom 595 had the outflow tract malformation Tetralogy of Fallot (TOF, and carried out TDT and case-control analyses using haplotype-tagging SNPs in VEGF. We carried out a meta-analysis of previous case-control or family-based studies that had typed VEGF promoter SNPs, which included an additional 570 CVM cases. To identify rare variants potentially causative of CVM, we carried out mutation screening in all VEGF exons and splice sites in 93 TOF cases. There was no significant effect of any VEGF haplotype-tagging SNP on the risk of CVM in our analyses of 771 probands. When the results of this and all previous studies were combined, there was no significant effect of the VEGF promoter SNPs rs699947 (OR 1.05 [95% CI 0.95-1.17]; rs1570360 (OR 1.17 [95% CI 0.99-1.26]; and rs2010963 (OR 1.04 [95% CI 0.93-1.16] on the risk of CVM in 1341 cases. Mutation screening of 93 TOF cases revealed no VEGF coding sequence variants and no changes at splice consensus sequences. Genetic variation in VEGF appears to play a small role, if any, in outflow tract CVM susceptibility.

  12. Prognostic importance of VEGF-A haplotype combinations in a stage II colon cancer population

    DEFF Research Database (Denmark)

    Kjaer-Frifeldt, Sanne; Fredslund, Rikke; Lindebjerg, Jan

    2012-01-01

    To investigate the prognostic effect of three VEGF-A SNPs, -2578, -460 and 405, as well as the corresponding haplotype combinations, in a unique population of stage II colon cancer patients.......To investigate the prognostic effect of three VEGF-A SNPs, -2578, -460 and 405, as well as the corresponding haplotype combinations, in a unique population of stage II colon cancer patients....

  13. Up-regulation of VEGF and its receptor in refractory leukemia cells

    OpenAIRE

    Wang, Lei; Zhang, Wenjun; Ding, Yi; Xiu, Bing; Li, Ping; Dong, Yan; Zhu, Qi; Liang, Aibin

    2015-01-01

    Objective: To analyze the causative mechanisms in refractory leukemia cells. Methods: Vascular endothelial growth factor (VEGF) blood plasma concentrations in 35 de novo, 6 relapse, 20 remission leukemia patients and 10 healthy kids were determined via ELISA analyses. Transcription levels of the VEGF receptors (VEGFR) Fms-like tyrosine kinase-1 (Flt-1) and kinase-domain insert containing receptor (KDR) were determined in participants’ leucocytes with RT-PCR. Apoptosis rates as well as Cyt-C a...

  14. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    Directory of Open Access Journals (Sweden)

    Soohwan Yum

    2017-12-01

    Full Text Available The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF, a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF prolyl hydroxylase-2 (PHD-2 was tested by an in vitro von Hippel–Lindau protein (VHL binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α, and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1.

  15. Minoxidil Induction of VEGF Is Mediated by Inhibition of HIF-Prolyl Hydroxylase

    Science.gov (United States)

    Yum, Soohwan; Jeong, Seongkeun; Kim, Dohoon; Lee, Sunyoung; Kim, Wooseong; Yoo, Jin-Wook; Kwon, Oh Sang; Kim, Dae-Duk; Min, Do Sik; Jung, Yunjin

    2017-01-01

    The topical application of minoxidil may achieve millimolar concentrations in the skin. We investigated whether millimolar minoxidil could induce vascular endothelial growth factor (VEGF), a possible effector for minoxidil-mediated hair growth, and how it occurred at the molecular level. Cell-based experiments were performed to investigate a molecular mechanism underlying the millimolar minoxidil induction of VEGF. The inhibitory effect of minoxidil on hypoxia-inducible factor (HIF) prolyl hydroxylase-2 (PHD-2) was tested by an in vitro von Hippel–Lindau protein (VHL) binding assay. To examine the angiogenic potential of millimolar minoxidil, a chorioallantoic membrane (CAM) assay was used. In human keratinocytes and dermal papilla cells, millimolar minoxidil increased the secretion of VEGF, which was not attenuated by a specific adenosine receptor antagonist that inhibits the micromolar minoxidil induction of VEGF. Millimolar minoxidil induced hypoxia-inducible factor-1α (HIF-1α), and the induction of VEGF was dependent on HIF-1. Moreover, minoxidil applied to the dorsal area of mice increased HIF-1α and VEGF in the skin. In an in vitro VHL binding assay, minoxidil directly inhibited PHD-2, thus preventing the hydroxylation of cellular HIF-1α and VHL-dependent proteasome degradation and resulting in the stabilization of HIF-1α protein. Minoxidil inhibition of PHD-2 was reversed by ascorbate, a cofactor of PHD-2, and the minoxidil induction of cellular HIF-1α was abrogated by the cofactor. Millimolar minoxidil promoted angiogenesis in the CAM assay, an in vivo angiogenic test, and this was nullified by the specific inhibition of VEGF. Our data demonstrate that PHD may be the molecular target for millimolar minoxidil-mediated VEGF induction via HIF-1. PMID:29295567

  16. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis

    DEFF Research Database (Denmark)

    Cao, Renhai; Ji, Hong; Feng, Ninghan

    2012-01-01

    Interplay between various lymphangiogenic factors in promoting lymphangiogenesis and lymphatic metastasis remains poorly understood. Here we show that FGF-2 and VEGF-C, two lymphangiogenic factors, collaboratively promote angiogenesis and lymphangiogenesis in the tumor microenvironment, leading...... endothelial cell tip cell formation is a prerequisite for FGF-2-stimulated lymphangiogenesis. In the tumor microenvironment, the reciprocal interplay between FGF-2 and VEGF-C collaboratively stimulated tumor growth, angiogenesis, intratumoral lymphangiogenesis, and metastasis. Thus, intervention and targeting...

  17. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Science.gov (United States)

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Interleukin-6 secreted by oral cancer- associated fibroblast accelerated VEGF expression in tumor and stroma cells.

    Science.gov (United States)

    Mirkeshavarz, M; Ganjibakhsh, M; Aminishakib, P; Farzaneh, P; Mahdavi, N; Vakhshiteh, F; Karimi, A; Gohari, N S; Kamali, F; Kharazifard, M J; Shahzadeh Fazeli, S A; Nasimian, A

    2017-10-31

    Oral cancer represents the sixth most common cancer type worldwide. Patients with oral cancer express high levels of IL-6 which is associated with very poor prognosis. Previous studies illustrated that IL-6 cytokine induces angiogenesis. It has also been reported that the presence of Cancer- Associated Fibroblasts (CAFs) is essential for angiogenesis. In this study, we examined the correlation between IL-6 and CAF and the role of this correlation on VEGF production. In this study, quantitative expression level of IL-6 and VEGF in CAF and Oral Cancer Cells (OCCs) examined through Real Time PCR and ELISA and western blot analysis. In addition, maintenance and retention of IL-6 and VEGF checked out in co-culture experiment of CAF and OCC cells. These experiments demonstrated that in oral cancer, CAF cell line secretes significantly more IL-6 than OCC. Also IL-6 is a factor that causes VEGF secretion in CAF cell line. CAF is the basic and the most essential source for producing IL-6 in patients with oral cancer. Secreted IL-6 is able to induce VEGF production in both CAF and OCCs. Correlation between CAF, IL-6 and VEGF could be considered as an approach for cancer therapy.

  19. Endocrine gland derived-VEGF is down-regulated in human pituitary adenoma.

    Science.gov (United States)

    Raica, Marius; Coculescu, Mihail; Cimpean, Anca Maria; Ribatti, Domenico

    2010-10-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic molecule restricted to endocrine glands and, particularly, to steroid-secreting cells. The expression of EG-VEGF and its significance in human adenohypophysis in physiological and pathological conditions is still unknown. In this study, we investigated by immunohistochemistry the expression of EG-VEGF in 2 samples of normal adenohypophysis and 43 bioptic samples of pituitary adenoma. Moreover, the expression of growth hormone (GH), prolactin (PRL), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH) and adrenocorticoprophic hormone (ACTH) were also estimated. The results of this study for the first time demonstrate a down-regulation of EG-VEGF expression in human pituitary adenoma as compared to normal adenohypophysis, suggesting an impaired function of the neoplastic cells in terms of hormone release in the blood stream, as a consequence of impaired tumor angiogenesis in the tumor. On the basis of our data showing a marked decrease in the expression of EG-VEGF in pituitary adenoma, with the exception of LH-secreting adenomas, we suggest that LH might be involved in the induction of EG-VEGF secretion.

  20. Radiation up-regulated the expression of VEGF in a canine oral melanoma cell line

    International Nuclear Information System (INIS)

    Flickinger, I.; Rütgen, B.C.; Gerner, W.; Tichy, A.; Saalmüller, A.; Kleiter, M.; Calice, I.

    2013-01-01

    To evaluate radiosensitivity and the effects of radiation on the expression of vascular endothelial growth factor (VEGF) and VEGF receptors in the canine oral melanoma cell line, TLM 1, cells were irradiated with doses of 0, 2, 4, 6, 8 and 10 Gray (Gy). Survival rates were then determined by a MTT assay, while vascular endothelial growth factor receptor (VEGFR)-1 and -2 expression was measured by flow cytometry and apoptotic cell death rates were investigated using an Annexin assay. Additionally, a commercially available canine VEGF ELISA kit was used to measure VEGF. Radiosensitivity was detected in TLM 1 cells, and mitotic and apoptotic cell death was found to occur in a radiation dose dependent manner. VEGF was secreted constitutively and significant up-regulation was observed in the 8 and 10 Gy irradiated cells. In addition, a minor portion of TLM 1 cells expressed vascular endothelial growth factor receptor (VEGFR)-1 intracellularly. VEGFR-2 was detected in the cytoplasm and was down-regulated following radiation with increasing dosages. In TLM 1 cells, apoptosis plays an important role in radiation induced cell death. It has also been suggested that the significantly higher VEGF production in the 8 and 10 Gy group could lead to tumour resistance. (author)

  1. Immunohistochemical Expression of VEGF and Podoplanin in Uterine Cervical Squamous Intraepithelial Lesions

    Directory of Open Access Journals (Sweden)

    Patrícia Napoli Belfort-Mattos

    2016-01-01

    Full Text Available VEGF and podoplanin (PDPN have been identified as angiogenesis and/or lymphangiogenesis regulators and might be essential to restrict tumor growth, progression, and metastasis. In the present study, we evaluate the association between the expression of these markers and CIN grade. Immunohistochemistry was performed in 234 uterine cervical samples using conventional histologic sections or TMA with the monoclonal antibodies to VEGF (C-1 clone and podoplanin (D2-40 clone. Positive-staining rates of VEGF in 191 CIN specimens were significantly associated with histological grade (P<0.001. Negative and/or focal immunostaining for PDPN were more frequent in CIN 3 (P=0.016. We found that patients with CIN 3 more frequently had strong and more diffuse staining for VEGF and diminished staining for PDPN (P=0.018. Strong and more diffuse VEGF immunoexpressions in CIN 2 and CIN 3 were detected when compared to CIN 1. Negative and/or focal PDPN immunoexpression appear to be more frequent in CIN 3. Moderate to strong VEGF expression may be a tendency among patients with high-grade lesions and diminished PDPN expression.

  2. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  3. Angiomodulin is a specific marker of vasculature and regulates VEGF-A dependent neo-angiogenesis

    Science.gov (United States)

    Hooper, Andrea T.; Shmelkov, Sergey V.; Gupta, Sunny; Milde, Till; Bambino, Kathryn; Gillen, Kelly; Goetz, Mollie; Chavala, Sai; Baljevic, Muhamed; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; Vahdat, Linda; Evans, Todd; Rafii, Shahin

    2010-01-01

    Blood vessel formation is controlled by the balance between pro- and anti-angiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a VEGF-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGMlacZ/+) wherein we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17-22 hpf. Blockade of AGM activity with morpholino oligomers (MO) results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR-2/flk-1, is blocked by the simultaneous injection of AGM MO. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the pro-angiogenic effects of VEGF-A. PMID:19542015

  4. Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus

    Science.gov (United States)

    Shim, Joon W.; Sandlund, Johanna; Hameed, Mustafa Q.; Blazer-Yost, Bonnie; Zhou, Feng C.; Klagsbrun, Michael; Madsen, Joseph R.

    2016-01-01

    Heparin binding epidermal growth factor-like growth factor (HB-EGF) is an angiogenic factor mediating radial migration of the developing forebrain, while vascular endothelial growth factor (VEGF) is known to influence rostral migratory stream in rodents. Cell migratory defects have been identified in animal models of hydrocephalus; however, the relationship between HB-EGF and hydrocephalus is unclear. We show that mice overexpressing human HB-EGF with β-galactosidase reporter exhibit an elevated VEGF, localization of β-galactosidase outside the subventricular zone (SVZ), subarachnoid hemorrhage, and ventriculomegaly. In Wistar polycystic kidney rats with hydrocephalus, alteration of migratory trajectory is detected. Furthermore, VEGF infusions into the rats result in ventriculomegaly with an increase of SVZ neuroblast in rostral migratory stream, whereas VEGF ligand inhibition prevents it. Our results support the idea that excess HB-EGF leads to a significant elevation of VEGF and ventricular dilatation. These data suggest a potential pathophysiological mechanism that elevated HB-EGF can elicit VEGF induction and hydrocephalus. PMID:27243144

  5. Treatment of Corneal Neovascularization Using Anti-VEGF Bevacizumab

    Directory of Open Access Journals (Sweden)

    Deli Krizova

    2014-01-01

    Full Text Available Purpose. To evaluate antiangiogenic effect of local use of bevacizumab (anti-VEGF antibody in patients with corneal neovascularization. Methods. Patients were divided into two groups. All patients suffered from some form of corneal neovascularization (NV. Patients in group A received 0.2–0.5 mL of bevacizumab solution subconjunctivally (concentration 25 mg/mL in a single dose. Group A included 28 eyes from 27. Patients in group B applied bevacizumab eye drops twice daily (concentration 2.5 mg/mL for two weeks. Group B included 38 eyes from 35 patients. We evaluated the number of corneal segments affected by NV, CDVA, and the incidence of complications and subjective complaints related to the treatment. The minimum follow-up period was six months. Results. By the 6-month follow-up, in group A the percentage reduction of the affected peripheral segments was 21.6% and of the central segments was 9.6%; in group B the percentage reduction of the central segments was 22.7% and of the central segments was 38.04%. In both groups we noticed a statistically significant reduction in the extent of NV. Conclusion. The use of bevacizumab seems to be an effective and safe method in the treatment of corneal neovascularization, either in the subconjunctival or topical application form.

  6. Inhibition of corneal neovascularization by recombinant adenovirus-mediated sFlk-1 expression

    International Nuclear Information System (INIS)

    Yu Hui; Wu Jihong; Li Huiming; Wang Zhanli; Chen Xiafang; Tian Yuhua; Yi Miaoying; Ji Xunda; Ma Jialie; Huang Qian

    2007-01-01

    The interaction of vascular endothelial growth factor (VEGF) and its receptors (Flt-1, Flk-1/KDR) is correlated with neovascularization in the eyes. Therefore, blocking the binding of VEGF and the corresponding receptor has become critical for inhibiting corneal neovascularization. In this study, we have expressed the cDNA for sFlk-1 under the control of cytomegalovirus immediate-early promoter (CMV) from an E1/partial E3 deleted replication defective recombinant adenovirus, and Ad.sflk-1 expression was determined by Western blotting. We have shown that conditioned media from Ad.sflk-1-infected ARPE-19 cells significantly reduced VEGF-induced human umbilical vein endothelial cells (HUVEC) and murine endothelial cells (SVEC) proliferation in vitro compared with the control vector. In vivo, adenoviral vectors expressing green fluorescent protein alone (Ad.GFP) were utilized to monitor gene transfer to the cornea. Moreover, in the models of corneal neovascularization, the injection of Ad.sflk-1 (10 8 PFU) into the anterior chamber could significantly inhibit angiogenic changes compared with Ad.null-injected and vehicle-injected models. Immunohistochemical analysis showed that corneal endothelial cells and corneal stroma of cauterized rat eyes were efficiently transduced and expressed sFlk-1. These results not only support that adenoviral vectors are capable of high-level transgene expression but also demonstrate that Ad.sflk-1 gene therapy might be a feasible approach for inhibiting the development of corneal neovascularization

  7. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  8. Synthesis and Evaluation of Nanogold Bioconjugated with Trastuzumab as a Drug for Human Breast Cancer Cell Line

    International Nuclear Information System (INIS)

    AL-Hasnawi, I.M.

    2015-01-01

    carboxyl group by adding 1-ethyl-3-(3-dimethyl aminopropyl) Carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS) using cross-linking reaction. 2- Bioconjugation i.e.,binding the modified GNPs with the anti-Her2/neu antibody (Trastuzumab). All the above productswere characterized by using UV-Vis spectroscopy, FTIR, and zeta nanosizertechniques. Part III: Application of the abovenovel products (three types GNPs, biofunctionalized GNPs and bioconjugated GNPs, as well astrastuzumab alone) on human breast cancer cell line (SK-BR-3) and on an isolated fraction of whole blood, peripheral blood mononuclear cells (PBMCs) in vitro. The evaluation was done by cytotoxicity assay, viability assay using inverted and light microscopy, and ELISA-reader. Part IV: In clinical characterization of the disease two tumor marker [cancer antigen (CA15-3) and carcinoembryonic antigen (CEA)] were investigated as well as, sex steroid hormones (estradiol, progesterone, and testosterone ), lipid profile and total proteins in sera of (100) Iraqi women with breast cancer classified to two groups depending on their Her2/neuimmunohistochemistry status (group I (positive) and group II (negative)) patients were recruited Al-Amal Hospital in Baghdad city during the period from the beginning of June -2013 to end of Dec.-2013. Their ages ranged from (27-70) years with irregular of menstrual cycle because taking of hormonal therapy. The results were compared with (40) blood samples from apparently healthy women as control group. Results revealed a highly significant increase (p<0.001) in the levels of CA15-3 and decrease in CEA. The three sex steroid hormonesrevealed significant increase (p<0.001) in the patients group compared to the control group. Lipid profile and total proteins were significantly decreased (p<0.05) in negative Her2/neu group and increased in positive Her2/neu, except triglyceride. It was concluded that there was a positive associations between CA15-3 and CEA as well as between CA

  9. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  10. Recombination epoch revisited

    International Nuclear Information System (INIS)

    Krolik, J.H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons. 18 references

  11. Dielectronic recombination theory

    International Nuclear Information System (INIS)

    LaGattuta, K.J.

    1991-01-01

    A theory now in wide use for the calculation of dielectronic recombination cross sections (σ DR ) and rate coefficients (α DR ) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of σ DR have been described by Fano and by Seaton. We will not consider those theories here. Calculations of α DR have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of σ DR . While the measurements of σ DR for δn ≠ 0 excitations have tended to agree very well with calculations, the case of δn = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain

  12. Radiation-induced VEGF-C expression and endothelial cell proliferation in lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Hsuan [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Pan, Shiow-Lin; Wang, Jing-Chi; Teng, Che-Ming [National Taiwan University, Pharmacological Institute, College of Medicine, Taipei (China); Kuo, Sung-Hsin [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Department of Internal Medicine, Taipei (China); Cheng, Jason Chia-Hsien [National Taiwan University Hospital, Department of Oncology, Taipei (China); National Taiwan University College of Medicine, Graduate Institute of Clinical Medicine, Taipei (China)

    2014-12-15

    The present study was undertaken to investigate whether radiation induces the expression of vascular endothelial growth factor C (VEGF-C) through activation of the PI3K/Akt/mTOR pathway,subsequently affecting endothelial cells. Radiotherapy-induced tumor micro-lymphatic vessel density (MLVD) was determined in a lung cancer xenograft model established in SCID mice. The protein expression and phosphorylation of members of the PI3K/Akt/mTOR pathway and VEGF-C secretion and mRNA expression in irradiated lung cancer cells were assessed by Western blot analysis, enzyme-linked immunosorbent assays (ELISAs), and reverse transcriptase-polymerase chain reaction (RT-PCR). Moreover, specific chemical inhibitors were used to evaluate the role of the PI3K/Akt/mTOR signaling pathway. Conditioned medium (CM) from irradiated control-siRNA or VEGF-C-siRNA-expressing A549 cells was used to evaluate the proliferation of endothelial cells by the MTT assay. Radiation increased VEGF-C expression in a dose-dependent manner over time at the protein but not at the mRNA level. Radiation also up-regulated the phosphorylation of Akt, mTOR, 4EBP, and eIF4E, but not of p70S6K. Radiation-induced VEGF-C expression was down-regulated by LY294002 and rapamycin (both p < 0.05). Furthermore, CM from irradiated A549 cells enhanced human umbilical vein endothelial cell (HUVEC) and lymphatic endothelial cell (LEC) proliferation, which was not observed with CM from irradiated VEGF-C-siRNA-expressing A549 cells. Radiation-induced activation of the PI3K/Akt/mTOR signaling pathway increases VEGF-C expression in lung cancer cells, thereby promoting endothelial cell proliferation. (orig.) [German] Die vorliegende Studie untersucht, ob die Strahlung die Expression von VEGF-C (vascular endothelial growth factor C) mittels Aktivierung des PI3K/Akt/mTOR-Signalwegs induziert und anschliessend die endothelialen Zellen beeinflusst. Die durch Strahlentherapie induzierte Mikrolymphgefaessdichte (MLVD) im Tumor wurde in

  13. The growth and aggressive behavior of human osteosarcoma is regulated by a CaMKII-controlled autocrine VEGF signaling mechanism.

    Science.gov (United States)

    Daft, Paul G; Yang, Yang; Napierala, Dobrawa; Zayzafoon, Majd

    2015-01-01

    Osteosarcoma (OS) is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF) plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII) protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50%) and protein secretion (55%), while α- CaMKII overexpression increases VEGF gene expression (250%) and protein secretion (1,200%). We show that aggressive OS cells (143B) express high levels of VEGF receptor 2 (VEGFR-2) and respond to exogenous VEGF (100nm) by increasing intracellular calcium (30%). This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor) and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.

  14. The growth and aggressive behavior of human osteosarcoma is regulated by a CaMKII-controlled autocrine VEGF signaling mechanism.

    Directory of Open Access Journals (Sweden)

    Paul G Daft

    Full Text Available Osteosarcoma (OS is a hyperproliferative malignant tumor that requires a high vascular density to maintain its large volume. Vascular Endothelial Growth Factor (VEGF plays a crucial role in angiogenesis and acts as a paracrine and autocrine agent affecting both endothelial and tumor cells. The alpha-Ca2+/Calmodulin kinase two (α-CaMKII protein is an important regulator of OS growth. Here, we investigate the role of α-CaMKII-induced VEGF in the growth and tumorigenicity of OS. We show that the pharmacologic and genetic inhibition of α-CaMKII results in decreases in VEGF gene expression (50% and protein secretion (55%, while α- CaMKII overexpression increases VEGF gene expression (250% and protein secretion (1,200%. We show that aggressive OS cells (143B express high levels of VEGF receptor 2 (VEGFR-2 and respond to exogenous VEGF (100nm by increasing intracellular calcium (30%. This response is ameliorated by the VEGFR inhibitor CBO-P11, suggesting that secreted VEGF results in autocrine stimulated α-CaMKII activation. Furthermore, we show that VEGF and α-CaMKII inhibition decreases the transactivation of the HIF-1α and AP-1 reporter constructs. Additionally, chromatin immunoprecipitation assay shows significantly decreased binding of HIF-1α and AP-1 to their responsive elements in the VEGF promoter. These data suggest that α-CaMKII regulates VEGF transcription by controlling HIF-1α and AP-1 transcriptional activities. Finally, CBO-P11, KN-93 (CaMKII inhibitor and combination therapy significantly reduced tumor burden in vivo. Our results suggest that VEGF-induced OS tumor growth is controlled by CaMKII and dual therapy by CaMKII and VEGF inhibitors could be a promising therapy against this devastating adolescent disease.

  15. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    International Nuclear Information System (INIS)

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-01-01

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF 165 stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF 165 -induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF 165 . Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: ► We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. ► VEGF 165 stimulated proliferation of human DP cells in a dose-dependent manner. ► This stimulation was through VEGFR-2-mediated activation of ERK.

  16. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres.

    Science.gov (United States)

    Li, Liqun; Pan, Shengsheng; Ni, Binting; Lin, Yuanshao

    2014-08-01

    Early neovascularization is important for autologous fat transplant survival. SVF cells are ideal seed cells. Both vascular endothelial growth factor (VEGF) and SVF cells can promote neovascularization. However, the half-life (about 50 min) of VEGF is too short to sustain an adequate local concentration. We have investigated whether VEGF-polylactic acid (PLA) nano-sustained release microspheres plus SVF cells can improve neovascularization and survival of transplanted fat tissues. SVF cells were harvested and constructed VEGF-PLA nano-sustained release microspheres in vitro. Human fat tissues was mixed with SVF cells plus VEGF-PLA, SVF cells alone or Dulbecco's modified Eagle's medium as the control. These three mixtures were injected into random sites in 18 nude mice. Two months later, the transplants were weighed and examined histologically; and capillaries were counted to quantify neovascularization. Hematoxylin-eosin (HE) and anti-VEGF stains were applied to reveal cell infiltration. The mean wet weight of fat in the SVF plus VEGF-PLA, SVF alone, and control transplants were 0.18 ± 0.013 g, 0.16 ± 0.015 g, and 0.071 ± 0.12 g, respectively; the differences between groups were statistically significant. More vessels were present in the SVF plus VEGF-PLA transplants than in the other two types. Transplants mixed with SVF cells also had an acceptable density of capillaries. Histological analysis revealed that both the SVF plus VEGF-PLA and SVF alone transplants, but not the control transplants, were composed of adipose tissue, and had less fat necrosis and less fibrosis than control specimens. SVF plus VEGF-PLA transplants had significantly greater capillary density and VEGF expression than the other two transplant groups. Thus transplanted fat tissue survival and quality can be enhanced by the addition of VEGF-PLA nano-sustained release microspheres plus SVF cells. © 2014 International Federation for Cell Biology.

  17. Clinical significance of determination of changes of serum CA125, VEGF levels after treatment in patients with endometriosis

    International Nuclear Information System (INIS)

    Dong Yan; Zhou Dongxia

    2008-01-01

    Objective: To explore the significance of changes of serum CA125, VEGF levels after treatment in patients with endometriosis. Methods: Serum CA125 (with RIA) and VEGF (with ELISA) levels were determined in 36 patients with endometriosis both before and after treatment as well as in 30 controls. Results: Before treatment, the serum CA125, VEGF levels in the patients were significantly higher than those in the controls (P<0.01). After 3 months of treatment, the levels dropped markedly, but still remained significantly higher(P<0.05). Conclusion: Serum levels of CA125 and VEGF were closely related to the disease process in patients with ehdometriosis. (authors)

  18. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.

    Science.gov (United States)

    Wang, Li-Hong; Lin, Chih-Yang; Liu, Shih-Chia; Liu, Guan-Ting; Chen, Yen-Ling; Chen, Jih-Jung; Chan, Chia-Han; Lin, Ting-Yi; Chen, Chi-Kuan; Xu, Guo-Hong; Chen, Shiou-Sheng; Tang, Chih-Hsin; Wang, Shih-Wei

    2016-06-14

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the major lymphangiogenic factor, and makes crucial contributions to tumor lymphangiogenesis and lymphatic metastasis. Chemokine CCL5 has been reported to facilitate angiogenesis and metastasis in chondrosarcoma. However, the effect of chemokine CCL5 on VEGF-C regulation and lymphangiogenesis in chondrosarcoma has largely remained a mystery. In this study, we showed a clinical correlation between CCL5 and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that CCL5 promoted VEGF-C expression and secretion in human chondrosarcoma cells. The conditioned medium (CM) from CCL5-overexpressed cells significantly induced tube formation of human lymphatic endothelial cells (LECs). Mechanistic investigations showed that CCL5 activated VEGF-C-dependent lymphangiogenesis by down-regulating miR-507. Moreover, inhibiting CCL5 dramatically reduced VEGF-C and lymphangiogenesis in the chondrosarcoma xenograft animal model. Collectively, we document for the first time that CCL5 induces tumor lymphangiogenesis by the induction of VEGF-C in human cancer cells. Our present study reveals miR-507/VEGF-C signaling as a novel mechanism in CCL5-mediated tumor lymphangiogenesis. Targeting both CCL5 and VEGF-C pathways might serve as the potential therapeutic strategy to block cancer progression and metastasis in chondrosarcoma.

  19. Clinical significance of determination of changes of serum TSGF and plasma VEGF levels after treatment in patients with endometriosis

    International Nuclear Information System (INIS)

    Shi Shaohong; Tian Xiaoping

    2006-01-01

    Objective: To investigate the changes of serum TSGF and plasma VEGF levels after treatment in patients with endometriosis. Methods: Serum TSGF levels were determined with ELISA mad plasma VEGF levels with biochemistry in 31 patients with endometriosis both before and after treatment as well as in 30 controls. Results: Before treatment the serum TSGF and plasma VEGF levels in patients were significantly higher than those in the controls (P 0.05). Conclusion: Development of endometriosis were closely related to the plasma levels of VEGF and serum TSGF levels. (authors)

  20. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  1. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  2. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  3. Anti-VEGF therapy in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula.

    Science.gov (United States)

    Seibel, Ira; Hager, Annette; Duncker, Tobias; Riechardt, Aline I; Nürnberg, Daniela; Klein, Julian P; Rehak, Matus; Joussen, Antonia M

    2016-04-01

    The purpose of this study was to describe the anatomical and functional outcome of vascular endothelial growth factor inhibitor (anti-VEGF) treatment in symptomatic peripheral exudative hemorrhagic chorioretinopathy (PEHCR) involving the macula. Clinical records from patients seen between 2012 and 2013 at a single academic center were reviewed to identify PEHCR patients receiving anti-VEGF therapy due to disease-associated changes involving the macula. Affected eyes were either treated with consecutive intravitreal injections of anti-VEGF or vitrectomy combined with anti-VEGF followed by pro re nata injections. The mean age of the patients was 76 years (range 70-89 years). In all nine eyes, visual acuity was reduced due to central subretinal fluid. On average, three anti-VEGF injections (range 2-5 injections) were required initially to achieve complete resolution of macular subretinal fluid. In three eyes, subretinal fluid reappeared after an average of 10 months (range 5-16 months), and an average of 2.5 anti-VEGF injections (range 2-3 injections) were necessary to attain complete resolution of macular subretinal fluid a second time. Median visual acuity at the visit before the first injection was 1.0 logMAR (range 2.1-0.4 logMAR) and increased to 0.8 logMAR (range 2-0.1 logMAR) at the last visit. Results of this study show that for cases in which PEHCR becomes symptomatic due to macular involvement, anti-VEGF treatment may have drying potential. Although vision was improved in some patients, it remained limited in cases with long-term macular involvement, precluding any definitive functional conclusion. However, we believe that the use of anti-VEGF agents should be recommended in PEHCR that threatens the macula. Due to its often self-limiting course, peripheral lesions should be closely observed. Larger studies are needed in order to provide clear evidence of the efficacy of anti-VEGF therapy in PEHCR.

  4. The expression of PEDF and VEGF in the gastric wall of prehepatic portal hypertensive rats.

    Science.gov (United States)

    Pan, Wei-Dong; Liu, Yanzhang; Lin, Nan; Xu, Ruiyun

    2011-01-01

    Upper gastrointestinal bleeding of portal hypertension cases may result from gastric mucosal lesions due to portal hypertensive gastropathy. The pathological changes in the vessels of the gastric wall are very important in the pathogenesis of portal hypertensive gastropathy. However, the mechanisms of these pathological changes are not completely understood. In this study, we examined the expression levels of PEDF and VEGF in the gastric wall in rats with prehepatic portal hypertension. Eighteen healthy Wistar rats were randomly divided into groups A and B. Group A was used to establish the prehepatic portal hypertensive model and group B to evaluate a sham surgery. The VEGF and PEDF expression in the rat gastric wall were detected by immunohistochemical staining and western blotting. VEGF and PEDF were mainly expressed in the basal layer of the mucosal glands. The expression levels of VEGF and PEDF in group A were higher than that in group B at 7, 10 and 14 days after surgery. The expression levels of VEFG and PEDF in group B did not show significant changes. The results from the present study showed a significantly elevated expression of both VEGF and PEDF in the gastric walls during the development of portal hypertension. The expression of these proteins was mainly located in the basal layer of the gastric mucosa.

  5. Deleterious effects of progestagen treatment in VEGF expression in corpora lutea of pregnant ewes.

    Science.gov (United States)

    Letelier, C A; Sanchez, M A; Garcia-Fernandez, R A; Sanchez, B; Garcia-Palencia, P; Gonzalez-Bulnes, A; Flores, J M

    2011-06-01

    The aim of the current study was to determine the possible effects of progestagen oestrous synchronization on vascular endothelial growth factor (VEGF) expression during sheep luteogenesis and the peri-implantation period and the relationship with luteal function. At days 9, 11, 13, 15, 17 and 21 of pregnancy, the ovaries from 30 progestagen treated and 30 ewes cycling after cloprostenol injection were evaluated by ultrasonography and, thereafter, collected and processed for immunohistochemical evaluation of VEGF; blood samples were drawn for evaluating plasma progesterone. The progestagen-treated group showed smaller corpora lutea than cloprostenol-treated and lower progesterone secretion. The expression of VEGF in the luteal cells increased with time in the cloprostenol group, but not in the progestagen-treated group, which even showed a decrease between days 11 and 13. In progestagen-treated sheep, VEGF expression in granulosa-derived parenchymal lobule capillaries was correlated with the size of the luteal tissue, larger corpora lutea had higher expression, and tended to have a higher progesterone secretion. In conclusion, the current study indicates the existence of deleterious effects from exogenous progestagen treatments on progesterone secretion from induced corpora lutea, which correlate with alterations in the expression of VEGF in the luteal tissue and, this, presumably in the processes of neoangiogenesis and luteogenesis. © 2010 Blackwell Verlag GmbH.

  6. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    International Nuclear Information System (INIS)

    Baek, Yi-Yong; Lee, Dong-Keon; So, Ju-Hoon; Kim, Cheol-Hee; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Won, Moo-Ho; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong

    2015-01-01

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC 50 of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases

  7. Angiogenesis in cancer of unknown primary: clinicopathological study of CD34, VEGF and TSP-1

    International Nuclear Information System (INIS)

    Karavasilis, Vasilis; Malamou-Mitsi, Vasiliki; Briasoulis, Evangelos; Tsanou, Elena; Kitsou, Evangelia; Kalofonos, Haralambos; Fountzilas, George; Fotsis, Theodore; Pavlidis, Nicholas

    2005-01-01

    Cancer of unknown primary remains a mallignancy of elusive biology and grim prognosis that lacks effective therapeutic options. We investigated angiogenesis in cancer of unknown primary to expand our knowledge on the biology of these tumors and identify potential therapeutic targets. Paraffin embedded archival material from 81 patients diagnosed with CUP was used. Tumor histology was adenocarcinoma (77%), undifferentiated carcinoma (18%) and squamous cell carcinoma (5%). The tissue expression of CD34, VEGF and TSP-1 was assessed immunohistochemically by use of specific monoclonal antibodies and was analyzed against clinicopathological data. VEGF expression was detected in all cases and was strong in 83%. Stromal expression of TSP-1 was seen in 80% of cases and was strong in 20%. The expression of both proteins was not associated with any clinical or pathological parameters. Tumor MVD was higher in tumors classified as unfavorable compared to more favorable and was positively associated with VEGF and negatively with TSP-1. Angiogenesis is very active and expression of VEGF is almost universal in cancers of unknown primary. These findings support the clinical investigation of VEGF targeted therapy in this clinical setting

  8. Determination of serum leptin and vascular endothelial growth factor (VEGF) contents in patients with breast cancer

    International Nuclear Information System (INIS)

    Huang Xudong; Jin Wentao; Pan Meizhen

    2006-01-01

    Objective: To investigate the serum expression of leptin and vascular endothelial growth factor (VEGF) in patients with breast cancer and assess its diagnostic significance. Methods: Thirty-six patients with breast cancer and thirty-one patients with benign breast disorders entered this study. Serum concentration of leptin (with RIA) and VEGF ( with ELISA) were determined in these patients before operation as well as in 56 controls. All the tested subjects were post-menopausal women. Results: The difference between the leptin levels in the controls and patients with benign breast disorders was significantly; 80 was the difference between the leptin levels in controls and patients with breast cancer. Significant difference also existed between the VEGF levels in controls and patients with cancer as well as between the levels in patients with benign breast disease and patients with cancer. Also, the serum leptin and VEGF levels in the cancerous patients with axillary metastasis were significantly higher than those in patients without metastasis. Conclusion: Serum leptin and VEGF might be taken as diagnostic tumor markers for malignanay and metastasis in patients with breast cancer. (authors)

  9. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    DEFF Research Database (Denmark)

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim

    2009-01-01

    The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO......) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein...... expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased...

  10. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections

    Directory of Open Access Journals (Sweden)

    Levin AM

    2017-01-01

    Full Text Available Ariana M Levin, Irene Rusu, Anton Orlin, Mrinali P Gupta, Peter Coombs, Donald J D’Amico, Szilárd Kiss Department of Ophthalmology, Weill Cornell Medical College, New York, NY, USA Purpose: The aim of this study is to report peripheral reperfusion of ischemic areas of the retina on ultra-widefield fluorescein angiography (UWFA following anti-vascular endothelial growth factor (VEGF intravitreal injections in patients treated for diabetic retinopathy. Methods: This study is a retrospective review of 16 eyes of 15 patients with diabetic retinopathy, who received anti-VEGF intravitreal injections and underwent pre- and postinjection UWFA. The main outcome measured was the presence of reperfusion in postinjection UWFA images in areas of the retina that demonstrated nonperfusion in preinjection images. Images were analyzed for reperfusion qualitatively and quantitatively by two graders. Results: Twelve of 16 eyes (75% or 11 of 15 patients (73.3% demonstrated reperfusion following anti-VEGF injection. On UWFA, reperfusion was detected both within the field of 7-standard field (7SF fluorescein angiography and in the periphery outside the 7SF. Four of 16 eyes or 4 of 15 patients did not demonstrate reperfusion, one of which had extensive scarring from prior panretinal photocoagulation. Conclusion: In patients with diabetic retinopathy, treatment with anti-VEGF agents can be associated with reperfusion of areas of nonperfusion, as demonstrated by UWFA. Keywords: anti-VEGF, diabetes, diabetic retinopathy, ischemia, perfusion, reperfusion

  11. Protective or pathogenic effects of vascular endothelial growth factor (VEGF) as potential biomarker in cerebral malaria.

    Science.gov (United States)

    Canavese, Miriam; Spaccapelo, Roberta

    2014-03-01

    Cerebral malaria (CM) is the major lethal complication of Plasmodium falciparum infection. It is characterized by persistent coma along with symmetrical motor signs. Several clinical, histopathological, and laboratory studies have suggested that cytoadherence of parasitized erythrocytes, neural injury by malarial toxin, and excessive inflammatory cytokine production are possible pathogenic mechanisms. Although the detailed pathophysiology of CM remains unsolved, it is thought that the binding of parasitized erythrocytes to the cerebral endothelia of microvessels, leading to their occlusion and the consequent angiogenic dysregulation play a key role in the disease pathogenesis. Recent evidences showed that vascular endothelial growth factor (VEGF) and its receptor-related molecules are over-expressed in the brain tissues of CM patients, as well as increased levels of VEGF are detectable in biologic samples from malaria patients. Whether the modulation of VEGF is causative agent of CM mortality or a specific phenotype of patients with susceptibility to fatal CM needs further evaluation. Currently, there is no biological test available to confirm the diagnosis of CM and its complications. It is hoped that development of biomarkers to identify patients and potential risk for adverse outcomes would greatly enhance better intervention and clinical management to improve the outcomes. We review and discuss here what it is currently known in regard to the role of VEGF in CM as well as VEGF as a potential biomarker.

  12. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  13. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  14. Reducing VEGF-B Signaling Ameliorates Renal Lipotoxicity and Protects against Diabetic Kidney Disease.

    Science.gov (United States)

    Falkevall, Annelie; Mehlem, Annika; Palombo, Isolde; Heller Sahlgren, Benjamin; Ebarasi, Lwaki; He, Liqun; Ytterberg, A Jimmy; Olauson, Hannes; Axelsson, Jonas; Sundelin, Birgitta; Patrakka, Jaakko; Scotney, Pierre; Nash, Andrew; Eriksson, Ulf

    2017-03-07

    Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown. Vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation through regulation of endothelial fatty acid transport. Here, we demonstrate in experimental mouse models of DKD that renal VEGF-B expression correlates with the severity of disease. Inhibiting VEGF-B signaling in DKD mouse models reduces renal lipotoxicity, re-sensitizes podocytes to insulin signaling, inhibits the development of DKD-associated pathologies, and prevents renal dysfunction. Further, we show that elevated VEGF-B levels are found in patients with DKD, suggesting that VEGF-B antagonism represents a novel approach to treat DKD. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    Science.gov (United States)

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. Copyright © 2016. Published by Elsevier B.V.

  16. The role of VEGF and KDR polymorphisms in moyamoya disease and collateral revascularization.

    Directory of Open Access Journals (Sweden)

    Young Seok Park

    Full Text Available We conducted a case-control study to investigate whether vascular endothelial growth factor (VEGF -2578, -1154, -634, and 936 and kinase insert domain containing receptor (KDR -604, 1192, and 1719 polymorphisms are associated with moyamoya disease. Korean patients with moyamoya disease (n = 107, mean age, 20.9±15.9 years; 66.4% female and 243 healthy control subjects (mean age, 23.0±16.1 years; 56.8% female were included. The subjects were divided into pediatric and adult groups. Among the 64 surgical patients, we evaluated collateral vessel formation after 2 years and divided patients into good (collateral grade A or poor (collateral grade B and C groups. The frequencies and distributions of four VEGF (-2578, -1154, -634, and 936 and KDR (-604, 1192, and 1719 polymorphisms were assessed from patients with moyamoya disease and compared to the control group. No differences were observed in VEGF -2578, -1154, -634, and 936 or KDR -604, 1192, and 1719 polymorphisms between the control group and moyamoya disease group. However, we found the -634CC genotype occurred less frequently in the pediatric moyamoya group (p = 0.040 whereas the KDR -604C/1192A/1719T haplotype increased the risk of pediatric moyamoya (p = 0.024. Patients with the CC genotype of VEGF -634 had better collateral vessel formation after surgery. Our results suggest that the VEGF -634G allele is associated with pediatric moyamoya disease and poor collateral vessel formation.

  17. Recombinant Innovation and Endogenous Transitions

    OpenAIRE

    Koen Frenken; Luis R. Izquierdo; Paolo Zeppini

    2012-01-01

    We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create “short-cuts” which reduce switching costs allowing agents to escape a technological lock-in. As a result, recombinant innovations speed up technological progress allowing transitions that are impossible with only branching ...

  18. Expression of recombinant Antibodies

    Directory of Open Access Journals (Sweden)

    André eFrenzel

    2013-07-01

    Full Text Available Recombinant antibodies are highly specific detection probes in research, diagnostics and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines and transgenic plants are promising to obtain antibodies with human-like post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  19. On the relict recombination lines

    International Nuclear Information System (INIS)

    Bershtejn, I.N.; Bernshtejn, D.N.; Dubrovich, V.K.

    1977-01-01

    Accurate numerical calculation of intensities and profiles of hydrogen recombination lines of cosmological origin is made. Relie radiation distortions stipulated by recombination quantum release at the irrevocable recombination are investigated. Mean number calculation is given for guantums educing for one irrevocably-lost electron. The account is taken of the educed quantums interraction with matter. The main quantum-matter interrraction mechanisms are considered: electronic blow broadening; free-free, free-bound, bound-bound absorptions Recombination dynamics is investigated depending on hydrogen density and total density of all the matter kinds in the Universe

  20. Using anti-VEGF monoclonal antibody and magnetic nanoparticles

    International Nuclear Information System (INIS)

    Chen Jing; Wuhua; Hang Deyan; Xie Changsheng

    2004-01-01

    Objective: To study the biodistribution of 131 I-anti-vascular endothelial growth factor (VEGF) monoclonal antibody (Sc-7269)-dextran magnetic nanoparticles (DMN) in nude mice bearing human liver cancer where an external magnetic field was focused on, and to evaluate its therapeutic effects and safety. Methods: Eighteen nude mice bearing human liver cancer where an external magnetic field was focused on, were used for the bio-distribution study after intratumoral injection (n=9) or intravenous injection (n=9) of 131 I-Sc-7269-DMN. Another 25 tumor-bearing nude mice were divided into five groups, four groups of them were treated with 74 MBq/ml 131 I-Sc-7269-DMN, 131 I-Sc-7269, 131 I-DMN and 131 I by a single intratumoral injection, respectively. And an external magnetic field was bound to the tumor of the nude mice that were injected 131 I-Sc-7269-DMN or 131 I-DMN. For control study, the remaining one group was injected with physiological saline. Tumor growth delay (TGD) and tumor inhibition rate were observed as antitumor effects. Peripheral white cell counts and the loss of body weight were tested as indicators of systemic toxicity. Results: The retention percentages of radioactivity (%ID/g) in tumors after intratumoral injection were 104.06, 101.58 and 100.96%ID/g at 4, 24 and 48 h, respectively, while in the case of intravenous injection, the %ID/g values were lower (85.33, 89.67 and 90.00%ID/g, respectively, P 131 I-Sc-7269-DMN [ (13.3 ± 3.3) d] was the longest, and tumor inhibition rate (89.0%)was the highest compared with that in other groups (P 131 I-Sc-7269-DMN-treated mice as monitored by the decrease in peripheral white cell counts and the loss of body weight. Conclusions: The radioimmunotherapy with intratumoral injection of 131 I-Sc-7269-DMN may be safe and efficient for the treatment of liver cancer. Furthermore, the radioimmunotherapy using DMN as a carrier system may be a highly potential approach in targeted treatment of other kinds of tumors

  1. Clinical procedure for colon carcinoma tissue sampling directly affects the cancer marker-capacity of VEGF family members

    International Nuclear Information System (INIS)

    Pringels, Sarah; Van Damme, Nancy; De Craene, Bram; Pattyn, Piet; Ceelen, Wim; Peeters, Marc; Grooten, Johan

    2012-01-01

    mRNA levels of members of the Vascular Endothelial Growth Factor family (VEGF-A, -B, -C, -D, Placental Growth Factor/PlGF) have been investigated as tissue-based markers of colon cancer. These studies, which used specimens obtained by surgical resection or colonoscopic biopsy, yielded contradictory results. We studied the effect of the sampling method on the marker accuracy of VEGF family members. Comparative RT-qPCR analysis was performed on healthy colon and colon carcinoma samples obtained by biopsy (n = 38) or resection (n = 39) to measure mRNA expression levels of individual VEGF family members. mRNA levels of genes encoding the eicosanoid enzymes cyclooxygenase 2 (COX2) and 5-lipoxygenase (5-LOX) and of genes encoding the hypoxia markers glucose transporter 1 (GLUT-1) and carbonic anhydrase IX (CAIX) were included as markers for cellular stress and hypoxia. Expression levels of COX2, 5-LOX, GLUT-1 and CAIX revealed the occurrence in healthy colon resection samples of hypoxic cellular stress and a concurrent increment of basal expression levels of VEGF family members. This increment abolished differential expression of VEGF-B and VEGF-C in matched carcinoma resection samples and created a surgery-induced underexpression of VEGF-D. VEGF-A and PlGF showed strong overexpression in carcinoma samples regardless of the sampling method. Sampling-induced hypoxia in resection samples but not in biopsy samples affects the marker-reliability of VEGF family members. Therefore, biopsy samples provide a more accurate report on VEGF family mRNA levels. Furthermore, this limited expression analysis proposes VEGF-A and PlGF as reliable, sampling procedure insensitive mRNA-markers for molecular diagnosis of colon cancer

  2. EG-VEGF controls placental growth and survival in normal and pathological pregnancies: case of fetal growth restriction (FGR).

    Science.gov (United States)

    Brouillet, S; Murthi, P; Hoffmann, P; Salomon, A; Sergent, F; De Mazancourt, P; Dakouane-Giudicelli, M; Dieudonné, M N; Rozenberg, P; Vaiman, D; Barbaux, S; Benharouga, M; Feige, J-J; Alfaidy, N

    2013-02-01

    Identifiable causes of fetal growth restriction (FGR) account for 30 % of cases, but the remainders are idiopathic and are frequently associated with placental dysfunction. We have shown that the angiogenic factor endocrine gland-derived VEGF (EG-VEGF) and its receptors, prokineticin receptor 1 (PROKR1) and 2, (1) are abundantly expressed in human placenta, (2) are up-regulated by hypoxia, (3) control trophoblast invasion, and that EG-VEGF circulating levels are the highest during the first trimester of pregnancy, the period of important placental growth. These findings suggest that EG-VEGF/PROKR1 and 2 might be involved in normal and FGR placental development. To test this hypothesis, we used placental explants, primary trophoblast cultures, and placental and serum samples collected from FGR and age-matched control women. Our results show that (1) EG-VEGF increases trophoblast proliferation ([(3)H]-thymidine incorporation and Ki67-staining) via the homeobox-gene, HLX (2) the proliferative effect involves PROKR1 but not PROKR2, (3) EG-VEGF does not affect syncytium formation (measurement of syncytin 1 and 2 and β hCG production) (4) EG-VEGF increases the vascularization of the placental villi and insures their survival, (5) EG-VEGF, PROKR1, and PROKR2 mRNA and protein levels are significantly elevated in FGR placentas, and (6) EG-VEGF circulating levels are significantly higher in FGR patients. Altogether, our results identify EG-VEGF as a new placental growth factor acting during the first trimester of pregnancy, established its mechanism of action, and provide evidence for its deregulation in FGR. We propose that EG-VEGF/PROKR1 and 2 increases occur in FGR as a compensatory mechanism to insure proper pregnancy progress.

  3. IL-6 Promotes FSH-Induced VEGF Expression Through JAK/STAT3 Signaling Pathway in Bovine Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Meng Yang

    2017-11-01

    Full Text Available Background/Aims: Vascular endothelial growth factor (VEGF has been demonstrated to play a pivotal role in the regulation of angiogenesis in ovarian follicular development, particularly during the preovulatory period. Although numerous studies have shown that interleukin-6 (IL-6 is one of the major inducing factors that regulate the expression of VEGF in non-ovarian cells, whether it involved in regulating the expression of VEGF in normal ovarian granulosa cells is still unknown. The aim of this study was to elucidate the mechanisms underlying the effect of IL-6 on FSH-induced VEGF expression in bovine granulosa cells derived from large follicles. Methods: VEGF mRNA expression in granulosa cells after IL-6 with/without inhibitors treatment was analyzed by RT-qPCR. Phosphorylation levels of ERK1/2 and STAT3 proteins induced by IL-6 were analyzed by western blotting. The protein levels produced by granulosa cells were detected by ELISA. Results: High concentration of IL-6 (10ng/ml can significantly up-regulate FSH-induced VEGF gene and protein expression levels in granulosa cells, and also promote the VEGF upstream regulators HIF-1α and COX2 mRNA expression. VEGF expression levels were significantly decreased after specifically blocking HIF-1α and COX2 by using inhibitors. The up-regulation effect of IL-6 on FSH-induced VEGF expression in granulosa cells mainly through activating the JAK/STAT3 signaling pathway, which can be impaired by JAK inhibitors. Conclusion: IL-6 can promote FSH-induced VEGF expression in granulosa cells, which is mainly achieved by increasing the expression of HIF-1α and COX2.This promoting effect is mediated by activating the JAK/STAT3 pathway. Moreover, there may be a synergistic relationship between FSH and IL-6 in the regulation of VEGF expression.

  4. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF

    DEFF Research Database (Denmark)

    Buttenschøn, Henriette Nørmølle; Demontis, Ditte; Ollendorff, Mathias Kaas

    2015-01-01

    measured by immunoassay, and potential determinants of the serum sortilin level were assessed by generalized linear models. Serum levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) were measured in previous studies. We identified a significant increase of serum...... sortilin levels in depressed individuals compared with controls (P = 0.0002) and significant positive correlation between serum sortilin levels and the corresponding levels of BDNF and VEGF. None of the genotyped SNPs were associated with depression. Additional analyses showed that the serum sortilin level...... was influenced by several other factors. Alcohol intake and body mass index, as well as depression, serum BDNF and serum VEGF were identified as predictors of serum sortilin levels in our final multivariate model. In conclusion, the results suggest a role of circulating sortilin in depression which may relate...

  5. Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer.

    Science.gov (United States)

    Semkina, Alevtina S; Abakumov, Maxim A; Skorikov, Alexander S; Abakumova, Tatiana O; Melnikov, Pavel A; Grinenko, Nadejda F; Cherepanov, Sergey A; Vishnevskiy, Daniil A; Naumenko, Victor A; Ionova, Klavdiya P; Majouga, Alexander G; Chekhonin, Vladimir P

    2018-05-03

    In presented paper we have developed new system for cancer theranostics based on vascular endothelial growth factor (VEGF) targeted magnetic nanoparticles. Conjugation of anti-VEGF antibodies with bovine serum albumin coated PEGylated magnetic nanoparticles allows for improved binding with murine breast adenocarcinoma 4T1 cell line and facilitates doxorubicin delivery to tumor cells. It was shown that intravenous injection of doxorubicin loaded VEGF targeted nanoparticles increases median survival rate of mice bearing 4T1 tumors up to 50%. On the other hand magnetic resonance imaging (MRI) of 4T1 tumors 24 h after intravenous injection showed accumulation of nanoparticles in tumors, thus allowing simultaneous cancer therapy and diagnostics. Copyright © 2018. Published by Elsevier Inc.

  6. Cellular and molecular aspects of diabetic nephropathy; the role of VEGF-A.

    Science.gov (United States)

    Carranza, Katherine; Veron, Dolores; Cercado, Alicia; Bautista, Noemi; Pozo, Wilson; Tufro, Alda; Veron, Delma

    2015-01-01

    The prevalence of diabetes mellitus increased during the last century and it is estimated that 45% of the patients are not diagnosed. In South America the prevalence of diabetes and chronic kidney disease (CKD) increased, with a great disparity among the countries with respect to access to dialysis. In Ecuador it is one of the main causes of mortality, principally in the provinces located on the coast of the Pacific Ocean. The greatest single cause of beginning dialysis is diabetic nephropathy (DN). Even using the best therapeutic options for DN, the residual risk of proteinuria and of terminal CKD remains high. In this review we indicate the importance of the problem globally and in our region. We analyse relevant cellular and molecular studies that illustrate the crucial significance of glomerular events in DN development and evolution and in insulin resistance. We include basic anatomical, pathophysiological and clinical concepts, with special attention to the role of angiogenic factors such as the vascular endothelial growth factor (VEGF-A) and their relationship to the insulin receptor, endothelial isoform of nitric oxide synthase (eNOS) and angiopoietins. We also propose various pathways that have therapeutic potential in our opinion. Greater in-depth study of VEGF-A and angiopoietins, the state of glomerular VEGF resistance, the relationship of VEGF receptor 2/nephrin, VEGF/insulin receptors/nephrin and the relationship of VEGF/eNOS-NO at glomerular level could provide solutions to the pressing world problem of DN and generate new treatment alternatives. Copyright © 2015. Published by Elsevier España, S.L.U.

  7. Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFβ1-induced macrophages

    International Nuclear Information System (INIS)

    Machado, Camila Maria Longo; Andrade, Luciana Nogueira Sousa; Teixeira, Verônica Rodrigues; Costa, Fabrício Falconi; Melo, Camila Morais; Santos, Sofia Nascimento dos; Nonogaki, Suely; Liu, Fu-Tong; Bernardes, Emerson Soares; Camargo, Anamaria Aranha; Chammas, Roger

    2014-01-01

    In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFβ1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68 + -cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68 + cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFβ1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFβ1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFβ1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFβ1 signaling pathways

  8. Changes in VEGF expression and DNA synthesis in hepatocytes from hepatectomized and tumour-bearing mice.

    Science.gov (United States)

    García, Marcela N; Andrini, Laura B; Inda, Ana María; Ronderos, Jorge R; Hijano, Julio C; Errecalde, Ana Lía

    2010-02-05

    Transplanted tumours could modify the intensity and temporal distribution of the cellular proliferation in normal cell populations, and partial hepatectomy alters the serum concentrations of substances involved in cellular proliferation, leading to the compensatory liver hyperplasia. The following experiments were designed in order to study the SI (S-phase index) and VEGF (vascular endothelial growth factor) expression in regenerating liver (after partial hepatectomy) of adult male mice bearing a hepatocellular carcinoma, throughout one complete circadian cycle. We used adult male C3H/S-strain mice. After an appropriate period of synchronization, the C3H/S-histocompatible ES2a hepatocellular carcinoma was grafted into the subcutaneous tissue of each animal's flank. To determine the index of SI and VEGF expression of hepatocytes, we used immunohistochemistry. The animals were divided into two experimental groups: Group I, control, hepatectomized animals; Group II, hepatectomized tumour-bearing animals. The statistical analysis of SI and VEGF expression was performed using Anova and Tukey as a postcomparison test. The results show that in the second group, the curve of SI changes the time points for maximum and minimum activity, and the peak of VEGF expression appears before the first group. In conclusion, in the hepatectomized mice, the increases of hepatic proliferation, measured by the SI index, may produce a rise in VEGF expression with the object of generating a vascular network for hepatic regeneration. Lastly, as we have mentioned, in hepatectomized and tumour-bearing mice, the peak of VEGF expression appears before the one of DNA synthesis.

  9. Association of mast cell-derived VEGF and proteases in Dengue shock syndrome.

    Directory of Open Access Journals (Sweden)

    Takahisa Furuta

    Full Text Available BACKGROUND: Recent in-vitro studies have suggested that mast cells are involved in Dengue virus infection. To clarify the role of mast cells in the development of clinical Dengue fever, we compared the plasma levels of several mast cell-derived mediators (vascular endothelial cell growth factor [VEGF], soluble VEGF receptors [sVEGFRs], tryptase, and chymase and -related cytokines (IL-4, -9, and -17 between patients with differing severity of Dengue fever and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: The study was performed at Children's Hospital No. 2, Ho Chi Minh City, and Vinh Long Province Hospital, Vietnam from 2002 to 2005. Study patients included 103 with Dengue fever (DF, Dengue hemorrhagic fever (DHF, and Dengue shock syndrome (DSS, as diagnosed by the World Health Organization criteria. There were 189 healthy subjects, and 19 febrile illness patients of the same Kinh ethnicity. The levels of mast cell-derived mediators and -related cytokines in plasma were measured by ELISA. VEGF and sVEGFR-1 levels were significantly increased in DHF and DSS compared with those of DF and controls, whereas sVEGFR-2 levels were significantly decreased in DHF and DSS. Significant increases in tryptase and chymase levels, which were accompanied by high IL-9 and -17 concentrations, were detected in DHF and DSS patients. By day 4 of admission, VEGF, sVEGFRs, and proteases levels had returned to similar levels as DF and controls. In-vitro VEGF production by mast cells was examined in KU812 and HMC-1 cells, and was found to be highest when the cells were inoculated with Dengue virus and human Dengue virus-immune serum in the presence of IL-9. CONCLUSIONS: As mast cells are an important source of VEGF, tryptase, and chymase, our findings suggest that mast cell activation and mast cell-derived mediators participate in the development of DHF. The two proteases, particularly chymase, might serve as good predictive markers of Dengue disease severity.

  10. The impact of KRAS mutations on VEGF-A production and tumour vascular network

    International Nuclear Information System (INIS)

    Figueras, Agnès; Arbos, Maria Antonia; Quiles, Maria Teresa; Viñals, Francesc; Germà, Josep Ramón; Capellà, Gabriel

    2013-01-01

    The malignant potential of tumour cells may be influenced by the molecular nature of KRAS mutations being codon 13 mutations less aggressive than codon 12 ones. Their metabolic profile is also different, with an increased anaerobic glycolytic metabolism in cells harbouring codon 12 KRAS mutations compared with cells containing codon 13 mutations. We hypothesized that this distinct metabolic behaviour could be associated with different HIF-1α expression and a distinct angiogenic profile. Codon13 KRAS mutation (ASP13) or codon12 KRAS mutation (CYS12) NIH3T3 transfectants were analyzed in vitro and in vivo. Expression of HIF-1α, and VEGF-A was studied at RNA and protein levels. Regulation of VEGF-A promoter activity was assessed by means of luciferase assays using different plasmid constructs. Vascular network was assessed in tumors growing after subcutaneous inoculation. Non parametric statistics were used for analysis of results. Our results show that in normoxic conditions ASP13 transfectants exhibited less HIF-1α protein levels and activity than CYS12. In contrast, codon 13 transfectants exhibited higher VEGF-A mRNA and protein levels and enhanced VEGF-A promoter activity. These differences were due to a differential activation of Sp1/AP2 transcription elements of the VEGF-A promoter associated with increased ERKs signalling in ASP13 transfectants. Subcutaneous CYS12 tumours expressed less VEGF-A and showed a higher microvessel density (MVD) than ASP13 tumours. In contrast, prominent vessels were only observed in the latter. Subtle changes in the molecular nature of KRAS oncogene activating mutations occurring in tumour cells have a major impact on the vascular strategy devised providing with new insights on the role of KRAS mutations on angiogenesis

  11. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes.

    Science.gov (United States)

    Hagberg, Carolina E; Mehlem, Annika; Falkevall, Annelie; Muhl, Lars; Fam, Barbara C; Ortsäter, Henrik; Scotney, Pierre; Nyqvist, Daniel; Samén, Erik; Lu, Li; Stone-Elander, Sharon; Proietto, Joseph; Andrikopoulos, Sofianos; Sjöholm, Ake; Nash, Andrew; Eriksson, Ulf

    2012-10-18

    The prevalence of type 2 diabetes is rapidly increasing, with severe socioeconomic impacts. Excess lipid deposition in peripheral tissues impairs insulin sensitivity and glucose uptake, and has been proposed to contribute to the pathology of type 2 diabetes. However, few treatment options exist that directly target ectopic lipid accumulation. Recently it was found that vascular endothelial growth factor B (VEGF-B) controls endothelial uptake and transport of fatty acids in heart and skeletal muscle. Here we show that decreased VEGF-B signalling in rodent models of type 2 diabetes restores insulin sensitivity and improves glucose tolerance. Genetic deletion of Vegfb in diabetic db/db mice prevented ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycaemia. Pharmacological inhibition of VEGF-B signalling by antibody administration to db/db mice enhanced glucose tolerance, preserved pancreatic islet architecture, improved β-cell function and ameliorated dyslipidaemia, key elements of type 2 diabetes and the metabolic syndrome. The potential use of VEGF-B neutralization in type 2 diabetes was further elucidated in rats fed a high-fat diet, in which it normalized insulin sensitivity and increased glucose uptake in skeletal muscle and heart. Our results demonstrate that the vascular endothelium can function as an efficient barrier to excess muscle lipid uptake even under conditions of severe obesity and type 2 diabetes, and that this barrier can be maintained by inhibition of VEGF-B signalling. We propose VEGF-B antagonism as a novel pharmacological approach for type 2 diabetes, targeting the lipid-transport properties of the endothelium to improve muscle insulin sensitivity and glucose disposal.

  12. Dissociative recombination of dications

    International Nuclear Information System (INIS)

    Seiersen, K.; Heber, O.; Jensen, M.J.; Safvan, C.P.; Andersen, L. H.

    2003-01-01

    Dissociative recombination (DR) of doubly-charged positive ions has been studied at the heavy ion storage ring ASTRID. Low-energy electrons were scattered on the dication of the N 2 molecule, and the absolute cross section was measured in the energy range of 10 -4 -50 eV. From the measured cross section, a thermal rate coefficient of 5.8x10 -7 cm 3 s -1 at 300 K was extracted. Furthermore, we present new results on the CO 2+ DR rate, and a summary and comparison of measured DR rate coefficients for both the singly and doubly-charged ions of CO, CO 2 , and N 2 is presented

  13. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as w...

  14. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  15. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration

    International Nuclear Information System (INIS)

    Xiao Caiwen; Zhou Huifang; Fu Yao; Gu Ping; Fan Xianqun; Liu Guangpeng; Zhang Peng; Hou Hongliang; Tang Tingting

    2011-01-01

    Bone graft substitutes with osteogenic factors alone often exhibit poor bone regeneration due to inadequate vascularization. Combined delivery of osteogenic and angiogenic factors from biodegradable scaffolds may enhance bone regeneration. We evaluated the effects of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor (VEGF), combined with natural coral scaffolds, on the repair of critical-sized bone defects in rabbit orbits. In vitro expanded rabbit bone marrow stromal cells (BMSCs) were transfected with human BMP2 and VEGF165 genes. Target protein expression and osteogenic differentiation were confirmed after gene transduction. Rabbit orbital defects were treated with a coral scaffold loaded with BMP2-transduced and VEGF-transduced BMSCs, BMP2-expressing BMSCs, VEGF-expressing BMSCs, or BMSCs without gene transduction. Volume and density of regenerated bone were determined by micro-computed tomography at 4, 8, and 16 weeks after implantation. Neovascularity, new bone deposition rate, and new bone formation were measured by immunostaining, tetracycline and calcein labelling, and histomorphometric analysis at different time points. The results showed that VEGF increased blood vessel formation relative to groups without VEGF. Combined delivery of BMP2 and VEGF increased new bone deposition and formation, compared with any single factor. These findings indicate that mimicking the natural bone development process by combined BMP2 and VEGF delivery improves healing of critical-sized orbital defects in rabbits.

  16. VEGF system expression by immunohistochemistry and real-time RT-PCR study on collared peccary placenta

    DEFF Research Database (Denmark)

    Santos, Tatiana C.; Oliveira, Moacir F.; Papa, Paula C.

    2014-01-01

    Vascular endothelial growth factor (VEGF) is known to induce endothelial cell proliferation, to promote cell migration, and to inhibit apoptosis, thus playing a central role in angiogenesis and in the regulation of vasculogenesis. The expression of the VEGF-ligand receptor system was studied in t...

  17. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  18. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model.

    Science.gov (United States)

    Jin, Dong; Yu, Xin; Chen, Bing; Li, Zhitao; Ding, Jia; Zhao, Xiuyun; Qi, Gaofu

    2017-06-01

    Development of EGF and VEGF vaccines with high antigenicity for combined immunotherapy of EGF-EGFR signaling-dependent epithelial tumors such as breast cancer. EGF genes from mouse, human and chicken were randomly assembled to chimeric genes by DNA shuffling, then a chimeric EGF was selected out by PCR, SDS-PAGE and immunization for combined immunotherapy of breast cancer with a previously constructed chimeric VEGF vaccine from shuffling. Combined vaccination with chimeric EGF and VEGF from shuffling could induce high titer of antibodies against EGF and VEGF to inhibit tumor growth and angiogenesis, and improve the survival rate of mice with breast cancer. Combined vaccination with EGF and VEGF from shuffling showed better immunotherapy on EGF-EGFR signaling-dependent epithelial tumors such as breast cancer than the single-agent EGF vaccination.

  19. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance.

    Science.gov (United States)

    Hamdollah Zadeh, Maryam A; Amin, Elianna M; Hoareau-Aveilla, Coralie; Domingo, Enric; Symonds, Kirsty E; Ye, Xi; Heesom, Katherine J; Salmon, Andrew; D'Silva, Olivia; Betteridge, Kai B; Williams, Ann C; Kerr, David J; Salmon, Andrew H J; Oltean, Sebastian; Midgley, Rachel S; Ladomery, Michael R; Harper, Steven J; Varey, Alexander H R; Bates, David O

    2015-01-01

    The angiogenic capability of colorectal carcinomas (CRC), and their susceptibility to anti-angiogenic therapy, is determined by expression of vascular endothelial growth factor (VEGF) isoforms. The intracellular protein T-cell Intracellular Antigen (TIA-1) alters post-transcriptional RNA processing and binds VEGF-A mRNA. We therefore tested the hypothesis that TIA-1 could regulate VEGF-A isoform expression in colorectal cancers. TIA-1 and VEGF-A isoform expression was measured in colorectal cancers and cell lines. We discovered that an endogenous splice variant of TIA-1 encoding a truncated protein, short TIA-1 (sTIA-1) was expressed in CRC tissues and invasive K-Ras mutant colon cancer cells and tissues but not in adenoma cell lines. sTIA-1 was more highly expressed in CRC than in normal tissues and increased with tumour stage. Knockdown of sTIA-1 or over-expression of full length TIA-1 (flTIA-1) induced expression of the anti-angiogenic VEGF isoform VEGF-A165b. Whereas flTIA-1 selectively bound VEGF-A165 mRNA and increased translation of VEGF-A165b, sTIA-1 prevented this binding. In nude mice, xenografted colon cancer cells over-expressing flTIA-1 formed smaller, less vascular tumours than those expressing sTIA-1, but flTIA-1 expression inhibited the effect of anti-VEGF antibodies. These results indicate that alternative splicing of an RNA binding protein can regulate isoform specific expression of VEGF providing an added layer of complexity to the angiogenic profile of colorectal cancer and their resistance to anti-angiogenic therapy. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Endocrine gland-derived endothelial growth factor (EG-VEGF) is a potential novel regulator of human parturition.

    Science.gov (United States)

    Dunand, C; Hoffmann, P; Sapin, V; Blanchon, L; Salomon, A; Sergent, F; Benharouga, M; Sabra, S; Guibourdenche, J; Lye, S J; Feige, J J; Alfaidy, N

    2014-09-01

    EG-VEGF is an angiogenic factor that we identified as a new placental growth factor during human pregnancy. EG-VEGF is also expressed in the mouse fetal membrane (FM) by the end of gestation, suggesting a local role for this protein in the mechanism of parturition. However, injection of EG-VEGF to gravid mice did not induce labor, suggesting a different role for EG-VEGF in parturition. Here, we searched for its role in the FM in relation to human parturition. Human pregnant sera and total FM, chorion, and amnion were collected during the second and third trimesters from preterm no labor, term no labor, and term labor patients. Primary human chorion trophoblast and FM explants cultures were also used. We demonstrate that circulating EG-VEGF increased toward term and significantly decreased at the time of labor. EG-VEGF production was higher in the FM compared to placentas matched for gestational age. Within the FM, the chorion was the main source of EG-VEGF. EG-VEGF receptors, PROKR1 and PROKR2, were differentially expressed within the FM with increased expression toward term and an abrupt decrease with the onset of labor. In chorion trophoblast and FM explants collected from nonlaboring patients, EG-VEGF decreased metalloproteinase-2 and -9 activities and increased PGDH (prostaglandin-metabolizing enzyme) expression. Altogether these data demonstrate that EG-VEGF is a new cytokine that acts locally to ensure FM protection in late pregnancy. Its fine contribution to the initiation of human labor is exhibited by the abrupt decrease in its levels as well as a reduction in its receptors. © 2014 by the Society for the Study of Reproduction, Inc.

  1. Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors.

    Science.gov (United States)

    Brouillet, S; Hoffmann, P; Chauvet, S; Salomon, A; Chamboredon, S; Sergent, F; Benharouga, M; Feige, J J; Alfaidy, N

    2012-05-01

    Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor reported to be specific for endocrine tissues, including the placenta. Its biological activity is mediated via two G protein-coupled receptors, prokineticin receptor 1 (PROKR1) and prokineticin receptor 2 (PROKR2). We have recently shown that (i) EG-VEGF expression peaks between the 8th and 11th weeks of gestation, (ii) its mRNA and protein levels are up-regulated by hypoxia, (iii) EG-VEGF is a negative regulator of trophoblast invasion and (iv) its circulating levels are increased in preeclampsia (PE), the most threatening pathology of pregnancy. Here, we investigated the regulation of the expression of EG-VEGF and its receptors by hCG, a key pregnancy hormone that is also deregulated in PE. During the first trimester of pregnancy, hCG and EG-VEGF exhibit the same pattern of expression, suggesting that EG-VEGF is potentially regulated by hCG. Both placental explants (PEX) and primary cultures of trophoblasts from the first trimester of pregnancy were used to investigate this hypothesis. Our results show that (i) LHCGR, the hCG receptor, is expressed both in cyto- and syncytiotrophoblasts, (ii) hCG increases EG-VEGF, PROKR1 and PROKR2 mRNA and protein expression in a dose- and time-dependent manner, (iii) hCG increases the release of EG-VEGF from PEX conditioned media, (iv) hCG effects are transcriptional and post-transcriptional and (v) the hCG effects are mediated by cAMP via cAMP response elements present in the EG-VEGF promoter region. Altogether, these results demonstrate a new role for hCG in the regulation of EG-VEGF and its receptors, an emerging regulatory system in placental development.

  2. Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin.

    Science.gov (United States)

    Pang, Vincent; Bates, David O; Leach, Lopa

    2017-12-01

    The human placenta nourishes and protects the developing foetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the vascular endothelial growth factor (VEGF) family including the pro-angiogenic/pro-permeability VEGF-A 165 a isoform, the anti-angiogenic VEGF-A 165 b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however, the impact of this on feto-placental endothelial barrier integrity is unknown. The present study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A 165 a (50 ng/ml) increased endothelial monolayer albumin permeability ( P 0.05) or PlGF ( P >0.05) did not. Moreover, VEGF-A 165 b (100 ng/ml; P 0.05) inhibited VEGF-A 165 a-induced permeability when added singly. PlGF abolished the VEGF-A 165 b-induced reduction in VEGF-A 165 a-mediated permeability ( P >0.05); PlGF was found to compete with VEGF-A 165 b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A 165 b did not induce microvascular leakage but inhibited and reversed VEGF-A 165 a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A 165 b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A 165 a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies. © 2017 The Author(s).

  3. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chun-Hsu [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Kuo, Yueh-Hsiung, E-mail: kuoyh@mail.cmu.edu.tw [Tsuzuki Institute for Traditional Medicine, China Medical University, Taichung 40402, Taiwan (China); Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taichung 41354, Taiwan (China); Wu, Chieh-Hsi, E-mail: chhswu@tmu.edu.tw [Department of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (China); School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  4. Design of a variant of vascular endothelial growth factor-A (VEGF-A) antagonizing KDR/Flk-1 and Flt-1.

    NARCIS (Netherlands)

    Leenders, W.P.J.; Lubsen, N.H.; Altena, M.C. van; Clauss, M.; Deckers, M.; Lowik, C.W.G.M.; Breier, G.; Ruiter, D.J.; Waal, R.M.W. de

    2002-01-01

    Because of its central role in pathological angiogenesis, vascular endothelial growth factor (VEGF) has become a major target for anti-angiogenic therapies. We report here the construction of a heterodimeric antagonistic VEGF variant (HD-VEGF). In this antagonist, binding domains for the

  5. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage.

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer Mi; Doh, Kyung-Oh; Hui, Chi-Chung; Sung, Hoon-Ki

    2017-11-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders.

  6. Diagnostic value of urinary CK-20 RNA and VEGF in bladder cancer ...

    African Journals Online (AJOL)

    The present study was carried out to evaluate the diagnostic value of urinary cytokeratin 20 (CK-20) RNA and vascular endothelial growth factor (VEGF) in comparison with urine cytology in the detection of bladder cancer. This study included 80 patients with bladder cancer, 20 patients with bilharzial bladder lesions and 20 ...

  7. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage

    Science.gov (United States)

    Kim, Kyoung-Han; Kim, Yun Hye; Son, Joe Eun; Lee, Ju Hee; Kim, Sarah; Choe, Min Seon; Moon, Joon Ho; Zhong, Jian; Fu, Kiya; Lenglin, Florine; Yoo, Jeong-Ah; Bilan, Philip J; Klip, Amira; Nagy, Andras; Kim, Jae-Ryong; Park, Jin Gyoon; Hussein, Samer MI; Doh, Kyung-Oh; Hui, Chi-chung; Sung, Hoon-Ki

    2017-01-01

    Intermittent fasting (IF), a periodic energy restriction, has been shown to provide health benefits equivalent to prolonged fasting or caloric restriction. However, our understanding of the underlying mechanisms of IF-mediated metabolic benefits is limited. Here we show that isocaloric IF improves metabolic homeostasis against diet-induced obesity and metabolic dysfunction primarily through adipose thermogenesis in mice. IF-induced metabolic benefits require fasting-mediated increases of vascular endothelial growth factor (VEGF) expression in white adipose tissue (WAT). Furthermore, periodic adipose-VEGF overexpression could recapitulate the metabolic improvement of IF in non-fasted animals. Importantly, fasting and adipose-VEGF induce alternative activation of adipose macrophage, which is critical for thermogenesis. Human adipose gene analysis further revealed a positive correlation of adipose VEGF-M2 macrophage-WAT browning axis. The present study uncovers the molecular mechanism of IF-mediated metabolic benefit and suggests that isocaloric IF can be a preventive and therapeutic approach against obesity and metabolic disorders. PMID:29039412

  8. Targeting VEGF in canine oxygen-induced retinopathy - a model for human retinopathy of prematurity

    Directory of Open Access Journals (Sweden)

    McLeod DS

    2016-05-01

    Full Text Available D Scott McLeod, Gerard A Lutty Department of Ophthalmology, Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA Abstract: Development of the dog superficial retinal vasculature is similar to the mechanism of human retinal vasculature development; they both develop by vasculogenesis, differentiation, and assembly of vascular precursors called angioblasts. Canine oxygen-induced retinopathy (OIR was first developed by Arnall Patz in an effort to experimentally determine the effects of hyperoxia on the development of the retinal vasculature. The canine OIR model has many characteristics in common with human retinopathy of prematurity. Exposure of 1-day-old dogs to hyperoxia for 4 days causes a vaso-obliteration throughout the retina. Vasoproliferation, after the animals have returned to room air, is robust. The initial small preretinal neovascular formations anastomose to form large preretinal membranes that eventually cause tractional retinal folds. The end-stage pathology of the canine model is similar to stage IV human retinopathy of prematurity. Therefore, canine OIR is an excellent forum to evaluate the response to drugs targeting VEGF and its receptors. Evaluation of an antibody to VEGF-R2 and the VEGF-Trap demonstrated that doses should be titered down so that preretinal neovascularization is inhibited but retinal revascularization is able to proceed, vascularizing peripheral retina and preventing it from being a source of VEGF. Keywords: angioblasts, blood vessels, endothelial cells, oxygen, retinopathy, retina, vascular endothelial cell growth factor

  9. Canonical hedgehog signaling augments tumor angiogenesis by induction of VEGF-A in stromal perivascular cells

    Science.gov (United States)

    Chen, Weiwei; Tang, Tracy; Eastham-Anderson, Jeff; Dunlap, Debra; Alicke, Bruno; Nannini, Michelle; Gould, Stephen; Yauch, Robert; Modrusan, Zora; DuPree, Kelly J.; Darbonne, Walter C.; Plowman, Greg; de Sauvage, Frederic J.; Callahan, Christopher A.

    2011-01-01

    Hedgehog (Hh) signaling is critical to the patterning and development of a variety of organ systems, and both ligand-dependent and ligand-independent Hh pathway activation are known to promote tumorigenesis. Recent studies have shown that in tumors promoted by Hh ligands, activation occurs within the stromal microenvironment. Testing whether ligand-driven Hh signaling promotes tumor angiogenesis, we found that Hh antagonism reduced the vascular density of Hh-producing LS180 and SW480 xenografts. In addition, ectopic expression of sonic hedgehog in low-Hh–expressing DLD-1 xenografts increased tumor vascular density, augmented angiogenesis, and was associated with canonical Hh signaling within perivascular tumor stromal cells. To better understand the molecular mechanisms underlying Hh-mediated tumor angiogenesis, we established an Hh-sensitive angiogenesis coculture assay and found that fibroblast cell lines derived from a variety of human tissues were Hh responsive and promoted angiogenesis in vitro through a secreted paracrine signal(s). Affymetrix array analyses of cultured fibroblasts identified VEGF-A, hepatocyte growth factor, and PDGF-C as candidate secreted proangiogenic factors induced by Hh stimulation. Expression studies of xenografts and angiogenesis assays using combinations of Hh and VEGF-A inhibitors showed that it is primarily Hh-induced VEGF-A that promotes angiogenesis in vitro and augments tumor-derived VEGF to promote angiogenesis in vivo. PMID:21597001

  10. Angiogenic activity of bFGF and VEGF suppressed by proteolytic cleavage by neutrophil elastase

    International Nuclear Information System (INIS)

    Ai, Shingo; Cheng Xianwu; Inoue, Aiko; Nakamura, Kae; Okumura, Kenji; Iguchi, Akihisa; Murohara, Toyoaki; Kuzuya, Masafumi

    2007-01-01

    Neutrophil elastase (NE), a serine protease released from the azurophil granules of activated neutrophil, proteolytically cleaves multiple cytokines, and cell surface proteins. In the present study, we examined whether NE affects the biological abilities of angiogenic growth factors such as basic-fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). NE degraded bFGF and VEGF in a time- and concentration-dependent manner, and these degradations were suppressed by sivelestat, a synthetic inhibitor of NE. The bFGF- or VEGF-mediated proliferative activity of human umbilical vein endothelial cells was inhibited by NE, and the activity was recovered by sivelestat. Furthermore, NE reduced the bFGF- or VEGF-induced tubulogenic response of the mice aortas, ex vivo angiogenesis assay, and these effects were also recovered by sivelestat. Neutrophil-derived NE degraded potent angiogenic factors, resulting in loss of their angiogenic activity. These findings provide additional insight into the role played by neutrophils in the angiogenesis process at sites of inflammation

  11. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer.

    Science.gov (United States)

    Zang, Mingde; Hu, Lei; Zhang, Baogui; Zhu, Zhenglun; Li, Jianfang; Zhu, Zhenggang; Yan, Min; Liu, Bingya

    2017-08-26

    Gastric cancer is a great threat to the health of the people worldwide and lacks effective therapeutic regimens. Luteolin is one of Chinese herbs and presents in many fruits and green plants. In our previous study, we observed that luteolin inhibited cell migration and promoted cell apoptosis in gastric cancer. In the present study, luteolin significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) through decreasing cell migration and proliferation of HUVECs in a dose-dependent manner. Vasculogenic mimicry (VM) tubes formed by gastric cancer cells were also inhibited with luteolin treatment. To explore how luteolin inhibited tubes formation, ELISA assay for VEGF was performed. Both of the VEGF secretion from Hs-746T cells and HUVECs were significantly decreased subsequent to luteolin treatment. In addition, cell migration was increased with the interaction between gastric cancer cells and HUVECs in co-culture assays. However, the promoting effects were abolished subsequent to luteolin treatment. Furthermore, luteolin inhibited VEGF secretion through suppressing Notch1 expression in gastric cancer. Overexpression of Notch1 in gastric cancer cells partially rescued the effects on cell migration, proliferation, HUVECs tube formation, and VM formation induced by luteolin treatment. In conclusion, luteolin inhibits angiogenesis and VM formation in gastric cancer through suppressing VEGF secretion dependent on Notch1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Analysis on the relation of pterygium with VEGF,SDF-1,Ki-67,PCNA and Survivin

    Directory of Open Access Journals (Sweden)

    Ying Song

    2015-12-01

    Full Text Available AIM:To analyze and study the relation of pterygium with vascular endothelial growth factor(VEGF,stroma cell-derived factor 1(SDF-1,tumor proliferating antigen(Ki-67,proliferating cell nuclear antigen(PCNAand survivin. METHODS:Seventy-nine patients(106 eyeswith pterygium from January 2013 to May 2015 in our hospital were selected as observation group. Seventy-nine persons with normal conjunctiva during the same period were selected as control group. Then the number of positive cells and staining intensity classification of the two groups for VEGF,SDF-1,Ki-67,PCNA and survivin were compared,and the detection results of patients with different gender,stages and types were compared too. Then the relation between pterygium and those indexes were analyzed by the Logistic analysis. RESULTS:The number of positive cells and staining intensity classification of observation group for VEGF,SDF-1,Ki-67,PCNA and survivin were all higher than those of control group,and the detection results of patients with different stages and types had certain differences too(all PP>0.05. All those indexes had close relation to pterygium by the Logistic analysis. CONCLUSION:The expression of VEGF,SDF-1,Ki-67,PCNA and survivin in tissue of patients with pterygium all show abnormal state,and those indexes all have close relation to pterygium.

  13. Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation.

    Science.gov (United States)

    Yang, Binxia; Janardhanan, Rajiv; Vohra, Pawan; Greene, Eddie L; Bhattacharya, Santanu; Withers, Sarah; Roy, Bhaskar; Nieves Torres, Evelyn C; Mandrekar, Jaywant; Leof, Edward B; Mukhopadhyay, Debabrata; Misra, Sanjay

    2014-02-01

    Venous neointimal hyperplasia (VNH) causes hemodialysis vascular access failure. Here we tested whether VNH formation occurs in part due to local vessel hypoxia caused by surgical trauma to the vasa vasorum of the outflow vein at the time of arteriovenous fistula placement. Selective targeting of the adventitia of the outflow vein at the time of fistula creation was performed using a lentivirus-delivered small-hairpin RNA that inhibits VEGF-A expression. This resulted in significant increase in mean lumen vessel area, decreased media/adventitia area, and decreased constrictive remodeling with a significant increase in apoptosis (increase in caspase 3 activity and TUNEL staining) accompanied with decreased cellular proliferation and hypoxia-inducible factor-1α at the outflow vein. There was significant decrease in cells staining positive for α-smooth muscle actin (a myofibroblast marker) and VEGFR-1 expression with a decrease in MMP-2 and MMP-9. These results were confirmed in animals that were treated with humanized monoclonal antibody to VEGF-A with similar results. Since hypoxia can cause fibroblast to differentiate into myofibroblasts, we silenced VEGF-A gene expression in fibroblasts and subjected them to hypoxia. This decreased myofibroblast production, cellular proliferation, cell invasion, MMP-2 activity, and increased caspase 3. Thus, VEGF-A reduction at the time of arteriovenous fistula placement results in increased positive vascular remodeling.

  14. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections.

    Science.gov (United States)

    Levin, Ariana M; Rusu, Irene; Orlin, Anton; Gupta, Mrinali P; Coombs, Peter; D'Amico, Donald J; Kiss, Szilárd

    2017-01-01

    The aim of this study is to report peripheral reperfusion of ischemic areas of the retina on ultra-widefield fluorescein angiography (UWFA) following anti-vascular endothelial growth factor (VEGF) intravitreal injections in patients treated for diabetic retinopathy. This study is a retrospective review of 16 eyes of 15 patients with diabetic retinopathy, who received anti-VEGF intravitreal injections and underwent pre- and postinjection UWFA. The main outcome measured was the presence of reperfusion in postinjection UWFA images in areas of the retina that demonstrated nonperfusion in preinjection images. Images were analyzed for reperfusion qualitatively and quantitatively by two graders. Twelve of 16 eyes (75%) or 11 of 15 patients (73.3%) demonstrated reperfusion following anti-VEGF injection. On UWFA, reperfusion was detected both within the field of 7-standard field (7SF) fluorescein angiography and in the periphery outside the 7SF. Four of 16 eyes or 4 of 15 patients did not demonstrate reperfusion, one of which had extensive scarring from prior panretinal photocoagulation. In patients with diabetic retinopathy, treatment with anti-VEGF agents can be associated with reperfusion of areas of nonperfusion, as demonstrated by UWFA.

  15. DSGOST inhibits tumor growth by blocking VEGF/VEGFR2-activated angiogenesis.

    Science.gov (United States)

    Choi, Hyeong Sim; Lee, Kangwook; Kim, Min Kyoung; Lee, Kang Min; Shin, Yong Cheol; Cho, Sung-Gook; Ko, Seong-Gyu

    2016-04-19

    Tumor growth requires a process called angiogenesis, a new blood vessel formation from pre-existing vessels, as newly formed vessels provide tumor cells with oxygen and nutrition. Danggui-Sayuk-Ga-Osuyu-Saenggang-Tang (DSGOST), one of traditional Chinese medicines, has been widely used in treatment of vessel diseases including Raynaud's syndrome in Northeast Asian countries including China, Japan and Korea. Therefore, we hypothesized that DSGOST might inhibit tumor growth by targeting newly formed vessels on the basis of its historical prescription. Here, we demonstrate that DSGOST inhibits tumor growth by inhibiting VEGF-induced angiogenesis. DSGOST inhibited VEGF-induced angiogenic abilities of endothelial cells in vitro and in vivo, which resulted from its inhibition of VEGF/VEGFR2 interaction. Furthermore, DSGOST attenuated pancreatic tumor growth in vivo by reducing angiogenic vessel numbers, while not affecting pancreatic tumor cell viability. Thus, our data conclude that DSGOST inhibits VEGF-induced tumor angiogenesis, suggesting a new indication for DSGOST in treatment of cancer.

  16. Targeting VEGF in canine oxygen-induced retinopathy - a model for human retinopathy of prematurity.

    Science.gov (United States)

    McLeod, D Scott; Lutty, Gerard A

    2016-01-01

    Development of the dog superficial retinal vasculature is similar to the mechanism of human retinal vasculature development; they both develop by vasculogenesis, differentiation, and assembly of vascular precursors called angioblasts. Canine oxygen-induced retinopathy (OIR) was first developed by Arnall Patz in an effort to experimentally determine the effects of hyperoxia on the development of the retinal vasculature. The canine OIR model has many characteristics in common with human retinopathy of prematurity. Exposure of 1-day-old dogs to hyperoxia for 4 days causes a vaso-obliteration throughout the retina. Vasoproliferation, after the animals have returned to room air, is robust. The initial small preretinal neovascular formations anastomose to form large preretinal membranes that eventually cause tractional retinal folds. The end-stage pathology of the canine model is similar to stage IV human retinopathy of prematurity. Therefore, canine OIR is an excellent forum to evaluate the response to drugs targeting VEGF and its receptors. Evaluation of an antibody to VEGF-R2 and the VEGF-Trap demonstrated that doses should be titered down so that preretinal neovascularization is inhibited but retinal revascularization is able to proceed, vascularizing peripheral retina and preventing it from being a source of VEGF.

  17. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.

    Directory of Open Access Journals (Sweden)

    Zhong Hua

    Full Text Available MicroRNAs (miRNAs are a class of 20-24 nt non-coding RNAs that regulate gene expression primarily through post-transcriptional repression or mRNA degradation in a sequence-specific manner. The roles of miRNAs are just beginning to be understood, but the study of miRNA function has been limited by poor understanding of the general principles of gene regulation by miRNAs. Here we used CNE cells from a human nasopharyngeal carcinoma cell line as a cellular system to investigate miRNA-directed regulation of VEGF and other angiogenic factors under hypoxia, and to explore the principles of gene regulation by miRNAs. Through computational analysis, 96 miRNAs were predicted as putative regulators of VEGF. But when we analyzed the miRNA expression profile of CNE and four other VEGF-expressing cell lines, we found that only some of these miRNAs could be involved in VEGF regulation, and that VEGF may be regulated by different miRNAs that were differentially chosen from 96 putative regulatory miRNAs of VEGF in different cells. Some of these miRNAs also co-regulate other angiogenic factors (differential regulation and co-regulation principle. We also found that VEGF was regulated by multiple miRNAs using different combinations, including both coordinate and competitive interactions. The coordinate principle states that miRNAs with independent binding sites in a gene can produce coordinate action to increase the repressive effect of miRNAs on this gene. By contrast, the competitive principle states when multiple miRNAs compete with each other for a common binding site, or when a functional miRNA competes with a false positive miRNA for the same binding site, the repressive effects of miRNAs may be decreased. Through the competitive principle, false positive miRNAs, which cannot directly repress gene expression, can sometimes play a role in miRNA-mediated gene regulation. The competitive principle, differential regulation, multi-miRNA binding sites, and false

  18. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is promoted by mesenchymal stem cells through VEGF.

    Science.gov (United States)

    Zhang, Peng; Dong, Ling; Yan, Kang; Long, Hua; Yang, Tong-Tao; Dong, Ming-Qing; Zhou, Yong; Fan, Qing-Yu; Ma, Bao-An

    2013-10-01

    Chemokines and chemokine receptor 4 (CXCR4) play an important role in metastasis. CXCR4 is also expressed in the human osteosarcoma cell line 9607-F5M2 (F5M2), which has a high tumorigenic ability and potential for spontaneous pulmonary metastasis. Mesenchymal stem cells (MSCs) contribute to the formation of the tumor stroma and promote metastasis. However, mechanisms underlying the promotion of osteosarcoma growth and pulmonary metastasis by MSCs are still elusive. Our study co-injected the human MSCs and F5M2 cells into the caudal vein of nude mice. The total number of tumor nodules per lung was significantly increased in the F5M2+MSC group compared to the other groups (control, F5M2 cells alone and MSCs alone) at week six. Moreover, a high number of Dil-labeled MSCs was present also at the osteosarcoma metastasis sites in the lung. Using Transwell assays, we found that F5M2 cells migrate towards MSCs, while the CXCR4 inhibitor AMD3100 decreased the migration potential of F5M2 cells towards MSCs. Furthermore, upon treatment with F5M2-conditioned medium, MSCs expressed and secreted higher levels of VEGF as determined by immunohistochemistry, western blotting and ELISA, respectively. Importantly, co-cultured with F5M2 cells, MSCs expressed and secreted higher VEGF levels, while AMD3100 dramatically decreased the VEGF secretion by MSCs. However, CXCR4 expression on F5M2 cells was not significantly increased in the co-culture system. Additionally, VEGF increased the proliferation of both MSCs and F5M2 cells. These findings suggest that CXCR4-mediated osteosarcoma growth and pulmonary metastasis are promoted by MSCs through VEGF.

  19. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    Science.gov (United States)

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  20. In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation.

    Science.gov (United States)

    Kämpf, Michael M; Braun, Martin; Sirena, Dominique; Ihssen, Julian; Thöny-Meyer, Linda; Ren, Qun

    2015-01-23

    Glycoconjugated vaccines composed of polysaccharide antigens covalently linked to immunogenic carrier proteins have proved to belong to the most effective and safest vaccines for combating bacterial pathogens. The functional transfer of the N-glycosylation machinery from Campylobacter jejuni to the standard prokaryotic host Escherichia coli established a novel bioconjugation methodology termed bacterial glycoengineering. In this study, we report on the production of a new recombinant glycoconjugate vaccine against Shigella flexneri 2a representing the major serotype for global outbreaks of shigellosis. We demonstrate that S. flexneri 2a O-polysaccharides can be transferred to a detoxified variant of Pseudomonas aeruginosa carrier protein exotoxin A (EPA) by the C. jejuni oligosaccharyltransferase PglB, resulting in glycosylated EPA-2a. Moreover, we optimized the in vivo production of this novel vaccine by identification and quantitative analysis of critical process parameters for glycoprotein synthesis. It was found that sequential induction of oligosaccharyltransferase PglB and carrier protein EPA increased the specific productivity of EPA-2a by a factor of 1.6. Furthermore, by the addition of 10 g/L of the monosaccharide N-acetylglucosamine during induction, glycoconjugate vaccine yield was boosted up to 3.1-fold. The optimum concentration of Mg2+ ions for N-glycan transfer was determined to be 10 mM. Finally, optimized parameters were transferred to high cell density cultures with a 46-fold increase of overall yield of glycoconjugate compared to the one in initial shake flask production. The present study is the first attempt to identify stimulating parameters for improved productivity of S. flexneri 2a bioconjugates. Optimization of glycosylation efficiency will ultimately foster the transfer of lab-scale expression to a cost-effective in vivo production process for a glycoconjugate vaccine against S. flexneri 2a in E. coli. This study is an important step

  1. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  2. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  3. Gene expression patterns of vascular endothelial growth factor (VEGF-A) in human placenta from pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Szentpéteri, Imre; Rab, Attila; Kornya, László; Kovács, Péter; Joó, József Gábor

    2013-07-01

    In this study, we describe changes in gene expression pattern of vascular endothelial growth factor (VEGF)-A in human placenta obtained from pregnancies with intrauterine growth restriction using placenta from normal pregnancies as control. We compared gene expression of VEGF-A in placental samples from Intrauterine growth restriction (IUGR) pregnancies versus placenta obtained from normal pregnancies. Among potential confounders, important clinical informations were also analyzed. In the IUGR group, the VEGF-A gene was overexpressed compared to the normal pregnancy group (Ln 2(α)β-actin: 1.32; Ln 2(α)GADPH: 1.56). There was no correlation between the degree of growth restriction and VEGF-A gene expression (Ln 2(α)(0-5)percentile: 0.58; Ln 2(α)(5-10)percentile: 0.64). Within the IUGR group, there was a trend toward a positive correlation between placental VEGF-A gene activity and gestational age at delivery (Ln 2(α) 37 weeks: 1.35). Our findings suggest that the increase in placental expression of the VEGF-A gene and the resultant stimulation of angiogenesis are a response to hypoxic environment developing in the placental tissue in IUGR. Thus, it appears to be a secondary event rather than a primary factor in the development of IUGR There is a trend toward a positive correlation between gestational age and placental VEGF-A gene activity.

  4. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling.

    Science.gov (United States)

    Toivanen, Pyry I; Nieminen, Tiina; Laakkonen, Johanna P; Heikura, Tommi; Kaikkonen, Minna U; Ylä-Herttuala, Seppo

    2017-07-17

    Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A 165 and especially VEGF-A 109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.

  5. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells.

    Science.gov (United States)

    Su, Chen-Ming; Tang, Chih-Hsin; Chi, Meng-Ju; Lin, Chih-Yang; Fong, Yi-Chin; Liu, Yueh-Ching; Chen, Wei-Cheng; Wang, Shih-Wei

    2018-05-03

    Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Modulation of VEGF-induced migration and network formation by lymphatic endothelial cells: Roles of platelets and podoplanin.

    Science.gov (United States)

    Langan, Stacey A; Navarro-Núñez, Leyre; Watson, Steve P; Nash, Gerard B

    2017-07-20

    Lymphatic endothelial cells (LEC) express the transmembrane receptor podoplanin whose only known endogenous ligand CLEC-2 is found on platelets. Both podoplanin and CLEC-2 are required for normal lymphangiogenesis as mice lacking either protein develop a blood-lymphatic mixing phenotype. We investigated the roles of podoplanin and its interaction with platelets in migration and tube formation by LEC. Addition of platelets or antibody-mediated crosslinking of podoplanin inhibited LEC migration induced by vascular endothelial growth factors (VEGF-A or VEGF-C), but did not modify basal migration or the response to basic fibroblast growth factor or epidermal growth factor. In addition, platelets and podoplanin crosslinking disrupted networks of LEC formed in co-culture with fibroblasts. Depletion of podoplanin in LEC using siRNA negated the pro-migratory effect of VEGF-A and VEGF-C. Inhibition of RhoA or Rho-kinase reduced LEC migration induced by VEGF-C, but had no further effect after crosslinking of podoplanin, suggesting that podoplanin is required for signaling downstream of VEGF-receptors but upstream of RhoA. Together, these data reveal for the first time that podoplanin is an intrinsic specific regulator of VEGF-mediated migration and network formation in LEC and identify crosslinking of podoplanin by platelets or antibodies as mechanisms to modulate this pathway.

  7. Vascular endothelial growth factor (VEGF-C - a potent risk factor in children diagnosed with stadium 4 neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Bogdan Miskowiak

    2009-01-01

    Full Text Available To evaluate the immunohistochemical expression of VEGF-C, CD34 and VEGFR-2 in cancer tissue of children diagnosed with stadium 4 neuroblastoma (NB and correlate their presence with the survival rate of children diagnosed with that stage of the disease. Eighteen children assigned to stadium 4 composed the study group. Fourteen patients (allocated to stadium 3 formed a control group. VEGF-C, CD34 and VEGFR-2 expressions were evaluated by immunohistochemical assay. Consecutive slides incubated with anti-CD34 and anti-VEGFR-2 antibodies revealed that the two markers were colocalized within endothelial layer of the blood vessels. On the other hand, VEGF-C was expressed exclusively in tumour cells. As demonstrated by Fisher's exact test, the risk of NB treatment failure (progression or relapse as well as tumour related death, when all the patients were considered, was found to be significant in VEGF-C positive patients. VEGF-C expression in NB constitutes a potent risk factor and may direct future anti-angiogenic treatment strategy. The proximity of VEGF-C and CD34/VEGFR-2 of NB could be the equivalent of a potentially interesting VEGF-C fashion involving a tumour cell invasion into the blood vessels in an early phase of metastases promoting.

  8. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    Science.gov (United States)

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  9. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  10. Review of Parton Recombination Models

    International Nuclear Information System (INIS)

    Bass, Steffen A

    2006-01-01

    Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models

  11. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  12. Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head.

    Science.gov (United States)

    Liao, Hongxing; Zhong, Zhixiong; Liu, Zhanliang; Li, Liangping; Ling, Zemin; Zou, Xuenong

    2018-01-01

    The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biomimetic synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo . In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

  13. High expression of SDF-1 and VEGF is associated with poor prognosis in patients with synovial sarcomas.

    Science.gov (United States)

    Feng, Qi; Guo, Peng; Wang, Jin; Zhang, Xiaoyu; Yang, Hui-Chai; Feng, Jian-Gang

    2018-03-01

    Stromal cell-derived factor-1 (SDF-1) predicts poor clinical outcomes of certain types of cancer. Furthermore, vascular endothelial growth factor (VEGF) promotes the growth and metastasis of solid tumors. The aim of the present study was to examine the expression of SDF-1 and VEGF in patients with synovial sarcoma and to determine their expression is correlated with unfavorable outcomes. Levels of SDF-1 and VEGF proteins were evaluated in 54 patients with synovial sarcoma using immunohistochemical and immunofluorescence staining. Potential associations between the expression of SDF-1 and VEGF and various clinical parameters were analyzed using Pearson's χ 2 test and the Spearman-rho test. Additionally, univariate and multivariate Cox regression analyses were used to identify potential prognostic factors, and the Kaplan-Meier method was used to analyze the overall survival rates of patients. Low SDF-1 and VEGF expression was detected in 20.4% (11/54) and 22.2% (12/54) of patients with synovial sarcoma; moderate expression was detected in 35.2% (19/54) and 37.0% (20/54) of patients and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of patients, respectively. Levels of SDF-1 and VEGF proteins were significantly associated with histological grade (P<0.05), metastasis (P<0.05) and American Joint Committee on Cancer staging (P<0.05). In addition, levels of SDF-1 and VEGF expression were positively correlated with each other (P<0.001). Univariate analysis also indicated that VEGF expression was associated with shorter overall survival rates in (P<0.05), whereas multivariate analysis demonstrated that SDF-1 expression was associated with shorter patient survival rates (P<0.05). Finally, both SDF-1 and VEGF expression were associated with various characteristics of synovial sarcoma. Therefore, SDF-1 expression may be a potential independent prognostic indicator in patients with synovial sarcomas.

  14. Antagonism of EG-VEGF Receptors as Targeted Therapy for Choriocarcinoma Progression In Vitro and In Vivo.

    Science.gov (United States)

    Traboulsi, Wael; Sergent, Frédéric; Boufettal, Houssine; Brouillet, Sophie; Slim, Rima; Hoffmann, Pascale; Benlahfid, Mohammed; Zhou, Qun Y; Balboni, Gianfranco; Onnis, Valentina; Bolze, Pierre A; Salomon, Aude; Sauthier, Philippe; Mallet, François; Aboussaouira, Touria; Feige, Jean J; Benharouga, Mohamed; Alfaidy, Nadia

    2017-11-15

    Purpose: Choriocarcinoma (CC) is the most malignant gestational trophoblastic disease that often develops from complete hydatidiform moles (CHM). Neither the mechanism of CC development nor its progression is yet characterized. We recently identified endocrine gland-derived vascular endothelial growth factor (EG-VEGF) as a novel key placental growth factor that controls trophoblast proliferation and invasion. EG-VEGF acts via two receptors, PROKR1 and PROKR2. Here, we demonstrate that EG-VEGF receptors can be targeted for CC therapy. Experimental Design: Three approaches were used: (i) a clinical investigation comparing circulating EG-VEGF in control ( n = 20) and in distinctive CHM ( n = 38) and CC ( n = 9) cohorts, (ii) an in vitro study investigating EG-VEGF effects on the CC cell line JEG3, and (iii) an in vivo study including the development of a novel CC mouse model, through a direct injection of JEG3-luciferase into the placenta of gravid SCID-mice. Results: Both placental and circulating EG-VEGF levels were increased in CHM and CC (×5) patients. EG-VEGF increased JEG3 proliferation, migration, and invasion in two-dimensional (2D) and three-dimensional (3D) culture systems. JEG3 injection in the placenta caused CC development with large metastases compared with their injection into the uterine horn. Treatment of the animal model with EG-VEGF receptor's antagonists significantly reduced tumor development and progression and preserved pregnancy. Antibody-array and immunohistological analyses further deciphered the mechanism of the antagonist's actions. Conclusions: Our work describes a novel preclinical animal model of CC and presents evidence that EG-VEGF receptors can be targeted for CC therapy. This may provide safe and less toxic therapeutic options compared with the currently used multi-agent chemotherapies. Clin Cancer Res; 23(22); 7130-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development.

    Science.gov (United States)

    Garnier, Vanessa; Traboulsi, Wael; Salomon, Aude; Brouillet, Sophie; Fournier, Thierry; Winkler, Carine; Desvergne, Beatrice; Hoffmann, Pascale; Zhou, Qun-Yong; Congiu, Cenzo; Onnis, Valentina; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia

    2015-08-15

    PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion. Copyright © 2015 the American Physiological Society.

  16. Correlation between serum VEGF level and CT perfusion imaging in patients with primary liver cancer pre-and post TACE

    International Nuclear Information System (INIS)

    Jia Zhongzhi; Huang Yuanquan; Feng Yaoliang; Shi Haibin

    2010-01-01

    Objective: To investigate the correlation between serum vascular endothelial growth factor(VEGF) level and CT perfusion parameters in patients with primary liver cancer (PLC) pre-and post-transcatheter arterial chemoembolization (TACE) treatment. Methods: Serum VEGF level was measured and CT perfusion imaging was performed 1 day before and 6 ∼ 8, 32 ∼ 40 days after TACE in 18 patients with PLC. Before and after TACE, the serum VEGF level, the tumor's artery liver perfusion (ALP), the portal vein perfusion (PVP) and the hepatic artery perfusion index (HPI) were measured pre-and post-TACE. The pre-TACE and post-TACE results were compared and statistically analyzed. Results: Based on the therapeutic results, the patients were divided into complete response (CR) group and partial response or stable disease(PR+SD) group. Although no significant difference in serum VEGF level, tumor's ALP, PVP and HPI existed between two groups pre-TACE, there was significant difference in ALP, HPI 6-8 days after TACE (P<0.05). Significant difference in serum VEGF level also existed in CR group (P<0.05), but not in (PR+SD) group, at (32-40) days post-TACE (P=0.221). The serum VEGF level carried a positive correlation with the tumor's ALP and HPI. Conclusion: The serum VEGF level can indirectly reflect the neovascularization of the tumor, while the CTPI can directly and quantitatively reflect the hemodynamic changes of the tumor post-TACE. Moreover, a positive correlation exists between serum VEGF level and ALP, HPI. Therefore, the determination of serum VEGF level together with CTPI is very useful in both evaluating TACE efficacy and making therapeutic schedule. (authors)

  17. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  18. Micro-Raman and micro-photoluminescence study of bio-conjugated core–shell CdSe/ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Borkovska, L., E-mail: bork@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics of NASU, pr. Nauky 41, 03028 Kyiv (Ukraine); Korsunska, N.; Stara, T.; Kolomys, O.; Strelchuk, V. [V. Lashkaryov Institute of Semiconductor Physics of NASU, pr. Nauky 41, 03028 Kyiv (Ukraine); Rachkov, O. [The Institute of Molecular Biology and Genetics of NASU, Zabolotnogo Str. 150, 03680 Kyiv (Ukraine); Kryvko, A. [Instituto Politécnico Nacional – ESIME, Av. IPN, Ed. Z4, U.P.A.L.M., 07738 Mexico D.F. (Mexico)

    2014-11-15

    The micro-Raman and micro-photoluminescence spectra of non-conjugated and conjugated with antibody against S6K2 commercial CdSe/ZnS quantum dots (QDs) were investigated under different excitation wavelengths and at different temperatures. In the photoluminescence (PL) spectra, the additional PL band shifted on 0.6–0.65 eV to higher energies from the CdSe/ZnS QD exciton PL band is revealed. The relative intensity of this band is found to be several times larger in bio-conjugated QDs, than in the non-conjugated ones. The characteristics of both PL bands (the PL intensity, spectral position and half-width of the PL band) vary similarly under continuous laser light irradiation, storage of the QD samples in the atmospheric ambience as well as during the temperature change. In the Raman spectra recorded under excitation resonant with the high-energy PL band, the additional Raman peaks at about 300 cm{sup −1} and 600 cm{sup −1}, which are close to the frequency of LO and 2LO phonons of bulk CdS, are found. It is proposed that alloyed QDs with chemical composition close to CdS are responsible for the additional high-energy PL band. The possible reasons for the formation of the alloyed QDs are discussed.

  19. Maize rayado fino virus virus-like particles expressed in tobacco plants: A new platform for cysteine selective bioconjugation peptide display.

    Science.gov (United States)

    Natilla, Angela; Hammond, Rosemarie W

    2011-12-01

    Maize rayado fino virus (MRFV) virus-like-particles (VLPs) produced in tobacco plants were examined for their ability to serve as a novel platform to which a variety of peptides can be covalently displayed when expressed through a Potato virus X (PVX)-based vector. To provide an anchor for chemical modifications, three Cys-MRFV-VLPs mutants were created by substituting several of the amino acids present on the shell of the wild-type MRFV-VLPs with cysteine residues. The mutant designated Cys 2-VLPs exhibited, under native conditions, cysteine thiol reactivity in bioconjugation reactions with a fluorescent dye. In addition, this Cys 2-VLPs was cross-linked by NHS-PEG4-Maleimide to 17 (F) and 8 (HN) amino acid long peptides, corresponding to neutralizing epitopes of Newcastle disease virus (NDV). The resulting Cys 2-VLPs-F and Cys 2-VLPs-HN were recognized in Western blots by antibodies to MRFV as well as to F and HN. The results demonstrated that plant-produced MRFV-VLPs have the ability to function as a novel platform for the multivalent display of surface ligands. Published by Elsevier B.V.

  20. Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells.

    Science.gov (United States)

    Mu, Y; Kamada, H; Kaneda, Y; Yamamoto, Y; Kodaira, H; Tsunoda, S; Tsutsumi, Y; Maeda, M; Kawasaki, K; Nomizu, M; Yamada, Y; Mayumi, T

    1999-02-05

    A comb-shaped polymeric modifier, SMA [poly(styrene comaleic anhydride)], which binds to plasma albumin in blood was used to modify the synthetic cell-adhesive laminin peptide YIGSR, and its inhibitory effect on experimental lung metastasis of B16-BL6 melanoma cells was examined. YIGSR was chemically conjugated with SMA via formation of an amide bond between the N-terminal amino group of YIGSR and the carboxyl anhydride of SMA. The antimetastatic effect of SMA-conjugated YIGSR was approximately 50-fold greater than that of native YIGSR. When injected intravenously, SMA-YIGSR showed a 10-fold longer plasma half-life than native YIGSR in vivo. In addition, SMA-YIGSR had the same binding affinity to plasma albumin as SMA, while native YIGSR did not bind to albumin. These findings suggested that the enhanced antimetastatic effect of SMA-YIGSR may be due to its prolonged plasma half-life by binding to plasma albumin, and that bioconjugation of in vivo unstable peptides with SMA may facilitate their therapeutic use. Copyright 1999 Academic Press.

  1. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    International Nuclear Information System (INIS)

    Pei, Qing-Mei; Jiang, Ping; Yang, Min; Qian, Xue-Jiao; Liu, Jiang-Bo; Kim, Sung-Ho

    2016-01-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  2. Anti-VEGF antibody conjugated CdHgTe quantum dots as a fluorescent probe for imaging in living mouse

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Lili; Cui, Hongjing [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing (China); Liu, Yu [Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing (China); Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [Department of Analytical Chemistry, China Pharmaceutical University, Nanjing (China); Key laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing (China)

    2016-05-15

    The dual-function anti-VEGF antibody conjugated CdHgTe quantum dots with good targeting property was successfully prepared. In this system, anti-VEGF antibody is not only a target agent but also a therapeutic drug. The anti-VEGF antibody conjugated near-infrared quantum dots can achieve the purposes of detection and treatment at the same time. As-prepared dual-function fluorescent probe in this work has been successfully applied for in vivo and in vitro imaging, which is promising in rapid tumor detection.

  3. Design, synthesis and evaluation of VEGF-siRNA/CRS as a novel vector for gene delivery

    Directory of Open Access Journals (Sweden)

    Zhao W

    2016-11-01

    Full Text Available Wen Zhao, Yifan Zhang, Xueyun Jiang, Chunying Cui School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China Abstract: Small interfering RNA (siRNA delivery is a prospective method in gene therapy, but it has application limitations such as negative charge, water solubility and high molecular weight. In this study, a safe and efficient nano-vector, CRS, was designed and synthesized to facilitate siRNA delivery. Physical and chemical properties of VEGF-siRNA/CRS were characterized by methods including scanning electron microscopy (SEM, transmission electron microscopy, zeta potential (ζ measurement, drug-releasing rate measurement, gel electrophoresis and confocal microscopy. The biological activities were evaluated using cell viability assay, gene-silencing efficacy assay in vitro, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA and antitumor tests in vivo. The mean nanoparticle size of VEGF-siRNA/CRS was 121.4±0.3 nm with positive ζ potential of 7.69±4.47 mV. The release rate of VEGF-siRNA from VEGF-siRNA/CRS was 82.50% sustained for 48 h in Tris-ethylenediaminetetraacetic acid buffer (pH 8.0. Real-time polymerase chain reaction was used to analyze the efficiency of the transfection, and the result showed that VEGF mRNA expression had been knocked down by 82.36%. The expression of VEGF protein was also recorded to be downregulated to 14.83% using ELISA. The results of cytotoxicity measured by Cell Counting Kit-8 assay showed that VEGF-siRNA/CRS had significant inhibitory effect on HeLa cells. The results of antitumor assays indicated that VEGF-siRNA/CRS exhibited tumor cell growth inhibition in vivo. The results demonstrated that VEGF-siRNA could be delivered and transported by the designed carrier, while siRNA could be released constantly and led to an increasing gene-silencing effect against VEGF gene. In conclusion, VEGF-siRNA/CRS is a promising carrier for si

  4. Roxithromycin inhibits VEGF-induced human airway smooth muscle cell proliferation: Opportunities for the treatment of asthma

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qing-Mei, E-mail: 34713316@qq.com [Department of Radiology, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin (China); Jiang, Ping, E-mail: jiangping@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Yang, Min, E-mail: YangMin@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Qian, Xue-Jiao, E-mail: qianxuejiao@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Liu, Jiang-Bo, E-mail: LJB1984@163.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China); Kim, Sung-Ho, E-mail: chenghao0726@hotmail.com [Department of Respiration, Tianjin First Central Hospital, Tianjin (China)

    2016-10-01

    Asthma is a chronic respiratory disease characterized by reversible airway obstruction with persistent airway inflammation and airway remodelling, which is associated with increased airway smooth muscle (ASM) mass. Roxithromycin (RXM) has been widely used in asthma treatment; however, its mechanism of action is poorly understood. Vascular endothelial growth factor (VEGF) has been implicated in inflammatory and airway blood vessel remodelling in patients with asthma, and shown to promote ASM cell proliferation. Here, we investigated the effect of RXM on VEGF-induced ASM cell proliferation and attempted to elucidate the underlying mechanisms of action. We tested the effect of RXM on proliferation and cell cycle progression, as well as on the expression of phospho-VEGF receptor 2 (VEGFR2), phospho-extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-Akt, and caveolin-1 in VEGF-stimulated ASM cells. RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. Additionally, VEGF-induced ASM cell proliferation was suppressed by inhibiting the activity of ERK1/2, but not that of Akt. Furthermore, RXM treatment inhibits VEGF-induced activation of VEGFR2 and ERK and downregulation of caveolin-1 in a dose-dependent manner. RXM also inhibited TGF-β-induced VEGF secretion by ASM cells and BEAS-2B cells. Collectively, our findings suggest that RXM inhibits VEGF-induced ASM cell proliferation by suppression of VEGFR2 and ERK1/2 activation and caveolin-1 down-regulation, which may be involved in airway remodelling. Further elucidation of the mechanisms underlying these observations should enable the development of treatments for smooth muscle hyperplasia-associated diseases of the airway such as asthma. - Highlights: • RXM inhibited VEGF-induced ASM cell proliferation and induced cell cycle arrest. • VEGF-induced cell proliferation was suppressed by inhibiting the activity of ERK1/2. • RXM inhibits activation of VEGFR2 and ERK and downregulation

  5. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Directory of Open Access Journals (Sweden)

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia

  6. Insight into 144 patients with ocular vascular events during VEGF antagonist injections

    Directory of Open Access Journals (Sweden)

    Shami M

    2012-03-01

    Full Text Available Ahmad M Mansour1, Maha Shahin2, Peter K Kofoed3, Maurizio B Parodi4, Michel Shami5, Stephen G Schwartz6, Collaborative Anti-VEGF Ocular Vascular Complications GroupDepartment of Ophthalmology, 1American University of Beirut, Beirut, Lebanon, Rafic Hariri University Hospital, Beirut, Lebanon; 2Mansoura University, Mansoura City, Egypt; 3Glostrup Hospital, University of Copenhagen, Denmark, National Eye Clinic, Kennedy Center, Glostrup, Denmark; 4University Vita-Salute, Scientific Institute San Raffaele, Milan, Italy; 5Texas Tech University Health Sciences Center, Lubbock, TX, USA; 6Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Naples and Miami, FL, USAAim: To record ocular vascular events following injections of vascular endothelium growth factor (VEGF antagonists.Methods: Collaborative multicenter case series (48 cases, literature reviews (32 cases, and reports to the FDA (64 cases of patients that had vascular occlusions during anti-VEGF therapy were collected and analyzed.Results: A total of 144 cases of ocular vascular events were identified, with these diagnosed a median of 15 days after anti-VEGF injection. The majority of patients had pre-existing risk factors for cardiovascular events and nine patients had a prior history of glaucoma. Mean visual acuity dropped by 6.4 lines with severe visual loss after injection to NLP (five eyes, LP (six eyes, and HM (two eyes. The overall risk of ocular vascular events following a VEGF antagonist injection was 0.108% in the general population and 2.61% in the diabetic population. Mean retinal arterial constriction after intravitreal bevacizumab in 13 eyes was 21% (standard deviation = 27%, and mean retinal venous constriction was 8% (standard deviation = 30%.Conclusion: Ocular vascular events are rare during anti-VEGF therapy, but can lead to severe visual loss and may be caused by a number of factors including the vasoconstrictor effect of the drug, a post-injection rise

  7. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds.

    Science.gov (United States)

    Galeano, Mariarosaria; Altavilla, Domenica; Bitto, Alessandra; Minutoli, Letteria; Calò, Margherita; Lo Cascio, Patrizia; Polito, Francesca; Giugliano, Giovanni; Squadrito, Giovanni; Mioni, Chiara; Giuliani, Daniela; Venuti, Francesco S; Squadrito, Francesco

    2006-04-01

    Erythropoietin interacts with vascular endothelial growth factor (VEGF) and stimulates endothelial cell mitosis and motility; thus it may be of importance in the complex phenomenon of wound healing. The purpose of this study was to investigate the effect of recombinant human erythropoietin (rHuEPO) on experimental burn wounds. Randomized experiment. Research laboratory. C57BL/6 male mice weighing 25-30 g. Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second degree burn. Animals were randomized to receive either rHuEPO (400 units/kg/day for 14 days in 100 microL subcutaneously) or its vehicle alone (100 microl/day distilled water for 14 days subcutaneously). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of neoangiogenesis by immunohistochemistry, and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, measurement of VEGF wound content (enzyme-linked immunosorbent assay), expression (Western blot) of endothelial and inducible nitric oxide synthases, and determination of wound nitric oxide (NO) products. rHuEPO increased burn wound reepithelialization and reduced the time to final wound closure. These effects were completely abated by a passive immunization with specific antibodies against erythropoietin. rHuEPO improved healing of burn wound through increased epithelial proliferation, maturation of the extracellular matrix, and angiogenesis. The hematopoietic factor augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31. Furthermore, rHuEPO enhanced the wound content of VEGF caused a marked expression of endothelial and inducible nitric oxide synthases and increased wound content of nitric oxide products. Our study suggests that rHuEPO may be an effective therapeutic approach to improve clinical outcomes after thermal injury.

  8. Study on nanocomposite construction based on the multi-functional biotemplate self-assembled by the recombinant TMGMV coat protein for potential biomedical applications.

    Science.gov (United States)

    Song, Lei; Wang, Shiwen; Wang, Haina; Zhang, Hua; Cong, Haolong; Jiang, Xingyu; Tien, Po

    2015-02-01

    Nowadays there is a growing interest in bio-scaffolded nanoarchitectures. Rapid progress in nanobiotechnology and molecular biology has allowed the engineering of inorganic-binding peptides termed as genetically engineered polypeptides for inorganics (GEPIs) into self-assembling biological structures to facilitate the design of novel biomedical or bioimaging devices. Here we introduce a novel nanocomposite comprising a self-assembled protein scaffold based on a recombinant tobacco mild green mosaic tobamovirus (TMGMV) coat protein (CP) and the photocatalytic TiO2 nanoparticles attached to it, which may provide a generic method for materials engineering. A template containing a modified TMGMV CP (mCP) gene, with the first six C-terminal amino acid residues deleted to accommodate more foreign peptides and expressing a site-directed mutation of A123C for bioconjugation utility, and two genetically engineered mutants, Escherichia coli-based P-mCP-Ti7 containing a C-terminal TiO2 GEPI sequence of seven peptides (Ti7) and Hi5 insect cells-derived E-CP-Ti7-His6 C-terminally fused with Ti7+His6 tag were created. Expression vectors and protocols for enriching of the two CP variants were established and the resultant proteins were identified by western blot analysis. Their RNA-free self-assembling structures were analyzed by transmission electron microscopy (TEM) and immuno-gold labeling TEM analysis. Adherence of nanoparticles to the P-mCP-Ti7 induced protein scaffold was visualized by TEM analysis. Also discussed is the Cysteine thiol reactivity in bioconjugation reactions with the maleimide-functionalized porphyrin photosensitizers which can function as clinical photodynamic therapy agents. This study introduced a novel approach to producing an assembly-competent recombinant TMGMV CP, examined its ability to serve as a novel platform for the multivalent display of surface ligands and demonstrated an alternative method for nanodevice synthesis for nanobiotechnological

  9. M-CSF signals through the MAPK/ERK pathway via Sp1 to induce VEGF production and induces angiogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer M Curry

    Full Text Available BACKGROUND: M-CSF recruits mononuclear phagocytes which regulate processes such as angiogenesis and metastases in tumors. VEGF is a potent activator of angiogenesis as it promotes endothelial cell proliferation and new blood vessel formation. Previously, we reported that in vitro M-CSF induces the expression of biologically-active VEGF from human monocytes. METHODOLOGY AND RESULTS: In this study, we demonstrate the molecular mechanism of M-CSF-induced VEGF production. Using a construct containing the VEGF promoter linked to a luciferase reporter, we found that a mutation reducing HIF binding to the VEGF promoter had no significant effect on luciferase production induced by M-CSF stimulation. Further analysis revealed that M-CSF induced VEGF through the MAPK/ERK signaling pathway via the transcription factor, Sp1. Thus, inhibition of either ERK or Sp1 suppressed M-CSF-induced VEGF at the mRNA and protein level. M-CSF also induced the nuclear localization of Sp1, which was blocked by ERK inhibition. Finally, mutating the Sp1 binding sites within the VEGF promoter or inhibiting ERK decreased VEGF promoter activity in M-CSF-treated human monocytes. To evaluate the biological significance of M-CSF induced VEGF production, we used an in vivo angiogenesis model to illustrate the ability of M-CSF to recruit mononuclear phagocytes, increase VEGF levels, and enhance angiogenesis. Importantly, the addition of a neutralizing VEGF antibody abolished M-CSF-induced blood vessel formation. CONCLUSION: These data delineate an ERK- and Sp1-dependent mechanism of M-CSF induced VEGF production and demonstrate for the first time the ability of M-CSF to induce angiogenesis via VEGF in vivo.

  10. Industrial case study: evaluation of a mixed-mode resin for selective capture of a human growth factor recombinantly expressed in E. coli.

    Science.gov (United States)

    Kaleas, Kimberly A; Schmelzer, Charles H; Pizarro, Shelly A

    2010-01-08

    Mixed-mode chromatography resins are gaining popularity as effective purification tools for challenging feedstocks. This study presents the development of an industrial application to selectively capture recombinant human vascular endothelial growth factor (rhVEGF) on Capto MMC from an alkaline feedstock. Capto MMC resin contains a ligand that has the potential to participate in ionic, hydrophobic, and hydrogen boding interactions with proteins and is coupled to a highly cross-linked agarose bead matrix. VEGF is a key growth factor involved in angiogenesis and has therapeutic applications for wound healing. In this process, it is expressed in Escherichia coli as inclusion bodies. Solids are harvested from the cell lysate, and the rhVEGF is solubilized and refolded at pH 9.8 in the presence of urea and redox reagents. The unique mixed-mode characteristics of Capto MMC enabled capture of this basic protein with minimal load conditioning and delivered a concentrated pool for downstream processing with >95% yields while reducing host cell protein content to study explores the impact of loading conditions and residence time on the dynamic binding capacity as well as the development of elution conditions for optimal purification performance. After evaluating various elution buffers, l-arginine HCl was shown to be an effective eluting agent for rhVEGF desorption from the Capto MMC mixed-mode resin since it successfully disrupted the multiple interactions between the resin and rhVEGF. The lab scale effort produced a robust chromatography step that was successfully implemented at commercial manufacturing scale. Copyright 2009 Elsevier B.V. All rights reserved.

  11. [VEGF165 transfected endothelial progenitor cells mediated by lentivirus alleviated ALI in rats].

    Science.gov (United States)

    He, Zhaohui; He, Huiwei; Lu, Yuanhua; Chen, Zhi; Xu, Fanghua; Wang, Rongsheng; Yang, Chunli

    2017-11-01

    To investigate the protective effects of vascular endothelial growth factor-165 (VEGF165) transfected the endothelial progenitor cells (EPCs) mediated by lentivirus on acute lung injury (ALI) in rats. The mononuclear cells from the male Sprague-Dawley (SD) rats were isolated and cultured to get the EPCs for study. The lentivirus vector carrying the human VEGF165 gene was constructed. According to the random number table method, 90 male SD rats were divided into ALI model group, phosphate buffer solution (PBS) group, EPCs treatment group, none transfected EPCs treatment group and VEGF165 transfected EPCs treatment group, and the rats in each group were subdivided into 4, 12 and 48 hours subgroups, with 6 rats in each subgroup. The rat model of ALI was reproduced by intravenous injection of oleic acid (0.15 μL/g). Then each treatment group was given PBS, EPCs, none transfected EPCs and VEGF165 transfected EPCs respectively with the same volume of 0.2 mL. For the groups with cells, about 1×10 6 cells were contained. Abdominal aortic blood and lung tissue were harvested at 4, 12 and 48 hours. Arterial blood gas analysis was performed. The lung wet/dry weight ratio (W/D) was calculated. The expressions of induced nitric oxide synthase (iNOS), endothelin-1 (ET-1) and VEGF165 were determined by enzyme-linked immunosorbent assay (ELISA). After dyed with hematoxylin-eosin (HE), the lung tissue pathology was observed and the lung injury score was performed. Compared with the ALI model group, the arterial partial pressure of oxygen (PaO 2 ) in EPCs, none transfected EPCs and VEGF165 transfected EPCs treatment groups was significantly increased from 4 hours, and lung W/D, expressions of iNOS and ET-1 were significantly decreased, and VEGF165 expression was significantly increased. Compared with the EPCs treatment group, the increase in PaO 2 , the decrease in lung W/D and expressions of iNOS and ET-1, and the increase in VEGF165 expression in VEGF165 transfected EPCs

  12. Prognostic Significance of Vascular Endothelial Growth Factor (VEGF and Her-2 Protein in the Genesis of Cervical Carcinoma

    Directory of Open Access Journals (Sweden)

    Arshad H. Rahmani

    2018-02-01

    CONCLUSION: The present study supports earlier findings that over-expression / up-regulation of VEGF and Her - 2 is linked with poor prognosis and may play a vital role in the development and progression of cervical cancer.

  13. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  14. Meiotic recombination in human oocytes.

    Directory of Open Access Journals (Sweden)

    Edith Y Cheng

    2009-09-01

    Full Text Available Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1 in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.

  15. Role of VEGF Inhibition in the Treatment of Retinopathy of Prematurity.

    Science.gov (United States)

    Eldweik, Luai; Mantagos, Iason S

    2016-01-01

    Retinopathy of prematurity (ROP) is a potentially blinding disease characterized by retinal neovascularization, which eventually can lead to tractional retinal detachment. Improvements have been made regarding the management of retinopathy of prematurity (ROP) since it was described in the Cryotherapy for Retinopathy of Prematurity study. A more appropriate time for therapeutic intervention was defined by the Early Treatment for Retinopathy of Prematurity (ETROP) trial. Advances in screening strategies with the use of digital imaging systems are now available. All of this and the use of laser photocoagulation and vitreoretinal surgery have contributed to significant increases in favorable outcomes and decreases in child blindness secondary to ROP. Recently the use of vascular endothelial growth factor (VEGF) inhibitors has been introduced to the armamentarium for the treatment of ROP. The purpose of this review article is to evaluate the role of VEGF inhibition in the treatment of ROP.

  16. Anti-VEGF Therapy in Breast and Lung Mouse Models of Cancers

    Directory of Open Access Journals (Sweden)

    Di Domenico Marina

    2011-01-01

    Full Text Available Cancer is the second leading cause of death in the world after cardiovascular diseases. Some types of cancer cells often travel to other parts of the body through blood circulation or lymph vessels, where they begin to grow. This process is recognized as metastasis. Angiogenesis is the formation of new blood vessels from existing vessel. Normally angiogenesis is a healthy process, that helps the body to heal wounds and repair damaged body tissues, whereas in cancerous condition this process supports new blood vessels formation that provide a tumor with its own blood supply, nutrients and allow it to grow. The most important proximal factor for angiogenesis is the vascular endothelial growth factor VEGF. Angioinhibition is a form of targeted therapy that uses drugs to stop tumors from making new blood vessels. Therefore, in this paper we analyse the importance of VEGF as target of cancer therapy, analysing murine models.

  17. The experimental study of VEGF antisense oligodeoxynucleotides with lipiodol in arterial embolization of liver cancer in rats

    International Nuclear Information System (INIS)

    Wu Hanping; Feng Gansheng; Li Xin; Liang Huimin; Zheng Chuansheng

    2003-01-01

    Objective: To study the inhibitory effects of VEGF antisense oligodeoxynucleotides (asODN) on cultured Walker-256 cells' VEGF expression, and to observe the anti-tumor effects of intraarterial infusion of asODN mixed with lipiodol on rat liver cancer. Methods: VEGF asODN and sense ODN were added to the media of non-serum cultured Walker-256 cells, and the VEGF concentrations of the supernatants were detected by using ELISA 48 hours later. Cells of endothelial cell line ECV-304 were cultured in the supernatants. The growth of ECV-304 cells was observed by MTT method. 30 rats with Walker-256 carcinoma cells implanted into left liver lobe were randomly divided into 3 groups. 0.2 ml ultra-fluid lipiodol (UFLP group, n=10), 3OD asODN mixed with 0.2 ml ultra-fluid lipiodol (UFLP + asODN group, n=10), and 0.2 ml normal saline (control group, n=10) were infused into the hepatic artery. The volumes of tumors were measured by using MRI before and 7 days after the treatment. VEGF mRNA in cancerous and peri-cancerous tissues was detected by RT-PCR. The microvessel density (MVD) and VEGF expression were observed by immunohistochemistry. Results: asODN could inhibit Walker-256 cells' VEGF expression. The tumor growth rate was lower in UFLP + asODN group than that in UFLP and control groups [(140.1±33.8)%, (177.9±64.9)%, and (403.9± 69.4)%, respectively, F=60.02, P 0.05). The MVD in UFLP + asODN group (53.1±18.4) was significantly less than that of control group (73.2±20.4) and UFLP group (80.3±18.5) (F=5.44, P<0.05). Conclusion: VEGF asODN could inhibit VEGF expression of Walker-256 cells. It may be an antiangiogenesis therapy drug in malignant tumor. VEGF asODN mixed with UFLP in embolizing liver cancer could decrease liver cancer growth, VEGF expression, and microvessel density better than UFLP alone

  18. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: the ALICE-1 study.

    Science.gov (United States)

    Scartozzi, Mario; Faloppi, Luca; Svegliati Baroni, Gianluca; Loretelli, Cristian; Piscaglia, Fabio; Iavarone, Massimo; Toniutto, Pierluigi; Fava, Giammarco; De Minicis, Samuele; Mandolesi, Alessandra; Bianconi, Maristella; Giampieri, Riccardo; Granito, Alessandro; Facchetti, Floriana; Bitetto, Davide; Marinelli, Sara; Venerandi, Laura; Vavassori, Sara; Gemini, Stefano; D'Errico, Antonietta; Colombo, Massimo; Bolondi, Luigi; Bearzi, Italo; Benedetti, Antonio; Cascinu, Stefano

    2014-09-01

    Although new treatment modalities changed the global approach to hepatocellular carcinoma (HCC), this disease still represents a medical challenge. Currently, the therapeutic stronghold is sorafenib, a tyrosine kinase inhibitor (TKI) directed against the vascular endothelial growth factor (VEGF) family. Previous observations suggested that polymorphisms of VEGF and its receptor (VEGFR) genes may regulate angiogenesis and lymphangiogenesis and thus tumour growth control. The aim of our study was to evaluate the role of VEGF and VEGFR polymorphisms in determining the clinical outcome of HCC patients receiving sorafenib. From a multicentre experience 148 samples (tumour or blood samples) of HCC patients receiving sorafenib were tested for VEGF-A, VEGF-C and VEGFR-1,2,3 single nucleotide polymorphisms (SNPs). Patients' progression-free survival (PFS) and overall survival (OS) were analysed. At univariate analysis VEGF-A alleles C of rs25648, T of rs833061, C of rs699947, C of rs2010963, VEGF-C alleles T of rs4604006, G of rs664393, VEGFR-2 alleles C of rs2071559, C of rs2305948 were significant predictors of PFS and OS. At multivariate analysis rs2010963, rs4604006 and BCLC (Barcelona Clinic Liver Cancer) stage resulted to be independent factors influencing PFS and OS. Once prospectively validated, the analysis of VEGF and VEGFR SNPs may represent a clinical tool to better identify HCC patients more likely to benefit from sorafenib. On the other hand, the availability of more accurate predictive factors could help avoiding unnecessary toxicities to potentially resistant patients who may be optimal candidates for different treatments interfering with other tumour molecular pathways. © 2014 UICC.

  19. Heat Shock Protein 70 Negatively Regulates TGF-β-Stimulated VEGF Synthesis via p38 MAP Kinase in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Go Sakai

    2017-11-01

    Full Text Available Background/Aims: We previously demonstrated that transforming growth factor-β (TGF-β stimulates the synthesis of vascular endothelial growth factor (VEGF through the activation of p38 mitogen-activated protein (MAP kinase in osteoblast-like MC3T3-E1 cells. Heat shock protein70 (HSP70 is a ubiquitously expressed molecular chaperone. In the present study, we investigated the involvement of HSP70 in the TGF-β-stimulated VEGF synthesis and the underlying mechanism in these cells. Methods: Culture MC3T3-E1 cells were stimulated by TGF-β. Released VEGF was measured using an ELISA assay. VEGF mRNA level was quantified by RT-PCR. Phosphorylation of each protein kinase was analyzed by Western blotting. Results: VER-155008 and YM-08, both of HSP70 inhibitors, significantly amplified the TGF-β-stimulated VEGF release. In addition, the expression level of VEGF mRNA induced by TGF-β was enhanced by VER-155008. These inhibitors markedly strengthened the TGF-β-induced phosphorylation of p38 MAP kinase. The TGF-β-induced phosphorylation of p38 MAP kinase was amplified in HSP70-knockdown cells. SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by these inhibitors of the TGF-β-induced VEGF release. Conclusion: These results strongly suggest that HSP70 acts as a negative regulator in the TGF-β-stimulated VEGF synthesis in osteoblasts, and that the inhibitory effect of HSP70 is exerted at a point upstream of p38 MAP kinase.

  20. NADPH oxidase 4 mediates insulin-stimulated HIF-1α and VEGF expression, and angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Dan Meng

    Full Text Available Acute intensive insulin therapy causes a transient worsening of diabetic retinopathy in type 1 diabetes patients and is related to VEGF expression. Reactive oxygen species (ROS have been shown to be involved in HIF-1α and VEGF expression induced by insulin, but the role of specific ROS sources has not been fully elucidated. In this study we examined the role of NADPH oxidase subunit 4 (Nox4 in insulin-stimulated HIF-1α and VEGF expression, and angiogenic responses in human microvascular endothelial cells (HMVECs. Here we demonstrate that knockdown of Nox4 by siRNA reduced insulin-stimulated ROS generation, the tyrosine phosphorylation of IR-β and IRS-1, but did not change the serine phosphorylation of IRS-1. Nox4 gene silencing had a much greater inhibitory effect on insulin-induced AKT activation than ERK1/2 activation, whereas it had little effect on the expression of the phosphatases such as MKP-1 and SHIP. Inhibition of Nox4 expression inhibited the transcriptional activity of VEGF through HIF-1. Overexpression of wild-type Nox4 was sufficient to increase VEGF transcriptional activity, and further enhanced insulin-stimulated the activation of VEGF. Downregulation of Nox4 expression decreased insulin-stimulated mRNA and protein expression of HIF-1α, but did not change the rate of HIF-1α degradation. Inhibition of Nox4 impaired insulin-stimulated VEGF expression, cell migration, cell proliferation, and tube formation in HMVECs. Our data indicate that Nox4-derived ROS are essential for HIF-1α-dependent VEGF expression, and angiogenesis in vitro induced by insulin. Nox4 may be an attractive therapeutic target for diabetic retinopathy caused by intensive insulin treatment.

  1. Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetrating Peptides.

    Science.gov (United States)

    de Cogan, Felicity; Hill, Lisa J; Lynch, Aisling; Morgan-Warren, Peter J; Lechner, Judith; Berwick, Matthew R; Peacock, Anna F A; Chen, Mei; Scott, Robert A H; Xu, Heping; Logan, Ann

    2017-05-01

    To evaluate the efficacy of anti-VEGF agents for treating choroidal neovascularization (CNV) when delivered topically using novel cell-penetrating peptides (CPPs) compared with delivery by intravitreal (ivit) injection. CPP toxicity was investigated in cell cultures. Ivit concentrations of ranibizumab and bevacizumab after topical administration were measured using ELISA. The biological efficacy of topical anti-VEGF + CPP complexes was compared with ivit anti-VEGF injections using an established model of CNV. CPPs were nontoxic in vitro. In vivo, after topical eye drop delivery, CPPs were present in the rat anterior chamber within 6 minutes. A single application of CPP + bevacizumab eye drop delivered clinically relevant concentrations of bevacizumab to the posterior chamber of the rat eye in vivo. Similarly, clinically relevant levels of CPP + ranibizumab and CPP + bevacizumab were detected in the porcine vitreous and retina ex vivo. In an established model of CNV, mice treated with either a single ivit injection of anti-VEGF, twice daily CPP + anti-VEGF eye drops or daily dexamethasone gavage for 10 days all had significantly reduced areas of CNV when compared with lasered eyes without treatment. CPPs are nontoxic to ocular cells and can be used to deliver therapeutically relevant doses of ranibizumab and bevacizumab by eye drop to the posterior segment of mouse, rat, and pig eyes. The CPP + anti-VEGF drug complexes were cleared from the retina within 24 hours, suggesting a daily eye drop dosing regimen. Daily, topically delivered anti-VEGF with CPP was as efficacious as a single ivit injection of anti-VEGF in reducing areas of CNV in vivo.

  2. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions.

    LENUS (Irish Health Repository)

    Cahill, Ronan A

    2012-02-03

    BACKGROUND: Peritoneal injury sustained at laparotomy may evoke local inflammatory responses that result in adhesion formation. Peritoneal mast cells are likely to initiate this process, whereas vascular permeability\\/endothelial growth factor (VEGF) may facilitate the degree to which subsequent adhesion formation occurs. METHODS: Mast cell deficient mice (WBB6F1-\\/-), along with their mast cell sufficient counterparts (WBB6F1+\\/+), underwent a standardized adhesion-inducing operation (AIS) with subsequent sacrifice and adhesion assessment 14 days later in a blinded fashion. Additional CD-1 and WBB6F1+\\/+, and WBB6F1-\\/- mice were killed 2, 6, 12, and 24 hours after operation for measurement of VEGF by ELISA in systemic serum and peritoneal lavage fluid. Two further groups of CD-1 mice underwent AIS and received either a single perioperative dose of anti-VEGF monoclonal antibody (10 mug\\/mouse) or a similar volume of IgG isotypic antibody and adhesion formation 2 weeks later was evaluated. RESULTS: WBB6F1-\\/- mice had less adhesions then did their WBB6F1+\\/+ counterparts (median [interquartile range] adhesion score 3[3-3] vs 1.5[1-2] respectively; P < .003). Local VEGF release peaked 6 hours after AIS in both WBB6F1+\\/+ and CD-1 mice whereas levels remained at baseline in WBB6F1-\\/- mice. CD-1 mice treated with a single dose of anti-VEGF therapy during operation had less adhesions than controls (2[1.25-2] vs 3[2.25-3], P = .0002). CONCLUSIONS: Mast cells and VEGF are central to the formation of postoperative intra-abdominal adhesions with mast cells being responsible, either directly or indirectly, for VEGF release into the peritoneal cavity after operation. In tandem with the recent clinical success of anti-VEGF monoclonal antibodies in oncologic practice, our observations suggest an intriguing avenue for research and development of anti-adhesion strategy.

  3. DNA binding-independent transcriptional activation of the vascular endothelial growth factor gene (VEGF) by the Myb oncoprotein

    International Nuclear Information System (INIS)

    Lutwyche, Jodi K.; Keough, Rebecca A.; Hunter, Julie; Coles, Leeanne S.; Gonda, Thomas J.

    2006-01-01

    Myb is a key transcription factor that can regulate proliferation, differentiation, and apoptosis, predominantly in the haemopoietic system. Abnormal expression of Myb is associated with a number of cancers, both haemopoietic and non-haemopoietic. In order to better understand the role of Myb in normal and tumorigenic processes, we undertook a cDNA array screen to identify genes that are regulated by this factor. In this way, we identified the gene encoding vascular endothelial growth factor (VEGF) as being potentially regulated by the Myb oncoprotein in myeloid cells. To determine whether this was a direct effect on VEGF gene transcription, we examined the activity of the murine VEGF promoter in the presence of either wild-type (WT) or mutant forms of Myb. It was found that WT Myb was able to activate the VEGF promoter and that a minimal promoter region of 120 bp was sufficient to confer Myb responsiveness. Surprisingly, activation of the VEGF promoter was independent of DNA binding by Myb. This was shown by the use of DNA binding-defective Myb mutants and by mutagenesis of a potential Myb-binding site in the minimal promoter. Mutation of Sp1 sites within this region abolished Myb-mediated regulation of a reporter construct, suggesting that Myb DNA binding-independent activation of VEGF expression occurs via these Sp1 binding elements. Regulation of VEGF production by Myb has implications for the potential role of Myb in myeloid leukaemias and in solid tumours where VEGF may be functioning as an autocrine growth factor

  4. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Cyran, Clemens C.; Sennino, Barbara; Fu, Yanjun; Rogut, Victor; Shames, David M.; Chaopathomkul, Bundit; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.; Raatschen, Hans-Juergen

    2012-01-01

    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (K PS ; μl/min × 100 cm 3 ), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean K PS was 2.4 times greater in MDA-MB-231 tumors (K PS = 58 ± 30.9 μl/min × 100 cm 3 ) than in MDA-MB-435 tumors (K PS = 24 ± 8.4 μl/min × 100 cm 3 ) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  6. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    International Nuclear Information System (INIS)

    Panta, Sushil; Yamakuchi, Munekazu; Shimizu, Toshiaki; Takenouchi, Kazunori; Oyama, Yoko; Koriyama, Toyoyasu; Kojo, Tsuyoshi; Hashiguchi, Teruto

    2017-01-01

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclear localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β 3 -integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β 3 -integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β 3 -integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β 3 -integrin pathway in endothelial cells.

  7. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    International Nuclear Information System (INIS)

    Rodrigues, Clarissa G.; Plentz, Rodrigo D.M.; Dipp, Thiago; Salles, Felipe B.; Giusti, Imarilde I.; Sant'Anna, Roberto T.; Eibel, Bruna; Nesralla, Ivo A.; Markoski, Melissa; Beyer, Nance N.; Kalil, Renato A. K.

    2013-01-01

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9 th and 27 th was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9 th and 27 th days

  8. VEGF and IHH rescue definitive hematopoiesis in Gata-4 and Gata-6-deficient murine embryoid bodies.

    Science.gov (United States)

    Pierre, Monique; Yoshimoto, Momoko; Huang, Lan; Richardson, Matthew; Yoder, Mervin C

    2009-09-01

    Murine embryonic stem cells can be differentiated into embryoid bodies (EBs), which serve as an in vitro model recapitulating many aspects of embryonic yolk sac hematopoiesis. Differentiation of embryonic stem cells deficient in either Gata-4 or Gata-6 results in EBs with disrupted visceral endoderm (VE). While lack of VE has detrimental effects on hematopoiesis in vivo, it is unclear whether lack of VE affects hematopoiesis in EBs. Therefore, we compared Gata-4 null (G4N) and Gata-6 null (G6N) EBs with wild-type EBs to assess their ability to commit to hematopoietic cells. EB VE formation was examined using cell-sorting techniques and analysis visceral endoderm gene expression. Hematopoietic progenitor potential of EBs cultured under various conditions was assessed using colony-forming assays. Definitive erythroid, granulocyte-macrophage, and mixed colonies were significantly reduced in G4N and G6N EBs compared to wild-type EBs. Vascular endothelial growth factor (VEGF) expression and secretion were also reduced in both G4N and G6N EBs, consistent with VE serving as a site of VEGF production. Addition of exogenous VEGF(165), to EB cultures completely rescued definitive colony-forming cells in G4N and G6N EBs. This rescue response could be blocked by addition of soluble Flk-1 Fc to EB cultures. Similarly, addition of exogenous Indian hedgehog to EB cultures also recovers the diminishment in definitive hematopoiesis in a reversible manner. These results suggest that the absence of VE in G4N and G6N EBs does not prevent emergence of definitive progenitors from EBs. However, the decreased level of VEGF and Indian hedgehog production in VE devoid G4N and G6N EBs attenuates definitive hematopoietic progenitor cell expansion.

  9. The effect of formoterol on peritoneal VEGF levels in rats with endometriosis.

    Science.gov (United States)

    Yilmaz, Nafiye; Ozaksit, Gulnur; Keskin, Raziye; Tapisiz, Omer; Mollamahmutoglu, Leyla; Uysal, Sema; Astarci, Muzeyyen; Ustun, Huseyin; Mulazımoglu, Baris

    2012-04-01

    The aim of this study is to investigate the effect of formoterol (β2 adrenergic receptor agonist) on peritoneal VEGF levels in rats with endometriosis. Experimental endometriosis was constituted with implantation of endometrial tissue. The implants were examined by second laparatomy and rats were divided randomly into four groups. One cc saline was applied ip to the control (C) group (n=8) daily, 22.5μg/kg/day ip formoterol was applied to the second (F) group (n=10) daily, 22.5μg/kg/day ip formoterol and 10mg/kg/day ip propranolol were applied to the third (FP) group (n=10) daily, 45μg/kg/day ip formoterol was applied to the fourth (FF) group (n=9). Before treatment and after 30 days treatment period, peritoneal VEGF levels, the volumes and histopathological properties of the implants were evaluated. There were significant differences in between the peritoneal VEGF levels before and after treatment in group 2(F) and group 4(FF) (p(a): 0.01, 0.01 respectively). But there were no significant changes in between the volumes of implants before and after treatment among the groups (p>0.05). There were no significant differences among the groups in histopathological parameters (p>0.05). Formoterol treatment was seen to have no effect on the volumes and histopathological structure of endometriotic implants in our study. On the other hand, based on the group 2(F) and 4's (FF) VEGF levels after the treatment, low dose or high dose formoterol may be effective with long term therapy. Formoterol may reduce the development of endometriosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Targeting the VEGF pathway: antiangiogenic strategies in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Aita, Marianna; Fasola, Gianpiero; Defferrari, Carlotta; Brianti, Annalisa; Bello, Maria Giovanna Dal; Follador, Alessandro; Sinaccio, Graziella; Pronzato, Paolo; Grossi, Francesco

    2008-12-01

    The management of advanced non-small cell lung cancer (NSCLC) has evolved considerably in recent years, due to a progressive understanding of tumour biology and the identification of promising molecular targets. Several agents have been developed so far inhibiting vascular endothelial growth factor (VEGF) - a key protein in tumour neoangiogenesis, growth and dissemination - or its receptor signalling system. The finding in study E4599 of a survival benefit for carboplatin-paclitaxel plus bevacizumab - a humanised anti-VEGF monoclonal antibody - over chemotherapy (CT) alone led the U.S. Food and Drug Administration (FDA) to approve the novel combination for first-line treatment of patients with unresectable, locally advanced, recurrent or metastatic non-squamous NSCLC. In a randomised phase III trial presented at the American Society of Clinical Oncology (ASCO) 2007 Annual Meeting, patients receiving cisplatin-gemcitabine plus bevacizumab experienced a significantly longer progression-free survival (PFS) compared to the standard arm. Based on these data, the European Medicines Agency (EMEA) has granted marketing authorisation for bevacizumab in addition to any platinum-based CT for first-line treatment of advanced NSCLC other than predominantly squamous histology. Aim of this report is to provide an overview on bevacizumab in NSCLC, with special emphasis on clinical results presented at ASCO last meeting. Multitargeted tyrosine kinase inhibitors (TKIs), sharing a focus on both the angiogenesis process and additional cell-surface receptors, and VEGF Trap, a novel fusion protein with markedly higher affinity for VEGF than bevacizumab, will be briefly discussed as well.

  11. Peripapillary Choroidal Neovascularization Associated with Optic Nerve Head Drusen Treated with Anti-VEGF Agents

    Directory of Open Access Journals (Sweden)

    Norman A. Saffra

    2015-02-01

    Full Text Available Optic nerve head drusen can be associated with peripapillary choroidal neovascularization, in both the pediatric and adult population. These membranes can involve the macula, causing significant visual loss. Herein, we present a case that required treatment with an anti-VEGF agent. The patient failed to respond to the initial agent, but subsequently responded to a change of agent. Adult patients with macular degeneration involving peripapillary choroidal neovascularization associated with optic nerve head drusen may require individualized treatment plans.

  12. Polymorphisms in VEGF-A are associated with COPD risk in the ...

    Indian Academy of Sciences (India)

    Both rs3025030 and rs3025033 are located on chromosome 6 in VEGF-A. We found one risk allele 'C' from rs3025030 and another 'G' from rs3025033 using the log-additive model (OR 1.40; 95% CI1.05–5.96; P = 0.022), (OR 1.38; 95% CI 1.03–1.84; P = 0.03). We also found another risk allele 'A' of rs9296092 in ...

  13. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

    OpenAIRE

    Ackah, Eric; Yu, Jun; Zoellner, Stefan; Iwakiri, Yasuko; Skurk, Carsten; Shibata, Rei; Ouchi, Noriyuki; Easton, Rachael M.; Galasso, Gennaro; Birnbaum, Morris J.; Walsh, Kenneth; Sessa, William C.

    2005-01-01

    Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Ak...

  14. VEGF 165 Gene Therapy for Patients with Refractory Angina: Mobilization of Endothelial Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Clarissa G. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Duke University Medical Center, Durham, North Carolina (United States); Plentz, Rodrigo D.M. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Dipp, Thiago [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Salles, Felipe B. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil); Giusti, Imarilde I.; Sant' Anna, Roberto T.; Eibel, Bruna; Nesralla, Ivo A.; Markoski, Melissa [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Beyer, Nance N. [Instituto de Cardiologia/Fundação Universitária de Cardiologia - Programa de Pós Graduação em Ciências da Saúde: Cardiologia, Porto Alegre, RS (Brazil); Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Kalil, Renato A. K., E-mail: kalil.pesquisa@gmail.com [Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS (Brazil)

    2013-08-15

    Vascular endothelial growth factor (VEGF) induces mobilization of endothelial progenitor cells (EPCs) with the capacity for proliferation and differentiation into mature endothelial cells, thus contributing to the angiogenic process. We sought to assess the behavior of EPCs in patients with ischemic heart disease and refractory angina who received an intramyocardial injections of 2000 µg of VEGF 165 as the sole therapy. The study was a subanalysis of a clinical trial. Patients with advanced ischemic heart disease and refractory angina were assessed for eligibility. Inclusion criteria were as follows: signs and symptoms of angina and/or heart failure despite maximum medical treatment and a myocardial ischemic area of at least 5% as assessed by single-photon emission computed tomography (SPECT). Exclusion criteria were as follows: age > 65 years, left ventricular ejection fraction < 25%, and a diagnosis of cancer. Patients whose EPC levels were assessed were included. The intervention was 2000 µg of VEGF 165 plasmid injected into the ischemic myocardium. The frequency of CD34+/KDR+ cells was analyzed by flow cytometry before and 3, 9, and 27 days after the intervention. A total of 9 patients were included, 8 males, mean age 59.4 years, mean left ventricular ejection fraction of 59.3% and predominant class III angina. The number of EPCs on day 3 was significantly higher than that at baseline (p = 0.03); however, that on days 9{sup th} and 27{sup th} was comparable to that at baseline. We identified a transient mobilization of EPCs, which peaked on the 3th day after VEGF 165 gene therapy in patients with refractory angina and returned to near baseline levels on 9{sup th} and 27{sup th}days.

  15. Electric hydrogen recombiner special tests

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1975-12-01

    Westinghouse has produced an electric hydrogen recombiner to control hydrogen levels in reactor containments following a postulated loss-of-coolant accident. The recombiner underwent extensive testing for NRC qualification (see WCAP 7709-L and Supplements 1, 2, 3, 4). As a result, WCAP 7709-L and Supplements 1, 2, 3, and 4 have been accepted by the NRC for reference in applications not committed to IEEE-323-1974. Supplement 5 and the next supplement will demonstrate conformance to IEEE-323-1974. This supplement describes additional tests, beyond those necessary to qualify the system, which will be referenced in supplement 6. Each test has demonstrated a considerable margin of safety over required performance. Concurrently, the test results increased the fund of technical information on the electric hydrogen recombiner

  16. Expression of VEGF and collagen using a latex biomembrane as bladder replacement in rabbits

    Directory of Open Access Journals (Sweden)

    André Luís Alonso Domingos

    2012-08-01

    Full Text Available OBJECTIVE: To investigate the VEGF expression and collagen deposition using a latex biomembrane as bladder replacement in rabbits. MATERIALS AND METHODS: After partial cystectomy, a patch of a non-vulcanized latex biomembrane (2 x 2 cm was sewn to the bladder of rabbits with 5/0 monofilament polydioxanone sulfate sutures in a watertight manner. Groups of 5 animals were killed at 15, 45 and 90 days after surgery and the bladder was removed. Sections of 5µm were cut and stained with picrosirius-red in order to estimate the amount of extracellular matrix in the graft. To confirm the presence of VEGF in tissues, protein expression was determined by immunohistochemistry. RESULTS: No death, urinary leakage or graft extrusion occurred in any group. All bladders showed a spherical shape. A progressive reduction in the amount of collagen occurred in the graft area and was negatively and linearly correlated with time (p < 0.001. VEGF expression was higher in grafted areas when compared to controls at 15 and 45 days after surgery and decreased with time (p < 0.001. CONCLUSION: The latex biomembrane as a matrix for partial bladder replacement in rabbits promotes temporary collagen deposition and stimulates the angiogenic process.

  17. Maternal uterine artery VEGF gene therapy for treatment of intrauterine growth restriction.

    Science.gov (United States)

    David, Anna L

    2017-11-01

    Intrauterine growth restriction (IUGR) is a serious pregnancy complication affecting approximately 8% of all pregnancies. The aetiology is believed to be insufficient maternal uteroplacental perfusion which prevents adequate nutrient and oxygen availability for the fetus. There is no treatment that can improve uteroplacental perfusion and thereby increase fetal growth in the uterus. Maternal uterine artery gene therapy presents a promising treatment strategy for IUGR, with the use of adenoviral vectors encoding for proteins such as Vascular Endothelial Growth Factor (VEGF) demonstrating improvements in fetal growth and neonatal outcome in preclinical studies. Mechanistically, maternal VEGF gene therapy delivered to the uterine arteries increases uterine blood flow and enhances vascular relaxation short term, while reducing vascular contractility long term. It also leads to vascular remodeling with increased endothelial cell proliferation in the perivascular adventitia of uterine arteries. Safety assessments suggest no vector spread to the fetus and no adverse risk to the mother or fetus; a clinical trial is in development. This article assesses research into VEGF maternal uterine artery directed gene therapy for IUGR, investigating the use of transgenes and vectors, their route of administration in obstetrics, and the steps that will be needed to take this treatment modality into the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Deng, Meng; Lv, Qing; Jiang, Tao; Khan, Yusuf M; Nair, Lakshmi S; Laurencin, Cato T

    2012-11-01

    Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  19. VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review).

    Science.gov (United States)

    Taurone, Samanta; Galli, Filippo; Signore, Alberto; Agostinelli, Enzo; Dierckx, Rudi A J O; Minni, Antonio; Pucci, Marcella; Artico, Marco

    2016-08-01

    Clinical trials using antiangiogenic drugs revealed their potential against cancer. Unfortunately, a large percentage of patients does not yet benefit from this therapeutic approach highlighting the need of diagnostic tools to non-invasively evaluate and monitor response to therapy. It would also allow to predict which kind of patient will likely benefit of antiangiogenic therapy. Reasons for treatment failure might be due to a low expression of the drug targets or prevalence of other pathways. Molecular imaging has been therefore explored as a diagnostic technique of choice. Since the vascular endothelial growth factor (VEGF/VEGFR) pathway is the main responsible of tumor angiogenesis, several new drugs targeting either the soluble ligand or its receptor to inhibit signaling leading to tumor regression could be involved. Up today, it is difficult to determine VEGF or VEGFR local levels and their non-invasive measurement in tumors might give insight into the available target for VEGF/VEGFR-dependent antiangiogenic therapies, allowing therapy decision making and monitoring of response.

  20. Acrolein inhalation prevents VEGF-induced mobilization of Flk-1+/Sca-1+ cells in mice

    Science.gov (United States)

    Wheat, Laura A.; Haberzettl, Petra; Hellmann, Jason; Baba, Shahid P.; Bertke, Matthew; Lee, Jongmin; McCracken, James; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2011-01-01

    Objectives Acrolein is a toxic chemical present in tobacco, wood and coal smoke as well as automobile exhaust. Because exposure to these pollutants is associated with an increase in cardiovascular disease risk, we studied the effects of acrolein on Flk-1+/Sca-1+ cells that are involved in vascular repair. Methods and Results In adult male C57BL/6 mice, inhalation of acrolein (1ppm, 6h/day, 4 days or 5ppm for 2 or 6h) led to the formation of protein-acrolein adducts in the bone marrow and diminished levels of plasma NOx and circulating Flk-1+/Sca-1+ but not Sca-1+ only cells. Acrolein exposure increased the number of apoptotic Flk-1+/Sca1+ cells in circulation, and increased bone marrow-derived cells with endothelial characteristics (Dil-acLDL/UE-lectin and Flk-1+/Sca-1+) in culture. Deficits in the circulating levels of Flk-1+/Sca-1+ cells were reversed after 7 days of recovery in acrolein-free air. Exposure to acrolein blocked VEGF/AMD3100-stimulated mobilization of Flk-1+/Sca-1+ but not Sca-1+ only cells and prevented VEGF-induced phosphorylation of Akt and eNOS in the aorta. Conclusions Inhalation of acrolein increases apoptosis and suppresses the circulating levels of Flk-1+/Sca-1+ cells, while increasing these cells in the bone marrow and preventing their mobilization by VEGF. Exposure to acrolein-rich pollutants could impair vascular repair capacity. PMID:21527748

  1. The Multiple Roles of EG-VEGF/PROK1 in Normal and Pathological Placental Angiogenesis

    Directory of Open Access Journals (Sweden)

    Nadia Alfaidy

    2014-01-01

    Full Text Available Placentation is associated with several steps of vascular adaptations throughout pregnancy. These vascular changes occur both on the maternal and fetal sides, consisting of maternal uterine spiral arteries remodeling and placental vasculogenesis and angiogenesis, respectively. Placental angiogenesis is a pivotal process for efficient fetomaternal exchanges and placental development. This process is finely controlled throughout pregnancy, and it involves ubiquitous and pregnancy-specific angiogenic factors. In the last decade, endocrine gland derived vascular endothelial growth factor (EG-VEGF, also called prokineticin 1 (PROK1, has emerged as specific placental angiogenic factor that controls many aspects of normal and pathological placental angiogenesis such as recurrent pregnancy loss (RPL, gestational trophoblastic diseases (GTD, fetal growth restriction (FGR, and preeclampsia (PE. This review recapitulates EG-VEGF mediated-angiogenesis within the placenta and at the fetomaternal interface and proposes that its deregulation might contribute to the pathogenesis of several placental diseases including FGR and PE. More importantly this paper argues for EG-VEGF clinical relevance as a potential biomarker of the onset of pregnancy pathologies and discusses its potential usefulness for future therapeutic directions.

  2. The multiple roles of EG-VEGF/PROK1 in normal and pathological placental angiogenesis.

    Science.gov (United States)

    Alfaidy, Nadia; Hoffmann, Pascale; Boufettal, Houssine; Samouh, Naima; Aboussaouira, Touria; Benharouga, Mohamed; Feige, Jean-Jacques; Brouillet, Sophie

    2014-01-01

    Placentation is associated with several steps of vascular adaptations throughout pregnancy. These vascular changes occur both on the maternal and fetal sides, consisting of maternal uterine spiral arteries remodeling and placental vasculogenesis and angiogenesis, respectively. Placental angiogenesis is a pivotal process for efficient fetomaternal exchanges and placental development. This process is finely controlled throughout pregnancy, and it involves ubiquitous and pregnancy-specific angiogenic factors. In the last decade, endocrine gland derived vascular endothelial growth factor (EG-VEGF), also called prokineticin 1 (PROK1), has emerged as specific placental angiogenic factor that controls many aspects of normal and pathological placental angiogenesis such as recurrent pregnancy loss (RPL), gestational trophoblastic diseases (GTD), fetal growth restriction (FGR), and preeclampsia (PE). This review recapitulates EG-VEGF mediated-angiogenesis within the placenta and at the fetomaternal interface and proposes that its deregulation might contribute to the pathogenesis of several placental diseases including FGR and PE. More importantly this paper argues for EG-VEGF clinical relevance as a potential biomarker of the onset of pregnancy pathologies and discusses its potential usefulness for future therapeutic directions.

  3. Semaphorin SEMA3F and VEGF Have Opposing Effects on Cell Attachment and Spreading

    Directory of Open Access Journals (Sweden)

    Patrick Nasarre

    2003-01-01

    Full Text Available SEMA3F, isolated from a 3p21.3 deletion, has antitumor activity in transfected cells, and protein expression correlates with tumor stage and histology. In primary tumors, SEMA3F and VEGF surface staining is inversely correlated. Coupled with SEMA3F at the leading edge of motile cells, we previously suggested that both proteins competitively regulate cell motility and adhesion. We have investigated this using the breast cancer cell line, MCF7. SEMA3F inhibited cell attachment and spreading as evidenced by loss of lamellipodia extensions, membrane ruffling, and cell-cell contacts, with cells eventually rounding-up and detaching. In contrast, VEGF had opposite effects. Although SEMA3F binds NRP2 with 10-fold greater affinity than NRP1, the effects in MCF7 were mediated by NRP1. This was determined by receptor expression and blocking of anti-NRP1 antibodies. Similar effects, but through NRP2, were observed in the C100 breast cancer cell line. Although we were unable to demonstrate changes in total GTPbound Rac1 or RhoA, we did observe changes in the localization of Rac1-GFP using time lapse microscopy. Following SEMA3F, Rac1 moved to the base of lamellipodia and — with their collapse — to the membrane. These results support the concept that SEMA3F and VEGF have antagonistic actions affecting motility in primary tumor cell.

  4. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells.

    Science.gov (United States)

    Yang, Wei-Hung; Chang, An-Chen; Wang, Shih-Wei; Wang, Shoou-Jyi; Chang, Yung-Sen; Chang, Tzu-Ming; Hsu, Shao-Keh; Fong, Yi-Chin; Tang, Chih-Hsin

    2016-06-27

    Chondrosarcoma is the second most frequently occurring type of bone malignancy that is characterized by the distant metastasis propensity. Vascular endothelial growth factor-C (VEGF-C) is the chief lymphangiogenic mediator, and makes crucial contributions to tumor lymphangiogenesis. Leptin is an adipocytokine and has been indicated to facilitate tumorigenesis, angiogenesis and metastasis. However, the effect of leptin on VEGF-C regulation and lymphangiogenesis in human chondrosarcoma has hugely remained a mystery. Our results showed a clinical correlation between leptin and VEGF-C as well as tumor stage in human chondrosarcoma tissues. We further demonstrated that leptin promoted VEGF-C production and secretion in human chondrosarcoma cells. The conditioned medium from leptin-treated chondrosarcoma cells induced lymphangiogenesis of human lymphatic endothelial cells. We also found that leptin-induced VEGF-C is mediated by the FAK, PI3K and Akt signaling pathway. Furthermore, the expression of microRNA-27b was negatively regulated by leptin via the FAK, PI3K and Akt cascade. Our study is the first to describe the mechanism of leptin-promoted lymphangiogenesis by upregulating VEGF-C expression in chondrosarcomas. Thus, leptin could serve as a therapeutic target in chondrosarcoma metastasis and lymphangiogenesis.

  5. Clinical significance of determination of serum TNF-α, VEGF and TSGF levels after treatment in patients with aplastic anemia

    International Nuclear Information System (INIS)

    Hu Mingqiu; Xu Yanli

    2009-01-01

    Objective: To explore the clinical significance changes of serum TNF-α, VEGF and TSGF levels after treatment in patients with aplastic Anemia. Methods: Serum TNF-α(with RIA), VEGF(with ELISA) and TSGF(with biochemistry) levels were determined in 33 patients with aplastic anemia both before and after treatment and 35 controls. Results: Before treatment, the serum TNF-α, TSGF levels were significantly higher in the patients than those in controls (P<0.01), but serum VEGF levels were significantly lower in the patients (P<0.01). Serum TNF-α, TSGF levels were negatively correlated with levels of VEGF(r=-0.5192, -0.6018, P<0.01). After a course of treatment, the serum TNF-α, VEGF and TSGF levels, though corrected markedly, remained significantly different from those in controls (P<0.05). Conclusion: Determination of serum TNF-α, VEGF and TSGF levels after treatment might be of prognostic importance in patients with aplastic anemia. (authors)

  6. Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition.

    Directory of Open Access Journals (Sweden)

    Matthew W Parker

    Full Text Available Neuropilin (Nrp receptors function as essential cell surface receptors for the Vascular Endothelial Growth Factor (VEGF family of proangiogenic cytokines and the semaphorin 3 (Sema3 family of axon guidance molecules. There are two Nrp homologues, Nrp1 and Nrp2, which bind to both overlapping and distinct members of the VEGF and Sema3 family of molecules. Nrp1 specifically binds the VEGF-A(164/5 isoform, which is essential for developmental angiogenesis. We demonstrate that VEGF-A specific binding is governed by Nrp1 residues in the b1 coagulation factor domain surrounding the invariant Nrp C-terminal arginine binding pocket. Further, we show that Sema3F does not display the Nrp-specific binding to the b1 domain seen with VEGF-A. Engineered soluble Nrp receptor fragments that selectively sequester ligands from the active signaling complex are an attractive modality for selectively blocking the angiogenic and chemorepulsive functions of Nrp ligands. Utilizing the information on Nrp ligand binding specificity, we demonstrate Nrp constructs that specifically sequester Sema3 in the presence of VEGF-A. This establishes that unique mechanisms are used by Nrp receptors to mediate specific ligand binding and that these differences can be exploited to engineer soluble Nrp receptors with specificity for Sema3.

  7. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    Science.gov (United States)

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  8. Vascular endothelial growth factor (VEGF-634G/C) polymorphism and retinopathy of prematurity: a meta-analysis

    Science.gov (United States)

    Malik, Manzoor Ahmad; Shukla, Swati; Azad, Shorya Vardhan; Kaur, Jasbir

    2014-01-01

    Purpose Vascular endothelial growth factor polymorphism (VEGF-634G/C, rs 2010963) has been considered a risk factor for the development of retinopathy of prematurity (ROP). However, the results remain controversial. Therefore, the aim of the present meta-analysis was to determine the association between VEGF-634G/C polymorphism and ROP risk. Methods Published literature from PubMed and other databases were retrieved. All studies evaluating the association between VEGF-634G/C polymorphism and ROP risk were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using random or fixed effects model. A total of six case-control studies including 355 cases and 471 controls were included. Results By pooling all the studies, we found that VEGF-634G/C polymorphism was not associated with ROP risk at co-dominant and allele levels and no association was also found in dominant and recessive models. While stratifying on ethnicity level no association was observed in Caucasian and Asian population. Discussion This meta-analysis suggests that VEGF-634G/C polymorphism may not be associated with ROP risk, the association between single VEGF-634G/C polymorphism and ROP risk awaits further investigation. PMID:25473347

  9. Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model.

    Directory of Open Access Journals (Sweden)

    Hong J Lee

    Full Text Available BACKGROUND: Intracerebral hemorrhage (ICH is a lethal stroke type. As mortality approaches 50%, and current medical therapy against ICH shows only limited effectiveness, an alternative approach is required, such as stem cell-based cell therapy. Previously we have shown that intravenously transplanted human neural stem cells (NSCs selectively migrate to the brain and induce behavioral recovery in rat ICH model, and that combined administration of NSCs and vascular endothelial growth factor (VEGF results in improved structural and functional outcome from cerebral ischemia. METHODS AND FINDINGS: We postulated that human NSCs overexpressing VEGF transplanted into cerebral cortex overlying ICH lesion could provide improved survival of grafted NSCs, increased angiogenesis and behavioral recovery in mouse ICH model. ICH was induced in adult mice by unilateral injection of bacterial collagenase into striatum. HB1.F3.VEGF human NSC line produced an amount of VEGF four times higher than parental F3 cell line in vitro, and induced behavioral improvement and 2-3 fold increase in cell survival at two weeks and eight weeks post-transplantation. CONCLUSIONS: Brain transplantation of F3 human NSCs over-expressing VEGF near ICH lesion sites provided differentiation and survival of grafted human NSCs and renewed angiogenesis of host brain and functional recovery of ICH animals. These results suggest a possible application of the human neural stem cell line, which is genetically modified to over-express VEGF, as a therapeutic agent for ICH-stroke.

  10. Src Kinase becomes preferentially associated with the VEGFR, KDR/Flk-1, following VEGF stimulation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Wang Jing

    2002-12-01

    Full Text Available Abstract Background The cytoplasmic tyrosine kinase, Src, has been found to play a crucial role in VEGF (vascular endothelial growth factor – dependent vascular permeability involved in angiogenesis. The two main VEGFRs present on vascular endothelial cells are KDR/Flk-1 (kinase insert domain-containing receptor/fetal liver kinase-1 and Flt-1 (Fms-like tyrosine kinase-1. However, to date, it has not been determined which VEGF receptor (VEGFR is involved in binding to and activating Src kinase following VEGF stimulation of the receptors. Results In this report, we demonstrate that Src preferentially associates with KDR/Flk-1 rather than Flt-1 in human umbilical vein endothelial cells (HUVECs, and that VEGF stimulation resulted in an increase of Src activity associated with activated KDR/Flk-1. These findings were determined through immunoprecipitation-kinase experiments and coimmunoprecipitation studies, and were further confirmed by GST-pull-down assays and Far Western studies. However, Fyn and Yes, unlike Src, were found to associate preferentially with Flt-1. Conclusions Thus, Src preferentially associates with KDR/Flk-1, rather than with Flt-1, upon VEGF stimulation in endothelial cells. Our findings further highlight the potential significance of upregulated KDR/Flk-1-associated Src activity in the process of angiogenesis, and help to elucidate more clearly the specific roles and mechanisms involving Src family tyrosine kinase in VEGF-stimulated signal transduction events.

  11. ARTEMIN promotes de novo angiogenesis in ER negative mammary carcinoma through activation of TWIST1-VEGF-A signalling.

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    Full Text Available The neurotrophic factor ARTEMIN (ARTN has been reported to possess a role in mammary carcinoma progression and metastasis. Herein, we report that ARTN modulates endothelial cell behaviour and promotes angiogenesis in ER-mammary carcinoma (ER-MC. Human microvascular endothelial cells (HMEC-1 do not express ARTN but respond to exogenously added, and paracrine ARTN secreted by ER-MC cells. ARTN promoted endothelial cell proliferation, migration, invasion and 3D matrigel tube formation. Angiogenic behaviour promoted by ARTN secreted by ER-MC cells was mediated by AKT with resultant increased TWIST1 and subsequently VEGF-A expression. In a patient cohort of ER-MC, ARTN positively correlated with VEGF-A expression as measured by Spearman's rank correlation analysis. In xenograft experiments, ER-MC cells with forced expression of ARTN produced tumors with increased VEGF-A expression and increased microvessel density (CD31 and CD34 compared to tumors formed by control cells. Functional inhibition of ARTN by siRNA decreased the angiogenic effects of ER-MC cells. Bevacizumab (a humanized monoclonal anti-VEGF-A antibody partially inhibited the ARTN mediated angiogenic effects of ER-MC cells and combined inhibition of ARTN and VEGF-A by the same resulted in further significant decrease in the angiogenic effects of ER-MC cells. Thus, ARTN stimulates de novo tumor angiogenesis mediated in part by VEGF-A. ARTN therefore co-ordinately regulates multiple aspects of tumor growth and metastasis.

  12. VEGF 936C > T Polymorphism and Association of BI-RADS Score in Women with Suspected Breast Cancer

    Directory of Open Access Journals (Sweden)

    M. Wehrschuetz

    2009-01-01

    Full Text Available Purpose Vascular endothelial growth factor (VEGF is a potent regulator of angiogenesis and thereby involved in the development and progression of solid tumors. A 936C> T polymorphism in the VEGF gene has been associated with reduced VEGF plasma levels. Purpose of the present study was to analyze the potential association between VEGF genotype and radiological appearance of breast lesions by mammography. Materials and Methods Fifty two women with 54 suspected breast lesions were analyzed by the use of mammography with the standard breast imaging reporting and data systems (BI-RADS. Germline VEGF genotype was determined in all subjects by allele-specific digestion of amplification products. An open biopsy was performed on all lesions. Results VEGF CC, CT and TT genotypes were found in 41 (79%, 9 (17% and 2 (4% patients. By mammography 26, 16 and 12 suspected breast lesions were classified as BI-RADS scores 3, 4 and 5, respectively. Both carriers of the TT genotype were classified as BI-RADS 5, whereas among CT or CC carriers, BI-RADS scores 3, 4 and 5 were found in 26, 16 and 10 subjects (P T polymorphism seems to be associated with a high BI-RADS score in women with suspicious breast lesions.

  13. Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia

    Directory of Open Access Journals (Sweden)

    Masayuki Takeyama

    2015-01-01

    Full Text Available BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A and in vitro angiogen-esis in retinal pigment epithelium (RPE. RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF. We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.

  14. Anti-VEGF therapy in the management of retinopathy of prematurity: what we learn from representative animal models of oxygen-induced retinopathy.

    Science.gov (United States)

    Wang, Haibo

    2016-01-01

    Retinopathy of prematurity (ROP) remains a leading cause of childhood blindness, affecting infants born prematurely. ROP is characterized by the onset of delayed physiological retinal vascular development (PRVD) and followed by pathologic neovascularization into the vitreous instead of the retina, called intravitreal neovascularization (IVNV). Therefore, the therapeutic strategy for treating ROP is to promote PRVD and inhibit or prevent IVNV. Vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of ROP. There is a growing body of studies testing the use of anti-VEGF agents as a treatment for ROP. Intravitreal anti-VEGF treatment for ROP has potential advantages compared with laser photocoagulation, the gold standard for the treatment of severe ROP; however, intravitreal anti-VEGF treatment has been associated with reactivation of ROP and suppression of systemic VEGF that may affect body growth and organ development in preterm infants. Therefore, it is important to understand the role of VEGF in PRVD and IVNV. This review includes the current knowledge of anti-VEGF treatment for ROP from animal models of oxygen-induced retinopathy (OIR), highlighting the importance of VEGF inhibition by targeting retinal Müller cells, which inhibits IVNV and permits PRVD. The signaling events involved in mediating VEGF expression and promoting VEGF-mediated angiogenesis, including hypoxia-dependent signaling, erythropoietin/erythropoietin receptor-, oxidative stress-, beta-adrenergic receptor-, integrin-, Notch/Delta-like ligand 4- and exon guidance molecules-mediated signaling pathways, are also discussed.

  15. The effects of biomimetically conjugated VEGF on osteogenesis and angiogenesis of MSCs (human and rat) and HUVECs co-culture models.

    Science.gov (United States)

    Lü, Lanxin; Deegan, Anthony; Musa, Faiza; Xu, Tie; Yang, Ying

    2018-07-01

    The purpose of this work was to investigate if the biomimetically conjugated VEGF and HUVECs co-culture could modulate the osteogenic and angiogenic differentiation of MSCs derived from rat and human bone marrow (rMSCs and hMSCs). After treated by ammonia plasma, Poly(lactic-co-glycolic acid) (PLGA) electrospun nanofibers were immobilized with VEGF through heparin to fulfil the sustained release. The proliferation capacity of rMSCs and hMSCs on neat PLGA nanofibers (NF) and VEGF immobilized NF (NF-VEGF) surfaces were assessed by CCK-8 and compared when MSCs were mono-cultured and co-cultured with HUVECs. The effect of VEGF and HUVECs co-culturing on osteogenic and angiogenic differentiation of rMSCs and hMSCs were investigated by calcium deposits and CD31 expression on NF and NF-VEGF surfaces. The results indicated that VEGF has been biomimetically immobilized onto PLGA nanofibers surface and kept sustained release successfully. The CD31 staining results showed that both VEGF and HUVECs co-culture could enhance the angiogenesis of rMSCs and hMSCs. However, the proliferation and osteogenic differentiation of MSCs when cultured with VEGF and HUVECs showed a species dependent response. Taken together, VEGF immobilization and co-culture with HUVECs promoted angiogenesis of MSCs, indicating a good strategy for vascularization in bone tissue engineering. Copyright © 2018. Published by Elsevier B.V.

  16. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.

    Science.gov (United States)

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao-Xuan [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Zhang, Xiu-Ping [School of Public Health, Fudan University, Shanghai (China); Xiao, Gui-Yong [School of Materials Science and Engineering, Shandong University, Jinan, Shandong (China); Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong (China); Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Li, Yu-Hua, E-mail: qiluyuhua@126.com [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China); Nie, Lin, E-mail: hoho05@126.com [Department of Orthopedics, Shandong University Qilu Hospital, Jinan, Shandong (China)

    2016-03-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. - Highlights: • BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. • BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. • BMP-VEGF-PLGA-CPC scaffolds provided a new approach for the treatment of avascular necrosis of the femoral head (ANFH).

  18. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head

    International Nuclear Information System (INIS)

    Zhang, Hao-Xuan; Zhang, Xiu-Ping; Xiao, Gui-Yong; Hou, Yong; Cheng, Lei; Si, Meng; Wang, Shuai-Shuai; Li, Yu-Hua; Nie, Lin

    2016-01-01

    Avascular necrosis of the femoral head (ANFH) is difficult to treat due to high pressure and hypoxia, and reduced levels of growth factors such as bone morphogenetic protein (BMP), and vascular endothelial growth factor (VEGF). We generated a novel calcium phosphate (CPC) composite scaffold, which contains BMP-VEGF-loaded poly-lactic-co-glycolic acid (PLGA) microspheres (BMP-VEGF-PLGA-CPC). The BMP-VEGF-loaded microspheres have an encapsulation efficiency of 89.15% for BMP, and 78.55% for VEGF. The BMP-VEGF-PLGA-CPC scaffold also demonstrated a porosity of 62% with interconnected porous structures, and pore sizes of 219 μm and compressive strength of 6.60 MPa. Additionally, bone marrow mesenchymal stem cells (BMSCs) were seeded on scaffolds in vitro. Further characterization showed that the BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. Using a rabbit model of ANFH, BMP-VEGF-PLGA-CPC scaffolds were implanted into the bone tunnels of core decompression in the femoral head for 6 and 12 weeks. Radiographic and histological analysis demonstrated that the BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. These results indicate that the BMP-VEGF-PLGA-CPC scaffold may improve the therapeutic effect of core decompression surgery and be used as a treatment for ANFH. - Highlights: • BMP-VEGF-PLGA-CPC scaffolds were biocompatible and enhanced osteogenesis and angiogenesis in vitro. • BMP-VEGF-PLGA-CPC scaffolds exhibited good biocompatibility, and osteogenic and angiogenic activity in vivo. • BMP-VEGF-PLGA-CPC scaffolds provided a new approach for the treatment of avascular necrosis of the femoral head (ANFH).

  19. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    Science.gov (United States)

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  20. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    Directory of Open Access Journals (Sweden)

    Uram Ł

    2015-09-01

    Full Text Available Łukasz Uram,1 Magdalena Szuster,1 Aleksandra Filipowicz,2 Krzysztof Gargasz,3 Stanisław Wołowiec,3 Elżbieta Wałajtys-Rode4 1Bioorganic Chemistry Laboratory, Faculty of Chemistry, Rzeszow University of Technology, 2Cosmetology Department, University of Information Technology and Management in Rzeszow, 3Institute of Nursery and Health Sciences, Faculty of Medicine, University of Rzeszow, Rzeszow, 4Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland Abstract: The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM dendrimer and its biotin–pyridoxal (BC-PAMAM bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ and squamous epithelial carcinoma (SCC-15 cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all

  1. VEGF Gene Polymorphisms are Associated with Risk of Tetralogy of Fallot

    Science.gov (United States)

    Li, Xiang; Liu, Chao-Liang; Li, Xiao-Xia; Li, Qing-Chen; Ma, Li-Ming; Liu, Gao-Li

    2015-01-01

    Background The aim of this study was to investigate associations of 3 common polymorphisms in the VEGF gene, −2578C>A, −634C>G, and 936C>T, with risk of tetralogy of Fallot (TOF) in Chinese Han children. Material/Methods From January 2010 to June 2013, a total of 400 pediatric subjects were recruited, including 160 cases with TOF (TOF group) and 240 healthy controls (control group). The genotypes of 3 common VEGF polymorphisms, −2578C>A, −634C>G, and 936C>T, were analyzed by polymerase chain reaction restriction fragment length polymorphism. All data were analyzed with SPSS 18.0 software. Results No significant differences were observed in body mass index or sex between TOF patients and controls (both P>0.05), but significant differences in age and family history of TOF were observed between the 2 groups (both PA of VEGF was correlated with a significantly increased risk of TOF, and TOF risk in A allele carrier was 1.54-fold higher than that of C allele carrier (OR=1.54, 95%CI=1.14–2.09, P=0.005); the statistical significance was still present after Bonferroni correction (Pc=0.045). GG genotype in −634C>G of VEGF gene was also associated with an increased risk of TOF, and TOF risk in patients with G allele was 1.62-fold higher compared to patients with C allele (OR=1.62, 95%CI=1.19–2.21, P=0.002); the statistical significance was still present after Bonferroni correction (Pc=0.018). Interestingly, T allele in VEGF 936C>T polymorphism is associated with a decreased TOF risk (OR=0.65, 95%CI=0.49–0.87, P=0.003, the statistical significance was still present after Bonferroni correction (Pc=0.027). The result of logistic regression analysis revealed that −2578C>A, −634C>G, and 936C>T genotypes are independently related to the prevalence of TOF (all PA and −634C>G, may be associated with an increased TOF risk, while 936C>T polymorphism may be associated with decreased TOF risk. PMID:26558525

  2. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness.

    Science.gov (United States)

    Ozturk, Banu Turgut; Bozkurt, Banu; Kerimoglu, Hurkan; Okka, Mehmet; Kamis, Umit; Gunduz, Kemal

    2009-09-19

    To investigate the role of serum inflammatory cytokines and vascular endothelial growth factor (VEGF) in diabetic retinopathy (DR) and evaluate their relationship with macular thickness measurements obtained with optical coherence tomography (OCT). The study enrolled 28 healthy subjects (Group 1), 31 patients without DR (Group 2), 49 patients with nonproliferative DR (Group 3), and 46 patients with proliferative DR (Group 4). Macular profile was assessed with Stratus OCT-3 and the serum concentrations of VEGF and interleukin-1 alpha (IL-1 alpha), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), macrophage inflammatory protein (MIP-1 alpha), monocyte chemoattractant protein (MCP-1), and epidermal growth factor (EGF) were measured using multiplex bead immunoassay. The median value of the visual acuity was 20/20 (Groups 1 and 2), and 20/100 (Group 3), and 20/125 (Group 4). The median value of central subfield macular thickness was estimated as 165.50 microm in Group 1, 202.5 microm in Group 2, 318 microm in Group 3, and 310 microm in Group 4. The median serum VEGF level, which was 98.20 pg/ml in Group 1, demonstrated a progressive rise to 125.37 pg/ml in Group 2, to 153.07 pg/ml in Group 3, and to 149.12 pg/ml in Group 4. Statistical significance was found between all groups (p0.05). The median serum levels of IL-8, IL-10, MIP-1 alpha, and EGF revealed a wide range within each group, however, no statistically significant relationship was found between the groups (p>0.05). The median values of the serum MCP-1 concentrations presented a statistically significant rise with the progression of DR (p=0.02). No correlation was found between macular thickness and serum cytokine and VEGF levels (p>0.05). Increased serum levels of VEGF and MCP-1 may act as a key regulator of DR and provide a potential tool for risk assessment in diabetic patients. Further studies that evaluate both vitreous and serum levels in various stages of DR are needed to provide a

  3. Germline Polymorphisms of the VEGF Pathway Predict Recurrence in Nonadvanced Differentiated Thyroid Cancer.

    Science.gov (United States)

    Marotta, Vincenzo; Sciammarella, Concetta; Capasso, Mario; Testori, Alessandro; Pivonello, Claudia; Chiofalo, Maria Grazia; Gambardella, Claudio; Grasso, Marica; Antonino, Antonio; Annunziata, Annamaria; Macchia, Paolo Emidio; Pivonello, Rosario; Santini, Luigi; Botti, Gerardo; Losito, Simona; Pezzullo, Luciano; Colao, Annamaria; Faggiano, Antongiulio

    2017-02-01

    Tumor angiogenesis is determined by host genetic background rather than environment. Germline single nucleotide polymorphisms (SNPs) of the vascular endothelial growth factor (VEGF) pathway have demonstrated prognostic value in different tumors. Our main objective was to test the prognostic value of germline SNPs of the VEGF pathway in nonadvanced differentiated thyroid cancer (DTC). Secondarily, we sought to correlate analyzed SNPs with microvessel density (MVD). Multicenter, retrospective, observational study. Four referral centers. Blood samples were obtained from consecutive DTC patients. Genotyping was performed according to the TaqMan protocol, including 4 VEGF-A (-2578C>A, -460T>C, +405G>C, and +936C>T) and 2 VEGFR-2 (+1192 C>T and +1719 T>A) SNPs. MVD was estimated by means of CD34 staining. Rate of recurrent structural disease/disease-free survival (DFS). Difference in MVD between tumors from patients with different genotype. Two hundred four patients with stage I-II DTC (mean follow-up, 73 ± 64 months) and 240 patients with low- to intermediate-risk DTC (mean follow-up, 70 ± 60 months) were enrolled. Two "risk" genotypes were identified by combining VEGF-A SNPs -2578 C>A, -460 T>C, and +405 G>C. The ACG homozygous genotype was protective in both stage I-II (odds ratio [OR], 0.08; 95% confidence interval [CI], 0.01 to 1.43; P = 0.018) and low- to intermediate-risk (OR, 0.14; 95% CI, 0.01 to 1.13; P = 0.035) patients. The CTG homozygous genotype was significantly associated with recurrence in stage I-II (OR, 5.47; 95% CI, 1.15 to 26.04; P = 0.018) and was slightly deleterious in low- to intermediate-risk (OR, 3.39; 95% CI, 0.8 to 14.33; P = 0.079) patients. MVD of primary tumors from patients harboring a protective genotype was significantly lower (median MVD, 76.5 ± 12.7 and 86.7 ± 27.9, respectively; P = 0.024). Analysis of germline VEGF-A SNPs could empower a prognostic approach to DTC. Copyright © 2017 by the Endocrine Society

  4. Difference of polymorphism VEGF-gene rs699947 in Indonesian chronic liver disease population.

    Directory of Open Access Journals (Sweden)

    Neneng Ratnasari

    Full Text Available The VEGF gene polymorphism rs699947 related to clinical pathology, mortality, and recurrence of HCC. Few studies mentioned an association between VEGF gene polymorphisms with illness progression in chronic liver disease. We aimed to explore differences of VEGF gene polymorphism rs699947 in chronic hepatitis, liver cirrhosis and hepatocellular carcinoma patients in Indonesian population.A cross-sectional study with consecutive sampling and without matching was performed during a 3 years period (2011-2014 at Dr. Sardjito General Hospital Yogyakarta, Indonesia. Blood DNA was sequenced from 123 subjects with chronic liver diseases [39 chronic hepatitis (CH, 39 liver cirrhosis (LC, and 45 hepatocellular carcinoma (HCC]. 59 healthy subjects also participated. Using isolated VEGF genes for specific primers for rs699947, blood samples were examined by targeting DNA sequences with Applied Bio systems. All data were analyzed using STATA version 11.0 with significance level at P0.05. HBV was the dominant etiology in HCC, LC, and CH besides HCV and non HBV-HCV (PC vs. C>C, and genotypes distribution. Proportion of SNP -2578 A>C vs. C>C CH 1.8:1; HCC 1.4:1; healthy 1.7:1; but its proportion in LC was inversed (1:1.2. Genotype A was low in all subjects (5%-11%. Significant difference of allele distribution was found in healthy vs. LC, and HCC; CH vs. LC. Based on HWE analyses, distribution of allele C was dominant. There were not significant differences in deletion, insertion-deletion at -2547 until -2526, and haplotype (Ht CCGACCCC (P>0.05. The OR analyses of allele and SNP showed that allele A can be a predictor of disease progression in LC to HCC (OR 2.26 and healthy to LC (OR 1.65; and SNP A>C also can be a predictor in healthy to HCC (OR 1.41 and CH (OR 1.14.The occurrence of allele A and SNP A>C VEGF gene (-2578 might predict illness progression from healthy to CH, LC or HCC and LC to HCC.

  5. Site-Specific Bioconjugation of an Organometallic Electron Mediator to an Enzyme with Retained Photocatalytic Cofactor Regenerating Capacity and Enzymatic Activity

    Directory of Open Access Journals (Sweden)

    Sung In Lim

    2015-04-01

    Full Text Available Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(PH being readily available to a redox enzyme, when the local NAD(PH concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH. A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activity.

  6. Thicker carotid intima-media thickness and increased plasma VEGF levels suffered by post-acute thrombotic stroke patients

    Directory of Open Access Journals (Sweden)

    Yueniwati Y

    2016-12-01

    Full Text Available Yuyun Yueniwati,1 Ni Komang Darmiastini,1 Eko Arisetijono2 1Radiology Department, Faculty of Medicine, Brawijaya University, Malang, Indonesia; 2Neurology Department, Faculty of Medicine, Brawijaya University, Malang, Indonesia Background and objectives: Atherosclerosis causes reduction of the oxygen supply to structures in the far arterial wall, provoking the release of factors that drive angiogenesis of vasa vasorum, including VEGF. Other studies have revealed the inflammatory response in atherosclerosis and the role of platelet factor 4 (PF4 as an anti-angiogenic chemokine through the inhibition of VEGF. This cross-sectional study aims at measuring the effect of atherosclerosis assessed through carotid intima-media thickness (CIMT against plasma VEGF levels in patients with post-acute thrombotic stroke. Materials and methods: CIMT was assessed sonographically using GE Logiq S6 with 13 MHz frequency linear probe. VEGF-A plasma levels were measured using enzyme-linked immunosorbent assay (ELISA method. Differences among variables were compared statistically. The data were analyzed using Pearson correlation. Results: A total of 25 patients with post-acute thrombotic stroke were identified in days 7 to 90. CIMT thickening was indicated in 88% of patients (1.202 ± 0.312 mm, while an increase in plasma VEGF was identified in all patients (178.28 ± 93.96 ng/mL. There was no significant correlation between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke (p=0.741. A significant correlation was recognized between CIMT and total cholesterol (p=0.029 and low-density lipoprotein (p=0.018. Conclusion: There were no significant correlations between CIMT and plasma VEGF levels in patients with post-acute thrombotic stroke. However, plasma VEGF increased in patients with thrombotic stroke. CIMT measurement is a promising noninvasive modality to assess the vascular condition of patients with stroke and diabetes, while plasma VEGF

  7. Celecoxib alleviates tamoxifen-instigated angiogenic effects by ROS-dependent VEGF/VEGFR2 autocrine signaling

    International Nuclear Information System (INIS)

    Kumar, B N Prashanth; Rajput, Shashi; Dey, Kaushik Kumar; Parekh, Aditya; Das, Subhasis; Mazumdar, Abhijit; Mandal, Mahitosh

    2013-01-01

    Tamoxifen (TAM) is widely used in the chemotherapy of breast cancer and as a preventive agent against recurrence after surgery. However, extended TAM administration for breast cancer induces increased VEGF levels in patients, promoting new blood vessel formation and thereby limiting its efficacy. Celecoxib (CXB), a selective COX-2 inhibitor, suppresses VEGF gene expression by targeting the VEGF promoter responsible for its inhibitory effect. For this study, we had selected CXB as non-steroidal anti-inflammatory drug in combination with TAM for suppressing VEGF expression and simultaneously reducing doses of both the drugs. The effects of CXB combined with TAM were examined in two human breast cancer cell lines in culture, MCF7 and MDA-MB-231. Assays of proliferation, apoptosis, angiogenesis, metastasis, cell cycle distribution, and receptor signaling were performed. Here, we elucidated how the combination of TAM and CXB at nontoxic doses exerts anti-angiogenic effects by specifically targeting VEGF/VEGFR2 autocrine signaling through ROS generation. At the molecular level, TAM-CXB suppresses VHL-mediated HIF-1α activation, responsible for expression of COX-2, MMP-2 and VEGF. Besides low VEGF levels, TAM-CXB also suppresses VEGFR2 expression, confirmed through quantifying secreted VEGF levels, luciferase and RT-PCR studies. Interestingly, we observed that TAM-CXB was effective in blocking VEGFR2 promoter induced expression and further 2 fold decrease in VEGF levels was observed in combination than TAM alone in both cell lines. Secondly, TAM-CXB regulated VEGFR2 inhibits Src expression, responsible for tumor progression and metastasis. FACS and in vivo enzymatic studies showed significant increase in the reactive oxygen species upon TAM-CXB treatment. Taken together, our experimental results indicate that this additive combination shows promising outcome in anti-metastatic and apoptotic studies. In a line, our preclinical studies evidenced that this additive

  8. Production and recombination of gluons

    International Nuclear Information System (INIS)

    Temiraliev, A.T.

    2006-01-01

    Full text: Nonlinear Markov process of parton production has been considered. The Kolmogorov equation is applied for the evolution equation based on the approximation of independent gluons production in every decay act. We introduced a 'crossing' parameter and used the combination relations to obtain nonlinear recombination equation for the evolution of gluon structure function. (author)

  9. Recombinator of hydrogen and oxygen

    International Nuclear Information System (INIS)

    Stejskal, J.; Klein, O.; Scholtz, G.; Schmidt, P.; Olaussson, A.

    1976-01-01

    Improvements are proposed for the well known reactors for the catalytic recombination of hydrogen and oxygen, which should permit this being used in contiuous operation in nuclear reactors (BWRs). The improvements concern the geometric arrangement of gas-inlet and -outlet pipes, the inclination of the axis of the catalyst container and the introduction of remote operation. (UWI) [de

  10. Improving recombinant protein purification yield

    Science.gov (United States)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  11. Recombination in hepatitis C virus.

    Science.gov (United States)

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  12. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  13. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  14. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.

  15. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.; Wang, Xihua; Sargent, Edward H.

    2012-01-01

    it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron

  16. Recombinant innovation and endogenous technological transitions

    NARCIS (Netherlands)

    Frenken, K.; Izquierdo, L.R.; Zeppini, P.

    2012-01-01

    We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create "short-cuts" which reduce

  17. Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats

    Directory of Open Access Journals (Sweden)

    S.L. Amaral

    2008-05-01

    Full Text Available Exercise-induced vessel changes modulate arterial pressure (AP in male spontaneously hypertensive rats (SHR. Vascular endothelial growth factor (VEGF is important for angiogenesis of skeletal muscle. The present study evaluated the time course of VEGF and angiogenesis after short- and long-term exercise training of female SHR and Wistar Kyoto (WKY rats, 8-9 weeks (200-250 g. Rats were allocated to daily training or remained sedentary for 3 days (N = 23 or 13 weeks (N = 23. After training, the carotid artery was catheterized for AP measurements. Locomotor (tibialis anterior and gracilis and non-locomotor skeletal muscles (temporalis were harvested and prepared for histologic and protein expression analyses. Training increased treadmill performance by all groups (SHR = 28%, WKY = 64%, 3 days and (SHR = 141%, WKY = 122%, 13 weeks. SHR had higher values of AP than WKY (174 ± 4 vs 111 ± 2 mmHg that were not altered by training. Three days of running increased VEGF expression (SHR = 28%, WKY = 36% simultaneously with an increase in capillary-to-fiber ratio in gracilis muscle (SHR = 19%, WKY = 15%. In contrast, 13 weeks of training increased gracilis capillary-to-fiber ratio (SHR = 18%, WKY = 19%, without simultaneous changes in VEGF expression. Training did not change VEGF expression and capillarity of temporalis muscle. We conclude that training stimulates time- and tissue-dependent VEGF protein expression, independent of pressure levels. VEGF triggers angiogenesis in locomotor skeletal muscle shortly after the exercise starts, but is not involved in the maintenance of capillarity after long-term exercise in female rats.

  18. Reprogramming energy metabolism and inducing angiogenesis: co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas

    International Nuclear Information System (INIS)

    Pinheiro, Céline; Garcia, Eduardo A.; Morais-Santos, Filipa; Moreira, Marise A. R.; Almeida, Fábio M.; Jubé, Luiz F.; Queiroz, Geraldo S.; Paula, Élbio C.; Andreoli, Maria A.; Villa, Luisa L.; Longatto-Filho, Adhemar; Baltazar, Fátima

    2015-01-01

    Deregulation of cellular energetic metabolism was recently pointed out as a hallmark of cancer cells. This deregulation involves a metabolic reprogramming that leads to a high production of lactate. Lactate efflux, besides contributing for the glycolytic flux, also acts in the extracellular matrix, contributing for cancer malignancy, by, among other effects, induction of angiogenesis. However, studies on the interplay between cancer metabolism and angiogenesis are scarce. Therefore, the aim of the present study was to evaluate the metabolic and vascular molecular profiles of cervical adenocarcinomas, their co-expression, and their relation to the clinical and pathological behavior. The immunohistochemical expression of metabolism-related proteins (MCT1, MCT4, CD147, GLUT1 and CAIX) as well as VEGF family members (VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3) was assessed in a series of 232 cervical adenocarcinomas. The co-expression among proteins was assessed and the expression profiles were associated with patients’ clinicopathological parameters. Among the metabolism-related proteins, MCT4 and CAIX were the most frequently expressed in cervical adenocarcinomas while CD147 was the less frequently expressed protein. Overall, VEGF family members showed a strong and extended expression with VEGF-C and VEGFR-2 as the most frequently expressed and VEGFR-1 as the less expressed member. Co-expression of MCT isoforms with VEGF family members was demonstrated. Finally, MCT4 was associated with parametrial invasion and HPV18 infection, CD147 and GLUT1 with distant metastasis, CAIX with tumor size and HPV18 infection, and VEGFR-1 with local and lymphnode metastasis. The results herein presented provide additional evidence for a crosstalk between deregulating cellular energetics and inducing angiogenesis. Also, the metabolic remodeling and angiogenic switch are relevant to cancer progression and aggressiveness in adenocarcinomas

  19. Increased Levels of VEGF-A and HIF-1α in Turkish Children with Crimean-Congo Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Murat Sefikogullari

    2017-04-01

    Full Text Available Background: Crimean-Congo Hemorrhagic Fever (CCHF is a disease characterized by serious course, including acute viral fever, ecchymosis, thrombocytopenia, liver dysfunction and high rate of mortality. Hypoxia Inducible Factor-1α (HIF-1α and Vascular Endothelial Growth Factor-A (VEGF-A play an important role both in the inflamma­tory process and plasma leakage. The aim of this study was to define HIF-1α and VEGF-A serum levels obtained from CCHF patients and control group and to investigate whether these factors were correlated with the pathogenesis of this disease.Methods: Thirty cases younger than 17 yr confirmed by RT-PCR and/or ELISA for CCHF were included in this study. Thirty age and sex matched healthy peoples were enrolled as controls. Blood samples collected from the pa­tient and control groups. Serum levels of HIF-1α and VEGF-A were measured with ELISA.Results: Levels of HIF-1α and VEGF-A were statistically significantly increased in CCHF patients compared to the control group (P< 0.05.  A significant positive correlation was found between the levels of HIF-1α and VEGF-A in the patient group (P< 0.01. The levels of ALT, AST, CK, aPTT, WBC and Thrombocyte count were significantly higher in the patients than in the control group (P< 0.001. A positive correlation was found among the levels of AST and CK from biochemical parame­ters and VEGF and HIF-1α in the patient group (P< 0.05Conclusion: HIF-1α and VEGF-A might play an important role in CCHF pathogenesis.

  20. Lymphangiogenesis in cervical cancer evaluated by expression of the VEGF-C gene in clinical stage IB-IIIB

    Directory of Open Access Journals (Sweden)

    Magdalena Franc

    2015-02-01

    Full Text Available Introduction : The aim of the present study was to evaluate the profile of VEGF-C gene expression in particular stages of cervical cancer (IB-IIIB and to estimate the correlation between VEGF-C mRNA quantity profile and clinical stage. Material and methods : Material for molecular analysis consisted of cervical cancer tissue specimens collected from 38 women (10, 15, 13 cases were classified as IB, IIB and IIIB, respectively. The control group was composed of normal cervical tissues collected from 10 women who underwent hysterectomy for non-oncological reasons. The number of VEGF-C mRNA copies in particular groups was estimated by the reverse transcription quantitative polymerase chain reaction (RT-qPCR method. Results: In the control group the average number of mRNA copies was 134 ± 36 (median: 106, in a group with stage IB it was 16 077 ± 7090 (median: 580, for stage IIB – 35 019 ± 8945 (median: 40 870. The highest number of mRNA VEGF-C copies was derived in a group of patients with cervical cancer of stage IIIB. The average quantity was 56 155 ± 12 470, whereas median 55 981. A statistically significantly higher level of VEGF-C gene expression was disclosed in cervical cancer specimens with stage IIB and IIIB than in the control group. In stage IIIB, the VEGF-C gene expression was significantly higher than in specimens derived from individuals in stage IB. Conclusions : In squamous cell carcinoma of the uterine cervix of stage IB-IIIB genes involved in lymphangio­genesis, especially VEGF-C , are expressed, which expression increases as the clinical stage of cervical cancer is higher.