WorldWideScience

Sample records for recombinant protein vaccination

  1. Potency assay design for adjuvanted recombinant proteins as malaria vaccines.

    Science.gov (United States)

    Giersing, Birgitte K; Dubovsky, Filip; Saul, Allan; Denamur, Francoise; Minor, Philip; Meade, Bruce

    2006-05-15

    Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.

  2. Influenza vaccines: from whole virus preparations to recombinant protein technology.

    Science.gov (United States)

    Huber, Victor C

    2014-01-01

    Vaccination against influenza represents our most effective form of prevention. Historical approaches toward vaccine creation and production have yielded highly effective vaccines that are safe and immunogenic. Despite their effectiveness, these historical approaches do not allow for the incorporation of changes into the vaccine in a timely manner. In 2013, a recombinant protein-based vaccine that induces immunity toward the influenza virus hemagglutinin was approved for use in the USA. This vaccine represents the first approved vaccine formulation that does not require an influenza virus intermediate for production. This review presents a brief history of influenza vaccines, with insight into the potential future application of vaccines generated using recombinant technology.

  3. Immunization against Rumen Methanogenesis by Vaccination with a New Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Litai Zhang

    Full Text Available Vaccination through recombinant proteins against rumen methanogenesis provides a mitigation approach to reduce enteric methane (CH4 emissions in ruminants. The objective of present study was to evaluate the in vivo efficacy of a new vaccine candidate protein (EhaF on methanogenesis and microbial population in the rumen of goats. We amplified the gene mru 1407 encoding protein EhaF using fresh rumen fluid samples of mature goats and successfully expressed recombinant protein (EhaF in Escherichia coli Rosetta. This product was evaluated using 12 mature goats with half for control and other half injected with 400ug/goat the purified recombinant protein in day 1 and two subsequent booster immunizations in day 35 and 49. All measurements were undertaken from 63 to 68 days after the initial vaccination, with CH4 emissions determined using respiration calorimeter chambers. The results showed that the vaccination caused intensive immune responses in serum and saliva, although it had no significant effect on total enteric CH4 emissions and methanogen population in the rumen, when compared with the control goats. However, the vaccination altered the composition of rumen bacteria, especially the abundance of main phylum Firmicutes and genus Prevotella. The results indicate that protein EhaF might not be an effective vaccine to reduce enteric CH4 emissions but our vaccine have potential to influence the rumen ecosystem of goats.

  4. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  5. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  6. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  7. Comparison of Immunoprotection of Leptospira Recombinant Proteins with conventional vaccine in experimental animals.

    Science.gov (United States)

    Parthiban, M; Kumar, S Senthil; Balachandran, C; Kumanan, K; Aarthi, K S; Nireesha, G

    2015-12-01

    Leptospirosis is a bacterial disease caused by bacteria of the genus Leptospira affecting humans and animals. Untreated leptospirosis may result in severe kidney damage, meningitis, liver failure, respiratory distress, and even death. Virulent leptospirosis can rapidly enter kidney fibroblasts and induce a programmed cell death. Thus, it is a challenge for immunologists to develop an effective and safe leptospirosis vaccine. Here, we compared the commercial canine leptospira vaccine and recombinant proteins (OmpL1 and LipL41) with and without adjuvant in terms of immune response and challenge studies in hamsters and immune response studies alone in experimental dogs. The outer membrane proteins viz., lipL41 and OmpL1 of leptospira interrogans serovars icterohaemorrhagiae were amplified. The primers were designed in such a way that amplified products of OmpL1 and lipL41 were ligated and cloned simultaneously into a single vector. The cloned products were expressed in E. coli BL21 cells. The immunoprotection studies were conducted for both recombinant proteins and commercial vaccine. The challenge experiment studies revealed that combination of both rLip41 and rOmpL1 and commercial vaccine gave 83% and 87% protection, respectively. Histopathological investigation revealed mild sub lethal changes were noticed in liver and kidney in commercially vaccinated group alone. The immune responses against recombinant leptospiral proteins were also demonstrated in dogs.

  8. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  9. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  10. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  11. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Science.gov (United States)

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  12. The recombinant globular head domain of the measles virus hemagglutinin protein as a subunit vaccine against measles.

    Science.gov (United States)

    Lobanova, Liubov M; Eng, Nelson F; Satkunarajah, Malathy; Mutwiri, George K; Rini, James M; Zakhartchouk, Alexander N

    2012-04-26

    Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses. The recombinant protein was purified from the culture supernatant of stably transfected HEK293T cells secreting a tagged version of the protein. Two subcutaneous immunizations with the purified recombinant protein alone resulted in the production of MV-specific serum IgG and neutralizing antibodies in mice. Formulation of the protein with adjuvants (polyphosphazene or alum) further enhanced the humoral immune response and in addition resulted in the induction of cell-mediated immunity as measured by the production of MV H-specific interferon gamma (IFN-γ) and interleukin 5 (IL-5) by in vitro re-stimulated splenocytes. Furthermore, the inclusion of polyphosphazene into the vaccine formulation induced a mixed Th1/Th2-type immune response. In addition, the purified recombinant protein retained its immunogenicity even after storage at 37°C for 2 weeks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Application of recombinant hemagglutinin proteins as alternative antigen standards for pandemic influenza vaccines.

    Science.gov (United States)

    Choi, Yejin; Kwon, Seong Yi; Oh, Ho Jung; Shim, Sunbo; Chang, Seokkee; Chung, Hye Joo; Kim, Do Keun; Park, Younsang; Lee, Younghee

    2017-09-01

    The single radial immunodiffusion (SRID) assay, used to quantify hemagglutinin (HA) in influenza vaccines, requires reference reagents; however, because centralized production of reference reagents may slow the emergency deployment of vaccines, alternatives are needed. We investigated the production of HA proteins using recombinant DNA technology, rather than a traditional egg-based production process. The HA proteins were then used in an SRID assay as a reference antigen. We found that HA can be quantified in both egg-based and cell-based influenza vaccines when recombinant HAs (rHAs) are used as the reference antigen. Furthermore, we confirmed that rHAs obtained from strains with pandemic potential, such as H5N1, H7N3, H7N9, and H9N2 strains, can be utilized in the SRID assay. The rHA production process takes just one month, in contrast to the traditional process that takes three to four months. The use of rHAs may reduce the time required to produce reference reagents and facilitate timely introduction of vaccines during emergencies.

  14. Vaccination of dogs with six different candidate leishmaniasis vaccines composed of a chimerical recombinant protein containing ribosomal and histone protein epitopes in combination with different adjuvants.

    Science.gov (United States)

    Poot, J; Janssen, L H M; van Kasteren-Westerneng, T J; van der Heijden-Liefkens, K H A; Schijns, V E J C; Heckeroth, A

    2009-07-16

    Chimerical protein "Q", composed of antigenic ribosomal and histone sequences, in combination with live BCG is a promising canine leishmaniasis vaccine candidate; one of the few vaccine candidates that have been tested successfully in dogs. Unfortunately, live BCG is not an appropriate adjuvant for commercial application due to safety problems in dogs. In order to find a safe adjuvant with similar efficacy to live BCG, muramyl dipeptide, aluminium hydroxide, Matrix C and killed Propionibacterium acnes in combination with either E. coli- or baculovirus-produced recombinant JPCM5_Q protein were tested. Groups of five or seven dogs were vaccinated with six different adjuvant-antigen combinations and challenged with a high dose intravenous injection of Leishmania infantum JPC strain promastigotes. All candidate vaccines proved to be safe, and both humoral and cellular responses to the recombinant proteins were detected at the end of the prime-boost vaccination scheme. However, clinical and parasitological data obtained during the 10 month follow-up period indicated that protection was not induced by either of the six candidate vaccines. Although no direct evidence was obtained, our data suggest that live BCG may have a significant protective effect against challenge with L. infantum in dogs.

  15. Obtaining classical swine fever virus E2 recombinant protein and DNA-vaccine on the basis of one subunit

    International Nuclear Information System (INIS)

    Deryabin, O.; Deryabina, O.; Verbitskiy, P.; Kordyum, V.

    2005-01-01

    Three forms of E2 recombinant protein were expressed in E. coli. Swine sera obtained against different forms of the recombinant protein were cross-studied with indirect ELISA. Using individual proteins as an antigen, only 15% of sera against other forms of protein reacted positively, while 100% of heterologous sera showed positive reaction with fused protein. Challenge experiments showed the existence of protective action only from the individual protein. Specificity and activity of sera obtained from the animals after control challenge was confirmed in a blocking variant of ELISA. Genetic construction used a eukaryotic vector that contained the E2 protein gene. Immunization of mice with the resulting DNA induced synthesis of specific antibodies, the titre of which increased considerably after additional single immunization with the E2 recombinant protein, expressed in E. coli. This demonstrated the effectiveness of animal priming by DNA vaccine, and the possibility of using the E2 recombinant protein in E. coli for booster vaccination. (author)

  16. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  17. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  18. Recombinant vaccines and the development of new vaccine strategies

    International Nuclear Information System (INIS)

    Nascimento, I.P.; Leite, L.C.C.

    2012-01-01

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks

  19. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  1. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States.

    Science.gov (United States)

    Brueggemann, Angela B; Pai, Rekha; Crook, Derrick W; Beall, Bernard

    2007-11-01

    The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.

  2. PROTECTIVE ACTIVITY STUDY OF A CANDIDATE VACCINE AGAINST ROTAVIRUS INFECTION BASED ON RECOMBINANT PROTEIN FliCVP6VP8

    Directory of Open Access Journals (Sweden)

    I. V. Dukhovlinov

    2016-01-01

    Full Text Available Rotavirus infection is among leading causes of severe diarrhea which often leads to severe dehydration, especially, in children under 5 years old. In Russia, the incidence of rotavirus infection is constantly increased, due to higher rates of actual rotavirus infection cases and improved diagnostics of the disease. Immunity to rotavirus is unstable, thus causing repeated infections intra vitam. Anti-infectious resistance in reconvalescents is explained by induction of specific IgM, IgG, and, notably, IgA antibodies. Due to absence of market drugs with direct action against rotavirus, a rational vaccination is considered the most effective way to control the disease. Currently available vaccines for prevention of rotavirus infection are based on live attenuated rotavirus strains, human and/or animal origin, which replicate in human gut. Their implementation may result into different complications. Meanwhile, usage of vaccines based on recombinant proteins is aimed to avoid risks associated with introduction of a complete virus into humans. In this paper, we studied protective activity of candidate vaccines against rotavirus.In this work we studied protective activity of a candidate vaccine against rotavirus infection based on recombinant FliCVP6VP8 protein which includes VP6 and VP8, as well as components of Salmonella typhimurium flagellin (FliC as an adjuvant. Different components are joined by flexible bridges. Efficiency of the candidate vaccine was studied in animal model using Balb/c mice. We have shown high level of protection which occurs when the candidate vaccine is administered twice intramuscularly. Complete protection of animals against mouse rotavirus EDC after intramuscular immunization with a candidate vaccine was associated with arising rotavirus-specific IgA and IgG antibodies in serum and intestine of immunized animals. The efficacy of candidate vaccine based on recombinant protein FliCVP6VP8 against rotavirus infection was

  3. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    Science.gov (United States)

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant.

    Science.gov (United States)

    Chong, Pele; Huang, Jui-Hsin; Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei

    2015-01-01

    A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies. © 2015 Elsevier Inc. All rights reserved.

  5. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes.

    Science.gov (United States)

    Burlet, E; HogenEsch, H; Dunham, A; Morefield, G

    2017-05-01

    Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.

  6. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 PMID:26701602

  7. [History of vaccination: from empiricism towards recombinant vaccines].

    Science.gov (United States)

    Guérin, N

    2007-01-01

    Two hundreds years after the discovery of the smallpox vaccine, immunization remains one of the most powerful tools of preventive medicine. Immunization was born with Jenner, then Pasteur and expanded during the 19th and 20th century. It started with the empirical observation of cross-immunity between two diseases, cowpox and smallpox. It became a real science, with pathogen isolation, culture and attenuation or inactivation, to prepare a vaccine. Together with clinical and biological efficacy studies and adverse events assessments, it constructed the concept of "vaccinology". Protein conjugation of polyosidic vaccines has made possible early immunisation of infants. Nowadays, recombinant, reassortant, or virus-like particles technologies open the road for new vaccines. Ongoing research opens the way for the development of new vaccines that will help to control transmittable diseases for which we are lacking antimicrobial agents.

  8. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (Pmaxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Vaccination with Clostridium perfringens recombinant proteins in combination with Montanide™ ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens

    Science.gov (United States)

    This study was performed to compare four Clostridium perfringens recombinant proteins as vaccine candidates using the Montanide™ ISA 71 VG adjuvant in an experimental model of necrotic enteritis. Broiler chickens were immunized with clostridial recombinant proteins with ISA 71 VG, and intestinal le...

  10. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Recombinant egg drop syndrome subunit vaccine offers an alternative to virus propagation in duck eggs.

    Science.gov (United States)

    Gutter, B; Fingerut, E; Gallili, G; Eliahu, D; Perelman, B; Finger, A; Pitcovski, J

    2008-02-01

    Egg drop syndrome (EDS) virus vaccines are routinely produced in embryonated duck eggs (Solyom et al., 1982). This procedure poses the risk of dissemination of pathogens, such as avian influenza virus, as the eggs used are not from specific pathogen free birds. To address this problem, the knob and part of the shaft domain of the fibre protein of the EDS virus (termed knob-s) were expressed in Escherichia coli and assessed as a subunit vaccine. A single vaccination with the recombinant protein induced the production of anti-EDS virus antibodies, as detected by haemagglutination inhibition, enzyme-linked immunosorbent assay and virus neutralization tests, for at least 20 weeks. A positive correlation was demonstrated between these three assays. A dose-response assessment showed that the vaccine was effective over the range of 2 to 64 microg protein per dose. Two vaccinations with the recombinant protein, administered before the onset of lay, induced high haemagglutination inhibition antibody titres, comparable with those induced by an inactivated whole-virus vaccine. The vaccine did not have any adverse effects on egg production, quality or weight. The present study has shown that two vaccinations with the recombinant knob-s protein elicited high neutralizing antibody titres that persisted for more than 50 weeks of lay.

  13. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production.

    Science.gov (United States)

    Oyarzún, Patricio; Kobe, Bostjan

    2016-03-03

    Novel vaccination approaches based on rational design of B- and T-cell epitopes - epitope-based vaccines - are making progress in the clinical trial pipeline. The epitope-focused recombinant protein-based malaria vaccine (termed RTS,S) is a next-generation approach that successfully reached phase-III trials, and will potentially become the first commercial vaccine against a human parasitic disease. Progress made on methods such as recombinant DNA technology, advanced cell-culture techniques, immunoinformatics and rational design of immunogens are driving the development of these novel concepts. Synthetic recombinant proteins comprising both B- and T-cell epitopes can be efficiently produced through modern biotechnology and bioprocessing methods, and can enable the induction of large repertoires of immune specificities. In particular, the inclusion of appropriate CD4+ T-cell epitopes is increasingly considered a key vaccine component to elicit robust immune responses, as suggested by results coming from HIV-1 clinical trials. In silico strategies for vaccine design are under active development to address genetic variation in pathogens and several broadly protective "universal" influenza and HIV-1 vaccines are currently at different stages of clinical trials. Other methods focus on improving population coverage in target populations by rationally considering specificity and prevalence of the HLA proteins, though a proof-of-concept in humans has not been demonstrated yet. Overall, we expect immunoinformatics and bioprocessing methods to become a central part of the next-generation epitope-based vaccine development and production process.

  14. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...... vector are susceptible to vaccine-induced antibodies. The mainstay approach to antibody induction by subunit vaccination has been the delivery of protein antigen formulated in adjuvant. Extensive efforts have been made in this endeavor with respect to malaria vaccine development, especially with regard......, with the prospects for the development of a highly effective multi-component/multi-stage/multi-antigen formulation seeming ever more likely. This review will focus on recent progress in protein vaccine design, development and/or clinical testing for a number of leading malaria antigens from the sporozoite...

  15. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Directory of Open Access Journals (Sweden)

    Bryan E Hart

    2016-12-01

    Full Text Available Buruli ulcer (BU vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  16. Expression and Purification of the Recombinant Cytochrome P450 CYP141 Protein of Mycobacterium Tuberculosis as a Diagnostic Tool and Vaccine Production.

    Science.gov (United States)

    Heidari, Reza; Rabiee-Faradonbeh, Mohammad; Darban-Sarokhalil, Davood; Alvandi, Amirhooshang; Abdian, Narges; Aryan, Ehsan; Soleimani, Neda; Gholipour, Abolfazl

    2015-06-01

    Tuberculosis (TB) is regarded as a health problem worldwide, particularly in developing countries. Mycobacterium tuberculosis (M. tuberculosis) is the cause of this disease. Approximately two billion people worldwide are infected by M. tuberculosis and annually about two million individuals die in consequence. Forty million people are estimated to die because of M. tuberculosis over the next 25 years if the measures for controlling this infection are not extensively developed. In the vaccination field, Bacillus Calmette-Guérin (BCG) is still the most effective vaccine but it shows no efficacy in adult pulmonary patients. One of the other problems regarding TB is its appropriate diagnosis. In this experimental study, the recombinant cytochrome P450 CYP141 protein of M. tuberculosis was expressed and purified to be used as a vaccine candidate and diagnostic purpose in subsequent investigations. The optimization of the cytochrome P450 CYP141 protein expression was evaluated in different conditions. Then, this protein was purified with a resin column of nickel-nitrilotriacetic acid and investigated via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting. The highest expression of the cytochrome P450 CYP141 protein was obtained by the addition of 1 mM of isopropyl β-D-1-thiogalactopyranoside (IPTG) to the bacterial culture grown to an optical density at 600 nm (OD600) of 0.6, 16 hours after induction. This protein was subsequently purified with a purification of higher than 80%. The results of Western Blotting indicated that the purified protein was specifically detected. In this experimental study, for the first time in Iran the expression and purification of this recombinant protein was done successfully. This recombinant protein could be used as a vaccine candidate and diagnostic purpose in subsequent investigations.

  17. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper.

    Science.gov (United States)

    Pan, Zihao; Liu, Jin; Ma, Jiale; Jin, Qiuli; Yao, Huochun; Osterrieder, Nikolaus

    2017-10-01

    Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper. Copyright © 2017. Published by Elsevier Ltd.

  18. Vaccination with Recombinant Non-transmembrane Domain of Protein Mannosyltransferase 4 Improves Survival during Murine Disseminated Candidiasis.

    Science.gov (United States)

    Wang, Li; Yan, Lan; Li, Xing Xing; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-01-01

    Candida albicans is the most common cause of invasive fungal infections in humans. The C. albicans cell wall proteins play an important role in crucial host-fungus interactions and might be ideal vaccine targets to induce protective immune response in host. Meanwhile, protein that is specific to C. albicans is also an ideal target of vaccine. In this study, 11 proteins involving cell wall biosynthesis, yeast-to-hypha formation, or specific to C. albicans were chosen and were successfully cloned, purified and verified. The immune protection of vaccination with each recombinant protein respectively in preventing systemic candidiasis in BALB/c mice was assessed. The injection of rPmt4p vaccination significantly increased survival rate, decreased fungal burdens in the heart, liver, brain, and kidneys, and increased serum levels of both immunoglobulin G (IgG) and IgM against rPmt4p in the immunized mice. Histopathological assessment demonstrated that rPmt4p vaccination protected the tissue structure, and decreased the infiltration of inflammatory cells. Passive transfer of the rPmt4p immunized serum increased survival rate against murine systemic candidiasis and significantly reduced organ fungal burden. The immune serum enhanced mouse neutrophil killing activity by directly neutralizing rPmt4p effects in vitro. Levels of interleukin (IL)-4, IL-10, IL-12p70, IL-17A and tumor necrosis factor (TNF)-α in serum were higher in the immunized mice compared to those in the adjuvant control group. In conclusion, our results suggested that rPmt4p vaccination may be considered as a potential vaccine candidate against systemic candidiasis.

  19. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    Science.gov (United States)

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  20. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome

    Science.gov (United States)

    Jiang, Shibo; Bottazzi, Maria Elena; Du, Lanying; Lustigman, Sara; Tseng, Chien-Te Kent; Curti, Elena; Jones, Kathryn; Zhan, Bin; Hotez, Peter J

    2013-01-01

    A subunit vaccine, RBD-S, is under development to prevent severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV), which is classified by the US NIH as a category C pathogen. This vaccine is comprised of a recombinant receptor-binding domain (RBD) of the SARS-CoV spike (S) protein and formulated on alum, together with a synthetic glucopyranosyl lipid A. The vaccine would induce neutralizing antibodies without causing Th2-type immunopathology. Vaccine development is being led by the nonprofit product development partnership; Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development in collaboration with two academic partners (the New York Blood Center and University of Texas Medical Branch); an industrial partner (Immune Design Corporation); and Walter Reed Army Institute of Research. A roadmap for the product development of the RBD-S SARS vaccine is outlined with a goal to manufacture the vaccine for clinical testing within the next 5 years. PMID:23252385

  1. Vaccine potential of recombinant saposin-like protein 2 against Fasciolosis gigantica in mice.

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Riengrojpitak, Suda; Chaichanasak, Pannigan; Meemon, Krai; Chaithirayanon, Kulathida; Chantree, Pathanin; Sansri, Veerawat; Itagaki, Tadashi; Sobhon, Prasert

    2013-11-12

    Saposin-like protein 2 (SAP-2) is a protein that adult of Fasciola spp. use to lyse plasma membrane of red blood cells, so that their contents can be digested by proteases for the parasites' nutrients. Thus SAP-2 is a plausible target for vaccination against these parasites. Recombinant Fasciola gigantica saposin-like protein 2 (rFgSAP-2) was expressed in Escherichia coli BL21 (DE3). A vaccination was performed in ICR mice (n=10) by subcutaneous injection with 50μg of rFgSAP-2 combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 30 F. gigantica metacercariae by oral route. The percentages of protection of rFgSAP-2 vaccine against F. gigantica were estimated to be 76.4-78.5% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The antibodies in immune sera of vaccinated mice were shown by immuno-blotting to react with native FgSAP-2 in the extract of 2- and 4-week-old juvenile parasites. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, it was found that both Th1 and Th2 humoral immune response were significantly increased in rFgSAP-2 immunized group compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rFgSAP-2-immunized group showed no significant difference from those of the non-immunized and infected group, indicating that early juvenile parasites induced liver parenchyma damage, even though the numbers of worm recoveries were significantly different. This study indicates that rFgSAP-2 has a high potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in larger economic animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants

    OpenAIRE

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri...

  3. Recombinant raccoon pox vaccine protects mice against lethal plague

    Science.gov (United States)

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7×104 LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague.

  4. Bacterially produced recombinant influenza vaccines based on virus-like particles.

    Directory of Open Access Journals (Sweden)

    Andrea Jegerlehner

    Full Text Available Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.

  5. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  6. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-09-21

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in Escherichia coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. Published by Elsevier Ltd.

  7. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms' tumor 1 protein.

    Science.gov (United States)

    Kitagawa, Koichi; Oda, Tsugumi; Saito, Hiroki; Araki, Ayame; Gonoi, Reina; Shigemura, Katsumi; Hashii, Yoshiko; Katayama, Takane; Fujisawa, Masato; Shirakawa, Toshiro

    2017-06-01

    Several types of vaccine-delivering tumor-associated antigens (TAAs) have been developed in basic and clinical research. Wilms' tumor 1 (WT1), identified as a gene responsible for pediatric renal neoplasm, is one of the most promising TAA for cancer immunotherapy. Peptide and dendritic cell-based WT1 cancer vaccines showed some therapeutic efficacy in clinical and pre-clinical studies but as yet no oral WT1 vaccine can be administrated in a simple and easy way. In the present study, we constructed a novel oral cancer vaccine using a recombinant Bifidobacterium longum displaying WT1 protein. B. longum 420 was orally administered into mice inoculated with WT1-expressing tumor cells for 4 weeks to examine anti-tumor effects. To analyze the WT1-specific cellular immune responses to oral B. longum 420, mice splenocytes were isolated and cytokine production and cytotoxic activities were determined. Oral administrations of B. longum 420 significantly inhibited WT1-expressing tumor growth and prolonged survival in mice. Immunohistochemical study and immunological assays revealed that B. longum 420 substantially induced tumor infiltration of CD4 + T and CD8 + T cells, systemic WT1-specific cytokine production, and cytotoxic activity mediated by WT1-epitope specific cytotoxic T lymphocytes, with no apparent adverse effects. Our novel oral cancer vaccine safely induced WT1-specific cellular immunity via activation of the gut mucosal immune system and achieved therapeutic efficacy with several practical advantages over existing non-oral vaccines.

  8. Protective efficacy of six immunogenic recombinant proteins of Vibrio anguillarum and evaluation them as vaccine candidate for flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-06-01

    Vibrio anguillarum is a severe bacterium that causes terminal haemorrhagic septicaemia in freshwater and marine fish. Virulence-associated proteins play an important role in bacterial pathogenicity and could be applied for immunoprophylaxis. In this study, six antigenic proteins from V. anguillarum were selected and the immune protective efficacy of their recombinant proteins was investigated. VirA, CheR, FlaC, OmpK, OmpR and Hsp33 were recombinantly produced and the reactions of recombinant proteins to flounder-anti-V. anguillarum antibodies (fV-ab) were detected, respectively. Then the recombinant proteins were injected to fish, after immunization, the percentages of surface membrane immunoglobulin-positive (sIg+) cell in lymphocytes, total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were analyzed, respectively. The results showed that all the recombinant proteins could react to fV-ab, proliferate sIg + cells in lymphocytes and induce production of total antibodies, specific antibodies against V. anguillarum or the recombinant proteins; the RPS of rVirA, rCheR, rFlaC, rOmpK, rOmpR and rHsp33 against V. anguillarum was 70.27%, 27.03%, 16.22%, 62.16%, 45.95% and 81.08%, respectively. The results revealed that rHsp33, rVirA and rOmpK have good protections against V. anguillarum and could be vaccine candidates against V. anguillarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Immunogenicity of Recombinant Proteins Consisting of Plasmodium vivax Circumsporozoite Protein Allelic Variant-Derived Epitopes Fused with Salmonella enterica Serovar Typhimurium Flagellin

    Science.gov (United States)

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida

    2013-01-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax. PMID:23863502

  10. ADDITION OF ADJUVANTS IN RECOMBINANT SUBUNIT VACCINES FOR THE PREVENTION OF GROUPER SLEEPY DISEASE IRIDOVIRUS (GSDIV INFECTION IN HUMPBACK GROUPER, Cromileptes altivelis

    Directory of Open Access Journals (Sweden)

    Ketut Mahardika

    2017-01-01

    Full Text Available Infection of grouper sleepy disease iridovirus (GSDIV which is a member of Megalocytivirus causes mass mortalities in marine fish in Indonesia. This study was conducted to know the effectiveness of recombinant subunit vaccine of GSDIV with an addition of adjuvants against GSDIV infection. Inactive bacteria Eschericia coli containing recombinant MCP-GSDIV protein was added with montanide ISA adjuvant at a ratio of 3:7. The vaccine was administered to humpback grouper, Cromileptes altivelis by intramuscular and intraperitoneal injection at a dose of 0.1 mL/fish. Test of the vaccine in humpback grouper was performed in four replicates (four trials. Results of the vaccination showed that the recombinant protein vaccine added with the adjuvant increased immunity of humpback grouper, indicated by higher relative percent survival (RPS= 77.78% compared to negative control (PBS and 50% higher compared to protein control (pET Sumo CAT at two weeks post vaccination. The RPS values of the recombinant protein vaccine were still higher (53.57%-72.73% than those of the control vaccine and 25%-53.33% of the protein control in the 4th week post vaccination. GSDIV detection by PCR showed that MCP-GSDIV-DNA and pET Sumo CAT-DNA were not detected in the vaccinated fish after one, two, three, and four weeks post vaccination. The fish died in both of vaccinated and control groups after experimental challenge with GSDIV were found to be infected with GSDIV. It can be stated that recombinant subunit vaccine of GSDIV with the addition of montanide ISA adjuvant could be used to prevent and diminish mortalities of grouper against GSDIV infection.

  11. Vaccination with recombinant heat shock protein 60 from Histoplasma capsulatum protects mice against pulmonary histoplasmosis.

    Science.gov (United States)

    Gomez, F J; Allendoerfer, R; Deepe, G S

    1995-07-01

    HIS-62 is a glycoprotein that has been isolated from the cell wall and cell membrane fraction of the pathogenic fungus Histoplasma capsulatum. It is a target of the cellular immune response to this fungus, and it protects mice against a lethal intravenous inoculum of H. capsulatum yeast cells. In this study, we cloned the gene encoding this antigen to reveal its biological nature and studied the immunological activity of recombinant antigen. The amino acid sequences of the NH2 terminus and internal peptides were obtained by Edman degradation. Degenerate oligonucleotides were used to isolate a gene fragment of HIS-62 by PCR. One 680-bp segment that corresponded to the known peptide sequence was amplified from H. capsulatum DNA. This DNA was used to screen a genomic library, and the full-length gene was isolated and sequenced. The deduced amino acid sequence of the gene demonstrated approximately 70 and approximately 50% identity to heat shock protein 60 (hsp 60) from Saccharomyces cerevisiae and hsp 60 from Escherichia coli, respectively. A cDNA was synthesized by reverse transcription PCR and was expressed in E. coli. Recombinant protein reacted with a monospecific polyclonal rabbit antiserum raised against native HIS-62, with monoclonal HIS-62-reactive T cells, and with splenocytes from mice immunized with viable yeast cells. Moreover, vaccination with the recombinant protein conferred protection in mice against a lethal intranasal inoculation with yeast cells. Thus, HIS-62 is a member of the hsp 60 family, and the recombinant hsp 60 is protective against pulmonary histoplasmosis in mice.

  12. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus

    Directory of Open Access Journals (Sweden)

    Xu Dan

    2011-03-01

    Full Text Available Abstract Background Grass carp reovirus (GCRV is the causative pathogen of grass carp hemorrhagic disease, one of the major diseases damaging grass carp Ctenopharyngon idellus breeding industry in China. Prevention and control of the disease is impeded largely due to the lack of research in economic subunit vaccine development. This study aimed to evaluate the potential of viral outer shell protein VP5 as subunit vaccine. Methods The vp5 gene was isolated from the viral genome through RT-PCR and genetically engineered to express the recombinant VP5 protein in E coli. The viral origin of the recombinant protein was confirmed by Western blot analysis with a monoclonal antibody against viral VP5 protein. Polyclonal antibody against the recombinant VP5 protein was prepared from mice. A microneutralization assay was developed to test its neutralizing ability against GCRV infection in cell culture. Results The GST-VP5 fusion protein (rVP5 was produced from E. Coli with expected molecular weight of 90 kDa. The protein was purified and employed to prepare anti-VP5 polyclonal antibody from mice. The anti-VP5 antibody was found to neutralize GCRV through in vitro microneutralization assay and viral progeny quantification analysis. Conclusions The present study showed that the viral VP5 protein was involved in viral infection and bacterially-expressed VP5 could be suitable for developing subunit vaccine for the control of GCRV infection.

  13. Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant

    NARCIS (Netherlands)

    Ophorst, Olga J. A. E.; Radosevic, Katarina; Klap, Jaco M.; Sijtsma, Jeroen; Gillissen, Gert; Mintardjo, Ratna; van Ooij, Mark J. M.; Holterman, Lennart; Companjen, Arjen; Goudsmit, Jaap; Havenga, Menzo J. E.

    2007-01-01

    Previously, we have shown the potency of recombinant Adenovirus serotype 35 viral vaccines (rAd35) to induce strong immune response against the circumsporozoite protein (CS) of the plasmodium parasite. To further optimize immunogenicity of Ad35-based malaria vaccines we formulated rAd35.CS vaccine

  14. Subdominant Outer Membrane Antigens in Anaplasma marginale: Conservation, Antigenicity, and Protective Capacity Using Recombinant Protein.

    Directory of Open Access Journals (Sweden)

    Deirdre R Ducken

    Full Text Available Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP extracts or a defined surface protein complex reproducibly induce protective immunity. However, there are several knowledge gaps limiting progress in vaccine development. First, are these OMPs conserved among the diversity of A. marginale strains circulating in endemic regions? Second, are the most highly conserved outer membrane proteins in the immunogens recognized by immunized and protected animals? Lastly, can this subset of OMPs recognized by antibody from protected vaccinates and conserved among strains recapitulate the protection of outer membrane vaccines? To address the first goal, genes encoding OMPs AM202, AM368, AM854, AM936, AM1041, and AM1096, major subdominant components of the outer membrane, were cloned and sequenced from geographically diverse strains and isolates. AM202, AM936, AM854, and AM1096 share 99.9 to 100% amino acid identity. AM1041 has 97.1 to 100% and AM368 has 98.3 to 99.9% amino acid identity. While all four of the most highly conserved OMPs were recognized by IgG from animals immunized with outer membranes, linked surface protein complexes, or unlinked surface protein complexes and shown to be protected from challenge, the highest titers and consistent recognition among vaccinates were to AM854 and AM936. Consequently, animals were immunized with recombinant AM854 and AM936 and challenged. Recombinant vaccinates and purified outer membrane vaccinates had similar IgG and IgG2 responses to both proteins. However, the recombinant vaccinates developed higher bacteremia after challenge as compared to adjuvant-only controls and outer membrane vaccinates. These results provide the first evidence that vaccination with specific antigens may exacerbate disease. Progressing from the protective capacity of outer membrane formulations to

  15. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  16. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris.

    Science.gov (United States)

    Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang

    2015-01-01

    Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease.

    Science.gov (United States)

    Torres, J M; Sánchez, C; Ramírez, M A; Morales, M; Bárcena, J; Ferrer, J; Espuña, E; Pagès-Manté, A; Sánchez-Vizcaíno, J M

    2001-08-14

    As a novel approach for immunisation of wild rabbits, we have recently developed a transmissible vaccine against myxomatosis and rabbit hemorrhagic disease (RHD) based on a recombinant myxoma virus (MV) expressing the RHDV capsid protein [J. Virol. 74 (2000) 1114]. The efficacy and safety of the vaccine have been extensively evaluated under laboratory conditions. In this study, we report the first limited field trial of the candidate vaccine that was undertaken in an island of 34 Has containing a population of around 300 rabbits. Following administration by the subcutaneous route to 76 rabbits, the vaccine induced specific antibody responses against both myxomatosis and RHDV in all the inoculated rabbits. Furthermore, the recombinant virus exhibited a limited horizontal transmission capacity, promoting seroconversion of around 50% of the uninoculated rabbit population. No evidence of undesirable effects due to the recombinant virus field release was detected.

  18. Recombinant zoster (shingles) vaccine, RZV - what you need to know

    Science.gov (United States)

    ... year in the United States get shingles. Shingles vaccine (recombinant) Recombinant shingles vaccine was approved by FDA in 2017 for the ... life-threatening allergic reaction after a dose of recombinant shingles vaccine, or has a severe allergy to any component ...

  19. Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Gauci, Charles; Jayashi, César; Lightowlers, Marshall W

    2013-01-01

    Taenia solium is a zoonotic parasite that causes cysticercosis. The parasite is a major cause of human disease in impoverished communities where it is transmitted to humans from pigs which act as intermediate hosts. Vaccination of pigs to prevent transmission of T. solium to humans is an approach that has been investigated to control the disease. A recombinant vaccine antigen, TSOL18, has been remarkably successful at reducing infection of pigs with T. solium in several experimental challenge trials. The vaccine has been shown to eliminate transmission of naturally acquired T. solium in a field trial conducted in Africa. We recently reported that the vaccine was also effective in a field trial conducted in Peru. The TSOL18 recombinant antigen for each of these trials has been produced by expression in Escherichia coli. Here we discuss research that has been undertaken on the TSOL18 antigen and related antigens with a focus on improved methods of preparation of recombinant TSOL18 and optimized expression in Escherichia coli.

  20. [Genetic recombination in vaccine poliovirus: comparative study in strains excreted in course of vaccination by oral poliovirus vaccine and circulating strains].

    Science.gov (United States)

    Haddad-Boubaker, S; Ould-Mohamed-Abdallah, M V; Ben-Yahia, A; Triki, H

    2010-12-01

    Recombination is one of the major mechanisms of evolution in poliovirus. In this work, recombination was assessed in children during vaccination with OPV and among circulating vaccine strains isolated in Tunisia during the last 15 years in order to identify a possible role of recombination in the response to the vaccine or the acquisition of an increased transmissibility. This study included 250 poliovirus isolates: 137 vaccine isolates, excreted by children during primary vaccination with OPV and 113 isolates obtained from acute flaccid paralytic (AFP) cases and healthy contacts. Recombination was first assessed using a double PCR-RFLP, and sequencing. Nineteen per cent of recombinant strains were identified: 20% of strains excreted by vaccinees among 18% of circulating strains. The proportion of recombinant in isolates of serotype1 was very low in the two groups while the proportions of recombinants in serotypes 2 and 3 were different. In vaccinees, the frequency of recombinants in serotype3 decreased during the course of vaccination: 54% after the first dose, 32% after the second and 14% after the third dose. These results suggest that recombination enhances the ability of serotype3 vaccine strains to induce an immune response. Apart from recent vaccination, it may contribute to a more effective transmissibility of vaccine strains among human population. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  1. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  3. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  4. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  5. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  6. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis.

    Science.gov (United States)

    Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E

    2015-02-18

    Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation

  7. Insect Larvae: A New Platform to Produce Commercial Recombinant Proteins.

    Science.gov (United States)

    Targovnik, Alexandra M; Arregui, Mariana B; Bracco, Lautaro F; Urtasun, Nicolas; Baieli, Maria F; Segura, Maria M; Simonella, Maria A; Fogar, Mariela; Wolman, Federico J; Cascone, Osvaldo; Miranda, Maria V

    2016-01-01

    In Biotechnology, the expression of recombinant proteins is a constantly growing field and different hosts are used for this purpose. Some valuable proteins cannot be produced using traditional systems. Insects from the order Lepidoptera infected with recombinant baculovirus have appeared as a good choice to express high levels of proteins, especially those with post-translational modifications. Lepidopteran insects, which are extensively distributed in the world, can be used as small protein factories, the new biofactories. Species like Bombyx mori (silkworm) have been analyzed in Asian countries to produce a great number of recombinant proteins for use in basic and applied science and industry. Many proteins expressed in this larva have been commercialized. Several recombinant proteins produced in silkworms have already been commercialized. On the other hand, species like Spodoptera frugiperda, Heliothis virescens, Rachiplusia nu, Helicoverpa zea and Trichoplusia ni are widely distributed in both the occidental world and Europe. The expression of recombinant proteins in larvae has the advantage of its low cost in comparison with insect cell cultures. A wide variety of recombinant proteins, including enzymes, hormones and vaccines, have been efficiently expressed with intact biological activity. The expression of pharmaceutically proteins, using insect larvae or cocoons, has become very attractive. This review describes the use of insect larvae as an alternative to produce commercial recombinant proteins.

  8. Evaluation of recombinant influenza virus-simian immunodeficiency virus vaccines in macaques.

    Science.gov (United States)

    Sexton, Amy; De Rose, Robert; Reece, Jeanette C; Alcantara, Sheilajen; Loh, Liyen; Moffat, Jessica M; Laurie, Karen; Hurt, Aeron; Doherty, Peter C; Turner, Stephen J; Kent, Stephen J; Stambas, John

    2009-08-01

    There is an urgent need for human immunodeficiency virus (HIV) vaccines that induce robust mucosal immunity. Influenza A viruses (both H1N1 and H3N2) were engineered to express simian immunodeficiency virus (SIV) CD8 T-cell epitopes and evaluated following administration to the respiratory tracts of 11 pigtail macaques. Influenza virus was readily detected from respiratory tract secretions, although the infections were asymptomatic. Animals seroconverted to influenza virus and generated CD8 and CD4 T-cell responses to influenza virus proteins. SIV-specific CD8 T-cell responses bearing the mucosal homing marker beta7 integrin were induced by vaccination of naïve animals. Further, SIV-specific CD8 T-cell responses could be boosted by recombinant influenza virus-SIV vaccination of animals with already-established SIV infection. Sequential vaccination with influenza virus-SIV recombinants of different subtypes (H1N1 followed by H3N2 or vice versa) produced only a limited boost in immunity, probably reflecting T-cell immunity to conserved internal proteins of influenza A virus. SIV challenge of macaques vaccinated with an influenza virus expressing a single SIV CD8 T cell resulted in a large anamnestic recall CD8 T-cell response, but immune escape rapidly ensued and there was no impact on chronic SIV viremia. Although our results suggest that influenza virus-HIV vaccines hold promise for the induction of mucosal immunity to HIV, broader antigen cover will be needed to limit cytotoxic T-lymphocyte escape.

  9. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion

    International Nuclear Information System (INIS)

    Kwak, Heesun; Mustafa, Waleed; Speirs, Kendra; Abdool, Asha J.; Paterson, Yvonne; Isaacs, Stuart N.

    2004-01-01

    Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus

  10. A simple and rapid approach to develop recombinant avian herpesvirus vectored vaccines using CRISPR/Cas9 system.

    Science.gov (United States)

    Tang, Na; Zhang, Yaoyao; Pedrera, Miriam; Chang, Pengxiang; Baigent, Susan; Moffat, Katy; Shen, Zhiqiang; Nair, Venugopal; Yao, Yongxiu

    2018-01-29

    Herpesvirus of turkeys (HVT) has been successfully used as live vaccine against Marek's disease (MD) worldwide for more than 40 years either alone or in combination with other serotypes. HVT is also widely used as a vector platform for generation of recombinant vaccines against a number of avian diseases such as infectious bursal disease (IBD), Newcastle disease (ND) and avian influenza (AI) using conventional recombination methods or recombineering tools on cloned viral genomes. In the present study, we describe the application of CRISPR/Cas9-based genome editing as a rapid and efficient method of generating HVT recombinants expressing VP2 protein of IBDV. This approach offers an efficient method to introduce other viral antigens into the HVT genome for rapid development of recombinant vaccines. Copyright © 2018 The Pirbright Institute. Published by Elsevier Ltd.. All rights reserved.

  11. Recombinant Secreted Antigens from Mycoplasma hyopneumoniae Delivered as a Cocktail Vaccine Enhance the Immune Response of Mice

    Science.gov (United States)

    Galli, Vanessa; Simionatto, Simone; Marchioro, Silvana Beutinger; Klabunde, Gustavo Henrique Ferrero; Conceição, Fabricio Rochedo

    2013-01-01

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae. PMID:23803903

  12. Recombinant expression systems: the obstacle to helminth vaccines?

    Science.gov (United States)

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  13. Protein expression of Myt272-3 recombinant clone and in silico ...

    African Journals Online (AJOL)

    Purpose: To investigate the expression of Myt272-3 recombinant protein and also to predict a possible protein vaccine candidate against Mycobacterium tuberculosis. Methods: Myt272-3 protein was expressed in pET30a+-Myt272-3 clone. The purity of the protein was determined using Dynabeads® His-Tag Isolation ...

  14. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  15. Recombinant viruses as vaccines against viral diseases

    Directory of Open Access Journals (Sweden)

    A.P.D. Souza

    2005-04-01

    Full Text Available Vaccine approaches to infectious diseases are widely applied and appreciated. Amongst them, vectors based on recombinant viruses have shown great promise and play an important role in the development of new vaccines. Many viruses have been investigated for their ability to express proteins from foreign pathogens and induce specific immunological responses against these antigens in vivo. Generally, gene-based vaccines can stimulate potent humoral and cellular immune responses and viral vectors might be an effective strategy for both the delivery of antigen-encoding genes and the facilitation and enhancement of antigen presentation. In order to be utilized as a vaccine carrier, the ideal viral vector should be safe and enable efficient presentation of required pathogen-specific antigens to the immune system. It should also exhibit low intrinsic immunogenicity to allow for its re-administration in order to boost relevant specific immune responses. Furthermore, the vector system must meet criteria that enable its production on a large-scale basis. Several viral vaccine vectors have thus emerged to date, all of them having relative advantages and limits depending on the proposed application, and thus far none of them have proven to be ideal vaccine carriers. In this review we describe the potential, as well as some of the foreseeable obstacles associated with viral vaccine vectors and their use in preventive medicine.

  16. Meningococcal factor H binding proteins in epidemic strains from Africa: implications for vaccine development.

    Directory of Open Access Journals (Sweden)

    Rolando Pajon

    2011-09-01

    Full Text Available Factor H binding protein (fHbp is an important antigen for vaccines against meningococcal serogroup B disease. The protein binds human factor H (fH, which enables the bacteria to resist serum bactericidal activity. Little is known about the vaccine-potential of fHbp for control of meningococcal epidemics in Africa, which typically are caused by non-group B strains.We investigated genes encoding fHbp in 106 serogroup A, W-135 and X case isolates from 17 African countries. We determined complement-mediated bactericidal activity of antisera from mice immunized with recombinant fHbp vaccines, or a prototype native outer membrane vesicle (NOMV vaccine from a serogroup B mutant strain with over-expressed fHbp. Eighty-six of the isolates (81% had one of four prevalent fHbp sequence variants, ID 4/5 (serogroup A isolates, 9 (W-135, or 74 (X in variant group 1, or ID 22/23 (W-135 in variant group 2. More than one-third of serogroup A isolates and two-thirds of W-135 isolates tested had low fHbp expression while all X isolates tested had intermediate or high expression. Antisera to the recombinant fHbp vaccines were generally bactericidal only against isolates with fHbp sequence variants that closely matched the respective vaccine ID. Low fHbp expression also contributed to resistance to anti-fHbp bactericidal activity. In contrast to the recombinant vaccines, the NOMV fHbp ID 1 vaccine elicited broad anti-fHbp bactericidal activity, and the antibodies had greater ability to inhibit binding of fH to fHbp than antibodies elicited by the control recombinant fHbp ID 1 vaccine.NOMV vaccines from mutants with increased fHbp expression elicit an antibody repertoire with greater bactericidal activity than recombinant fHbp vaccines. NOMV vaccines are promising for prevention of meningococcal disease in Africa and could be used to supplement coverage conferred by a serogroup A polysaccharide-protein conjugate vaccine recently introduced in some sub

  17. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  18. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates

    OpenAIRE

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L.; Long, Carole A.; Miller, Louis H.; Saul, Allan

    2007-01-01

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) for blood stage vaccines and surface protein 25 (Pfs25) for mosquito stage vaccines, each was chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66 kD) relatively good i...

  19. Reactions of chicken sera to recombinant Campylobacter jejuni flagellar proteins.

    Science.gov (United States)

    Yeh, Hung-Yueh; Hiett, Kelli L; Line, John E

    2015-03-01

    Campylobacter jejuni is a Gram-negative spiral rod bacterium and is the leading but underreported bacterial food-borne pathogen that causes human campylobacteriosis worldwide. Raw or undercooked poultry products are regarded as a major source for human infection. C. jejuni flagella have been implicated in colonization and adhesion to the mucosal surface of chicken gastrointestinal tracts. Therefore, flagellar proteins would be the excellent targets for further investigation. In this report, we used the recombinant technology to generate a battery of C. jejuni flagellar proteins, which were purified by His tag affinity chromatography and determined antigenic profiles of these recombinant flagellar proteins using sera from chickens older than 6 weeks of age. The immunoblot results demonstrate that each chicken serum reacted to various numbers of recombinant flagellar proteins. Among these recombinant proteins, chicken sera reacted predominantly to the FlgE1, FlgK, FlhF, FliG and FliY proteins. These antibody screening results provide a rationale for further evaluation of these recombinant flagellar proteins as potential vaccines for chickens to improve food safety as well as investigation of host immune response to C. jejuni.

  20. Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins.

    Science.gov (United States)

    Grzybowski, Marcin M; Dziadek, Bożena; Gatkowska, Justyna M; Dzitko, Katarzyna; Długońska, Henryka

    2015-12-01

    Toxoplasmosis is one of the most common parasitic infections worldwide. An effective vaccine against human and animal toxoplasmosis is still needed to control this parasitosis. The polymorphic rhoptry proteins, ROP5 and ROP18, secreted by Toxoplasma gondii during the invasion of the host cell have been recently considered as promising vaccine antigens, as they appear to be the major determinants of T. gondii virulence in mice. The goal of this study was to evaluate their immunogenic and immunoprotective activity after their administration (separately or both recombinant proteins together) with the poly I:C as an adjuvant. Immunization of BALB/c and C3H/HeOuJ mice generated both cellular and humoral specific immune responses with some predominance of IgG1 antibodies. The spleen cells derived from vaccinated animals reacted to the parasite's native antigens. Furthermore, the immunization led to a partial protection against acute and chronic toxoplasmosis. These findings confirm the previous assumptions about ROP5 and ROP18 antigens as valuable components of a subunit vaccine against toxoplasmosis.

  1. Assessment of a recombinant F1-V fusion protein vaccine intended to protect Canada lynx (Lynx canadensis) from plague

    Science.gov (United States)

    Wolfe, Lisa L.; Shenk, Tanya M.; Powell, Bradford; Rocke, Tonie E.

    2011-01-01

    As part of an ongoing restoration program in Colorado, USA, we evaluated adverse reactions and seroconversion in captive Canada lynx (Lynx canadensis) after vaccination with a recombinant F1-V fusion protein vaccine against Yersinia pestis, the bacterium that causes plague. Ten adult female lynx received the F1-V vaccine; 10 source- and age-matched lynx remained unvaccinated as controls. All of the vaccinated and control lynx remained apparently healthy throughout the confinement period. We observed no evidence of injection site or systemic reactions to the F1-V vaccine. Among vaccinated lynx, differences in log10 reciprocal antibody titers measured in sera collected before and after vaccination (two doses) ranged from 1.2 to 5.2 for anti-F1 antibodies and from 0.6 to 5.2 for anti-V antibodies; titers in unvaccinated lynx did not change appreciably over the course of confinement prior to release, and thus differences in anti-F1 (P=0.003) and anti-V (P=0.0005) titers were greater among vaccinated lynx than among controls. Although our findings suggest that the F1-V fusion protein vaccine evaluated here is likely to stimulate antibody responses that may help protect Canada lynx from plague, we observed no apparent differences in survival between vaccinated and unvaccinated subject animals. Retrospectively, 22 of 50 (44%; 95% confidence interval 29–59%) unvaccinated lynx captured or recaptured in Colorado during 2000–08 had passive hemagglutination antibody titers >1:16, consistent with exposure to Y. pestis; paired pre- and postrelease titers available for eight of these animals showed titer increases similar in magnitude to those seen in response to vaccination, suggesting at least some lynx may naturally acquire immunity to plague in Colorado habitats.

  2. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    Science.gov (United States)

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.

  3. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  4. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection

    NARCIS (Netherlands)

    Wagemakers, A.; Mason, L. M. K.; Oei, A.; de Wever, B.; van der Poll, T.; Bins, A. D.; Hovius, J. W. R.

    2014-01-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method

  5. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    Science.gov (United States)

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector.

  6. Detection of antibodies against porcine parvovirus nonstructural protein NS1 may distinguish between vaccinated and infected pigs

    DEFF Research Database (Denmark)

    Madsen, Eva Smedegaard; Madsen, Knud Gert; Nielsen, Jens

    1997-01-01

    The humoral antibody response against the nonstructural protein NS1 and the structural protein VP2 of porcine parvovirus (PPV) was evaluated by immuno-peroxidase test (IPT) and enzyme linked immune sorbent assay (ELISA) using recombinant PPV antigens. The coding sequence for NS1 and VP2...... was inserted into the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV) genome resulting in two recombinant baculoviruses AcNPV-NS1 and AcNPV-VP2, respectively. Sf9 cells (Spodoptora frugidiperda) inoculated with AcNPV-NS1 producing recombinant nonstructural protein (rNS1) and AcNPV-VP2...... producing recombinant virion protein (rVP2) were used in IPT and ELISA to analyse serum antibodies. Pigs vaccinated with an inactivated whole virus vaccine and experimentally infected pigs were studied. Significant titers against rVP2 were obtained in both vaccinated and infected pigs. Specific antibodies...

  7. Live recombinant BHV/BRSV vaccine

    OpenAIRE

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protection of cattle against both Bovine herpesvirus infection and against Bovine Respiratory Syncytium virus infection. Also the invention relates to methods for the preparation of such live attenuated r...

  8. Development of Mycoplasma hyopneumoniae Recombinant Vaccines.

    Science.gov (United States)

    Marchioro, Silvana Beutinger; Simionatto, Simone; Dellagostin, Odir

    2016-01-01

    Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a disease that affects swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of the disease. Research using genome-based approach has the potential to elucidate the biology and pathogenesis of M. hyopneumoniae and contribute to the development of more effective vaccines. Here, we describe the protocol for developing M. hyopneumoniae recombinant vaccines using reverse vaccinology approaches.

  9. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease.

    Science.gov (United States)

    Seid, Christopher A; Jones, Kathryn M; Pollet, Jeroen; Keegan, Brian; Hudspeth, Elissa; Hammond, Molly; Wei, Junfei; McAtee, C Patrick; Versteeg, Leroy; Gutierrez, Amanda; Liu, Zhuyun; Zhan, Bin; Respress, Jonathan L; Strych, Ulrich; Bottazzi, Maria Elena; Hotez, Peter J

    2017-03-04

    A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.

  10. Antibody profiling using a recombinant protein-based multiplex ELISA array accelerates recombinant vaccine development: Case study on red sea bream iridovirus as a reverse vaccinology model.

    Science.gov (United States)

    Matsuyama, Tomomasa; Sano, Natsumi; Takano, Tomokazu; Sakai, Takamitsu; Yasuike, Motoshige; Fujiwara, Atushi; Kawato, Yasuhiko; Kurita, Jun; Yoshida, Kazunori; Shimada, Yukinori; Nakayasu, Chihaya

    2018-05-03

    Predicting antigens that would be protective is crucial for the development of recombinant vaccine using genome based vaccine development, also known as reverse vaccinology. High-throughput antigen screening is effective for identifying vaccine target genes, particularly for pathogens for which minimal antigenicity data exist. Using red sea bream iridovirus (RSIV) as a research model, we developed enzyme-linked immune sorbent assay (ELISA) based RSIV-derived 72 recombinant antigen array to profile antiviral antibody responses in convalescent Japanese amberjack (Seriola quinqueradiata). Two and three genes for which the products were unrecognized and recognized, respectively, by antibodies in convalescent serum were selected for recombinant vaccine preparation, and the protective effect was examined in infection tests using Japanese amberjack and greater amberjack (S. dumerili). No protection was provided by vaccines prepared from gene products unrecognized by convalescent serum antibodies. By contrast, two vaccines prepared from gene products recognized by serum antibodies induced protective immunity in both fish species. These results indicate that ELISA array screening is effective for identifying antigens that induce protective immune responses. As this method does not require culturing of pathogens, it is also suitable for identifying protective antigens to un-culturable etiologic agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice.

    Science.gov (United States)

    Golshani, Maryam; Rafati, Sima; Dashti, Amir; Gholami, Elham; Siadat, Seyed Davar; Oloomi, Mana; Jafari, Anis; Bouzari, Saeid

    2015-06-01

    Brucellosis is the most common bacterial zoonotic disease worldwide and no vaccine is available for the prevention of human brucellosis. In humans, brucellosis is mostly caused by Brucella melitensis and Brucella abortus. The Outer membrane protein 31 (Omp31) and L7/L12 are immunodominant and protective antigens conserved in human Brucella pathogens. In the present study, we evaluated the humoral and cellular immune responses induced by a fusion protein designed based on the Truncated form of Omp31 (TOmp31) and L7-L12 antigens. Vaccination of BALB/c mice with the recombinant fusion protein (rL7/L12-TOmp31) provided the significant protection level against B. melitensis and B. abortus challenge. Moreover, rL7/L12-TOmp31 elicited a strong specific IgG response (higher IgG2a titers) and significant IFN-γ/IL2 production and T-cell proliferation was also observed. The T helper1 (Th1) oriented response persisted for 12 weeks after the first immunization. The rL7/L12-TOmp31 could be a new potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A G-protein-coupled chemokine receptor: A putative insertion site for a multi-pathogen recombinant capripoxvirus vaccine strategy.

    Science.gov (United States)

    Cêtre-Sossah, Catherine; Dickmu, Simon; Kwiatek, Olivier; Albina, Emmanuel

    2017-09-01

    Capripoxviruses (CaPVs) have been shown to be ideal viral vectors for the development of recombinant multivalent vaccines to enable delivery of immunogenic genes from ruminant pathogens. So far, the viral thymidine kinase (TK) gene is the only gene used to generate recombinants. A putative non-essential gene encoding a G-protein-coupled chemokine receptor subfamily homologue (GPCR) was targeted as an additional insertion site. Peste des petits ruminants (PPR) was chosen as a disease model. A new recombinant CaPV expressing the viral attachment hemagglutinin (H) of the PPR virus (PPRV) in the GPCR insertion site (rKS1-HPPR-GPCR) was generated in the backbone North African isolate KS1 strain of lumpy skin disease virus (LSDV). Comparison with the recombinant CaPV expressing the H of PPRV in the TK gene (rKS1-HPPR-TK) shown to induce protection against both PPR and LSD in both sheep and goats was assessed. The suitability of the GPCR gene to be a putative additional insertion site in the CaPV genome is evaluated and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. New recombinant vaccines for the prevention of meningococcal B disease

    Directory of Open Access Journals (Sweden)

    Taha MK

    2012-06-01

    Full Text Available Muhamed-Kheir Taha, Ala-Eddine DeghmaneInstitut Pasteur, Unit of Invasive Bacterial Infections and National Reference Center for Meningococci, Paris, FranceAbstract: Meningococcal disease is a life-threatening invasive infection (mainly septicemia and meningitis that occurs as epidemic or sporadic cases. The causative agent, Neisseria meningitidis or meningococcus, is a capsulated Gram-negative bacterium. Current vaccines are prepared from the capsular polysaccharides (that also determine serogroups and are available against strains of serogroups A, C, Y, and W-135 that show variable distribution worldwide. Plain polysaccharide vaccines were first used and subsequently conjugate vaccines with enhanced immunogenicity were introduced. The capsular polysaccharide of meningococcal serogroup B is poorly immunogenic due to similarity to the human neural cells adhesion molecule. Tailor-made, strain-specific vaccines have been developed to control localized and clonal outbreaks due to meningococci of serogroup B but no “universal” vaccine is yet available. This unmet medical need was recently overcome using several subcapsular proteins to allow broad range coverage of strains and to reduce the risk of escape variants due to genetic diversity of the meningococcus. Several vaccines are under development that target major or minor surface proteins. One vaccine (Bexsero®; Novartis, under registration, is a multicomponent recombinant vaccine that showed an acceptable safety profile and covers around 80% of the currently circulating serogroup B isolates. However, its reactogenicity in infants seems to be high and the long term persistence of the immune response needs to be determined. Its activity on carriage, and therefore transmission, is under evaluation. Indirect protection is expected through restricting strain circulation and acquisition. This vaccine covers the circulating strains according to the presence of the targeted antigens in the

  14. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Pauli, Gabrielle; Larsen, Tina H; Rak, Sabina

    2008-01-01

    BACKGROUND: Recombinant DNA technology has the potential to produce allergen-specific immunotherapy vaccines with defined composition. OBJECTIVE: To evaluate the effectiveness of a new recombinant birch pollen allergen vaccine in patients with birch pollen allergy. METHODS: A multicenter, randomi......-treated group. CONCLUSION: The rBet v 1-based vaccine was safe and effective in treating birch pollen allergy, and induced a highly specific immune response.......BACKGROUND: Recombinant DNA technology has the potential to produce allergen-specific immunotherapy vaccines with defined composition. OBJECTIVE: To evaluate the effectiveness of a new recombinant birch pollen allergen vaccine in patients with birch pollen allergy. METHODS: A multicenter......, randomized, double-blind, placebo-controlled trial was undertaken to compare the following 3 vaccines in 134 adults with birch pollen allergy: recombinant birch pollen allergen vaccine (rBet v 1a), licensed birch pollen extract, natural purified birch pollen allergen (nBet v 1), and placebo. Patients...

  15. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  16. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings.

    Science.gov (United States)

    Wang, Jianzhong; Cong, Yanlong; Yin, Renfu; Feng, Na; Yang, Songtao; Xia, Xianzhu; Xiao, Yueqiang; Wang, Wenxiu; Liu, Xiufan; Hu, Shunlin; Ding, Chan; Yu, Shengqing; Wang, Chunfeng; Ding, Zhuang

    2015-05-04

    Newcastle disease virus (NDV) and Goose parvovirus (GPV) are considered to be two of the most important and widespread viruses infecting geese. In this study, we generated a recombinant rmNA-VP3, expressing GPV VP3 using a modified goose-origin NDV NA-1 by changing the multi-basic cleavage site motif RRQKR↓F of the F protein to the dibasic motif GRQGR↓L as that of the avirulent strain LaSota as a vaccine vector. Expression of the VP3 protein in rmNA-VP3 infected cells was detected by immunofluorescence and Western blot assay. The genetic stability was examined by serially passaging 10 times in 10-day-old embryonated SPF chicken eggs. Goslings were inoculated with rmNA-VP3 showed no apparent signs of disease and developed a strong GPV and NDV neutralizing antibodies response. This is the first study demonstrating that recombinant NDV has the potential to serve as bivalent live vaccine against Goose parvovirus and Newcastle disease virus infection in birds. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B

    Directory of Open Access Journals (Sweden)

    Young Hee Joung

    2016-10-01

    Full Text Available Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO-recommended vaccines including hepatitis B (HepB. HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV, however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed.

  18. Structure of RiVax: a recombinant ricin vaccine

    International Nuclear Information System (INIS)

    Legler, Patricia M.; Brey, Robert N.; Smallshaw, Joan E.; Vitetta, Ellen S.; Millard, Charles B.

    2011-01-01

    The X-ray crystal structure (at 2.1 Å resolution) of an immunogen under development as part of a ricin vaccine for humans is presented and structure-based analysis of the results was conducted with respect to related proteins and the known determinants for inducing or suppressing the protective immune response. RiVax is a recombinant protein that is currently under clinical development as part of a human vaccine to protect against ricin poisoning. RiVax includes ricin A-chain (RTA) residues 1–267 with two intentional amino-acid substitutions, V76M and Y80A, aimed at reducing toxicity. Here, the crystal structure of RiVax was solved to 2.1 Å resolution and it was shown that it is superposable with that of the ricin toxin A-chain from Ricinus communis with a root-mean-square deviation of 0.6 Å over 258 C α atoms. The RiVax structure is also compared with the recently determined structure of another potential ricin-vaccine immunogen, RTA 1–33/44–198 R48C/T77C. Finally, the locations and solvent-exposure of two toxin-neutralizing B-cell epitopes were examined and it was found that these epitopes are within or near regions predicted to be involved in catalysis. The results demonstrate the composition of the RiVax clinical material and will guide ongoing protein-engineering strategies to develop improved immunogens

  19. Viral vectors for production of recombinant proteins in plants.

    Science.gov (United States)

    Lico, Chiara; Chen, Qiang; Santi, Luca

    2008-08-01

    Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.

  20. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    Science.gov (United States)

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  1. Vaccine potential of recombinant cathepsin B against Fasciola gigantica.

    Science.gov (United States)

    Chantree, Pathanin; Phatsara, Manussabhorn; Meemon, Krai; Chaichanasak, Pannigan; Changklungmoa, Narin; Kueakhai, Pornanan; Lorsuwannarat, Natcha; Sangpairoj, Kant; Songkoomkrong, Sineenart; Wanichanon, Chaitip; Itagaki, Tadashi; Sobhon, Prasert

    2013-09-01

    In Fasciola gigantica, cathepsin Bs, especially cathepsin B2 and B3 are expressed in early juvenile stages, and are proposed to mediate the invasion of host tissues. Thus they are thought to be the target vaccine candidates that can block the invasion and migration of the juvenile parasite. To evaluate their vaccine potential, the recombinant cathepsin B2 (rFgCatB2) and cathepsin B3 (rFgCatB3) were expressed in yeast, Pichia pastoris, and used to immunize mice in combination with Freund's adjuvant to evaluate the protection against the infection by F. gigantica metacercariae, and the induction of immune responses. Mice immunized with both recombinant proteins exhibited high percent of parasite reduction at 60% for rFgCatB2 and 66% for rFgCatB3. Immunization by both antigens induced continuously increasing levels of IgG1 and IgG2a with a higher level of IgG1 isotype, indicating the mixed Th1/Th2 responses with Th2 predominating. When examined individually, the higher levels of IgG1 and IgG2a were correlated with the lower numbers of worm recoveries. Thus, both cathepsin B2 and cathepsin B3 are plausible vaccine candidates whose potential should be further tested in large economic animals. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  3. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections.

    Science.gov (United States)

    Lin, Rui-Qing; Lillehoj, Hyun S; Lee, Seung Kyoo; Oh, Sungtaek; Panebra, Alfredo; Lillehoj, Erik P

    2017-08-30

    Avian coccidiosis is caused by multiple species of the apicomplexan protozoan, Eimeria, and is one of the most economically devastating enteric diseases for the poultry industry worldwide. Host immunity to Eimeria infection, however, is relatively species-specific. The ability to immunize chickens against different species of Eimeria using a single vaccine will have a major beneficial impact on commercial poultry production. In this paper, we describe the molecular cloning, purification, and vaccination efficacy of a novel Eimeria vaccine candidate, elongation factor-1α (EF-1α). One day-old broiler chickens were given two subcutaneous immunizations one week apart with E. coli-expressed E. tenella recombinant (r)EF-1α protein and evaluated for protection against challenge infection with E. tenella or E. maxima. rEF-1α-vaccinated chickens exhibited increased body weight gains, decreased fecal oocyst output, and greater serum anti-EF-1α antibody levels following challenge infection with either E. tenella or E. maxima compared with unimmunized controls. Vaccination with EF-1α may represent a new approach to inducing cross-protective immunity against avian coccidiosis in the field. Published by Elsevier B.V.

  4. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus) Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP) with Two Different Adjuvants.

    Science.gov (United States)

    Khan, Shahneaz Ali; Desclozeaux, Marion; Waugh, Courtney; Hanger, Jon; Loader, Jo; Gerdts, Volker; Potter, Andrew; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus). In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP) antigen-based vaccine, combined with immune stimulating complex (ISC) adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A) responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses.

  5. Antibody and Cytokine Responses of Koalas (Phascolarctos cinereus Vaccinated with Recombinant Chlamydial Major Outer Membrane Protein (MOMP with Two Different Adjuvants.

    Directory of Open Access Journals (Sweden)

    Shahneaz Ali Khan

    Full Text Available Developing a vaccine against Chlamydia is key to combating widespread mortalities and morbidities associated with this infection in koalas (Phascolarctos cinereus. In previous studies, we have shown that two or three doses of a Recombinant Major Outer Membrane Protein (rMOMP antigen-based vaccine, combined with immune stimulating complex (ISC adjuvant, results in strong cellular and humoral immune responses in koalas. We have also separately evaluated a single dose vaccine, utilising a tri-adjuvant formula that comprises polyphosphazine based poly I: C and host defense peptides, with the same antigen. This formulation also produced strong cellular and humoral immune responses in captive koalas. In this current study, we directly compared the host immune responses of two sub-groups of wild Chlamydia negative koalas in one population vaccinated with the rMOMP protein antigen and adjuvanted with either the ISC or tri-adjuvant formula. Overall, both adjuvants produced strong Chlamydia-specific cellular (IFN-γ and IL-17A responses in circulating PBMCs as well as MOMP-specific and functional, in vitro neutralising antibodies. While the immune responses were similar, there were adjuvant-specific immune differences between the two adjuvants, particularly in relation to the specificity of the MOMP epitope antibody responses.

  6. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines.

    Science.gov (United States)

    Zheng, Song-yue; Yu, Bin; Zhang, Ke; Chen, Min; Hua, Yan-Hong; Yuan, Shuofeng; Watt, Rory M; Zheng, Bo-Jian; Yuen, Kwok-Yung; Huang, Jian-Dong

    2012-09-26

    Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus

  7. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  8. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine.

    Directory of Open Access Journals (Sweden)

    Anke M Mulder

    Full Text Available BACKGROUND: Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg VLP-based vaccine. METHODOLOGY: The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA. The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM and in-solution atomic force microscopy (AFM. PRINCIPAL FINDINGS: SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images--confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing. SIGNIFICANCE: Together, the methods presented here comprise a novel

  9. [Study on the anti-NTHi infection of Hap recombinant protein in vivo].

    Science.gov (United States)

    Li, Wan-yi; Wang, Bao-ning; Zuo, Feng-qiong; Zeng, Wei; Feng, Feng; Kuang, Yu; Jiang, Zhong-hua; Li, Ming-yuan

    2010-07-01

    To observe the immune effect of Hap recombinant protein on murine model of bronchopneumonia infected with NTHi, and explore the mechanism about the anti-NTHi infection. The C57BL/6 mice intranasally immunized with purified Hap recombinant protein and CT-B were challenged by NTHi encased in agar beads. The immunifaction of anti-infection was observed through encocyte counting of BALF, bacteria detection of lung and the pathologyical change of lung tissue. In the challenge with NTHi experiment, the inflammatory exudation of the infected murine and pathological change of lung tissue was relieved by combined immunization of Hap recombinant protein and CT-B, and quantity of NTHi in lung of the infected murine was reduced obviously. The Hap recombinant protein also had good ability of anti-NTHi infection in the murine model of NTHi bronchopneumonia. This study could offer the oretical and experimental basis for development of new vaccine against NTHi.

  10. Increasing the ex vivo antigen-specific IFN-γ production in subpopulations of T cells and NKp46+ cells by anti-CD28, anti-CD49d and recombinant IL-12 costimulation in cattle vaccinated with recombinant proteins from Mycobacterium avium subspecies paratuberculosis

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Riber, Ulla; Davis, William C.

    2013-01-01

    -γ secretion by CD4, CD8, γδ T cells and NK cells. Age matched male jersey calves, experimentally infected with Mycobacterium avium subsp. paratuberculosis (MAP), were vaccinated with a cocktail of recombinant MAP proteins or left unvaccinated. Vaccine induced ex vivo recall responses were measured through Ag......T cells, which encounter specific antigen (Ag), require additional signals to mount a functional immune response. Here, we demonstrate activation of signal 2, by anti-CD28 mAb (aCD28) and other costimulatory molecules (aCD49d, aCD5), and signal 3, by recombinant IL-12, enhance Ag-specific IFN...

  11. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    Science.gov (United States)

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-06

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Analysis of immune responses to recombinant proteins from strains of Mycoplasma mycoides subsp. mycoides, the causative agent of contagious bovine pleuropneumonia.

    Science.gov (United States)

    Perez-Casal, Jose; Prysliak, Tracy; Maina, Teresa; Wang, Yejun; Townsend, Hugh; Berverov, Emil; Nkando, Isabel; Wesonga, Hezron; Liljander, Anne; Jores, Joerg; Naessens, Jan; Gerdts, Volker; Potter, Andrew

    2015-11-15

    Current contagious bovine pleuropneumonia (CBPP) vaccines are based on live-attenuated strains of Mycoplasma mycoides subsp. mycoides (Mmm). These vaccines have shortcomings in terms of efficacy, duration of immunity and in some cases show severe side effects at the inoculation site; hence the need to develop new vaccines to combat the disease. Reverse vaccinology approaches were used and identified 66 candidate Mycoplasma proteins using available Mmm genome data. These proteins were ranked by their ability to be recognized by serum from CBPP-positive cattle and thereafter used to inoculate naïve cattle. We report here the inoculation of cattle with recombinant proteins and the subsequent humoral and T-cell-mediated immune responses to these proteins and conclude that a subset of these proteins are candidate molecules for recombinant protein-based subunit vaccines for CBPP control. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. ACCUMULATION OF RECOMBINANT FUSION PROTEIN – SECRETORY ANALOG OF Ag85B AND ESAT6 MYCOBACTERIUM TUBERCULOSIS PROTEINS – IN TRANSGENIC Lemna minor L. PLANTS

    Directory of Open Access Journals (Sweden)

    A.A.Peterson

    2015-10-01

    Full Text Available Determination of the presence of the recombinant fusion protein (ESAT6-Ag85B(ΔTMD-6His and its accumulation level in duckweed plants (Lemna minor L. was the aim of the research. ESAT6 and Ag85B are secretory proteins of Mycobacterium tuberculosis and are considered as potential candidates for development of new vaccine against tuberculosis (TB. Transgenic duckweed plants were obtained previously by Agrobacterium rhizogenes-mediated transformation and possessed fusion gene sequence esxA-fbpBΔTMD. Specific polyclonal antibodies were produced in immunized mice to identify levels of accumulation of TB antigens in plants. Recombinant antigen used for mice immunization was obtained in our laboratory by expression in E. coli. Western blot analysis revealed the recombinant tuberculosis antigen ESAT6-Ag85B(ΔTMD-6His in extracts from transgenic L. minor plants. The level of accumulation of the protein corresponds to 0.4-0.5 µg protein per 1 g of fresh weight of plant. Additionally, the accumulation of recombinant protein was investigated in lyophilized transgenic plants after 1.5 year storage. Duckweed plants accumulating a recombinant analogue of M. tuberculosis secretory proteins can be used for development of plant-based edible vaccines.

  14. Multimeric recombinant M2e protein-based ELISA: a significant improvement in differentiating avian influenza infected chickens from vaccinated ones.

    Directory of Open Access Journals (Sweden)

    Farshid Hadifar

    Full Text Available Killed avian influenza virus (AIV vaccines have been used to control H5N1 infections in countries where the virus is endemic. Distinguishing vaccinated from naturally infected birds (DIVA in such situations however, has become a major challenge. Recently, we introduced the recombinant ectodomain of the M2 protein (M2e of H5N1 subtype as a novel tool for an ELISA based DIVA test. Despite being antigenic in natural infection the monomer form of the M2e used in ELISA had limited antigenicity and consequently poor diagnostic capability. To address this shortcoming, we evaluated the use of four tandem copies of M2e (tM2e for increased efficiency of M2e antibody detection. The tM2e gene of H5N1 strain from Indonesia (A/Indonesia/CDC540/2006 was cloned into a pMAL- p4x expression vector and expressed in E.coli as a recombinant tM2e-MBP or M2e-MBP proteins. Both of these, M2e and tM2e antigens reacted with sera obtained from chickens following live H5N1 infection but not with sera from vaccinated birds. A significantly stronger M2e antibody reaction was observed with the tM2e compared to M2e antigen. Western blotting also supported the superiority of tM2e over M2e in detection of specific M2e antibodies against live H5N1 infection. Results from this study demonstrate that M2e tetramer is a better antigen than single M2e and could be more suitable for an ELISA based DIVA test.

  15. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    Science.gov (United States)

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  16. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Science.gov (United States)

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  17. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  18. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    Science.gov (United States)

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  20. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  1. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species

    Directory of Open Access Journals (Sweden)

    Charles A. Specht

    2017-11-01

    Full Text Available Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1 were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4 were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1 afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific.

  2. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Science.gov (United States)

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  3. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies.

    Science.gov (United States)

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C; Kalyanaraman, V S; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J; Murthy, Krishna K; Srivastava, Indresh; Barnett, Susan W; Robert-Guroff, Marjorie

    2005-08-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1(MN)env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIV(SF162) gp140deltaV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1(MN)env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1(SF162) gp140deltaV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.

  4. Development of recombinant vaccine candidate molecule against Shigella infection.

    Science.gov (United States)

    Chitradevi, S T S; Kaur, G; Sivaramakrishna, U; Singh, D; Bansal, A

    2016-10-17

    Shigellosis is an acute bacillary diarrheal disease caused by the gram negative bacillus Shigella. The existence of multiple Shigella serotypes and their growing resistance to antibiotics stress the urgent need for the development of vaccine that is protective across all serotypes. Shigella's IpaB antigen is involved in translocon pore formation, promotes bacterial invasion and induces apoptosis in macrophages. S. Typhi GroEL (Hsp 60) is the immunodominant antigen inducing both arms of immunity and has been explored as adjuvant in this study. The present study evaluates the immunogenicity and protective efficacy of recombinant IpaB domain-GroEL fusion protein in mice against lethal Shigella infection. The IpaB domain and GroEL genes were fused using overlap extension PCR and cloned in pRSETA expression vector. Fused gene was expressed in Escherichia coli BL-21 cells and the resulting 90 KDa fusion protein was purified by affinity chromatography. Intranasal (i.n.) immunization of mice with fusion protein increased the IgG and IgA antibody titers as compared to the group immunized with IpaB and GroEL and control PBS immunized group. Also IgG1 and IgG2a antibodies induced in fusion protein immunized mice were higher than co-immunized group. Significant increase in lymphocyte proliferation and cytokine levels (IFN-γ, IL-4 and IL-10), indicates induction of both Th1 and Th2 immune responses in both immunized groups. Immunization with fusion protein protected 90-95% of mice whereas 80-85% survivability was observed in co-immunized group against lethal challenge with S. flexneri, S. boydii and S. sonnei. Passive immunization conferred 60-70% protection in mice against all these Shigella species. Organ burden and histopathology studies also revealed significant decrease in lung infection as compared to the co-immunized group. Since IpaB is the conserved dominant molecule in all Shigella species, this study will lead to an ideal platform for the development of safe

  5. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys.

    Science.gov (United States)

    Hu, Haixia; Roth, Jason P; Estevez, Carlos N; Zsak, Laszlo; Liu, Bo; Yu, Qingzhong

    2011-11-03

    Virulent strains of Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) can cause serious respiratory diseases in poultry. Vaccination combined with strict biosecurity practices has been the recommendation for controlling both NDV and aMPV diseases in the field. In the present study, an NDV based, LaSota strain recombinant vaccine virus expressing the glycoprotein (G) of aMPV subgroup C (aMPV-C) was generated as a bivalent vaccine using a reverse genetics approach. The recombinant virus, rLS/aMPV-C G was slightly attenuated in vivo, yet maintained similar growth dynamics, cytopathic effects, and virus titers in vitro when compared to the parental LaSota virus. Expression of the aMPV G protein in rLS/aMPV-C G-infected cells was detected by immunofluorescence assay. Vaccination of turkeys with one dose of rLS/aMPV-C G induced moderate aMPV-C-specific immune responses and comparable NDV-specific serum antibody responses to a LaSota vaccination control. Partial protection against pathogenic aMPV-C challenge and complete protection against velogenic NDV challenge was conferred. These results suggest that the LaSota recombinant virus is a safe and effective vaccine vector and that expression of the aMPV-C G protein alone is not sufficient to provide full protection against an aMPV-C infection. Expression of other immunogenic protein(s) of the aMPV-C virus alone or in conjunction with the G protein may be needed to induce a stronger protective immunity against the aMPV-C disease. Published by Elsevier Ltd.

  6. Recombinant Rhipicephalus appendiculatus gut (Ra86 and salivary gland cement (Trp64 proteins as candidate antigens for inclusion in tick vaccines: protective effects of Ra86 on infestation with adult R. appendiculatus

    Directory of Open Access Journals (Sweden)

    Saimo M

    2011-11-01

    Full Text Available Margaret Saimo1,2,*, David O Odongo3,4,*, Stephen Mwaura3, Just M Vlak1, Anthony J Musoke5, George W Lubega2, Richard P Bishop3, Monique M van Oers11Laboratory of Virology, Wageningen University, Wageningen, The Netherlands; 2School of Veterinary Medicine, Makerere University, Kampala, Uganda; 3International Livestock Research Institute, Nairobi, Kenya; 4School of Biological Sciences, University of Nairobi, Nairobi, Kenya; 5Onderstepoort Veterinary Institute, Onderstepoort, Pretoria, South Africa *These two authors made an equal contribution to this workAbstract: Rhipicephalus appendiculatus gut protein Ra86 (variants Ra85A and Ra92A and the salivary gland cement protein (Trp64 were expressed in the baculovirus-insect cell system. The recombinant gut proteins expressed as soluble proteins and the recombinant cement protein, as insoluble inclusion bodies, were used to immunize rabbits, which were then challenged with larval, nymphal, and adult stages of R. appendiculatus ticks. High tick mortality (23.3% occurred on adult ticks that fed on rabbits vaccinated with the gut proteins, compared with 1.9% mortality in ticks that fed on unvaccinated naïve control rabbits. The mean weight of engorged female ticks was significantly reduced by 31.5% in rabbits vaccinated with the Ra86 recombinant protein compared with controls, as was egg production. Marked effects on these parameters were also observed in adult ticks as a result from vaccination using Trp64, but these were not statistically significant. For both antigens, there was no demonstrable effect on larval or nymphal ticks. This study demonstrates for the first time the protective efficacy of a homolog of Boophilus microplus Bm86 in reducing tick infestation by the adult stage of the three-host tick R. appendiculatus. The results demonstrate the potential of Ra86 for vaccine development against this tick and for the control of East Coast fever.Keywords: baculovirus, Ra85A, Ra92A, Boophilus

  7. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    Science.gov (United States)

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines.

    Science.gov (United States)

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-04-11

    The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non-cross-reactive with vaccinia virus. These recombinants might

  9. Molecular Evolution of a Type 1 Wild-Vaccine Poliovirus Recombinant during Widespread Circulation in China

    Science.gov (United States)

    Liu, Hong-Mei; Zheng, Du-Ping; Zhang, Li-Bi; Oberste, M. Steven; Pallansch, Mark A.; Kew, Olen M.

    2000-01-01

    Type 1 wild-vaccine recombinant polioviruses were isolated from poliomyelitis patients in China from 1991 to 1993. We compared the sequences of 34 recombinant isolates over the 1,353-nucleotide (nt) genomic interval (nt 2480 to 3832) encoding the major capsid protein, VP1, and the protease, 2A. All recombinants had a 367-nt block of sequence (nt 3271 to 3637) derived from the Sabin 1 oral poliovirus vaccine strain spanning the 3′-terminal sequences of VP1 (115 nt) and the 5′ half of 2A (252 nt). The remaining VP1 sequences were closely (up to 99.5%) related to those of a major genotype of wild type 1 poliovirus endemic to China up to 1994. In contrast, the non-vaccine-derived sequences at the 3′ half of 2A were more distantly related (polioviruses from China. The vaccine-derived sequences of the earliest (April 1991) isolates completely matched those of Sabin 1. Later isolates diverged from the early isolates primarily by accumulation of synonymous base substitutions (at a rate of ∼3.7 × 10−2 substitutions per synonymous site per year) over the entire VP1-2A interval. Distinct evolutionary lineages were found in different Chinese provinces. From the combined epidemiologic and evolutionary analyses, we propose that the recombinant virus arose during mixed infection of a single individual in northern China in early 1991 and that its progeny spread by multiple independent chains of transmission into some of the most populous areas of China within a year of the initiating infection. PMID:11070012

  10. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    Science.gov (United States)

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  11. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates

    OpenAIRE

    Bolton, Diane L.; Santra, Sampa; Swett, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Kozlowski, Pamela A.; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-01-01

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag...

  12. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin.

    Science.gov (United States)

    Boyle, D B; Selleck, P; Heine, H G

    2000-01-01

    To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.

  13. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases.

    Science.gov (United States)

    Duan, Zhiqiang; Xu, Houqiang; Ji, Xinqin; Zhao, Jiafu

    2015-01-01

    Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.

  14. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L.

    1991-01-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  15. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...... and shifted the immune response towards Th2-like ones in piglets. CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response......AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...

  16. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    Science.gov (United States)

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  17. Addition of αGal HyperAcute™ technology to recombinant avian influenza vaccines induces strong low-dose antibody responses.

    Directory of Open Access Journals (Sweden)

    Wenlan Alex Chen

    Full Text Available Highly pathogenic avian influenza represents a severe public health threat. Over the last decade, the demand for highly efficacious vaccines against avian influenza viruses has grown, especially after the 2013 H7N9 outbreak in China that resulted in over 600 human cases with over 200 deaths. Currently, there are several H5N1 and H7N9 influenza vaccines in clinical trials, all of which employ traditional oil-in-water adjuvants due to the poor immunogenicity of avian influenza virus antigens. In this study, we developed potent recombinant avian influenza vaccine candidates using HyperAcute™ Technology, which takes advantage of naturally-acquired anti-αGal immunity in humans. We successfully generated αGal-positive recombinant protein and virus-like particle vaccine candidates of H5N1 and H7N9 influenza strains using either biological or our novel CarboLink chemical αGal modification techniques. Strikingly, two doses of 100 ng αGal-modified vaccine, with no traditional adjuvant, was able to induce a much stronger humoral response in αGT BALB/c knockout mice (the only experimental system readily available for testing αGal in vivo than unmodified vaccines even at 10-fold higher dose (1000 ng/dose. Our data strongly suggest that αGal modification significantly enhances the humoral immunogenicity of the recombinant influenza vaccine candidates. Use of αGal HyperAcute™ technology allows significant dose-sparing while retaining desired immunogenicity. Our success in the development of highly potent H5N1 and H7N9 vaccine candidates demonstrated the potential of αGal HyperAcute™ technology for the development of vaccines against other infectious diseases.

  18. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential.

    Science.gov (United States)

    Sardiñas, Gretel; Yero, Daniel; Climent, Yanet; Caballero, Evelin; Cobas, Karem; Niebla, Olivia

    2009-02-01

    The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.

  19. Development of the Brazilian anti Schistosomiasis vaccine based on the recombinant FABP Sm14 +GLA-SE

    Directory of Open Access Journals (Sweden)

    Miriam eTendler

    2015-05-01

    Full Text Available Data herein reported and discussed refer to vaccination with the recombinant Fatty Acid Binding protein family member of the Schistosomes, called Sm14, discovered and developed under a Brazilian platform leaded by the Oswaldo Cruz Foundation, from the Health Ministry in Brazil, undertaken to assess safety and immunogenicity in healthy volunteers. This paper reviews past and recent outcomes of developmental phases of the Sm14 based anti Schistosomiasis vaccine addressed to, ultimately, impact transmission of the second most prevalent parasitic endemic disease worldwide.

  20. Conjugating recombinant proteins to Pseudomonas aeruginosa ExoProtein A: a strategy for enhancing immunogenicity of malaria vaccine candidates.

    Science.gov (United States)

    Qian, Feng; Wu, Yimin; Muratova, Olga; Zhou, Hong; Dobrescu, Gelu; Duggan, Peter; Lynn, Lambert; Song, Guanhong; Zhang, Yanling; Reiter, Karine; MacDonald, Nicholas; Narum, David L; Long, Carole A; Miller, Louis H; Saul, Allan; Mullen, Gregory E D

    2007-05-16

    Conjugation of polysaccharides to carrier proteins has been a successful approach for producing safe and effective vaccines. In an attempt to increase the immunogenicity of two malarial vaccine candidate proteins of Plasmodium falciparum, apical membrane antigen 1 (AMA1) to a blood stage vaccine candidate and surface protein 25 (Pfs25) a mosquito stage vaccine candidate, were each independently chemically conjugated to the mutant, nontoxic Pseudomonas aeruginosa ExoProtein A (rEPA). AMA1 is a large (66kD) relatively good immunogen in mice; Pfs25 is a poorly immunogenic protein when presented on alum to mice. Mice were immunized on days 0 and 28 with AMA1- or Pfs25-rEPA conjugates or unconjugated AMA1 or Pfs25, all formulated on Alhydrogel. Remarkably, sera from mice 14 days after the second immunization with Pfs25-rEPA conjugates displayed over a 1000-fold higher antibody titers as compared to unconjugated Pfs25. In contrast, AMA1 conjugated under the same conditions induced only a three-fold increase in antibody titers. When tested for functional activity, antibodies elicited by the AMA1-rEPA inhibited invasion of erythrocytes by blood-stage parasites and antibodies elicited by the Pfs25-rEPA conjugates blocked the development of the sexual stage parasites in the mosquito midgut. These results demonstrate that conjugation to rEPA induces a marked improvement in the antibody titer in mice for the poor immunogen (Pfs25) and for the larger protein (AMA1). These conjugates now need to be tested in humans to determine if mice are predictive of the response in humans.

  1. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    OpenAIRE

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.; Christodoulides, Myron

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human protein...

  3. The Mycoplasma hyopneumoniae recombinant heat shock protein P42 induces an immune response in pigs under field conditions.

    Science.gov (United States)

    Jorge, Sérgio; de Oliveira, Natasha Rodrigues; Marchioro, Silvana Beutinger; Fisch, Andressa; Gomes, Charles Klazer; Hartleben, Cláudia Pinho; Conceição, Fabricio Rochedo; Dellagostin, Odir Antonio

    2014-09-01

    Enzootic pneumonia (EP), resulting from Mycoplasma hyopneumoniae infection is one of the most prevalent diseases in pigs and is a major cause of economic losses to the swine industry worldwide. EP is often controlled by vaccination with inactivated, adjuvanted whole-cell bacterin. However, these bacterins provide only partial protection and do not prevent M. hyopneumoniae colonization. Attempts to develop vaccines that are more efficient have made use of the recombinant DNA technology. The objective of this study was to assess the potential of recombinant M. hyopneumoniae heat shock protein P42 in vaccine preparations against EP, using piglets housed under field conditions in a M. hyopneumoniae-positive farm. The cellular and humoral immune responses were elicited after a single intramuscular inoculation of rP42 in an oil-based adjuvant, or in conjunction with whole-cell vaccine preparation. The production of INF-γ and IL-10 cytokines was quantified in the supernatant of the cultured mononuclear cells. The rP42 emulsified in oil-based adjuvant was able to trigger a strong humoral immune response. Further, it induced a cellular immune response, accompanied by the production of antibodies that reacted with the native M. hyopneumoniae protein. The rP42 mediated induction of cellular and humoral immune response in the host suggests that rP42 emulsified in an oil-based adjuvant holds promise as an effective recombinant subunit vaccine against EP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Science.gov (United States)

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  5. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Directory of Open Access Journals (Sweden)

    Érica Araújo Mendes

    Full Text Available The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1 of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination. Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1, to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  6. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    International Nuclear Information System (INIS)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong; Suo, Jingxia; Tang, Xinming; Tao, Geru; Han, Qian; Suo, Xun; Wu, Wenxue

    2013-01-01

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens

  7. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guangwen; Qin, Mei [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Liu, Xianyong [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Suo, Jingxia; Tang, Xinming; Tao, Geru [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Han, Qian [Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 (United States); Suo, Xun [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Wu, Wenxue, E-mail: labboard@126.com [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China)

    2013-10-25

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.

  8. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  9. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    DEFF Research Database (Denmark)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa

    2015-01-01

    for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. METHODS: We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso......OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences....... We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. RESULTS: Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p assays...

  10. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens.

    Science.gov (United States)

    Zhang, Dongchao; Long, Yuqing; Li, Meng; Gong, Jianfang; Li, Xiaohui; Lin, Jing; Meng, Jiali; Gao, Keke; Zhao, Ruili; Jin, Tianming

    2018-04-01

    Avian infectious bronchitis caused by the infectious bronchitis virus (IBV), and mycoplasmosis caused by Mycoplasma gallisepticum (MG) are two major respiratory diseases in chickens that have resulted in severe economic losses in the poultry industry. We constructed a recombinant adenovirus that simultaneously expresses the S1 spike glycoprotein of IBV and the TM-1 protein of MG (pBH-S1-TM-1-EGFP). For comparison, we constructed two recombinant adenoviruses (pBH-S1-EGFP and pBH-TM-1-EGFP) that express either the S1 spike glycoprotein or the TM-1 protein alone. The protective efficacy of these three vaccine constructs against challenge with IBV and/or MG was evaluated in specific pathogen free chickens. Groups of seven-day-old specific pathogen free chicks were immunized twice, two weeks apart, via the oculonasal route with the pBH-S1-TM-1-EGFP, pBH-S1-EGFP, or pBH-TM-1-EGFP vaccine candidates or the commercial attenuated infectious bronchitis vaccine strain H52 and MG vaccine strain F-36 (positive controls), and challenged with virulent IBV or MG two weeks later. Interestingly, by days 7 and 14 after the booster immunization, pBH-S1-TM-1-EGFP-induced antibody titre was significantly higher (P attenuated commercial IBV vaccine; however, there was no significant difference between the pBH-S1-TM-1-EGFP and attenuated commercial MG vaccine groups (P > 0.05). The clinical signs, the gross, and histopathological lesions scores of the adenovirus vaccine constructs were not significantly different from that of the attenuated commercial IBV or MG vaccines (positive controls) (P > 0.05). These results demonstrate the potential of the bivalent pBH-S1-TM-1-EGFP adenovirus construct as a combination vaccine against IB and mycoplasmosis.

  11. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Science.gov (United States)

    Govindarajan, Dhanasekaran; Guan, Liming; Meschino, Steven; Fridman, Arthur; Bagchi, Ansu; Pak, Irene; ter Meulen, Jan; Casimiro, Danilo R; Bett, Andrew J

    2016-01-01

    Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV) are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT) viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD) viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  12. Evaluation of immunogenicity and protective efficacy of recombinant outer membrane proteins of Haemophilus parasuis serovar 5 in a murine model.

    Science.gov (United States)

    Li, Miao; Cai, Ru-Jian; Song, Shuai; Jiang, Zhi-Yong; Li, Yan; Gou, Hong-Chao; Chu, Pin-Pin; Li, Chun-Ling; Qiu, Hua-Ji

    2017-01-01

    Glässer's disease is an economically important infectious disease of pigs caused by Haemophilus parasuis. Few vaccines are currently available that could provide effective cross-protection against various serovars of H. parasuis. In this study, five OMPs (OppA, TolC, HxuC, LppC, and HAPS_0926) identified by bioinformatic approaches, were cloned and expressed as recombinant proteins. Antigenicity of the purified proteins was verified through Western blotting, and primary screening for protective potential was evaluated in vivo. Recombinant TolC (rTolC), rLppC, and rHAPS_0926 proteins showing marked protection of mice against H. parasuis infection, and were further evaluated individually or in combination. Mice treated with these three OMPs produced humoral and host cell-mediated responses, with a significant rise in antigen-specific IgG titer and lymphoproliferative response in contrast with the mock-immunized group. Significant increases were noted in CD4+, CD8+ T cells, and three cytokines (IL-2, IL-4, and IFN-γ) in vaccinated animals. The antisera against candidate antigens could efficiently impede bacterial survival in whole blood bactericidal assay against H. parasuis infection. The multi-protein vaccine induced more pronounced immune responses and offered better protection than individual vaccines. Our findings indicate that these three OMPs are promising antigens for the development of multi-component subunit vaccines against Glässer's disease.

  13. Immune responses to recombinants of the South African vaccine strain of lumpy skin disease virus generated by using thymidine kinase gene insertion.

    Science.gov (United States)

    Wallace, David B; Viljoen, Gerrit J

    2005-04-27

    The South African vaccine strain of lumpy skin disease virus (type SA-Neethling) is currently being developed as a vector for recombinant vaccines of economically important livestock diseases throughout Africa. In this study, the feasibility of using the viral thymidine kinase gene as the site of insertion was investigated and recombinant viruses were evaluated in animal trials. Two separate recombinants were generated and selected for homogeneity expressing either the structural glycoprotein gene of bovine ephemeral fever virus (BEFV) or the two structural glycoprotein genes of Rift Valley fever virus (RVFV). Both recombinants incorporate the enhanced green fluorescent protein (EGFP) as a visual marker and the Escherichia coli guanine phosphoribosyl transferase (gpt) gene for dominant positive selection. The LSDV-RVFV recombinant construct (rLSDV-RVFV) protected mice against virulent RVFV challenge. In a small-scale BEFV-challenge cattle trial the rLSDV-BEFV construct failed to fully protect the cattle against virulent challenge, although both a humoral and cellular BEFV-specific immune response was elicited.

  14. Oral immunization of BALB/c mice with Giardia duodenalis recombinant cyst wall protein inhibits shedding of cysts.

    Science.gov (United States)

    Larocque, R; Nakagaki, K; Lee, P; Abdul-Wahid, A; Faubert, G M

    2003-10-01

    The process of encystation is a key step in the Giardia duodenalis life cycle that allows this intestinal protozoan to survive between hosts during person-to-person, animal-to-person, waterborne, or food-borne transmission. The release of cysts from infected persons and animals is the main contributing factor to contamination of the environment. Genes coding for cyst wall proteins (CWPs), which could be used for developing a transmission-blocking vaccine, have been cloned. Since the immunogenicity of recombinant Giardia CWP is unknown, we have investigated the immunogenicity of recombinant CWP2 (rCWP2) and its efficacy in interfering with the phenomenon of encystation taking place in the small bowels of BALB/c mice vaccinated with the recombinant protein. Here we report that the immunization of BALB/c mice with rCWP2 stimulated the immune system in a manner comparable to that for a live infection with Giardia muris cysts. Fecal and serum anti-rCWP2 immunoglobulin A (IgA) antibodies were detected in the immunized mice. In addition, anti-rCWP2 IgG1 and IgG2a antibodies were detected in the serum. mRNAs coding for Th1 and Th2 types of cytokines were detected in spleen and Peyer's patch cells from immunized mice. When the vaccinated mice were challenged with live cysts, the animals shed fewer cysts. We conclude that rCWP2 is a possible candidate antigen for the development of a transmission-blocking vaccine.

  15. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein-Based Fusion Antigen CTH522 Into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic but is a c......Sexually transmitted Chlamydia trachomatis (Ct) infects more than 100 million people annually, and untreated chlamydia infections can cause severe complications. Therefore, there is an urgent need for a chlamydia vaccine. The Ct major outer membrane protein (MOMP) is highly immunogenic...... but is a challenging vaccine candidate by being an integral membrane protein, and the immunogenicity depends on a correctly folded structure. We investigated the biophysical properties of the recombinant MOMP-based fusion antigen CTH522, which is tested in early human clinical trials. It consists of a truncated......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...

  16. Quadrivalent human papillomavirus recombinant vaccine: The first vaccine for cervical cancers

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2007-01-01

    Full Text Available Gardasil ® is the first quadrivalent human papillomavirus (HPV- types 6, 11, 16, 18 recombinant vaccine approved by the FDA on June 8, 2006. It induces genotype-specific virus-neutralizing antibodies and prevents infection with HPV. Various clinical trials demonstrated a reduction in the incidence of vaccine-type-specific persistent infections and of associated moderate- and high-grade cervical dysplasias and carcinomas in situ after its use. Gardasil is currently approved by FDA for prevention of genital warts, cancers and precancerous conditions of cervix and vulva in 9-26 years old females. Three doses of 0.5 ml of gardasil each at 0, 2 and 6 months are given intramuscularly. It is contraindicated in individuals who are hypersensitive to the active substances or to any of the excipients of the vaccine, patients with bleeding abnormalities or patients on anticoagulant therapy and during pregnancy. However, the vaccine, at an estimated $300-500 per course, is too expensive for many women in developing countries. Moreover, question regarding the longevity of the protection by vaccine is still unsolved. Hence, longer studies are required to establish its real status in cancer prevention.

  17. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  18. Immune responses induced by recombinant Bacillus subtilis expressing the spike protein of transmissible gastroenteritis virus in pigs.

    Science.gov (United States)

    Mou, Chunxiao; Zhu, Liqi; Xing, Xianping; Lin, Jian; Yang, Qian

    2016-07-01

    Transmissible gastroenteritis (TGE) causes severe diarrhea in suckling piglets, results in enormous economic loss in swine-producing areas of the world. To develop an effective, safe, and convenient vaccine for the prevention of TGE, we have constructed a recombinant Bacillus subtilis strain (B. subtilis CotGSG) displaying the transmissible gastroenteritis virus (TGEV) spike (S) protein and discussed its immune function to intestinal submucosal dendritic cells (DCs). Our results showed that the recombinant B. subtilis had the ability to recruit more DCs to sample B. subtilis CotGSG, migrate to MLNs, and induce immune responses. Immunized piglets with B. subtilis CotGSG could significantly elevate the specific SIgA titers in feces, IgG titers and neutralizing antibodies in serum. Collectively, our results suggested that recombinant B. subtilis CotGSG expressing the TGEV S protein could effectively induce immune responses via DCs, and provided a perspective on potential novel strategy and approach that may be applicable to the development of the next generation of TGEV vaccines. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  20. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    International Nuclear Information System (INIS)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-01-01

    Highlights: → All three capsid proteins can be expressed in insect cells in baculovirus expression system. → All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. → The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  1. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Wang, Junwei, E-mail: jwwang@neau.edu.cn [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China)

    2011-05-27

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  2. A Rapid and Improved Method to Generate Recombinant Dengue Virus Vaccine Candidates.

    Directory of Open Access Journals (Sweden)

    Dhanasekaran Govindarajan

    Full Text Available Dengue is one of the most important mosquito-borne infections accounting for severe morbidity and mortality worldwide. Recently, the tetravalent chimeric live attenuated Dengue vaccine Dengvaxia® was approved for use in several dengue endemic countries. In general, live attenuated vaccines (LAV are very efficacious and offer long-lasting immunity against virus-induced disease. Rationally designed LAVs can be generated through reverse genetics technology, a method of generating infectious recombinant viruses from full length cDNA contained in bacterial plasmids. In vitro transcribed (IVT viral RNA from these infectious clones is transfected into susceptible cells to generate recombinant virus. However, the generation of full-length dengue virus cDNA clones can be difficult due to the genetic instability of viral sequences in bacterial plasmids. To circumvent the need for a single plasmid containing a full length cDNA, in vitro ligation of two or three cDNA fragments contained in separate plasmids can be used to generate a full-length dengue viral cDNA template. However, in vitro ligation of multiple fragments often yields low quality template for IVT reactions, resulting in inconsistent low yield RNA. These technical difficulties make recombinant virus recovery less efficient. In this study, we describe a simple, rapid and efficient method of using LONG-PCR to recover recombinant chimeric Yellow fever dengue (CYD viruses as potential dengue vaccine candidates. Using this method, we were able to efficiently generate several viable recombinant viruses without introducing any artificial mutations into the viral genomes. We believe that the techniques reported here will enable rapid and efficient recovery of recombinant flaviviruses for evaluation as vaccine candidates and, be applicable to the recovery of other RNA viruses.

  3. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy.

    Science.gov (United States)

    Halim, S S; Collins, D N; Ramsingh, A I

    2000-10-10

    The ultimate goal in the treatment of HIV-infected persons is to prevent disease progression. A strategy to accomplish this goal is to use chemotherapy to reduce viral load followed by immunotherapy to stimulate HIV-specific immune responses that are observed in long-term asymptomatic individuals. An effective, live, recombinant virus, expressing HIV sequences, would be capable of inducing both CTL and CD4(+) helper T cell responses. To accomplish these goals, the viral vector must be immunogenic yet retain its avirulent phenotype in a T cell-deficient host. We have identified a coxsackievirus variant, CB4-P, that can induce protective immunity against a virulent variant. In addition, the CB4-P variant remains avirulent in mice lacking CD4(+) helper T cells, suggesting that CB4-P may be uniquely suited as a viral vector for a therapeutic HIV vaccine. Two strategies designed to elicit CTL and CD4(+) helper T cell responses were used to construct CB4-P/HIV recombinants. Recombinant viruses were viable, genetically stable, and retained the avirulent phenotype of the parental virus. In designing a viral vector for vaccine development, an issue that must be addressed is whether preexisting immunity to the vector would affect subsequent administration of the recombinant virus. Using a test recombinant, we showed that prior exposure to the parental CB4-P virus did not affect the ability of the recombinant to induce a CD4(+) T cell response against the foreign sequence. The results suggest that a "cocktail" of coxsackie/HIV recombinants may be useful as a therapeutic HIV vaccine.

  4. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    Science.gov (United States)

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  5. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  6. Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; de Fays, Katalin; Pourchet, Aldo; Thiry, Julien; Vanderplasschen, Alain; Antoine, Nadine; Thiry, Etienne

    2006-03-31

    Intramolecular recombination is a frequent event during the replication cycle of bovine herpesvirus 1 (BoHV-1). Recombinant viruses frequently arise and survive in cattle after concomitant nasal infections with two BoHV-1 mutants. The consequences of this process, related to herpesvirus evolution, have to be assessed in the context of large use of live marker vaccines based on glycoprotein E (gE) gene deletion. In natural conditions, double nasal infections by vaccine and wild-type strains are likely to occur. This situation might generate virulent recombinant viruses inducing a serological response indistinguishable from the vaccine one. This question was addressed by generating in vitro BoHV-1 recombinants deleted in the gE gene from seven wild-type BoHV-1 strains and one mutant strain deleted in the genes encoding gC and gE. In vitro growth properties were assessed by virus production, one step growth kinetics and plaque size assay. Heterogeneity in the biological properties was shown among the investigated recombinant viruses. The results demonstrated that some recombinants, in spite of their gE minus phenotype, have biological characteristics close to wild-type BoHV-1.

  7. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper.

    Science.gov (United States)

    Wang, Xijun; Feng, Na; Ge, Jinying; Shuai, Lei; Peng, Liyan; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu; Bu, Zhigao

    2012-07-20

    Effective, safe, and affordable rabies vaccines are still being sought. Attenuated live vaccine has been widely used to protect carnivores from canine distemper. In this study, we generated a recombinant canine distemper virus (CDV) vaccine strain, rCDV-RVG, expressing the rabies virus glycoprotein (RVG) by using reverse genetics. The recombinant virus rCDV-RVG retained growth properties similar to those of vector CDV in Vero cell culture. Animal studies demonstrated that rCDV-RVG was safe in mice and dogs. Mice inoculated intracerebrally or intramuscularly with rCDV-RVG showed no apparent signs of disease and developed a strong rabies virus (RABV) neutralizing antibody response, which completely protected mice from challenge with a lethal dose of street virus. Canine studies showed that vaccination with rCDV-RVG induced strong and long-lasting virus neutralizing antibody responses to RABV and CDV. This is the first study demonstrating that recombinant CDV has the potential to serve as bivalent live vaccine against rabies and canine distemper in animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  9. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  10. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  11. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  12. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging.

    Science.gov (United States)

    Boutier, Maxime; Ronsmans, Maygane; Ouyang, Ping; Fournier, Guillaume; Reschner, Anca; Rakus, Krzysztof; Wilkie, Gavin S; Farnir, Frédéric; Bayrou, Calixte; Lieffrig, François; Li, Hong; Desmecht, Daniel; Davison, Andrew J; Vanderplasschen, Alain

    2015-02-01

    Cyprinid herpesvirus 3 (CyHV 3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV 3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV 3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.

  13. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines.

    Science.gov (United States)

    Fakri, F; Bamouh, Z; Ghzal, F; Baha, W; Tadlaoui, K; Fihri, O Fassi; Chen, W; Bu, Z; Elharrak, M

    2018-01-15

    Sheep and goat pox (SGP) with peste des petits ruminants (PPR) are transboundary viral diseases of small ruminants that cause huge economic losses. Recombinant vaccines that can protect from both infections have been reported as a promising solution for the future. SGP was used as a vector to express two structural proteins hemagglutinin or the fusion protein of PPRV. We compared immunity conferred by recombinant capripoxvirus vaccines expressing H or F or both HF. Safety and efficacy were evaluated in goats and sheep. Two vaccine doses were tested in sheep, 10 4.5 TCDI50 in 1ml dose was retained for the further experiment. Results showed that the recombinant HF confers an earlier and stronger immunity against both SGP and PPR. This recombinant vaccine protect also against the disease in exposed and unexposed sheep. The potential Differentiating Infected from Vaccinated Animals of recombinant vaccines is of great advantage in any eradication program. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Plasmodium Promiscuous T Cell Epitope Delivered within the Ad5 Hexon Protein Enhances the Protective Efficacy of a Protein Based Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Jairo Andres Fonseca

    Full Text Available A malaria vaccine is a public health priority. In order to produce an effective vaccine, a multistage approach targeting both the blood and the liver stage infection is desirable. The vaccine candidates also need to induce balanced immune responses including antibodies, CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective inducing protective CD8+ T cell responses in several models including malaria; nonetheless this vaccine platform exhibits a limited induction of humoral immune responses. Two approaches have been used to improve the humoral immunogenicity of recombinant adenovirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or the genetic modification of the hypervariable regions (HVR of the capsid protein hexon to express B cell epitopes of interest. In this study, we describe the development of capsid modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice to determine the relevance of the hexon modification in enhancing protective immune responses induced by the previously described protein-based multi-stage experimental vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon modified vector with transgenic expression of PyCMP followed by protein immunizations resulted in the induction of robust antibody and cellular immune responses in comparison to a similar regimen that includes a vector with unmodified hexon. These differences in immunogenicity translated into a better protective efficacy against both the hepatic and red blood cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is used to deliver a promiscuous T cell epitope. Our data support the use of such modification to enhance the immunogenicity

  15. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  16. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties.

    Science.gov (United States)

    Soleimanpour, Saman; Hassannia, Tahereh; Motiee, Mahdieh; Amini, Abbas Ali; Rezaee, S A R

    2017-05-01

    Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.

  17. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    Science.gov (United States)

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Preparation of the Secretory Recombinant ALV-J gp85 Protein Using Pichia pastoris and Its Immunoprotection as Vaccine Antigen Combining with CpG-ODN Adjuvant.

    Science.gov (United States)

    Jing, Weifang; Zhou, Jinrun; Wang, Chunyang; Qiu, Jianhua; Guo, Huijun; Li, Hongmei

    2018-04-26

    This study focuses on preparing the secretory recombinant J subgroup of avian leukosis virus (ALV-J) gp85 protein using Pichia pastoris and evaluating its immunoprotection as vaccine antigen combining with CpG-ODN adjuvant. The secretory recombinant plasmid pPIC9-gp85 containing ALV-J gp85 gene was designed and was transfected into the genome of P. pastoris (GS115) cells. The recombinant plasmid was expressed under the induction of methanol. The expressed products in the medium of the cells were purified and identified with endoglycosidase digestion assay and western blot mediated with monoclonal antibody (MAb) JE9. The purified product combining with CpG-ODN adjuvant was inoculated intramuscularly into 7-day-old chickens and three booster inoculations were performed on 21 days post first inoculation (dpfi), 42, and 56 dpfi. The antibody responses and cellular immune responses were detected, and the protective effects were analyzed after challenge with ALV-J. The results showed that the secretory pPIC9-gp85 plasmid was successfully constructed and could be stably expressed in GS115 cells. The expressed products were N-acetylglucosylated and could specifically combine with MAb (JE9). The secreted gp85 protein combining with CpG-ODN adjuvant could induce higher antibody response and spleen lymphocyte proliferation response and IFN-γ-inducing response, and could protect all the inoculated chickens against the viremia and the immunosuppressive lesions caused by ALV-J challenge. The results of neutralizing test in vitro suggested that the antisera with some ALV-J antibody titers could neutralize ALV-J strain and inhibit the growth of virus in vitro. The result of IFA showed that IgG antibody in the antisera could specifically combine with ALV-J strain in cells. It can be concluded that the secretory recombinant gp85 protein, as a new acetylglucosylated gp85 protein, was successfully prepared and combining with CpG-ODN adjuvant could protect the inoculated chickens

  19. Protective efficacy of a single immunization with capripoxvirus-vectored recombinant peste des petits ruminants vaccines in presence of pre-existing immunity.

    Science.gov (United States)

    Caufour, Philippe; Rufael, Tesfaye; Lamien, Charles Euloge; Lancelot, Renaud; Kidane, Menbere; Awel, Dino; Sertse, Tefera; Kwiatek, Olivier; Libeau, Geneviève; Sahle, Mesfin; Diallo, Adama; Albina, Emmanuel

    2014-06-24

    Sheeppox, goatpox and peste des petits ruminants (PPR) are highly contagious ruminant diseases widely distributed in Africa, the Middle East and Asia. Capripoxvirus (CPV)-vectored recombinant PPR vaccines (rCPV-PPR vaccines), which have been developed and shown to protect against both Capripox (CP) and PPR, would be critical tools in the control of these important diseases. In most parts of the world, these disease distributions overlap each other leaving concerns about the potential impact that pre-existing immunity against either disease may have on the protective efficacy of these bivalent rCPV-PPR vaccines. Currently, this question has not been indisputably addressed. Therefore, we undertook this study, under experimental conditions designed for the context of mass vaccination campaigns of small ruminants, using the two CPV recombinants (Kenya sheep-1 (KS-1) strain-based constructs) developed previously in our laboratory. Pre-existing immunity was first induced by immunization either with an attenuated CPV vaccine strain (KS-1) or the attenuated PPRV vaccine strain (Nigeria 75/1) and animals were thereafter inoculated once subcutaneously with a mixture of CPV recombinants expressing either the hemagglutinin (H) or the fusion (F) protein gene of PPRV (10(3) TCID50/animal of each). Finally, these animals were challenged with a virulent CPV strain followed by a virulent PPRV strain 3 weeks later. Our study demonstrated full protection against CP for vaccinated animals with prior exposure to PPRV and a partial protection against PPR for vaccinated animals with prior exposure to CPV. The latter animals exhibited a mild clinical form of PPR and did not show any post-challenge anamnestic neutralizing antibody response against PPRV. The implications of these results are discussed herein and suggestions made for future research regarding the development of CPV-vectored vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model

    Science.gov (United States)

    Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz

    2017-04-01

    Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ɛ-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

  1. The fimbrial protein FlfA from Gallibacterium anatis is a virulence factor and vaccine candidate

    DEFF Research Database (Denmark)

    Bager, Ragnhild Jørgensen; Nesta, Barbara; Pors, Susanne Elisabeth

    2013-01-01

    in the natural chicken host. Furthermore, protection against G. anatis 12656-12 could be induced by immunizing chickens with recombinant FlfA. Finally, in vitro expression of FlfA homologs was observed in a genetically diverse set of G. anatis strains, suggesting the potential of FlfA as a serotype-independent...... vaccine candidate This is the first study describing a fimbrial subunit protein of G. anatis with a clear potential as a vaccine antigen....

  2. Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection.

    Science.gov (United States)

    Barbosa, Rafael Polidoro Alves; Filho, Bruno Galvão; Dos Santos, Luara Isabela; Junior, Policarpo Ademar Sales; Marques, Pedro Elias; Pereira, Rafaela Vaz Sousa; Cara, Denise Carmona; Bruña-Romero, Oscar; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Machado, Alexandre Vieira

    2013-01-01

    In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.

  3. LemA and Erp Y-like recombinant proteins from Leptospira interrogans protect hamsters from challenge using AddaVax™ as adjuvant.

    Science.gov (United States)

    Oliveira, Thaís Larré; Schuch, Rodrigo Andrade; Inda, Guilherme Roig; Roloff, Bárbara Couto; Neto, Amilton Clair Pinto Seixas; Amaral, Marta; Dellagostin, Odir Antonio; Hartwig, Daiane Drawanz

    2018-05-03

    Recombinant subunit vaccines have been extensively evaluated as promising alternatives against leptospirosis. Here, we evaluated two proteins in formulations containing the adjuvant AddaVax™ as vaccine candidates for prevention and control of leptospirosis. Recombinant proteins rErp Y-like and rLemA were characterized by ELISA to assess their ability to bind extracellular matrix (ECM) components and fibrinogen. Groups of eight hamsters were immunized intramuscularly with rErp Y-like or rLemA mixed with a squalene-based adjuvant (AddaVax), and then vaccine efficacy was determined in terms of protection against a lethal challenge. The humoral immune response was determined by ELISA, and the evidence of sub-lethal infection was evaluated by histopathology and kidney culture. rLemA protein binds laminin, fibrinogen, and collagen type IV, while rErp Y-like interacts with fibrinogen. Significant protection was achieved for rLemA and rErp Y-like vaccines, which showed 87.5% and 62.5% survivals, respectively. On day 28, the humoral immune response was significantly greater in the vaccine groups as compared to that in the control group, and the response was predominantly based on IgG2/3. The surviving animals showed negative results in culture isolation but presented with tissue lesions in the lungs and kidneys. Cumulatively, our findings suggest that LemA and Erp Y-like proteins act as adhesins and are able to protect against mortality, but not against tissue lesions. Moreover, AddaVax is a novel adjuvant with potential for improving the immunogenicity of leptospiral vaccines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    International Nuclear Information System (INIS)

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M.

    2007-01-01

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli β-galactosidase induced durable β-gal-specific IgG and CD8 + T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes

  5. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection.

    Science.gov (United States)

    Ma, Xiumin; Zhao, Hui; Zhang, Fengbo; Zhu, Yuejie; Peng, Shanshan; Ma, Haimei; Cao, Chunbao; Xin, Yan; Yimiti, Delixiati; Wen, Hao; Ding, Jianbing

    2016-01-01

    Cystic hydatid disease is a zoonotic parasitic disease caused by Echinococcus granulosus which is distributed worldwide. The disease is difficult to treat with surgery removal is the only cure treatment. In the high endemic areas, vaccination of humans is believed a way to protect communities from the disease. In this study we vaccinated BALB/c mice with rBCG-EgG1Y162, and then detected the level of IgG and IgE specifically against the recombinant protein by ELISA, rBCG-EgG1Y162 induced strong and specific cellular and humoral immune responses. In vitro study showed that rBCG-EgG1Y162 vaccine not only promote splenocytes proliferation but also active T cell. In addition, the rBCG-EgG1Y162 induced a protection in the mice against secondary infection of Echinococcus granulosus.

  6. Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.

    Science.gov (United States)

    Khan, Shahneaz Ali; Polkinghorne, Adam; Waugh, Courtney; Hanger, Jon; Loader, Jo; Beagley, Kenneth; Timms, Peter

    2016-02-03

    The development of a vaccine is a key strategy to combat the widespread and debilitating effects of chlamydial infection in koalas. One such vaccine in development uses recombinant chlamydial major outer membrane protein (rMOMP) as an antigen and has shown promising results in several koala trials. Previous chlamydial vaccine studies, primarily in the mouse model, suggest that both cell-mediated and antibody responses will be required for adequate protection. Recently, the important protective role of antibodies has been highlighted. In our current study, we conducted a detailed analysis of the antibody-mediated immune response in koalas that are either (a) naturally-infected, and/or (b) had received an rMOMP vaccine. Firstly, we observed that naturally-infected koalas had very low levels of Chlamydia pecorum-specific neutralising antibodies. A strong correlation between low IgG total titers/neutralising antibody levels, and higher C. pecorum infection load was also observed in these naturally-infected animals. In vaccinated koalas, we showed that the vaccine was able to boost the humoral immune response by inducing strong levels of C. pecorum-specific neutralising antibodies. A detailed characterisation of the MOMP epitope response was also performed in naturally-infected and vaccinated koalas using a PepScan epitope approach. This analysis identified unique sets of MOMP epitope antibodies between naturally-infected non-protected and diseased koalas, versus vaccinated koalas, with the latter group of animals producing a unique set of specific epitope-directed antibodies that we demonstrated were responsible for the in vitro neutralisation activity. Together, these results show the importance of antibodies in chlamydial infection and immunity following vaccination in the koala. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Recombinant α-actinin subunit antigens of Trichomonas vaginalis as potential vaccine candidates in protecting against trichomoniasis.

    Science.gov (United States)

    Xie, Yi-Ting; Gao, Jiang-Mei; Wu, Ya-Ping; Tang, Petrus; Hide, Geoff; Lai, De-Hua; Lun, Zhao-Rong

    2017-02-16

    Human trichomoniasis caused by Trichomonas vaginalis is one of the most common sexually transmitted diseases with more than 200 million cases worldwide. It has caused a series of health problems to patients. For prevention and control of infectious diseases, vaccines are usually considered as one of the most cost-efficient tools. However, until now, work on the development of T. vaginalis vaccines is still mainly focused on the screening of potential immunogens. Alpha-actinin characterized by high immunogenicity in T. vaginalis was suggested as a promising candidate. Therefore, the purpose of this study was to evaluate the protective potency of recombinant α-actinin against T. vaginalis infection in a mouse intraperitoneal model. Two selected coding regions of α-actinin (ACT-F, 14-469 aa and ACT-T, 462-844 aa) amplified from cDNA were cloned into pET-32a (+) expression vector and transfected into BL21 cells. After induction with IPTG and purification with electroelution, the two recombinant fusion proteins were emulsified in Freund's adjuvant (FA) and used to immunize BALB/C mice. Following intraperitoneal inoculation with T. vaginalis, the survival rate of mice was monitored for the assessment of protective potency. After immunization, the antibody level in mouse serum was assessed by ELISA, splenocyte proliferation response was detected with CCK8 and cytokines in the supernatant of splenocytes were quantified with a cytometric bead-based assay. We successfully obtained purified ACT-F (70.33 kDa) and ACT-T (61.7kDa). Both recombinant proteins could provide significant protection against T. vaginalis challenge, especially ACT-T (with 100% protection within one month). Meanwhile, high levels of specific total IgG and subtypes (IgG1 > IgG2a) were detected in sera from the immunized mice. Our results also revealed a statistically significant increase in splenocyte proliferation and related cytokine (IFN-γ, IL-6, IL-17A and IL-10) production after repeated

  8. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  9. Yeast-recombinant hepatitis B vaccine: efficacy with hepatitis B immune globulin in prevention of perinatal hepatitis B virus transmission

    International Nuclear Information System (INIS)

    Stevens, C.E.; Taylor, P.E.; Tong, M.J.; Toy, P.T.; Vyas, G.N.; Nair, P.V.; Weissman, J.Y.; Krugman, S.

    1987-01-01

    A yeast-recombinant hepatitis B vaccine was licensed recently by the Food and Drug administration and is now available. To assess the efficacy of the yeast-recombinant vaccine, the authors administered the vaccine in combination with hepatitis B immune globulin to high-risk newborns. If infants whose mothers were positive for both hepatitis B surface antigen and the e antigen receive no immunoprophylaxis, 70% to 90% become infected with the virus, and almost all become chronic carriers. Among infants in this study who received hepatitis B immune globulin at birth and three 5- + g doses of yeast-recombinant hepatitis B vaccine, only 4.8% became chronic carriers, a better than 90% level of protection and a rate that is comparable with that seen with immune globulin and plasma-derived hepatitis B vaccine. Hepatitis surface antigen and antibodies were detected by radioimmunoassay. These data suggest that, in this high-risk setting, the yeast-recombinant vaccine is as effective as the plasma-derived vaccine in preventing hepatitis B virus infection and the chronic carrier state

  10. Recombinant Breast Cancer Vaccines

    National Research Council Canada - National Science Library

    Pilon, Shari

    1999-01-01

    .... To generate cytosolic proteins, (cytE2, cytE2A), the ER signal sequence was deleted. Vaccination of BALB/c mice with DNA encoding transmembrane E2 or E2A induced anti-ErbB-2 antibodies and anti-tumor immunity, with E2 being more potent than E2A...

  11. A New Approach for Designing A Potentially Vaccine Candidate against Urinary Tract Infection by Using Protein Display on Lacto-bacillus Surface

    Directory of Open Access Journals (Sweden)

    Jalil Fallah Mehrabadi

    2013-07-01

    Full Text Available Background: The prevalence of Urinary Tract Infection (UTI is really high in the world. Escherichia coli is a major agent of UTI. One of the strategies for decreasing UTI infections is vaccine development. As the attachment is a really important stage in colonization and infection, at­tachment inhibition has an applied strategy. FimH protein is a major factor during bacterial colonization in urinary tract and could be used as a vaccine. Thus, it was considered in this research as a candidate antigen. Methods: The sequences of fimH and acmA genes were used for designing a synthetic gene. It was cloned to pET23a expression vector and transformed to E. coli (DE3 Origami. To confirm the expression of recombinant protein, SDS-PAGE and western blotting methods were used. Subsequently, recombinant protein was purified. On the other hand, Lactobacillus reuteri was cultured and mixed with FimH / AcmA recombinant protein. The rate of protein localization on lactobacillus surface was assessed using ELISA method. Results: It was showed that the recombinant protein was expressed in E. coli (DE3 Origami and purified by affinity chromatography. Moreover, this protein could be localized on lactobacillus surface by 5 days. Conclusion: In current study, a fusion recombinant protein was pre­pared and displayed on L. reuteri surface. This strain could be used for animal experiment as a competitor against Uropathogenic E. coli (UPEC. Using manipulated probiotics strains instead of antibiotic ther­apy could decrease the antibiotic consumption and reduce multi-drug resistant strains.

  12. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Angelica Van Goor

    Full Text Available Chickens are a major source of protein worldwide, yet infectious diseases continue to threaten the poultry industry. Avian pathogenic Escherichia coli (APEC, a subgroup of extraintestinal pathogenic E. coli (ExPEC, causes colibacillosis in chickens resulting in economic loss because of treatment, condemnation of products, and death. In this study, we evaluated a recombinant antigens (rAg vaccine combining common ExPEC surface proteins EtsC, OmpA, OmpT, and TraT for broad protective potential against APEC infections in chickens. The specific objectives were to evaluate antibody (serum and cytokines (lymphoid organs responses to vaccination; in vitro bactericidal ability of serum and splenocytes against multiple APEC serotypes; and in vivo protection against APEC challenge in chickens. Groups of four-day old chickens (N = 10 were vaccinated twice (two-week interval subcutaneously with rAgs alone or in combination and CpG adjuvant or PBS (control. IgY antibody in the serum and mRNA expression of IL-1β, IL-6, IL-18, IFN-γ, IL-4, IFN-β, and IL-8 in bursa, spleen, and thymus were measured using ELISA and RT-qPCR, respectively. Serum and splenocytes were tested for their bactericidal ability in vitro against multiple APEC isolates. Vaccinated and non-vaccinated chickens were challenged with 108 CFU of APEC-O2 via air sac at 31 days post first vaccination. Vaccine protection was determined by the decrease of bacterial loads in blood and organs (lung, heart, spleen, and liver, as well as gross colibacillosis lesion scores in air sac, heart, and liver. Vaccination significantly (P < 0.05 elicited IgY against specific antigens, induced immune related mRNA expression in the spleen and bursa, reduced in vitro growth of multiple APEC serotypes, and decreased bacterial loads in the heart and spleen, and gross lesion scores of the air sac, heart and liver in chickens. The vaccine reported may be used to provide broad protection against APEC strains

  13. Recombinant proteins of Zaire ebolavirus induce potent humoral and cellular immune responses and protect against live virus infection in mice.

    Science.gov (United States)

    Lehrer, Axel T; Wong, Teri-Ann S; Lieberman, Michael M; Humphreys, Tom; Clements, David E; Bakken, Russell R; Hart, Mary Kate; Pratt, William D; Dye, John M

    2018-05-24

    Infections with filoviruses in humans are highly virulent, causing hemorrhagic fevers which result in up to 90% mortality. In addition to natural infections, the ability to use these viruses as bioterrorist weapons is of significant concern. Currently, there are no licensed vaccines or therapeutics available to combat these infections. The pathogenesis of disease involves the dysregulation of the host's immune system, which results in impairment of the innate and adaptive immune responses, with subsequent development of lymphopenia, thrombocytopenia, hemorrhage, and death. Questions remain with regard to the few survivors of infection, who manage to mount an effective adaptive immune response. These questions concern the humoral and cellular components of this response, and whether such a response can be elicited by an appropriate prophylactic vaccine. The data reported herein describe the production and evaluation of a recombinant subunit Ebola virus vaccine candidate consisting of insect cell expressed Zaire ebolavirus (EBOV) surface glycoprotein (GP) and the matrix proteins VP24 and VP40. The recombinant subunit proteins are shown to be highly immunogenic in mice, yielding both humoral and cellular responses, as well as highly efficacious, providing up to 100% protection against a lethal challenge with live virus. These results demonstrate proof of concept for such a recombinant non-replicating vaccine candidate in the mouse model of EBOV which helps to elucidate immune correlates of protection and warrants further development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Determination of immune status in dogs against CPV-2 by recombinant protein based latex agglutination test.

    Science.gov (United States)

    Thomas, Jobin; Singh, Mithilesh; Goswami, T K; Glora, Philma; Chakravarti, Soumendu; Chander, Vishal; Upmanyu, Vikramaditya; Verma, Suman; Sharma, Chhavi; Mahendran, K

    2017-09-01

    Canine parvoviral enteritis is a highly contagious viral illness caused by canine parvovirus-2 (CPV-2) which affects puppies of mainly 6-20 weeks of age. Vaccination is pivotal in preventing and controlling CPV-2 infection. Determination of antibody status is a critical determinant for successful vaccination. The hemagglutination inhibition (HI) test is 'gold standard' test for quantification of antibodies specific to CPV-2, although the execution of this test is not feasible under field conditions. The present study was undertaken to develop a point of care testing to determine immune status prior to CPV-2 vaccination or to detect seroconversion in immunized dogs by latex agglutination test (LAT) using recombinant antigen. Truncated portion of VP2 protein (tVP2) of CPV-2 was selected on the basis of antigenic indices, overexpressed the recombinant protein in E. coli system and was subsequently used in development of LAT. A total of 59 serum samples obtained from vaccinated (n = 54) and healthy unvaccinated (n = 5) dogs were tested. The positivity was observed in 85% (46/54) of these dogs with varying agglutination pattern. The overall sensitivity and specificity of latex agglutination test in comparison to HI test was recorded as 90% and 88% respectively with an agreement value of 90% (CI = 95%). Copyright © 2017 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  15. Neutralizing Antibody Response and Efficacy of Novel Recombinant Tetravalent Dengue DNA Vaccine Comprising Envelope Domain III in Mice

    Directory of Open Access Journals (Sweden)

    Ajit Kulkarni

    2017-03-01

    Full Text Available Background: Dengue is a global arboviral threat to humans; causing 390 million infections per year. The availability of safe and effective tetravalent dengue vaccine is a global requirement to prevent epidemics, morbidity, and mortality associated with it. Methods: Five experimental groups (6 mice per group each of 5-week-old BALB/c mice were immunized with vaccine and placebo (empty plasmid (100 µg, i.m. on days 0, 14 and 28. Among these, four groups (one group per serotype of each were subsequently challenged 3 weeks after the last boost with dengue virus (DENV serotypes 1-4 (100 LD50, 20 µl intracerebrally to determine vaccine efficacy. The fifth group of each was used as a control. The PBS immunized group was used as mock control. Serum samples were collected before and after subsequent immunizations. EDIII fusion protein expression was determined by Western blot. Total protein concentration was measured by Bradford assay. Neutralizing antibodies were assessed by TCID50-CPE inhibition assay. Statistical analysis was performed using Stata/IC 10.1 software for Windows. One-way repeated measures ANOVA and Mann-Whitney test were used for neutralizing antibody analysis and vaccine efficacy, respectively. Results: The recombinant EDIII fusion protein was expressed adequately in transfected 293T cells. Total protein concentration was almost 3 times more than the control. Vaccine candidate induced neutralizing antibodies against all four DENV serotypes with a notable increase after subsequent boosters. Vaccine efficacy was 83.3% (DENV-1, -3, -4 and 50% (DENV-2. Conclusion: Our results suggest that vaccine is immunogenic and protective; however, further studies are required to improve the immunogenicity particularly against DENV-2.

  16. Strategies to obtain multiple recombinant modified vaccinia Ankara vectors. Applications to influenza vaccines.

    Science.gov (United States)

    Barbieri, Andrea; Panigada, Maddalena; Soprana, Elisa; Di Mario, Giuseppina; Gubinelli, Francesco; Bernasconi, Valentina; Recagni, Marta; Donatelli, Isabella; Castrucci, Maria R; Siccardi, Antonio G

    2018-01-01

    As a vaccination vector, MVA has been widely investigated both in animal models and humans. The construction of recombinant MVA (rMVA) relies on homologous recombination between an acceptor virus and a donor plasmid in infected/transfected permissive cells. Our construction strategy "Red-to-Green gene swapping" - based on the exchange of two fluorescent markers within the flanking regions of MVA deletion ΔIII, coupled to fluorescence activated cell sorting - is here extended to a second insertion site, within the flanking regions of MVA deletion ΔVI. Exploiting this strategy, both double and triple rMVA were constructed, expressing as transgenes the influenza A proteins HA, NP, M1, and PB1. Upon validation of the harbored transgenes co-expression, double and triple recombinants rMVA(ΔIII)-NP-P2A-M1 and rMVA(ΔIII)-NP-P2A-M1-(ΔVI)-PB1 were assayed for in vivo immunogenicity and protection against lethal challenge. In vivo responses were identical to those obtained with the reported combinations of single recombinants, supporting the feasibility and reliability of the present improvement and the extension of Red-to-Green gene swapping to insertion sites other than ΔIII. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optimization of a multi-gene HIV-1 recombinant subtype CRF02AG DNA vaccine for expression of multiple immunogenic forms

    International Nuclear Information System (INIS)

    Ellenberger, Dennis; Li Bin; Smith, James; Yi Hong; Folks, Thomas; Robinson, Harriet; Butera, Salvatore

    2004-01-01

    We developed an AIDS vaccine for Western and West-Central Africa based on a DNA plasmid vector expressing HIV-1 recombinant subtype CRF02 A G gag, pol, and env genes. To optimize the production of noninfectious HIV-like particles (VLPs) and potentially improve the effectiveness of the vaccine, we generated four potential vaccine constructs: the parental (IC2) and three modifications (IC25, IC48, and IC90) containing mutations within the HIV protease. While the parental construct IC2 expressed aggregates of Gag proteins, the IC25 construct resulted in the production of immature VLPs (the core comprises unprocessed Pr 55Gag ). The remaining two constructs (IC48 and IC90) produced mature VLPs (the core comprises processed capsid p24) in addition to immature VLPs and aggregates of Gag proteins. VLPs incorporated significant levels of mature gp120 envelope glycoprotein. Importantly, the mature VLPs were fusion competent and entered coreceptor-specific target cells. The production of multiple antigenic forms, including fusion-competent VLPs, by candidate DNA vaccine constructs may provide immunologic advantages for induction of protective cellular and humoral responses against HIV-1 proteins

  18. A New Approach for Designing a Potentially Vaccine Candidate against Urinary Tract Infection by Using Protein Display on Lactobacillus

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2015-10-01

    Full Text Available Background: The prevalence of Urinary Tract Infection (UTI is really high in the world. Escherichia coli is a major agent of UTI. One of the strategies for decreasing UTI infections is vaccine development. As the attachment is a really important stage in colonization and infection, at- tachment inhibition has an applied strategy.  FimH protein is a major factor during bacterial colonization in urinary tract and could be used as a vaccine. Thus, it was considered in this research as a candidate anti- gen.Methods: The sequences of fimH and acmA genes were used for de- signing a synthetic gene. It was cloned to pET23a expression vector and transformed  to E. coli (DE3 Origami.  To confirm the expression  of recombinant  protein,  SDS-PAGE  and western  blotting  methods  were used.  Subsequently,  recombinant  protein  was  purified.  On  the  other hand, Lactobacillus reuteri was cultured and mixed with FimH / AcmA recombinant  protein. The rate of protein localization  on lactobacillus surface was assessed using ELISA method.Results: It was showed that the recombinant protein was expressed inE. coli (DE3 Origami and purified by affinity chromatography. More- over, this protein could be localized on lactobacillus surface by 5 days. Conclusion:  In current study,  a fusion recombinant  protein was pre- pared and displayed on L. reuteri surface. This strain could be used for animal  experiment  as  a  competitor  against  Uropathogenic   E.  coli (UPEC. Using manipulated probiotics strains instead of antibiotic ther- apy could decrease the antibiotic consumption  and reduce multi-drug resistant strains.

  19. A Promising Recombinant Herpesvirus of Turkeys Vaccine Expressing PmpD-N of Chlamydia psittaci Based on Elongation Factor-1 Alpha Promoter

    Directory of Open Access Journals (Sweden)

    Shanshan Liu

    2017-12-01

    Full Text Available The obligate intracellular Gram-negative bacterium Chlamydia psittaci often causes avian chlamydiosis and influenza-like symptoms in humans. However, the commercial subunit C. psittaci vaccine could only provide a partial protection against avian chlamydiosis due to poor cellular immune response. In our previous study, a recombinant herpesvirus of turkeys (HVT-delivered vaccine against C. psittaci and Marek’s disease based on human cytomegalovirus (CMV promoter (rHVT-CMV-pmpD was developed and provided an effective protection against C. psittaci disease with less lesions and reduced chlamydial loads. In this study, we developed another recombinant HVT vaccine expressing the N-terminal fragment of PmpD (PmpD-N based on human elongation factor-1 alpha (EF-1α promoter (rHVT-EF-pmpD by modifying the HVT genome within a bacterial artificial chromosome. The related characterization of rHVT-EF-pmpD was evaluated in vitro in comparison with that of rHVT-CMV-pmpD. The expression of PmpD-N was determined by western blot. Under immunofluorescence microscopy, PmpD-N protein of both two recombinant viruses was located in the cytoplasm and on the cell surface. Growth kinetics of rHVT-EF-pmpD was comparable to that of rHVT-CMV-pmpD, and the growth rate of rHVT-EF-pmpD was apparently higher than that of rHVT-CMV-pmpD on 48, 72, and 120 h postinfection. Macrophages activated by rHVT-EF-pmpD could produce more nitric oxide and IL-6 than that activated by rHVT-CMV-pmpD. In this study, a recombinant HVT vaccine expressing PmpD-N based on EF-1α promoter was constructed successfully, and a further research in vivo was needed to analyze the vaccine efficacy.

  20. Response of booster dose of cuban recombinant hepatitis-B vaccine in nonresponder and hyporesponder children

    International Nuclear Information System (INIS)

    Dahifar, H.; Mousavi, F.; Ghorbani, A.

    2007-01-01

    Acute hepatitis B infection can debilitate a patient for weeks and occasionally has a fatal outcome, while chronic infection is a major threat to the individual. To assess response of nonresponder and hyporesponder children to booster dose of Cuban recombinant hepatitis B vaccine. An interventional, descriptive study has been conducted on children who had been immunized with Cuban recombinant Hepatitis B vaccine and their antibody titers were <10mIU/ml (nonresponder) and 10-100mIU/ml (hyporesponder) administered booster dose of the same vaccine in their Deltoid muscles. The response of 141 children with the mean age of 1.9 years to booster dose of vaccine were 94.3% and 100% vaccines with the first and second booster dose of vaccination respectively. The anti-HBs titer in nonresponders and hyporesponders were 468+-346 and 783+-346mIU/ml respectively with significant differences between two groups (P=0.001). This study demonstrate moderately increase antibody production in the majority of vaccines with single supplementary vaccine. (author)

  1. Effect of recombinant glutathione S-transferase as vaccine antigen against Rhipicephalus appendiculatus and Rhipicephalus sanguineus infestation.

    Science.gov (United States)

    Sabadin, Gabriela Alves; Parizi, Luís Fernando; Kiio, Irene; Xavier, Marina Amaral; da Silva Matos, Renata; Camargo-Mathias, Maria Izabel; Githaka, Naftaly Wang'ombe; Nene, Vish; da Silva Vaz, Itabajara

    2017-12-04

    The ticks Rhipicephalus appendiculatus and Rhipicephalus sanguineus are the main vectors of Theileria parva and Babesia spp. in cattle and dogs, respectively. Due to their impact in veterinary care and industry, improved methods against R. appendiculatus and R. sanguineus parasitism are under development, including vaccines. We have previously demonstrated the induction of a cross-protective humoral response against Rhipicephalus microplus following vaccination with recombinant glutathione S-transferase from Haemaphysalis longicornis tick (rGST-Hl), suggesting that this protein could control tick infestations. In the present work, we investigated the effect of rGST-Hl vaccine against R. appendiculatus and R. sanguineus infestation in rabbits. In silico analysis revealed that GST from H. longicornis, R. appendiculatus and R. sanguineus have >80% protein sequence similarity, and multiple conserved antigenic sites. After the second vaccine dose, rGST-Hl-immunized rabbits showed elevated antibody levels which persisted until the end of experiment (75 and 60 days for R. appendiculatus and R. sanguineus, respectively). Western blot assays demonstrated cross-reactivity between anti-rGST-Hl antibodies and native R. appendiculatus and R. sanguineus GST extracts from ticks at different life stages. Vaccination with rGST-Hl decreased the number, weight, and fertility of engorged R. appendiculatus adults, leading to an overall vaccine efficacy of 67%. Interestingly, histological analysis of organ morphology showed damage to salivary glands and ovaries of R. appendiculatus adult females fed on vaccinated animals. In contrast, rGST-Hl vaccination did not affect R. appendiculatus nymphs, and it was ineffective against R. sanguineus across the stages of nymph and adult. Taken together, our results show the potential application of rGST-Hl as an antigen in anti-tick vaccine development, however indicating a broad difference in efficacy among tick species. Copyright © 2017 Elsevier

  2. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging

    Science.gov (United States)

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in the carp industry, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open...

  3. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2012-11-01

    Full Text Available The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future.

  4. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    Science.gov (United States)

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection in dogs.

    Directory of Open Access Journals (Sweden)

    Alex Loukas

    2005-10-01

    Full Text Available Hookworms infect 730 million people in developing countries where they are a leading cause of intestinal blood loss and iron-deficiency anemia. At the site of attachment to the host, adult hookworms ingest blood and lyse the erythrocytes to release hemoglobin. The parasites subsequently digest hemoglobin in their intestines using a cascade of proteolysis that begins with the Ancylostoma caninum aspartic protease 1, APR-1.We show that vaccination of dogs with recombinant Ac-APR-1 induced antibody and cellular responses and resulted in significantly reduced hookworm burdens (p = 0.056 and fecal egg counts (p = 0.018 in vaccinated dogs compared to control dogs after challenge with infective larvae of A. caninum. Most importantly, vaccinated dogs were protected against blood loss (p = 0.049 and most did not develop anemia, the major pathologic sequela of hookworm disease. IgG from vaccinated animals decreased the catalytic activity of the recombinant enzyme in vitro and the antibody bound in situ to the intestines of worms recovered from vaccinated dogs, implying that the vaccine interferes with the parasite's ability to digest blood.To the best of our knowledge, this is the first report of a recombinant vaccine from a hematophagous parasite that significantly reduces both parasite load and blood loss, and it supports the development of APR-1 as a human hookworm vaccine.

  6. Comparison of the Protective Efficacy of DNA and Baculovirus-Derived Protein Vaccines for EBOLA Virus in Guinea Pigs

    National Research Council Canada - National Science Library

    Mellquist-Riemenschneider, Jenny L; Garrison, Aura R; Geisbert, Joan B; Saikh, Kamal U; Heidebrink, Kelli D

    2003-01-01

    .... Previously, a priming dose of a DNA vaccine expressing the glycoprotein (GP) gene of MARV followed by boosting with recombinant baculovirus-derived GP protein was found to confer protective immunity to guinea pigs (Hevey et al., 2001...

  7. Effects of anti-tick vaccines, recombinant serine protease inhibitors ...

    African Journals Online (AJOL)

    A preliminary trial of a cocktail of recombinant RAS-1-2 and RIM 36 antigens was conducted in Uganda to assess the effects of ant-tick vaccines against Rhipicephalus appendiculatus tick feeding on Zebu cattle under both experimental and natural conditions. Under experimental conditions, over a period of 28 days, the ...

  8. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine.

    Science.gov (United States)

    Singh, Susheel K; Roeffen, Will; Mistarz, Ulrik H; Chourasia, Bishwanath Kumar; Yang, Fen; Rand, Kasper D; Sauerwein, Robert W; Theisen, Michael

    2017-05-31

    The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis. A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats. The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine.

  9. Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE).

    Science.gov (United States)

    Pugachev, Konstantin V; Schwaiger, Julia; Brown, Nathan; Zhang, Zhen-xi; Catalan, John; Mitchell, Frederick S; Ocran, Simeon W; Rumyantsev, Alexander A; Khromykh, Alexander A; Monath, Thomas P; Guirakhoo, Farshad

    2007-09-17

    Although the theoretical concern of genetic recombination has been raised related to the use of live attenuated flavivirus vaccines [Seligman, Gould, Lancet 2004;363:2073-5], it has little foundation [e.g., Monath TP, Kanesa-Thasan N, Guirakhoo F, Pugachev K, Almond J, Lang J, et al. Vaccine 2005;23:2956-8]. To investigate biological effects of recombination between a chimeric yellow fever (YF) 17D/Japanese encephalitis (JE) vaccine virus (ChimeriVax-JE) and a wild-type flavivirus Kunjin (KUN-cDNA), the prM-E envelope protein genes were swapped between the two viruses, resulting in new YF 17D/KUN(prM-E) and KUN/JE(prM-E) chimeras. The prM-E genes are easily exchangeable between flavivirues, and thus the exchange was expected to yield the most replication-competent chimeras, while other rationally designed recombinants would be more likely to be crippled or non-viable. The new chimeras proved highly attenuated in comparison with the KUN-cDNA parent, as judged by plaque size and growth kinetics in cell culture, low viremia in hamsters, and reduced neurovirulence/neuroinvasiveness in mice. These data provide strong experimental evidence that the potential of recombinants, should they ever emerge, to cause disease or spread (compete in nature with wild-type flaviviruses) would be indeed extremely low.

  10. HIV vaccines: new frontiers in vaccine development.

    Science.gov (United States)

    Duerr, Ann; Wasserheit, Judith N; Corey, Lawrence

    2006-08-15

    A human immunodeficiency virus (HIV) vaccine is the most promising and feasible strategy to prevent the events during acute infection that simultaneously set the course of the epidemic in the community and the course of the disease for the individual. Because safety concerns limit the use of live, attenuated HIV and inactivated HIV, a variety of alternate approaches is being investigated. Traditional antibody-mediated approaches using recombinant HIV envelope proteins have shown no efficacy in 2 phase III trials. Current HIV vaccine trials are focusing primarily on cytotoxic T lymphocyte-mediated products that use viral vectors, either alone or as boosts to DNA plasmids that contain viral genes. The most immunogenic of these products appear to be the recombinant adenovirus vector vaccines, 2 of which are now in advanced clinical development.

  11. Live Attenuated Recombinant Vaccine Protects Nonhuman Primates Against Ebola and Marburg Viruses

    National Research Council Canada - National Science Library

    Jones, Steven M; Feldmann, Heinz; Stroher, Ute; Geisbert, Joan B; Fernando, Lisa; Grolla, Allen; Klenk, Hans-Dieter; Sullivan, Nancy J; Volchkov, Viktor E; Fritz, Elizabeth A; Daddario, Kathleen M; Hensley, Lisa E; Jahrling, Peter B; Geisbert, Thomas W

    2005-01-01

    ...). Here, we developed replication-competent vaccines against EBOV and MARV based on attenuated recombinant vesicular stomatitis virus vectors expressing either the EBOV glycoprotein or MARV glycoprotein...

  12. Recombinant proteins as vaccines for protection against disease induced by infection with mink astrovirus

    DEFF Research Database (Denmark)

    2012-01-01

    and polypeptides of the capsid protein of a novel mink astrovirus strain denoted DK7627. Such polynucleotides and polypeptides may be used for the production of vaccines against mink astrovirus which may induce pre-weaning diarrhoea in minks. The invention furthermore relates to vectors, host cells, compositions...

  13. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  14. Alga-Produced Cholera Toxin-Pfs25 Fusion Proteins as Oral Vaccines

    Science.gov (United States)

    Gregory, James A.; Topol, Aaron B.; Doerner, David Z.

    2013-01-01

    Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy. PMID:23603678

  15. Lipoprotein NMB0928 from Neisseria meningitidis serogroup B as a novel vaccine candidate.

    Science.gov (United States)

    Delgado, Maité; Yero, Daniel; Niebla, Olivia; González, Sonia; Climent, Yanet; Pérez, Yusleydis; Cobas, Karem; Caballero, Evelín; García, Darien; Pajón, Rolando

    2007-12-05

    Polysaccharide-based vaccines for serogroup B Neisseria meningitidis have failed to induce protective immunity. As a result, efforts to develop vaccines for serogroup B meningococcal disease have mostly focused on outer membrane proteins (OMP). Vaccine candidates based on meningococcal OMP have emerged in the form of outer membrane vesicles (OMVs) or, more recently, purified recombinant proteins, as alternative strategies for serogroup B vaccine development. In our group, the protein composition of the Cuban OMVs-based vaccine VA-MENGOC-BC was elucidated using two-dimensional gel electrophoresis and mass spectrometry. The proteomic map of this product allowed the identification of new putative protective proteins not previously reported as components of an antimeningococcal vaccine. In the present study, we have determined the immunogenicity and protective capacity of NMB0928, one of those proteins present in the OMVs. The antigen was obtained as a recombinant protein in Escherichia coli, purified and used to immunize mice. The antiserum produced against the protein was capable to recognize the natural protein in different meningococcal strains by whole-cell ELISA and Western blotting. After immunization, recombinant NMB0928 induced bactericidal antibodies, and when the protein was administered inserted into liposomes, the elicited antibodies were protective in the infant rat model. These results suggest that NMB0928 is a novel antigen worth to be included in a broadly protective meningococcal vaccine.

  16. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

    Directory of Open Access Journals (Sweden)

    Zanotto Carlo

    2011-11-01

    Full Text Available Abstract Background Human papilloma virus (HPV-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1 have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. Methods A new fowlpox virus recombinant encoding HPV-L1 (FPL1 was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. Results The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. Conclusion This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.

  17. Molecular characterization of the recombinant protein RmLTI-BmCG-LTB: Protective immunity against Rhipicephalus (Boophilus microplus.

    Directory of Open Access Journals (Sweden)

    Bárbara Guimarães Csordas

    Full Text Available The bovine tick Rhipicephalus (Boophilus microplus is found in several tropical and subtropical regions of the world. This parasite transmits pathogens that cause disease, such as babesiosis (Babesia bovis and B. bigemina and anaplasmosis (Anaplasma marginale. Tick infestations cause enormous livestock losses, and controlling tick infestations and the transmission of tick-borne diseases remains a challenge for the livestock industry. Because the currently available commercial vaccines offer only partial protection against R. (B. microplus, there is a need for more efficient vaccines. Several recombinant antigens have been evaluated using different immunization strategies, and they show great promise. This work describes the construction and immunological characterization of a multi-antigen chimera composed of two R. (B. microplus antigens (RmLTI and BmCG and one Escherichia coli antigen (B subunit, LTB. The immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in E. coli. For all of the experiments, two groups (treated and control of four Angus heifers (3-6 months old were used. The inoculation was performed via intramuscular injection with 200 μg of purified recombinant chimeric protein and adjuvated. The chimeric protein was recognized by specific antibodies against each subunit and by sera from cattle inoculated with the chimera. Immunization of RmLTI-BmCG-LTB cattle reduced the number of adult female ticks by 6.29% and vaccination of cattle with the chimeric antigen provided 55.6% efficacy against R. (B. microplus infestation. The results of this study indicate that the novel chimeric protein is a potential candidate for the future development of a more effective vaccine against R. (B. microplus.

  18. Production, purification and immunogenicity of recombinant Ebola virus proteins - A comparison of Freund's adjuvant and adjuvant system 03.

    Science.gov (United States)

    Melén, Krister; Kakkola, Laura; He, Felix; Airenne, Kari; Vapalahti, Olli; Karlberg, Helen; Mirazimi, Ali; Julkunen, Ilkka

    2017-04-01

    There is an urgent need for Ebola virus (EBOV) proteins, EBOV-specific antibodies and recombinant antigens to be used in diagnostics and as potential vaccine candidates. Our objective was to produce and purify recombinant proteins for immunological assays and for the production of polyclonal EBOV specific antibodies. In addition, a limited comparison of the adjuvant effects of Freund's complete adjuvant (FCA) and adjuvant system 03 (AS03) was carried out. Recombinant EBOV GST-VP24, -VP30, -VP35, -VP40 and -NP were produced in E. coli and purified with affinity chromatography followed by preparative gel electrophoresis. Recombinant EBOV GP-His was produced in Sf9 insect cells and purified by preparative gel electrophoresis. To compare the adjuvant effect of FCA and AS03, 12 rabbits were immunized four times with one of the six recombinant EBOV proteins using FCA or AS03. In addition, three guinea pigs were immunized with EBOV VP24 using FCA. With the exception of sera from two rabbits immunized with GST-VP24, the antisera against all other EBOV proteins showed very high and specific antibody responses after three to four immunizations. The adjuvant effect of AS03 was comparable to that of FCA. The produced antibodies recognized the corresponding EBOV proteins in wild type EBOV-infected cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice.

    Science.gov (United States)

    Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M; Azizi, Mohammad; Khalaj, Vahid

    2018-01-01

    Saccharomyces boulardii , a subspecies of Saccharomyces cerevisiae , is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi ® ) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3 - S. boulardii . To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group ( P boulardii or PBS), and the fecal IgA titer was significantly higher in test group ( P boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii , as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.

  20. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

    DEFF Research Database (Denmark)

    Langeveld, J. P.; Kamstrup, Søren; Uttenthal, Åse

    1995-01-01

    Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline...... on inactivated virus. Surprisingly, this protection was obtained after only a single injection. Furthermore, the vaccinal dose of 150 μg of conjugated peptide or 3 μg of recombinant VP2 particles per animal, are sufficiently low to be cost-effective and applicable on a large scale....

  1. Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C.1.

    Science.gov (United States)

    Ballou, W Ripley; Reed, Jennifer L; Noble, William; Young, Neal S; Koenig, Scott

    2003-02-15

    A recombinant human parvovirus B19 vaccine (MEDI-491; MedImmune) composed of the VP1 and VP2 capsid proteins and formulated with MF59C.1 adjuvant was evaluated in a randomized, double-blind, phase 1 trial. Parvovirus B19-seronegative adults (n=24) received either 2.5 or 25 microg MEDI-491 at 0, 1, and 6 months. MEDI-491 was safe and immunogenic. All volunteers developed neutralizing antibody titers that peaked after the third immunization and were sustained through study day 364.

  2. Development of Recombinant Vaccine Using Herpesvirus of Turkey (Hvt as Vector for Several Viral Diseases in Poultry Industry

    Directory of Open Access Journals (Sweden)

    Risza Hartawan

    2011-03-01

    Full Text Available Herpesvirus of turkey (HVT has been utilised as live vaccine against Marek’s disease in poultry industry world-wide for many years. However, the potency of HVT is not limited on the Marek’s disease only. Along with rapid development of recombinant technique, the potency of HVT can be broaden for other diseases. As naturally apathogenic virus, HVT is a suitable candidate as vector vaccine to express important antigens of viral pathogens. Several researches have been dedicated to design HVT recombinant vaccine by inserting gene of important virus, such as Marek’s disease virus (MDV, immuno bursal disease virus (IBDV, Newcastle disease virus (NDV and Avian Influenza virus (AIV. Therefore, the future recombinant of HVT has been expected to be better in performance along with the improvement of recombinant technique.

  3. Rare natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus isolated from a case of acute flaccid paralysis in Brazil, 2015.

    Science.gov (United States)

    Cassemiro, Klécia M S M; Burlandy, Fernanda M; da Silva, Edson E

    2016-07-01

    A natural type 3/type 2 intertypic capsid recombinant vaccine-related poliovirus was isolated from an acute flaccid paralytic case in Brazil. Genome sequencing revealed the uncommon location of the crossover site in the VP1 coding region (nucleotides 3251-3258 of Sabin 3 genome). The Sabin 2 donor sequence replaced the last 118 nt of VP1, resulting in the substitution of the complete antigenic site IIIa by PV2-specific amino acids. The low overall number of nucleotide substitutions in P1 region indicated that the predicted replication time of the isolate was about 8-9 weeks. Two of the principal determinants of attenuation in Sabin 3 genomes were mutated (U472C and C2493U), but the temperature-sensitive phenotype of the isolate was preserved. Our results support the theory that there exists a PV3/PV2 recombination hotspot site in the tail region of the VP1 capsid protein and that the recombination may occur soon after oral poliovirus vaccine administration.

  4. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Science.gov (United States)

    Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A; Marchevsky, Renato S; Rocha, Maria Gabrielle L; Dutra, Miriam S; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T

    2014-06-01

    Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. The remarkable clinical protection induced by A2 in an animal model that is

  5. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  6. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice

    Directory of Open Access Journals (Sweden)

    Ghasem Bagherpour

    2018-04-01

    Full Text Available Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi® was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA, was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001 compared to control groups (receiving wild type S. boulardii or PBS, and the fecal IgA titer was significantly higher in test group (P < 0.05 than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic

  7. Impact of recombinant adenovirus serotype 35 priming versus boosting of a Plasmodium falciparum protein: Characterization of T- and B-Cell responses to liver-stage antigen 1

    NARCIS (Netherlands)

    Rodriguez, Ariane; Goudsmit, Jaap; Companjen, Arjen; Mintardjo, Ratna; Gillissen, Gert; Tax, Dennis; Sijtsma, Jeroen; Weverling, Gerrit Jan; Holterman, Lennart; Lanar, David E.; Havenga, Menzo J. E.; Radosevic, Katarina

    2008-01-01

    Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus

  8. Recombinant Nonstructural 3 Protein, rNS3, of Hepatitis C Virus Along With Recombinant GP96 Induce IL-12, TNFα and α5integrin Expression in Antigen Presenting Cells

    Science.gov (United States)

    Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh

    2013-01-01

    Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046

  9. Biological, immunological and functional properties of two novel multi-variant chimeric recombinant proteins of CSP antigens for vaccine development against Plasmodium vivax infection.

    Science.gov (United States)

    Shabani, Samaneh H; Zakeri, Sedigheh; Salmanian, Ali H; Amani, Jafar; Mehrizi, Akram A; Snounou, Georges; Nosten, François; Andolina, Chiara; Mourtazavi, Yousef; Djadid, Navid D

    2017-10-01

    The circumsporozoite protein (CSP) of the malaria parasite Plasmodium vivax is a major pre-erythrocyte vaccine candidate. The protein has a central repeat region that belongs to one of repeat families (VK210, VK247, and the P. vivax-like). In the present study, computer modelling was employed to select chimeric proteins, comprising the conserved regions and different arrangements of the repeat elements (VK210 and VK247), whose structure is similar to that of the native counterparts. DNA encoding the selected chimeras (named CS127 and CS712) were synthetically constructed based on E. coli codons, then cloned and expressed. Mouse monoclonal antibodies (mAbs; anti-Pv-210-CDC and -Pv-247-CDC), recognized the chimeric antigens in ELISA, indicating correct conformation and accessibility of the B-cell epitopes. ELISA using IgG from plasma samples collected from 221 Iranian patients with acute P. vivax showed that only 49.32% of the samples reacted to both CS127 and CS712 proteins. The dominant subclass for the two chimeras was IgG1 (48% of the positive responders, OD 492 =0.777±0.420 for CS127; 48.41% of the positive responders, OD 492 =0.862±0.423 for CS712, with no statistically significant difference P>0.05; Wilcoxon signed ranks test). Binding assays showed that both chimeric proteins bound to immobilized heparan sulphate and HepG2 hepatocyte cells in a concentration-dependent manner, saturable at 80μg/mL. Additionally, anti-CS127 and -CS712 antibodies raised in mice recognized the native protein on the surface of P. vivax sporozoite with high intensity, confirming the presence of common epitopes between the recombinant forms and the native proteins. In summary, despite structural differences at the molecular level, the expression levels of both chimeras were satisfactory, and their conformational structure retained biological function, thus supporting their potential for use in the development of vivax-based vaccine. Copyright © 2017 Elsevier Ltd. All rights

  10. Recombinant protective antigen 102 (rPA102): profile of a second-generation anthrax vaccine.

    Science.gov (United States)

    Keitel, Wendy A

    2006-08-01

    Recent terrorist attacks involving the use of Bacillus anthracis spores have stimulated interest in the development of new vaccines for anthrax prevention. Studies of the pathogenesis of anthrax and of the immune responses following infection and immunization underscore the pivotal role that antibodies to the protective antigen play in protection. The most promising vaccine candidates contain purified recombinant protective antigen. Clinical trials of one of these, recombinant protective antigen (rPA)102, are underway. Initial results suggest that rPA102 is well tolerated and immunogenic. Additional trials are necessary to identify optimal formulations and immunization regimens for pre- and postexposure prophylaxis. Future licensure of these and other candidate vaccines will depend on their safety and immunogenicity profiles in humans, and their ability to confer protection in animal models of inhalational anthrax.

  11. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  12. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus

    Directory of Open Access Journals (Sweden)

    Zhu Bibo

    2012-07-01

    Full Text Available Abstract Background West Nile Virus (WNV is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM and envelope (E proteins under the cytomegalovirus (CMV promoter with or without vesicular stomatitis virus glycoprotein (VSV/G were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.

  13. Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge.

    Science.gov (United States)

    Demberg, Thorsten; Boyer, Jean D; Malkevich, Nina; Patterson, L Jean; Venzon, David; Summers, Ebonita L; Kalisz, Irene; Kalyanaraman, V S; Lee, Eun Mi; Weiner, David B; Robert-Guroff, Marjorie

    2008-11-01

    Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.

  14. Use of recombinant capsid proteins in the development of a vaccine against foot-and-mouth disease virus (FMDV)

    DEFF Research Database (Denmark)

    Belsham, Graham; Bøtner, Anette

    2015-01-01

    -scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self...

  15. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    Science.gov (United States)

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  16. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    Science.gov (United States)

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-02-26

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.

  17. How to Meet the Last OIE Expert Surveillance Panel Recommendations on Equine Influenza (EI Vaccine Composition: A Review of the Process Required for the Recombinant Canarypox-Based EI Vaccine

    Directory of Open Access Journals (Sweden)

    Romain Paillot

    2016-11-01

    Full Text Available Vaccination is highly effective to prevent, control, and limit the impact of equine influenza (EI, a major respiratory disease of horses. However, EI vaccines should contain relevant equine influenza virus (EIV strains for optimal protection. The OIE expert surveillance panel annually reviews EIV evolution and, since 2010, the use of Florida clade 1 and 2 sub-lineages representative vaccine strains is recommended. This report summarises the development process of a fully- updated recombinant canarypox-based EI vaccine in order to meet the last OIE recommendations, including the vaccine mode of action, production steps and schedule. The EI vaccine ProteqFlu contains 2 recombinant canarypox viruses expressing the haemagglutinin of the A/equine/Ohio/03 and A/equine/Richmond/1/07 isolates (Florida clade 1 and 2 sub-lineages, respectively. The updated EI vaccine was tested for efficacy against the representative Florida clade 2 EIV strain A/equine/Richmond/1/07 in the Welsh mountain pony model. Protective antibody response, clinical signs of disease and virus shedding were compared with unvaccinated control ponies. Significant protection was measured in vaccinated ponies, which supports the vaccine registration. The recombinant canarypox-based EI vaccine was the first fully updated EI vaccine available in the EU, which will help to minimise the increasing risk of vaccine breakdown due to constant EIV evolution through antigenic drift.

  18. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    Science.gov (United States)

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups.

  19. Development of an indirect enzyme-linked immunosorbent assay (ELISA) to differentiate antibodies against wild-type porcine reproductive and respiratory syndrome from the vaccine strain TJM-F92 based on a recombinant Nsp2 protein.

    Science.gov (United States)

    Wang, X X; Wang, F X; Li, Z G; Wen, Y J; Wang, X; Song, N; Wu, H

    2018-01-01

    An accurate ELISA method to differentiate pigs infected with wild-type porcine reproductive and respiratory syndrome (PRRSV) strains from vaccinated ones would help to monitor PRRSV vaccination compliance. The recombinant protein GST-d120aa derived from the continuous deletion of 120 amino acids in the non-structural protein 2 region of the modified-live vaccine strain TJM-F92 was used to develop an indirect enzyme-linked immunosorbent assay (d120-ELISA) for differentiating serum antibodies against TJM-F92 from other PRRSV strains. At the optimized cut-off value which was calculated at an S/P of 0.25, it yielded a sensitivity of 90.7% and a specificity of 95.1%. Cross-reactivity tests suggested that the d120-ELISA was PRRSV-specific. Coefficient of variations of the repeatability tests ranged between 1.41-17.02%. The results suggest that the d120-ELISA is suitable for differentiating animals infected with wild-type strains from those immunized with MLV TJM-F92. Copyright © 2017. Published by Elsevier B.V.

  20. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure.

    Science.gov (United States)

    Antonis, Adriaan F G; Bruschke, Christianne J M; Rueda, Paloma; Maranga, Luis; Casal, J Ignacio; Vela, Carmen; Hilgers, Luuk A Th; Belt, Peter B G M; Weerdmeester, Klaas; Carrondo, Manuel J T; Langeveld, Jan P M

    2006-06-29

    A novel vaccine against porcine parvovirus (PPV), composed of recombinant virus-like particles (PPV-VLPs) produced with the baculovirus expression vector system (BEVS) at industrial scale, was tested for its immunogenicity and protective potency. A formulation of submicrogram amounts of PPV-VLPs in a water-in-mineral oil adjuvant evoked high serum antibody titres in both guinea pigs, used as reference model, and target species, pigs. A single immunisation with 0.7microg of this antigen yielded complete foetal protection against PPV infection after challenge with a virulent strain of this virus. Furthermore, also in the presence of mild adjuvants the protective action of these PPV-VLPs is excellent. This recombinant subunit vaccine overcomes some of the drawbacks of classical PPV vaccines.

  1. Attenuation of Recombinant Yellow Fever 17D Viruses Expressing Foreign Protein Epitopes at the Surface

    Science.gov (United States)

    Bonaldo, Myrna C.; Garratt, Richard C.; Marchevsky, Renato S.; Coutinho, Evandro S. F.; Jabor, Alfredo V.; Almeida, Luís F. C.; Yamamura, Anna M. Y.; Duarte, Adriana S.; Oliveira, Prisciliana J.; Lizeu, Jackeline O. P.; Camacho, Luiz A. B.; Freire, Marcos S.; Galler, Ricardo

    2005-01-01

    The yellow fever (YF) 17D vaccine is a live attenuated virus. Three-dimensional (3D) homology modeling of the E protein structure from YF 17D virus and its comparison with that from tick-borne encephalitis virus revealed that it is possible to accommodate inserts of different sizes and amino acid compositions in the flavivirus E protein fg loop. This is consistent with the 3D structures of both the dimeric and trimeric forms in which the fg loop lies exposed to solvents. We demonstrate here that YF 17D viruses bearing foreign humoral (17D/8) and T-cell (17D/13) epitopes, which vary in sequence and length, displayed growth restriction. It is hypothesized that interference with the dimer-trimer transition and with the formation of a ring of such trimers in order to allow fusion compromises the capability of the E protein to induce fusion of viral and endosomal membranes, and a slower rate of fusion may delay the extent of virus production. This would account for the lower levels of replication in cultured cells and of viremia in monkeys, as well as for the more attenuated phenotype of the recombinant viruses in monkeys. Testing of both recombinant viruses (17D/8 and 17D/13) for monkey neurovirulence also suggests that insertion at the 17D E protein fg loop does not compromise the attenuated phenotype of YF 17D virus, further confirming the potential use of this site for the development of new live attenuated 17D virus-based vaccines. PMID:15956601

  2. Global epidemiology of serogroup B meningococcal disease and opportunities for prevention with novel recombinant protein vaccines.

    Science.gov (United States)

    Villena, Rodolfo; Safadi, Marco Aurelio P; Valenzuela, María Teresa; Torres, Juan P; Finn, Adam; O'Ryan, Miguel

    2018-04-18

    Meningococcal disease (MD) is a major cause of meningitis and sepsis worldwide, with a high case fatality rate and frequent sequelae. Neisseria meningitidis serogroups A, B, C, W, X and Y are responsible for most of these life-threatening infections, and its unpredictable epidemiology can cause outbreaks in communities, with significant health, social and economic impact. Currently, serogroup B is the main cause of MD in Europe and North America and one of the most prevalent serogroups in Latin America. Mass vaccination strategies using polysaccharide vaccines have been deployed since the 1970s and the use of conjugate vaccines has controlled endemic and epidemic disease caused by serogroups A, C, W and Y and more recently serogroup B using geographically-specific outer membrane vesicle based vaccines. Two novel protein-based vaccines are a significant addition to our armamentarium against N. meningitidis as they provide broad coverage against highly diverse strains in serogroup B and other groups. Early safety, effectiveness and impact data of these vaccines are encouraging. These novel serogroup B vaccines should be actively considered for individuals at increased risk of disease and to control serogroup B outbreaks occurring in institutions or specific regions, as they are likely to save lives and prevent severe sequelae. Incorporation into national programs will require thorough country-specific analysis.

  3. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    Directory of Open Access Journals (Sweden)

    Tamborrini Marco

    2011-12-01

    Full Text Available Abstract Background In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP. Methods The highly purified recombinant protein GMZ2 was coupled to phosphatidylethanolamine and the conjugates incorporated into the membrane of IRIVs. The immunogenicity of this adjuvant-free virosomal formulation was compared to GMZ2 formulated with the adjuvants Montanide ISA 720 and Alum in three mouse strains with different genetic backgrounds. Results Intramuscular injections of all three candidate vaccine formulations induced GMZ2-specific antibody responses in all mice tested. In general, the humoral immune response in outbred NMRI mice was stronger than that in inbred BALB/c and C57BL/6 mice. ELISA with the recombinant antigens demonstrated immunodominance of the GLURP component over the MSP3 component. However, compared to the Al(OH3-adjuvanted formulation the two other formulations elicited in NMRI mice a larger proportion of anti-MSP3 antibodies. Analyses of the induced GMZ2-specific IgG subclass profiles showed for all three formulations a predominance of the IgG1 isotype. Immune sera against all three formulations exhibited cross-reactivity with in vitro cultivated blood-stage parasites. Immunofluorescence and immunoblot competition experiments showed that both components of the hybrid protein induced IgG cross-reactive with the corresponding native proteins. Conclusion A virosomal formulation of the chimeric protein GMZ2 induced P. falciparum blood stage parasite cross-reactive IgG responses specific for both MSP3 and GLURP. GMZ2 thus represents a candidate component suitable for inclusion into a multi-valent virosomal

  4. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    Science.gov (United States)

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses

  5. A prime/boost strategy using DNA/fowlpox recombinants expressing the genetically attenuated E6 protein as a putative vaccine against HPV-16-associated cancers.

    Science.gov (United States)

    Bissa, Massimiliano; Illiano, Elena; Pacchioni, Sole; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Massa, Silvia; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2015-03-05

    Considering the high number of new cases of cervical cancer each year that are caused by human papilloma viruses (HPVs), the development of an effective vaccine for prevention and therapy of HPV-associated cancers, and in particular against the high-risk HPV-16 genotype, remains a priority. Vaccines expressing the E6 and E7 proteins that are detectable in all HPV-positive pre-cancerous and cancer cells might support the treatment of HPV-related lesions and clear already established tumors. In this study, DNA and fowlpox virus recombinants expressing the E6F47R mutant of the HPV-16 E6 oncoprotein were generated, and their correct expression verified by RT-PCR, Western blotting and immunofluorescence. Immunization protocols were tested in a preventive or therapeutic pre-clinical mouse model of HPV-16 tumorigenicity using heterologous (DNA/FP) or homologous (DNA/DNA and FP/FP) prime/boost regimens. The immune responses and therapeutic efficacy were evaluated by ELISA, ELISPOT assays, and challenge with TC-1* cells. In the preventive protocol, while an anti-E6-specific humoral response was just detectable, a specific CD8(+) cytotoxic T-cell response was elicited in immunized mice. After the challenge, there was a delay in cancer appearance and a significant reduction of tumor volume in the two groups of E6-immunized mice, thus confirming the pivotal role of the CD8(+) T-cell response in the control of tumor growth in the absence of E6-specific antibodies. In the therapeutic protocol, in-vivo experiments resulted in a higher number of tumor-free mice after the homologous DNA/DNA or heterologous DNA/FP immunization. These data establish a preliminary indication for the prevention and treatment of HPV-related tumors by the use of DNA and avipox constructs as safe and effective immunogens following a prime/boost strategy. The combined use of recombinants expressing both E6 and E7 proteins might improve the antitumor efficacy, and should represent an important approach to

  6. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines

    Directory of Open Access Journals (Sweden)

    Marcos Roberto A. Ferreira

    2016-11-01

    Full Text Available Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A–E according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals.

  7. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    Science.gov (United States)

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  8. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    Science.gov (United States)

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  9. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Directory of Open Access Journals (Sweden)

    Gabriel Grimaldi

    2014-06-01

    Full Text Available BACKGROUND: Visceral leishmaniasis (VL is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2 protein that protects against experimental L. infantum infections in mice and dogs. METHODOLOGY/PRINCIPAL FINDINGS: Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12 adsorbed in alum (rA2/rhIL-12/alum; two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2 followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum; and plasmid DNA encoding A2 gene (DNA-A2 boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2. Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. CONCLUSIONS

  10. Expression and Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-3 (MSP-3 for Detection of Human Malaria.

    Directory of Open Access Journals (Sweden)

    Jeremy Ryan De Silva

    Full Text Available Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61% and ELISA (100%. Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49. In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.

  11. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... Since antibody is likely the effector mechanism induced by MSP-(42), it is important to insure that recombinant vaccines based upon this antigen be folded correctly and contain T-helper epitopes that will enhance induction of humoral responses...

  12. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review.

    Science.gov (United States)

    Maki, Joanne; Guiot, Anne-Laure; Aubert, Michel; Brochier, Bernard; Cliquet, Florence; Hanlon, Cathleen A; King, Roni; Oertli, Ernest H; Rupprecht, Charles E; Schumacher, Caroline; Slate, Dennis; Yakobson, Boris; Wohlers, Anne; Lankau, Emily W

    2017-09-22

    RABORAL V-RG ® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control

  13. Protein energy malnutrition alters mucosal IgA responses and reduces mucosal vaccine efficacy in mice.

    Science.gov (United States)

    Rho, Semi; Kim, Heejoo; Shim, Seung Hyun; Lee, Seung Young; Kim, Min Jung; Yang, Bo-Gie; Jang, Myoung Ho; Han, Byung Woo; Song, Man Ki; Czerkinsky, Cecil; Kim, Jae-Ouk

    2017-10-01

    Oral vaccine responsiveness is often lower in children from less developed countries. Childhood malnutrition may be associated with poor immune response to oral vaccines. The present study was designed to investigate whether protein energy malnutrition (PEM) impairs B cell immunity and ultimately reduces oral vaccine efficacy in a mouse model. Purified isocaloric diets containing low protein (1/10 the protein of the control diet) were used to determine the effect of PEM. PEM increased both nonspecific total IgA and oral antigen-specific IgA in serum without alteration of gut permeability. However, PEM decreased oral antigen-specific IgA in feces, which is consistent with decreased expression of polymeric Immunoglobulin receptor (pIgR) in the small intestine. Of note, polymeric IgA was predominant in serum under PEM. In addition, PEM altered B cell development status in the bone marrow and increased the frequency of IgA-secreting B cells, as well as IgA secretion by long-lived plasma cells in the small intestinal lamina propria. Moreover, PEM reduced the protective efficacy of the mucosally administered cholera vaccine and recombinant attenuated Salmonella enterica serovar Typhimurium vaccine in a mouse model. Our results suggest that PEM can impair mucosal immunity where IgA plays an important role in host protection and may partly explain the reduced efficacy of oral vaccines in malnourished subjects. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Hendra and Nipah viruses: pathogenesis, animal models and recent breakthroughs in vaccination

    Directory of Open Access Journals (Sweden)

    Weingartl HM

    2015-09-01

    Full Text Available Hana M Weingartl National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada Abstract: Hendra and Nipah viruses are two highly pathogenic zoonotic members of the genus Henipavirus, family Paramyxoviridae, requiring work under biosafety level 4 conditions due to a lack of effective therapy and human vaccines. Several vaccine candidates were protective in animal models: recombinant vaccinia virus expressing Nipah virus (NiV F and G proteins in hamsters against NiV; recombinant ALVAC–NiV F and G in swine against NiV; recombinant Hendra virus (HeV soluble G protein (sGHeV against HeV and NiV in cats, ferrets, horses, and African green monkeys (AGM; recombinant vesicular stomatitis virus-based vectors expressing NiV F or G against NiV in hamsters and ferrets; measles virus-based NiV G vaccine candidate in hamsters and AGMs against NiV; and adenoassociated virus expressing NiG protein, which protected hamsters against NiV. The sGHeV was licensed for use in horses (Equivac HeV® in 2012. It is the first vaccine candidate licensed against a biosafety level 4 agent. With the development of suitable animal models (ferret, hamster and, importantly, AGM, progress can be made toward development of a human vaccine.Keywords: henipavirus, equine, swine, human infection, animal models, vaccine candidates

  15. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    Science.gov (United States)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  16. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine

    National Research Council Canada - National Science Library

    Daddario-DiCaprio, Kathleen M; Geisbert, Thomas W; Geisbert, Joan B; Stroeher, Ute; Hensley, Lisa E; Grolla, Allen; Fritz, Elizabeth A; Feldmann, Friederike; Feldmann, Heinz; Jones, Steven M

    2006-01-01

    .... MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV...

  17. Recombinant allergy vaccines based on allergen-derived B cell epitopes.

    Science.gov (United States)

    Valenta, Rudolf; Campana, Raffaela; Niederberger, Verena

    2017-09-01

    Immunoglobulin E (IgE)-associated allergy is the most common immunologically-mediated hypersensitivity disease. It affects more than 25% of the population. In IgE-sensitized subjects, allergen encounter can causes a variety of symptoms ranging from hayfever (allergic rhinoconjunctivitis) to asthma, skin inflammation, food allergy and severe life-threatening anaphylactic shock. Allergen-specific immunotherapy (AIT) is based on vaccination with the disease-causing allergens. AIT is an extremely effective, causative and disease-modifying treatment. However, administration of natural allergens can cause severe side effects and the quality of natural allergen extracts limits its application. Research in the field of molecular allergen characterization has allowed deciphering the molecular structures of the disease-causing allergens and it has become possible to engineer novel molecular allergy vaccines which precisely target the mechanisms of the allergic immune response and even appear suitable for prophylactic allergy vaccination. Here we discuss recombinant allergy vaccines which are based on allergen-derived B cell epitopes regarding their molecular and immunological properties and review the results obtained in clinical studies with this new type of allergy vaccines. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    Science.gov (United States)

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551

  19. Recombinant protein truncation strategy for inducing bactericidal antibodies to the macrophage infectivity potentiator protein of Neisseria meningitidis and circumventing potential cross-reactivity with human FK506-binding proteins.

    Science.gov (United States)

    Bielecka, Magdalena K; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E; Christodoulides, Myron

    2015-02-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (-LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Production of a Recombinant E. coli Expressed Malarial Vaccine from the C-Terminal Fragment of Plasmodium Falciparum 3D7 Merozoite Surface Protein-1

    National Research Council Canada - National Science Library

    Angov, Evelina

    2000-01-01

    .... However, it appears to lack T-helper epitopes. Since antibody is likely the effector mechanism induced by MSP1-19, it is important to insure that recombinant vaccines based on this antigen be folded correctly and contain T-helper epitopes...

  1. N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: An immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice.

    Science.gov (United States)

    Tao, Wei; Zheng, Hai-Qun; Fu, Ting; He, Zhuo-Jing; Hong, Yan

    2017-08-03

    Adjuvants are essential for enhancing vaccine potency by improving the humoral and/or cell-mediated immune response to vaccine antigens. This study was performed to evaluate the immuno-enhancing characteristic of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, as an adjuvant for hepatitis E virus (HEV) recombinant polypeptide vaccine. Animal experiments showed that HTCC provides adjuvant activity when co-administered with HEV recombinant polypeptide vaccine by intramuscularly route. Vaccination using HTCC as an adjuvant was associated with increases of the serum HEV-specific IgG antibodies, splenocytes proliferation and the growths of CD4 + CD8 - T lymphocytes and IFN-γ-secreting T lymphocytes in peripheral blood. These findings suggested that HTCC had strong immuno-enhancing effect. Our findings are the first to demonstrate that HTCC is safe and effective in inducing a good antibody response and stimulating Th1-biased immune responses for HEV recombinant polypeptide vaccine.

  2. Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; Farnir, Frédéric; Pourchet, Aldo; Bardiau, Marjorie; Gogev, Sacha; Thiry, Julien; Cuisenaire, Adeline; Vanderplasschen, Alain; Thiry, Etienne

    2006-08-01

    Vaccines used in control programmes of Bovine herpesvirus 1 (BoHV-1) utilize highly attenuated BoHV-1 strains marked by a deletion of the glycoprotein E (gE) gene. Since BoHV-1 recombinants are obtained at high frequency in experimentally coinfected cattle, the consequences of recombination on the virulence of gE-negative BoHV-1 were investigated. Thus, gE-negative BoHV-1 recombinants were generated in vitro from several virulent BoHV-1 and one mutant BoHV-1 deleted in the gC and gE genes. Four gE-negative recombinants were tested in the natural host. All the recombinants were more virulent than the gE-negative BoHV-1 vaccine and the gC- and gE-negative parental BoHV-1. The gE-negative recombinant isolated from a BoHV-1 field strain induced the highest severe clinical score. Latency and reactivation studies showed that three of the recombinants were reexcreted. Recombination can therefore restore virulence of gE-negative BoHV-1 by introducing the gE deletion into a different virulence background.

  3. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    Science.gov (United States)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  4. Animal vaccines based on orally presented yeast recombinants.

    Science.gov (United States)

    Shin, Min-Kyoung; Yoo, Han Sang

    2013-09-13

    In veterinary vaccinology, the oral route of administration is an attractive alternative compared to the commonly used parenteral route. Yeasts have a number of properties that make them potential live delivery systems for oral vaccination purposes such as their high expression levels, their GRAS status, adjuvant properties, and post-translational modification possibilities. Consequently, yeasts have been employed for the expression of heterologous genes and for the production of therapeutic proteins. Yeast-based vaccines are reviewed with regard to their ability to express and produce antigens from pathogens for veterinary use. Many of these vaccines have been shown to elicit protective immune responses following oral immunization in animals. Ultimately, yeast-based oral vaccines may offer a potential opportunity for the development of novel ideal vaccines in veterinary medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggest that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine

  6. Recombinant F1-V fusion protein protects black-footed ferrets (Mustela nigripes) against virulent Yersinia pestis infection

    Science.gov (United States)

    Rocke, Tonie E.; Mencher, J.; Smith, Susan; Friedlander, A.M.; Andrews, G.P.; Baeten, L.A.

    2004-01-01

    Black-footed ferrets (Mustela nigripes) are highly susceptible to sylvatic plague, caused by the bacterium Yersinia pestis, and this disease has severely hampered efforts to restore ferrets to their historic range. A study was conducted to assess the efficacy of vaccination of black-footed ferrets against plague using a recombinant protein vaccine, designated F1-V, developed by personnel at the U.S. Army Medical Research Institute of Infectious Diseases. Seven postreproductive black-footed ferrets were immunized with the vaccine, followed by two booster immunizations on days 23 and 154; three control black-footed ferrets received a placebo. After the second immunization, antibody titers to both F1 and V antigen were found to be significantly higher in vaccinates than controls. On challenge with 7,800 colony-forming units of virulent plague by s.c. injection, the three control animals died within 3 days, but six of seven vaccinates survived with no ill effects. The seventh vaccinate died on day 8. These results indicate that black-footed ferrets can be immunized against plague induced by the s.c. route, similar to fleabite injection.

  7. Recombinant protein blends: silk beyond natural design.

    Science.gov (United States)

    Dinjaski, Nina; Kaplan, David L

    2016-06-01

    Recombinant DNA technology and new material concepts are shaping future directions in biomaterial science for the design and production of the next-generation biomaterial platforms. Aside from conventionally used synthetic polymers, numerous natural biopolymers (e.g., silk, elastin, collagen, gelatin, alginate, cellulose, keratin, chitin, polyhydroxyalkanoates) have been investigated for properties and manipulation via bioengineering. Genetic engineering provides a path to increase structural and functional complexity of these biopolymers, and thereby expand the catalog of available biomaterials beyond that which exists in nature. In addition, the integration of experimental approaches with computational modeling to analyze sequence-structure-function relationships is starting to have an impact in the field by establishing predictive frameworks for determining material properties. Herein, we review advances in recombinant DNA-mediated protein production and functionalization approaches, with a focus on hybrids or combinations of proteins; recombinant protein blends or 'recombinamers'. We highlight the potential biomedical applications of fibrous protein recombinamers, such as Silk-Elastin Like Polypeptides (SELPs) and Silk-Bacterial Collagens (SBCs). We also discuss the possibility for the rationale design of fibrous proteins to build smart, stimuli-responsive biomaterials for diverse applications. We underline current limitations with production systems for these proteins and discuss the main trends in systems/synthetic biology that may improve recombinant fibrous protein design and production. Copyright © 2016. Published by Elsevier Ltd.

  8. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates.

    Science.gov (United States)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa; Chilongola, Jaffu; Dodoo, Daniel; Sauerwein, Robert; Theisen, Michael; Roeffen, Will; Singh, Shrawan Kumar; Singh, Rajesh Kumar; Singh, Sanjay; Kyei-Baafour, Eric; Tetteh, Kevin; Drakeley, Chris; Bousema, Teun

    2015-07-01

    Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso. We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p < 0.001) and 230CMB (p = 0.031). Membrane feeding assays on a separate dataset demonstrated an association between functional transmission reducing activity and antibody prevalence for both 10C (p = 0.017) and 230CMB (p = 0.049). 17 single nucleotide polymorphisms were found in pfs48/45 (from 126 samples), with 5 non-synonymous SNPs in the Pfs48/45 10C region. We conclude there are naturally acquired antibody responses to both vaccine candidates which have functional relevance by reducing the transmissibility of infected individuals. We identified genetic polymorphisms, in pfs48/45 which exhibited geographical specificity. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia.

    Science.gov (United States)

    Virginio, Veridiana Gomes; Gonchoroski, Taylor; Paes, Jéssica Andrade; Schuck, Desirée Cigaran; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2014-10-07

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. An Investigation of Immunogenicity of Chitosan-Based Botulinum Neurotoxin E Binding Domain Recombinant Candidate Vaccine via Mucosal Route

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Bagheripour

    2017-01-01

    Full Text Available Background and Objectives: Botulism syndrome is caused by serotypes A-G of neurotoxins of Clostridium genus. Neurotoxin binding domain is an appropriate vaccine candidate due to its immunogenic activity. In this study, the immunogenicity of chitosan-based botulinum neurotoxin E binding domain recombinant candidate vaccine was investigated via mucosal route of administration. Methods: In this experimental study, chitosan nanoparticles containing rBoNT/E protein were synthesized by ionic gelation method and were administered orally and intranasally to mice. After each administration, IgG antibody titer was measured by ELISA method. Finally, all groups were challenged with active botulinum neurotoxin type E. Data were analyzed using Duncan and repeated ANOVA tests. The significance level was considered as p0.05, even intranasal route reduced the immunogenicity.

  11. Effect of age at Vaccination on Immunological Response to Recombinant MAP Subunit Vaccine

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Jungersen, Gregers

    2011-01-01

    group responded well to the MAP multi-antigens and might need only one booster compared to the younger animals. Findings from this work could be interesting to determine the appropriate age of vaccination so as to generate the memory T cell pool and for MAP vaccine challenge experiments....... antigen specific IFN-c levels in response to heat shock protein and ESAT-6 family member protein antigens. It was observed that there was no effect of age on the IFN-c producing capacity of the animals in the different age groups after stimulation of whole blood with SEB. However, animals in the older age...

  12. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin.

    Directory of Open Access Journals (Sweden)

    Liudmila A Stepanova

    Full Text Available Matrix 2 protein ectodomain (M2e is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek. Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1 and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1 and A/Chicken/Kurgan/05/05 RG (H5N1 to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2 and avian influenza virus (H5N1. Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins.

  13. Safety and protective efficacy of porcine reproductive and respiratory syndrome recombinant virus vaccines in young pigs.

    NARCIS (Netherlands)

    Verheije, M.H.; Kroese, M.V.; Linden, van der I.F.A.; Boer-Luijtze, de E.A.; Rijn, van P.A.; Pol, J.M.A.; Meulenberg, J.J.M.; Steverink, P.J.G.M.

    2003-01-01

    Three porcine reproductive and respiratory syndrome virus (PRRSV) recombinants, generated by mutagenesis of an infectious cDNA clone of the Lelystad virus (LV) isolate, were tested for their safety and protective efficacy as potential PRRSV vaccines in pigs. Recombinant vABV688 contains two amino

  14. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  15. Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice.

    Science.gov (United States)

    Joan, Stella Siaw Xiu; Pui-Fong, Jee; Song, Adelene Ai-Lian; Chang, Li-Yen; Yusoff, Khatijah; AbuBakar, Sazaly; Rahim, Raha Abdul

    2016-05-01

    An oral lactococcal-based vaccine which haboured the haemagglutinin1 (HA1) antigen fused to nisP anchor protein for the purpose of surface displaying the HA1 antigen was developed against H1N1 virus. Recombinant L. lactis strains expressed HA1-nisP fusion proteins when induced with nisin, as confirmed through western blotting. However, immunofluorescense did not detect any surface-displayed proteins, suggesting that the protein was either unsuccessfully translocated or improperly displayed. Despite this, oral administration of recombinant L. lactis strains to BALB/c mice revealed that significant levels of anti-HA1 sIgA antibodies were detected in mice fecal suspension samples of mice group NZ9000 (pNZ:HN) when compared to the negative control NZ9000 (pNZ8048) group. Specific anti-HA1 sIgA antibodies were locally produced and live recombinant lactococcal vaccine was able to elicit humoral response of BALB/c mice despite unsuccessful surface display of the HA1 epitope.

  16. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    Science.gov (United States)

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-05

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Novel vaccination approach for dengue infection based on recombinant immune complex universal platform.

    Science.gov (United States)

    Kim, Mi-Young; Reljic, Rajko; Kilbourne, Jacquelyn; Ceballos-Olvera, Ivonne; Yang, Moon-Sik; Reyes-del Valle, Jorge; Mason, Hugh S

    2015-04-08

    Dengue infection is on the rise in many endemic areas of the tropics. Vaccination remains the most realistic strategy for prevention of this potentially fatal viral disease but there is currently no effective vaccine that could protect against all four known serotypes of the dengue virus. This study describes the generation and testing of a novel vaccination approach against dengue based on recombinant immune complexes (RIC). We modelled the dengue RIC on the existing Ebola RIC (Phoolcharoen, et al. Proc Natl Acad Sci USA 2011;108(Dec (51)):20695) but with a key modification that allowed formation of a universal RIC platform that can be easily adapted for use for other pathogens. This was achieved by retaining only the binding epitope of the 6D8 ant-Ebola mAb, which was then fused to the consensus dengue E3 domain (cEDIII), resulting in a hybrid dengue-Ebola RIC (DERIC). We expressed human and mouse versions of these molecules in tobacco plants using a geminivirus-based expression system. Following purification from the plant extracts by protein G affinity chromatography, DERIC bound to C1q component of complement, thus confirming functionality. Importantly, following immunization of mice, DERIC induced a potent, virus-neutralizing anti-cEDIII humoral immune response without exogenous adjuvants. We conclude that these self-adjuvanting immunogens have the potential to be developed as a novel vaccine candidate for dengue infection, and provide the basis for a universal RIC platform for use with other antigens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Cambridge CD

    2013-05-01

    Full Text Available Chino D Cambridge, Shree R Singh, Alain B Waffo, Stacie J Fairley, Vida A DennisCenter for NanoBiotechnology Research (CNBR, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP and encapsulated it in chitosan nanoparticles (DMCNP using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 µg/mL to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and

  19. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Science.gov (United States)

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  20. A novel recombinant bivalent outer membrane protein of Vibrio vulnificus and Aeromonas hydrophila as a vaccine antigen of American eel (Anguilla rostrata).

    Science.gov (United States)

    SongLin, Guo; PanPan, Lu; JianJun, Feng; JinPing, Zhao; Peng, Lin; LiHua, Duan

    2015-04-01

    The immogenicity of a novel vaccine antigen was evaluated after immunized American eels (Anguilla rostrata) with a recombinant bivalent expressed outer membrane protein (OMP) of Vibrio vulnificus and Aeromonas hydrophila. Three groups of eels were intraperitoneal (i.p) injected with phosphate-buffered saline (PBS group), formaline-killed-whole-cell (FKC) of A. hydrophila and V. vulnificus (FKC group) or the bivalent OMP (OMP group). On 14, 21, 28 and 42 days post-vaccination respectively, proliferation of the whole blood cells, titers of specific antibody and lysozyme activities of experimental eels were detected. On 28 day post-vaccination, eels from three groups were challenged by i.p injection of live A. hydrophila or V. vulnificus. The results showed that, compared with the PBS group, proliferation of whole blood cells in OMP group was significant enhanced on 28 days, and the serum titers of anti-A.hydrophila and anti-V. vulnificus antibody in eels of FKC and OMP group were significant increased on 14, 21 and 28d. Lysozyme Activities in serum, skin mucus, liver and kidney were significant changed between the three groups. Relative Percent Survival (RPS) after challenged A. hydrophila in KFC vs. PBS group and OMP vs. PBS group were 62.5% and 50% respectively, and the RPS challenged V. vulnificus in FKC and OMP vs. PBS group were 37.5% and 50% respectively. These results suggest that American eels immunized with the bivalent OMP would positively affect specific as well as non-specific immune parameters and protect against infection by the two pathogens in fresh water farming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Evaluation of recombinant Mycoplasma hyopneumoniae P97/P102 paralogs formulated with selected adjuvants as vaccines against mycoplasmal pneumonia in pigs.

    Science.gov (United States)

    Woolley, Lauren K; Fell, Shayne A; Gonsalves, Jocelyn R; Raymond, Benjamin B A; Collins, Damian; Kuit, Tracey A; Walker, Mark J; Djordjevic, Steven P; Eamens, Graeme J; Jenkins, Cheryl

    2014-07-23

    Pig responses to recombinant subunit vaccines containing fragments of eight multifunctional adhesins of the Mycoplasma hyopneumoniae (Mhp) P97/P102 paralog family formulated with Alhydrogel(®) or Montanide™ Gel01 were compared with a commercial bacterin following experimental challenge. Pigs, vaccinated intramuscularly at 9, 12 and 15 weeks of age with either of the recombinant formulations (n=10 per group) or Suvaxyn(®) M. hyo (n=12), were challenged with Mhp strain Hillcrest at 17 weeks of age. Unvaccinated, challenged pigs (n=12) served as a control group. Coughing was assessed daily. Antigen-specific antibody responses were monitored by ELISA in serum and tracheobronchial lavage fluid (TBLF), while TBLF was also assayed for cytokine responses (ELISA) and bacterial load (qPCR). At slaughter, gross and histopathology of lungs were quantified and damage to epithelial cilia in the porcine trachea was evaluated by scanning electron microscopy. Suvaxyn(®) M. hyo administration induced significant serological responses against Mhp strain 232 whole cell lysates (wcl) and recombinant antigen F3P216, but not against the remaining vaccine subunit antigens. Alhydrogel(®) and Montanide™ Gel01-adjuvanted antigen induced significant antigen-specific IgG responses, with the latter adjuvant eliciting comparable Mhp strain 232 wcl specific IgG responses to Suvaxyn(®) M. hyo. No significant post-vaccination antigen-specific mucosal responses were detected with the recombinant vaccinates. Suvaxyn(®) M. hyo was superior in reducing clinical signs, lung lesion severity and bacterial load but the recombinant formulations offered comparable protection against cilial damage. Lower IL-1β, TNF-α and IL-6 responses after challenge were associated with reduced lung lesion severity in Suvaxyn(®) M. hyo vaccinates, while elevated pathology scores in recombinant vaccinates corresponded to cytokine levels that were similarly elevated as in unvaccinated pigs. This study highlights

  2. Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity

    NARCIS (Netherlands)

    Thorner, Anna R.; Lemckert, Angelique A. C.; Goudsmit, Jaap; Lynch, Diana M.; Ewald, Bonnie A.; Denholtz, Matthew; Havenga, Menzo J. E.; Barouch, Dan H.

    2006-01-01

    The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have

  3. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    Science.gov (United States)

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  4. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  5. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly

  6. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Directory of Open Access Journals (Sweden)

    Juana M Sánchez-Puig

    Full Text Available Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  7. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Science.gov (United States)

    Sánchez-Puig, Juana M; Lorenzo, María M; Blasco, Rafael

    2013-01-01

    Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  8. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice.

    Directory of Open Access Journals (Sweden)

    Mark R Soboleski

    Full Text Available The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1 highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca influenza viruses from 1977 or recombinant adenoviruses (rAd expressing 1934 nucleoprotein (NP and consensus matrix 2 (M2 (NP+M2-rAd. Antibodies against the M2 ectodomain (M2e were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.

  9. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge.

    Science.gov (United States)

    Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun

    2014-12-05

    The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants.

    Science.gov (United States)

    Chen, Nanhua; Li, Shuangjie; Zhou, Rongyun; Zhu, Meiqin; He, Shan; Ye, Mengxue; Huang, Yucheng; Li, Shuai; Zhu, Cong; Xia, Pengpeng; Zhu, Jianzhong

    2017-10-15

    Porcine epidemic diarrhea virus (PEDV) causes devastating impact on global pig-breeding industry and current vaccines have become not effective against the circulating PEDV variants since 2011. During the up-to-date investigation of PEDV prevalence in Fujian China 2016, PEDV was identified in vaccinated pig farms suffering severe diarrhea while other common diarrhea-associated pathogens were not detected. Complete genomes of two PEDV representatives (XM1-2 and XM2-4) were determined. Genomic comparison showed that these two viruses share the highest nucleotide identities (99.10% and 98.79%) with the 2011 ZMDZY strain, but only 96.65% and 96.50% nucleotide identities with the attenuated CV777 strain. Amino acid alignment of spike (S) proteins indicated that they have the similar mutation, insertion and deletion pattern as other Chinese PEDV variants but also contain several unique substitutions. Phylogenetic analysis showed that 2016 PEDV variants belong to the cluster of recombination strains but form a new branch. Recombination detection suggested that both XM1-2 and XM2-4 are inter-subgroup recombinants with breakpoints within ORF1b. Remarkably, the natural recombinant HNQX-3 isolate serves as a parental virus for both natural recombinants identified in this study. This up-to-date investigation provides the direct evidence that natural recombinants may serve as parental viruses to generate recombined PEDV progenies that are probably associated with the vaccination failure. Copyright © 2017. Published by Elsevier B.V.

  11. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines.

    Science.gov (United States)

    Khurana, Surender; Larkin, Christopher; Verma, Swati; Joshi, Manju B; Fontana, Juan; Steven, Alasdair C; King, Lisa R; Manischewitz, Jody; McCormick, William; Gupta, Rajesh K; Golding, Hana

    2011-08-05

    Vaccine production and initiation of mass vaccination is a key factor in rapid response to new influenza pandemic. During the 2009-2010 H1N1 pandemic, several bottlenecks were identified, including the delayed availability of vaccine potency reagents. Currently, antisera for the single-radial immunodiffusion (SRID) potency assay are generated in sheep immunized repeatedly with HA released and purified after bromelain-treatment of influenza virus grown in eggs. This approach was a major bottleneck for pandemic H1N1 (H1N1pdm09) potency reagent development in 2009. Alternative approaches are needed to make HA immunogens for generation of SRID reagents in the shortest possible time. In this study, we found that properly folded recombinant HA1 globular domain (rHA1) from several type A viruses including H1N1pdm09 and two H5N1 viruses could be produced efficiently using a bacterial expression system and subsequent purification. The rHA1 proteins were shown to form functional oligomers of trimers, similar to virus derived HA, and elicited high titer of neutralizing antibodies in rabbits and sheep. Importantly, the immune sera formed precipitation rings with reference antigens in the SRID assay in a dose-dependent manner. The HA contents in multiple H1N1 vaccine products from different manufacturers (and in several lots) as determined with the rHA1-generated sheep sera were similar to the values obtained with a traditionally generated sheep serum from NIBSC. We conclude that bacterially expressed recombinant HA1 proteins can be produced rapidly and used to generate SRID potency reagents shortly after new influenza strains with pandemic potential are identified. Published by Elsevier Ltd.

  12. Strategic evaluation of vaccine candidate antigens for the prevention of Visceral Leishmaniasis.

    Science.gov (United States)

    Duthie, Malcolm S; Favila, Michelle; Hofmeyer, Kimberley A; Tutterrow, Yeung L; Reed, Steven J; Laurance, John D; Picone, Alessandro; Guderian, Jeffrey; Bailor, H Remy; Vallur, Aarthy C; Liang, Hong; Mohamath, Raodoh; Vergara, Julie; Howard, Randall F; Coler, Rhea N; Reed, Steven G

    2016-05-27

    Infection with Leishmania parasites results in a range of clinical manifestations and outcomes, the most severe of which is visceral leishmaniasis (VL). Vaccination will likely provide the most effective long-term control strategy, as the large number of vectors and potential infectious reservoirs renders sustained interruption of Leishmania parasite transmission extremely difficult. Selection of the best vaccine is complicated because, although several vaccine antigen candidates have been proposed, they have emerged following production in different platforms. To consolidate the information that has been generated into a single vaccine platform, we expressed seven candidates as recombinant proteins in E. coli. After verifying that each recombinant protein could be recognized by VL patients, we evaluated their protective efficacy against experimental L. donovani infection of mice. Administration in formulation with the Th1-potentiating adjuvant GLA-SE indicated that each antigen could elicit antigen-specific Th1 responses that were protective. Considering the ability to reduce parasite burden along with additional factors such as sequence identity across Leishmania species, we then generated a chimeric fusion protein comprising a combination of the 8E, p21 and SMT proteins. This E. coli -expressed fusion protein was also demonstrated to protect against L. donovani infection. These data indicate a novel recombinant vaccine antigen with the potential for use in VL control programs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    International Nuclear Information System (INIS)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  14. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  15. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins....

  16. Safety and immunogenicity of a meningococcal B recombinant vaccine when administered with routine vaccines to healthy infants in Taiwan: A phase 3, open-label, randomized study.

    Science.gov (United States)

    Chiu, Nan-Chang; Huang, Li-Min; Willemsen, Arnold; Bhusal, Chiranjiwi; Arora, Ashwani Kumar; Mojares, Zenaida Reynoso; Toneatto, Daniela

    2018-01-16

    Neisseria meningitidis is associated with high mortality and morbidity in infants and children worldwide. This phase 3 study (NCT02173704) evaluated safety and immunogenicity of a 4-component serogroup B recombinant meningococcal vaccine (4CMenB) co-administered with routine vaccines in Taiwanese infants. In total, 225 healthy infants were randomized (2 : 1 ) to receive 4CMenB and routine vaccines (4CMenB+Routine) or routine vaccines only (Routine group) at 2, 4, 6 and 12 months of age. Routine vaccines were diphtheria-tetanus-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b, 13-valent pneumococcal, hepatitis B, measles-mumps-rubella and varicella vaccines. Immune responses to 4CMenB components (factor H binding protein [fHbp], Neisserial adhesin A [NadA], porin A [PorA] and Neisseria heparin-binding antigen [NHBA]) were evaluated at 1 month post-primary and post-booster vaccination, using human serum bactericidal assay (hSBA). Reactogenicity and safety were also assessed. A sufficient immune response was demonstrated for fHbp, NadA and PorA, at 1 month post-primary and booster vaccination. In the 4CMenB+Routine group, hSBA titers ≥5 were observed in all infants for fHbp and NadA, in 79% and 59% of infants for PorA and NHBA, respectively, at 1 month post-primary vaccination and in 92-99% of infants for all antigens, at 1 month post-booster vaccination. In the 4CMenB+Routine group, hSBA geometric mean titers for all antigens increased post-primary (8.41-963) and post-booster vaccination (17-2315) compared to baseline (1.01-1.36). Immunogenicity of 4CMenB was not impacted by co-administration with routine pediatric vaccines in infants. Reactogenicity was slightly higher in the 4CMenB+Routine group compared with Routine group, but no safety concerns were identified.

  17. vaccination using profilin and NetB proteins in Montanide IMS adjuvant increases protective immunity against experimentally-induced necrotic enteritis

    Directory of Open Access Journals (Sweden)

    Hyun Soon Lillehoj

    2017-10-01

    Full Text Available Objective The effects of vaccinating 18-day-old chicken embryos with the combination of recombinant Eimeria profilin plus Clostridium perfringens (C. perfringens NetB proteins mixed in the Montanide IMS adjuvant on the chicken immune response to necrotic enteritis (NE were investigated using an Eimeria maxima (E. maxima/C. perfringens co-infection NE disease model that we previously developed. Methods Eighteen-day-old broiler embryos were injected with 100 μL of phosphate-buffered saline, profilin, profilin plus necrotic enteritis B-like (NetB, profilin plus NetB/Montanide adjuvant (IMS 106, and profilin plus Net-B/Montanide adjuvant (IMS 101. After post-hatch birds were challenged with our NE experimental disease model, body weights, intestinal lesions, serum antibody levels to NetB, and proinflammatory cytokine and chemokine mRNA levels in intestinal intraepithelial lymphocytes were measured. Results Chickens in ovo vaccinated with recombinant profilin plus NetB proteins/IMS106 and recombinant profilin plus NetB proteins/IMS101 showed significantly increased body weight gains and reduced gut damages compared with the profilin-only group, respectively. Greater antibody response to NetB toxin were observed in the profilin plus NetB/IMS 106, and profilin plus NetB/IMS 101 groups compared with the other three vaccine/adjuvant groups. Finally, diminished levels of transcripts encoding for proinflammatory cytokines such as lipopolysaccharide-induced tumor necrosis factor-α factor, tumor necrosis factor superfamily 15, and interleukin-8 were observed in the intestinal lymphocytes of chickens in ovo injected with profilin plus NetB toxin in combination with IMS 106, and profilin plus NetB toxin in combination with IMS 101 compared with profilin protein alone bird. Conclusion These results suggest that the Montanide IMS adjuvants potentiate host immunity to experimentally-induced avian NE when administered in ovo in conjunction with the profilin and

  18. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    Directory of Open Access Journals (Sweden)

    Jake E Lowry

    Full Text Available Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA. All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence

  19. Improved means and methods for expressing recombinant proteins

    NARCIS (Netherlands)

    Poolman, Berend; Martinez Linares, Daniel; Gul, Nadia

    2014-01-01

    The invention relates to the field of genetic engineering and the production of recombinant proteins in microbial host cells. Provided is a method for enhanced expression of a recombinant protein of interest in a microbial host cell, comprising providing a microbial host cell wherein the function of

  20. Development of novel prime-boost strategies based on a tri-gene fusion recombinant L. tarentolae vaccine against experimental murine visceral leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Noushin Saljoughian

    Full Text Available Visceral leishmaniasis (VL is a vector-borne disease affecting humans and domestic animals that constitutes a serious public health problem in many countries. Although many antigens have been examined so far as protein- or DNA-based vaccines, none of them conferred complete long-term protection. The use of the lizard non-pathogenic to humans Leishmania (L. tarentolae species as a live vaccine vector to deliver specific Leishmania antigens is a recent approach that needs to be explored further. In this study, we evaluated the effectiveness of live vaccination in protecting BALB/c mice against L. infantum infection using prime-boost regimens, namely Live/Live and DNA/Live. As a live vaccine, we used recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinases (CPA and CPB without its unusual C-terminal extension (CPB(-CTE as a tri-fusion gene. For DNA priming, the tri-fusion gene was encoded in pcDNA formulated with cationic solid lipid nanoparticles (cSLN acting as an adjuvant. At different time points post-challenge, parasite burden and histopathological changes as well as humoral and cellular immune responses were assessed. Our results showed that immunization with both prime-boost A2-CPA-CPB(-CTE-recombinant L. tarentolae protects BALB/c mice against L. infantum challenge. This protective immunity is associated with a Th1-type immune response due to high levels of IFN-γ production prior and after challenge and with lower levels of IL-10 production after challenge, leading to a significantly higher IFN-γ/IL-10 ratio compared to the control groups. Moreover, this immunization elicited high IgG1 and IgG2a humoral immune responses. Protection in mice was also correlated with a high nitric oxide production and low parasite burden. Altogether, these results indicate the promise of the A2-CPA-CPB(-CTE-recombinant L. tarentolae as a safe live vaccine candidate against VL.

  1. The Potential of Vaccines for the Control of AIDS

    Directory of Open Access Journals (Sweden)

    Margaret I Johnston

    1994-01-01

    of attenuated and whole-killed products have led to the pursuit of alternativc designs. including recombinant proteins, vectors and particles, synthetic peptides and naked DNA. Seven recombinant envelope. two recombinant vector and four other candidate vaccines that have entered into phase 1 trials in noninfected individuals have proven safe to date, and have differed In their ability lo induce functional antibody and Cytotoxic T lymphocytes. Two recombinant envelope products have recently progressed to phase 2 testing, Five envelope-based and six other products have entered trial in HIV-infected and individuals and have appeared to be safe, Evidence of new antibody, increased T cell proliferation and lncreased cytotoxic T lymphocyte activity have been reported. Additional placebo controlled trials will be required to evaluate the impact of therapeutic vaccination on CD4 cell count. viral burdrn and clinical end-points. The status of HIV/AIDS vaccine development is reviewed. with emphasis on the challenging task of finding an effieacious, safe, prophylactic vaccine.

  2. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus.

    Directory of Open Access Journals (Sweden)

    Courtney Waugh

    Full Text Available Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative at time of initial vaccination, or infected (C. pecorum positive at either urogenital (UGT and/or ocular sites (Oc, but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking, results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.

  3. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Waugh, Courtney; Khan, Shahneaz Ali; Carver, Scott; Hanger, Jonathan; Loader, Joanne; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.

  4. The association of the vitamin D status with the persistence of anti-HBs antibody at 20years after primary vaccination with recombinant hepatitis B vaccine in infancy.

    Science.gov (United States)

    Jafarzadeh, A; Keshavarz, J; Bagheri-Jamebozorgi, M; Nemati, M; Frootan, R; Shokri, F

    2017-02-01

    Vitamin D has potent immunoregulatory effects due to the expression of its receptor on the majority of immune cells. The aim was to evaluate the association of the vitamin D status with the persistence of anti-HBs antibody and immune response to booster immunization at 20years after primary vaccination with hepatitis B (HB) vaccine. Blood samples were collected from 300 adults 20years after completion of the primary HB vaccination in infancy. The serum levels of vitamin D and anti-HBs antibody were measured by ELISA. A single booster dose of a recombinant HB vaccine was administered to a total of 138 subjects, whose anti-HBs titer wasanti-HBs antibody, 4weeks after booster vaccination. At 20years after primary vaccination, the mean vitamin D concentrations were significantly higher in seroprotective subjects as compared to non-seroprotective individuals (Panti-HBs were significantly increased with advanced concentrations of vitamin D (PD were significantly higher in subjects with an anamnestic response to booster vaccination as compared with subjects without this response (PD status may influence the persistence of anti-HBs antibody and durability of protection after primary vaccination with a recombinant HB vaccine in infancy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Stabilization of a recombinant ricin toxin A subunit vaccine through lyophilization.

    Science.gov (United States)

    Hassett, Kimberly J; Cousins, Megan C; Rabia, Lilia A; Chadwick, Chrystal M; O'Hara, Joanne M; Nandi, Pradyot; Brey, Robert N; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2013-10-01

    Lyophilization was used to prepare dry, glassy solid vaccine formulations of recombinant ricin toxin A-chain containing suspensions of colloidal aluminum hydroxide adjuvant. Four lyophilized formulations were prepared by using combinations of rapid or slow cooling during lyophilization and one of two buffers, histidine or ammonium acetate. Trehalose was used as the stabilizing excipient. Aggregation of the colloidal aluminum hydroxide suspension was reduced in formulations processed with a rapid cooling rate. Aluminum hydroxide particle size distributions, glass transition temperatures, water contents, and immunogenicities of lyophilized vaccines were independent of incubation time at 40 °C for up to 15 weeks. Mice immunized with reconstituted ricin toxin subunit A (RTA) vaccines produced RTA-specific antibodies and toxin-neutralizing antibodies (TNAs) regardless of the length of high temperature vaccine storage or the degree of aluminum adjuvant aggregation that occurred during lyophilization. In murine studies, lyophilized formulations of vaccines conferred protection against exposure to lethal doses of ricin, even after the lyophilized formulations had been stored at 40 °C for 4 weeks. A corresponding liquid formulation of vaccine stored at 40 °C elicited RTA-specific antibody titers but failed to confer immunity during a ricin challenge. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  7. Co-solute assistance in refolding of recombinant proteins | Gerami ...

    African Journals Online (AJOL)

    Prokaryotic expression system is the most widely used host for the production of recombinant proteins but inclusion body formation is a major bottleneck in the production of recombinant proteins in prokaryotic cells, especially in Escherichia coli. In vitro refolding of inclusion body into the the proteins with native ...

  8. Gene-based vaccine development for improving animal production in developing countries. Possibilities and constraints

    International Nuclear Information System (INIS)

    Egerton, J.R.

    2005-01-01

    For vaccine production, recombinant antigens must be protective. Identifying protective antigens or candidate antigens is an essential precursor to vaccine development. Even when a protective antigen has been identified, cloning of its gene does not lead directly to vaccine development. The fimbrial protein of Dichelobacter nodosus, the agent of foot-rot in ruminants, was known to be protective. Recombinant vaccines against this infection are ineffective if expressed protein subunits are not assembled as mature fimbriae. Antigenic competition between different, but closely related, recombinant antigens limited the use of multivalent vaccines based on this technology. Recombinant antigens may need adjuvants to enhance response. DNA vaccines, potentiated with genes for different cytokines, may replace the need for aggressive adjuvants, and especially where cellular immunity is essential for protection. The expression of antigens from animal pathogens in plants and the demonstration of some immunity to a disease like rinderpest after ingestion of these, suggests an alternative approach to vaccination by injection. Research on disease pathogenesis and the identification of candidate antigens is specific to the disease agent. The definition of expression systems and the formulation of a vaccine for each disease must be followed by research to establish safety and efficacy. Where vaccines are based on unique gene sequences, the intellectual property is likely to be protected by patent. Organizations, licensed to produce recombinant vaccines, expect to recover their costs and to make a profit. The consequence is that genetically-derived vaccines are expensive. The capacity of vaccines to help animal owners of poorer countries depends not only on quality and cost but also on the veterinary infrastructure where they are used. Ensuring the existence of an effective animal health infrastructure in developing countries is as great a challenge for the developed world as

  9. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination?

    Science.gov (United States)

    Trombert, A

    2015-01-01

    Lactic acid bacteria (LABs) are good candidates for the development of new oral vaccines and are attractive alternatives to attenuated pathogens. This review focuses on the use of wild-type and recombinant lactococci and lactobacilli with emphasis on their molecular design, immunomodulation and treatment of bacterial infections. The majority of studies related to recombinant LABs have focused on Lactococcus lactis, however, molecular tools have been successfully used for Lactobacillus spp. Recombinant lactobacilli and lactococci have several health benefits, such as immunomodulation, restoration of the microbiota, synthesis of antimicrobial substances and inhibition of virulence factors. In addition, protective immune responses that are well tolerated are induced by the expression of heterologous antigens from recombinant probiotics.

  10. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines

    Science.gov (United States)

    Smith, Claire M.; Fry, Stephen C.; Gough, Kevin C.; Patel, Alexandra J. F.; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S.; Andrew, Peter W.

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections. PMID:24498433

  11. A vaccine formulation combining rhoptry proteins NcROP40 and NcROP2 improves pup survival in a pregnant mouse model of neosporosis.

    Science.gov (United States)

    Pastor-Fernández, Iván; Arranz-Solís, David; Regidor-Cerrillo, Javier; Álvarez-García, Gema; Hemphill, Andrew; García-Culebras, Alicia; Cuevas-Martín, Carmen; Ortega-Mora, Luis M

    2015-01-30

    Currently there are no effective vaccines for the control of bovine neosporosis. During the last years several subunit vaccines based on immunodominant antigens and other proteins involved in adhesion, invasion and intracellular proliferation of Neospora caninum have been evaluated as targets for vaccine development in experimental mouse infection models. Among them, the rhoptry antigen NcROP2 and the immunodominant NcGRA7 protein have been assessed with varying results. Recent studies have shown that another rhoptry component, NcROP40, and NcNTPase, a putative dense granule antigen, exhibit higher expression levels in tachyzoites of virulent N. caninum isolates, suggesting that these could be potential vaccine candidates to limit the effects of infection. In the present work, the safety and efficacy of these recombinant antigens formulated in Quil-A adjuvant as monovalent vaccines or pair-wise combinations (rNcROP40+rNcROP2 and rNcGRA7+rNcNTPase) were evaluated in a pregnant mouse model of neosporosis. All the vaccine formulations elicited a specific immune response against their respective native proteins after immunization. Mice vaccinated with rNcROP40 and rNcROP2 alone or in combination produced the highest levels of IFN-γ and exhibited low parasite burdens and low IgG antibody levels after the challenge. In addition, most of the vaccine formulations were able to increase the median survival time in the offspring. However, pup survival only ensued in the groups vaccinated with rNcROP40+rNcROP2 (16.2%) and rNcROP2 (6.3%). Interestingly, vertical transmission was not observed in those survivor pups immunized with rNcROP40+rNcROP2, as shown by PCR analyses. These results show a partial protection against N. caninum infection after vaccination with rNcROP40+rNcROP2, suggesting a synergistic effect of the two recombinant rhoptry antigens. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  13. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    Science.gov (United States)

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-01-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post......-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas...... in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins....

  15. Serological Analysis of Immunogenic Properties of Recombinant Meningococcus IgA1 Protease-Based Proteins.

    Science.gov (United States)

    Kotelnikova, O V; Zinchenko, A A; Vikhrov, A A; Alliluev, A P; Serova, O V; Gordeeva, E A; Zhigis, L S; Zueva, V S; Razgulyaeva, O A; Melikhova, T D; Nokel, E A; Drozhzhina, E Yu; Rumsh, L D

    2016-07-01

    Using the genome sequence of IgA1 protease of N. meningitidis of serogroup B, four recombinant proteins of different structure and molecular weight were constructed. These proteins were equal in inducing the formation of specific antibodies to IgA1 protease and had protective properties against meningococci. In the sera of immunized mice, anti-IgA1 protease antibodies were detected by whole-cell ELISA, which indicated the presence of IgA1 protease on the surface of these bacteria. We hypothesized that the protective properties of IgA1 protease-based antigens and IgA1 protease analogs could be realized not only via impairment of bacterium adhesion to the mucosa, but also via suppression of this pathogen in the organism. The presented findings seem promising for using these proteins as the basis for anti-meningococcus vaccine.

  16. Instruments for oral disease-intervention strategies : recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis

    NARCIS (Netherlands)

    Maassen, C.B.M.; Laman, J.D.; Heijne den Bak-Glashouwer, M.J.; Tielen, F.J.; Holten-Neelen, J.C.P.A. van; Hoogteijling, L.; Antonissen, C.; Leer, R.J.; Pouwels, P.H.; Boersma, W.J.A.; Shaw, D.M.

    1999-01-01

    Lactobacillus strains possess properties that make them attractive candidates as vehicles for oral administration of therapeutics. In this report we describe the construction and analysis of recombinant Lactobacillus casei applicable in oral vaccination against an infectious disease (tetanus) and in

  17. HUMAN PAPILLOMA VIRUS IMMUNOGEN CREATION ON THE BASE OF CHIMERIC RECOMBINANT PROTEIN L2E7

    Directory of Open Access Journals (Sweden)

    I. S. Malakhov

    2016-01-01

    Full Text Available The cervical cancer is one of the most common diseases in world. This malignancy is the seventh highest prevalence oncological disease worldwide and the second highest prevalence oncological disease of women in the world. Meanwhile women need to be infected by human papilloma virus (HPV is absolutely necessary for it further evolution, HPV DNA was found in 99.97% cases of disease. Except cervical cancer, HPV cause 85% of rectal cancer, 50% of the vulva, vagina and penis cancers, 20% of oropharyngeal cancer and 10% of larynx and esophagus cancers. In 2009, 14 000 women were diagnosed with cervical cancer in Russia. The growth in morbidity was 19% (in comparison with 1999. The most effective recognised measure for almost each infection prophylaxis is a vaccination. Two human papilloma virus vaccines are available in Russia nowadays — Gardasil and Cervarix, produced in Belgium and the Netherlands respectively. Cervarix is a bivalent vaccine based on virus-like particles (VLP of two types. Recombinant major capsid proteins L1 HPV 16 and HPV 18 express in baculovirus expression system and self-assembled into virus-like particles (about 70 percent of cervical cancers are caused by HPV 16 and HPV 18. VLP of each strain produced in different baculovirus vectors and then combined in single drug. Gardasil is like Cervarix with few exceptions. Producing organisms are fungi S. cerevisiae in this case, and this vaccine contains low-risk HPV 6 and HPV 11 VLP. Thus, Gardasil is quadrivalent HPV-6/11/16/18 vaccine. These vaccines are very effective in averting infection of disease and don’t have significant side-effects, however they have some disadvantages. Firstly, they have a high price because of necessity of their expression in eukaryotic cells. Secondly, they are strain-specific, so vaccines are completely effective only for virus’s strains which are represented in the vaccine. Thirdly, it`s the absence of therapeutic (treatment of established

  18. A new potential secretion pathway for recombinant proteins in Bacillus subtilis.

    Science.gov (United States)

    Wang, Guangqiang; Xia, Yongjun; Gu, Zhennan; Zhang, Hao; Chen, Yong Q; Chen, Haiqin; Ai, Lianzhong; Chen, Wei

    2015-11-10

    Secretion of cytoplasmic expressed proteins into growth media has significant advantages. Due to the lack of an outer membrane, Bacillus subtilis is considered as a desirable 'cell factory' for the secretion of recombinant proteins. However, bottlenecks in the classical pathway for the secretion of recombinant proteins limit its use on a wide scale. In this study, we attempted to use four typical non-classically secreted proteins as signals to export three recombinant model proteins to the culture medium. All four non-classically secreted proteins can direct the export of the intrinsically disordered nucleoskeletal-like protein (Nsp). Two of them can guide the secretion of alkaline phosphatase (PhoA). One can lead the secretion of the thermostable β-galactosidase BgaB, which cannot be secreted with the aid of typical Sec-dependent signal peptides. Our results show that the non-classically secreted proteins lead the recombinant proteins to the culture medium, and thus non-classical protein secretion pathways can be exploited as a novel secretion pathway for recombinant proteins.

  19. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  20. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  1. Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex.

    Science.gov (United States)

    Farsiani, Hadi; Mosavat, Arman; Soleimanpour, Saman; Sadeghian, Hamid; Akbari Eydgahi, Mohammad Reza; Ghazvini, Kiarash; Sankian, Mojtaba; Aryan, Ehsan; Jamehdar, Saeid Amel; Rezaee, Seyed Abdolrahim

    2016-06-21

    Tuberculosis (TB) remains a major global health threat despite chemotherapy and Bacilli Calmette-Guérin (BCG) vaccination. Therefore, a safer and more effective vaccine against TB is urgently needed. This study evaluated the immunogenicity of a recombinant fusion protein consisting of early secreted antigenic target protein 6 kDa (ESAT-6), culture filtrate protein 10 kDa (CFP-10) and the Fc-domain of mouse IgG2a as a novel subunit vaccine. The recombinant expression vectors (pPICZαA-ESAT-6:CFP-10:Fcγ2a and pPICZαA-ESAT-6:CFP-10:His) were transferred into Pichia pastoris. After SDS-PAGE and immunoblotting, the immunogenicity of the recombinant proteins was evaluated in mice. When both recombinant proteins (ESAT-6:CFP-10:Fcγ2a and ESAT-6:CFP-10:His) were used for vaccination, Th1-type cellular responses were induced producing high levels of IFN-γ and IL-12. However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a small increase in IL-4 as compared to the BCG and ESAT-6:CFP-10:His groups. Moreover, mice primed with BCG and then supplemented with ESAT-6:CFP-10:Fcγ2a produced the highest levels of IFN-γ and IL-12 in immunized groups. The findings indicate that when Fcγ2a is fused to the ESAT-6:CFP-10 complex, as a delivery vehicle, there could be an increase in the immunogenicity of this type of subunit vaccine. Therefore, additional investigations are necessary for the development of appropriate Fc-based tuberculosis vaccines.

  2. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  3. Protection of ewes against Teladorsagia circumcincta infection in the periparturient period by vaccination with recombinant antigens.

    Science.gov (United States)

    Nisbet, Alasdair J; McNeilly, Tom N; Greer, Andrew W; Bartley, Yvonne; Oliver, E Margaret; Smith, Stephen; Palarea-Albaladejo, Javier; Matthews, Jacqueline B

    2016-09-15

    Teladorsagiosis is a major production-limiting disease in ruminants in temperate regions throughout the world and one of the key interventions in the management of the disease is the prevention of pasture contamination with Teladorsagia circumcincta eggs by ewes during the periparturient relaxation in immunity which occurs in the period around lambing. Here, we describe the immunisation of twin-bearing ewes with a T. circumcincta recombinant subunit vaccine and the impact that vaccination has on their immune responses and shedding of parasite eggs during a continuous T. circumcincta challenge period spanning late gestation and lactation. In ewes which displayed a clear periparturient relaxation in immunity, vaccination resulted in a 45% reduction in mean cumulative faecal egg count (cFEC, p=0.027) compared to control (immunised with adjuvant only) ewes. Recombinant antigen-specific IgG and IgA, which bound each of the vaccine antigens, were detected in the serum of vaccinated ewes following each immunisation and in colostrum taken from vaccinated ewes post-partum whereas low levels of antigen-specific IgG were detected in serum and colostrum from control ewes. Antigen-specific IgG and IgA levels in blood collected within 48h of birth from lambs largely reflected those in the colostrum of their ewes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Tandem truncated rotavirus VP8* subunit protein with T cell epitope as non-replicating parenteral vaccine is highly immunogenic.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Hoshino, Yasutaka; Yuan, Lijuan

    2015-01-01

    The two currently available live oral rotavirus vaccines, Rotarix(®) and RotaTeq(®), are highly efficacious in the developed countries. However, the efficacy of such vaccines in resource deprived countries in Africa and Southeast Asia is low. We reported previously that a bacterially-expressed rotavirus P2-P[8] ΔVP8* subunit vaccine candidate administered intramuscularly elicited high-titers of neutralizing antibodies in guinea pigs and mice and significantly shortened the duration of diarrhea in neonatal gnotobiotic pigs upon oral challenge with virulent human rotavirus Wa strain. To further improve its vaccine potential and provide wider coverage against rotavirus strains of global and regional epidemiologic importance, we constructed 2 tandem recombinant VP8* proteins, P2-P[8] ΔVP8*-P[8] ΔVP8* and P2-P[8] ΔVP8*-P[6] ΔVP8* based on Escherichia coli expression system. The two resulting recombinant tandem proteins were highly soluble and P2-P[8] ΔVP8*-P[8] ΔVP8* was generated with high yield. Moreover, guinea pigs immunized intramuscularly by 3 doses of the P2-P[8] ΔVP8*-P[8] ΔVP8* or P2-P[8] ΔVP8*-P[6] ΔVP8* vaccine with aluminum phosphate adjuvant developed high titers of homotypic and heterotypic neutralizing antibodies against human rotaviruses bearing G1-G4, G8, G9 and G12 with P[8], P[4] or P[6] combination. The results suggest that these 2 subunit vaccines in monovalent or bivalent formulation can provide antigenic coverage to almost all the rotavirus G (VP7) types and major P (VP4) types of global as well as regional epidemiologic importance.

  5. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  6. Production of Human Papilloma Virus Type 16 E6 Oncoprotein as a Recombinant Protein in Eukaryotic Cells

    Science.gov (United States)

    Mirshahabi, H; Soleimanjahi, H; Pourpak, Z; Meshkat, Z; Hassan, ZM

    2012-01-01

    Background Cervical cancer is one of the most important and widespread cancer which affects women. There are several causes of cervical cancer; among them HPV types 16 and 18 are the most prominent ones which are recurrent and persistent infections. These genotypes are currently about 70% of cervical cancer causes in developing countries. Due to the importance of these viruses in cervical cancer, we pioneered the production of Human Papilloma Virus type16 E6 oncoprotein as a recombinant protein in order to develop a vaccine. Two HPV oncoproteins, E6 and E7, are consistently expressed in HPV-associated cancer cells and are responsible for malignant transformation. These oncogenic proteins represent ideal target antigens for developing vaccine and immunotherapeutic strategies against HPV-associated neoplasm. Methods In the present study, the cloned E6-oncoprotein of HPV16 in pTZ57R/T-E6 vector was used to produce professional expression vector. The target gene was subcloned in a eukaryotic expression vector. The pcDNA3-E6 vector was propagated in E.coli strain DH5α and transfected into CHO cells 72 hours post-transfection. Results The transfected cells were harvested; mRNA detection and the interest protein production were confirmed by western blot analysis using specific anti E6 monoclonal antibody. Conclusion HPV16-E6 target protein recognized by specific antibody could be an appropriate form of protein, which can be used for further studies. Due to potential effect of this protein, its DNA construction can be used for DNA vaccine in future studies. PMID:25780534

  7. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  8. [The development of therapeutic vaccine for hepatitis C virus].

    Science.gov (United States)

    Kimura, Kiminori; Kohara, Michinori

    2012-10-01

    Chronic hepatitis C caused by infection with the hepatitis C virus(HCV)is a global health problem. HCV causes persistent infection that can lead to chronic liver diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The therapeutic efficacy of antiviral drugs is not optimal in patients with chronic infection; furthermore, an effective vaccine has not yet been developed. To design an effective HCV vaccine, generation of a convenient animal model of HCV infection is necessary. Recently, we used the Cre/loxP switching system to generate an immunocompetent mouse model of HCV expression, thereby enabling the study of host immune responses against HCV proteins. At present vaccine has not yet been shown to be therapeutically effective against chronic HCV infection. We examined the therapeutic effects of a recombinant vaccinia virus(rVV)encoding HCV protein in a mouse model. we generated rVVs for 3 different HCV proteins and found that one of the recombinant viruses encoding a nonstructural protein(rVV-N25)resolved pathological chronic hepatitis C symptoms in the liver. We propose the possibility that rVV-N25 immunization has the potential for development of an effective therapeutic vaccine for HCV induced chronic hepatitis. The utilization of the therapeutic vaccine can protect progress to chronic hepatitis, and as a consequence, leads to eradication of hepatocellular carcinoma. In this paper, we summarized our current study for HCV therapeutic vaccine and review the vaccine development to date.

  9. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    Science.gov (United States)

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  10. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Sansyzbay, Abylai; Kydyrbayev, Zhailaubay; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Assanzhanova, Nurika; Sultankulova, Kulaisan; Sandybayev, Nurlan; Khairullin, Berik; Kuznetsova, Irina; Ferko, Boris; Egorov, Andrej

    2014-04-10

    We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by

  11. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome.

    Science.gov (United States)

    Cottingham, Matthew G; Gilbert, Sarah C

    2010-09-01

    The non-replicating poxviral vector modified vaccinia virus Ankara (MVA) is currently a leading candidate for development of novel recombinant vaccines against globally important diseases. The 1980s technology for making recombinant MVA (and other poxviruses) is powerful and robust, but relies on rare recombination events in poxviral-infected cells. In the 21st century, it has become possible to apply bacterial artificial chromosome (BAC) technology to poxviruses, as first demonstrated by B. Moss' lab in 2002 for vaccinia virus. A similar BAC clone of MVA was subsequently derived, but while recombination-mediated genetic engineering for rapid production was used of deletion mutants, an alternative method was required for efficient insertion of transgenes. Furthermore "markerless" viruses, which carry no trace of the selectable marker used for their isolation, are increasingly required for clinical trials, and the viruses derived via the new method contained the BAC sequence in their genomic DNA. Two methods are adapted to MVA-BAC to provide more rapid generation of markerless recombinants in weeks rather than months. "En passant" recombineering is applied to the insertion of a transgene expression cassette and the removal of the selectable marker in bacteria; and a self-excising variant of MVA-BAC is constructed, in which the BAC cassette region is rapidly and efficiently lost from the viral genome following rescue of the BAC into infectious virus. These methods greatly facilitate and accelerate production of recombinant MVA, including markerless constructs. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Immunogenicity of a virosomally-formulated Plasmodium falciparum GLURP-MSP3 chimeric protein-based malaria vaccine candidate in comparison to adjuvanted formulations

    DEFF Research Database (Denmark)

    Tamborrini, Marco; Stoffel, Sabine A; Westerfeld, Nicole

    2011-01-01

    In clinical trials, immunopotentiating reconstituted influenza virosomes (IRIVs) have shown great potential as a versatile antigen delivery platform for synthetic peptides derived from Plasmodium falciparum antigens. This study describes the immunogenicity of a virosomally-formulated recombinant ...... fusion protein comprising domains of the two malaria vaccine candidate antigens MSP3 and GLURP....

  13. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    Science.gov (United States)

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  14. Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies.

    Directory of Open Access Journals (Sweden)

    Matej Zábrady

    Full Text Available With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.

  15. Use of recombinant purified protein derivative (PPD) antigens as specific skin test for tuberculosis.

    Science.gov (United States)

    Stavri, Henriette; Bucurenci, Nadia; Ulea, Irina; Costache, Adriana; Popa, Loredana; Popa, Mircea Ioan

    2012-11-01

    Purified protein derivative (PPD) is currently the only available skin test reagent used worldwide for the diagnosis of tuberculosis (TB). The aim of this study was to develop a Mycobacterium tuberculosis specific skin test reagent, without false positive results due to Bacillus Calmette-Guerin (BCG) vaccination using recombinant antigens. Proteins in PPD IC-65 were analyzed by tandem mass spectrometry and compared to proteins in M. tuberculosis culture filtrate; 54 proteins were found in common. Top candidates MPT64, ESAT 6, and CFP 10 were overexpressed in Escherichia coli expression strains and purified as recombinant proteins. To formulate optimal immunodiagnostic PPD cocktails, the antigens were evaluated by skin testing guinea pigs sensitized with M. tuberculosis H37Rv and BCG. For single antigens and a cocktail mixture of these antigens, best results were obtained using 3 μg/0.1 ml, equivalent to 105 TU (tuberculin units). Each animal was simultaneously tested with PPD IC-65, 2 TU/0.1 ml, as reference. Reactivity of the multi-antigen cocktail was greater than that of any single antigen. The skin test results were between 34.3 and 76.6 per cent the level of reactivity compared to that of the reference when single antigens were tested and 124 per cent the level of reactivity compared to the reference for the multi-antigen cocktail. Our results showed that this specific cocktail could represent a potential candidate for a new skin diagnostic test for TB.

  16. Immunization of dogs with a canine herpesvirus vector expressing Neospora caninum surface protein, NcSRS2.

    Science.gov (United States)

    Nishikawa, Y; Ikeda, H; Fukumoto, S; Xuan, X; Nagasawa, H; Otsuka, H; Mikami, T

    2000-10-01

    In order to develop a vaccine against Neospora caninum in dogs, we constructed recombinant canine herpesvirus (CHV) expressing N. caninum surface protein, NcSRS2. Indirect immunofluorescence indicated that the antigenic structure of the recombinant NcSRS2 was similar to the authentic parasite protein. The dogs immunised with recombinant virus produced IgG antibody to N. caninum, and their sera recognised the parasite protein on Western blot. The dogs inoculated with recombinant virus showed no clinical symptoms and infectious CHV was not recovered from the dogs, suggesting that recombinant CHV expressing N. caninum proteins may lead to a vaccine against neosporosis in dogs.

  17. Attenuated Recombinant Influenza A Virus Expressing HPV16 E6 and E7 as a Novel Therapeutic Vaccine Approach.

    Directory of Open Access Journals (Sweden)

    Christoph Jindra

    Full Text Available Persistent infection with high-risk human papillomavirus (HPV types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c. prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.

  18. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Science.gov (United States)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  19. Recombinant HT{sub m4} gene, protein and assays

    Science.gov (United States)

    Lim, B.; Adra, C.N.; Lelias, J.M.

    1996-09-03

    The invention relates to a recombinant DNA molecule which encodes a HT{sub m4} protein, a transformed host cell which has been stably transfected with a DNA molecule which encodes a HT{sub m4} protein and a recombinant HT{sub m4} protein. The invention also relates to a method for detecting the presence of a hereditary atopy. 2 figs.

  20. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines

    Directory of Open Access Journals (Sweden)

    Veridiana Gomes Virginio

    2017-01-01

    Full Text Available The adjuvant potential of two mesoporous silica nanoparticles (MSNs, SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP. The recombinant antigen (HSP70212-600, previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

  1. Recombination between vaccine and field strains of canine parvovirus is revealed by isolation of virus in canine and feline cell cultures.

    Science.gov (United States)

    Mochizuki, Masami; Ohshima, Takahisa; Une, Yumi; Yachi, Akiko

    2008-12-01

    Canine parvovirus type 2 (CPV) is a pathogen that causes severe hemorrhagic gastroenteritis with a high fatality rate in pups worldwide. Since CPV emerged in the late 1970s, its origin has been explored with the conclusion that CPV originated from feline panleukopenia virus or a closely related virus. Both high mutation rate and recombination are assumed to be key factors in the evolution of parvoviruses. Here we provide evidence for natural recombination in CPV isolated from dogs in cell culture. Antigenic and genetic properties of isolates from 10 diseased pups were elucidated. Six pups had been vaccinated beforehand with live combined vaccine containing original antigenic type CPV (CPV-2). Six isolates recovered from 4 vaccinated pups in cell cultures were found to contain either CPV-2 or CPV-2-like viruses. The other isolates, including all those from non-vaccinated pups, were CPV-2b viruses. Antigenic typing of two CPV-2-like isolates, 03-029/M and 1887/f, with a monoclonal antibody panel suggested they were a mixture of CPV-2 and CPV-2a (03-029/M) and a recombinant of CPV-2 and CPV-2b (1887/f). Genetic analysis of the VP1 gene indicated that isolate 03-029/M was a mixture of CPV-2, CPV-2a and a recombinant of CPV-2 and CPV-2a viruses, while isolate 1887/f was composed of a recombinant of CPV-2 and CPV-2b viruses. This is the first demonstration of natural CPV recombination in the field and suggests that recombination in the evolution of CPV is a more frequent and important process than previously believed.

  2. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7.

    Science.gov (United States)

    Sewell, Duane A; Shahabi, Vafa; Gunn, George R; Pan, Zhen-Kun; Dominiecki, Mary E; Paterson, Yvonne

    2004-12-15

    Previous work in our laboratory has established that the fusion of tumor-associated antigens to a truncated form of the Listeria monocytogenes virulence factor listeriolysin O (LLO) enhances the immunogenicity and antitumor efficacy of the tumor antigen when delivered by Listeria or by vaccinia. LLO contains a PEST sequence at the NH(2) terminus. These sequences, which are found in eukaryotic proteins with a short cellular half-life, target proteins for degradation in the ubiquitin-proteosome pathway. To investigate whether the enhanced immunogenicity conferred by LLO is due to the PEST sequence, we constructed new Listeria recombinants that expressed the HPV-16 E7 antigen fused to LLO, which either contained or had been deleted of this sequence. We then compared the antitumor efficacy of this set of vectors and found that Listeria expressing the fusion protein LLO-E7 or PEST-E7 were effective at regressing established macroscopic HPV-16 immortalized tumors in syngeneic mice. In contrast, Listeria recombinants expressing E7 alone or E7 fused to LLO from which the PEST sequence had been genetically removed could only slow tumor growth. Because CD8(+) T cell epitopes are generated in the ubiquitin-proteosome pathway, we also investigated the ability of the vaccines to induce E7-specific CD8(+) T cells in the spleen and to generate E7-specific tumor-infiltrating lymphocytes. A strong correlation was observed between CD8(+) T-cell induction and tumor homing and the antitumor efficacy of the Listeria-E7 vaccines. These findings suggest a strategy for the augmentation of tumor antigen-based immunotherapeutic strategies that may be broadly applicable.

  3. Comparison of the protective efficacy between single and combination of recombinant adenoviruses expressing complete and truncated glycoprotein, and nucleoprotein of the pathogenic street rabies virus in mice.

    Science.gov (United States)

    Kim, Ha-Hyun; Yang, Dong-Kun; Nah, Jin-Ju; Song, Jae-Young; Cho, In-Soo

    2017-06-24

    Rabies is an important viral zoonosis that causes acute encephalitis and death in mammals. To date, several recombinant vaccines have been developed based on G protein, which is considered to be the main antigen, and these vaccines are used for rabies control in many countries. Most recombinant viruses expressing RABV G protein retain the G gene from attenuated RABV. Not enough is currently known about the protective effect against RABV of a combination of recombinant adenoviruses expressing the G and N proteins of pathogenic street RABV. We constructed a recombinant adenovirus (Ad-0910Gsped) expressing the signal peptide and ectodomain (sped) of G protein of the Korean street strain, and evaluated the immunological protection conferred by a single and combination of three kinds of recombinant adenoviruses (Ad-0910Gsped and Ad-0910G with or without Ad-0910 N) in mice. A combination of Ad-0910G and Ad-0910 N conferred improved immunity against intracranial challenge compared to single administration of Ad-0910G. The Ad-0910G virus, expressing the complete G protein, was more immunogenic than Ad-0910Gsped, which expressed a truncated G protein with the transmembrane and cytoplasmic domains removed. Additionally, oral vaccination using a combination of viruses led to complete protection. Our results suggest that this combination of viruses is a viable new intramuscular and oral vaccine candidate.

  4. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials.

    Science.gov (United States)

    Pichichero, Michael E

    2013-12-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products.

  5. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  6. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  7. Evaluation of oral and subcutaneous delivery of an experimental canarypox recombinant canine distemper vaccine in the Siberian polecate (Mustela eversmanni)

    Science.gov (United States)

    Wimsatt, Jeffrey; Biggins, Dean E.; Innes, Kim; Taylor, Bobbi; Garell, Della

    2003-01-01

    We assessed the safety and efficacy of an experimental canarypox-vectored recombinant canine distemper virus (CDV) subunit vaccine in the Siberian polecat (Mustela eversmanni), a close relative of the black-footed ferret, (M. nigripes), an endangered species that is highly susceptible to the virus. Siberian polecats were randomized into six treatment groups. Recombinant canine distemper vaccine was administered s.c. at three dose levels (104.5, 105.0, and 105.5 plaque-forming units [PFU] per dose) and was administered orally by spraying the vaccine into the oropharnyx at two dose levels (105.5, 108.0 PFU per dose). The sixth group of control animals was not vaccinated. For both routes of administration, two 1-ml doses of reconstituted vaccine were delivered 4 wk apart, followed by live virus challenge 3 wk after the second vaccination. During the challenge, Synder Hill test strain CDV obtained from the National Veterinary Services Laboratory in Ames, Iowa, was administered i.p. Serial blood samples for CDV serology were collected immediately before vaccination and challenge, and 10, 15, and 20 days after challenge. Clinical signs and body weights were recorded up to 32 days after challenge. The survival rate in animals receiving vaccine at the highest oral dose (108.0 PFU per dose) was 83.3%. Survival rate was 50.0% in the high s.c. and 60.0% in the medium s.c. groups. All animals in the low–s.c. dose, low–oral dose, and control groups died after exposure. Vaccine dose overall (oral and s.c.) and dose in response to s.c. administration when considered alone were significant predictors of survival (P = 0.006 and P = 0.04, respectively). Among the polecats challenged with virulent virus, those that died became sick sooner than those that survived. Animals that died lost significantly more weight during the 10 days after challenge than did animals that survived (P = 0.02). Survival rates did not differ by sex, founder female status, or breeding pedigree in any of

  8. The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein.

    Directory of Open Access Journals (Sweden)

    Peter T Beernink

    Full Text Available The binding of human complement inhibitors to vaccine antigens in vivo could diminish their immunogenicity. A meningococcal ligand for the complement down-regulator, factor H (fH, is fH-binding protein (fHbp, which is specific for human fH. Vaccines containing recombinant fHbp or native outer membrane vesicles (NOMV from mutant strains with over-expressed fHbp are in clinical development. In a previous study in transgenic mice, the presence of human fH impaired the immunogenicity of a recombinant fHbp vaccine. In the present study, we prepared two NOMV vaccines from mutant group B strains with over-expressed wild-type fHbp or an R41S mutant fHbp with no detectable fH binding. In wild-type mice in which mouse fH did not bind to fHbp in either vaccine, the NOMV vaccine with wild-type fHbp elicited 2-fold higher serum IgG anti-fHbp titers (P = 0.001 and 4-fold higher complement-mediated bactericidal titers against a PorA-heterologous strain than the NOMV with the mutant fHbp (P = 0.003. By adsorption, the bactericidal antibodies were shown to be directed at fHbp. In transgenic mice in which human fH bound to the wild-type fHbp but not to the R41S fHbp, the NOMV vaccine with the mutant fHbp elicited 5-fold higher serum IgG anti-fHbp titers (P = 0.002, and 19-fold higher bactericidal titers than the NOMV vaccine with wild-type fHbp (P = 0.001. Thus, in mice that differed only by the presence of human fH, the respective results with the two vaccines were opposite. The enhanced bactericidal activity elicited by the mutant fHbp vaccine in the presence of human fH far outweighed the loss of immunogenicity of the mutant protein in wild-type animals. Engineering fHbp not to bind to its cognate complement inhibitor, therefore, may increase vaccine immunogenicity in humans.

  9. Impact of protein uptake and degradation on recombinant protein secretion in yeast

    DEFF Research Database (Denmark)

    Tyo, Keith E. J.; Liu, Zihe; Magnusson, Ylva

    2014-01-01

    Protein titers, a key bioprocessing metric, depend both on the synthesis of protein and the degradation of protein. Secreted recombinant protein production in Saccharomyces cerevisiae is an attractive platform as minimal media can be used for cultivation, thus reducing fermentation costs...... and transcriptomics, we identify metabolic and regulatory markers that are consistent with uptake of whole proteins by endocytosis, followed by intracellular degradation and catabolism of substituent amino acids. Uptake and degradation of recombinant protein products may be common in S. cerevisiae protein secretion...... and simplifying downstream purification, compared to other systems that require complex media. As such, engineering S. cerevisiae to improve titers has been then the subject of significant attention, but the majority of previous efforts have been focused on improving protein synthesis. Here, we characterize...

  10. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    OpenAIRE

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  11. Prime-boost therapeutic vaccination in mice with DNA/DNA or DNA/Fowlpox virus recombinants expressing the Human Papilloma Virus type 16 E6 and E7 mutated proteins fused to the coat protein of Potato virus X.

    Science.gov (United States)

    Illiano, Elena; Bissa, Massimiliano; Paolini, Francesca; Zanotto, Carlo; De Giuli Morghen, Carlo; Franconi, Rosella; Radaelli, Antonia; Venuti, Aldo

    2016-10-02

    The therapeutic antitumor potency of a prime-boost vaccination strategy was explored, based on the mutated, nontransforming forms of the E6 (E6 F47R ) and E7 (E7 GGG ) oncogenes of Human Papilloma Virus type 16 (HPV16), fused to the Potato virus X (PVX) coat protein (CP) sequence. Previous data showed that CP fusion improves the immunogenicity of tumor-associated antigens and may thus increase their efficacy. After verifying the correct expression of E6 F47R CP and E7 GGG CP inserted into DNA and Fowlpox virus recombinants by Western blotting and immunofluorescence, their combined use was evaluated for therapy in a pre-clinical mouse model of HPV16-related tumorigenicity. Immunization protocols were applied using homologous (DNA/DNA) or heterologous (DNA/Fowlpox) prime-boost vaccine regimens. The humoral immune responses were determined by ELISA, and the therapeutic efficacy evaluated by the delay in tumor appearance and reduced tumor volume after inoculation of syngeneic TC-1* tumor cells. Homologous DNA/DNA genetic vaccines were able to better delay tumor appearance and inhibit tumor growth when DNAE6 F47R CP and DNAE7 GGG CP were administered in combination. However, the heterologous DNA/Fowlpox vaccination strategy was able to delay tumor appearance in a higher number of animals when E6 F47R CP and in particular E7 GGG CP were administered alone. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus

    DEFF Research Database (Denmark)

    Langeveld, J.P.M.; Brennan, F.R.; Martinez-Torrecuadrada, J.L.

    2001-01-01

    A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1...

  13. Manufacturing of recombinant therapeutic proteins in microbial systems.

    Science.gov (United States)

    Graumann, Klaus; Premstaller, Andreas

    2006-02-01

    Recombinant therapeutic proteins have gained enormous importance for clinical applications. The first recombinant products have been produced in E. coli more than 20 years ago. Although with the advent of antibody-based therapeutics mammalian expression systems have experienced a major boost, microbial expression systems continue to be widely used in industry. Their intrinsic advantages, such as rapid growth, high yields and ease of manipulation, make them the premier choice for expression of non-glycosylated peptides and proteins. Innovative product classes such as antibody fragments or alternative binding molecules will further expand the use of microbial systems. Even more, novel, engineered production hosts and integrated technology platforms hold enormous potential for future applications. This review summarizes current applications and trends for development, production and analytical characterization of recombinant therapeutic proteins in microbial systems.

  14. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  15. The therapeutic potential of plant-derived vaccines and antibodies.

    Science.gov (United States)

    Rodgers, P B; Hamilton, W D; Adair, J R

    1999-03-01

    The production of recombinant proteins in plants is reviewed with a particular focus on plant-derived vaccines and antibodies for human healthcare. Issues relating to foreign gene expression, such as protein yield, localisation and glycosylation are also considered. Emphasis is placed on reporting progress with preclinical and clinical evaluation of plant-derived vaccines and antibodies. An assessment is made of the likely future direction of research and development in this area.

  16. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    Science.gov (United States)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The Human Hookworm Vaccine.

    Science.gov (United States)

    Hotez, Peter J; Diemert, David; Bacon, Kristina M; Beaumier, Coreen; Bethony, Jeffrey M; Bottazzi, Maria Elena; Brooker, Simon; Couto, Artur Roberto; Freire, Marcos da Silva; Homma, Akira; Lee, Bruce Y; Loukas, Alex; Loblack, Marva; Morel, Carlos Medicis; Oliveira, Rodrigo Correa; Russell, Philip K

    2013-04-18

    Hookworm infection is one of the world's most common neglected tropical diseases and a leading cause of iron deficiency anemia in low- and middle-income countries. A Human Hookworm Vaccine is currently being developed by the Sabin Vaccine Institute and is in phase 1 clinical testing. The candidate vaccine is comprised of two recombinant antigens known as Na-GST-1 and Na-APR-1, each of which is an important parasite enzyme required for hookworms to successfully utilize host blood as a source of energy. The recombinant proteins are formulated on Alhydrogel(®) and are being tested in combination with a synthetic Toll-like receptor 4 agonist. The aim of the vaccine is to induce anti-enzyme antibodies that will reduce both host blood loss and the number of hookworms attached to the gut. Transfer of the manufacturing technology to the Oswaldo Cruz Foundation (FIOCRUZ)/Bio-Manguinhos (a Brazilian public sector developing country vaccine manufacturer) is planned, with a clinical development plan that could lead to registration of the vaccine in Brazil. The vaccine would also need to be introduced in the poorest regions of Africa and Asia, where hookworm infection is highly endemic. Ultimately, the vaccine could become an essential tool for achieving hookworm control and elimination, a key target in the 2012 London Declaration on Neglected Tropical Diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  19. Development of a single-dose recombinant CAMP factor entrapping poly(lactide-co-glycolide) microspheres-based vaccine against Streptococcus agalactiae.

    Science.gov (United States)

    Liu, Gang; Yin, Jinhua; Barkema, Herman W; Chen, Liben; Shahid, Muhammad; Szenci, Otto; De Buck, Jeroen; Kastelic, John P; Han, Bo

    2017-03-01

    Streptococcus agalactiae is an important contagious bovine mastitis pathogen. Although it is well controlled and even eradicated in most Northern European and North American dairy herds, the prevalence of this pathogen remains very high in China. However, research on development of a vaccine against S. agalactiae mastitis is scarce. The aims of the present study were to: (1) develop a single-dose vaccine against S. agalactiae based on poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) encapsulated CAMP factor, a conserved virulent protein encoded by S. agalactiae's cfb gene; and (2) evaluate its immunogenicity and protective efficacy in a mouse model. The cfb gene was cloned and expressed in a recombinant Escherichia coli strain Trans1-T1. The CAMP factor was tested to determine a safe dose range and then encapsulated in MS of PLGA (50:50) to assess its release pattern in vitro and immune reaction in vivo. Furthermore, a mouse model and a histopathological assay were developed to evaluate bacterial burden and vaccine efficacy. In the low dosage range (S. agalactiae challenge. Additionally, no pathological lesions were detected in the vaccinated group. Therefore, PLGA-CAMP conferred protective efficacy against S. agalactiae in our mouse model, indicating its potential as a vaccine against S. agalactiae mastitis. Furthermore, the slow-release kinetics of PLGA MS warranted optimism for development of a single-dose vaccine. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. [PERSPECTIVES OF DEVELOPMENT OF LIVE RECOMBINANT ANTHRAX VACCINES BASED ON OPPORTUNISTIC AND APATHOGENIC MICROORGANISMS].

    Science.gov (United States)

    Popova, P Yu; Mikshis, N I

    2016-01-01

    Live genetic engineering anthrax vaccines on the platform of avirulent and probiotic micro-organisms are a safe and adequate alternative to preparations based on attenuated Bacillus anthracis strains. Mucosal application results in a direct contact of the vaccine preparations with mucous membranes in those organs arid tissues of the macro-organisms, that are exposed to the pathogen in the first place, resulting in a development of local and systemic immune response. Live recombinant anthrax vaccines could be used both separately as well as in a prime-boost immunization scheme. The review focuses on immunogenic and protective properties of experimental live genetic engineering prearations, created based on members of geni of Salmonella, Lactobacillus and adenoviruses.

  1. Recombination of Globally Circulating Varicella-Zoster Virus

    Science.gov (United States)

    Depledge, Daniel P.; Kundu, Samit; Atkinson, Claire; Brown, Julianne; Haque, Tanzina; Hussaini, Yusuf; MacMahon, Eithne; Molyneaux, Pamela; Papaevangelou, Vassiliki; Sengupta, Nitu; Koay, Evelyn S. C.; Tang, Julian W.; Underhill, Gillian S.; Grahn, Anna; Studahl, Marie; Breuer, Judith; Bergström, Tomas

    2015-01-01

    ABSTRACT Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ; also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely in many countries worldwide. Recent studies of another alphaherpesvirus, infectious laryngotracheitis virus, demonstrate that live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using attenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombination, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine-wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vaccine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those previously published, have enabled us to formally define a novel sixth VZV clade. IMPORTANCE Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes simplex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In the

  2. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo.

    Directory of Open Access Journals (Sweden)

    Kar Muthumani

    Full Text Available An effective HIV vaccine will most likely require the induction of strong T-cell responses, broadly neutralizing antibodies (bNAbs, and the elicitation of antibody-dependent cellular cytotoxicity (ADCC. Previously, we demonstrated the induction of strong HIV/SIV cellular immune responses in macaques and humans using synthetic consensus DNA immunogens delivered via adaptive electroporation (EP. However, the ability of this improved DNA approach to prime for relevant antibody responses has not been previously studied. Here, we investigate the immunogenicity of consensus DNA constructs encoding gp140 sequences from HIV-1 subtypes A, B, C and D in a DNA prime-protein boost vaccine regimen. Mice and guinea pigs were primed with single- and multi-clade DNA via EP and boosted with recombinant gp120 protein. Sera were analyzed for gp120 binding and induction of neutralizing antibody activity. Immunization with recombinant Env protein alone induced low-titer binding antibodies with limited neutralization breath. In contrast, the synthetic DNA prime-protein boost protocol induced significantly higher antibody binding titers. Furthermore, sera from DNA prime-protein boost groups were able to neutralize a broader range of viruses in a panel of tier 1 clade B viruses as well as multiple tier 1 clade A and clade C viruses. Further investigation of synthetic DNA prime plus adaptive EP plus protein boost appears warranted.

  3. Design and evaluation of protein expression in a recombinant plasmid encoding epitope gp 350/220 of the Epstein-Barr virus (EBV)

    Science.gov (United States)

    Himmah, Karimatul; Dluha, Nurul; Anyndita, Nadya V. M.; Rifa'i, Muhaimin; Widodo

    2017-05-01

    The Epstein - Barr virus (EBV) causes severe infections that may lead to cancers such as nasopharyngeal carcinoma. Development of effective EBV vaccines is necessary to prevent the virus spreading throughout the community. TheEBV has a surface protein gp 350/220, which serves as an antigen to help interact with host cells. Epitopes of the protein can potentially serve as bases for a vaccine. In a previous study, we have found a conserved epitope of gp 350/220 from all strains EBV through an in silico approach. The aim of this study is to design and overproduce a recombinant peptide of epitope gp 350/220 in E. coli. DNA encoding the conserved epitope was synthesized and cloned into plasmid pET-22b(+); the recombinant plasmid was transformed into E. coli strains DH5α and BL21. The transformed plasmid DNA was isolated and confirmed by restriction using XbaI and PstI enzymes followed by DNA sequencing. Protein expression was induced by isopropyl-D-thiogalactopyranoside (IPTG) with final concentrations of 0.1, 0.2, 1, and 2 mM in consecutive times. An osmotic shock method was used to isolate protein from periplasmic fraction of E. coli DH5α and BL21. The SDS-PAGE analysis was carried out to detect peptide target (3.4 kDa). Based on this result, the induction process did not work properly, and thus needs further investigation.

  4. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  5. Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice.

    Science.gov (United States)

    Changklungmoa, Narin; Phoinok, Natthacha; Yencham, Chonthicha; Sobhon, Prasert; Kueakhai, Pornanan

    2016-08-15

    In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Science.gov (United States)

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  7. Synthesis and characterization of recombinant abductin-based proteins.

    Science.gov (United States)

    Su, Renay S-C; Renner, Julie N; Liu, Julie C

    2013-12-09

    Recombinant proteins are promising tools for tissue engineering and drug delivery applications. Protein-based biomaterials have several advantages over natural and synthetic polymers, including precise control over amino acid composition and molecular weight, modular swapping of functional domains, and tunable mechanical and physical properties. In this work, we describe recombinant proteins based on abductin, an elastomeric protein that is found in the inner hinge of bivalves and functions as a coil spring to keep shells open. We illustrate, for the first time, the design, cloning, expression, and purification of a recombinant protein based on consensus abductin sequences derived from Argopecten irradians . The molecular weight of the protein was confirmed by mass spectrometry, and the protein was 94% pure. Circular dichroism studies showed that the dominant structures of abductin-based proteins were polyproline II helix structures in aqueous solution and type II β-turns in trifluoroethanol. Dynamic light scattering studies illustrated that the abductin-based proteins exhibit reversible upper critical solution temperature behavior and irreversible aggregation behavior at high temperatures. A LIVE/DEAD assay revealed that human umbilical vein endothelial cells had a viability of 98 ± 4% after being cultured for two days on the abductin-based protein. Initial cell spreading on the abductin-based protein was similar to that on bovine serum albumin. These studies thus demonstrate the potential of abductin-based proteins in tissue engineering and drug delivery applications due to the cytocompatibility and its response to temperature.

  8. Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus.

    Directory of Open Access Journals (Sweden)

    Stefan J Halbherr

    Full Text Available Highly pathogenic avian influenza viruses (HPAIV of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×10⁸ infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade. Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.

  9. A recombinant anchorless respiratory syncytial virus (RSV) fusion (F) protein/monophosphoryl lipid A (MPL) vaccine protects against RSV-induced replication and lung pathology.

    Science.gov (United States)

    Blanco, Jorge C G; Boukhvalova, Marina S; Pletneva, Lioubov M; Shirey, Kari Ann; Vogel, Stefanie N

    2014-03-14

    We previously demonstrated that the severe cytokine storm and pathology associated with RSV infection following intramuscular vaccination of cotton rats with FI-RSV Lot 100 could be completely abolished by formulating the vaccine with the mild TLR4 agonist and adjuvant, monophosphoryl lipid A (MPL). Despite this significant improvement, the vaccine failed to blunt viral replication in the lungs. Since MPL is a weak TLR4 agonist, we hypothesized that its adjuvant activity was mediated by modulating the innate immune response of respiratory tract resident macrophages. Therefore, we developed a new vaccine preparation with purified, baculovirus expressed, partially purified, anchorless RSV F protein formulated with synthetic MPL that was administered to cotton rats intranasally, followed by an intradermal boost. This novel formulation and heterologous "prime/boost" route of administration resulted in decreased viral titers compared to that seen in animals vaccinated with F protein alone. Furthermore, animals vaccinated by this route showed no evidence of enhanced lung pathology upon RSV infection. This indicates that MPL acts as an immune modulator that protects the host from vaccine-enhanced pathology, and reduces RSV replication in the lower respiratory tract when administered by a heterologous prime/boost immunization regimen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Serological diagnosis of Strongylus vulgaris infection: use of a recombinant protein

    DEFF Research Database (Denmark)

    Andersen, Ulla Vestergaard; Howe, Daniel K.; Olsen, Susanne Nautrup

    , an immunoreactive cDNA clone was subcloned into E. coli and the plasmid sequenced, the open reading frame encoding the mature protein was cloned into a pET22b expression vector and expressed as a His-tagged recombinant protein in BL21 expression cells. The recombinant protein was used in an indirect enzyme....... vulgaris (n=9) reacted against the recombinant protein, expressed as optic density (OD) readings of >24 % of a positive control, while sera from negative horses had OD readings

  11. Trends in recombinant protein use in animal production.

    Science.gov (United States)

    Gifre, Laia; Arís, Anna; Bach, Àlex; Garcia-Fruitós, Elena

    2017-03-04

    Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.

  12. Post-exposure vaccination with multi-stage vaccine significantly reduce map level in tissues without interference in diagnostics

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Melvang, Heidi Mikkelsen

    A new (Fet11) vaccine against paratuberculosis based on recombinant antigens from acute and latent stages of Map infection was developed to be used without interference with diagnostic tests for bovine TB and Johne’s disease. Calves were orally inoculated with 2x10E10 live Map in their third week...... of life and randomly assigned to four groups of seven calves each. One group was left unvaccinated, while other calves were post-exposure vaccinated with either a whole-cell vaccine at 16 weeks, or Fet11 vaccine at 3 and 7, or 16 and 20 weeks of age, respectively. Antibody responses were measured by ID...... Screen® ELISA and individual vaccine protein ELISAs along with FACS and IFN-γ responses to PPDj and to individual vaccine proteins. At termination 8 or 12 months of age, Map burden in a number of gut tissues was determined by quantitative IS900 PCR and histopathology. Fet11 vaccination of calves at 16...

  13. Expression and characterization of a novel truncated rotavirus VP4 for the development of a recombinant rotavirus vaccine.

    Science.gov (United States)

    Li, Yijian; Xue, Miaoge; Yu, Linqi; Luo, Guoxing; Yang, Han; Jia, Lianzhi; Zeng, Yuanjun; Li, Tingdong; Ge, Shengxiang; Xia, Ningshao

    2018-04-12

    The outer capsid protein VP4 is an important target for the development of a recombinant rotavirus vaccine because it mediates the attachment and penetration of rotavirus. Due to the poor solubility of full-length VP4, VP8 was explored as candidate rotavirus vaccines in the past years. In previous studies, it has been found that the N-terminal truncated VP8 protein, VP8-1 (aa26-231), could be expressed in soluble form with improved immunogenicity compared to the core of VP8 (aa65-223). However, this protein stimulated only a weak immune response when aluminum hydroxide was used as an adjuvant. In addition, it should be noted that the protective efficacy of VP4 was higher than that of VP8 and VP5. In this study, it was found that when the N-terminal 25 amino acids were deleted, the truncated VP4 ∗ (aa26-476) containing VP8 and the stalk domain of VP5 could be expressed in soluble form in E. coli and purified to homogeneous trimers. Furthermore, the truncated VP4 could induce high titers of neutralizing antibodies when aluminum adjuvant was used and conferred high protective efficacy in reducing the severity of diarrhea and rotavirus shedding in stools in animal models. The immunogenicity of the truncated VP4 was significantly higher than that of VP8 ∗ and VP5 ∗ alone. Taken together, the truncated VP4 ∗ (aa26-476), with enhanced immunogenicity and immunoprotectivity, could be considered as a viable candidate for further development and has the potential to become a parenterally administered rotavirus vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses.

    Science.gov (United States)

    Hodge, James W; Poole, Diane J; Aarts, Wilhelmina M; Gómez Yafal, Alicia; Gritz, Linda; Schlom, Jeffrey

    2003-11-15

    Cancer vaccine regimens use various strategies to enhance immune responses to specific tumor-associated antigens (TAAs), including the increasing use of recombinant poxviruses [vaccinia (rV) and fowlpox (rF)] for delivery of the TAA to the immune system. However, the use of replication competent vectors with the potential of adverse reactions have made attenuation a priority for next-generation vaccine strategies. Modified vaccinia Ankara (MVA) is a replication defective form of vaccinia virus. Here, we investigated the use of MVA encoding a tumor antigen gene, carcinoembryonic antigen (CEA), in addition to multiple costimulatory molecules (B7-1, intercellular adhesion molecule-1, and lymphocyte function-associated antigen-3 designated TRICOM). Vaccination of mice with MVA-CEA/TRICOM induced potent CD4+ and CD8+ T-cell responses specific for CEA. MVA-CEA/TRICOM could be administered twice in vaccinia naïve mice and only a single time in vaccinia-immune mice before being inhibited by antivector-immune responses. The use of MVA-CEA/TRICOM in a diversified prime and boost vaccine regimen with rF-CEA/TRICOM, however, induced significantly greater levels of both CD4+ and CD8+ T-cell responses specific for CEA than that seen with rV-CEA/TRICOM prime and rF-CEA/TRICOM boost. In a self-antigen tumor model, the diversified MVA-CEA/TRICOM/rF-CEA/ TRICOM vaccination regimen resulted in a significant therapeutic antitumor response as measured by increased survival, when compared with the diversified prime and boost regimen, rV-CEA/TRICOM/rF-CEA/TRICOM. The studies reported here demonstrate that MVA, when used as a prime in a diversified vaccination, is clearly comparable with the regimen using the recombinant vaccinia in both the induction of cellular immune responses specific for the "self"-TAA transgene and in antitumor activity.

  15. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    Science.gov (United States)

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  16. Improving recombinant protein purification yield

    Science.gov (United States)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  17. Rewiring the severe acute respiratory syndrome coronavirus (SARS-CoV) transcription circuit: Engineering a recombination-resistant genome

    Science.gov (United States)

    Yount, Boyd; Roberts, Rhonda S.; Lindesmith, Lisa; Baric, Ralph S.

    2006-08-01

    Live virus vaccines provide significant protection against many detrimental human and animal diseases, but reversion to virulence by mutation and recombination has reduced appeal. Using severe acute respiratory syndrome coronavirus as a model, we engineered a different transcription regulatory circuit and isolated recombinant viruses. The transcription network allowed for efficient expression of the viral transcripts and proteins, and the recombinant viruses replicated to WT levels. Recombinant genomes were then constructed that contained mixtures of the WT and mutant regulatory circuits, reflecting recombinant viruses that might occur in nature. Although viable viruses could readily be isolated from WT and recombinant genomes containing homogeneous transcription circuits, chimeras that contained mixed regulatory networks were invariantly lethal, because viable chimeric viruses were not isolated. Mechanistically, mixed regulatory circuits promoted inefficient subgenomic transcription from inappropriate start sites, resulting in truncated ORFs and effectively minimize viral structural protein expression. Engineering regulatory transcription circuits of intercommunicating alleles successfully introduces genetic traps into a viral genome that are lethal in RNA recombinant progeny viruses. regulation | systems biology | vaccine design

  18. Comparison of the Structural Stability and Dynamic Properties of Recombinant Anthrax Protective Antigen and its 2-Fluorohistidine Labeled Analogue

    OpenAIRE

    Hu, Lei; Joshi, Sangeeta B.; Andra, Kiran K.; Thakkar, Santosh V.; Volkin, David B.; Bann, James G.; Middaugh, C. Russell

    2012-01-01

    Protective antigen (PA) is the primary protein antigenic component of both the currently used anthrax vaccine and related recombinant vaccines under development. An analogue of recombinant PA (2-FHis rPA) has been recently shown to block the key steps of pore formation in the process of inducing cytotoxicity in cells, and thus can potentially be used as an antitoxin or a vaccine. This rPA analogue was produced by fermentation to incorporate the unnatural amino acid 2-fluorohistidine (2-FHis)....

  19. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    Science.gov (United States)

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  20. Vaccination against Canine Distemper Virus Infection in Infant Ferrets with and without Maternal Antibody Protection, Using Recombinant Attenuated Poxvirus Vaccines

    Science.gov (United States)

    Welter, Janet; Taylor, Jill; Tartaglia, James; Paoletti, Enzo; Stephensen, Charles B.

    2000-01-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log10 inverse mean titer ± standard deviation of 2.30 ± 0.12 and 2.20 ± 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 ± 0.57 versus 0.40 ± 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 ± 0.54 and 1.28 ± 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 ± 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 ± 0.32; n = 8, P = 7 × 10−6). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1.63 ± 0

  1. Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines.

    Science.gov (United States)

    Welter, J; Taylor, J; Tartaglia, J; Paoletti, E; Stephensen, C B

    2000-07-01

    Canine distemper virus (CDV) infection of ferrets is clinically and immunologically similar to measles, making this a useful model for the human disease. The model was used to determine if parenteral or mucosal immunization of infant ferrets at 3 and 6 weeks of age with attenuated vaccinia virus (NYVAC) or canarypox virus (ALVAC) vaccine strains expressing the CDV hemagglutinin (H) and fusion (F) protein genes (NYVAC-HF and ALVAC-HF) would induce serum neutralizing antibody and protect against challenge infection at 12 weeks of age. Ferrets without maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 5) or ALVAC-HF (n = 4) developed significant neutralizing titers (log(10) inverse mean titer +/- standard deviation of 2.30 +/- 0.12 and 2.20 +/- 0.34, respectively) by the day of challenge, and all survived with no clinical or virologic evidence of infection. Ferrets without maternal antibody that were vaccinated intranasally (i.n.) developed lower neutralizing titers, with NYVAC-HF producing higher titers at challenge (1.11 +/- 0.57 versus 0.40 +/- 0.37, P = 0.02) and a better survival rate (6/7 versus 0/5, P = 0.008) than ALVAC-HF. Ferrets with maternal antibody that were vaccinated parenterally with NYVAC-HF (n = 7) and ALVAC-HF (n = 7) developed significantly higher antibody titers (1.64 +/- 0. 54 and 1.28 +/- 0.40, respectively) than did ferrets immunized with an attenuated CDV vaccine (0.46 +/- 0.59; n = 7) or the recombinant vectors expressing rabies glycoprotein (RG) (0.19 +/- 0.32; n = 8, P = 7 x 10(-6)). The NYVAC vaccine also protected against weight loss, and both the NYVAC and attenuated CDV vaccines protected against the development of some clinical signs of infection, although survival in each of the three vaccine groups was low (one of seven) and not significantly different from the RG controls (none of eight). Combined i.n.-parenteral immunization of ferrets with maternal antibody using NYVAC-HF (n = 9) produced higher titers (1

  2. Plastoglobules: a new address for targeting recombinant proteins in the chloroplast

    Directory of Open Access Journals (Sweden)

    Kessler Felix

    2007-01-01

    Full Text Available Abstract Background The potential of transgenic plants for cost-effective production of pharmaceutical molecules is now becoming apparent. Plants have the advantage over established fermentation systems (bacterial, yeast or animal cell cultures to circumvent the risk of pathogen contamination, to be amenable to large scaling up and to necessitate only established farming procedures. Chloroplasts have proven a useful cellular compartment for protein accumulation owing to their large size and number, as well as the possibility for organellar transformation. They therefore represent the targeting destination of choice for recombinant proteins in leaf crops such as tobacco. Extraction and purification of recombinant proteins from leaf material contribute to a large extent to the production costs. Developing new strategies facilitating these processes is therefore necessary. Results Here, we evaluated plastoglobule lipoprotein particles as a new subchloroplastic destination for recombinant proteins. The yellow fluorescent protein as a trackable cargo was targeted to plastoglobules when fused to plastoglobulin 34 (PGL34 as the carrier. Similar to adipocyte differentiation related protein (ADRP in animal cells, most of the protein sequence of PGL34 was necessary for targeting to lipid bodies. The recombinant protein was efficiently enriched in plastoglobules isolated by simple flotation centrifugation. The viability of plants overproducing the recombinant protein was not affected, indicating that plastoglobule targeting did not significantly impair photosynthesis or sugar metabolism. Conclusion Our data identify plastoglobules as a new targeting destination for recombinant protein in leaf crops. The wide-spread presence of plastoglobules and plastoglobulins in crop species promises applications comparable to those of transgenic oilbody-oleosin technology in molecular farming.

  3. Rational design of gene-based vaccines.

    Science.gov (United States)

    Barouch, Dan H

    2006-01-01

    Vaccine development has traditionally been an empirical discipline. Classical vaccine strategies include the development of attenuated organisms, whole killed organisms, and protein subunits, followed by empirical optimization and iterative improvements. While these strategies have been remarkably successful for a wide variety of viruses and bacteria, these approaches have proven more limited for pathogens that require cellular immune responses for their control. In this review, current strategies to develop and optimize gene-based vaccines are described, with an emphasis on novel approaches to improve plasmid DNA vaccines and recombinant adenovirus vector-based vaccines. Copyright 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer.

    Science.gov (United States)

    de Azevedo, Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, Jerry M; Chatel, Jean-Marc

    2015-09-11

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic expression plasmids could be delivered into intestinal epithelial cells (IECs) by L. lactis, or recombinant invasive strains of L. lactis, leading to heterologous protein expression. Although expression of antigens in IECs might lead to vaccine responses, it would be of interest to know whether uptake of L. lactis DNA vaccines by dendritic cells (DCs) could lead to antigen expression as they are unique in their ability to induce antigen-specific T cell responses. To test this, we incubated mouse bone marrow-derived DCs (BMDCs) with invasive L. lactis strains expressing either Staphylococcus aureus Fibronectin Binding Protein A (LL-FnBPA+), or Listeria monocytogenes mutated Internalin A (LL-mInlA+), both strains carrying a plasmid DNA vaccine (pValac) encoding for the cow milk allergen β-lactoglobulin (BLG). We demonstrated that they can transfect BMDCs, inducing the secretion of the pro-inflammatory cytokine IL-12. We also measured the capacity of strains to invade a polarized monolayer of IECs, mimicking the situation encountered in the gastrointestinal tract. Gentamycin survival assay in these cells showed that LL-mInlA+ is 100 times more invasive than L. lactis. The cross-talk between differentiated IECs, BMDCs and bacteria was also evaluated using an in vitro transwell co-culture model. Co-incubation of strains in this model showed that DCs incubated with LL-mInlA+ containing pValac:BLG could express significant levels of BLG. These results suggest that DCs could sample bacteria containing the DNA vaccine across the epithelial barrier and express the antigen. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    .... DNA vectors, live-attenuated viruses and bacteria, recombinant proteins combined with adjuvant, and viral- or bacterial-vectored vaccines have been developed as countermeasures against many potential...

  6. Cloning and expression of the recombinant NP24I protein from ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... protein from tomato fruit and study of its antimicrobial ... the recombinant NP24, as well as to prove the activity of native protein on the bacterial as well as fungal .... The antifungal effect of the recombinant NP24I protein was.

  7. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  8. Recombinant DNA production of spider silk proteins.

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jeff Alexander

    Full Text Available Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4 vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn. Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  10. Generation and evaluation of recombinant Newcastle disease viruses (NDV) expressing the F and G proteins of avian metapneumovirus subtype C (aMPV-C) as bivalent vaccine against NDV and aMPV challenges in turkeys

    Science.gov (United States)

    Previously we generated a Newcastle disease virus (NDV) LaSota strain-based recombinant virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C (aMPV-C) as a bivalent vaccine, which provided a partial protection against aMPV-C challenge in turkeys. To improve the vaccine efficacy,...

  11. A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure

    NARCIS (Netherlands)

    Antonis, A.F.G.; Bruschke, C.J.M.; Rueda, P.; Maranga, L.; Casal, J.; Vela, C.; Hilgers, L.A.T.; Belt, P.B.G.M.; Weerdmeester, K.; Carrondo, M.J.; Langeveld, J.P.M.

    2006-01-01

    A novel vaccine against porcine parvovirus (PPV), composed of recombinant virus-like particles (PPV-VLPs) produced with the baculovirus expression vector system (BEVS) at industrial scale, was tested for its immunogenicity and protective potency. A formulation of submicrogram amounts of PPV-VLPs in

  12. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  13. [Serologic response to a DNA recombinant vaccine against hepatitis B in natives of the Peruvian Amazonian jungle].

    Science.gov (United States)

    Colichón, A; Vildósola, H; Sjogren, M; Cantella, R; Rojas, C

    1990-01-01

    Large areas of the Amazon basin in Brazil, Colombia, Ecuador, and in the nonoriental region of the peruvian jungle have been found to be hyperendemic to Hepatitis B with high prevalence of asymptomatic carriers (11 to 25%) and, in more selected areas, Hepatitis Delta has been also reported. In the present report, we have studied 108 volunteers from six different Jivaroes communities living in a hyperendemic Hepatitis B area. They received 2 doses of DNA recombinant yeast derivated HBV vaccine. All the selected persons were HBsAb negatives, but many (80%) had antibodies to HBc. Following immunization schedule, 80% responded with the formation of HBsAb; a better seroconversion was achieved in those negatives to anticore IgG compared with those having HBcAb. We obtained 90% of seroconversion in spite of the fact that our vaccination schedule was prolonged up to 10 months from the one recommended by the manufacturer. The vaccination schedule 0,4, 14 months, and the schedule 0,4 months, had 76 and 29% of seroconversion, respectively. We want to point out three observations: 1) It is quite possible that many of the Anti-core positives, that did not respond to vaccination were carriers of HBsAg undetectable by the conventional EIA test carried out; 2) The seroconversion rate in these natives was low (up to six months after the vaccination schedule); and 3) Many of the HBcAb were false positives and many of them were recently infected. We conclude: A) It is highly important to assess the anti-HBs hyperendemic areas before attempting vaccinations; B) All persons negative to anti-HBs should be vaccinated in spite to anticore antibodies; C) Areas with difficult access could be vaccinated even until 10 months without affecting good results, and D) DNA recombinant vaccine (ENGERIX B) was well tolerated. No side effects were observed.

  14. Genome engineering for improved recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-12-19

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.

  15. Current Ebola vaccines

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Feldmann, Heinz

    2012-01-01

    Introduction Ebolaviruses cause severe viral hemorrhagic fever in humans and non-human primates, with case fatality rates of up to 90%. Currently, neither a specific treatment nor a vaccine licensed for use in humans is available. However, a number of vaccine candidates have been developed in the last decade that are highly protective in non-human primates, the gold standard animal model for Ebola hemorrhagic fever. Areas covered This review analyzes a number of scenarios for the use of ebolavirus vaccines, discusses the requirements for ebolavirus vaccines in these scenarios, and describes current ebolavirus vaccines. Among these vaccines are recombinant Adenoviruses, recombinant Vesicular Stomatitis viruses, recombinant Human Parainfluenza viruses and virus-like particles. Interestingly, one of these vaccine platforms, based on recombinant Vesicular Stomatitis viruses, has also demonstrated post-exposure protection in non-human primates. Expert opinion The most pressing remaining challenge is now to move these vaccine candidates forward into human trials and towards licensure. In order to achieve this, it will be necessary to establish the mechanisms and correlates of protection for these vaccines, and to continue to demonstrate their safety, particularly in potentially immunocompromised populations. However, already now there is sufficient evidence that, from a scientific perspective, a vaccine protective against ebolaviruses is possible. PMID:22559078

  16. Immunization with a recombinant subunit OspA vaccine markedly impacts the rate of newly acquired Borrelia burgdorferi infections in client-owned dogs living in a coastal community in Maine, USA.

    Science.gov (United States)

    Eschner, Andrew K; Mugnai, Kristen

    2015-02-10

    In North America, Borrelia burgdorferi is the causative bacterial agent of canine Lyme borreliosis and is transmitted following prolonged attachment and feeding of vector ticks, Ixodes scapularis or Ixodes pacificus. Its prevention is predicated upon tick-avoidance, effective on-animal tick control and effective immunization strategies. The purpose of this study is to characterize dogs that are newly seropositive for Borrelia burgdorferi infection in relation to compliant use of a recombinant OspA canine Lyme borreliosis vaccine. Specifically, Preventive Fractions (PF) and Risk Ratios (RR) associated with the degree of vaccine compliancy (complete versus incomplete) are determined. 6,202 dogs were tested over a five year period in a single veterinary hospital utilizing a non-adjuvanted, recombinant OspA vaccine according to a 0, 1, 6 month (then yearly) protocol. Rates of newly acquired "Lyme-positive" antibody test results were compared between protocol compliant and poorly compliant (incompletely and/or non-vaccinated) dogs. Over the five-year span, one percent (range 0.39 - 1.3) of protocol compliant vaccinated, previously antibody negative dogs became seropositive for infection. Approximately twenty-one percent (range 16.8 - 33.3) of incompletely vaccinated dogs became positive for infection-specific antibodies. The Preventative Fraction for testing positive for antibodies specific for infection with Borrelia burgdorferi in any given year based on optimal vaccine compliance was, on average, 95.3% (range 93.29 - 98.08). The Risk Ratio for becoming infected with Borrelia burgdorferi antibodies in any given year if vaccine non-compliant was 21.41 (range 14.9 - 52.1). There was a high statistically significant relationship (p = <0.0001) in the observed data in terms of vaccination protocol compliance and the probability of Borrelia burgdorferi infection in each of the five years under study. The recombinant outer surface protein A (rOspA) vaccine for dogs is highly

  17. Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study

    Science.gov (United States)

    Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.

  18. Protection of chickens against H5N1 highly pathogenic avian influenza virus infection by live vaccination with infectious laryngotracheitis virus recombinants expressing H5 hemagglutinin and N1 neuraminidase.

    Science.gov (United States)

    Pavlova, Sophia P; Veits, Jutta; Keil, Günther M; Mettenleiter, Thomas C; Fuchs, Walter

    2009-01-29

    Attenuated vaccine strains of the alphaherpesvirus causing infectious laryngotracheitis of chickens (ILTV, gallid herpesvirus 1) can be used for mass application. Previously, we showed that live virus vaccination with recombinant ILTV expressing hemagglutinin of highly pathogenic avian influenza viruses (HPAIV) protected chickens against ILT and fowl plague caused by HPAIV carrying the corresponding hemagglutinin subtypes [Lüschow D, Werner O, Mettenleiter TC, Fuchs W. Protection of chickens from lethal avian influenza A virus infection by live-virus vaccination with infectious laryngotracheitis virus recombinants expressing the hemagglutinin (H5) gene. Vaccine 2001;19(30):4249-59; Veits J, Lüschow D, Kindermann K, Werner O, Teifke JP, Mettenleiter TC, et al. Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague. J Gen Virol 2003;84(12):3343-52]. However, protection against H5N1 HPAIV was not satisfactory. Therefore, a newly designed dUTPase-negative ILTV vector was used for rapid insertion of the H5-hemagglutinin, or N1-neuraminidase genes of a recent H5N1 HPAIV isolate. Compared to our previous constructs, protein expression was considerably enhanced by insertion of synthetic introns downstream of the human cytomegalovirus immediate-early promoter within the 5'-nontranslated region of the transgenes. Deletion of the viral dUTPase gene did not affect in vitro replication of the ILTV recombinants, but led to sufficient attenuation in vivo. After a single ocular immunization, all chickens developed H5- or N1-specific serum antibodies. Nevertheless, animals immunized with N1-ILTV died after subsequent H5N1 HPAIV challenge, although survival times were prolonged compared to non-vaccinated controls. In contrast, all chickens vaccinated with either H5-ILTV alone, or H5- and N1-ILTV simultaneously, survived

  19. Co-administration of recombinant major envelope proteins (rA27L and rH3L) of buffalopox virus provides enhanced immunogenicity and protective efficacy in animal models.

    Science.gov (United States)

    Kumar, Amit; Yogisharadhya, Revanaiah; Venkatesan, Gnanavel; Bhanuprakash, Veerakyathappa; Pandey, Awadh Bihari; Shivachandra, Sathish Bhadravati

    2017-05-01

    Buffalopox virus (BPXV) and other vaccinia-like viruses (VLVs) are causing an emerging/re-emerging zoonosis affecting buffaloes, cattle and humans in India and other countries. A27L and H3L are immuno-dominant major envelope proteins of intracellular mature virion (IMV) of orthopoxviruses (OPVs) and are highly conserved with an ability to elicit neutralizing antibodies. In the present study, two recombinant proteins namely; rA27L ( 21 S to E 110 ; ∼30 kDa) and rH3L( 1 M to I 280 ; ∼50 kDa) of BPXV-Vij/96 produced from Escherichia coli were used in vaccine formulation. A combined recombinant subunit vaccine comprising rA27L and rH3L antigens (10 μg of each) was used for active immunization of adult mice (20μg/dose/mice) with or without adjuvant (FCA/FIA) by intramuscular route. Immune responses revealed a gradual increase in antigen specific serum IgG as well as neutralizing antibody titers measured by using indirect-ELISA and serum neutralization test (SNT) respectively, which were higher as compared to that elicited by individual antigens. Suckling mice passively administered with combined anti-A27L and anti-H3L sera showed a complete (100%) pre-exposure protection upon challenge with virulent BPXV. Conclusively, this study highlights the potential utility of rA27L and rH3L proteins as safer candidate prophylactic antigens in combined recombinant subunit vaccine for buffalopox as well as passive protective efficacy of combined sera in employing better pre-exposure protection against virulent BPXV. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. N-Glycosylation of Plant-produced Recombinant Proteins

    NARCIS (Netherlands)

    Bosch, H.J.; Castilho, A.; Loos, A.; Schots, A.; Steinkeller, H.

    2013-01-01

    Plants are gaining increasingly acceptance as a production platform for recombinant proteins. One reason for this is their ability to carry out posttranslational protein modifications in a similar if not identical way as mammalian cells. The capability of plants to carry out human-like complex

  1. Application of native signal sequences for recombinant proteins secretion in Pichia pastoris

    DEFF Research Database (Denmark)

    Borodina, Irina; Do, Duy Duc; Eriksen, Jens C.

    Background Methylotrophic yeast Pichia pastoris is widely used for recombinant protein production, largely due to its ability to secrete correctly folded heterologous proteins to the fermentation medium. Secretion is usually achieved by cloning the recombinant gene after a leader sequence, where...... alpha‐mating factor (MF) prepropeptide from Saccharomyces cerevisiae is most commonly used. Our aim was to test whether signal peptides from P. pastoris native secreted proteins could be used to direct secretion of recombinant proteins. Results Eleven native signal peptides from P. pastoris were tested...... by optimization of expression of three different proteins in P. pastoris. Conclusions Native signal peptides from P. pastoris can be used to direct secretion of recombinant proteins. A novel USER‐based P. pastoris system allows easy cloning of protein‐coding gene with the promoter and leader sequence of choice....

  2. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  3. A Neospora caninum vaccine using recombinant proteins fails to prevent foetal infection in pregnant cattle after experimental intravenous challenge.

    Science.gov (United States)

    Hecker, Yanina P; Cóceres, Verónica; Wilkowsky, Silvina E; Jaramillo Ortiz, José M; Morrell, Eleonora L; Verna, Andrea E; Ganuza, Agustina; Cano, Dora B; Lischinsky, Lilian; Angel, Sergio O; Zamorano, Patricia; Odeón, Anselmo C; Leunda, María R; Campero, Carlos M; Morein, Bror; Moore, Dadín P

    2014-12-15

    The aim of the present study was to evaluate the immunogenicity and protective efficacy of rNcSAG1, rNcHSP20 and rNcGRA7 recombinant proteins formulated with immune stimulating complexes (ISCOMs) in pregnant heifers against vertical transmission of Neospora caninum. Twelve pregnant heifers were divided into 3 groups of 4 heifers each, receiving different formulations before mating. Immunogens were administered twice subcutaneously: group A animals were inoculated with three recombinant proteins (rNcSAG1, rNcHSP20, rNcGRA7) formulated with ISCOMs; group B animals received ISCOM-MATRIX (without antigen) and group C received sterile phosphate-buffered saline (PBS) only. The recombinant proteins were expressed in Escherichia coli and purified nickel resin. All groups were intravenously challenged with the NC-1 strain of N. caninum at Day 70 of gestation and dams slaughtered at week 17 of the experiment. Heifers from group A developed specific antibodies against rNcSAG1, rNcHSP20 and rNcGRA7 prior to the challenge. Following immunization, an statistically significant increase of antibodies against rNcSAG1 and rNcHSP20 in all animals of group A was detected compared to animals in groups B and C at weeks 5, 13 and 16 (P0.001). There were no differences in IFN-γ production among the experimental groups at any time point (P>0.05). Transplacental transmission was determined in all foetuses of groups A, B and C by Western blot, immunohistochemistry and nested PCR. This work showed that rNcSAG1, rNcHSP20 and rNcGRA7 proteins while immunogenic in cattle failed to prevent the foetal infection in pregnant cattle challenged at Day 70 of gestation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Serum-protein changes in lambs given Dictyocaulus filaria vaccine

    International Nuclear Information System (INIS)

    Ali, S.A.K.; Jabir, M.H.; Suresh Singh, Kr.

    1979-01-01

    The serum-protein changes in lambs given a double dose of irradiated vaccine (40 and 50 kR) were compared with those of non-vaccinated lambs in all the groups. α- and β-globulins were similar but γ-globulins were higher for some weeks in animals given vaccination. Values of serum protein could not be correlated with the vaccine or with the immune status of the animals. In all the animals, the albumin/globulin ratio remained generally well below 1. (auth.)

  5. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  6. Challenges and opportunities of using liquid chromatography and mass spectrometry methods to develop complex vaccine antigens as pharmaceutical dosage forms.

    Science.gov (United States)

    Hickey, John M; Sahni, Neha; Toth, Ronald T; Kumru, Ozan S; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B

    2016-10-01

    Liquid chromatographic methods, combined with mass spectrometry, offer exciting and important opportunities to better characterize complex vaccine antigens including recombinant proteins, virus-like particles, inactivated viruses, polysaccharides, and protein-polysaccharide conjugates. The current abilities and limitations of these physicochemical methods to complement traditional in vitro and in vivo vaccine potency assays are explored in this review through the use of illustrative case studies. Various applications of these state-of-the art techniques are illustrated that include the analysis of influenza vaccines (inactivated whole virus and recombinant hemagglutinin), virus-like particle vaccines (human papillomavirus and hepatitis B), and polysaccharide linked to protein carrier vaccines (pneumococcal). Examples of utilizing these analytical methods to characterize vaccine antigens in the presence of adjuvants, which are often included to boost immune responses as part of the final vaccine dosage form, are also presented. Some of the challenges of using chromatographic and LC-MS as physicochemical assays to routinely test complex vaccine antigens are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults.

    Science.gov (United States)

    Sirivichayakul, Chukiat; Chanthavanich, Pornthep; Limkittikul, Kriengsak; Siegrist, Claire-Anne; Wijagkanalan, Wassana; Chinwangso, Pailinrut; Petre, Jean; Hong Thai, Pham; Chauhan, Mukesh; Viviani, Simonetta

    2017-01-02

    An acellular Pertussis (aP) vaccine containing recombinant genetically detoxified Pertussis Toxin (PTgen), Filamentous Hemagglutinin (FHA) and Pertactin (PRN) has been developed by BioNet-Asia (BioNet). We present here the results of the first clinical study of this recombinant aP vaccine formulated alone or in combination with tetanus and diphtheria toxoids (TdaP). A phase I/II, observer-blind, randomized controlled trial was conducted at Mahidol University in Bangkok, Thailand in healthy adult volunteers aged 18-35 y. The eligible volunteers were randomized to receive one dose of either BioNet's aP or Tetanus toxoid-reduced Diphtheria toxoid-acellular Pertussis (TdaP) vaccine, or the Tdap Adacel® vaccine in a 1:1:1 ratio. Safety follow-up was performed for one month. Immunogenicity was assessed at baseline, at 7 and 28 d after vaccination. Anti-PT, anti-FHA, anti-PRN, anti-tetanus and anti-diphtheria IgG antibodies were assessed by ELISA. Anti-PT neutralizing antibodies were assessed also by CHO cell assay. A total of 60 subjects (20 per each vaccine group) were enrolled and included in the safety analysis. Safety laboratory parameters, incidence of local and systemic post-immunization reactions during 7 d after vaccination and incidence of adverse events during one month after vaccination were similar in the 3 vaccine groups. One month after vaccination, seroresponse rates of anti-PT, anti-FHA and anti-PRN IgG antibodies exceeded 78% in all vaccine groups. The anti-PT IgG, anti-FHA IgG, and anti-PT neutralizing antibody geometric mean titers (GMTs) were significantly higher following immunization with BioNet's aP and BioNet's TdaP than Adacel® (Pdiphtheria GMTs at one month after immunization were comparable in all vaccine groups. All subjects had seroprotective titers of anti-tetanus and anti-diphtheria antibodies at baseline. In this first clinical study, PTgen-based BioNet's aP and TdaP vaccines showed a similar tolerability and safety profile to Adacel

  8. Biological and immunological characterization of recombinant Yellow Fever 17D Viruses expressing a Trypanosoma cruzi Amastigote Surface Protein-2 CD8+ T cell epitope at two distinct regions of the genome

    Directory of Open Access Journals (Sweden)

    Bonaldo Myrna C

    2011-03-01

    Full Text Available Abstract Background The attenuated Yellow fever (YF 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2 to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope. Results Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi. Conclusions We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression

  9. High Seroprotection Rate Induced by Intradermal Administration of a Recombinant Hepatitis B Vaccine in Young Healthy Adults: Comparison with Standard Intramuscular Vaccination

    International Nuclear Information System (INIS)

    Ghabouli, Mohammad J.; Sabouri, Amir Hossein; Shoeibi, Naser; Naghibzadeh Bajestan, Sepideh; Baradaran, H.

    2004-01-01

    Intradermal (ID) vaccination has been proposed as a cost-saving alternative for administration of Hepatitis B (HB) vaccine to implement of mass vaccination of high-risk groups, particularly in developing countries. Therefore, the effectiveness of ID vaccination needs to be evaluated and verified in different ethnic backgrounds. The present study is a randomized trail using a recombinant vaccine (Heberbiovac) to compare immunogenecity and safety of an intradermal low-dose (4 μg) with standard dose (20 μg) of intramuscular (IM) vaccination in healthy Iranian population. Participants were 143 healthy Iranian medical and nursing students randomly allocated to ID or IM vaccination group. The vaccine was inoculated at 0, 1 and 6 months intervals. Serum samples were collected 1 month after the last vaccination and the anti-HBs response was determined using ELISA. The overall seroprotection rate (anti-HBs level ≥ 10IU/L) was 97.3% for ID vaccination group, which was not different from that of IM vaccination group (98.55%)(p= 0.99). Similarly, geometric mean titers (GMT) of anti-HBs were not significantly different between ID (1164.1IU/L) and IM (1071.8IU/L) vaccination groups (p= 0.4). There was no significant difference in seroprotection rate and GMT of anti-HBs between sexes. Although induration and hyperpigmentation at the site of injection were more frequently observed in ID vaccination group, no other clinically adverse effects were observed in both vaccination groups. We conclude that the ID route, which would require one-fifth of the standard dose, would be suitable for use in certain groups such as high-risk adults when the cost of vaccine is the inhibiting factor for mass vaccination

  10. Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL

    International Nuclear Information System (INIS)

    Douette, Pierre; Navet, Rachel; Gerkens, Pascal; Galleni, Moreno; Levy, Daniel; Sluse, Francis E.

    2005-01-01

    Fusing recombinant proteins to highly soluble partners is frequently used to prevent aggregation of recombinant proteins in Escherichia coli. Moreover, co-overexpression of prokaryotic chaperones can increase the amount of properly folded recombinant proteins. To understand the solubility enhancement of fusion proteins, we designed two recombinant proteins composed of uncoupling protein 1 (UCP1), a mitochondrial membrane protein, in fusion with MBP or NusA. We were able to express soluble forms of MBP-UCP1 and NusA-UCP1 despite the high hydrophobicity of UCP1. Furthermore, the yield of soluble fusion proteins depended on co-overexpression of GroEL that catalyzes folding of polypeptides. MBP-UCP1 was expressed in the form of a non-covalent complex with GroEL. MBP-UCP1/GroEL was purified and characterized by dynamic light scattering, gel filtration, and electron microscopy. Our findings suggest that MBP and NusA act as solubilizing agents by forcing the recombinant protein to pass through the bacterial chaperone pathway in the context of fusion protein

  11. Molecular and Immunogenic Properties of Apyrase SP01B and D7-Related SP04 Recombinant Salivary Proteins of Phlebotomus perniciosus from Madrid, Spain

    Directory of Open Access Journals (Sweden)

    Inés Martín-Martín

    2013-01-01

    Full Text Available Sand fly salivary proteins are on the spotlight to become vaccine candidates against leishmaniasis and to markers of exposure to sand fly bites due to the host immune responses they elicit. Working with the whole salivary homogenate entails serious drawbacks such as the need for maintaining sand fly colonies and the laborious task of glands dissection. In order to overcome these difficulties, producing recombinant proteins of different vectors has become a major task. In this study, a cDNA library was constructed with the salivary glands of Phlebotomus perniciosus from Madrid, Spain, the most widespread vector of Leishmania infantum in the Mediterranean basin. Analysis of the cDNA sequences showed several polymorphisms among the previously described salivary transcripts. The apyrase SP01B and the D7-related protein SP04 were successfully cloned, expressed in Escherichia coli, and purified. Besides, recombinant proteins were recognized by sera of hamsters and mice previously immunized with saliva through the exposure to uninfected sand fly bites. These results suggest that these two recombinant proteins conserved their immunogenic properties after expression in a prokaryote system. Therefore, this work contributes to expand the knowledge of P. perniciosus saliva that would be eventually used for the development of tools for vector control programs.

  12. Recombinant M. bovis BCG expressing the PLD protein promotes survival in mice challenged with a C. pseudotuberculosis virulent strain.

    Science.gov (United States)

    Leal, Karen Silva; de Oliveira Silva, Mara Thais; de Fátima Silva Rezende, Andréa; Bezerra, Francisco Silvestre Brilhante; Begnini, Karine; Seixas, Fabiana; Collares, Tiago; Dellagostin, Odir; Portela, Ricardo Wagner; de Carvalho Azevedo, Vasco Ariston; Borsuk, Sibele

    2018-06-14

    The aim of this study was to evaluate the survival of mice inoculated with M. bovis BCG Pasteur recombinant expressing the PLD protein and challenged with a C. pseudotuberculosis virulent strain. Four groups were immunized with a sterile 0.9% saline solution (G1), 10 6  CFU of M. bovis BCG Pasteur (G2), 10 6  CFU of M. bovis BCG/pld (G3) or 10 6  CFU of M. bovis BCG/pld with a booster with rPLD (G4) and challenged with 10 4 CFU of C. pseudotuberculosis MIC-6 strain. The highest survival rate of 88% was observed in G4, followed by 77% in G3 and 66% in G2. A significant statistical difference was observed in the levels of cytokines IFN-γ and IL-10 in vaccinated groups (G3 and G4) when compared with the control group (G1) (p < 0.05). The results seem promising as the recombinant vaccine elicited a cellular immune response and provided significant survival after a high virulent challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  14. An Adjuvanted A(H5N1) Subvirion Vaccine Elicits Virus-Specific Antibody Response and Improves Protection Against Lethal Influenza Viral Challenge in Mouse Model of Protein Energy Malnutrition.

    Science.gov (United States)

    Jones, Enitra N; Amoah, Samuel; Cao, Weiping; Sambhara, Suryaprakash; Gangappa, Shivaprakash

    2017-09-15

    Protein energy malnutrition (PEM) increases susceptibility to infectious diseases, including influenza infection, but no studies have addressed the potential influences of PEM on the immunogenicity and protective efficacy of avian influenza A(H5N1) vaccine. We investigated the role of PEM on vaccine-mediated protection after a lethal challenge with recombinant A(H5N1) virus using isocaloric diets providing either adequate protein (AP; 18% protein) or very low protein (VLP; 2% protein) in an established murine model of influenza vaccination. We demonstrated that mice maintained on a VLP diet succumb to lethal challenge at greater rates than mice maintained on an AP diet, despite comparable immunization regimens. Importantly, there was no virus-induced mortality in both VLP and AP groups of mice when either group was immunized with adjuvanted low-dose A(H5N1) subvirion vaccine. Our results suggest that adjuvanted vaccination in populations where PEM is endemic may be one strategy to boost vaccination-promoted immunity and improve outcomes associated with highly pathogenic A(H5N1). Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  16. Safety evaluation of a recombinant myxoma-RHDV virus inducing horizontal transmissible protection against myxomatosis and rabbit haemorrhagic disease.

    Science.gov (United States)

    Torres, J M; Ramírez, M A; Morales, M; Bárcena, J; Vázquez, B; Espuña, E; Pagès-Manté, A; Sánchez-Vizcaíno, J M

    2000-09-15

    We have recently developed a transmissible vaccine to immunize rabbits against myxomatosis and rabbit haemorrhagic disease based on a recombinant myxoma virus (MV) expressing the rabbit haemorrhagic disease virus (RHDV) capsid protein [Bárcena et al. Horizontal transmissible protection against myxomatosis and rabbit haemorragic disease using a recombinant myxoma virus. J. Virol. 2000;74:1114-23]. Administration of the recombinant virus protects rabbits against lethal RHDV and MV challenges. Furthermore, the recombinant virus is capable of horizontal spreading promoting protection of contact animals, thus providing the opportunity to immunize wild rabbit populations. However, potential risks must be extensively evaluated before considering its field use. In this study several safety issues concerning the proposed vaccine have been evaluated under laboratory conditions. Results indicated that vaccine administration is safe even at a 100-fold overdose. No undesirable effects were detected upon administration to immunosuppressed or pregnant rabbits. The recombinant virus maintained its attenuated phenotype after 10 passages in vivo.

  17. Prophylactic Hepatitis E Vaccine.

    Science.gov (United States)

    Zhang, Jun; Zhao, Qinjian; Xia, Ningshao

    2016-01-01

    Hepatitis E has been increasingly recognized as an underestimated global disease burden in recent years. Subpopulations with more serious infection-associated damage or death include pregnant women, patients with basic liver diseases, and elderly persons. Vaccine would be the most effective means for prevention of HEV infection. The lack of an efficient cell culture system for HEV makes the development of classic inactive or attenuated vaccine infeasible. Hence, the recombinant vaccine approaches are explored deeply. The neutralizing sites are located almost exclusively in the capsid protein, pORF2, of the virion. Based on pORF2, many vaccine candidates showed potential of protecting primate animals; two of them were tested in human and evidenced to be well tolerated in adults and highly efficacious in preventing hepatitis E. The world's first hepatitis E vaccine, Hecolin ® (HEV 239 vaccine), was licensed in China and launched in 2012.

  18. Heterologous prime-boost regimens with a recombinant chimpanzee adenoviral vector and adjuvanted F4 protein elicit polyfunctional HIV-1-specific T-Cell responses in macaques.

    Science.gov (United States)

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN ('A'), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 ('P'), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides

  19. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  20. Immunogenicity and therapeutic effects of recombinant Ag85AB fusion protein vaccines in mice infected with Mycobacterium tuberculosis.

    Science.gov (United States)

    Liang, Yan; Zhang, Junxian; Yang, Yourong; Bai, Xuejuan; Yu, Qi; Li, Ning; Hou, Ying; Shi, Yingchang; Wang, Lan; Wu, Xueqiong

    2017-07-13

    The immune function of tuberculosis (TB) patients is disordered. By using immune regulators to assist chemotherapy for TB the curative effect might be improved. In this study, a vaccine containing Mycobacterium tuberculosis (M. tuberculosis) recombinant Ag85AB fusion protein (rAg85AB) was constructed and evaluated. The mice were immunized intramuscularly three times at two-week intervals with Ag85AB fusion protein combined with Corynebacterium parvum adjuvant (rAg85AB+CP). In comparison to control mice that received either CP alone or saline, the mice that received rAg85AB+CP had significantly higher number of T cells secreting IFN-γ and higher levels of specific antibodies of IgG, IgG1 and IgG2a isotypes in sera. The specific antibodies also had higher ratios of IgG2a to IgG1, indicating a predominant Th1 immune response. To test for immunotherapy of TB, M. tuberculosis infected mice were given three intramuscular doses of 20μg, 40μg or 60μg of rAg85AB in rAg85AB+CP, or phosphate-buffered saline (PBS), or CP or Mycobacterium phlei (M. Phlei) F.U.36. Compared with the PBS group, 20µg, 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups reduced the pulmonary bacterial loads by 0.13, 0.15, 0.42 and 0.40 log 10 , and the liver bacterial loads by 0.64, 0.64, 0.53 and 0.61 log 10 , respectively. Pathological changes of lungs were less, and the lesions were limited to a certain extent in 40µg and 60µg rAg85AB+CP and M. phlei F.U.36 groups. These results showed that rAg85AB+CP had immunotherapeutic effect on TB, significantly increasing the cellular immune response, and inhibiting the growth of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dual recombinant Lactococcus lactis for enhanced delivery of DNA vaccine reporter plasmid pPERDBY.

    Science.gov (United States)

    Yagnik, Bhrugu; Sharma, Drashya; Padh, Harish; Desai, Priti

    2017-04-01

    Food grade Lactococcus lactis has been widely used as an antigen and DNA delivery vehicle. We have previously reported the use of non-invasive L. lactis to deliver the newly constructed immunostimulatory DNA vaccine reporter plasmid, pPERDBY. In the present report, construction of dual recombinant L. lactis expressing internalin A of Listeria monocytogenes and harboring pPERDBY (LL InlA + pPERDBY) to enhance the efficiency of delivery of DNA by L. lactis is outlined. After confirmation and validation of LL InlA + pPERDBY, its DNA delivery potential was compared with previously developed non-invasive r- L. lactis::pPERDBY. The use of invasive L. lactis resulted in around threefold increases in the number of enhanced green fluorescent protein-expressing Caco-2 cells. These findings reinforce the prospective application of invasive strain of L. lactis for delivery of DNA/RNA and antigens. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  2. Divergence, recombination and retention of functionality during protein evolution

    Directory of Open Access Journals (Sweden)

    Xu Yanlong O

    2005-09-01

    Full Text Available Abstract We have only a vague idea of precisely how protein sequences evolve in the context of protein structure and function. This is primarily because structural and functional contexts are not easily predictable from the primary sequence, and evaluating patterns of evolution at individual residue positions is also difficult. As a result of increasing biodiversity in genomics studies, progress is being made in detecting context-dependent variation in substitution processes, but it remains unclear exactly what context-dependent patterns we should be looking for. To address this, we have been simulating protein evolution in the context of structure and function using lattice models of proteins and ligands (or substrates. These simulations include thermodynamic features of protein stability and population dynamics. We refer to this approach as 'ab initio evolution' to emphasise the fact that the equilibrium details of fitness distributions arise from the physical principles of the system and not from any preconceived notions or arbitrary mathematical distributions. Here, we present results on the retention of functionality in homologous recombinants following population divergence. A central result is that protein structure characteristics can strongly influence recombinant functionality. Exceptional structures with many sequence options evolve quickly and tend to retain functionality -- even in highly diverged recombinants. By contrast, the more common structures with fewer sequence options evolve more slowly, but the fitness of recombinants drops off rapidly as homologous proteins diverge. These results have implications for understanding viral evolution, speciation and directed evolutionary experiments. Our analysis of the divergence process can also guide improved methods for accurately approximating folding probabilities in more complex but realistic systems.

  3. Isolation of recombinant antibodies directed against surface proteins of Clostridium difficile.

    Science.gov (United States)

    Shirvan, Ali Nazari; Aitken, Robert

    2016-01-01

    Clostridium difficile has emerged as an increasingly important nosocomial pathogen and the prime causative agent of antibiotic-associated diarrhoea and pseudomembranous colitis in humans. In addition to toxins A and B, immunological studies using antisera from patients infected with C. difficile have shown that a number of other bacterial factors contribute to the pathogenesis, including surface proteins, which are responsible for adhesion, motility and other interactions with the human host. In this study, various clostridial targets, including FliC, FliD and cell wall protein 66, were expressed and purified. Phage antibody display yielded a large panel of specific recombinant antibodies, which were expressed, purified and characterised. Reactions of the recombinant antibodies with their targets were detected by enzyme-linked immunosorbent assay; and Western blotting suggested that linear rather than conformational epitopes were recognised. Binding of the recombinant antibodies to surface-layer proteins and their components showed strain specificity, with good recognition of proteins from C. difficile 630. However, no reaction was observed for strain R20291-a representative of the 027 ribotype. Binding of the recombinant antibodies to C. difficile M120 extracts indicated that a component of a surface-layer protein of this strain might possess immunoglobulin-binding activities. The recombinant antibodies against FliC and FliD proteins were able to inhibit bacterial motility. Copyright © 2016. Published by Elsevier Editora Ltda.

  4. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector

    Science.gov (United States)

    Rocke, T.E.; Dein, F.J.; Fuchsberger, M.; Fox, B.C.; Stinchcomb, D.T.; Osorio, J.G.

    2004-01-01

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  5. Limited infectio