WorldWideScience

Sample records for recombinant human albumin

  1. Preparation of Tc-99m-macroaggregated albumin from recombinant human albumin for lung perfusion imaging.

    Science.gov (United States)

    Hunt, A P; Frier, M; Johnson, R A; Berezenko, S; Perkins, A C

    2006-01-01

    Human serum albumin (HSA) extracted from pooled blood taken from human donors is used in the production of (99m)Tc-labelled macroaggregated albumin (MAA) for lung perfusion imaging. However, concerns for the safety of blood-derived products due to potential contamination by infective agents (e.g. new variant CJD), make alternative production methods necessary. Recombinant DNA technology is a promising method of albumin production avoiding problems associated with human-derived HSA. This paper presents results comparing MAA prepared from recombinant human albumin (rHA, Recombumin) (rMAA) with in-house produced HSA MAA (hMAA) and commercially available MAA (cMAA). (99m)Tc-MAA was prepared using previously published production methods by heating a mixture of albumin and stannous chloride in acetate buffer (pH 5.4) at 70 degrees C for 20 min. Parameters investigated include aggregate size, radiolabelling efficiency, radiochemical and aggregate stability at 4 degrees C and in vitro (in whole human blood) at 37 degrees C and biodistribution studies. Results showed that rMAA could be produced with similar morphology, labelling efficiency and stability to hMAA and cMAA. Our findings confirm that rHA shows significant potential as a direct replacement for HSA in commercially available MAA.

  2. Recombinant human serum albumin hydrogel as a novel drug delivery vehicle

    International Nuclear Information System (INIS)

    Hirose, Masaaki; Tachibana, Akira; Tanabe, Toshizumi

    2010-01-01

    Serum albumin acts as a physiological carrier for various compounds including drugs. A hydrogel consisting of recombinant human serum albumin (rHSA) was prepared to take advantage of drug binding ability of albumin for a sustained drug release carrier. The hydrogel was prepared by mixing rHSA and dithiothreitol and casted to a polystyrene mold. Hydrogel formation was thought to occur through the intermolecular interaction of the hydrophobic groups by protein denaturation. The release of sodium benzoate and salicylic acid from the hydrogel completed in 2 h, while warfarin release continued for 24 h. The total amounts of the drugs released from 100 mg of 15 and 5% rHSA hydrogel were 2.3 and 1.4 μmol for warfarin, 1.4 and 1.1 μmol for salicylic acid and 0.9 and 0.9 μmol for sodium benzoate. These results reflected the order of the binding ability of drugs for intact albumin indicating that the drug binding ability of HSA still remained after the hydrogel formation. However, fibroblast cells attached and proliferated well on the hydrogel, indicating that denaturation of rHSA proceeded to the extent to allow the cell attachment. The present rHSA hydrogel might be suitable for a sustained release carrier of drugs having affinity for albumin.

  3. Recombinant human serum albumin hydrogel as a novel drug delivery vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Masaaki, E-mail: Hirose.Masaaki@mh.mt-pharma.co.jp [Advanced Medical Research Laboratory, Research Division, Mitsubishi Tanabe Pharma Corporation, 3-16-89 Kashima, Yodogawa-ku, Osaka 532-8505 (Japan); Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tachibana, Akira; Tanabe, Toshizumi [Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2010-06-15

    Serum albumin acts as a physiological carrier for various compounds including drugs. A hydrogel consisting of recombinant human serum albumin (rHSA) was prepared to take advantage of drug binding ability of albumin for a sustained drug release carrier. The hydrogel was prepared by mixing rHSA and dithiothreitol and casted to a polystyrene mold. Hydrogel formation was thought to occur through the intermolecular interaction of the hydrophobic groups by protein denaturation. The release of sodium benzoate and salicylic acid from the hydrogel completed in 2 h, while warfarin release continued for 24 h. The total amounts of the drugs released from 100 mg of 15 and 5% rHSA hydrogel were 2.3 and 1.4 {mu}mol for warfarin, 1.4 and 1.1 {mu}mol for salicylic acid and 0.9 and 0.9 {mu}mol for sodium benzoate. These results reflected the order of the binding ability of drugs for intact albumin indicating that the drug binding ability of HSA still remained after the hydrogel formation. However, fibroblast cells attached and proliferated well on the hydrogel, indicating that denaturation of rHSA proceeded to the extent to allow the cell attachment. The present rHSA hydrogel might be suitable for a sustained release carrier of drugs having affinity for albumin.

  4. Immunotoxicity assessment of rice-derived recombinant human serum albumin using human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Kai Fu

    Full Text Available Human serum albumin (HSA is extensively used in clinics to treat a variety of diseases, such as hypoproteinemia, hemorrhagic shock, serious burn injuries, cirrhotic ascites and fetal erythroblastosis. To address supply shortages and high safety risks from limited human donors, we recently developed recombinant technology to produce HSA from rice endosperm. To assess the risk potential of HSA derived from Oryza sativa (OsrHSA before a First-in-human (FIH trial, we compared OsrHSA and plasma-derived HSA (pHSA, evaluating the potential for an immune reaction and toxicity using human peripheral blood mononuclear cells (PBMCs. The results indicated that neither OsrHSA nor pHSA stimulated T cell proliferation at 1x and 5x dosages. We also found no significant differences in the profiles of the CD4(+ and CD8(+ T cell subsets between OsrHSA- and pHSA-treated cells. Furthermore, the results showed that there were no significant differences between OsrHSA and pHSA in the production of cytokines such as interferon-gamma (IFN-γ, tumor necrosis factor-alpha (TNF-α, interleukin (IL-10 and IL-4. Our results demonstrated that OsrHSA has equivalent immunotoxicity to pHSA when using the PBMC model. Moreover, this ex vivo system could provide an alternative approach to predict potential risks in novel biopharmaceutical development.

  5. Data set for mass spectrometric analysis of recombinant human serum albumin from various expression systems

    Directory of Open Access Journals (Sweden)

    Daryl G.S. Smith

    2015-09-01

    Full Text Available Human serum albumin (HSA is a versatile and important protein for the pharmaceutical industry (Fanali et al., Mol. Aspects Med. 33(3 (2012 209–290. Due to the potential transmission of pathogens from plasma sourced albumin, numerous expression systems have been developed to produce recombinant HSA (rHSA (Chen et al., Biochim. Biophys. Acta (BBA—Gen. Subj. 1830(12 (2013 5515–5525; Kobayashi, Biologicals 34(1 (2006 55–59. Based on our previous study showing increased glycation of rHSA expressed in Asian rice (Frahm et al., J. Phys. Chem. B 116(15 (2012 4661–4670, both supplier-to-supplier and lot-to-lot variability of rHSAs from a number of expression systems were evaluated using reversed phase liquid chromatography linked with MS and MS/MS analyses. The data are associated with the research article ‘Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa’ where further analysis of rHSA samples with additional biophysical methods can be found (Frahm et al., PLoS ONE 10(9 (2014 e109893. We determined that all rHSA samples expressed in rice showed elevated levels of arginine and lysine hexose glycation compared to rHSA expressed in yeast, suggesting that the extensive glycation of the recombinant proteins is a by-product of either the expression system or purification process and not a random occurrence.

  6. Structural consistency analysis of recombinant and wild-type human serum albumin

    Science.gov (United States)

    Cao, Hui-Ling; Sun, Li-Hua; Liu, Li; Li, Jian; Tang, Lin; Guo, Yun-Zhu; Mei, Qi-Bing; He, Jian-Hua; Yin, Da-Chuan

    2017-01-01

    Recombinant human serum albumin (rHSA) is potential alternatives for human serum albumin (HSA) which may ease severe shortage of HSA worldwide. In theory, rHSA and HSA are the same. Structure decides function. Therefore, the 3D structural consistency analysis of rHSA and HSA is outmost importance, which is the base of their function consistency. In this paper, the crystal structures of rHSA at resolution limit of 2.22 Å and HSA at 2.30 Å were determined by X-ray diffraction (XRD), which were deposited in the Protein Data Bank (PDB) with accession codes 4G03 (rHSA) and 4G04 (HSA). The differences between rHSA and HSA were systematically analyzed from the crystallization behavior, diffraction data and three-dimensional (3D) structure. The superimposed contrasted analysis indicated that rHSA and HSA achieved a structural similarity of 99% with an r.m.s. deviation of 0.397 Å for the corresponding overall Cα atoms. In addition, the number of α-helices in the rHSA or HSA molecule was verified to be 30. As a result, rHSA can potentially replace HSA. The study provides a theoretical and experimental basis for the clinical and additional applications of rHSA. Meanwhile, it is also a good example for applications of genetic engineering.

  7. Recombinant albumin monolayers on latex particles.

    Science.gov (United States)

    Sofińska, Kamila; Adamczyk, Zbigniew; Kujda, Marta; Nattich-Rak, Małgorzata

    2014-01-14

    The adsorption of recombinant human serum albumin (rHSA) on negatively charged polystyrene latex micro-particles was studied at pH 3.5 and the NaCl concentration range of 10(-3) to 0.15 M. The electrophoretic mobility of latex monotonically increased with the albumin concentration in the suspension. The coverage of adsorbed albumin was quantitatively determined using the depletion method, where the residual protein concentration was determined by electrokinetic measurements and AFM imaging. It was shown that albumin adsorption was irreversible. Its maximum coverage on latex varied between 0.7 mg m(-2) for 10(-3) M NaCl to 1.3 mg m(-2) for 0.15 M NaCl. The latter value matches the maximum coverage previously determined for human serum albumin on mica using the streaming potential method. The increase in the maximum coverage was interpreted in terms of reduced electrostatic repulsion among adsorbed molecules. These facts confirm that albumin adsorption at pH 3.5 is governed by electrostatic interactions and proceeds analogously to colloid particle deposition. The stability of albumin monolayers was measured in additional experiments where changes in the latex electrophoretic mobility and the concentration of free albumin in solutions were monitored over prolonged time periods. Based on these experimental data, a robust procedure of preparing albumin monolayers on latex particles of well-controlled coverage and molecule distribution was proposed.

  8. Experimental biodistribution studies of 99mTc-recombinant human serum albumin (rHSA): a new generation of radiopharmaceutical

    International Nuclear Information System (INIS)

    Perkins, A.C.; Frier, M.

    1994-01-01

    Recombinant human serum albumin (rHSA) produced by cultured fermentation has been prepared in the form of microcapsules nominally 3-5 μm in diameter and radiolabelled with technetium-99m following reduction with stannous chloride. Radiochemical purity was assessed by chromatography on instant thin-layer chromatography and found to be greater than 90%. No evidence of aggregation was seen by microscopic examination. Imaging biodistribution studies in New Zealand white rabbits demonstrated targeting to the liver or lung, respectively, depending upon the size and surfactant properties of the microcapsules. This communication is the first to show scintigraphic studies using 99m Tc-labelled rHSA with the potential for lung, liver and cardiovascular imaging and demonstrates that recombinant DNA technology offers an important new source of materials suitable for use as radiopharmaceuticals without the need for pooled human blood products. (orig.)

  9. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability.

    Science.gov (United States)

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2014-10-01

    Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Generation of fatty acids from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cardiolipin liposomes that stabilize recombinant human serum albumin.

    Science.gov (United States)

    Frahm, Grant E; Cameron, Brooke E; Smith, Jeffrey C; Johnston, Michael J W

    2013-06-01

    At elevated temperatures, studies have shown that serum albumin undergoes irreversible changes to its secondary structure. Anionic fatty acids and/or anionic surfactants have been shown to stabilize human serum albumin (HSA) against thermal denaturation through bridging hydrophobic domains and cationic amino acids residues of the protein. As albumin can readily interact with a variety of liposomes, this study proposes that cardiolipin delivered via 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes can improve the thermal stability of recombinant HSA produced in Saccharomyces cerevisiae (ScrHSA) in a similar manner to anionic fatty acids. Thermal stability and structure of ScrHSA in the absence and presence of DPPC/cardiolipin liposomes was assessed with U/V circular dichroism spectropolarimetry and protein thermal stability was confirmed with differential scanning calorimetry. Although freshly prepared DPPC/cardiolipin liposomes did not improve the stability of ScrHSA, DPPC/cardiolipin liposomes incubated at room temperature for 7 d (7dRT) dramatically improved the thermal stability of the protein. Mass spectrometry analysis identified the presence of fatty acids in the 7dRT liposomes, not identified in freshly prepared liposomes, to which the improved stability was attributed. The generation of fatty acids is attributed to either the chemical hydrolysis or oxidative cleavage of the unsaturated acyl chains of cardiolipin. By modulating the lipid composition through the introduction of lipids with higher acyl chain unsaturation, it may be possible to generate the stabilizing fatty acids in a more rapid manner.

  12. Determination of supplier-to-supplier and lot-to-lot variability in glycation of recombinant human serum albumin expressed in Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Grant E Frahm

    Full Text Available The use of different expression systems to produce the same recombinant human protein can result in expression-dependent chemical modifications (CMs leading to variability of structure, stability and immunogenicity. Of particular interest are recombinant human proteins expressed in plant-based systems, which have shown particularly high CM variability. In studies presented here, recombinant human serum albumins (rHSA produced in Oryza sativa (Asian rice (OsrHSA from a number of suppliers have been extensively characterized and compared to plasma-derived HSA (pHSA and rHSA expressed in yeast (Pichia pastoris and Saccharomyces cerevisiae. The heterogeneity of each sample was evaluated using size exclusion chromatography (SEC, reversed-phase high-performance liquid chromatography (RP-HPLC and capillary electrophoresis (CE. Modifications of the samples were identified by liquid chromatography-mass spectrometry (LC-MS. The secondary and tertiary structure of the albumin samples were assessed with far U/V circular dichroism spectropolarimetry (far U/V CD and fluorescence spectroscopy, respectively. Far U/V CD and fluorescence analyses were also used to assess thermal stability and drug binding. High molecular weight aggregates in OsrHSA samples were detected with SEC and supplier-to-supplier variability and, more critically, lot-to-lot variability in one manufactures supplied products were identified. LC-MS analysis identified a greater number of hexose-glycated arginine and lysine residues on OsrHSA compared to pHSA or rHSA expressed in yeast. This analysis also showed supplier-to-supplier and lot-to-lot variability in the degree of glycation at specific lysine and arginine residues for OsrHSA. Both the number of glycated residues and the degree of glycation correlated positively with the quantity of non-monomeric species and the chromatographic profiles of the samples. Tertiary structural changes were observed for most OsrHSA samples which

  13. Safety and PK/PD correlation of TV-1106, a recombinant fused human albumin-growth hormone, following repeat dose administration to monkeys.

    Science.gov (United States)

    Ashkenazi, Nurit; Rosenstock, Moti; Hallak, Hussein; Bassan, Merav; Rasamoelisolo, Michele; Leuschner, Jost; Shinar, Doron

    TV-1106 is a recombinant human albumin genetically fused to growth hormone which is intended to reduce the frequency of injections for GH therapy users. We report the safety, tolerability, pharmacokinetics and pharmacodynamics of repeated subcutaneous injections of TV-1106 in Cynomolgus monkeys. Cynomolgus monkeys received four weekly subcutaneous injections of 0, 5, 10 or 20mg/kg TV-1106 and were monitored for safety signals throughout the study. Serum levels of TV-1106 and insulin-like growth factor 1 (IGF-1) were assayed. Treated animals showed no adverse effects or histopathological changes. TV-1106 serum concentrations showed sustained exposure to the drug. Exposure increased in a dose-dependent manner with peak concentrations at approximately 24h post-dosing and elimination half-lives in the range of 12 to 24h. IGF-1 serum concentrations were elevated throughout the entire study duration, indicative of the pharmacological response. There was a clear correlation between change in IGF-1 levels and dose or exposure to TV-1106. The safety, pharmacokinetic and pharmacodynamic findings support the further development of TV-1106 as a once-weekly administered treatment for patients with GHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. 21 CFR 640.80 - Albumin (Human).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Albumin (Human). 640.80 Section 640.80 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Albumin (Human) § 640.80 Albumin (Human). (a) Proper...

  15. Immunologic relationships of human serum albumin, macroaggregated albumin, and albumin microspheres

    International Nuclear Information System (INIS)

    Stang, P.C.; Roelands, J.F.; Cohen, P.

    1975-01-01

    Antigenic relationships of NSA (normal serum albumin), MAA (macroaggregated albumin), and HAM (human albumin microspheres) were determined in vivo in guinea pigs and in vitro in gel diffusion plates. Results showed that HAM could sensitize but seldom elicit anaphylaxis when used to challenge guinea pigs. In contrast, NSA and MAA were strong sensitizing antigens and inducers of anaphylaxis. The relative inability of HAM to induce anaphylaxis suggests that during production of the microspheres from soluble albumin, antigenic determinants of albumin may be altered or masked. Consequently, these determinants may be less available to react with antibody at the tissue sites

  16. Glucagon-like Peptide 1 Conjugated to Recombinant Human Serum Albumin Variants with Modified Neonatal Fc Receptor Binding Properties. Impact on Molecular Structure and Half-Life

    DEFF Research Database (Denmark)

    Bukrinski, Jens T.; Sønderby, Pernille; Antunes, Filipa

    2017-01-01

    Glucagon-like peptide 1 (GLP-1) is a small incretin hormone stimulated by food intake, resulting in an amplification of the insulin response. Though interesting as a drug candidate for the treatment of type 2 diabetes mellitus, its short plasma half-life of less than 3 minutes limits its clinical...... use. A strategy to extend the half-life of GLP-1 utilizes the long half-life of human serum albumin (HSA) by combining the two via chemical conjugation or genetic fusion. HSA has a plasma half-life of around 21 days owing to its interaction with the neonatal Fc receptor (FcRn) expressed in endothelial...... with the available structural information on the FcRn and GLP-1 receptor (GLP-1R) obtained from X-ray crystallography, we can explain the observed in-vitro and in-vivo behaviour. We conclude that the conjugation of GLP-1 to rHSA does not affect the interaction between rHSA and FcRn, while the observed decrease...

  17. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    DEFF Research Database (Denmark)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia

    2017-01-01

    -linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer......-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment...... of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4...

  18. Recombinant albumin adsorption on mica studied by AFM and streaming potential measurements.

    Science.gov (United States)

    Kujda, Marta; Adamczyk, Zbigniew; Morga, Maria; Sofińska, Kamila

    2015-03-01

    Recombinant human serum albumin (rHSA) in monomeric state is widely used in pharmaceutical industry as a drug excipient and for preparing coatings for medical devices. In this work the adsorption process of rHSA on model mica surface at pH 3.5 was studied using the atomic force microscopy (AFM) and in situ streaming potential measurements. The kinetics of albumin adsorption was determined by a direct enumeration of single molecules over various substrate areas. These results were consistent with streaming potential measurements carried out for the parallel-plate channel flow and with theoretical predictions derived from the random sequential adsorption (RSA) model. Desorption kinetics of albumin under flow conditions was also evaluated via the streaming potential measurements. In this way, the amount of irreversibly bound albumin was quantitatively evaluated to be 0.64 and 1.2 mg m(-2) for ionic strength of 0.01 and 0.15 M, respectively. This agrees with previous results obtained for HSA and theoretical calculations derived from the RSA model. Additionally, it was demonstrated that there existed a fraction of reversibly bound albumin that can be fully eluted within a few hours. The binding energy of these fraction of molecules was -18 kT that is consistent with the electrostatic controlled adsorption mechanism of albumin at this pH. It was concluded that the rHSA monolayers of well-defined coverage can find applications for quantitatively analyzing ligand binding and for performing efficient biomaterials and immunological tests. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Polymerized soluble venom--human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  20. Polymerized soluble venom--human serum albumin

    International Nuclear Information System (INIS)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-01-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. 125 I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom

  1. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding

    Science.gov (United States)

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben S.; Wengel, Jesper; Howard, Kenneth A.

    2017-05-01

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers, however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and human FcRn (hFcRn) engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Albumin-aptamer conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (∼25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent albumin-aptamer conjugation, however, substantially compromized binding to hFcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose hFcRn binding can be increased using a HB engineered albumin.

  2. Interaction of Citrinin with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Miklós Poór

    2015-12-01

    Full Text Available Citrinin (CIT is a mycotoxin produced by several Aspergillus, Penicillium, and Monascus species. CIT occurs worldwide in different foods and drinks and causes health problems for humans and animals. Human serum albumin (HSA is the most abundant plasma protein in human circulation. Albumin forms stable complexes with many drugs and xenobiotics; therefore, HSA commonly plays important role in the pharmacokinetics or toxicokinetics of numerous compounds. However, the interaction of CIT with HSA is poorly characterized yet. In this study, the complex formation of CIT with HSA was investigated using fluorescence spectroscopy and ultrafiltration techniques. For the deeper understanding of the interaction, thermodynamic, and molecular modeling studies were performed as well. Our results suggest that CIT forms stable complex with HSA (logK ~ 5.3 and its primary binding site is located in subdomain IIA (Sudlow’s Site I. In vitro cell experiments also recommend that CIT-HSA interaction may have biological relevance. Finally, the complex formations of CIT with bovine, porcine, and rat serum albumin were investigated, in order to test the potential species differences of CIT-albumin interactions.

  3. Aluminium and nickel in human albumin solutions

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Sandberg, E

    1989-01-01

    Five different brands of commercially available human albumin solutions for infusion were analysed for their aluminium and nickel contents by atomic absorption spectrometry. The aluminium concentrations ranged from 12 micrograms/l to 1109 micrograms/l and the nickel concentrations ranged from 17...... micrograms/l to 77 micrograms/l. Examination of the aluminium and nickel contents of the constituents for the production of one brand showed too low levels to explain the final contamination of the product. By following the aluminium and nickel concentrations of the same brand during the production...... of a batch of albumin solution, filtration was shown to contribute to contamination, although the largest increase in aluminium as well as nickel concentrations appeared during the bulk concentrating process. To avoid health risks to certain patients, regulations should be established requiring aluminium...

  4. Interaction of amphiphilic drugs with human and bovine serum albumins.

    Science.gov (United States)

    Khan, Abbul Bashar; Khan, Javed Masood; Ali, Mohd Sajid; Khan, Rizwan Hasan; Kabir-Ud-Din

    2012-11-01

    To know the interaction of amphiphilic drugs nortriptyline hydrochloride (NOT) and promazine hydrochloride (PMZ) with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)), techniques of UV-visible, fluorescence, and circular dichroism (CD) spectroscopies are used. The binding affinity is more in case of PMZ with both the serum albumins. The quenching rate constant (k(q)) values suggest a static quenching process for all the drug-serum albumin interactions. The UV-visible results show that the change in protein conformation of PMZ-serum albumin interactions are more prominent as compared to NOT-serum albumin interactions. The CD results also explain the conformational changes in the serum albumins on binding with the drugs. The increment in %α-helical structure is slightly more for drug-BSA complexes as compared to drug-HSA complexes. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The role of albumin conformation in the binding of diazepam to human serum albumin

    NARCIS (Netherlands)

    Wilting, J.; Hart, B.J. 't; Gier, J.J. de

    2006-01-01

    The effect of hydrogen, chloride and calcium ions on the binding of diazepare to human serum albumin has been studied by circular dichroism and equilibrium dialysis. In all cases the molar ellipticity of the diazepam-albumin complex increases with pH over the pH range 5 to 9. Under these

  6. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    International Nuclear Information System (INIS)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun; Lim, Chaeseung; Kim, Jungho; Cha, Dae Ryong; Oh, Junseo

    2012-01-01

    Highlights: ► We designed novel recombinant albumin-RBP fusion proteins. ► Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). ► Fusion proteins are successfully internalized into and inactivate PSCs. ► RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I–III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin domain III (R-III) and albumin domain I -RBP-albumin III (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti

  7. Nephroprotective Potential of Human Albumin Infusion: A Narrative Review

    OpenAIRE

    Christian J. Wiedermann; Michael Joannidis

    2015-01-01

    Albumin infusion improves renal function in cirrhosis; however, mechanisms are incompletely understood. In clinical practice, human albumin is used in various intensive care unit indications to deal with a wide range of problems, from volume replacement in hypovolemic shock, or sepsis, to treatment of ascites in patients with liver cirrhosis. Against the background of the results of recent studies on the use of human albumin in septic patients, the importance of the natural colloid in these c...

  8. Antioxidant flavonoids bind human serum albumin

    Science.gov (United States)

    Kanakis, C. D.; Tarantilis, P. A.; Polissiou, M. G.; Diamantoglou, S.; Tajmir-Riahi, H. A.

    2006-10-01

    Human serum albumin (HSA) is a principal extracellular protein with a high concentration in blood plasma and carrier for many drugs to different molecular targets. Flavonoids are powerful antioxidants and prevent DNA damage. The antioxidative protections are related to their binding modes to DNA duplex and complexation with free radicals in vivo. However, flavonoids are known to inhibit the activities of several enzymes such as calcium phospholipid-dependent protein kinase, tyrosine protein kinase from rat lung, phosphorylase kinase, phosphatidylinositol 3-kinase and DNA topoisomerases that exhibit the importance of flavonoid-protein interaction. This study was designed to examine the interaction of human serum albumin (HSA) with quercetin (que), kaempferol (kae) and delphinidin (del) in aqueous solution at physiological conditions, using constant protein concentration of 0.25 mM (final) and various drug contents of 1 μM-1 mM. FTIR and UV-vis spectroscopic methods were used to determine the polyphenolic binding mode, the binding constant and the effects of flavonoid complexation on protein secondary structure. The spectroscopic results showed that flavonoids are located along the polypeptide chains through H-bonding interactions with overall affinity constant of Kque = 1.4 × 10 4 M -1, Kkae = 2.6 × 10 5 M -1 and Kdel = 4.71 × 10 5 M -1. The protein secondary structure showed no alterations at low pigment concentration (1 μM), whereas at high flavonoid content (1 mM), major reduction of α-helix from 55% (free HSA) to 42-46% and increase of β-sheet from 15% (free HSA) to 17-19% and β-anti from 7% (free HSA) to 10-20% occurred in the flavonoid-HSA adducts. The major reduction of HSA α-helix is indicative of a partial protein unfolding upon flavonoid interaction.

  9. Meiotic recombination in human oocytes.

    Directory of Open Access Journals (Sweden)

    Edith Y Cheng

    2009-09-01

    Full Text Available Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1 in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.

  10. Recombinant fusion protein of albumin-retinol binding protein inactivates stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soyoung; Park, Sangeun; Kim, Suhyun [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of); Lim, Chaeseung [Department of Laboratory Medicine, Korea University Guro Hospital, Seoul 152-703 (Korea, Republic of); Kim, Jungho [Department of Life Science, Sogang University, Seoul 121-742 (Korea, Republic of); Cha, Dae Ryong [Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Gyeonggi do 425-020 (Korea, Republic of); Oh, Junseo, E-mail: ohjs@korea.ac.kr [Laboratory of Cellular Oncology, Korea University Graduate School of Medicine, Ansan, Gyeonggi do 425-707 (Korea, Republic of)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer We designed novel recombinant albumin-RBP fusion proteins. Black-Right-Pointing-Pointer Expression of fusion proteins inactivates pancreatic stellate cells (PSCs). Black-Right-Pointing-Pointer Fusion proteins are successfully internalized into and inactivate PSCs. Black-Right-Pointing-Pointer RBP moiety mediates cell specific uptake of fusion protein. -- Abstract: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin{sup domain} {sup III} (R-III) and albumin{sup domain} {sup I}-RBP-albumin{sup III} (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises

  11. Bioassay of procoagulant albumin in human plasma.

    Science.gov (United States)

    Grosset, A; Liu, L; Parker, C J; Rodgers, G M

    1994-09-01

    Procoagulant albumin (P-Al) is present in normal human plasma and increases monocyte and endothelial cell expression of tissue factor activity. To develop a bioassay for P-Al, we partially purified plasma from healthy volunteers and several patient groups using BaCl2 and (NH4)2SO4 precipitation. The samples were assayed for tissue factor (TF) inducing activity, expressed as a percentage increase compared to a serum-free media control. Over six months, the assay was reproducible in stored samples and in serial samples from normal volunteers. The plasma P-Al activities of 35 volunteers averaged 141 +/- 8.2% (SEM). There was no diurnal variation. There was no difference in the P-Al activity after a 12 hour fast and 2 hours after a large meal in 4 healthy volunteers. There was no increase in activity (r = 0.16) with the subject's age. The average activity from 16 poorly-controlled diabetics was 131 +/- 11% (SEM). No alteration in activity was seen with samples from patients with uremia, liver dysfunction, hemophilia, thrombotic events, or adenocarcinoma. These results indicate that P-Al activity can be bioassayed in individual patient samples; however, pathologic states associated with abnormal P-Al-induced tissue factor activity presently remain unidentified.

  12. Human serum albumin binding of certain antimalarials

    Science.gov (United States)

    Marković, Olivera S.; Cvijetić, Ilija N.; Zlatović, Mario V.; Opsenica, Igor M.; Konstantinović, Jelena M.; Terzić Jovanović, Nataša V.; Šolaja, Bogdan A.; Verbić, Tatjana Ž.

    2018-03-01

    Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37 °C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.

  13. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.

  14. Evaluation of use of human albumin in critically ill dogs: 73 cases (2003-2006).

    Science.gov (United States)

    Trow, Amy V; Rozanski, Elizabeth A; Delaforcade, Armelle M; Chan, Daniel L

    2008-08-15

    To evaluate the use of human albumin in critically ill dogs. Design-Retrospective case series. 73 client-owned hospitalized dogs. Medical records of dogs that received human albumin were reviewed to assess effects of the use of human albumin on serum albumin concentration, colloid osmotic pressure, and total protein concentration; determine the relationships between these variables and outcome; and assess its safety. Data for signalment, diagnoses, physiologic variables, dosage, amount of crystalloid fluid administered prior to human albumin administration, complications, and outcome were reviewed. Additionally, pre- and postadministration values for serum albumin, colloid osmotic pressure, and total protein were recorded. Administration of human albumin resulted in significant changes in serum albumin, colloid osmotic pressure, and total protein. The serum albumin, total protein, degree of improvement in serum albumin, colloid osmotic pressure, and dosage of human albumin were significantly greater in survivors. Seventeen of 73 (23%) dogs had at least 1 complication that could be potentially associated with the administration of human albumin that occurred during or immediately following administration of human albumin. Three of 73 (4%) dogs had severe delayed complications. Administration of human albumin significantly increased serum albumin, and total protein concentrations and colloid osmotic pressure, especially in survivors. Because of the high mortality rate of the study population and other confounding factors, it was uncertain whether complications were associated with the underlying disease or with human albumin administration. Acute and delayed complications may have been under-recognized.

  15. Biocompatibility of electrospun human albumin: a pilot study.

    Science.gov (United States)

    Noszczyk, B H; Kowalczyk, T; Łyżniak, M; Zembrzycki, K; Mikułowski, G; Wysocki, J; Kawiak, J; Pojda, Z

    2015-03-02

    Albumin is rarely used for electrospinning because it does not form fibres in its native globular form. This paper presents a novel method for electrospinning human albumin from a solution containing pharmaceutical grade protein and 25% polyethylene oxide (PEO) used as the fibre-forming agent. After spontaneous cross-linking at body temperature, with no further chemicals added, the fibres become insoluble and the excess PEO can be washed out. Albumin deposited along the fibres retains its native characteristics, such as its non-adhesiveness to cells and its susceptibility for degradation by macrophages. To demonstrate this we evaluated the mechanical properties, biocompatibility and biodegradability of this novel product. After subcutaneous implantation in mice, albumin mats were completely resorbable within six days and elicited only a limited local inflammatory response. In vitro, the mats suppressed cell attachment and migration. As this product is inexpensive, produced from human pharmaceutical grade albumin without chemical modifications, retains its native protein properties and fulfils the specific requirements for anti-adhesive dressings, its clinical use can be expedited. We believe that it could specifically be used when treating paediatric patients with epidermolysis bullosa, in whom non-healing wounds occur after minor hand injuries which lead to rapid adhesions and devastating contractures.

  16. Solution behaviour of Human Serum Albumin and GLP-1variants

    DEFF Research Database (Denmark)

    Sønderby, Pernille

    interaction is critical for the long term stability of a pharmaceutical. Protein complex formation is important for extended half-life in vivo and is essential to cellular communication such as the induction of the insulin response. This thesis focuses on human serum albumin (HSA) as a central player...

  17. Molecular basis of indomethacin-human serum albumin interaction

    DEFF Research Database (Denmark)

    Trivedi, V D; Vorum, H; Honoré, B

    1999-01-01

    Studies on the strength and extent of binding of the non-steroidal anti-inflammatory drug indomethacin to human serum albumin (HSA) have provided conflicting results. In the present work, the serum-binding of indomethacin was studied in 55 mM sodium phosphate buffer (pH 7.0) at 28 degrees C, by u...

  18. Raman spectroscopy in investigations of mechanism of binding of human serum albumin to molecular probe fluorescein

    International Nuclear Information System (INIS)

    Vlasova, I M; Saletsky, A M

    2008-01-01

    The mechanism of binding of molecular probe fluorescein to molecules of human serum albumin was studied by the Raman spectroscopy method. The position of binding Center on human serum albumin molecule for fluorescein is determined. The amino acid residues of albumin molecule, participating in binding of fluorescein at different pH values of solution, are established. The conformation rearrangements of globules of human serum albumin, taking place at binding of fluorescein at different pH values of solution, are registered

  19. Interaction of glucocorticoids and progesterone derivatives with human serum albumin.

    Science.gov (United States)

    Abboud, Rola; Akil, Mohammad; Charcosset, Catherine; Greige-Gerges, Hélène

    2017-10-01

    Glucocorticoids (GCs) and progesterone derivatives (PGDs) are steroid hormones with well-known biological activities. Their interaction with human serum albumin (HSA) may control their distribution. Their binding to albumin is poorly studied in literature. This paper deals with the interaction of a series of GCs (cortisol, cortisone, prednisolone, prednisone, 6-methylprednisolone and 9-fluorocortisol acetate) and PGDs (progesterone, hydroxylated PGDs, methylated PGDs and dydrogesterone) with HSA solution (pH 7.4) at molar ratios steroid to HSA varying from 0 to 10. Similar titrations were conducted using Trp aqueous solution. Fluorescence titration method and Fourier transform infrared spectroscopy (FTIR) are used. PGDs (except dydrogesterone), cortisone and 9-fluorocortisol acetate affected weakly the fluorescence of Trp in buffer solution while they decreased in a dose-dependent manner that of HSA. Their binding constants to HSA were then calculated. Moreover, displacement experiment was performed using bilirubin as a site marker. The binding constant of bilirubin to albumin was determined in the absence and presence of a steroid at a molar ratio steroid to HSA of 1. The results indicate that the steroids bind to HSA at site I in a pocket different from that of bilirubin. Furthermore, the peak positions of amide I and amide II bands of HSA were shifted in the presence of progesterone, dydrogesterone and GCs. Also a variation was observed in amide I region indicating the formation of hydrogen bonding between albumin and steroids. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Expression and characterization of recombinant human serum ...

    African Journals Online (AJOL)

    C-peptide (CP), connecting the A and B chains in proinsulin, has been considered to possess physiological effects in diabetes. In order to prolong the half-life of CP in vivo, a long acting CP analog [human serum albumin (HSA-CP)] was obtained by direct gene fusion of a single-chain CP to HSA and expressed in host ...

  1. Expression and characterization of recombinant human serum ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-14

    Nov 14, 2011 ... C-peptide (CP), connecting the A and B chains in proinsulin, has been considered to possess physiological effects in diabetes. In order to prolong the half-life of CP in vivo, a long acting CP analog. [human serum albumin (HSA-CP)] was obtained by direct gene fusion of a single-chain CP to HSA and.

  2. Fluorescence lifetime measurements of native and glycated human serum albumin and bovine serum albumin

    Science.gov (United States)

    Joshi, Narahari V.; Joshi, Virgina O. d.; Contreras, Silvia; Gil, Herminia; Medina, Honorio; Siemiarczuk, Aleksander

    1999-05-01

    Nonenzymatic glycation, also known as Maillard reaction, plays an important role in the secondary complications of the diabetic pathology and aging, therefore, human serum albumin (HSA) and bovine serum albumin (BSA) were glycated by a conventional method in our laboratory using glucose as the glycating agent. Fluorescence lifetime measurements were carried out with a laser strobe fluorometer equipped with a nitrogen/dye laser and a frequency doubler as a pulsed excitation source. The samples were excited at 295 nm and the emission spectra were recorded at 345 nm. The obtained decay curves were tried for double and triple exponential functions. It has been found that the shorter lifetime increases for glycated proteins as compared with that of the native ones. For example, in the case of glycated BSA the lifetime increased from 1.36 ns to 2.30 ns. Similarly, for HSA, the lifetime increases from 1.58 ns to 2.26 ns. Meanwhile, the longer lifetime changed very slightly for both proteins (from 6.52 ns to 6.72 ns). The increase in the lifetime can be associated with the environmental effect; originated from the attachment of glucose to some lysine residues. A good example is Trp 214 which is in the cage of Lys 225, Lys 212, Lys 233, Lys 205, Lys 500, Lys 199 and Lys 195. If fluorescence lifetime technique is calibrated and properly used it could be employed for assessing glycation of proteins.

  3. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  4. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  5. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  6. New perspectives on recombinant human antibodies

    NARCIS (Netherlands)

    J. de Kruif (John); A.-R. van der Vuurst de Vries (Anne); L. Cilenti (L.); E. Boel (E.); W. van Ewijk (Willem); T. Logtenberg (Ton)

    1996-01-01

    textabstractThe limited potential of murine monoclonal antibodies for human immunotherapy has driven recent progress in recombinant antibody technology. Here, de Kruif and colleagues report on advances in the development and use of phage-antibody-display libraries.

  7. Construction of retroviral recombinant containing human tissue ...

    African Journals Online (AJOL)

    USER

    2010-03-29

    Mar 29, 2010 ... Recombinant retroviral vector containing human tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) gene was ..... heavy metal ions, the protein could be express in an .... involves adhesion, degradation and movement. To.

  8. Albumin Suppresses Human Hepatocellular Carcinoma Proliferation and the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Shunsuke Nojiri

    2014-03-01

    Full Text Available Many investigations have revealed that a low recurrence rate of hepatocellular carcinoma (HCC is associated with high serum albumin levels in patients; therefore, high levels of serum albumin are a major indicator of a favorable prognosis. However, the mechanism inhibiting the proliferation of HCC has not yet been elucidated, so we investigated the effect of serum albumin on HCC cell proliferation. Hep3B was cultured in MEM with no serum or containing 5 g/dL human albumin. As control samples, Prionex was added to generate the same osmotic pressure as albumin. After 24-h incubation, the expressions of α-fetoprotein (AFP, p53, p21, and p57 were evaluated with real-time PCR using total RNA extracted from the liver. Protein expressions and the phosphorylation of Rb (retinoblastoma were determined by Western blot analysis using total protein extracted from the liver. For flow cytometric analysis of the cell cycle, FACS analysis was performed. The percentages of cell cycle distribution were evaluated by PI staining, and all samples were analyzed employing FACScalibur (BD with appropriate software (ModFit LT; BD. The cell proliferation assay was performed by counting cells with using a Scepter handy automated cell counter (Millipore. The mRNA levels of AFP relative to Alb(−: Alb(−, Alb(+, and Prionex, were 1, 0.7 ± 0.2 (p < 0.001 for Alb(−, and 1 ± 0.3, respectively. The mRNA levels of p21 were 1, 1.58 ± 0.4 (p = 0.007 for Alb(− and p = 0.004 for Prionex, and 0.8 ± 0.2, respectively. The mRNA levels of p57 were 1, 4.4 ± 1.4 (p = 0.002 for Alb(− and Prionex, and 1.0 ± 0.1, respectively. The protein expression levels of Rb were similar in all culture media. The phosphorylation of P807/811 and P780 of Rb protein was reduced in Alb(+. More cells in the G0/G1 phase and fewer cells in S and G2/M phases were obtained in Alb(+ than in Alb(− (G0/G1: 60.9%, 67.7%, 61.5%; G2/M: 16.5%, 13.1%, 15.6%; S: 22.6%, 19.2%, 23.0%, Alb(−, Alb

  9. Photoexcited riboflavin induces oxidative damage to human serum albumin

    Science.gov (United States)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  10. Biomolecular Interaction Study of Cyclolinopeptide A with Human Serum Albumin

    Directory of Open Access Journals (Sweden)

    Ben Rempel

    2010-01-01

    Full Text Available The kinetics, energetics, and structure of Cyclolinopeptide A binding with Human Serum Albumin were investigated with surface plasmon resonance and circular dichroism. The complex is formed through slow recognition kinetics that is temperature sensitive in the range of 20°C–37°C. The overall reaction was observed to be endothermic (ΔH=204 kJ mol−1 and entropy driven (ΔS=746 J mol−1K−1 with overall small changes to the tertiary structure.

  11. The preparation of albumin as a biological drug from human plasma by fiber filtration

    Directory of Open Access Journals (Sweden)

    Mousavi Hosseini K

    2011-08-01

    Full Text Available "nBackground: In recent years, consumption of whole-blood for the treatment of patients has decreased but use of biological plasma-derived medicines such as albumin, immunoglobulin and coagulation factors have increased instead. Paying attention to albumin molecular structure is important for its isolation from human plasma. Albumin is a single-chain protein consisting of about 585 amino acids and a molecular weight of 66500 Daltons. Albumin is a stable molecule and it is spherical in shape. There are different methods for human albumin preparation. Considering the large consumption of this biological drug in clinical settings, methods with fewer steps in production line are of big advantage in saving time and manufacturing more products."n "nMethods: In this project, we prepared human albumin using hollow fiber cartridges in order to omit the rework on fraction V+VI. Human albumin is usually produced by the application of cold ethanol method, where albumin is obtained from fraction V by doing a rework on fraction V+VI to separate fraction V."n "nResults: In the current work, human albumin was prepared from fraction V+VI by the help of hollow fiber cartridges. With a concentration of 20%, the obtained albumin had 96.5% of monomer and 3.5% of polymer and polymer aggregate."n "nConclusion: Comparing the obtained human albumin with a number of commercial human albumin samples by the use of SDS-page, the results were satisfactory regarding the 3.5 percent polymer and aggregate rate for the prepared albumin.

  12. Antihemophilic factor (recombinant plasma/albumin-free method for the management and prevention of bleeding episodes in patients with hemophilia A

    Directory of Open Access Journals (Sweden)

    Steven Pipe

    2009-02-01

    Full Text Available Steven PipeDepartment of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USAAbstract: Hemophilia is a rare genetic bleeding disorder that, if not adequately controlled, is associated with life-threatening bleeding events and serious and costly complications, primarily from joint damage. The advent of effective clotting factor replacement therapy for patients with hemophilia is considered one of the foremost medical advances of the 20th century. The last 3 decades of experience in hemophilia care have witnessed the effectiveness of the care of patients with hemophilia within specialized comprehensive care centers, advances in factor replacement therapies, the benefits of prophylaxis over on-demand replacement therapy, and the role of aggressive management of joint disease to prevent dysfunction. Ongoing challenges, including the management of inhibitors to factor therapies and the consequences of thousands of patients with hemophilia becoming infected with human immunodeficiency virus and hepatitis C virus in the 1980s from contaminated plasma-derived factor concentrates, have highlighted the need for vigilance with respect to clotting factor product safety, access to care, and a full complement of choice of factor replacement therapies. Advate® (antihemophilic factor [recombinant] plasma/albumin-free method [rAHF-PFM] is the first recombinant factor VIII therapy manufactured without human or animal protein additives to eliminate the risk of pathogen transmission that could be carried by these additives. Preclinical studies established bioequivalence with recombinant antihemophilic factor (Recombinate®, a product with 16 years of clinical experience. Currently licensed in 44 countries worldwide, rAHF-PFM has over 7 years of clinical research within 5 global studies supporting its safety and efficacy in the treatment of patients with hemophilia A.Keywords: factor VIII, hemophilia A, recombinant proteins, clinical

  13. Protein Crystal Recombinant Human Insulin

    Science.gov (United States)

    1994-01-01

    The comparison of protein crystal, Recombiant Human Insulin; space-grown (left) and earth-grown (right). On STS-60, Spacehab II indicated that space-grown crystals are larger and of greater optical clarity than their earth-grown counterparts. Recombiant Human Insulin facilitates the incorporation of glucose into cells. In diabetics, there is either a decrease in or complete lack of insulin, thereby leading to several harmful complications. Principal Investigator is Larry DeLucas.

  14. Human serum albumin crystals and method of preparation

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1989-01-01

    Human serum albumin (HSA) crystals are provided in the form of tetragonal plates having the space groups P42(sub 1)2, the crystals being grown to sizes in excess of 0.5 mm in two dimensions and a thickness of 0.1 mm. Growth of the crystals is carried out by a hanging drop method wherein a precipitant solution containing polyethylene glycol (PEG) and a phosphate buffer is mixed with an HSA solution, and a droplet of mixed solution is suspended over a well of precipitant solution. Crystals grow to the desired size in 3 to 7 days. Concentration of reagents, pH and other parameters are controlled within prescribed limits. The resulting crystals exhibit a size and quality such as to allow performance of x ray diffraction studies and enable the conduct of drug binding studies as well as genetic engineering studies.

  15. [Study on the interaction of doxycycline with human serum albumin].

    Science.gov (United States)

    Hu, Tao-Ying; Chen, Lin; Liu, Ying

    2014-05-01

    The present study was designed to investigate the interaction of doxycycline (DC) with human serum albumin (HSA) by the inner filter effects, displacement experiments and molecular docking methods, based on classic multi-spectroscopy. With fluorescence quenching method at 298 and 310 K, the binding constants Ka, were determined to be 2. 73 X 10(5) and 0. 74X 10(5) L mol-1, respectively, and there was one binding site between DC and HSA, indicating that the binding of DC to HSA was strong, and the quenching mechanism was a static quenching. The thermodynamic parameters (enthalpy change, AH and enthropy change, delta S) were calculated to be -83. 55 kJ mol-1 and -176. 31 J mol-1 K-1 via the Vant' Hoff equation, which indicated that the interaction of DC with HSA was driven mainly by hydrogen bonding and van der Waals forces. Based on the Föster's theory of non-radiation energy transfer, the specific binding distance between Trp-214 (acceptor) and DC (donor) was 4. 98 nm, which was similar to the result confirmed by molecular docking. Through displacement experiments, sub-domain IIA of HSA was assigned to possess the high-affinity binding site of DC. Three-dimensional fluorescence spectra indicated that the binding of DC to HSA induced the conformation change of HSA and increased the disclosure of some part of hydrophobic regions that had been buried before. The results of FTIR spectroscopy showed that DC bound to HSA led to the slight unfolding of the polypeptide chain of HSA. Furthermore, the binding details between DC and HSA were further confirmed by molecular docking methods, which revealed that DC was bound at sub-domain IIA through multiple interactions, such as hydrophobic effect, polar forces and pi-pi interactions. The experimental results provide theoretical basis and reliable data for the study of the interaction between small drug molecule and human serum albumin

  16. Interaction of indomethacin with adult human albumin and neonatal serum

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R; Robertson, A

    1983-01-01

    The binding of indomethacin to albumin was investigated at 37 degrees C, pH 7.4. The first stoichiometric binding constant is 2.5 X 10(5) M-1. Indomethacin utilizes both the bilirubin and diazepam binding functions equally. The effect on bilirubin binding to albumin is negligible at therapeutic...

  17. A modified RIA for minute albumin in human urine

    International Nuclear Information System (INIS)

    Chen Panzao; Hao Xiuhua; Xiao Shuqing; Li Zhenjia

    1989-01-01

    A modified radioimmunoassay for minute albuminuria using a solid phase radioiodination technique (Iodogen), and a precipitating reagent (PR) separation was described. The results of RIA and EIA of albumin are compared with each other (r = 0.925). Aliquots of 100μl diluted urine (1:20-1:100) are incubated at 4 deg C overnight with 100μl 125 I-labelled albumin and 100μl antiserum. Separation with 500 μl PR is very successful. The concentration of standard albumin ranges from 50 to 3200 ng/ml. The sensitivity of detection is 5 ng of albumin. The coefficients of inter-assay and intr-assay variation are 3.2-8.2% and 13.0-14.5% respectively. In 70 normal individuals the range of urinary albumin is 1.2-17.8 mg/24h

  18. Surface imprinted beads for the recognition of human serum albumin.

    Science.gov (United States)

    Bonini, Francesca; Piletsky, Sergey; Turner, Anthony P F; Speghini, Adolfo; Bossi, Alessandra

    2007-04-15

    The synthesis of poly-aminophenylboronic acid (ABPA) imprinted beads for the recognition of the protein human serum albumin (HSA) is reported. In order to create homogeneous recognition sites, covalent immobilisation of the template HSA was exploited. The resulting imprinted beads were selective for HSA. The indirect imprinting factor (IF) calculated from supernatant was 1.6 and the direct IF, evaluated from the protein recovered from the beads, was 1.9. The binding capacity was 1.4 mg/g, which is comparable to commercially available affinity materials. The specificity of the HSA recognition was evaluated with competitive experiments, indicating a molar ratio 4.5/1 of competitor was necessary to displace half of the bound HSA. The recognition and binding of the imprinted beads was also tested with a complex sample, human serum and targeted removal of HSA without a loss of the other protein components was demonstrated. The easy preparation protocol of derivatised beads and a good protein recognition properties make the approach an attractive solution to analytical and bio-analytical problems in the field of biotechnology.

  19. A New Application for Albumin Dialysis in Extracorporeal Organ Support: Characterization of a Putative Interaction Between Human Albumin and Proinflammatory Cytokines IL-6 and TNFα.

    Science.gov (United States)

    Pfensig, Claudia; Dominik, Adrian; Borufka, Luise; Hinz, Michael; Stange, Jan; Eggert, Martin

    2016-04-01

    Albumin dialysis in extracorporeal organ support is often performed in the treatment of liver failure as it facilitates the removal of toxic components from the blood. Here, we describe a possible effect of albumin dialysis on proinflammatory cytokine levels in vitro. Initially, albumin samples were incubated with different amounts of cytokines and analyzed by enzyme-linked immunosorbent assay (ELISA). Analysis of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) levels indicated that increased concentrations of albumin reduce the measureable amount of the respective cytokines. This led to the hypothesis that the used proinflammatory cytokines may interact with albumin. Size exclusion chromatography of albumin spiked with cytokines was carried out using high-performance liquid chromatography analysis. The corresponding fractions were evaluated by immunoblotting. We detected albumin and cytokines in the same fractions indicating an interaction of the small-sized cytokines IL-6 and TNFα with the larger-sized albumin. Finally, a two-compartment albumin dialysis in vitro model was used to analyze the effect of albumin on proinflammatory cytokines in the recirculation circuit during 6-h treatment. These in vitro albumin dialysis experiments indicated a significant decrease of IL-6, but not of TNFα, when albumin was added to the dialysate solution. Taken together, we were able to show a putative in vitro interaction of human albumin with the proinflammatory cytokine IL-6, but with less evidence for TNFα, and demonstrated an additional application for albumin dialysis in liver support therapy where IL-6 removal might be indicated. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Ionization of tyrosine residues in human serum albumin and in its complexes with bilirubin and laurate

    DEFF Research Database (Denmark)

    Honoré, B; Brodersen, R

    1992-01-01

    Spectrophotometric titration of human serum albumin indicates that ionization of the 18 tyrosine residues takes place between pH 9 and 12.7. A Hill plot indicates that protons dissociate co-operatively from tyrosine residues, in pure albumin between pH 11.0 and 11.4 with a Hill coefficient 1.7, a...

  1. Thermodynamic parameters for binding of fatty acids to human serum albumin

    DEFF Research Database (Denmark)

    Pedersen, A O; Honoré, B; Brodersen, R

    1990-01-01

    Binding of laurate and myristate anions to human serum albumin has been studied over a range of temperatures, 5-37 degrees C, at pH 7.4. The binding curves indicate that the strength of binding of the first few molecules of fatty acid to albumin (r less than 5) decreases with increasing temperatu...

  2. Multiple binding of bilirubin to human serum albumin and cobinding with laurate

    DEFF Research Database (Denmark)

    Sato, H; Honoré, B; Brodersen, R

    1988-01-01

    Numerical analysis of multiple binding of two ligands to one carrier has been accomplished, using the principle of several sets of acceptable binding constants, with bilirubin-laurate-albumin as an example. Binding of bilirubin to defatted human serum albumin was investigated by a spectroscopic...

  3. Some human albumine metabolism aspects, gathered with the utilization of 131I-albumine in normal female individuals

    International Nuclear Information System (INIS)

    Cossermelli, W.; Papaleo Netto, M.; Carvalho, N.

    1974-01-01

    14 female individuals underwent a study of some aspects of the 131 I human albumine metabolism, by following-up the decreasing plasmatic radioactivity rate of this substance. The outcome of this study led to the following conclusions: the distribution hal-life presented an average and confidence interval of 15,40 +- -+ 2,16 hours; renovation half-life showed a median and confidence interval of 11,17 +- -+ 2,10 days; the renovation ratio presented an average and confidence interval of 6,80 +- -+ 1,31% days -1 . The conclusions hereabove allowed the authors to discuss the performance of these parameters upon the evaluation of the albumine synthesis and catabolism [pt

  4. Interactions of human serum albumin with doxorubicin in different media

    Science.gov (United States)

    Gun'ko, Vladimir M.; Turov, Vladimir V.; Krupska, Tetyana V.; Tsapko, Magdalina D.

    2017-02-01

    Interactions of human serum albumin (10 wt% H2O and 0.3 wt% sodium caprylate) with doxorubicin hydrochloride (1 wt%) were studied alone or with addition of HCl (3.6 wt% HCl) using 1H NMR spectroscopy. A model of hydrated HSA/12DOX was calculated using PM7 method with COSMO showing large variations in the binding constant depending on structural features of DOX/HSA complexes. DOX molecules/ions displace bound water from narrow intramolecular voids in HSA that leads to diminution of freezing-melting point depression of strongly bound water (SBW). Structure of weakly bound water (WBW) depends much weaker on the presence of DOX than SBW because a major fraction of DOX is bound to adsorption sites of HSA. Addition of HCl results in strong changes in structure of macromolecules and organization of water in hydration shells of HSA (i.e., mainly SBW) and in the solution (i.e., WBW + non-bound bulk water).

  5. Interaction between Saikosaponin D, Paeoniflorin, and Human Serum Albumin.

    Science.gov (United States)

    Liang, Guo-Wu; Chen, Yi-Cun; Wang, Yi; Wang, Hong-Mei; Pan, Xiang-Yu; Chen, Pei-Hong; Niu, Qing-Xia

    2018-01-27

    Saikosaponin D (SSD) and paeoniflorin (PF) are the major active constituents of Bupleuri Radix and Paeonia lactiflora Pall , respectively, and have been widely used in China to treat liver and other diseases for many centuries. We explored the binding of SSD/PF to human serum albumin (HSA) by using fluorospectrophotometry, circular dichroism (CD) and molecular docking. Both SSD and PF produced a conformational change in HSA. Fluorescence quenching was accompanied by a blue shift in the fluorescence spectra. Co-binding of PF and SSD also induced quenching and a conformational change in HSA. The Stern-Volmer equation showed that quenching was dominated by static quenching. The binding constant for ternary interaction was below that for binary interaction. Site-competitive experiments demonstrated that SSD/PF bound to site I (subdomain IIA) and site II (subdomain IIIA) in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for the binary association. Also, there was energy transfer upon binary interaction. Molecular docking supported the experimental findings in conformation, binding sites and binding forces.

  6. Interaction of Human Serum Albumin with Metal Protoporphyrins

    Science.gov (United States)

    Hu, Jie; Brancaleon, Lorenzo

    2015-03-01

    Fluorescence spectroscopy is widely used in biotechnology, nanotechnology, and molecular biophysics, since it can provide information on a wide range of molecular processes, e.g. the interactions of solvent molecules with fluorophores, conformational changes, and binding interactions etc. In this study, we present the photophysical properties of the interaction of human serum albumin (HSA) with a series of metal compound of Protoporphyrin IX (PPIX), including ZnPPIX, FePPIX, MgPPIX, MnPPIX and SnPPIX respectively, as well as the free base PPIX. Binding constants were retrieved independently using the Benesi-Hildebrand analysis of the porphyrin emission or absorption spectra and the fluorescence quenching (i.e. Stern-Volmer analysis) and reveal that the two methods yield a difference of approximately one order or magnitude between the two. Fluorescence lifetimes was used to probe whether binding of the porphyrin changes the conformation of the protein or if the interaction places the porphyrin at a location that can prompt resonance energy transfer with the lone Tryptophan residue. In recent years it has been discovered that HSA provides a specific binding site for metal-chelated protoporphyrins in subdomain IA. This has opened a novel field of study over the importance of this site for biomedical applications but it has also created the potential for a series of biotechnological applications of the HSA/protoporphyrin complexes. Our study provides a preliminary investigation of the interaction with metal-chelated protoporphyrins that had not been previously investigated.

  7. Optimization of a colorimetric assay for glycosylated human serum albumin

    International Nuclear Information System (INIS)

    Bohney, J.P.; Feldhoff, R.C.

    1986-01-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100 0 C. A NaBH 4 reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with [ 3 H]glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation

  8. Optimization of a colorimetric assay for glycosylated human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Bohney, J.P.; Feldhoff, R.C.

    1986-05-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100/sup 0/C. A NaBH/sub 4/ reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with (/sup 3/H)glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation.

  9. Structural basis of transport of lysophospholipids by human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shihui; Shi, Xiaoli; Yang, Feng; Chen, Liqing; Meehan, Edward J.; Bian, Chuanbing; Huang, Mingdong; (UAH); (Chinese Aca. Sci.)

    2010-10-08

    Lysophospholipids play important roles in cellular signal transduction and are implicated in many biological processes, including tumorigenesis, angiogenesis, immunity, atherosclerosis, arteriosclerosis, cancer and neuronal survival. The intracellular transport of lysophospholipids is through FA (fatty acid)-binding protein. Lysophospholipids are also found in the extracellular space. However, the transport mechanism of lysophospholipids in the extracellular space is unknown. HSA (human serum albumin) is the most abundant carrier protein in blood plasma and plays an important role in determining the absorption, distribution, metabolism and excretion of drugs. In the present study, LPE (lysophosphatidylethanolamine) was used as the ligand to analyse the interaction of lysophospholipids with HSA by fluorescence quenching and crystallography. Fluorescence measurement showed that LPE binds to HSA with a K{sub d} (dissociation constant) of 5.6 {micro}M. The presence of FA (myristate) decreases this binding affinity (K{sub d} of 12.9 {micro}M). Moreover, we determined the crystal structure of HSA in complex with both myristate and LPE and showed that LPE binds at Sudlow site I located in subdomain IIA. LPE occupies two of the three subsites in Sudlow site I, with the LPE acyl chain occupying the hydrophobic bottom of Sudlow site I and the polar head group located at Sudlow site I entrance region pointing to the solvent. This orientation of LPE in HSA suggests that HSA is capable of accommodating other lysophospholipids and phospholipids. The study provides structural information on HSA-lysophospholipid interaction and may facilitate our understanding of the transport and distribution of lysophospholipids.

  10. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Nimai C [Singapore-MIT Alliance, Manufacturing Systems and Technology Programme, Nanyang Technological University, 65 Nanyang Drive, 637460 (Singapore); Shin, Kwanwoo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsoo-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)], E-mail: ncnayak@gmail.com

    2008-07-02

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism.

  11. Human serum albumin mediated self-assembly of gold nanoparticles into hollow spheres

    International Nuclear Information System (INIS)

    Nayak, Nimai C; Shin, Kwanwoo

    2008-01-01

    The assembly of nanoparticles in topologically predefined superstructures is an important area in nanoscale architecture. In this paper, we report an unusual aggregation phenomenon involving L-lysine capped gold nanoparticles and human serum albumin into hollow nanospheres. The electrostatic interaction between positively charged L-lysine capped gold nanoparticles and negatively charged human serum albumin at physiological pH led to the assembly of the gold nanoparticles into hollow spheres. The phenomenon can be explained by the dry hole opening mechanism

  12. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer.

    Science.gov (United States)

    Kinoshita, Ryo; Ishima, Yu; Chuang, Victor T G; Nakamura, Hideaki; Fang, Jun; Watanabe, Hiroshi; Shimizu, Taro; Okuhira, Keiichiro; Ishida, Tatsuhiro; Maeda, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2017-09-01

    In the latest trend of anticancer chemotherapy research, there were many macromolecular anticancer drugs developed based on enhanced permeability and retention (EPR) effect, such as albumin bound paclitaxel nanoparticle (nab- PTX, also called Abraxane ® ). However, cancers with low vascular permeability posed a challenge for these EPR based therapeutic systems. Augmenting the intrinsic EPR effect with an intrinsic vascular modulator such as nitric oxide (NO) could be a promising strategy. S-nitrosated human serum albumin dimer (SNO-HSA Dimer) shown promising activity previously was evaluated for the synergistic effect when used as a pretreatment agent in nab-PTX therapy against various tumor models. In the high vascular permeability C26 murine colon cancer subcutaneous inoculation model, SNO-HSA Dimer enhanced tumor selectivity of nab-PTX, and attenuated myelosuppression. SNO-HSA Dimer also augmented the tumor growth inhibition of nab-PTX in low vascular permeability B16 murine melanoma subcutaneous inoculation model. Furthermore, nab-PTX therapy combined with SNO-HSA Dimer showed higher antitumor activity and improved survival rate of SUIT2 human pancreatic cancer orthotopic model. In conclusion, SNO-HSA Dimer could enhance the therapeutic effect of nab-PTX even in low vascular permeability or intractable pancreatic cancers. The possible underlying mechanisms of action of SNO-HSA Dimer were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

    Science.gov (United States)

    Baraka-Vidot, Jennifer; Planesse, Cynthia; Meilhac, Olivier; Militello, Valeria; van den Elsen, Jean; Bourdon, Emmanuel; Rondeau, Philippe

    2015-05-19

    Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-like activity were evaluated using fluorescence spectroscopy and p-nitrophenyl acetate hydrolysis assays, respectively. With the exception of oxidative parameters, significant dose-dependent alterations in biochemical and functional properties of in vitro glycated albumin were observed. We also found that the dose-dependent increase in levels of glycation and protein aggregation and average molecular mass changes correlated with a gradual decrease in the affinity of albumin for ketoprofen and its esterase-like property. In parallel, significant alterations in both pharmacological properties were also evidenced in albumin purified from diabetic patients. Partial least-squares regression analyses established a significant correlation between glycation-mediated changes in biochemical and pharmacological properties of albumin, highlighting the important role for glycation in the variability of the drug response in a diabetic situation.

  14. Determination of capillary permeability with labeled human albumin

    International Nuclear Information System (INIS)

    Behar, A.; Tournoux, A.; Baillet, J.; Lagrue, G.

    1976-01-01

    We propose a new test for measuring the 'capillary permeability' with labeled albumin, with simpler methods, satisfactory results and good discrimination between normal subjects and pathological patients. In normal subjects, after the removal of the tourniquet, the radioactivity returns to former values (under 10% of this figure). In pathological patients, even after the 3 min following the removal of the tourniquet, there is no return to the former value (the retention of labeled albumin is always over 10%). It is in cycle oedema that the test provides the most interesting results. (orig) [de

  15. Human Albumin Fragments Nanoparticles as PTX Carrier for Improved Anti-cancer Efficacy

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-06-01

    Full Text Available For enhanced anti-cancer performance, human serum albumin fragments (HSAFs nanoparticles (NPs were developed as paclitaxel (PTX carrier in this paper. Human albumins were broken into fragments via degradation and crosslinked by genipin to form HSAF NPs for better biocompatibility, improved PTX drug loading and sustained drug release. Compared with crosslinked human serum albumin NPs, the HSAF-NPs showed relative smaller particle size, higher drug loading, and improved sustained release. Cellular and animal results both indicated that the PTX encapsulated HSAF-NPs have shown good anti-cancer performance. And the anticancer results confirmed that NPs with fast cellular internalization showed better tumor inhibition. These findings will not only provide a safe and robust drug delivery NP platform for cancer therapy, but also offer fundamental information for the optimal design of albumin based NPs.

  16. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies.

    Science.gov (United States)

    Ng, Elizabeth S; Davis, Richard; Stanley, Edouard G; Elefanty, Andrew G

    2008-01-01

    In order to promote the uniform and reproducible differentiation of human embryonic stem cells (HESCs) in response to exogenously added growth factors, we have developed a method (spin embryoid bodies (EBs)) that uses a recombinant protein-based, animal product-free medium in which HESCs are aggregated by centrifugation to form EBs. In this protocol we describe the formulation of this medium, denoted APEL (Albumin Polyvinylalcohol Essential Lipids), and its use in spin EB differentiation of HESCs. We also describe a more economical variant, BPEL (Bovine Serum Albumin (BSA) Polyvinylalchohol Essential Lipids), in which BSA replaces the recombinant human albumin. The integration of a medium that includes only defined and recombinant components with a defined number of cells to initiate EB formation results in a generally applicable, robust platform for growth factor-directed HESC differentiation.

  17. A comparative study of some physico-chemical properties of human serum albumin samples from different sources--I : Some physico-chemical properties of isoionic human serum albumin solutions

    NARCIS (Netherlands)

    Dröge, J.H.M.; Janssen, L.H.M.; Wilting, J.

    1982-01-01

    Human serum albumin samples from different sources were investigated. The fatty acid content of the albumin before and after deionization on a mixed bed ion-exchange column varied from sample to sample. When an albumin sample from one source was deionized under standard conditions the amount of

  18. Detection of human spermatozoal peptides after conjugation to 125I-labelled human serum albumin

    International Nuclear Information System (INIS)

    Metler, L.; Skrabei, H.; Czuppon, A.B.

    1981-01-01

    Human spermatozoal peptides, liberated during autolysis of the cells, were fractionated by gel-filtration chromatography and thin-layer chromatography. After conjugation to 125 I-labelled human serum albumin, all fractions were assayed with rabbit antihuman spermatozoa antiserum. In earlier publications, human sperm-immobilizing and sperm-agglutinating sera were used for the detection of solubilized spermatozoal antigen. The low sensitivity of these tests necessitated a more sensitive test. The purpose of this work is to describe a solid-phase radioimmunoassay for the detection of antigenic peptides

  19. Human Albumin Improves Long-Term Behavioral Sequelae After Subarachnoid Hemorrhage Through Neurovascular Remodeling.

    Science.gov (United States)

    Xie, Yi; Liu, Wenhua; Zhang, Xiaohao; Wang, Liumin; Xu, Lili; Xiong, Yunyun; Yang, Lian; Sang, Hongfei; Ye, Ruidong; Liu, Xinfeng

    2015-10-01

    Subarachnoid hemorrhage results in significant long-lasting neurologic sequelae. Here, we investigated whether human albumin improves long-term outcomes in experimental subarachnoid hemorrhage and whether neurovascular remodeling is involved in the protection of albumin. Laboratory investigation. Hospital research laboratory. Male Sprague-Dawley rats. Rats underwent subarachnoid hemorrhage by endovascular perforation. Albumin of either 0.63 or 1.25 g/kg was injected IV immediately after the surgery. Modified Garcia test, beam-walking test, novel object recognition, and Morris water maze were employed to determine the behavioral deficits. The effects of albumin on early neurovascular dysfunction and chronic synaptic plasticity were also studied. Both doses of albumin significantly improved the sensorimotor scores (F = 31.277; p = 0.001) and cognitive performance (F = 7.982; p = 0.001 in novel object recognition test; and F = 3.431; p = 0.026 in the latency analysis of Morris water maze test) for at least 40 days after subarachnoid hemorrhage. There were remarkable microvasculature hypoperfusion, intracranial pressure rise, early vasoconstriction, neural apoptosis, and degeneration in subarachnoid hemorrhage rats, with albumin significantly attenuating such neurovascular dysfunction. Furthermore, albumin markedly prevented blood-brain barrier disruption, as indicated by less blood-brain barrier leakage, preserved blood-brain barrier-related proteins, and dampened gelatinase activities. The expressions of key synaptic elements were up-regulated with albumin supplementation in both acute and chronic phases. Accordingly, a higher dendritic spine density was observed in the prefrontal and hippocampal areas of albumin-treated subarachnoid hemorrhage animals. Albumin at low-to-moderate doses markedly improves long-term neurobehavioral sequelae after subarachnoid hemorrhage, which may involve an integrated process of neurovascular remodeling.

  20. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    Science.gov (United States)

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. Copyright © 2014 by the Genetics Society of America.

  1. Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin

    International Nuclear Information System (INIS)

    Ciepluch, Karol; Katir, Nadia; El Kadib, Abdelkrim; Weber, Monika; Caminade, Anne-Marie; Bousmina, Mostapha; Pierre Majoral, Jean; Bryszewska, Maria

    2012-01-01

    This work deals with photo-physical and structural interactions between viologen phosphorus dendrimers and human serum albumin (HSA). Viologens are derivatives of 4,4′-bipyridinium salts. Aiming to rationalize the parameters governing such interactions eight types of these polycationic dendrimers in which the generation, the number of charges, the nature of the core and of the terminal groups vary from one to another, were designed and used. The influence of viologen-based dendrimers' on human serum albumin has been investigated. The photo-physical interactions of the two systems have been monitored by fluorescence quenching of free L-tryptophan and of HSA tryptophan residue. Additionally, using circular dichroism (CD) the effect of dendrimers on the secondary structure of albumin was measured. The obtained results show that viologen dendrimers interact with human serum albumin quenching its fluorescence either by collisional (dynamic) way or by forming complexes in a ground state (static quenching). In some cases the quenching is accompanied by changes of the secondary structure of HSA. - Highlights: ► Photo-physical interactions between viologen phosphorus dendrimers and human serum albumin (HSA) were investigated. ► The viologen dendrimers can quench the fluorescence of tryptophan in HSA. ► CD spectra to explain the changes in secondary structure of albumin after exposition of dendrimers.

  2. Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Ciepluch, Karol, E-mail: ciepluch@biol.uni.lodz.pl [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland); Katir, Nadia [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de l' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); El Kadib, Abdelkrim [Institute of Nanomaterials and Nanotechnology (INANOTECH)-MAScIR (Moroccan Foundation for Advanced Science, Innovation and Research), ENSET, Avenue de l' Armee Royale, Madinat El Irfane, 10100 Rabat (Morocco); Weber, Monika [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland); Caminade, Anne-Marie [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Bousmina, Mostapha [Hassan II Academy of Sciences and Technology, Avenue MVI, Km4, 10220 Rabat (Morocco); Pierre Majoral, Jean [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 route de Narbonne, F-31077 Toulouse cedex 4 (France); Hassan II Academy of Sciences and Technology, Avenue MVI, Km4, 10220 Rabat (Morocco); Bryszewska, Maria [Department of General Biophysics, University of Lodz, 141/143 Pomorska St., 90-236 Lodz (Poland)

    2012-06-15

    This work deals with photo-physical and structural interactions between viologen phosphorus dendrimers and human serum albumin (HSA). Viologens are derivatives of 4,4 Prime -bipyridinium salts. Aiming to rationalize the parameters governing such interactions eight types of these polycationic dendrimers in which the generation, the number of charges, the nature of the core and of the terminal groups vary from one to another, were designed and used. The influence of viologen-based dendrimers' on human serum albumin has been investigated. The photo-physical interactions of the two systems have been monitored by fluorescence quenching of free L-tryptophan and of HSA tryptophan residue. Additionally, using circular dichroism (CD) the effect of dendrimers on the secondary structure of albumin was measured. The obtained results show that viologen dendrimers interact with human serum albumin quenching its fluorescence either by collisional (dynamic) way or by forming complexes in a ground state (static quenching). In some cases the quenching is accompanied by changes of the secondary structure of HSA. - Highlights: Black-Right-Pointing-Pointer Photo-physical interactions between viologen phosphorus dendrimers and human serum albumin (HSA) were investigated. Black-Right-Pointing-Pointer The viologen dendrimers can quench the fluorescence of tryptophan in HSA. Black-Right-Pointing-Pointer CD spectra to explain the changes in secondary structure of albumin after exposition of dendrimers.

  3. Electrochemical Studies of Camptothecin and Its Interaction with Human Serum Albumin

    OpenAIRE

    Zhao, Jing; Zheng, Xiaofeng; Xing, Wei; Huang, Junyi; Li, Genxi

    2007-01-01

    Camptothecin, an anticancer component from Camptotheca acuminate, may interact with human serum albumin (HSA) at the subdomain IIA (site I), and then convert to its inactive form(carboxylate form). In this paper, the detailed electrochemical behaviors of camptothecin at a pyrolytic graphite electrode is presented. The interaction between camptothecin and HSA is also studied by electrochemical technique. By comparing with bovine serum albumin (BSA), which is highly homologous to HSA, we prove ...

  4. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements

    Directory of Open Access Journals (Sweden)

    Levitt DG

    2016-07-01

    Full Text Available David G Levitt,1,* Michael D Levitt2,* 1Department of Integrative Biology and Physiology, University of Minnesota, 2Research Service, Veterans Affairs Medical Center, Minneapolis, MN, USA *These authors contributed equally to this work Abstract: Serum albumin concentration (CP is a remarkably strong prognostic indicator of morbidity and mortality in both sick and seemingly healthy subjects. Surprisingly, the specifics of the pathophysiology underlying the relationship between CP and ill-health are poorly understood. This review provides a summary that is not previously available in the literature, concerning how synthesis, catabolism, and renal and gastrointestinal clearance of albumin interact to bring about albumin homeostasis, with a focus on the clinical factors that influence this homeostasis. In normal humans, the albumin turnover time of about 25 days reflects a liver albumin synthesis rate of about 10.5 g/day balanced by renal (≈6%, gastrointestinal (≈10%, and catabolic (≈84% clearances. The acute development of hypoalbuminemia with sepsis or trauma results from increased albumin capillary permeability leading to redistribution of albumin from the vascular to interstitial space. The best understood mechanism of chronic hypoalbuminemia is the decreased albumin synthesis observed in liver disease. Decreased albumin production also accounts for hypoalbuminemia observed with a low-protein and normal caloric diet. However, a calorie- and protein-deficient diet does not reduce albumin synthesis and is not associated with hypoalbuminemia, and CP is not a useful marker of malnutrition. In most disease states other than liver disease, albumin synthesis is normal or increased, and hypoalbuminemia reflects an enhanced rate of albumin turnover resulting either from an increased rate of catabolism (a poorly understood phenomenon or enhanced loss of albumin into the urine (nephrosis or intestine (protein-losing enteropathy. The latter may occur

  5. Octanoate in Human Albumin Preparations Is Detrimental to Mesenchymal Stromal Cell Culture

    Directory of Open Access Journals (Sweden)

    Way-Wua Wong

    2015-01-01

    Full Text Available Cell therapies hold great promise as the next major advance in medical treatment. To enable safe, effective ex vivo culture whilst maintaining cell phenotype, growth media constituents must be carefully controlled. We have used a chemically defined mesenchymal stromal cell culture medium to investigate the influence of different preparations of human serum albumin. We examined two aspects of cell culture, growth rate as measured by population doubling time and colony forming ability which is a representative measure of the stemness of the cell population. Albumin preparations showed comparative differences in both of these criteria. Analysis of the albumin bound fatty acids also showed differences depending on the manufacturing procedure used. We demonstrated that octanoate, an additive used to stabilize albumin during pasteurization, slows growth and lowers colony forming ability during ex vivo culture. Further to this we also found the level of Na+/K+ ATPase, a membrane bound cation pump inhibited by octanoate, is increased in cells exposed to this compound. We conclude that the inclusion of human serum albumin in ex vivo growth media requires careful consideration of not only the source of albumin, but also the associated molecular cargo, for optimal cell growth and behavior.

  6. Determination of human albumin in serum and urine samples by constant-energy synchronous fluorescence method.

    Science.gov (United States)

    Madrakian, Tayyebeh; Bagheri, Habibollah; Afkhami, Abbas

    2015-08-01

    A sensitive spectrofluorimetric method using constant-energy synchronous fluorescence technique is proposed for the determination of human albumin without separation. In this method, no reagent was used for enhancement of the fluorescence signal of albumin in the solution. Effects of some parameters, such as energy difference between excitation and emission monochromators (ΔE), emission and excitation slit widths and scan rate of wavelength were studied and the optimum conditions were established. For this purpose factorial design and response surface method were employed for optimization of the effective parameters on the fluorescence signal. The results showed that the scan rate of the wavelength has no significant effect on the analytical signal. The calibration curve was linear in the range 0.1-220.0 µg mL(-1) of albumin with a detection limit of 7.0 × 10(-3)  µg mL(-1). The relative standard deviations (RSD) for six replicate measurements of albumin were calculated as 2.2%, 1.7% and 1.3% for 0.5, 10.0 and 100.0 µg mL(-1) albumin, respectively. Furthermore the proposed method has been employed for the determination of albumin in human serum and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Preparation of Tc-99m human serum albumin using stannous citrate and stannous chloride

    International Nuclear Information System (INIS)

    El-Asrag, H.A.; El-Wetery, A.S.; El-Mohty, A.A.

    1988-01-01

    99mTc-albumin is widely used as radioactive indicator in the measurement of cardiac output by external counting techniques and in blood volume studies. The quality of 99mTc-albumin depends on the method of preparation. A comparative study had been carried out on the 99mTc-albumin preparation by the stannous chloride, stannous tartarate and stannous citrate method. The different parameters investigated for each method include: pH, albumin concentration, reductant concentration and ascorbic acid as antioxidant stabilizer. The biological distribution of 99mTc-albumin, prepared by different methods, were determined in mice and rats. A procedure was developed for the preparation of stannous human serum albumin (HSA) kit for human application the kit provides a freeze dried sterile formulation for reconstitution with sterile 99mTc pertechnetate solution to give 99mTc-Hsa, the effect of irradiation sterilization on the freeze dried kit was studied by spectrophotometric determination and biological distribution in mice and rats

  8. Human albumin prevents 6-hydroxydopamine-induced loss of tyrosine hydroxylase in in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhang

    Full Text Available Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH expression of dopaminergic (DA neurons induced by 6-hydroxydopamine (6-OHDA toxicity that is most commonly used to create a rat model of Parkinson's disease (PD. In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis.

  9. Human Albumin Prevents 6-Hydroxydopamine-Induced Loss of Tyrosine Hydroxylase in In Vitro and In Vivo

    Science.gov (United States)

    Zhang, Li-Juan; Xue, Yue-Qiang; Yang, Chun; Yang, Wei-Hua; Chen, Long; Zhang, Qian-Jin; Qu, Ting-Yu; Huang, Shile; Zhao, Li-Ru; Wang, Xiao-Min; Duan, Wei-Ming

    2012-01-01

    Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis. PMID:22815976

  10. Labelling of human serum albumin with iodine-131 for diagnosis in nuclear medicine

    International Nuclear Information System (INIS)

    Silva Valente Goncalves, R. da.

    1979-01-01

    Labelling of 131 I-human serum albumin with I-131 from a solution of 131 I-sodium iodide using chloramine T as an oxidant agent is studied. Parameters which can influence on the labelling yield like mass of human serum albumin, and chloramine T, pH of the reaction, reaction time and activity of 131 I are also studied. The purification of the labeled product by means of IRA-410 Amberlite ion-exchange resin in chloride form and the sterilization of the 131 I-human serum albumin by its passage through a 0,22μ millipore filter are carried out. The radiochemistry control of the final product by paper chromatography and the microbiological control by cultivation of microorganisms in fluid medium: nutrient broth, sodium thioglycollate broth and Sabouraud, are performed. The stability of the radiopharmaceutical until ten days after its preparation is analysed by means of radiochemical control. (Author) [pt

  11. (99m) Tc-labelled human serum albumin cannot replace (125) I-labelled human serum albumin to determine plasma volume in patients with liver disease

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Lütken; Henriksen, Jens H; Bendtsen, Flemming

    2013-01-01

    Summary Background and aims Determination of plasma volume (PV) is important in several clinical situations. Thus, patients with liver disease often have augmented PV as part of their sodium–water retention. This study was undertaken to compare PV determination by two indicators: technetium......-labelled human serum albumin (99mTc-HSA) and iodine-labelled human serum albumin (125I-HSA), as the former may have advantages at repeated measurements and the latter is the classical gold standard. Study population and methods In 88 patients, (64 with liver disease, mainly cirrhosis, and 24 patients without...... In all patients, a close correlation was present between PV determined by the two indicators (r = 0·89, Pdetermined with 99mTc-HSA exceeded PV determined with 125I-HSA by 367 ml (5·2 ml kg...

  12. Effects of non-enzymatic glycation in human serum albumin. Spectroscopic analysis

    Science.gov (United States)

    Szkudlarek, A.; Sułkowska, A.; Maciążek-Jurczyk, M.; Chudzik, M.; Równicka-Zubik, J.

    2016-01-01

    Human serum albumin (HSA), transporting protein, is exposed during its life to numerous factors that cause its functions become impaired. One of the basic factors - glycation of HSA - occurs in diabetes and may affect HSA-drug binding. Accumulation of advanced glycation end-products (AGEs) leads to diseases e.g. diabetic and non-diabetic cardiovascular diseases, Alzheimer disease, renal disfunction and in normal aging. The aim of the present work was to estimate how non-enzymatic glycation of human serum albumin altered its tertiary structure using fluorescence technique. We compared glycated human serum albumin by glucose (gHSAGLC) with HSA glycated by fructose (gHSAFRC). We focused on presenting the differences between gHSAFRC and nonglycated (HSA) albumin used acrylamide (Ac), potassium iodide (KI) and 2-(p-toluidino)naphthalene-6-sulfonic acid (TNS). Changes of the microenvironment around the tryptophan residue (Trp-214) of non-glycated and glycated proteins was investigated by the red-edge excitation shift method. Effect of glycation on ligand binding was examined by the binding of phenylbutazone (PHB) and ketoprofen (KP), which a primary high affinity binding site in serum albumin is subdomain IIA and IIIA, respectively. At an excitation and an emission wavelength of λex 335 nm and λem 420 nm, respectively the increase of fluorescence intensity and the blue-shift of maximum fluorescence was observed. It indicates that the glycation products decreases the polarity microenvironment around the fluorophores. Analysis of red-edge excitation shift method showed that the red-shift for gHSAFRC is higher than for HSA. Non-enzymatic glycation also caused, that the Trp residue of gHSAFRC becomes less accessible for the negatively charged quencher (I-), KSV value is smaller for gHSAFRC than for HSA. TNS fluorescent measurement demonstrated the decrease of hydrophobicity in the glycated albumin. KSV constants for gHSA-PHB systems are higher than for the unmodified serum

  13. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  14. Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum.

    Science.gov (United States)

    Avgoustiniatos, Efstathios S; Scott, William E; Suszynski, Thomas M; Schuurman, Henk-Jan; Nelson, Rebecca A; Rozak, Phillip R; Mueller, Kate R; Balamurugan, A N; Ansite, Jeffrey D; Fraga, Daniel W; Friberg, Andrew S; Wildey, Gina M; Tanaka, Tomohiro; Lyons, Connor A; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2012-01-01

    Culture of human islets before clinical transplantation or distribution for research purposes is standard practice. At the time the Edmonton protocol was introduced, clinical islet manufacturing did not include culture, and human serum albumin (HSA), instead of fetal bovine serum (FBS), was used during other steps of the process to avoid the introduction of xenogeneic material. When culture was subsequently introduced, HSA was also used for medium supplementation instead of FBS, which was typically used for research islet culture. The use of HSA as culture supplement was not evaluated before this implementation. We performed a retrospective analysis of 103 high-purity islet preparations (76 research preparations, all with FBS culture supplementation, and 27 clinical preparations, all with HSA supplementation) for oxygen consumption rate per DNA content (OCR/DNA; a measure of viability) and diabetes reversal rate in diabetic nude mice (a measure of potency). After 2-day culture, research preparations exhibited an average OCR/DNA 51% higher (p < 0.001) and an average diabetes reversal rate 54% higher (p < 0.05) than clinical preparations, despite 87% of the research islet preparations having been derived from research-grade pancreata that are considered of lower quality. In a prospective paired study on islets from eight research preparations, OCR/DNA was, on average, 27% higher with FBS supplementation than that with HSA supplementation (p < 0.05). We conclude that the quality of clinical islet preparations can be improved when culture is performed in media supplemented with serum instead of albumin.

  15. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones

    International Nuclear Information System (INIS)

    Poór, Miklós; Li, Yin; Kunsági-Máté, Sándor; Petrik, József; Vladimir-Knežević, Sanda; Kőszegi, Tamás

    2013-01-01

    The well-known 4-hydroxycoumarin derivative warfarin is a widespread anticoagulant drug. Besides its strong albumin binding property warfarin has a narrow therapeutic window. Therefore, a few percent of displacement from albumin can result in serious biological consequences. The flavonoid molecular group also shows very strong plasma albumin binding characteristics occupying the same binding site. It is plausible to hypothesize that flavonoid aglycones may be able to displace warfarin from human serum albumin (HSA). In our study the competing activities of different flavone (acacetin, apigenin, chrysin, luteolin), flavonol (galangin, quercetin) and flavanone (hesperetin, naringenin) aglycones were investigated using fluorescence spectroscopy. Our results represent that flavonoids are able to displace warfarin from the surface of HSA. On the other hand, when comparing flavone or flavonol groups to flavanones the latter group seems to be much weaker competitor. These observations were also supported by calculation of stability constants. Our investigations strongly suggest that we should reckon with the described molecular displacement. However, further in vivo studies are needed to support the findings of our model system. -- Highlights: • Various flavonoids are able to displace warfarin from human serum albumin. • Flavones and flavonols are much more effective competitors than flavanones. • Even 300 nM aglycone concentrations show the interaction with 3 μM warfarin. • Flavonoid pairs show quasi-additive desorbing property. • Flavones and flavonols are much stronger competitors than the examined drugs

  16. Molecular displacement of warfarin from human serum albumin by flavonoid aglycones

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Pécs H-7624 (Hungary); Li, Yin; Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, H-7624 Pécs (Hungary); Petrik, József [Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb (Croatia); Vladimir-Knežević, Sanda [Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb (Croatia); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Pécs H-7624 (Hungary)

    2013-10-15

    The well-known 4-hydroxycoumarin derivative warfarin is a widespread anticoagulant drug. Besides its strong albumin binding property warfarin has a narrow therapeutic window. Therefore, a few percent of displacement from albumin can result in serious biological consequences. The flavonoid molecular group also shows very strong plasma albumin binding characteristics occupying the same binding site. It is plausible to hypothesize that flavonoid aglycones may be able to displace warfarin from human serum albumin (HSA). In our study the competing activities of different flavone (acacetin, apigenin, chrysin, luteolin), flavonol (galangin, quercetin) and flavanone (hesperetin, naringenin) aglycones were investigated using fluorescence spectroscopy. Our results represent that flavonoids are able to displace warfarin from the surface of HSA. On the other hand, when comparing flavone or flavonol groups to flavanones the latter group seems to be much weaker competitor. These observations were also supported by calculation of stability constants. Our investigations strongly suggest that we should reckon with the described molecular displacement. However, further in vivo studies are needed to support the findings of our model system. -- Highlights: • Various flavonoids are able to displace warfarin from human serum albumin. • Flavones and flavonols are much more effective competitors than flavanones. • Even 300 nM aglycone concentrations show the interaction with 3 μM warfarin. • Flavonoid pairs show quasi-additive desorbing property. • Flavones and flavonols are much stronger competitors than the examined drugs.

  17. Molecular Structure-Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method.

    Science.gov (United States)

    Tang, Xiaosheng; Tang, Ping; Liu, Liangliang

    2017-06-23

    Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to its various activities. As main functional components of lotus leaf, the difference in structure of flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions between these flavonoids and serum albumins were further checked in detail. The relationship between the molecular properties of flavonoids and their affinities for serum albumins were analyzed and compared. The hydroxylation on 3 and 3' position increased the affinities for serum albumins. Moreover, both of the methylation on 3' position of quercetin and the C₂=C₃ double bond of apigenin and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force played an important role in binding flavonoids to HSA and BSA.

  18. The new albumin-free recombinant factor VIII concentrates for treatment of hemophilia: do they represent an actual incremental improvement?

    Science.gov (United States)

    Josephson, Cassandra D; Abshire, Thomas

    2004-07-01

    The goal of eliminating the low levels of infectious disease risk from hemophilia treatment has resulted in the development of multiple generations of recombinant factor VIII (rFVIII) products. The ideal product should be devoid of human and animal proteins, which may transmit infectious agents. These products should also maintain molecular integrity, hemostatic efficacy, similar immunogenicity, and acceptable side effect profiles as compared to plasma-derived factor VIII. Currently available first-, second-, and third-generation rFVIII products include Recombinate; Kogenate FS/Helixate FS and ReFacto; and Advate, respectively. During the evolution of rFVIII products, either full-length or B-domain-deleted factor VIII were transfected into immortalized cell lines. The B-domain-deleted product, ReFacto, has resulted in an additional method to monitor factor VIII levels. The third-generation products offer the theoretical advantage of being produced without human and/or animal proteins. Upon initial introduction into the marketplace, the newer products have a higher cost. However, when analyzing historical trends, the prices of these products are almost equivalent to first-generation products within 3 years of licensure. Thus, the initial cost of the product may be a minimal issue in the medical decision process when selecting rFVIII replacement therapy.

  19. Palmitate and stearate binding to human serum albumin. Determination of relative binding constants

    DEFF Research Database (Denmark)

    Vorum, H; Fisker, K; Honoré, B

    1997-01-01

    Multiple binding equilibria of two apparently insoluble ligands, palmitate and stearate, to defatted human serum albumin were studied in a 66 mM sodium phosphate buffer (pH 7.4) at 37 degrees C, by determination of dialytic exchange rates of ligands among identical equilibrium solutions. The expe...

  20. In vitro adduct formation of phosgene with albumin and hemoglobin in human blood

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Fidder, A.; Gurp, R.A. van; Jong, L.P.A. de; Benschop, H.P.

    2000-01-01

    The development of procedures for retrospective detection and quantitation of exposure to phosgene, based on adducts to hemoglobin and albumin, is described. Upon incubation of human blood with [14C]phosgene (0-750 μM), a significant part of radioactivity (0-13%) became associated with globin and

  1. Mechanism of anti-HIV activity of succinylated human serum albumin

    NARCIS (Netherlands)

    Kuipers, ME; Berg, HVD; Swart, PJ; Laman, Jon; Meijer, DKF; Kopelman, MHGM; Huisman, H

    1999-01-01

    In the present study, we described the interaction of succinylated human serum albumin (Suc-HSA), a negatively charged anti-HIV-1 active protein, with HIV-1 gp120 and in detail with the third variable domain of gp120 (V3 loop). To this end, different assay formats were tested in which gp120- and

  2. Covalent binding of nitrogen mustards to the cysteine-34 residue in human serum albumin

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Jansen, R.

    2002-01-01

    Covalent binding of various clinically important nitrogen mustards to the cysteine-34 residue of human serum albumin, in vitro and in vivo, is demonstrated. A rapid method for detection of these adducts is presented, based on liquid chromatography-tandem mass spectrometry analysis of the adducted

  3. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    Directory of Open Access Journals (Sweden)

    Azade Taheri

    2011-01-01

    Full Text Available Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl carbodiimide HCl (EDC to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90–150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37∘C and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of crosslinker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the crosslinker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC. Nanoparticles were more cytotoxic on T47D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the IC50 value of methotrexate on T47D cells in comparison with free methotrexate.

  4. Nanoparticles of Conjugated Methotrexate-Human Serum Albumin: Preparation and Cytotoxicity Evaluations

    International Nuclear Information System (INIS)

    Taheri, A.; Atyabi, F.; Nouri, F.S.; Ahadi, F.; Derakhshan, M.A.; Dinarvand, R.; Atyabi, F.; Ghahremani, M.H.; Ostad, S.N.; Dinarvand, R.; Amini, M.; Ghahremani, M.H.; Ostad, S.N.; Mansoori, P.

    2011-01-01

    Methotrexate-human serum albumin conjugates were developed by a simple carbodiimide reaction. Methotrexate-human serum albumin conjugates were then crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC) to form nanoparticles. The size of nanoparticles determined by laser light scattering and TEM was between 90 150 nm. Nanoparticles were very stable at physiologic conditions (PBS pH 7.4, 37 degree C) and after incubation with serum. The effect of amount of EDC used for crosslinking on the particle size and free amino groups of nanoparticles was examined. The amount of cross linker showed no significant effect on the size of nanoparticles but free amino groups of nanoparticles were decreased by increasing the cross linker. The physicochemical interactions between methotrexate and human serum albumin were investigated by differential scanning calorimetry (DSC). Nanoparticles were more cytotoxic on T 47 D cells compared to free methotrexate. Moreover, methotrexate-human serum albumin nanoparticles decreased the C50 value of methotrexate on T 47 D cells in comparison with free methotrexate.

  5. Alteration of human serum albumin binding properties induced by modifications: A review

    Science.gov (United States)

    Maciążek-Jurczyk, Małgorzata; Szkudlarek, Agnieszka; Chudzik, Mariola; Pożycka, Jadwiga; Sułkowska, Anna

    2018-01-01

    Albumin, a major transporting protein in the blood, is the main target of modification that affects the binding of drugs to Sudlow's site I and II. These modification of serum protein moderates its physiological function, and works as a biomarker of some diseases. The main goal of the paper was to explain the possible alteration of human serum albumin binding properties induced by modifications such as glycation, oxidation and ageing, their origin, methods of evaluation and positive and negative meaning described by significant researchers.

  6. Purification of recombinant C-terminus polyhistidine tagged human ...

    African Journals Online (AJOL)

    Dell

    2012-05-03

    May 3, 2012 ... this research, C-terminus polyhistidine tagged human recombinant calcitonin which was ... range protein molecular weight marker was from SIGMA. PCR- ... supernatant was stored at -80°C until needed for further assays.

  7. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  8. Recombinant human erythropoietin in sports: a review

    Directory of Open Access Journals (Sweden)

    Rafael Maia de Almeida Bento

    2003-06-01

    Full Text Available Erythropoietin is an endogenous hormone of glicoproteic nature secreted by the kidneys and is the main regulator of the erythropoiesis. An alteration in its production generates a disturbance in the plasmatic concentration giving rise to several types of pathologies related to the hematopoietic system. The recombinant forms of erythropoietin have indiscriminately been used by athletes, mainly in endurance sports, by increasing the erythrocytes concentration, generating a better delivery of oxygen to the muscle tissue. The administration of recombinant erythropoietin was prohibited by the International Olympic Committee and its use considered as doping. This review has the intention to describe the physical, biological and pharmacokinetic properties of the endogenous erythropoietin, as well as its recombinant form, describing also its use in sports and the process of searching methodologies for its detection in doping control.

  9. Effect of the conditions of isolation on the physicochemical properties of human serum albumin in the norm and with pathology

    Science.gov (United States)

    Ivanov, A. I.; Zhbankov, R. G.; Korolenko, E. A.; Korolik, E. V.; Meleshchenko, L. A.; Sarnatskaya, V. V.; Nikolaev, V. G.; Nikolaichik, V. V.; Yushko, L. A.

    1997-01-01

    Differential scanning calorimetry and IR spectrosocopy were used to investigate the effect of the procedure of isolation of human serum albumin on its physicochemical characteristics. It is shown that fractionation of blood plasma with ethylene glycol followed by ion exchange chromatography can be used to obtain albumin of normal donors that is similar to the albumin in the nonfractionated plasma according to melting thermograms. Endotherms of human serum albumin samples that were obtained by affinity chromatography and preparative electrophoresis are bimodal, unlike the monophasic for albumin obtained by polyethylene glycol precipitation. These changes result from a higher content of nonetherified fatty acids in the albumin samples obtained by affinity chromatography and from modification of the secondary protein structure in the samples obtained by electrophoresis. Analysis of melting thermograms of serum albumin from patients with uremia, chronic hepatitis, and peritonitis shows that fractionation of blood with polyethylene glycol preserves the thermodynamic characteristics of the various pathological serum albumins to the greatest extent. The present results demonstrate the advantage of polyethylene glycol fractionation for isolation of native preparations of normal and “pathological” human serum albumin.

  10. Peculiarities of the introduction of technetium isotopes into protein molecules - of human serum albumin as an example

    International Nuclear Information System (INIS)

    Stanko, V.I.; Ovsyannikov, N.N.; Zuykova, N.P.; Gouskov, A.F.; Kovalchouk, N.D.

    1978-07-01

    Pecularities of the introduction of the radioisotope technetium 99m into the molecules of human serum albumin have been investigated. Tin not only participates in the Tc(V11) reduction process, but is incorporated into the originating Tc albumin complex. It is shown that no more than four technetium atoms enter into bond with an albumin molecule. The authors express their opinion that in order to produce high-quality protein preparations, the albumin has to be modified through a polyfunctional complexing agent which forms an entirely saturated coordination complex with Tc(IV)

  11. Pecularities of the introduction of technetium isotopes into protein molecules using human serum albumin as an example

    International Nuclear Information System (INIS)

    Stanko, V.I.; Ovsyannikov, N.N.; Sujkova, N.P.; Gus'kov, A.F.; Koval'chuk, N.D.

    1978-01-01

    Pecularities of the introduction of the radioisotope technetium 99m into the molecules of human serum albumin have been investigated. Tin not only participates in the Tc(VII) reduction process, but is incorporated into the originating Tc albumin complex. It is shown that no more than four technetium atoms enter into bond with an albumin molecule. The authors express their opinion that in order to produce high-quality protein preparations, the albumin has to be modified through a polyfunctional complexing agent which forms an entirely saturated coordination complex with Tc(IV). (author)

  12. Albumin Redhill (-1 Arg, 320 Ala → Thr): A glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site

    International Nuclear Information System (INIS)

    Brennan, S.O.; Myles, T.; Peach, R.J.; George, P.M.; Donaldson, D.

    1990-01-01

    Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind 63 Ni 2+ and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni 2+ was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala → Thr. This introduces as Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg → Cys. The authors propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase

  13. Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning

    International Nuclear Information System (INIS)

    Takahashi, N.; Takahashi, Y.; Blumberg, B.S.; Putnam, F.W.

    1987-01-01

    The structural changes in four genetic variants of human serum albumin were analyzed by tandem high-pressure liquid chromatography (HPLC) of the tryptic peptides, HPLC mapping and isoelectric focusing of the CNBr fragments, and amino acid sequence analysis of the purified peptides. Lysine-372 of normal (common) albumin A was changed to glutamic acid both in albumin Naskapi, a widespread polymorphic variant of North American Indians, and in albumin Mersin found in Eti Turks. The two variants also exhibited anomalous migration in NaDodSO 4 /PAGE, which is attributed to a conformational change. The identity of albumins Naskapi and Mersin may have originated through descent from a common mid-Asiatic founder of the two migrating ethnic groups, or it may represent identical but independent mutations of the albumin gene. In albumin Adana, from Eti Turks, the substitution site was not identified but was localized to the region from positions 447 through 548. The substitution of aspartic acid-550 by glycine was found in albumin Mexico-2 from four individuals of the Pima tribe. Although only single-point substitutions have been found in these and in certain other genetic variants of human albumin, five differences exist in the amino acid sequences inferred from cDNA sequences by workers in three other laboratories. However, our results on albumin A and on 14 different genetic variants accord with the amino acid sequence of albumin deduced from the genomic sequence. The apparent amino acid substitutions inferred from comparison of individual cDNA sequences probably reflect artifacts in cloning or in cDNA sequence analysis rather than polymorphism of the coding sections of the albumin gene

  14. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  15. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    OpenAIRE

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  16. Albumin-associated lipids regulate human embryonic stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Francesc R Garcia-Gonzalo

    Full Text Available BACKGROUND: Although human embryonic stem cells (hESCs hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE: Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems.

  17. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  18. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  19. Humanizing recombinant glycoproteins from Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Anders Holmgaard; Amann, Thomas; Kol, Stefan

    With new tools for gene-editing like zinc-fingers, TALENS and CRISPR, it is now feasible totailor-make the N-Glycoforms for therapeutic glycoproteins that have previously been almost impossible. We here demonstrate a case of humanizing a recombinant human glycoprotein that in Wild type (WT) Chinese...

  20. Reversible covalent binding of neratinib to human serum albumin in vitro.

    Science.gov (United States)

    Chandrasekaran, Appavu; Shen, Li; Lockhead, Susan; Oganesian, Aram; Wang, Jianyao; Scatina, JoAnn

    2010-12-01

    Neratinib (HKI-272), an irreversible inhibitor of Her 2 tyrosine kinase, is currently in development as an alternative for first and second line therapy in metastatic breast cancer patients who overexpress Her 2. Following incubation of [(14)C]neratinib in control human plasma at 37°C for 6 hours, about 60% to 70% of the radioactivity was not extractable, due to covalent binding to albumin. In this study, factors that could potentially affect the covalent binding of neratinib to plasma proteins, specifically to albumin were investigated. When [(14)C]neratinib was incubated at 10 μg/mL in human serum albumin (HSA) or control human plasma, the percent binding increased with time; the highest percentages of binding (46 and 67%, respectively) were observed at 6 hours, the longest duration of incubation examined. Binding increased with increasing temperature; the highest percentages of binding to HSA or human plasma (59 and 78%) were observed at 45°C, the highest temperature tested. The binding also increased with increasing pH of incubation; the highest percentages of binding (56 and 65%) were observed at pH 8.5, the highest pH value tested. The percentages of binding were similar (53% to 57%) when a wide range of concentrations of [(14)C]neratinib (50 ng/mL to 10 μg/mL) were incubated with human plasma at 37°C for 6 hours, indicating that the binding was independent of the substrate concentration, especially in the therapeutic range (50 to 200 ng/mL). When human plasma proteins containing covalently bound [(14)C]neratinb were suspended in a 10 fold volume of phosphate buffer at pH 4.0, 6.0, 7.4, and 8.5, and further incubated at 37°C for ~ 16 hours, about 45%, 44%, 32%, and 12% of the total radioactivity, respectively, was released as unchanged [(14)C]neratinib, indicating that the binding is reversible in nature, with more released at pH 7.4 and below. In conclusion, the covalent binding of neratinib to serum albumin is pH, time and temperature dependent, but

  1. Use of mep HyperCel for polishing of human serum albumin.

    Science.gov (United States)

    McCann, Karl B; Vucica, Yvonne; Wu, John; Bertolini, Joseph

    2014-10-15

    The manufacture of human serum albumin by chromatographic procedures involves gel filtration chromatography as a final polishing step. Despite this step being essential to remove high molecular weight impurity proteins and thus ensure a stable and safe final product, it is relatively inefficient. This paper explores the use of hydrophobic charge induction chromatographic media, MEP HyperCel as an alternative to Sephacryl S200HR gel filtration for the polishing of human serum albumin derived by ion exchange chromatographic purification of Cohn Supernatant I. The use of MEP HyperCel results in a product with a higher purity than achieved with gel filtration and in a less time consuming manner and with potential resource savings. MEP HyperCel appears to have great potential for incorporation into downstream processes in the plasma fractionation industry as an efficient means of achieving polishing of intermediates or capture of proteins of interest. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Density and radioactivity distribution of respirable range human serum albumin aerosol

    International Nuclear Information System (INIS)

    Raghunath, B.; Somasundaram, S.; Soni, P.S.

    1988-01-01

    Dry human serum albumin (HSA) aerosol in the respirable size range was generated using the BARC nebulizer. The aerosol was sampled using Lovelace Aerosol Particle Separator (LAPS) and the density of HSA was determined. Labelling of HSA with 99m TcO 4 - was done, both in HSA solution and with dry denatured HSA particles, to study the distribution of radioactivity in both cases. The results are discussed. (author)

  3. Forster resonance energy transfer in the system of human serum albumin-xanthene dyes

    Science.gov (United States)

    Kochubey, V. I.; Pravdin, A. B.; Melnikov, A. G.; Konstantinova, I.; Alonova, I. V.

    2016-04-01

    The processes of interaction of fluorescent probes: eosin and erythrosine with human serum albumin (HSA) were studied by the methods of absorption and fluorescence spectroscopy. Extinction coefficients of probes were determined. Critical transfer radius and the energy transfer efficiency were defined by fluorescence quenching of HSA. Analysis of the excitation spectra of HSA revealed that the energy transfer process is carried out mainly between tryptophanyl and probes.

  4. Radiopharmaceutical development based on human blood albumin microspheres and 90Y

    International Nuclear Information System (INIS)

    Petriev, V M; Vlasova, O P; Postnov, A A; Epstein, N B

    2017-01-01

    New radiopharmaceutial (RP) based on human serum albumin microspheres (MSA) and 90 Y was developed for treatment of liver cancer. The optimized synthesis using chelation resulted in approximately 80% yield with high specific activity. The RP developed was tested in mice with inoculated sarcoma-37. In two weeks the tumor size reduced by 43% after the treatment with the dose of 500 μCi injected into the tumor site. (paper)

  5. A note on the electrolytic preparation of sup(99m)Tc human serum albumin

    International Nuclear Information System (INIS)

    Ligny, C.L. de; Dekker, B.G.

    1978-01-01

    A note to the simple electrolytic preparations of Tc-99m human serum albumin using tin electrodes, elaborated by Narasimhan and Mani, is described. Narasimhan and Mani's procedure yields mainly hydrolysed reduced Tc. Gil et al described a modification of Narasimhan and Mani's procedure wherein about 60% Tc-HSA chelate can be obtained. Purity analysis was performed by paper chromatography with 85% methanol as eluent. (T.I.)

  6. Application of fluorescent and vibration spectroscopy for septic serum human albumin structure deformation during pathology

    Science.gov (United States)

    Zyubin, A.; Konstantinova, E.; Slezhkin, V.; Matveeva, K.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.

  7. Porphyrin mediated photo-modification of the structure and function of human serum albumin

    Science.gov (United States)

    Rozinek, Sarah C.

    Photosensitization reactions involve irradiating (with visible light) molecules with a high efficiency for either electron transfer or entering an excited triplet state (photosensitizer). Such reactions are applied to photodynamic cancer therapy, many medical laser-treatments, and a potential array of disinfection and pest elimination techniques. To understand the biophysical mechanisms of how these applications are effective at the protein level, the group of Dr. Brancaleon (UTSA) has investigated the irradiation of several dye-protein combinations, and discovered effects on protein structure and function. To further that work, we have investigated irradiation of the protein, human serum albumin (HSA), photosensitized by either protoporphyrin IX (PPIX) or meso-tetrakis(4-sulfonatophenyl)porphyrin (TSPP). HSA is the most abundant plasma protein, making it a likely substrate in PDT, and it possesses a specific binding pocket for iron-PPIX (heme) and possibly other porphyrin derivatives. The results of our research are summarized as follows. First, a thorough characterization of the binding of each photosensitizer to albumin was completed, elucidating a probable binding location for TSPP. Next, fluorescence lifetime emission of the single tryptophan residue, alongside circular dichroism, found tertiary structural changes around tryptophan and an overall 20% decrease in protein secondary structure after irradiation with TSPP bound. Finally, to determine if protein function was lost after photosensitization, size exclusion chromatography found modified albumin still recognizable by its receptor-protein, and comparative ex vivo up-take studies revealed that modified albumin is not processed the same way as native albumin in live tapeworm larva (Mesocestoides corti). Thus we found that visible light can induce partial unfolding of a protein by using a photo-activated ligand. These small structural modifications were sufficient to affect the protein's biological function.

  8. Study the interaction between CdTe-glutathione and human serum albumin

    International Nuclear Information System (INIS)

    Yang, Qing; Zhou, Xi-min; Zhu, Yi-shuo; Chen, Xing-guo

    2013-01-01

    In this paper, glutathione (GSH) modified CdTe quantum dots (CdTe-GSH QDs) were synthesized in an aqueous solution. Then, the binding of the CdTe-GSH QDs to human serum albumin (HSA) was studied using the fluorescence spectroscopy. The quenching mechanism was investigated in terms of the association constants and basic thermodynamic parameters. The fluorescence data revealed that CdTe-GSH QDs could quench the intrinsic fluorescence of human serum albumin by a static quenching mechanism. Furthermore, alteration of the secondary protein structure in the presence of the QDs was confirmed by synchronous fluorescence spectra. - Highlights: ► In this paper, the binding of the CdTe-GSH QDs to human serum albumin (HSA) was studied using a fluorescence spectroscopy. ► The quenching mechanism was investigated in terms of the association constants and basic thermodynamic parameters. ► Furthermore, alteration of the secondary protein structure in the presence of the QDs was confirmed by synchronous fluorescence spectra. ► The research can help us assess biological toxicity of QDs and further expand the application scope of QDs.

  9. Study the interaction between CdTe-glutathione and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing; Zhou, Xi-min; Zhu, Yi-shuo [National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen, Xing-guo, E-mail: chenxg@lzu.edu.cn [National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2013-03-15

    In this paper, glutathione (GSH) modified CdTe quantum dots (CdTe-GSH QDs) were synthesized in an aqueous solution. Then, the binding of the CdTe-GSH QDs to human serum albumin (HSA) was studied using the fluorescence spectroscopy. The quenching mechanism was investigated in terms of the association constants and basic thermodynamic parameters. The fluorescence data revealed that CdTe-GSH QDs could quench the intrinsic fluorescence of human serum albumin by a static quenching mechanism. Furthermore, alteration of the secondary protein structure in the presence of the QDs was confirmed by synchronous fluorescence spectra. - Highlights: Black-Right-Pointing-Pointer In this paper, the binding of the CdTe-GSH QDs to human serum albumin (HSA) was studied using a fluorescence spectroscopy. Black-Right-Pointing-Pointer The quenching mechanism was investigated in terms of the association constants and basic thermodynamic parameters. Black-Right-Pointing-Pointer Furthermore, alteration of the secondary protein structure in the presence of the QDs was confirmed by synchronous fluorescence spectra. Black-Right-Pointing-Pointer The research can help us assess biological toxicity of QDs and further expand the application scope of QDs.

  10. Preparation and quality control of MAA human serum albumin kit

    International Nuclear Information System (INIS)

    Yassin, T.; Dadokh, M.; Almalki, R.

    2005-05-01

    MAA Macro aggregate Kit for pulmonary perfusion after labeling with 99m Tc was prepared according to an optimum conditions, where each vial contains 0.8 mg of HSA and 0.17 mg of stannous chloride dehydrate (SnCl 2 2H 2 O),The prepared kit showed high quality satisfying the requirements of international pharmacopoeias from the points of physical, chemical, radiochemical and biological purities, and its validity for human injection. And the labeling yield exceeded 99 % with average value of about 99.74 ± 0.27 % for 2mCi/2ml radioactivity, The bio distribution study in rats showed that an average of 93.87 ± 3.97% of injected dose was located in the lungs after 10 minutes where only about 0.99 ± 0.41 % of it was located in the liver and about 0.41 ± 0.14% in the kidneys and blood clearance 1.235 ± 0.78 %. This study also showed that each vial content can be labeled with maximum activity of 99m Tc of about 50 mCi. (Authors)

  11. Ovarian response to recombinant human follicle-stimulating hormone

    DEFF Research Database (Denmark)

    Arce, Joan-Carles; Andersen, Anders Nyboe; Fernández-Sánchez, Manuel

    2014-01-01

    OBJECTIVE: To evaluate the dose-response relationship of a novel recombinant human FSH (rhFSH; FE 999049) with respect to ovarian response in patients undergoing IVF/intracytoplasmic sperm injection treatment; and prospectively study the influence of initial antimüllerian hormone (AMH) concentrat......OBJECTIVE: To evaluate the dose-response relationship of a novel recombinant human FSH (rhFSH; FE 999049) with respect to ovarian response in patients undergoing IVF/intracytoplasmic sperm injection treatment; and prospectively study the influence of initial antimüllerian hormone (AMH...

  12. Selective analysis of human serum albumin based on SEC-ICP-MS after labelling with iophenoxic acid

    DEFF Research Database (Denmark)

    Dersch, Julie Maria; Nguyen, Tam T. T. N.; Østergaard, Jesper

    2015-01-01

    Human serum albumin (HSA) is the most abundant protein in the human plasma. HSA has several physiological roles in the human body, including storage and transport. Owing to the predominance of albumin in plasma, HSA is often involved in the protein binding of drugs. The aim of this work was to de...... plasma and urine samples and for studying the binding of cisplatin to proteins in the human plasma.......Human serum albumin (HSA) is the most abundant protein in the human plasma. HSA has several physiological roles in the human body, including storage and transport. Owing to the predominance of albumin in plasma, HSA is often involved in the protein binding of drugs. The aim of this work...... was to develop a selective, quantitative method for determining albumin in plasma with the purpose of clarifying the fate of metal-based drugs in biological systems. The method can also be applied for determination of urine albumin, which is of relevance in diagnostics of kidney disease. A selective method...

  13. Application of photoactivation in the preparation of radiopharmaceuticals. Pt. 3. Human serum albumin labelled with technetium (99mTc)

    International Nuclear Information System (INIS)

    Komarek, P.; Kleisner, I.; Konopkova, M.; Komarkova, I.

    1997-01-01

    Human serum albumin was photoactivated with UV light at 254 nm and labelled with technetium ( 99m Tc) by reducing pertechnetate ( 99m Tc) with stannous chloride. Radiochemical purity was determined by using paper chromatography, columns and electrophoresis. The biodistribution of labelled albumin in rats was assessed by activity counting in isolated organs 15 and 60 minutes after administration. Photoactivation increases the number of free SH groups, which affect favourably the labelling efficiency. Irradiated albumin exhibits a higher labelling efficiency (99%) than non-irradiated albumin (96%). The structural changes depend on the UV radiation dose, concentration of irradiated substances, and metal ion content (Sn 2+ ). The results obtained suggest that the elimination from blood of albumin whose structure has been altered by photoactivation can be accelerated, thereby creating favourable conditions for its application in the diagnosis of inflammatory diseases. (author)

  14. Evaluation of the binding effect of human serum albumin on the properties of granules.

    Science.gov (United States)

    Kristó, Katalin; Bajdik, János; Eros, István; Pintye-Hódi, Klára

    2008-11-01

    The main objective of this study was the application of a solution of human serum albumin as a granulating fluid. The properties of the granules formed were evaluated and compared with those when a conventional binder was applied in the same concentration. The powder mixture contained a soluble (mannitol) and an insoluble component (different types of cellulose). The protein solution applied exerted an appropriate aggregating effect if the system contained microcrystalline celluloses. Powdered cellulose was not suitable for the granulation with human serum albumin solution. As compared with the same concentration of the conventionally applied cellulose ethers as binder, the prepared granules exhibited a larger particle size, a significantly better compressibility, a higher breaking hardness and a favourable deformation process. These findings mainly reflect the good adhesive properties of the protein. The best compressibility and mechanical behaviour were attained on the application of the microcrystalline cellulose Vivapur type 105. This favourable behaviour may be connected with the wettability of cellulose. These results suggest that the formulation of tablets may be easier from an active agent in the serum that binds to albumin (e.g. interferon) since the amount of additives (binder) can be reduced.

  15. Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases.

    Science.gov (United States)

    Naldi, Marina; Baldassarre, Maurizio; Nati, Marina; Laggetta, Maristella; Giannone, Ferdinando Antonino; Domenicali, Marco; Bernardi, Mauro; Caraceni, Paolo; Bertucci, Carlo

    2015-08-10

    Human serum albumin (HSA) undergoes several structural alterations affecting its properties in pro-oxidant and pro-inflammatory environments, as it occurs during liver cirrhosis. These modifications include the formation of albumin dimers. Although HSA dimers were reported to be an oxidative stress biomarker, to date nothing is known about their role in liver cirrhosis and related complications. Additionally, no high sensitive analytical method was available for HSA dimers assessment in clinical settings. Thus the HSA dimeric form in human plasma was characterized by mass spectrometry using liquid chromatography tandem mass spectrometry (LC-ESI-Q-TOF) and matrix assisted laser desorption time of flight (MALDI-TOF) techniques. N-terminal and C-terminal truncated HSA, as well as the native HSA, undergo dimerization by binding another HSA molecule. This study demonstrated the presence of both homo- and hetero-dimeric forms of HSA. The dimerization site was proved to be at Cys-34, forming a disulphide bridge between two albumin molecules, as determined by LC-MS analysis after tryptic digestion. Interestingly, when plasma samples from cirrhotic subjects were analysed, the dimer/monomer ratio resulted significantly increased when compared to that of healthy subjects. These isoforms could represent promising biomarkers for liver disease. Additionally, this analytical approach leads to the relative quantification of the residual native HSA, with fully preserved structural integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Covalent Modification of Human Serum Albumin by the Natural Sesquiterpene Lactone Parthenolide

    Directory of Open Access Journals (Sweden)

    Michael Plöger

    2015-04-01

    Full Text Available The reactivity of parthenolide (PRT, a natural sesquiterpene lactone from Tanacetum parthenium (Asteraceae, with human serum albumin (HSA was studied by UHPLC/+ESI-QqTOF MS analysis after tryptic digestion of albumin samples after incubation with this compound. It was found that the single free cysteine residue, C34, of HSA (0.6 mM reacted readily with PRT when incubated at approximately 13-fold excess of PRT (8 mM. Time-course studies with PRT and its 11β,13-dihydro derivative at equimolar ratios of the reactants revealed that PRT under the chosen conditions reacts preferably with C34 and does so exclusively via its α-methylene-γ-lactone moiety, while the epoxide structure is not involved in the reaction.

  17. Humant serum-albumin som proteinkilde ved dyrkning af humane oocytter, spermatozoer og praeembryoer

    DEFF Research Database (Denmark)

    Andersen, C Y; Hay-Schmidt, Anders; Byskov, A G

    1991-01-01

    patient serum as source of protein in the culture of oocytes, spermatozoa and pre-embryos in IVF-ET treatment. The pregnancy rate per transplantation was increased from 30% in the serum group (21 pregnant out of 69 transplantations) to 39% in the albumin group (26 pregnant out of 66 transplantations...... takes place, also consists of a source of protein. In order to eliminate the variability of patient sera, a prospective, randomized investigation was performed to elucidate whether a well-defined source of protein such as human serum albumin (hSA-hSA 200 mg/ml, Statens Seruminstitute) can replace......SA is recommended as the source of protein, rather than the patient's own serum in the culture of oocytes, spermatozoa and pre-embryos in IVF-ET treatment....

  18. Insights into the ninhydrin chemiluminescent reaction and its potential for micromolar determination of human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, M. Rodriguez [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria, 8 33006 Oviedo (Spain); Laino, R. Badia [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria, 8 33006 Oviedo (Spain); Diaz-Garcia, M.E. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria, 8 33006 Oviedo (Spain)]. E-mail: medg@uniovi.es

    2006-06-15

    The N-terminal region of human serum albumin (HSA) has an inherent affinity for Co(II) ions. On this basis a new continuous flow method for detection of HSA has been developed taking advantage of the strong quenching effect of the albumin in the ninhydrin-H{sub 2}O{sub 2}-Co(II) chemiluminescent system. The analytical potential of the system is compared with other conventional chemiluminescent reagents. The method gives linear responses from the detection limit (0.30 {mu}M HSA) up to 6.8 {mu}M. The repeatability of the method is good (RSD=7%), it is cheap and rapid to apply and does not require the use of insoluble or expensive reagents nor sophisticated equipment.

  19. Therapeutic implications of recombinant human erythropoietin in ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-12-29

    Dec 29, 2006 ... quence of both, RHUEPO has achieved the highest annual sales ... analysis of the US Medicare database (Ma et al., 1999) ... blood transfusions and improves quality of life (Eschbach, ... Large doses of EPO results increase in blood pressure .... human erythropoietin was obtained from human genomic.

  20. Termini of human chromosomes display elevated rates of mitotic recombination.

    Science.gov (United States)

    Cornforth, M N; Eberle, R L

    2001-01-01

    The strand-specific in situ hybridization technique of CO-FISH was used to probe telomeres of human mitotic cells in order to determine the spontaneous frequency of crossover. This approach allowed the detection of recombinational crossovers occurring anywhere along the length of individual chromosomes, including reciprocal events taking place between sister chromatids. Although the process of sister chromatid exchange (SCE) is the most prominent type of recombination in somatic mammalian cells, our results show that SCEs accounted for less than a third of the recombinational events revealed by CO-FISH. It is concluded that chromosomal regions near the termini of chromosome arms undergo extraordinarily high rates of spontaneous recombination, producing terminal crossovers whose small size precludes detection by standard cytogenetic methods. That similar results were observed for transformed epithelial cells, as well as primary fibroblasts, suggests that the phenomenon is a common characteristic of human cells. These findings are noteworthy because, although telomeric and subtelomeric DNA is known to be preferentially involved in certain types of recombination, the tips of somatic mammalian chromosomes have not previously been identified as preferred sites for crossover. Implications of these results are discussed in terms of limitations imposed on CO-FISH for its proposed use in directional hybridization mapping.

  1. Recombination in the human Pseudoautosomal region PAR1.

    Directory of Open Access Journals (Sweden)

    Anjali G Hinch

    2014-07-01

    Full Text Available The pseudoautosomal region (PAR is a short region of homology between the mammalian X and Y chromosomes, which has undergone rapid evolution. A crossover in the PAR is essential for the proper disjunction of X and Y chromosomes in male meiosis, and PAR deletion results in male sterility. This leads the human PAR with the obligatory crossover, PAR1, to having an exceptionally high male crossover rate, which is 17-fold higher than the genome-wide average. However, the mechanism by which this obligatory crossover occurs remains unknown, as does the fine-scale positioning of crossovers across this region. Recent research in mice has suggested that crossovers in PAR may be mediated independently of the protein PRDM9, which localises virtually all crossovers in the autosomes. To investigate recombination in this region, we construct the most fine-scale genetic map containing directly observed crossovers to date using African-American pedigrees. We leverage recombination rates inferred from the breakdown of linkage disequilibrium in human populations and investigate the signatures of DNA evolution due to recombination. Further, we identify direct PRDM9 binding sites using ChIP-seq in human cells. Using these independent lines of evidence, we show that, in contrast with mouse, PRDM9 does localise peaks of recombination in the human PAR1. We find that recombination is a far more rapid and intense driver of sequence evolution in PAR1 than it is on the autosomes. We also show that PAR1 hotspot activities differ significantly among human populations. Finally, we find evidence that PAR1 hotspot positions have changed between human and chimpanzee, with no evidence of sharing among the hottest hotspots. We anticipate that the genetic maps built and validated in this work will aid research on this vital and fascinating region of the genome.

  2. Potential use of recombinant human interleukin-6 in clinical oncology

    NARCIS (Netherlands)

    Veldhuis, GJ; Willemse, PHB; Mulder, NH; Limburg, PC; deVries, EGE

    Recombinant human IL-6 (rhIL-6) is a pleiotropic cytokine with stimulatory actions on the hematopoietic system, the immune system and hepatocytes. Clinical interest in the use of this cytokine was raised because of its thrombopoietic properties and also because of its anti-tumor activity, which was

  3. Immunological aspects of antibody formation against recombinant human therapeutics

    NARCIS (Netherlands)

    Sauerborn, M.S.

    2010-01-01

    With about 200 new products in the pipeline, recombinant human (rh) therapeutics are becoming the most dominant class of drugs. One of the reasons to create rh therapeutics was to avoid recognition by the immune system due to foreign origin. Nevertheless, rh therapeutics induced formation of

  4. Antiproliferative activity of recombinant human interferon-λ2 ...

    African Journals Online (AJOL)

    Antiproliferative activity of recombinant human interferon-λ2 expressed in stably ... The representing 26 kDa protein band of IFN-λ2 was detected by SDS-PAGE and ... The antiproliferative activity of hIFN-λ2 was determined by MTT assay.

  5. Haemostatic aspects of recombinant human erythropoietin in colorectal surgery

    DEFF Research Database (Denmark)

    Poulsen, K A; Qvist, N; Winther, K

    1998-01-01

    OBJECTIVE: To find out whether recombinant human erythropoietin (r-HuEPO) given perioperatively has any effect on haemostatic activity in patients undergoing elective colorectal resection. DESIGN: A placebo-controlled double-blind study. SETTING: Odense university hospital, Denmark. SUBJECTS: 24...

  6. Radioactive excretion in human milk following administration of /sup 99m/Tc macroaggregated albumin

    International Nuclear Information System (INIS)

    Pittard, W.B.; Merkatz, R.; Fletcher, B.D.

    1982-01-01

    Albumin-tagged sodium pertechnetate (technetium) is routinely used in nuclear medicine for scanning procedures of the lung. The rate of excretion of this radionuclide into breast milk and the resultant potential radiation hazard to the nursing infant have received little attention. Therefore the milk from a nursing mother who required a lung scan because of suspected pulmonary emboli using an intravenous injection of 4 mCi of /sup 99m/Tc macroaggregated human serum albumin was monitored. Albumin tagging severely limited the entrance of technetium into her milk and the radioactivity of the milk returned to base line by 24 hours. A total of 2.02 muCi of technetium was measured in the 24-hour milk collection after technetium injection and 94% of this amount was excreted by 15.5 hours. This amount of technetium administered orally to a newborn would deliver a total body radiation dose of .3 mrad. Therefore, an infant would receive trivial doses of radiation if breast-feeding were resumed 15.5 hours after administration of the radionuclide to the mother and nursing can clearly be resumed safely 24 hours after injection

  7. Purification of human albumin by the combination of the method of Cohn with liquid chromatography

    Directory of Open Access Journals (Sweden)

    Tanaka K.

    1998-01-01

    Full Text Available Large volumes of plasma can be fractionated by the method of Cohn at low cost. However, liquid chromatography is superior in terms of the quality of the product obtained. In order to combine the advantages of each method, we developed an integrated method for the production of human albumin and immunoglobulin G (IgG. The cryoprecipitate was first removed from plasma for the production of factor VIII and the supernatant of the cryoprecipitate was fractionated by the method of Cohn. The first precipitate, containing fractions (F-I + II + III, was used for the production of IgG by the chromatographic method (see Tanaka K et al. (1998 Brazilian Journal of Medical and Biological Research, 31: 1375-1381. The supernatant of F-I + II + III was submitted to a second precipitation and F-IV was obtained and discarded. Albumin was obtained from the supernatant of the precipitate F-IV by liquid chromatography, ion-exchange on DEAE-Sepharose FF, filtration through Sephacryl S-200 HR and introduction of heat treatment for fatty acid precipitation. Viral inactivation was performed by pasteurization at 60ºC for 10 h. The albumin product obtained by the proposed procedure was more than 99% pure for the 15 lots of albumin produced, with a mean yield of 25.0 ± 0.5 g/l plasma, containing 99.0 to 99.3% monomer, 0.7 to 1.0% dimers, and no polymers. Prekallikrein activator levels were <=5 IU/ml. This product satisfies the requirements of the 1997 Pharmacopée Européenne.

  8. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  9. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    Science.gov (United States)

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-02-08

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.

  10. High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L.

    Directory of Open Access Journals (Sweden)

    Qiujie Qian

    Full Text Available Human serum albumin (HSA is an important biological preparation with a variety of biological functions in clinical applications. In this study, the mRNA of a fusion transposase derived from the pESNT-PBase plasmid and a pBHSA plasmid containing the HSA gene under the control of a fibroin light chain (FL promoter were co-injected into fertilized eggs. Fifty-six transgenic silkworm pedigrees expressing theexogenous recombinant HSA (rHSA in the posterior silk glands (PSGs with stable inheritance were successfully obtained. The SDS-PAGE and Western blot results confirmed that the rHSA was secreted into the transgenic silkworm cocoon, and the rHSA could be easily extracted with phosphate-buffered saline (PBS. In our research, the isolated highest amount rHSA constituted up to 29.1% of the total soluble protein of the cocoon shell, indicating that the transgenic silkworm produced an average of 17.4 μg/mg of rHSA in the cocoon shell. The production of soluble rHSA in the PSGs by means of generating transgenic silkworms is a novel approach, whereby a large amount of virus-free and functional HSA can be produced through the simple rearing of silkworms.

  11. Scavenger receptor-mediated recognition of maleyl bovine plasma albumin and the demaleylated protein in human monocyte macrophages

    International Nuclear Information System (INIS)

    Haberland, M.E.; Fogelman, A.M.

    1985-01-01

    Maleyl bovine plasma albumin competed on an equimolar basis with malondialdehyde low density lipoprotein (LDL) in suppressing the lysosomal hydrolysis of 125 I-labeled malondialdehyde LDL mediated by the scavenger receptor of human monocyte macrophages. Maleyl bovine plasma albumin, in which 94% of the amino groups were modified, exhibited an anodic mobility in agarose electrophoresis 1.7 times that of the native protein. Incubation of maleyl bovine plasma albumin at pH 3.5 regenerated the free amino groups and restored the protein to the same electrophoretic mobility as native albumin. Although ligands recognized by the scavenger receptor typically are anionic, the authors propose that addition of new negative charge achieved by maleylation, rather than directly forming the receptor binding site(s), induces conformational changes in albumin as a prerequisite to expression of the recognition domain(s). They conclude that the primary sequence of albumin, rather than addition of new negative charge, provides the recognition determinant(s) essential for interaction of maleyl bovine plasma albumin with the scavenger receptor

  12. Structural analysis of recombinant human protein QM

    International Nuclear Information System (INIS)

    Gualberto, D.C.H.; Fernandes, J.L.; Silva, F.S.; Saraiva, K.W.; Affonso, R.; Pereira, L.M.; Silva, I.D.C.G.

    2012-01-01

    Full text: The ribosomal protein QM belongs to a family of ribosomal proteins, which is highly conserved from yeast to humans. The presence of the QM protein is necessary for joining the 60S and 40S subunits in a late step of the initiation of mRNA translation. Although the exact extra-ribosomal functions of QM are not yet fully understood, it has been identified as a putative tumor suppressor. This protein was reported to interact with the transcription factor c-Jun and thereby prevent c-Jun actives genes of the cellular growth. In this study, the human QM protein was expressed in bacterial system, in the soluble form and this structure was analyzed by Circular Dichroism and Fluorescence. The results of Circular Dichroism showed that this protein has less alpha helix than beta sheet, as described in the literature. QM protein does not contain a leucine zipper region; however the ion zinc is necessary for binding of QM to c-Jun. Then we analyzed the relationship between the removal of zinc ions and folding of protein. Preliminary results obtained by the technique Fluorescence showed a gradual increase in fluorescence with the addition of increasing concentration of EDTA. This suggests that the zinc is important in the tertiary structure of the protein. More studies are being made for better understand these results. (author)

  13. Interactions of Poly(amidoamine) Dendrimers with Human Serum Albumin: Binding Constants and Mechanisms

    OpenAIRE

    Giri, Jyotsnendu; Diallo, Mamadou S.; Simpson, André J.; Liu, Yi; Goddard, William A., III; Kumar, Rajeev; Woods, Gwen C.

    2011-01-01

    The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K_b) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To g...

  14. Labeling of human serum albumin with 105Rh-cysteine complexes

    International Nuclear Information System (INIS)

    Lo, J.M.; Pillai, M.R.A.; John, C.S.; Troutner, D.E.

    1990-01-01

    The conjugation of a complex formed by reacting RhCl 3 with cysteine to human serum albumin has been investigated. Approximately 50% of the rhodium (labelled with 105 Rh) was converted to the complex. Conjugation of the complex to HSA via the ECDI method resulted in yields of ∼ 40% of the total rhodium or ∼ 80% of the Rh-cysteine complex. No conjugation was observed in the absence of the ECDI. At approximately equal molar concentrations of rhodium and HSA, an average of ∼ 0.4 rhodium atoms per HSA molecule was achieved. (author)

  15. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy

    International Nuclear Information System (INIS)

    Zhang Chunfu; Cao Jinquan; Yin Duanzhi; Wang Yongxian; Feng Yanlin; Tan Jiajue

    2004-01-01

    In this paper, we describe the preparation of human serum albumin-coated magnetic particles of about 200 nm in diameter with narrow size distribution radiolabeled with 188 Re for the purpose of magnetically targeted therapy. The optimum radiolabeling conditions are: SnCl 2 ·2H 2 O 8 mg/ml, citric acid 20 mg/ml, vitamin C 8 mg/ml, labeling volume 500 μl and a reaction time of 3 h. The stability of the radiolabeled particles is suitable for in vivo study

  16. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunfu E-mail: zchunfu@yahoo.com.cn; Cao Jinquan; Yin Duanzhi; Wang Yongxian; Feng Yanlin; Tan Jiajue

    2004-12-01

    In this paper, we describe the preparation of human serum albumin-coated magnetic particles of about 200 nm in diameter with narrow size distribution radiolabeled with {sup 188}Re for the purpose of magnetically targeted therapy. The optimum radiolabeling conditions are: SnCl{sub 2}{center_dot}2H{sub 2}O 8 mg/ml, citric acid 20 mg/ml, vitamin C 8 mg/ml, labeling volume 500 {mu}l and a reaction time of 3 h. The stability of the radiolabeled particles is suitable for in vivo study.

  17. 76 FR 65210 - Certain Products and Pharmaceutical Compositions Containing Recombinant Human Erythropoetin...

    Science.gov (United States)

    2011-10-20

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-568] Certain Products and Pharmaceutical Compositions Containing Recombinant Human Erythropoetin; Termination of Investigation on the Basis of... after importation of certain products and pharmaceutical compositions containing recombinant human...

  18. Molecular interaction of PCB153 to human serum albumin: Insights from spectroscopic and molecular modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chao; Fang, Senbiao; Cao, Huiming; Lu, Yan; Ma, Yaqiong [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Wei, Dongfeng [Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700 (China); Xie, Xiaoyun [College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000 (China); Liu, Xiaohua [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Xin [College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003 (China); Fei, Dongqing [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Zhao, Chunyan, E-mail: zhaochy07@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2013-03-15

    Highlights: ► We identify the binding mode of PCB153 to human serum albumin (HSA). ► Spectroscopic and molecular modeling results reveal that PCB153 binds at the site II. ► The interaction is mainly governed by hydrophobic and hydrogen bond forces. ► The work helps to probe transporting, distribution and toxicity effect of PCBs. -- Abstract: Polychlorinated biphenyls (PCBs) possessed much potential hazard to environment because of its chemical stability and biological toxicity. Here, we identified the binding mode of a representative compound, PCB153, to human serum albumin (HSA) using fluorescence and molecular dynamics simulation methods. The fluorescence study showed that the intrinsic fluorescence of HSA was quenched by addition of PCB153 through a static quenching mechanism. The thermodynamic analysis proved the binding behavior was mainly governed by hydrophobic force. Furthermore, as evidenced by site marker displacement experiments using two probe compounds, it revealed that PCB153 acted exactly on subdomain IIIA (site II) of HSA. On the other hand, the molecular dynamics studies as well as free energy calculations made another important contribution to understand the conformational changes of HSA and the stability of HSA-PCB153 system. Molecular docking revealed PCB153 can bind in a large hydrophobic activity of subdomain IIIA by the hydrophobic interaction and hydrogen bond interactions between chlorine atoms and residue ASN391. The present work provided reasonable models helping us further understand the transporting, distribution and toxicity effect of PCBs when it spread into human blood serum.

  19. Variation in human recombination rates and its genetic determinants.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    Full Text Available Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution.Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation.These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.

  20. Comparative studies on drug binding to the purified and pharmaceutical-grade human serum albumins: Bridging between basic research and clinical applications of albumin.

    Science.gov (United States)

    Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza

    2015-09-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  2. Similarity of recombinant human perlecan domain 1 by alternative expression systems bioactive heterogenous recombinant human perlecan D1

    DEFF Research Database (Denmark)

    Ellis, April L; Pan, Wensheng; Yang, Guang

    2010-01-01

    BACKGROUND: Heparan sulfate glycosaminoglycans are diverse components of certain proteoglycans and are known to interact with growth factors as a co-receptor necessary to induce signalling and growth factor activity. In this report we characterize heterogeneously glycosylated recombinant human...... perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology. RESULTS: By SDS-PAGE analysis following anion exchange chromatography, the recombinant proteoglycans appeared to possess...... glycosaminoglycan chains ranging, in total, from 6 kDa to >90 kDa per recombinant. Immunoblot analysis of enzyme-digested high Mr rhPln.D1 demonstrated that the rhPln.D1 was synthesized as either a chondroitin sulfate or heparan sulfate proteoglycan, in an approximately 2:1 ratio, with negligible hybrids. Secondary...

  3. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  4. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  5. A modified procedure for the labelling of human serum albumin microspheres with 99m Tc for lung scanning

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.; Amin, A.; Raieh, M.; El-Mohty, A.

    1996-01-01

    A modified procedure is reported for the labelling of human serum albumin microspheres (HSAM) with 99m Tc. Albumin microspheres were first soaked in Sn-methylene diphosphonate (Sn-MDP) solution, then heated in a boiling water both for 10-15 minutes. The Sn-MDP coated HSAM were washed twice with saline containing poly sorbate-80 to remove the excess Sn-MDP solution. The coated albumin microspheres were then labelled with 99m Tc. More than 95% labelling yield are achieved by using the following quantities: 10 mg dry albumin microspheres, 5 mg MDP, 0.05 mg Sn Cl 2 .2 H 2 O, 0.1 mg ascorbic acid. The biological distribution of the labelled microspheres in mice has been studied and more than 85% lung uptake is achieved after 10 min of injection and the lung/liver ratio was 62. 8 tabs

  6. Biophysical characterisation of GlycoPEGylated recombinant human factor VIIa

    DEFF Research Database (Denmark)

    Plesner, Bitten; Westh, Peter; Nielsen, Anders D.

    2011-01-01

    The effects of GlycoPEGylation on the structural, kinetic and thermal stability of recombinant human FVIIa were investigated using rFVIIa and linear 10 kDa and branched 40 kDa GlycoPEGylated® recombinant human FVIIa derivatives. The secondary and tertiary structure of rFVIIa measured by circular...... dichroism (CD) was maintained upon PEGylation. In contrast, the thermal and kinetic stability of rFVIIa was affected by GlycoPEGylation, as the apparent unfolding temperature Tm measured by differential scanning calorimetry (DSC) and the temperature of aggregation, Tagg, measured by light scattering (LS......) both increased with GlycoPEGylation. Both Tm and Tagg were independent of the molecular weight and the shape of the PEG chain. From the present biophysical characterisation it is concluded that after GlycoPEGylation, rFVIIa appears to be unaffected structurally (secondary and tertiary structure...

  7. Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate

    Directory of Open Access Journals (Sweden)

    Akito Kawai

    2018-03-01

    Full Text Available Sodium 4-phenylbutyrate (PB is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA–PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug–HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings. Keywords: Human serum albumin, X-ray crystallography, Sodium 4-phenylbutyrate, Drug interaction, Drug site 2

  8. A study on human serum albumin influence on glycation of fibrinogen

    International Nuclear Information System (INIS)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr

    2013-01-01

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [ 13 C 6 ] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein

  9. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin.

    Science.gov (United States)

    Yuan, Zhi-xiang; Wu, Xiao-juan; Mo, Jingxin; Wang, Yan-li; Xu, Chao-qun; Lim, Lee Yong

    2015-08-01

    We have previously demonstrated that peptide fragments (PFs) of the human serum albumin could be developed as potential renal targeting carriers, in particular, the peptide fragment, PF-A299-585 (A299-585 representing the amino acid sequence of the human serum albumin). In this paper, we conjugated triptolide (TP), the anti-inflammatory Chinese traditional medicine, to PF-A299-585 via a succinic acid spacer to give TPS-PF-A299-585 (TP loading 2.2% w/w). Compared with the free TP, TPS-PF-A299-585 exhibited comparable anti-inflammatory activity in the lipopolysaccharide stimulated MDCK cells, but was significantly less cytotoxic than the free drug. Accumulation of TPS-PF-A299-585 in the MDCK cells in vitro and in rodent kidneys in vivo was demonstrated using FITC-labeled TPS-PF-A299-585. Renal targeting was confirmed in vivo in a membranous nephropathic (MN) rodent model, where optical imaging and analyses of biochemical markers were combined to show that TPS-PF-A299-585 was capable of alleviating the characteristic symptoms of MN. The collective data affirm PF-A299-585 to be a useful carrier for targeting TP to the kidney. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A study on human serum albumin influence on glycation of fibrinogen

    Energy Technology Data Exchange (ETDEWEB)

    Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr, E-mail: Piotr.stefanowicz@chem.uni.wroc.pl

    2013-09-13

    Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identification possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.

  11. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    Science.gov (United States)

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  12. Posttranslational modifications in human plasma MBL and human recombinant MBL

    DEFF Research Database (Denmark)

    Jensen, Pia Hønnerup; Laursen, Inga; Matthiesen, Finn

    2007-01-01

    the intact protein in its active conformation. For the first time, positions and occupation frequency of partial hydroxylations and partial glycosylations are reported in MBL. Hydroxylation and glycosylation patterns of both recombinant and plasma derived MBL were determined, using a combination of mass......Mannan-binding lectin (MBL) is a complex serum protein that plays an important role in innate immunity. In addition to assuming several different oligomeric forms, the polypeptide itself is highly heterogeneous. This heterogeneity is due to post-translational modifications, which help to stabilize......(202)) was modified in trace amounts to dehydroalanine, as detected by a 34 Da mass loss. This impairs the formation of a disulphide bond in the carbohydrate recognition domain. The dehydroalanine was identified in similar small amounts in both recombinant and plasma-derived MBL....

  13. Displacement of Drugs from Human Serum Albumin: From Molecular Interactions to Clinical Significance.

    Science.gov (United States)

    Rimac, Hrvoje; Debeljak, Željko; Bojić, Mirza; Miller, Larisa

    2017-01-01

    Human serum albumin (HSA) is the most abundant protein in human serum. It has numerous functions, one of which is transport of small hydrophobic molecules, including drugs, toxins, nutrients, hormones and metabolites. HSA has the ability to interact with a wide variety of structurally different compounds. This promiscuous, nonspecific affinity can lead to sudden changes in concentrations caused by displacement, when two or more compounds compete for binding to the same molecular site. It is important to consider drug combinations and their binding to HSA when defining dosing regimens, as this can directly influence drug's free, active concentration in blood. In present paper we review drug interactions with potential for displacement from HSA, situations in which they are likely to occur and their clinical significance. We also offer guidelines in designing drugs with decreased binding to HSA. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. O2-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    International Nuclear Information System (INIS)

    Ascenzi, Paolo; Gullotta, Francesca; Gioia, Magda; Coletta, Massimo; Fasano, Mauro

    2011-01-01

    Research highlights: → Human serum heme-albumin displays globin-like properties. → O 2 -mediated oxidation of ferrous nitrosylated human serum heme-albumin. → Allosteric modulation of human serum heme-albumin reactivity. → Rifampicin is an allosteric effector of human serum heme-albumin. → Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O 2 -mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O 2 -mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10 -5 and 8.3 x 10 -4 s -1 , and h = 1.3 x 10 -4 and 8.5 x 10 -4 s -1 , in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 o C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O 2 -mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O 2 does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O 2 -mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  15. Capillary electrophoresis with indirect UV detection for the determination of stabilizers and citrates present in human albumin solutions.

    Science.gov (United States)

    Jaworska, Małgorzata; Cygan, Paulina; Wilk, Małgorzata; Anuszewska, Elzbieta

    2009-08-15

    Sodium caprylate and N-acetyltryptophan are the most frequently used stabilizers that protect the albumin from aggregation or heat induced denaturation. In turn citrates - excipients remaining after fractionation process - can be treated as by-product favoring leaching aluminum out of glass containers whilst albumin solution is stored. With ionic nature these substances have all the markings of a subject for capillary electrophoresis analysis. Thus CE methods were proposed as new approach for quality control of human albumin solution in terms of determination of stabilizers and citrates residue. Human albumin solutions both 5% and 20% from various manufacturers were tested. Indirect detection mode was set to provide sufficient detectability of analytes lacking of chromophores. As being anions analytes were separated with reversed electroosmotic flow. As a result of method optimization two background electrolytes based on p-hydroxybenzoic acid and 2,6-pyridinedicarboxylic acid were selected for stabilizers and citrates separation, respectively. The optimized methods were successfully validated. For citrates that require quantification below 100microM the method demonstrated the precision less than 4% and the limit of detection at 4microM. In order to check the new methods accuracy and applicability the samples were additionally tested with selected reference methods. The proposed methods allow reliable quantification of stabilizers and citrates in human albumin solution that was confirmed by method validation as well as result comparison with reference methods. The CE methods are considered to be suitable for quality control yet simplifying and reducing cost of analysis.

  16. Characterizing Active Pharmaceutical Ingredient Binding to Human Serum Albumin by Spin-Labeling and EPR Spectroscopy.

    Science.gov (United States)

    Hauenschild, Till; Reichenwallner, Jörg; Enkelmann, Volker; Hinderberger, Dariush

    2016-08-26

    Drug binding to human serum albumin (HSA) has been characterized by a spin-labeling and continuous-wave (CW) EPR spectroscopic approach. Specifically, the contribution of functional groups (FGs) in a compound on its albumin-binding capabilities is quantitatively described. Molecules from different drug classes are labeled with EPR-active nitroxide radicals (spin-labeled pharmaceuticals (SLPs)) and in a screening approach CW-EPR spectroscopy is used to investigate HSA binding under physiological conditions and at varying ratios of SLP to protein. Spectral simulations of the CW-EPR spectra allow extraction of association constants (KA ) and the maximum number (n) of binding sites per protein. By comparison of data from 23 SLPs, the mechanisms of drug-protein association and the impact of chemical modifications at individual positions on drug uptake can be rationalized. Furthermore, new drug modifications with predictable protein binding tendency may be envisaged. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mass spectrometry characterization of circulating human serum albumin microheterogeneity in patients with alcoholic hepatitis.

    Science.gov (United States)

    Naldi, Marina; Baldassarre, Maurizio; Domenicali, Marco; Giannone, Ferdinando Antonino; Bossi, Matteo; Montomoli, Jonathan; Sandahl, Thomas Damgaard; Glavind, Emilie; Vilstrup, Hendrik; Caraceni, Paolo; Bertucci, Carlo

    2016-04-15

    Human serum albumin (HSA) is the most abundant plasma protein, endowed with several biological properties unrelated to its oncotic power, such as antioxidant and free-radicals scavenging activities, binding and transport of many endogenous and exogenous substances, and regulation of endothelial function and inflammatory response. These non-oncotic activities are closely connected to the peculiarly dynamic structure of the albumin molecule. HSA undergoes spontaneous structural modifications, mainly by reaction with oxidants and saccharides; however, patients with cirrhosis show extensive post-transcriptional changes at several molecular sites of HSA, the degree of which parallels the severity of the disease. The present work reports the development and application of an innovative LC-MS analytical method for a rapid and reproducible determination of the relative abundance of HSA isoforms in plasma samples from alcoholic hepatitis (AH) patients. A condition of severe oxidative stress, similar to that observed in AH patients, is associated with profound changes in circulating HSA microheterogeneity. More interestingly, the high resolution provided by the analytical platform allowed the monitoring of novel oxidative products of HSA never reported before. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Interaction of 1-pyrene sulfonic acid sodium salt with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Steblecka, Malgorzata, E-mail: gosia@mitr.p.lodz.pl; Wolszczak, Marian, E-mail: marianwo@mitr.p.lodz.pl; Szajdzinska-Pietek, Ewa, E-mail: espietek@mitr.p.lodz.pl

    2016-04-15

    Steady state and time-resolved techniques of optical spectroscopy were applied to examine the interaction between 1-pyrene sulfonic acid (PSA) sodium salt and human serum albumin (HSA). This work is directed towards finding a convenient fluorescent marker (or blocker) of hydrophobic binding sites within the protein, to be used in the in vitro studies of HSA−drug systems. The observed variation of PSA absorbance with HSA concentration was interpreted in terms of two possible probe/protein binding modes with the binding constants K{sub b,1}=(6.5±0.6)∙10{sup 6} M{sup −1} (a specific receptor site), and K{sub b,2}=(3.8±0.8)∙10{sup 5} M{sup −1} (non-specific binding of up to three probe molecules). The PSA fluorescence is quenched by the albumin (via both static and dynamic mechanisms), and also the HSA–Trp214 fluorescence is quenched by PSA (via resonance energy transfer). These results indicate that the probe is bound in the domain IIA of the secondary HSA structure. At lower [PSA]/[HSA] ratios the PSA fluorescence lifetime is longer than that in homogeneous buffer solutions (not containing HSA). Therefore, we conclude that lower affinity binding sites are distant from the tryptophan residue. This is confirmed by complementary studies on the transient T–T absorbance and on luminescence of the photosensitized singlet oxygen.

  19. Thermometric enzyme linked immunosorbent assay in continuous flow system: optimization and evaluation using human serum albumin as a model system.

    Science.gov (United States)

    Borrebaeck, C; Börjeson, J; Mattiasson, B

    1978-06-15

    Thermometric enzyme-linked immunosorbent assay (TELISA) is described. After the procedure of optimization, human serum albumin was assayed using anti-human serum albumin bound to Sepharose CL 4-B in the enzyme thermistor unit and catalase as label on the free antigen. The model system was used for assays down to 10(-13)M and the preparation of immobilized antibodies was used repeatedly up to 100 times. Comparative studies of the TELISA technique with bromocresol green, immunoturbidimetric and rocket immunoelectrophoretic methods were carried out and showed that TELISA could be used as an alternative method.

  20. The rise and fall of a human recombination hot spot.

    Science.gov (United States)

    Jeffreys, Alec J; Neumann, Rita

    2009-05-01

    Human meiotic crossovers mainly cluster into narrow hot spots that profoundly influence patterns of haplotype diversity and that may also affect genome instability and sequence evolution. Hot spots also seem to be ephemeral, but processes of hot-spot activation and their subsequent evolutionary dynamics remain unknown. We now analyze the life cycle of a recombination hot spot. Sperm typing revealed a polymorphic hot spot that was activated in cis by a single base change, providing evidence for a primary sequence determinant necessary, though not sufficient, to activate recombination. This activating mutation occurred roughly 70,000 y ago and has persisted to the present, most likely fortuitously through genetic drift despite its systematic elimination by biased gene conversion. Nonetheless, this self-destructive conversion will eventually lead to hot-spot extinction. These findings define a subclass of highly transient hot spots and highlight the importance of understanding hot-spot turnover and how it influences haplotype diversity.

  1. Production of biologically active recombinant human factor H in Physcomitrella.

    Science.gov (United States)

    Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L

    2011-04-01

    The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  2. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  3. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, David, E-mail: caballero@unistra.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Martinez, Elena [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain); Bausells, Joan [Centre Nacional de Microelectronica (CNM-IMB), CSIC, Campus UAB, 08193 Bellaterra (Spain); Errachid, Abdelhamid, E-mail: abdelhamid.errachid-el-salhi@univ-lyon1.fr [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); Universite Claude Bernard - Lyon 1, LSA - UMR 5180, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Samitier, Josep [Nanobioengineering group-IBEC, Barcelona Science Park, C/ Baldiri Reixach 10-12, 08028 Barcelona (Spain); University of Barcelona, Department of Electronics, C/ Marti i Franques 1, 08028 Barcelona (Spain); Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza (Spain)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. Black-Right-Pointing-Pointer Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. Black-Right-Pointing-Pointer Silicon nitride offers multiple advantages compared to other common materials. Black-Right-Pointing-Pointer The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si{sub 3}N{sub 4}) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si{sub 3}N{sub 4}-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO{sub 2}/Si{sub 3}N{sub 4} structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10{sup -13}-10{sup -7} M were detected, showing a sensitivity of 0.128 {Omega} {mu}M{sup -1} and a limit of detection of 10{sup -14} M. The specificity of the sensor was also addressed by studying the

  4. Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface

    International Nuclear Information System (INIS)

    Caballero, David; Martinez, Elena; Bausells, Joan; Errachid, Abdelhamid; Samitier, Josep

    2012-01-01

    Highlights: ► An impedimetric label-free immunosensor was developed for the specific detection of human serum albumin proteins. ► Anti-HSA antibodies were covalently immobilized on silicon nitride surfaces using a direct functionalization methodology. ► Silicon nitride offers multiple advantages compared to other common materials. ► The proposed sensor has high sensitivity and good selectivity for the detection of HSA proteins. - Abstract: In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3 N 4 ) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3 N 4 -based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2 /Si 3 N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 −13 –10 −7 M were detected, showing a sensitivity of 0.128 Ω μM −1 and a limit of detection of 10 −14 M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins

  5. Interaction of diuron to human serum albumin: Insights from spectroscopic and molecular docking studies.

    Science.gov (United States)

    Chen, Huilun; Rao, Honghao; Yang, Jian; Qiao, Yongxiang; Wang, Fei; Yao, Jun

    2016-01-01

    This investigation was undertaken to determine the interaction of diuron with human serum albumin (HSA) was studied by monitoring the spectral behavior of diuron-HSA system. The fluorescence of HSA at 340 nm excited at 230 nm was obviously quenched by diuron due to dynamic collision and the quenching constant was of the order of 10(4) L mol(-1) at 310 K. However, no fluorescence quenching was observed when excited at 280 nm. Thermodynamic investigations revealed that the combination between diuron and HSA was entropy driven by predominantly hydrophobic interactions. The binding of diuron induced the drastic reduction in α-helix conformation and the significant enhancement in β-turn conformation of HSA. In addition, both sites marker competition study and molecular modeling simulation evidenced the binding of diuron to HSA primarily took place in subdomain IIIA (Sudlow's site II).

  6. Ligand-Modified Human Serum Albumin Nanoparticles for Enhanced Gene Delivery.

    Science.gov (United States)

    Look, Jennifer; Wilhelm, Nadine; von Briesen, Hagen; Noske, Nadja; Günther, Christine; Langer, Klaus; Gorjup, Erwin

    2015-09-08

    The development of nonviral gene delivery systems is a great challenge to enable safe gene therapy. In this study, ligand-modified nanoparticles based on human serum albumin (HSA) were developed and optimized for an efficient gene therapy. Different glutaraldehyde cross-linking degrees were investigated to optimize the HSA nanoparticles for gene delivery. The peptide sequence arginine-glycine-aspartate (RGD) and the HIV-1 transactivator of transduction sequence (Tat) are well-known as promising targeting ligands. Plasmid DNA loaded HSA nanoparticles were covalently modified on their surface with these different ligands. The transfection potential of the obtained plasmid DNA loaded RGD- and Tat-modified nanoparticles was investigated in vitro, and optimal incubation conditions for these preparations were studied. It turned out that Tat-modified HSA nanoparticles with the lowest cross-linking degree of 20% showed the highest transfection potential. Taken together, ligand-functionalized HSA nanoparticles represent promising tools for efficient and safe gene therapy.

  7. Study of deutero-isotopomer-induced inhibition of caffeine and phenobarbitone binding to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Cherrah, Y.; Falconnet, J.B.; Desage, M.; Brazier, J.L.; Zini, R.; Tillement, J.P.

    1988-01-01

    The present study of inhibition provides confirmation to previously observed deuterium isotope effects on in vitro caffeine and phenobarbitone binding to human serum albumin (HSA). Addition of either 3,7(C(/sup 2/H)/sub 3/)/sub 2/ or 1,3,7(C(/sup 2/H)/sub 3/)/sub 3/ caffeine induces a 50% loss in both the extent of binding and binding parameters of the unlabelled analog. As concerns caffeine displacement from its HSA sites, it is shown that phenobarbitone and its 5-pentadeuterophenyl analog are equally potent inhibitors of caffeine binding, though individual HSA binding profiles differ. As for HSA binding interactions between phenobarbitone isotopomers, a 50% decrease in unlabelled phenobarbitone extent of binding is observed in the presence of its 5-pentadeuterophenyl analog. Results favor the hypothesis of differing binding sites for each isotopomer.

  8. Fluorescence study on the interaction of human serum albumin with Butein in liposomes

    Science.gov (United States)

    Toprak, Mahmut

    2016-02-01

    The interaction of Butein with human serum albumin in L-egg lecithin phosphatidycholine (PC) liposome has been investigated by fluorescence and absorption spectroscopy. The results of the fluorescence measurement indicated that Butein effectively quenched the intrinsic fluorescence of HSA via static quenching. The Stern-Volmer plots in all the liposome solutions showed a positive deviation from the linearity. According to the thermodynamic parameters, the hydrophobic interactions appeared be the major interaction forces between Butein and HSA. The effect of Butein on the conformation of HSA was also investigated by the synchronous fluorescence under the same experimental conditions. In addition, the partition coefficient of the Butein in the PC liposomes was also determined by using the fluorescence quenching process. The obtained results can be of biological significance in pharmacology and clinical medicine.

  9. Perfusion lymphoscintigraphy using 99mTc-human serum albumin in patients with treated uterine cancer

    International Nuclear Information System (INIS)

    Kataoka, Masaaki; Hamada, Katsuyuki; Hamamoto, Ken; Takeda, Yasunari; Matsuura, Shumpei; Kawamura, Masashi.

    1990-01-01

    Perfusion lymphoscintigraphy was performed by subcutaneous injection of 7.4 MBq (0.2mCi) 99m Tc-human serum albumin ( 99m Tc-HSA) on 18 patients with uterine cancer treated by operation and/or irradiation. Radioactivity at the injection site was counted for 3 min at 10 min [a] and at 3 hr [b] after injection, and the clearance of 99m Tc-HSA was defined as (1-[b]/[a]) x 100(%) ([a] and [b] were corrected for decay of the isotope). The clearance in 6 legs with lymphedema was significantly more delayed than that in 16 legs without lymphedema in the patients treated with both surgery and irradiation (16.6 ± 7.7% vs 34.9 ± 9.3%: P 99m Tc-HSA is useful for evaluating patients with lymphedema and for differentiating it from edema caused by other mechanisms. (author)

  10. Sentinel lymph nodes fluorescence detection and imaging using Patent Blue V bound to human serum albumin

    Science.gov (United States)

    Tellier, Franklin; Steibel, Jérôme; Chabrier, Renée; Blé, François Xavier; Tubaldo, Hervé; Rasata, Ravelo; Chambron, Jacques; Duportail, Guy; Simon, Hervé; Rodier, Jean-François; Poulet, Patrick

    2012-01-01

    Patent Blue V (PBV), a dye used clinically for sentinel lymph node detection, was mixed with human serum albumin (HSA). After binding to HSA, the fluorescence quantum yield increased from 5 × 10−4 to 1.7 × 10−2, which was enough to allow fluorescence detection and imaging of its distribution. A detection threshold, evaluated in scattering test objects, lower than 2.5 nmol × L−1 was obtained, using a single-probe setup with a 5-mW incident light power. The detection sensitivity using a fluorescence imaging device was in the µmol × L−1 range, with a noncooled CCD camera. Preclinical evaluation was performed on a rat model and permitted to observe inflamed nodes on all animals. PMID:23024922

  11. Revisitation of FRET methods to measure intraprotein distances in Human Serum Albumin

    Energy Technology Data Exchange (ETDEWEB)

    Santini, S.; Bizzarri, A.R.; Cannistraro, S., E-mail: cannistr@unitus.it

    2016-11-15

    We revisited the FRET methods to measure the intraprotein distance between Trp-214 (used as donor) of Human Serum Albumin and its Cys-34, labelled with 1.5-Iaedans (used as acceptor). Variation of Trp fluorescence emission in terms of both intensity and lifetime, as well the enhancement of the acceptor fluorescence emission upon Trp excitation, have been monitored. A careful statistical analysis of the fluorescence results from ten independently prepared samples, combined with suitable spectral corrections, provided reproducible distances estimations by each one of the three methods. Even if monitoring of the donor lifetime variation in the presence of the acceptor reproduces at the best the crystallographic data, by allowing even sub-nanometre distance variations to be appreciated, we suggest that a comparative analysis of all the three methods, applied with statistical significance, should be preferred to achieve a better reliability of the FRET technique.

  12. Binding of caffeine, theophylline, and theobromine with human serum albumin: A spectroscopic study

    Science.gov (United States)

    Zhang, Hong-Mei; Chen, Ting-Ting; Zhou, Qiu-Hua; Wang, Yan-Qing

    2009-12-01

    The interaction between three purine alkaloids (caffeine, theophylline, and theobromine) and human serum albumin (HSA) was investigated using UV/vis absorption, circular dichroism (CD), fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques. The results revealed that three alkaloids caused the fluorescence quenching of HSA by the formation of alkaloid-HSA complex. The binding site number n and apparent binding constant KA, corresponding thermodynamic parameters the free energy change (Δ G), enthalpy change (Δ H), and entropy change (Δ S) at different temperatures were calculated. The hydrophobic interaction plays a major role in stabilizing the complex. The distance r between donor (HSA) and acceptor (alkaloids) was obtained according to fluorescence resonance energy transfer. The effect of alkaloids on the conformation of HSA was analyzed using circular dichroism (CD), UV/vis absorption, synchronous fluorescence and three-dimensional fluorescence spectra techniques.

  13. Effects of human serun albumin in some biological properties of rhodium(II complexes

    Directory of Open Access Journals (Sweden)

    Espósito Breno P.

    2000-01-01

    Full Text Available The affinities for human albumin (HSA of five rhodium(II complexes of general formula [Rh2(bridge4] (bridge = acetate, propionate, butyrate, trifluoroacetate and trifluoroacetamidate were determined by spectrophotometry. In the case of the alkylcarboxylates, an inverse correlation of affinity with their liposolubilities was observed. Diffusion of the free or protein-bound complexes into Ehrlich cells in vitro seems to be primarily governed by the hydrophobic character of the complex. The complex [Rh2(tfc4] exhibited affinity towards the protein (K = 214.1 as well as cell partition both in the absence (32.1% and presence (48.6% of HSA. The compound HSA: [Rh2(tfc4] has had its antitumoral action in tumor-bearing Balb-c mice investigated, showing that HSA can be a drug reservoir for the rhodium complex.

  14. Investigation on human serum albumin and Gum Tragacanth interactions using experimental and computational methods.

    Science.gov (United States)

    Moradi, Sajad; Taran, Mojtaba; Shahlaei, Mohsen

    2018-02-01

    The study on the interaction of human serum albumin and Gum Tragacanth, a biodegradable bio-polymer, has been undertaken. For this purpose, several experimental and computational methods were used. Investigation of thermodynamic parameters and mode of interactions were carried out using Fluorescence spectroscopy in 300 and 310K. Also, a Fourier transformed infrared spectra and synchronous fluorescence spectroscopy was performed. To give detailed insight of possible interactions, docking and molecular dynamic simulations were also applied. Results show that the interaction is based on hydrogen bonding and van der Waals forces. Structural analysis implies on no adverse change in protein conformation during binding of GT. Furthermore, computational methods confirm some evidence on secondary structure enhancement of protein as a presence of combining with Gum Tragacanth. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Mechanism of Dimercaptosuccinic Acid Coated Superparamagnetic Iron Oxide Nanoparticles with Human Serum Albumin.

    Science.gov (United States)

    Zhao, Lining; Song, Wei; Wang, Jing; Yan, Yunxing; Chen, Jiangwei; Liu, Rutao

    2015-12-01

    To research the mechanism of dimercaptosuccinic acid coated-superparamagnetic iron oxide nanoparticles (SPION) with human serum albumin (HSA), the methods of spectroscopy, molecular modeling calculation, and calorimetry were used in this paper. The inner filter effect of the fluorescence intensity was corrected to obtain the accurate results. Ultraviolet-visible absorption and circular dichroism spectra reflect that SPION changed the secondary structure with a loss of α-helix and loosened the protein skeleton of HSA; the activity of the protein was also affected by the increasing exposure of SPION. Fluorescence lifetime measurement indicates that the quenching mechanism type of this system was static quenching. The isothermal titration calorimetry measurement and molecular docking calculations prove that the predominant force of this system was the combination of Van der Waals' force and hydrogen bonds. © 2015 Wiley Periodicals, Inc.

  16. Investigation into the interaction of methylparaben and erythromycin with human serum albumin using multispectroscopic methods.

    Science.gov (United States)

    Naik, Keerti M; Nandibewoor, Sharanappa T

    2016-03-01

    In this paper, the interaction of methylparaben and erythromycin with human serum albumin (HSA) was studied for the first time using spectroscopic methods including Fourier transform infrared (FTIR) spectroscopy and UV absorption spectroscopy in combination with fluorescence quenching under physiological conditions. The binding parameters were evaluated using a fluorescence quenching method. Based on Förster's theory of non-radiation energy transfer, the binding average distance, r between the donor (HSA) and the acceptor (methylparaben and erythromycin) was evaluated. UV/vis absorption, FTIR, synchronous and 3D spectral results showed that the conformation of HSA was changed in the presence of methylparaben and erythromycin. The thermodynamic parameters were calculated according to the van't Hoff equation and are discussed. The effect of some biological metal ions and site probes on the binding of methylparaben and erythromycin to HSA were further examined. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Preparation of Human Serum Albumin Macroaggregated (MAA) labelled with 99mTc via Ligand Exchange

    International Nuclear Information System (INIS)

    El-Mohty, A.A.; El-Ghany, E.A.; Amin, A.A.; El-Koaly, M.T.; Raieh, M.

    2000-01-01

    An alternative method for the preparation of human serum albumin macroaggregated (MAA) labelled with 99m Tc for lung scanning is described. The method is based on the use of stannous methylene diphosphonate (Sn-MDP) as a reducing agent. The may be also increase the number of binding sites in the MAA. The different parameters affecting the labelling yield and in-vitro stability of 99m Tc-MAA have been studied in order to determine the optimum conditions for labelling macroaggregated with 99m Tc. A high labelling yield (98.9%) was achieved and more than 98% of 99m Tc-MAA coated with Sn-MDP. The determined lung uptake in mice was found to be ≥ 90% which better than the reported data. A particular procedure compared to the existing reported procedures, which is recommended for the preparation of Sn-MDP coated MAA labelled with 99m Tc for lung perfusion imaging

  18. A novel therapeutic strategy for experimental stroke using docosahexaenoic acid complexed to human albumin

    Directory of Open Access Journals (Sweden)

    Belayev Ludmila

    2016-01-01

    Full Text Available Despite tremendous efforts in ischemic stroke research and significant improvements in patient care within the last decade, therapy is still insufficient. There is a compelling, urgent need for safe and effective neuroprotective strategies to limit brain injury, facilitate brain repair, and improve functional outcome. Recently, we reported that docosahexaenoic acid (DHA; 22:6, n-3 complexed to human albumin (DHA-Alb is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo in young rats. This review highlights the potency of DHA-Alb therapy in permanent MCAo and aged rats and whether protection persists with chronic survival. We discovered that a novel therapy with DHA-Alb improved behavioral outcomes accompanied by attenuation of lesion volumes even when animals were allowed to survive three weeks after experimental stroke. This treatment might provide the basis for future therapeutics for patients suffering from ischemic stroke.

  19. Fusion to Human Serum Albumin Extends the Circulatory Half-Life and Duration of Antithrombotic Action of the Kunitz Protease Inhibitor Domain of Protease Nexin 2.

    Science.gov (United States)

    Sheffield, William P; Eltringham-Smith, Louise J; Bhakta, Varsha

    2018-01-01

    The Kunitz Protease Inhibitor (KPI) domain of protease nexin 2 (PN2) potently inhibits coagulation factor XIa. Recombinant KPI has been shown to inhibit thrombosis in mouse models, but its clearance from the murine circulation remains uncharacterized. The present study explored the pharmacokinetic and pharmacodynamic effects of fusing KPI to human serum albumin (HSA) in fusion protein KPIHSA. Hexahistidine-tagged KPI (63 amino acids) and KPIHSA (656 amino acids) were expressed in Pichia pastoris yeast and purified by nickel-chelate chromatography. Clearance profiles in mice were determined, as well as the effects of KPI or KPIHSA administration on FeCl3-induced vena cava thrombus size or carotid artery time to occlusion, respectively. Fusion to HSA increased the mean terminal half-life of KPI by 8-fold and eliminated its interaction with the low density lipoprotein receptor-related protein. KPI and KPIHSA similarly reduced thrombus size and occlusion in both venous and arterial thrombosis models when administered at the time of injury, but only KPI was effective when administered one hour before injury. Albumin fusion deflects KPI from rapid in vivo clearance without impairing its antithrombotic properties and widens its potential therapeutic window. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. The Investigation of the Interaction between Lomefloxacin and Human Serume Albumin by Specteroscopic Methods

    Directory of Open Access Journals (Sweden)

    F. S. Goldouzian, Z. S.Goldouzian, M. Momen Heravi, J. Khanchamani

    2012-03-01

    Full Text Available Mechanism of the binding of lomefloxacin (LMF with human serum albumin has been studied at physiological pH (7.4 using fluorescence spectroscopic technique. LMF is a third-generation fluoroquinolone antibiotic that exhibits striking potency against a broad spectrum of Gram-negative and Gram-positive bacteria through inhibition of DNA gyrase. Lomefloxacin is a drug that is excreted in urine and has very variable systemic absorption. Human serum albumin (HSA is the most important and abundant constituent of blood plasma and serves as a protein storage component. Recently, the three-dimensional structure of HSA was determined through X-ray crystallographic measurement. Fluorescence studies showed that (LMF has an ability to quench the intrinsic fluorescence of HSA through a static quenching  procedure  according to the Stern–Volmer equation .LMF showed two types of binding sites, the first having a very high affinity (1/72 ×107M-1 and a secondary binding site with an affinity two orders lower than the primary site. The number of binding sites for complex: HSA-LMF at 280 nm was calculated 1and0.5. The microenvironment of tryptophan and tyrosin residues and more hydrophobic of fluorophores microenvironment were changed and disturbed by the blue shift in maximum wavelength and decreased in fluorescence intensity in the presence of lomefloxacin revealed  decreased polarity of the fluorophores. The binding site for LMF is in a hydrophobic pocket in the sub-domain II A of HSA.

  1. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    Directory of Open Access Journals (Sweden)

    Qu N

    2016-07-01

    Full Text Available Na Qu,1 Robert J Lee,1,2 Yating Sun,1 Guangsheng Cai,1 Junyang Wang,1 Mengqiao Wang,1 Jiahui Lu,1 Qingfan Meng,1 Lirong Teng,1 Di Wang,1 Lesheng Teng1,3 1School of Life Sciences, Jilin University, Changchun, People’s Republic of China; 2Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, People’s Republic of China Abstract: Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween. A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%, and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. Keywords: cabazitaxel, human serum albumin, nanoparticle, drug delivery, toxicity, pros­tate cancer

  2. Probing the binding of vitexin to human serum albumin by multispectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Guowen, E-mail: gwzhang@ncu.edu.c [State Key Laboratory of Food Science and Technology, Nanchang University, 235, Nanjing East Road, Nanchang 330047, Jiangxi (China); Zhao Nan; Wang Lin [State Key Laboratory of Food Science and Technology, Nanchang University, 235, Nanjing East Road, Nanchang 330047, Jiangxi (China)

    2011-05-15

    The interaction between vitexin and human serum albumin (HSA) has been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of vitexin to HSA. The binding constants (K{sub a}) between vitexin and HSA were obtained according to the modified Stern-Volmer equation. The thermodynamic parameters, enthalpy change ({Delta}H) and entropy change ({Delta}S) were calculated to be -57.29 kJ mol{sup -1} and -99.01 J mol{sup -1} K{sup -1} via the van't Hoff equation, which indicated that the interaction of vitexin with HSA was driven mainly by hydrogen bond and van der Waals forces. Fluorescence anisotropy data showed that warfarin and vitexin shared a common binding site I corresponding to the subdomain IIA of HSA. The binding distance (r) between the donor (HSA) and the acceptor (vitexin) was 4.16 nm based on the Foerster theory of non-radioactive energy transfer. In addition, the results of synchronous fluorescence, CD and FT-IR spectra demonstrated that the microenvironment and the secondary structure of HSA were changed in the presence of vitexin. - Research highlights: We investigate the binding mechanism of vitexin to human serum albumin (HSA) by different multi-spectroscopic techniques under simulated physiological conditions. Vitexin can strongly quench the fluorescence of HSA through a static quenching mechanism. The interaction of vitexin with HSA is driven mainly by hydrogen bond and van der Waals forces. The binding distance between HSA and vitexin is 4.16 nm, and vitexin is mainly located in the region of site I (subdomain IIA). The binding of vitexin to HSA can induce conformational changes of HSA.

  3. Broad-scale recombination patterns underlying proper disjunction in humans.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    2009-09-01

    Full Text Available Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans.

  4. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Cha, Sang-Hoon

    2016-01-01

    The serum albumin (SA) has been exploited to generate long-acting biotherapeutics by taking advantage of the FcRn-mediated recycling mechanism in a direct or an indirect way. Since Fab fragments have been proven to be clinically safe for human usage, we assumed that human anti-SA Fab antibodies could have a great potential as a carrier molecule to extend the serum half-life of therapeutic proteins. We, herein, had attempted to isolate anti-SA Fab antibodies from HuDVFab-8L antibody library via a phage display technology, and identified eight discrete human Fab antibodies. One of the Fab antibodies, SL335, showed the strongest binding reactivity to human SA with nM range of affinity at both pH 6 and pH 7.4, and cross-reacted to SAs from various species including rat, mouse, canine and monkey. The in vivo pharmacokinetic assay using a rat model indicated that SL335 has approximately 10 fold longer serum half-life and 26 to 44-fold increase in AUC0 → ∞ compared to the negative control Fab molecule in both intravenous and subcutaneous administrations. Knowing that Fabs have proven to be safe in clinics for a long time, SL335 seems to have a great potential in generating long-acting protein drugs by tagging effector molecules with either chemical conjugation or genetic fusion. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Stereoselective Binding of Flurbiprofen Enantiomers and their Methyl Esters to Human Serum Albumin Studied by Time-Resolved Phosphorescence

    NARCIS (Netherlands)

    mr. Lammers, I.; Lhiaubet-Vallet, V.; Jimenez, M.C.; Ariese, F.; Miranda, M.A.; Gooijer, C.

    2012-01-01

    The interaction of the nonsteroidal anti-inflammatory drug flurbiprofen (FBP) with human serum albumin (HSA) hardly influences the fluorescence of the protein's single tryptophan (Trp). Therefore, in addition to fluorescence, heavy atom-induced room-temperature phosphorescence is used to study the

  6. HPMA-based drug delivery system and its interactions of human serum albumin: SAXS, ITC, and NMR study

    Czech Academy of Sciences Publication Activity Database

    Filippov, Sergey K.; Kaberov, Leonid; Zhang, X.; Niebuur, B.-J.; Chytil, Petr; Etrych, Tomáš; Wieland, F.; Velychkivska, Nadiia; Starovoytova, Larisa; Svergun, D.; Papadakis, C.

    2017-01-01

    Roč. 254, 20 August (2017), s. 455 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] R&D Projects: GA ČR(CZ) GC15-10527J Institutional support: RVO:61389013 Keywords : HPMA * human serum albumin * SAXS Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry

  7. Application of silver films with different roughness parameter for septic human serum albumin detection by Surface Enhanced Raman Spectroscopy

    Science.gov (United States)

    Zyubin, A. Y.; Konstantinova, E. I.; Matveeva, K. I.; Slezhkin, V. A.; Samusev, I. G.; Demin, M. V.; Bryukhanov, V. V.

    2018-01-01

    In this paper, the rough silver films parameters investigation, used as media for surface enhancement Raman spectroscopy for health and septic human serum albumin (HSA) study results have been presented. The detection of small concentrations of HSA isolated from blood serum and it main vibrational groups identification has been done.

  8. Location and characterization of the warfarin binding site of human serum albumin A comparative study of two large fragments

    NARCIS (Netherlands)

    Bos, O.J.M.; Remijn, J.P.M.; Fischer, M.J.E.; Wilting, J.; Janssen, L.H.M.

    1988-01-01

    The warfarin binding behaviour of a large tryptic fragment (residues 198–585 which comprise domains two and three) and of a large peptic fragment (residues 1–387 which comprise domains one and two) of human serum albumin has been studied by circular dichroism and equilibrium dialysis in order to

  9. β-Lactam antibiotics epitope mapping with STD NMR spectroscopy: a study of drug-human serum albumin interaction

    International Nuclear Information System (INIS)

    Milagre, Cintia D. F.; Cabeca, Luis F.; Almeida, Wanda P.; Marsaioli, Anita J.

    2012-01-01

    Molecular recognition events are key issues in many biological processes. STD NMR (saturation transfer difference nuclear magnetic resonance spectroscopy) is one of the techniques used to understand such biological interactions. Herein, we have investigated the interactions of four β-lactam antibiotics belonging to two classes (cephalosporins and penicillins) with human serum albumin (HSA) by 1 H STD NMR revealing that the interaction between the aromatic moiety and HSA is responsible for the binding efficiency. Thus, the structural differences from the five to six-membered thio ring in penicillins and cephalosporins do not seem to influence antibiotic albumin interactions. (author)

  10. Albumin has no role in the uptake of copper by human fibroblasts

    International Nuclear Information System (INIS)

    McArdle, H.J.; Guthrie, J.R.; Ackland, M.L.; Danks, D.M.

    1987-01-01

    The mechanism of copper uptake by cells has been the subject of controversy for some time. This paper examines the possibility of a role for albumin in the uptake of copper by fibroblasts. Although the cells could accumulate copper from a copper-albumin complex, there was no evidence for either copper-albumin or albumin receptors on the cell surface. The possibility of a surface exchange mechanism for copper was examined. While copper uptake showed saturation with increasing concentrations of labelled copper-albumin, adding unlabelled copper to the incubation medium did not inhibit uptake. Adding albumin or histidine to the copper-albumin complex resulted in an inhibition of copper uptake. The results can only be explained by the cell taking up free copper from the incubation medium, with the albumin then releasing its copper to maintain the equilibrium between free and bound metal. Since, in vivo there is essentially no free copper in serum, it is concluded that albumin is most unlikely to play a role in the uptake of copper by fibroblasts

  11. Investigation of the Interaction Between Human Serum Albumin and Two Drugs as Binary and Ternary Systems.

    Science.gov (United States)

    Abdollahpour, Nooshin; Soheili, Vahid; Saberi, Mohammad Reza; Chamani, Jamshidkhan

    2016-12-01

    Human serum albumin (HSA) is the most frequent protein in blood plasma. Albumin transports various compounds, preserves osmotic pressure, and buffers pH. A unique feature of albumin is its ability to bind drugs and other bioactive molecules. However, it is important to consider binary and ternary systems of two pharmaceuticals to estimate the effect of the first drug on the second one and physicochemical properties. Different techniques including time-resolved, second-derivative and anisotropy fluorescence spectroscopy, resonance light scattering (RLS), critical induced aggregation concentration (C CIAC ), particle size, zeta potential and stability analysis were employed in this assessment to elucidate the binding behavior of Amlodipine and Aspirin to HSA. Moreover, isothermal titration calorimetric techniques were performed and the QSAR properties were applied to analyze the hydration energy and log P. Multiple sequence alignments were also used to predict the structure and biological characteristics of the HSA binding site. Time-resolved fluorescence spectroscopy showed interaction of both drugs to HSA based on a static quenching mechanism. Subsequently, second-derivative fluorescence spectroscopy presented different values of parameter H in binary and ternary systems, which were suggested that tryptophan was in a more polar environment in the ternary system than in a binary system. Moreover, the polydispersity index and results from mean number measurements revealed that the presence of the second drug caused a decrease in the stability of systems and increased the heterogeneity of complex. It is also, observed that the gradual addition of HSA has led to a marked increase in fluorescence anisotropy (r) of Amlodipine and Aspirin which can be suggested that the drugs were located in a restricted environment of the protein as confirmed by Red Edge Excitation Shift (REES) studies. The isothermal titration calorimetric technique demonstrated that the interaction of

  12. Development of Diagnostic Fragment Ion Library for Glycated Peptides of Human Serum Albumin: Targeted Quantification in Prediabetic, Diabetic, and Microalbuminuria Plasma by Parallel Reaction Monitoring, SWATH, and MSE*

    OpenAIRE

    Korwar, Arvind M.; Vannuruswamy, Garikapati; Jagadeeshaprasad, Mashanipalya G.; Jayaramaiah, Ramesha H.; Bhat, Shweta; Regin, Bhaskaran S.; Ramaswamy, Sureshkumar; Giri, Ashok P.; Mohan, Viswanathan; Balasubramanyam, Muthuswamy; Kulkarni, Mahesh J.

    2015-01-01

    Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified...

  13. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles

    International Nuclear Information System (INIS)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Arpanaei, Ayyoob; Marvian, Amir Tayaranian

    2015-01-01

    Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain

  14. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas, E-mail: shoja-sa@modares.ac.ir [Tarbiat Modares University, Biotechnology Group, Faculty of Chemical Engineering (Iran, Islamic Republic of); Morshedi, Dina; Arpanaei, Ayyoob [National Institute of Genetic Engineering and Biotechnology, Department of Industrial and Environmental Biotechnology (Iran, Islamic Republic of); Marvian, Amir Tayaranian [Aarhus University, Department of Biomedicine (Denmark)

    2015-04-15

    Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain.

  15. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles

    Science.gov (United States)

    Mohammad-Beigi, Hossein; Shojaosadati, Seyed Abbas; Morshedi, Dina; Arpanaei, Ayyoob; Marvian, Amir Tayaranian

    2015-04-01

    Gallic acid (GA), as an antioxidant and antiparkinson agent, was loaded onto cationic human serum albumin nanoparticles (HSA NPs). Polyethylenimine (PEI)-coated HSA (PEI-HSA) NPs were prepared using three different methods: (I) coating negatively charged HSA NPs with positively charged PEI through attractive electrostatic interactions, (II) coating HSA NPs with PEI via covalent amide bond formation using N-(3-dimethylaminopropyl)- N-ethylcarbodiimide hydrochloride, and (III) coating HSA NPs with PEI via covalent bonding using glutaraldehyde for linking amine groups of PEI and amine groups of albumin NPs. Method II was selected since it resulted in a higher shift in the zeta potential value (mV) and less zeta potential value deviation, and also less size polydispersity. GA was loaded by adsorption onto the surface of PEI-HSA NPs of two different sizes: 117 ± 2.9 nm (PEI-P1) and 180 ± 3.1 nm (PEI-P2) NPs. Both GA-entrapment and GA-loading efficiencies increased slightly with the increasing size of NPs, and were affected intensely by the mass ratio of GA to PEI-HSA NPs. Free radical scavenging of GA was quantified based on the 2,2-diphenyl-1-picrylhydrazyl method. The obtained results showed that GA remains active during the preparation of GA-loaded PEI-HSA NPs. The cytotoxicities of HSA, PEI-HSA, and GA-loaded PEI-HSA NPs on the PC-12 cells, as the neuroendocrine cell line, were measured. Our results indicate that positively charged PEI-HSA NPs are good candidates for efficient and safe delivery of GA to the brain.

  16. Spontaneous transfer of stearic acids between human serum albumin and PEG:2000-grafted DPPC membranes.

    Science.gov (United States)

    Pantusa, Manuela; Stirpe, Andrea; Sportelli, Luigi; Bartucci, Rosa

    2010-05-01

    Electron spin resonance (ESR) spectroscopy is used to study the transfer of stearic acids between human serum albumin (HSA) and sterically stabilized liposomes (SSL) composed of dipalmitoylphosphatidylcholine (DPPC) and of submicellar content of poly(ethylene glycol:2000)-dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE). Protein/lipid dispersions are considered in which spin-labelled stearic acids at the 16th carbon atom along the acyl chain (16-SASL) are inserted either in the protein or in the SSL. Two component ESR spectra with different rotational mobility are obtained over a broad range of temperature and membrane composition. Indeed, superimposed to an anisotropic protein-signal, appears a more isotropic lipid-signal. Since in the samples only one matrix (protein or membranes) is spin-labelled, the other component accounts for the transfer of 16-SASL between albumin and membranes. The two components have been resolved and quantified by spectral subtractions, and the fraction, f (p) (16-SASL), of spin labels bound non-covalently to the protein has been used to monitor the transfer. It is found that it depends on the type of donor and acceptor matrix, on the physical state of the membranes and on the grafting density of the polymer-lipids. Indeed, it is favoured from SSL to HSA and the fraction of stearic acids transferred increases with temperature in both directions of transfer. Moreover, in the presence of polymer-lipids, the transfer from HSA to SSL is slightly attenuated, especially in the brush regime of the polymer-chains. Instead, the transfer from SSL to HSA is favoured by the polymer-lipids much more in the mushroom than in the brush regime.

  17. Fluorescence and Docking Studies of the Interaction between Human Serum Albumin and Pheophytin

    Directory of Open Access Journals (Sweden)

    Otávio Augusto Chaves

    2015-10-01

    Full Text Available In the North of Brazil (Pará and Amazonas states the leaves of the plant Talinum triangulare (popular: cariru replace spinach as food. From a phytochemical point of view, they are rich in compounds of the group of pheophytins. These substances, related to chlorophyll, have photophysical properties that give them potential application in photodynamic therapy. Human serum albumin (HSA is one of the main endogenous vehicles for biodistribution of molecules by blood plasma. Association constants and thermodynamic parameters for the interaction of HSA with pheophytin from Talinum triangulare were studied by UV-Vis absorption, fluorescence techniques, and molecular modeling (docking. Fluorescence quenching of the HSA’s internal fluorophore (tryptophan at temperatures 296 K, 303 K, and 310 K, resulted in values for the association constants of the order of 104 L∙mol−1, indicating a moderate interaction between the compound and the albumin. The negative values of ΔG° indicate a spontaneous process; ΔH° = 15.5 kJ∙mol−1 indicates an endothermic process of association and ΔS° = 0.145 kJ∙mol−1∙K−1 shows that the interaction between HSA and pheophytin occurs mainly by hydrophobic factors. The observed Trp fluorescence quenching is static: there is initial non-fluorescent association, in the ground state, HSA:Pheophytin. Possible solution obtained by a molecular docking study suggests that pheophytin is able to interact with HSA by means of hydrogen bonds with three lysine and one arginine residues, whereas the phytyl group is inserted in a hydrophobic pocket, close to Trp-214.

  18. Small-volume resuscitation from hemorrhagic shock with polymerized human serum albumin.

    Science.gov (United States)

    Messmer, Catalina; Yalcin, Ozlem; Palmer, Andre F; Cabrales, Pedro

    2012-10-01

    Human serum albumin (HSA) is used as a plasma expander; however, albumin is readily eliminated from the intravascular space. The objective of this study was to establish the effects of various-sized polymerized HSAs (PolyHSAs) during small-volume resuscitation from hemorrhagic shock on systemic parameters, microvascular hemodynamics, and functional capillary density in the hamster window chamber model. Polymerized HSA size was controlled by varying the cross-link density (ie, molar ratio of glutaraldehyde to HSA). Hemorrhage was induced by controlled arterial bleeding of 50% of the animal's blood volume (BV), and hypovolemic shock was maintained for 1 hour. Resuscitation was implemented in 2 phases, first, by infusion of 3.5% of the BV of hypertonic saline (7.5% NaCl) then followed by infusion of 10% of the BV of each PolyHSA. Resuscitation provided rapid recovery of blood pressure, blood gas parameters, and microvascular perfusion. Polymerized HSA at a glutaraldehyde-to-HSA molar ratio of 60:1 (PolyHSA(60:1)) provided superior recovery of blood pressure, microvascular blood flow, and functional capillary density, and acid-base balance, with sustained volume expansion in relation to the volume infused. The high molecular weight of PolyHSA(60:1) increased the hydrodynamic radius and solution viscosity. Pharmacokinetic analysis of PolyHSA(60:1) indicates reduced clearance and increased circulatory half-life compared with monomeric HSA and other PolyHSA formulations. In conclusion, HSA molecular size and solution viscosity affect central hemodynamics, microvascular blood flow, volume expansion, and circulation persistence during small-volume resuscitation from hemorrhagic shock. In addition, PolyHSA can be an alternative to HSA in pathophysiological situations with compromised vascular permeability. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  20. Recombinant human prion protein inhibits prion propagation in vitro.

    Science.gov (United States)

    Yuan, Jue; Zhan, Yi-An; Abskharon, Romany; Xiao, Xiangzhu; Martinez, Manuel Camacho; Zhou, Xiaochen; Kneale, Geoff; Mikol, Jacqueline; Lehmann, Sylvain; Surewicz, Witold K; Castilla, Joaquín; Steyaert, Jan; Zhang, Shulin; Kong, Qingzhong; Petersen, Robert B; Wohlkonig, Alexandre; Zou, Wen-Quan

    2013-10-09

    Prion diseases are associated with the conformational conversion of the cellular prion protein (PrP(C)) into the pathological scrapie isoform (PrP(Sc)) in the brain. Both the in vivo and in vitro conversion of PrP(C) into PrP(Sc) is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrP(Sc), but not PrP(C), suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrP(C) with PrP(Sc). Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrP(Sc) propagation without inducing immune response side effects.

  1. Biophysical studies of interaction between hydrolysable tannins isolated from Oenothera gigas and Geranium sanguineum with human serum albumin.

    Science.gov (United States)

    Sekowski, Szymon; Ionov, Maksim; Kaszuba, Mateusz; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria

    2014-11-01

    Tannins, secondary plant metabolites, possess diverse biological activities and can interact with biopolymers such as lipids or proteins. Interactions between tannins and proteins depend on the structures of both and can result in changes in protein structure and activity. Because human serum albumin is the most abundant protein in plasma and responsible for interactions with important biological compounds (e.g. bilirubin) and proper blood pressure, therefore, it is very important to investigate reactions between HSA and tannins. This paper describes the interaction between human serum albumin (HSA) and two tannins: bihexahydroxydiphenoyl-trigalloylglucose (BDTG) and 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-d-glucose (OGβDG), isolated from Geranium sanguineum and Oenothera gigas leafs, respectively. Optical (spectrofluorimetric) and chiral optical (circular dichroism) methods were used in this study. Fluorescence analysis demonstrated that OGβDG quenched HSA fluorescence more strongly than BDTG. Both OGβDG and BDTG formed complexes with albumin and caused a red shift of the fluorescence spectra but did not significantly change the protein secondary structure. Our studies clearly demonstrate that the tested tannins interact very strongly with human serum albumin (quenching constant K=88,277.26±407.04 M(-1) and K=55,552.67±583.07 M(-1) respectively for OGβDG and BDTG) in a manner depending on their chemical structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Human Albumin Use in Adults in U.S. Academic Medical Centers.

    Science.gov (United States)

    Suarez, Jose I; Martin, Renee H; Hohmann, Samuel F; Calvillo, Eusebia; Bershad, Eric M; Venkatasubba Rao, Chethan P; Georgiadis, Alexandros; Flower, Oliver; Zygun, David; Finfer, Simon

    2017-01-01

    To determine rates and predictors of albumin administration, and estimated costs in hospitalized adults in the United States. Cohort study of adult patients from the University HealthSystem Consortium database from 2009 to 2013. One hundred twenty academic medical centers and 299 affiliated hospitals. A total of 12,366,264 hospitalization records. Analysis of rates and predictors of albumin administration, and estimated costs. Overall the proportion of admissions during which albumin was administered increased from 6.2% in 2009 to 7.5% in 2013; absolute difference 1.3% (95% CI, 1.30-1.40%; p Albumin use varied geographically being lowest with no increase in hospitals in the North Eastern United States (4.9% in 2009 and 5.3% in 2013) and was more common in bigger (> 750 beds; 5.2% in 2009 and 7.3% in 2013) compared to smaller hospitals (albumin use were appropriate indication for albumin use (odds ratio, 65.220; 95% CI, 62.459-68.103); surgical admission (odds ratio, 7.942; 95% CI, 7.889-7.995); and high severity of illness (odds ratio, 8.933; 95% CI, 8.825-9.042). Total estimated albumin cost significantly increased from $325 million in 2009 to $468 million in 2013; (absolute increase of $233 million), p value less than 0.0001. The proportion of hospitalized adults in the United States receiving albumin has increased, with marked, and currently unexplained, geographic variability and variability by hospital size.

  3. Conformational changes in human serum albumin around the neutral pH from circular dichroic measurements

    NARCIS (Netherlands)

    Wilting, J.; Weideman, M.M.; Roomer, A.C.J.; Perrin, J.H.

    1979-01-01

    The molar ellipticity of the warfarin-albumin complex at 310 nm increases with pH from 6 to 9. This pH dependence runs parallel with that of the molar ellipticity of the albumin alone at 292 nm. The change in molar ellipticity with pH occurs in a smaller pH interval after addition of the

  4. Results of a phase I/II open-label, safety and efficacy trial of coagulation factor IX (recombinant), albumin fusion protein in haemophilia B patients.

    Science.gov (United States)

    Martinowitz, U; Lissitchkov, T; Lubetsky, A; Jotov, G; Barazani-Brutman, T; Voigt, C; Jacobs, I; Wuerfel, T; Santagostino, E

    2015-11-01

    rIX-FP is a coagulation factor IX (recombinant), albumin fusion protein with more than fivefold half-life prolongation over other standard factor IX (FIX) products available on the market. This prospective phase II, open-label study evaluated the safety and efficacy of rIX-FP for the prevention of bleeding episodes during weekly prophylaxis and assessed the haemostatic efficacy for on-demand treatment of bleeding episodes in previously treated patients with haemophilia B. The study consisted of a 10-14 day evaluation of rIX-FP pharmacokinetics (PK), and an 11 month safety and efficacy evaluation period with subjects receiving weekly prophylaxis treatment. Safety was evaluated by the occurrence of related adverse events, and immunogenic events, including development of inhibitors. Efficacy was evaluated by annualized spontaneous bleeding rate (AsBR), and the number of injections to achieve haemostasis. Seventeen subjects participated in the study, 13 received weekly prophylaxis and 4 received episodic treatment only. No inhibitors were detected in any subject. The mean and median AsBR were 1.25, and 1.13 respectively in the weekly prophylaxis arm. All bleeding episodes were treated with 1 or 2 injections of rIX-FP. Three prophylaxis subjects who were treated on demand prior to study entry had >85% reduction in AsBR compared to the bleeding rate prior to study entry. This study demonstrated the efficacy for weekly routine prophylaxis of rIX-FP to prevent spontaneous bleeding episodes and for the treatment of bleeding episodes. In addition no safety issues were detected during the study and an improved PK profile was demonstrated. © 2015 CSL Behring. Haemophilia published by John Wiley & Sons Ltd.

  5. Postauthorization safety surveillance of ADVATE [antihaemophilic factor (recombinant), plasma/albumin-free method] demonstrates efficacy, safety and low-risk for immunogenicity in routine clinical practice.

    Science.gov (United States)

    Oldenburg, J; Goudemand, J; Valentino, L; Richards, M; Luu, H; Kriukov, A; Gajek, H; Spotts, G; Ewenstein, B

    2010-11-01

      Postauthorization safety surveillance of factor VIII (FVIII) concentrates is essential for assessing rare adverse event incidence. We determined safety and efficacy of ADVATE [antihaemophilic factor (recombinant), plasma/albumin-free method, (rAHF-PFM)] during routine clinical practice. Subjects with differing haemophilia A severities and medical histories were monitored during 12 months of prophylactic and/or on-demand therapy. Among 408 evaluable subjects, 386 (95%) received excellent/good efficacy ratings for all on-demand assessments; the corresponding number for subjects with previous FVIII inhibitors was 36/41 (88%). Among 276 evaluable subjects receiving prophylaxis continuously in the study, 255 (92%) had excellent/good ratings for all prophylactic assessments; the corresponding number for subjects with previous FVIII inhibitors was 41/46 (89%). Efficacy of surgical prophylaxis was excellent/good in 16/16 evaluable procedures. Among previously treated patients (PTPs) with >50 exposure days (EDs) and FVIII≤2%, three (0.75%) developed low-titre inhibitors. Two of these subjects had a positive inhibitor history; thus, the incidence of de novo inhibitor formation in PTPs with FVIII≤2% and no inhibitor history was 1/348 (0.29%; 95% CI, 0.01-1.59%). A PTP with moderate haemophilia developed a low-titre inhibitor. High-titre inhibitors were reported in a PTP with mild disease (following surgery), a previously untreated patient (PUP) with moderate disease (following surgery) and a PUP with severe disease. The favourable benefit/risk profile of rAHF-PFM previously documented in prospective clinical trials has been extended to include a broader range of haemophilia patients, many of whom would have been ineligible for registration studies. © 2010 Blackwell Publishing Ltd.

  6. Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin.

    Science.gov (United States)

    Bhattacharya, Arpan; Bhowmik, Soumitra; Singh, Amit K; Kodgire, Prashant; Das, Apurba K; Mukherjee, Tushar Kanti

    2017-10-10

    The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure. Our study suggests that this low energy fluorescence band is not due to any particular residue/sequence, but rather it is a common feature of self-assembled peptide bonds. The present findings of intrinsic blue fluorescence from oligomeric interfaces pave the way for future applications of this unique visual phenomenon for early stage detection of various protein aggregation related human diseases.

  7. HPLC separation of human serum albumin isoforms based on their isoelectric points

    Science.gov (United States)

    Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A.; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA–SHg+), HSA with Cys34 oxidized to sulfenic acid (HSA–SOH) and HSA oxidized to sulfinate anion (HSA–SO2−) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3–585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA PMID:24316526

  8. Potential toxicity of sulfanilamide antibiotic: Binding of sulfamethazine to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiabin [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhou, Xuefei [Key Laboratory of Yangtze River Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Yalei, E-mail: zhangyalei2003@163.com [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Gao, Haiping [Key Laboratory of Yangtze River Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2012-08-15

    Antibiotics are widely used in daily life but their abuse has posed a potential threat to human health. The interaction between human serum albumin (HSA) and sulfamethazine (SMZ) was investigated by capillary electrophoresis, fluorescence spectrometry, and circular dichroism. The binding constant and site were determined to be 1.09 Multiplication-Sign 10{sup 4} M{sup -1} and 1.14 at 309.5 K. The thermodynamic determination indicated that the interaction was driven by enthalpy change, where the electrostatic interaction and hydrogen bond were the dominant binding force. The binding distance between SMZ and tryptophan residue of HSA was obtained to be 3.07 nm according to Foerster non-radioactive energy transfer theory. The site marker competition revealed that SMZ bound into subdomain IIA of HSA. The binding of SMZ induced the unfolding of the polypeptides of HSA and transferred the secondary conformation of HSA. The equilibrium dialysis showed that only 0.13 mM SMZ decreased vitamin B{sub 2} by 38% transported on the HSA. This work provides a new quantitative evaluation method for antibiotics to cause the protein damage. -- Highlights: Black-Right-Pointing-Pointer Various techniques characterized the interactions between SMZ and HSA. Black-Right-Pointing-Pointer The electrostatic interaction and hydrogen bond dominated in the interaction. Black-Right-Pointing-Pointer SMZ induced the conformation change of HSA. Black-Right-Pointing-Pointer SMZ affected the transportation function of HSA.

  9. Fluorometric and molecular docking investigation on the binding characteristics of SB202190 to human serum albumin

    International Nuclear Information System (INIS)

    Nasruddin, Ahmad N.; Feroz, Shevin R.; Mukarram, Abdul K.; Mohamad, Saharuddin B.; Tayyab, Saad

    2016-01-01

    The interaction of SB202190, a p38 mitogen-activated protein kinase inhibitor with the main drug transporter in human circulation, human serum albumin (HSA) was studied using fluorescence spectroscopy and in silico docking methods. The association constant, K a of the binding reaction was determined to be 3.24±0.07×10 4 M −1 at 25 °C based on fluorescence quenching titration results. The values of enthalpy change and entropy change for the interaction were found as −8.54 kJ mol −1 and 58.01 J mol −1 K −1 , respectively. Both thermodynamic data and docking results suggested the involvement of hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of SB202190–HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Comparison of HSA thermograms obtained in the absence and the presence of SB202190 suggested improved protein thermal stability upon complexation with the drug. Competitive drug displacement results as well as modeling data concluded the preferred binding site of SB202190 on HSA as Sudlow's site I. - Highlights: • SB202190 interacts with HSA with moderate affinity. • Involvement of hydrophobic and van der Waals forces in SB202190 binding. • SB202190 binding results in microenvironmental changes around fluorophores. • Sudlow's site I is the preferred binding site of SB202190.

  10. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes.

    Science.gov (United States)

    Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Bele, Constantin; Orza, Anamaria Ioana; Lucan, Ciprian; Stiufiuc, Rares; Manaila, Ioana; Iulia, Ferencz; Dana, Iancu; Zaharie, Florin; Osian, Gelu; Vlad, Liviu; Iancu, Cornel

    2011-01-01

    The process of laser-mediated ablation of cancer cells marked with biofunctionalized carbon nanotubes is frequently called "nanophotothermolysis". We herein present a method of selective nanophotothermolisys of pancreatic cancer (PC) using multiwalled carbon nanotubes (MWCNTs) functionalized with human serum albumin (HSA). With the purpose of testing the therapeutic value of these nanobioconjugates, we have developed an ex-vivo experimental platform. Surgically resected specimens from patients with PC were preserved in a cold medium and kept alive via intra-arterial perfusion. Additionally, the HSA-MWCNTs have been intra-arterially administered in the greater pancreatic artery under ultrasound guidance. Confocal and transmission electron microscopy combined with immunohistochemical staining have confirmed the selective accumulation of HSA-MWCNTs inside the human PC tissue. The external laser irradiation of the specimen has significantly produced extensive necrosis of the malign tissue after the intra-arterial administration of HSA-MWCNTs, without any harmful effects on the surrounding healthy parenchyma. We have obtained a selective photothermal ablation of the malign tissue based on the selective internalization of MWCNTs with HSA cargo inside the pancreatic adenocarcinoma after the ex-vivo intra-arterial perfusion.

  11. GC-MS-based metabolmics analysis of transgenic rice with human serum albumin

    International Nuclear Information System (INIS)

    Fu, W.; Wang, L.; Zhu, S.; Li, Hao; Yang, D.

    2017-01-01

    This study was to analyze the difference of the metabolite profiles between non-transgenic (TP309-8) and human serum albumin (HSA) transgenic rice (TP309-HSA-8, TP309-HSA-9, corresponding to 8th and 9th generation) by gas chromatography-mass spectrometry followed by multivariate analyses methods including principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA). As a result, 12 differential metabolites were identified between TP309-HSA-8 and TP309-8, of which 6 were known compounds (trehalose, citric acid, valine, glycine, asparagine and pantothenic acid) and they were enriched in starch and sucrose metabolism, carbon fixation pathways in prokaryotes, valine, leucine and isoleucine degradation and biosynthesis, glycine, serine and threonine metabolism, and antidyslipidemic agents pathways, respectively. There were 4 different compounds between TP309-HSA-8 and TP309-HSA-9, including known compounds [asparagine and oleic acid (C18:1)]. However, no pathways were enriched for them. Our findings preliminarily reveal transgenic HSA may be beneficial for rice growth and providing more essential amino acid for human beings by altering the metabolite profiles. (author)

  12. Epitope imprinted polymer nanoparticles containing fluorescent quantum dots for specific recognition of human serum albumin

    International Nuclear Information System (INIS)

    Wang, Yi-Zhi; Li, Dong-Yan; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2015-01-01

    Epitope imprinted polymer nanoparticles (EI-NPs) were prepared by one-pot polymerization of N-isopropylacrylamide in the presence of CdTe quantum dots and an epitope (consisting of amino acids 598 to 609) of human serum albumin (HSA). The resulting EI-NPs exhibit specific recognition ability and enable direct fluorescence quantification of HSA based on a fluorescence turn-on mode. The polymer was characterized by FT-IR, X-ray photoelectron spectroscopy, transmission electron microscopy and dynamic light scattering. The linear calibration graph was obtained in the range of 0.25–5 μmol · mL −1 with the detection limit of 44.3 nmol · mL −1 . The EI-NPs were successfully applied to the direct fluorometric quantification of HSA in samples of human serum. Overall, this approach provides a promising tool to design functional fluorescent materials with protein recognition capability and specific applications in proteomics. (author)

  13. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: Preparation, characterization, and targeting effect on liver tumors.

    Science.gov (United States)

    Wu, Mingfang; Lian, Bolin; Deng, Yiping; Feng, Ziqi; Zhong, Chen; Wu, Weiwei; Huang, Yannian; Wang, Lingling; Zu, Chang; Zhao, Xiuhua

    2017-08-01

    In this study, glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were prepared to establish a tumor targeting nano-sized drug delivery system. Glycyrrhizic acid was coupled to human serum albumin, and resveratrol was encapsulated in glycyrrhizic acid-conjugated human serum albumin by high-pressure homogenization emulsification. The average particle size of sample nanoparticles prepared under the optimal conditions was 108.1 ± 5.3 nm with a polydispersity index (PDI) of 0.001, and the amount of glycyrrhizic acid coupled with human serum albumin was 112.56 µg/mg. The drug encapsulation efficiency and drug loading efficiency were 83.6 and 11.5%, respectively. The glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were characterized through laser light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analyses, and gas chromatography. The characterization results showed that resveratrol in glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles existed in amorphous state and the residual amounts of chloroform and methanol in nanoparticles were separately less than the international conference on harmonization (ICH) limit. The in vitro drug-release study showed that the nanoparticles released the drug slowly and continuously. The inhibitory rate of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide method. The IC50 values of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles and resveratrol were 62.5 and 95.5 µg/ml, respectively. The target ability of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles

  14. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  15. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  16. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    International Nuclear Information System (INIS)

    Poór, Miklós; Li, Yin; Matisz, Gergely; Kiss, László; Kunsági-Máté, Sándor; Kőszegi, Tamás

    2014-01-01

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin

  17. Alkylation of human serum albumin by sulfur mustard in vitro and in vivo : Mass spectrometric analysis of a cysteine adduct as a sensitive biomarker of exposure

    NARCIS (Netherlands)

    Noort, D.; Hulst, A.G.; Jong, L.P.A. de; Benschop, H.P.

    1999-01-01

    To develop a mass spectrometric assay for the detection of sulfur mustard adducts with human serum albumin, the following steps were performed: quantitation of the binding of the agent to the protein by using [14C] sulfur mustard and analysis of acidic and tryptic digests of albumin from blood after

  18. Preparation of S-sulfo albumin film and its cell adhesive property

    International Nuclear Information System (INIS)

    Yamazoe, Hironori; Yamauchi, Kiyoshi; Tanabe, Toshizumi

    2009-01-01

    Recently, large-scale production of the pharmaceutical grade recombinant human serum albumin was achieved, and several clinical trials have proved its safety and efficacy. Albumin is thought to be a candidate for a safe biopolymer sources for application to biomaterials. In this study, we treated albumin with sodium sulfite and sodium tetrathionate to give S-sulfo albumin, which was found to loose native albumin structure by CD spectra analysis and dye-binding assay. A water-insoluble S-sulfo albumin films were prepared by drying S-sulfo albumin solution and subsequent reformation of disulfide bonds by the oxidation with iodine. Ultimate strength, ultimate elongation and Young's modulus of S-sulfo albumin film prepared at room temperature were 3.3 ± 0.4 MPa, 30.8 ± 3.2% and 40.8 ± 3.3 MPa before oxidative treatment and changed to 13.8 ± 4.2 MPa, 5.6 ± 2.8% and 401.7 ± 15.3 MPa after oxidative treatment. When the film was prepared at 60 deg. C, similar tendency was observed. Thus, the disulfide bonds formation between albumin molecules by oxidative treatment converted the film stronger and stiffer. Cell adhesion and proliferation on the films were evaluated using mouse L929 fibroblast cells. Cell adhesion largely depended on the albumin structure; that is, cells did not attach to native albumin coated surfaces, while cell adhesion and proliferation occurred on the S-sulfo albumin films which lost their native albumin structure. Eighty percent of seeded cells were adhered on S-sulfo albumin films and proliferated well in a similar manner to those on the conventional culture dish. Our results indicate that S-sulfo albumin is a favorable cell culture substrate.

  19. [Protein losing enteropathy (PLE) detected by Tc99m-labelled human serum albumin abdominal scintigraphy--case report].

    Science.gov (United States)

    Hubalewska-Hoła, Alicja; Sowa-Staszczak, Anna; Szczerbiński, Tomasz; Lis, Grzegorz; Huszno, Bohdan; Szybiński, Zbigniew

    2003-01-01

    Protein losing enteropathy (PLE) is a gastrointestinal disorder that is associated with excessive loss of plasma protein into the gut resulting from abnormal mucosal permeability. The disease is usually caused by inflammation. The loss of protein in PLE is a nonselective process affecting albumin, globulin and transferrin. Abdominal scintigraphy with human serum albumin marked by Tc99m seems to be an easy and sensitive method for diagnosing PLE. An 4-year-old girl was presented to an outside Pediatric Department due to hypoproteinemia and recurrent pneumonia which had caused several prior hospitalizations. The laboratory tests revealed hypoproteinemia, hypoalbuminemia, low level of IgG, sideropenia, and a decreased level of T lymphocytes. The loss of protein into the gut was confirmed by fecal clearance of alfa-1 antitrypsin. Only nonspecific inflammation was detected by biopsy of the small intestine. These clinical and laboratory findings, quickly decreasing IgG and albumin levels in spite of i.v. supplementation and the lack of proteinuria permitted PLE diagnosis. The abdominal scintigraphy was planned to assess and localise protein losing through GIT and for strategy of possible surgical treatment. Abdominal dynamic scintigraphy was performed immediately after the injection of 300 MBq Tc99m human albumin. 90 images were taken within 180 minutes. Delayed abdominal images were obtained 6 and 24 hours after the tracer injection. Anterior abdominal scintigraphy showed pathological activity of Tc99m-albumin in small bowel in the upper left segment of the abdomen in the 40th minute after injection. Extensive accumulation of albumin was seen in the 160th minute. Delayed images, after 3 and 6 hours, revealed translocation of the tracer into the lower right abdominal segment. The further passage and tracer concentration was detected in ascendant and transverse colon. Based on the laboratory tests and scintigraphic images the girl was suspected to have segmental

  20. Biological evaluation of recombinant human erythropoietin in pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Ramos A.S.

    2003-01-01

    Full Text Available The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%, the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  1. Yttrium-86-labelled human serum albumin microspheres: relation of surface structure with in vivo stability

    International Nuclear Information System (INIS)

    Schiller, Eik; Bergmann, Ralf; Pietzsch, Jens; Noll, Bernhard; Sterger, Antje; Johannsen, Bernd; Wunderlich, Gerd; Pietzsch, Hans-Juergen

    2008-01-01

    Introduction: Radiolabelled particles are an attractive tool in the therapy of malignancies of the liver. We consider particles manufactured from denatured human serum albumin (HSA) as useful carriers of therapeutic radionuclides. Covalent attachment of suitable chelators onto the surface of the spheres promises an easy access to radiolabelled HSA microspheres. Methods: We synthesized 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) bearing smooth, medium-rough and rough surfaced HSA microspheres (mean diameter: 25 μm). In vitro stability of 86 Y-labelled particles was determined after incubation in human plasma and in a DTPA challenge experiment. In vivo stability of 86 Y DOTA-HSA microspheres was determined after single intravenous application in rats. Subsequently, the particles were completely trapped in the lung microvasculature. Thus, the lung serves in our experiments as target organ. Results: DOTA-HSA microspheres were 86 Y labelled in reproducible high yields (>95%). No differences between smooth and rough surfaced spheres were found for both DOTA coupling and 86 Y labelling. Labelled microspheres showed high in vitro stability in human plasma and in DTPA solution with only 8±1% and 2±0% loss of radioactivity from the surface, respectively, 48 h postinjection (pi). The three batches (smooth, medium-rough and rough surfaced microspheres) differed considerably in their radioactivity recovery in the lungs of rats 48 h pi. Smooth particles showed the highest in vivo stability of the radiolabel on the surface of the spheres, presumably because of slower proteolytic degradation. Conclusion: We found that for the preparation of HSA-derived microspheres for radiotherapeutic application, smooth surfaced spheres are superior to rough spheres due to their higher in vivo stability of the radionuclide fixation

  2. Probing the binding of fluoxetine hydrochloride to human serum albumin by multispectroscopic techniques

    Science.gov (United States)

    Katrahalli, Umesha; Jaldappagari, Seetharamappa; Kalanur, Shankara S.

    2010-01-01

    The interaction between human serum albumin (HSA) and fluoxetine hydrochloride (FLX) have been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism and FTIR under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of FLX to HSA. The values of binding constant, K of FLX-HSA were evaluated at 289, 300 and 310 K and were found to be 1.90 × 10 3, 1.68 × 10 3 and 1.45 × 10 3 M -1, respectively. The number of binding sites, n was noticed to be almost equal to unity thereby indicating the presence of a single class of binding site for FLX on HSA. Based on the thermodynamic parameters, Δ H0 and Δ S0 nature of binding forces operating between HSA and FLX were proposed. Spectral results revealed the conformational changes in protein upon interaction. Displacement studies indicated the site I as the main binding site for FLX on HSA. The effect of common ions on the binding of FLX to HSA was also investigated.

  3. Temperature dependent rapid annealing effect induces amorphous aggregation of human serum albumin.

    Science.gov (United States)

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M; Al-Lohedan, Hammad; Badr, Gamal; Khan, Rizwan Hasan

    2016-01-01

    This study represents an analysis of the thermal aggregation of human serum albumin (HSA) induced by novel rosin modified compounds. The aggregation process causes conformational alterations in the secondary and tertiary structures of the proteins. The conversion of globular protein to amorphous aggregates was carried out by spectroscopic, calorimetric and microscopic techniques to investigate the factors that are responsible for the structural, conformational and morphological alteration in the protein. Our outcome results show that the aggregation of HSA was dependent on the hydrophobicity, charge and temperature, because the formation of amorphous aggregates occurs in the presence of a novel cationic rosin compound, quaternary amine of rosin diethylaminoethyl ester (QRMAE), at 40°C and pH 7.4 (but at 25°C on similar pH value, there was no evidence of aggregate formation). In addition, the parent compound of QRMAE, i.e., abietic acid, and other derivatives such as nonionic rosin compounds [(RMPEG-750) and (RMA-MPEG-750)] do not shows the aggregating property. This work provides precise and necessary information that aid in the understanding the effects of rosin derivative compounds on HSA. This study also restrains important information for athletes, health providers, pharmaceutical companies, industries, and soft drink-processing companies. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    Science.gov (United States)

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  5. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study

    Science.gov (United States)

    Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  6. [Investigation on the interaction between pentadecafluorooctanoic acid and human serum albumin by capillary electrophoresis].

    Science.gov (United States)

    Gu, Yi; Guo, Ming; Lü, Da; Hou, Ping; Yin, Xinxin

    2018-01-08

    Capillary electrophoresis (CE) has been used to establish the analytical method of interaction between pentadecafluorooctanoic acid (PFOA) and human serum albumin (HSA). Under the physiological conditions, the interaction model of PFOA and HSA were constructed. Mobility method, plug-plug kinetic (PPK) method and simplified Hummel-Dreyer method were used to determine the interaction between derivatives and HSA. Non-linear regression, Scatchard equation and Klotz equation were adopted to obtain the interaction parameters. The results showed that all the three methods can be used to analyze the interaction of PFOA-HSA system. According to the interaction parameters, the most suitable CE method is simplified Hummel-Dreyer method while the most suitable theoretical equation is non-linear regression. The binding parameters indicated that the interaction of PFOA-HSA system has only one type of binding sites and the binding is stable. The research results have illustrated the interaction between HSA and PFOA, and provided a beneficial reference for in-depth research of the toxic mechanism of PFOA.

  7. Crystal structure analysis of human serum albumin complexed with sodium 4-phenylbutyrate.

    Science.gov (United States)

    Kawai, Akito; Yamasaki, Keishi; Enokida, Taisuke; Miyamoto, Shuichi; Otagiri, Masaki

    2018-03-01

    Sodium 4-phenylbutyrate (PB) is an orphan drug for the treatment of urea cycle disorders. It also inhibits the development of endoplasmic reticulum stress, the action of histone deacetylases and as a regulator of the hepatocanalicular transporter. PB is generally considered to have the potential for use in the treatment of the diseases such as cancer, neurodegenerative diseases and metabolic diseases. In a previous study, we reported that PB is primarily bound to human serum albumin (HSA) in plasma and its binding site is drug site 2. However, details of the binding mode of PB to HSA remain unknown. To address this issue, we examined the crystal structure of HSA with PB bound to it. The structure of the HSA-PB complex indicates that the binding mode of PB to HSA is quite similar to that for octanoate or drugs that bind to drug site 2, as opposed to that for other medium-chain length of fatty acids. These findings provide useful basic information related to drug-HSA interactions. Moreover, the information presented herein is valuable in terms of providing safe and efficient treatment and diagnosis in clinical settings.

  8. Molecular interaction and energy transfer between human serum albumin and bioactive component Aloe dihydrocoumarin

    Science.gov (United States)

    Zhang, Xiu-Feng; Xie, Ling; Liu, Yang; Xiang, Jun-Feng; Li, Lin; Tang, Ya-Lin

    2008-10-01

    Aloe dihydrocoumarin is an antioxidant and a candidate of immunomodulatory drug on the immune system and can balance physiological reactive oxygen species (ROS) levels which may be useful to maintain homeostasis. In order to explore the mechanism of drug action at a molecular level, the binding of Aloe dihydrocoumarin with human serum albumin (HSA) has been investigated by fluorescence, ultraviolet (UV), circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy, fluorescence dynamics, and molecular dynamic docking for the first time. We observed a quenching of fluorescence of HSA in the presence of Aloe dihydrocoumarin and also analyzed the quenching results using the Stern-Volmer equation and obtained high affinity binding to HSA. A Förster type fluorescence resonance energy transfer mechanism is involved in this quenching of Trp fluorescence by Aloe dihydrocoumarin. From the CD and FT-IR results, it is apparent that the interaction of Aloe dihydrocoumarin with HSA causes a conformational change of the protein, with the loss of α-helix stability and the gain of β-sheet and β-turn content. Data obtained by fluorescence spectroscopy, fluorescence dynamics, CD, and FT-IR experiments along with the docking studies suggest that Aloe dihydrocoumarin binds to residues located in subdomain IIA of HSA.

  9. Structural basis of non-steroidal anti-inflammatory drug diclofenac binding to human serum albumin.

    Science.gov (United States)

    Zhang, Yao; Lee, Philbert; Liang, Shichu; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2015-11-01

    Human serum albumin (HSA) is the most abundant protein in plasma, which plays a central role in drug pharmacokinetics because most compounds bound to HSA in blood circulation. To understand binding characterization of non-steroidal anti-inflammatory drugs to HSA, we resolved the structure of diclofenac and HSA complex by X-ray crystallography. HSA-palmitic acid-diclofenac structure reveals two distinct binding sites for three diclofenac in HSA. One diclofenac is located at the IB subdomain, and its carboxylate group projects toward polar environment, forming hydrogen bond with one water molecule. The other two diclofenac molecules cobind in big hydrophobic cavity of the IIA subdomain without interactive association. Among them, one binds in main chamber of big hydrophobic cavity, and its carboxylate group forms hydrogen bonds with Lys199 and Arg218, as well as one water molecule, whereas another diclofenac binds in side chamber, its carboxylate group projects out cavity, forming hydrogen bond with Ser480. © 2015 John Wiley & Sons A/S.

  10. Probing the Effect of Ag2S Quantum Dots on Human Serum Albumin Using Spectral Techniques

    Directory of Open Access Journals (Sweden)

    Yiying Fu

    2017-01-01

    Full Text Available The understanding of the interaction between protein and quantum dots (QDs has significant implications for biological applications of QDs. Herein, we studied the effect of Ag2S QDs on human serum albumin (HSA using UV-Vis absorption spectra and fluorescence spectroscopy and found that the fluorescence intensity of HSA was gradually decreased with increasing Ag2S QDs concentrations. By using the Stern-Volmer equation for the fluorescence quenching constant (KSV of the response of Ag2S QDs to HSA as well as thermodynamic equations, the values of thermodynamic enthalpy change (ΔHθ, entropy change (ΔSθ, and free energy change (ΔGθ were calculated to be −10.79 KJ·mol−1, 37.80 J·mol−1·K−1, and −22.27 KJ·mol−1, respectively. The results indicate that Ag2S QDs exert an obvious static fluorescence quenching effect on HSA and electrostatic interaction plays a key role in the binding process. Furthermore, Raman spectral analysis reveals that Ag2S QDs alter the external environment of tyrosine and tryptophan or the C-H bending of HSA but not the α-helical content.

  11. Spectral and computational features of the binding between riparins and human serum albumin

    Science.gov (United States)

    Camargo, Cintia Ramos; Caruso, Ícaro Putinhon; Gutierrez, Stanley Juan Chavez; Fossey, Marcelo Andres; Filho, José Maria Barbosa; Cornélio, Marinônio Lopes

    2018-02-01

    The green Brazilian bay leaf, a spice much prized in local cuisine (Aniba riparia, Lauraceae), contains chemical compounds presenting benzoyl-derivatives named riparins, which have anti-inflammatory, antimicrobial and anxiolytic properties. However, it is unclear what kind of interaction riparins perform with any molecular target. As a profitable target, human serum albumin (HSA) is one of the principal extracellular proteins, with an exceptional capacity to interact with several molecules, and it also plays a crucial role in the transport, distribution, and metabolism of a wide variety of endogenous and exogenous ligands. To outline the HSA-riparin interaction mechanism, spectroscopy and computational methods were synergistically applied. An evaluation through fluorescence spectroscopy showed that the emission, attributed to Trp 214, at 346 nm decreased with titrations of riparins. A static quenching mechanism was observed in the binding of riparins to HSA. Fluorescence experiments performed at 298, 308 and 318 K made it possible to conduct thermodynamic analysis indicating a spontaneous reaction in the complex formation (ΔG modulating the interaction between riparins and HSA. Site marker competitive experiments indicated Site I as being the most suitable, and the molecular modeling tools reinforced the experimental results detailing the participation of residues.

  12. Simultaneous determination of rifabutin and human serum albumin in pharmaceutical formulations by capillary electrophoresis.

    Science.gov (United States)

    Ermolenko, Yu; Anshakova, A; Osipova, N; Kamentsev, M; Maksimenko, O; Balabanyan, V; Gelperina, S

    Capillary zone electrophoresis (CZE) was used for determination of rifabutin (RFB), an anti-tuberculosis antibiotic drug, in various pharmaceutical formulations. Apart from that, simultaneous determination of RFB and human serum albumin (HSA) was performed. Electrophoretic behaviour of RFB was examined at various pH levels. CE conditions: a quartz capillary tube (internal diameter 75mm, effective length 50cm, total length 60cm), the capillary temperature was 25°С, the voltage applied to the capillary tube was +20kV, the UV detection wavelength was 214nm, hydrodynamic injection of the sample was performed at 30mbar for 5s, tetraborate buffer solution (0.01М, рН9.2). The obtained results are characterized by high efficiency (number of theoretical plates up to 260,000) and sufficient sensitivity (LOQ starting from 0.02μg/ml for RFB). The obtained data are in good accord with both HPLC results (for RFB) and spectrophotometry (for HSA). Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin

    Science.gov (United States)

    Pîrnău, Adrian; Mic, Mihaela; Neamţu, Silvia; Floare, Călin G.; Bogdan, Mircea

    2018-02-01

    A quantitative analysis of the interaction between zidovudine (AZT) and human serum albumin (HSA) was achieved using Isothermal titration calorimetry (ITC) in combination with fluorescence and 1H NMR spectroscopy. ITC directly measure the heat during a biomolecular binding event and gave us thermodynamic parameters and the characteristic association constant. By fluorescence quenching, the binding parameters of AZT-HSA interaction was determined and location to binding site I of HSA was confirmed. Via T1 NMR selective relaxation time measurements the drug-protein binding extent was evaluated as dissociation constants Kd and the involvement of azido moiety of zidovudine in molecular complex formation was put in evidence. All three methods indicated a very weak binding interaction. The association constant determined by ITC (3.58 × 102 M- 1) is supported by fluorescence quenching data (2.74 × 102 M- 1). The thermodynamic signature indicates that at least hydrophobic and electrostatic type interactions played a main role in the binding process.

  14. Surface and micellar properties of Chloroquine Diphosphate and its interactions with surfactants and Human Serum Albumin

    International Nuclear Information System (INIS)

    Usman, Muhammad; Siddiq, Mohammad

    2013-01-01

    Highlights: ► Free energy of adsorption is more negative than free energy of micellization. ► Shifts in UV/Visible spectra in presence of SDS indicated interaction of CLQ with SDS. ► The decrease in fluorescence intensity of HSA by CLQ shows its binding with HSA. -- Abstract: This manuscript addresses the physicochemical behavior of an antimalarial drug Chloroquine Diphosphate (CLQ) as well as its interaction with anionic surfactants and Human Serum Albumin (HSA). Surface tension and specific conductivity were employed to detect the critical micelle concentration (CMC) and thus its surface and thermodynamic parameters were calculated. Solubilization of this drug within micelles of anionic surfactant sodium dodecyl sulfate (SDS) has also been studied. UV/Visible spectroscopy was used to calculate partition coefficient (K x ), free energy of partition and number of drug molecules per micelle. The complexation of drug with HSA at physiological conditions (pH 7.4) has also been analyzed by using UV/Visible and fluorescence spectroscopy. The values of drug-protein binding constant, number of binding sites and free energy of binding were calculated

  15. Conformational changes and allosteric communications in human serum albumin due to ligand binding.

    Science.gov (United States)

    Ahalawat, Navjeet; Murarka, Rajesh K

    2015-01-01

    It is well recognized that knowledge of structure alone is not sufficient to understand the fundamental mechanism of biomolecular recognition. Information of dynamics is necessary to describe motions involving relevant conformational states of functional importance. We carried out principal component analysis (PCA) of structural ensemble, derived from 84 crystal structures of human serum albumin (HSA) with different ligands and/or different conditions, to identify the functionally important collective motions, and compared with the motions along the low-frequency modes obtained from normal mode analysis of the elastic network model (ENM) of unliganded HSA. Significant overlap is observed in the collective motions derived from PCA and ENM. PCA and ENM analysis revealed that ligand selects the most favored conformation from accessible equilibrium structures of unliganded HSA. Further, we analyzed dynamic network obtained from molecular dynamics simulations of unliganded HSA and fatty acids- bound HSA. Our results show that fatty acids-bound HSA has more robust community network with several routes to communicate among different parts of the protein. Critical nodes (residues) identified from dynamic network analysis are in good agreement with allosteric residues obtained from sequence-based statistical coupling analysis method. This work underscores the importance of intrinsic structural dynamics of proteins in ligand recognition and can be utilized for the development of novel drugs with optimum activity.

  16. Comparative Interactions of Dihydroquinazolin Derivatives with Human Serum Albumin Observed via Multiple Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-02-01

    Full Text Available The interactions of dihydroquinazolines with human serum albumin (HSA were studied in pH 7.4 aqueous solution via fluorescence, circular dichroism (CD and Fourier transform infrared (FTIR spectroscopic techniques. In this work, 6-chloro-1-(3,3-dimethyl-butanoyl-2(unsubstitutedphenyl-2,3-dihydroquinazolin-4(1H-one (PDQL derivatives were designed and synthesized to study the impact of five similar substituents (methyl, methoxy, cyano, trifluoromethyl and isopropyl on the interactions between PDQL and HSA using a comparative methodology. The results revealed that PDQL quenched the intrinsic fluorescence of HSA through a static quenching process. Displacement experiments with site-specific markers revealed that PDQL binds to HSA at site II (subdomain IIIA and that there may be only one binding site for PDQL on HSA. The thermodynamic parameters indicated that hydrophobic interactions mainly drove the interactions between PDQL and HSA. The substitution using five similar groups in the benzene ring could increase the interactions between PDQL and HSA to some extent through the van der Waals force or hydrogen bond effects in the proper temperature range. Isopropyl substitution could particularly enhance the binding affinity, as observed via comparative studies

  17. Interactions of poly(amidoamine) dendrimers with human serum albumin: binding constants and mechanisms.

    Science.gov (United States)

    Giri, Jyotsnendu; Diallo, Mamadou S; Simpson, André J; Liu, Yi; Goddard, William A; Kumar, Rajeev; Woods, Gwen C

    2011-05-24

    The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K(b)) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined (1)H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer-HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K(b)) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR (1)H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The (1)H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH(2)vs G4-NH(2)) and terminal groups (G4-NH(2)vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4).

  18. Ligand fishing from Dioscorea nipponica extract using human serum albumin functionalized magnetic nanoparticles.

    Science.gov (United States)

    Qinga, Lin-Sen; Xue, Ying; Zheng, Yi; Xiong, Jing; Liao, Xun; Ding, Li-Sheng; Li, Bo-Gang; Liu, Yi-Ming

    2010-07-09

    Dioscorea nipponica and the preparations made from it have been used for long to prevent and treat coronary heart disease in traditional Chinese medicine. A group of steroidal saponins present in the plant are believed to be the active ingredients. It has been a challenge to study the individual saponins separately due to the similarities in their chemical and physical properties. In this work, human serum albumin (HSA) functionalized magnetic nanoparticles (MNPs) were used to isolate and identify saponin ligands that bind to HSA from D. nipponica extract. Electrospray ionization mass spectrometry (ESI-MS) was used for compound identification and semi-quantification. Three saponins, i.e. dioscin, gracillin, and pseudo-protodioscin showed affinity to HSA-MNPs and thus isolated effectively from the extract. The other two saponins detected in the extract (i.e. protodioscin and 26-O-β-D-glucopyranosyl-3β,20α,26-triol-25(R)-Δ(5,22)-dienofurostan-3-O-α-L-rhamnopyranosyl (1→2)-[α-L-rhamnopyranosyl (1→4)]-β-D-glucopyranoside) exhibited no affinity at all. Among the three saponins fished out, dioscin bound to HSA much stronger than gracillin and pseudo-protodioscin did. The results indicated that affinity interaction between HSA immobilized on MNPs and small molecule compounds were highly dependent on chemical structures and, potentially, medicinal usefulness. The present work demonstrates a facile and effective way to isolate and identify ligands of receptors from medicinal plants.

  19. Fatty acid modulated human serum albumin binding of the β-carboline alkaloids norharmane and harmane.

    Science.gov (United States)

    Domonkos, Celesztina; Fitos, Ilona; Visy, Júlia; Zsila, Ferenc

    2013-12-02

    Harmane and norharmane are representative members of the large group of natural β-carboline alkaloids featured with diverse pharmacological activities. In blood, these agents are transported by human serum albumin (HSA) which has a profound impact on the pharmacokinetic and pharmacodynamic properties of many therapeutic drugs and xenobiotics. By combination of various spectroscopic methods, the present contribution is aimed to elucidate how nonesterified fatty acids (FAs), the primary endogenous ligands of HSA, affect the binding properties of harmane and norharmane. Analysis of induced circular dichroism (CD) and fluorescence spectroscopic data indicates the inclusion of the neutral form of both molecules into the binding pocket of subdomain IIIA, which hosts two FA binding sites, too. The induced CD and UV absorption spectra of harmane and norharmane exhibit peculiar changes upon addition of FAs, suggesting the formation of ternary complexes in which the lipid ligands significantly alter the binding mode of the alkaloids via cooperative allosteric mechanism. To our knowledge, it is the first instance of the demonstration of drug-FA cobinding at site IIIA. In line with these results, molecular docking calculations showed two distinct binding positions of norharmane within subdomain IIIA. The profound increase in the affinity constants of β-carbolines estimated in the presence of FAs predicts that the unbound, pharmacologically active serum fraction of these compounds strongly depends on the actual lipid binding profile of HSA.

  20. First pass effect by infusing 99mTc-human serum albumin into the hepatic artery

    International Nuclear Information System (INIS)

    Ozawa, Takashi; Kimura, Kousaburou; Koyanagi, Yasuhisa

    1988-01-01

    The fundamental principles of intra-arterial infusion chemotherapy are thought to be increased local drug concentration and the ''first-pass'' effect. The concentration in the rest of the body can only be decreased if there is local elimination of the infused drug before reaching the systemic circulation. This is referred to as the ''first-pass'' effect. In the evaluation of ''first-pass'' effect, the uptake of liver after infusing 99m Tc-human serum albumin ( 99m Tc-HSA) in the hepatic artery by injecting the subcutaneously implanted silicon reservoir was compared with that obtained after intravenous administration of 99m Tc-HSA. In order to remove the factor of portal infusion, each count of liver up take had been continued for only 24 seconds after starting the liver uptake. The results are as follows : for 24 cases excepting 6 cases with catheter obstruction, the mean i.a./i.v. ratio was 7.92 ± 3.34 (range 3.25 to 17.25). Although the elimination rate of drugs in the liver varies with each drug, the infusion of intraarterial chemotherapy should be about 8 times more concentrative than intravenous administration on the ''first-pass'' effect. (author)

  1. Effects of γ-Irradiation on the Molecular Structures and Functions of Human Serum Albumin.

    Science.gov (United States)

    Hu, Xinxin; Song, Wei; Li, Wei; Guo, Changying; Yu, Zehua; Liu, Rutao

    2016-11-01

    In this paper, we use spectroscopic methods (fluorescence spectroscopy, UV absorption spectroscopy, and circular dichroism (CD) spectroscopy) to elucidate the effects of reactive oxygen species generated by γ-irradiation on the molecular properties of human serum albumin (HSA). The results of fluorescence spectroscopy indicated that oxidation by γ-irradiation can lead to conformational changes of HSA. Data of CD spectra suggested that with the increase of radiation dose the percentage of α-helix in HSA has decreased. The determination of protein hydrophobicity showed that the effective hydrophobicity of HSA decreased up to 62% compared to the native HSA solution due to the exposure to the γ-irradiation. Furthermore, small changes in the esterase-like activity of HSA were introduced because of oxidation. The content of bityrosine increased markedly, suggesting that the oxidized HSA was aggregated. Moreover, there was no obvious change in the molecular properties of HSA with low γ-irradiation dose. Changes happened when the irradiation dose exceeded 200 Gy. © 2016 Wiley Periodicals, Inc.

  2. Electrolytic preparation of sup(99m)Tc human serum albumin using tin electrodes

    International Nuclear Information System (INIS)

    Narasimhan, D.V.S.; Mani, R.S.

    1975-01-01

    A method for labelling human serum albumin [HSA] with sup(99m)Tc using electrolytically generated Sn/II/ ions has been developed. The procedure uses Sn electrodes for electrolysis and gives high labelling yields. The amount of Sn released into the final product was found to be much less than the reported toxic levels. A ready-to-use kit for obtaining sterile sup(99m)Tc HSA is described. Tin metal wires sealed in aluminium were irradiated in a CIRUS reactor at a neutron flux of 7.5x10 12 n cm -2 sec -1 for one month. The 113 Sn produced in the wire was used for tracer studies with the electrolitically labelled HSA. sup(99m)Tc in the form sodium pertechnetate in 0.9% NaCl was obtained by methyl ethyl ketone extraction from alkaline solutions of neutron irradiated 99 Mo [specific activity 50-200 mCi/g] in the solvent extraction generator developed at Isotope Division, BARC. Radiochemical purity analysis of sup(99m)Tc labelled HSA prepared by the above procedure was carried out by ascending paper chromatography on Whatman No.1 paper, and 85% methanol and 0.9% sodium chloride as solvents. (F.Gy.)

  3. Human serum albumin binding assay based on displacement of a non selective fluorescent inhibitor.

    Science.gov (United States)

    Thorarensen, Atli; Sarver, Ronald W; Tian, Fang; Ho, Andrea; Romero, Donna L; Marotti, Keith R

    2007-08-15

    In this paper, we describe a fluorescent antibacterial analog, 6, with utility as a competition probe to determine affinities of other antibacterial analogs for human serum albumin (HSA). Analog 6 bound to HSA with an affinity of 400+/-100 nM and the fluorescence was environmentally sensitive. With 370 nm excitation, environmental sensitivity was indicated by a quenching of the 530 nm emission when the probe bound to HSA. Displacement of dansylsarcosine from HSA by 6 indicated it competed with compounds that bound at site II (ibuprofen binding site) on HSA. Analog 6 also shifted the NMR peaks of an HSA bound oleic acid molecule that itself was affected by compounds that bound at site II. In addition to binding at site II, 6 interacted at site I (warfarin binding site) as indicated by displacement of dansylamide and the shifting of NMR peaks of an HSA bound oleic acid molecule affected by warfarin site binding. Additional evidence for multiple site interaction was discovered when a percentage of 6 could be displaced by either ibuprofen or phenylbutazone. A competition assay was established using 6 to determine relative affinities of other antibacterial inhibitors for HSA.

  4. Study on a noninvasive method for rapid screening Human Serum albumin injectables by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2017-01-01

    Full Text Available Human serum albumin (HSA injectable product is a severely afflicted area on drug safety due to its high price and restricted supply. Raman spectroscopy performances high specificity on HSA detection and it is even possible to determine HSA injectable products noninvasively. In this study, we developed a noninvasive rapid screening method for of HSA injectable products by using portable Raman spectrometer. Qualitative models were established by using principal component analysis combined with classical least squares (PCA-CLS algorithm, while quantitative model was established by using partial least squares (PLS algorithm. Model transfer in different instruments of both the same and different apparatus modules was further discussed in this paper. A total of 34 HSA injectable samples collected from markets were used for verification. The identification results showed 100% accuracy and the predicted concentrations of those identified as true HSA were consistent with their labeled concentrations. The quantitative results also indicated that model transfer was excellent in the same apparatus modules of Raman spectrometer at all concentration levels, and still good enough in the different apparatus modules although the relative standard deviation (RSD value showed a little increasing trend at low HSA concentration level. In conclusion, the method was proved to be feasible and efficient for screening HSA injections, especially on its screening speed and the consideration of glass containers. Moreover, with inspiring results on the model transfer, the method could be used as a universal screening mean to different Raman instruments.

  5. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2018-03-01

    The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH = 7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.

  6. Diagnosis of Protein Losing Enteropathy in connective Tissue Diseases with 99mTc-human Serum Albumin(Hsa)

    International Nuclear Information System (INIS)

    Won, Kyoung Sook; Oh, Yeong Seok; Bang, Shin Ho; Park, Won

    1993-01-01

    Anterior abdominal scintigraphy after intravenous injection of 99m Tc-human serum albumin ( 99m Tc-HSA 20 mCi) was done in 16 patients with connective tissue diseases and 15 healthy control patients. Patients with proteinuria or hepatopathy were excluded. 1) 7(44%) patients among 16 connective tissue disease patients without the apparent evidence of external protein loss showed abnormal intestinal accumulation of albumin. 6 patients with positive albumin scintigraphy showed hypoalbuminaemia. 2) There was no false positive scintigraphic finding in control group. 3) The serum albumin level in connective tissue disease patients (3.1 ± 0.6 g/dl, n=16) was lower than control patients(3.9 ± 0.3 g/dl, n=15) (p 99m Tc-HSA scan(2.8 ± 0.6 g/dl, n=7) than the connective tissue disease patients with negative scan(3.3 ± 0.3 g/dl, n=9) (p 99m Tc-HSA scan also must be validated by more extended study and comparison with the quantitative study such as stool α -1 antitrypsin measurement. There must be a reevaluation of PLE in various diseases especially in connective tissue diseases with easy, fast, economical, and noninvasive method.

  7. Drug-binding ability of human serum albumin at children with chronic virus hepatitis radiochemical definition method

    International Nuclear Information System (INIS)

    Kim, A.A.; Dadakhanov, J.A.; Djuraeva, G.T.; Shukurov, B.V.; Mavlyanov, I.R.

    2006-01-01

    Full text: The chronic virus hepatitis produces numerous abnormalities of liver function. The viruses of B, C, D, F and G hepatitis possess the ability to cause chronically proceeding diseases. Earlier we have found that binding ability of serum albumin at patients with acute forms of virus hepatitis is authentically reduced in comparison with the given parameters of control group. At an acute virus hepatitis B with middle severity the reducing of binding ability of serum albumin was observed at 70 % of patients. At an acute virus hepatitis A the reduce of binding ability of serum albumin is less expressed than at acute virus hepatitis B. At of chronic virus intoxication in human organism there is a formation and accumulation of toxic compounds in the excessive concentrations, which are not inherent to a normal metabolism. One of universal mechanisms of reaction of an organism on the increasing concentration of metabolism products is formation of complexes of various compounds with blood plasma proteins. The formation in an organism of endo- and exotoxins excessive concentrations results in blocking the binding centers of albumin molecule that causes the change of its complexing ability. The purpose of the present research: investigation of binding ability of serum albumin with use of radiochemical method at children with a chronic virus hepatitis B and C. Materials and methods. Under clinical observation there were 52 children in the age from 3 till 14 years. From them at 32 the chronic virus hepatitis B was confirmed, at 20 chronic virus - hepatitis C. Etiological diagnostics was carried out by definition of specific markers of a hepatitis B and C method IFA and PCR. Binding ability of serum albumin was defined by radiochemical method with use of the tritium labeled no-spa (drotaverine hydrochloride). The control group consists from 10 conditionally health children of similar age. Results and their discussion. The results of investigation have shown, that at a

  8. Competitive binding of Chlorin p6 and Dansyl-L-Proline to Sudlow's site II of human serum albumin

    Science.gov (United States)

    Patel, Sunita; Sharma, Kaushal Kishor; Datta, Anindya

    2015-03-01

    The binding of chlorin p6, a model photosensitizer for photodynamic therapy (PDT), to the Sudlow's site II of Human Serum Albumin (HSA) has been monitored by different spectroscopic methods. Displacement of Dansyl-L-Proline (DP) from its conjugate with HSA is manifested in the spectral shift and decrease in its fluorescence intensity as well as the emergence of component with lifetime of 2-3 ns, which is characteristic of free DP. As DP is known to bind specifically to the Sudlow's site II of human serum albumin, its displacement by chlorin p6 indicates the residence of the photosensitizer in the same site, in addition to Sudlow's site I. The binding constants for Sudlow's site II, determined by the stopped-flow technique, are found to be two orders of magnitude smaller than that for Sudlow's site I.

  9. Influence of starvation, triton WR-1339 and [131I]-human serum albumin on rat liver lysosomes

    International Nuclear Information System (INIS)

    Harikumar, P.; Ninjoor, V.

    1986-01-01

    The response of rat liver lysosomes to starvation and administration of lysosomotropic agents viz. Triton WR-1339 and [ 131 I]-human serum albumin, was assessed in terms of their distribution pattern after isopycnic sucrose density gradient centrifugation. Starvation induced changes in lysosomes appeared to be similar to that produced by the detergent uptake. Both the treatments caused a distinct decline in the equilibration densities of the organelles. On the other hand, injected labelled protein failed to comigrate with the lysosomal markers in starved as well as Triton treated rats and conspicuously remained in a region of high specific gravity in the gradient. These findings indicate retarded fusion between secondary lysosomes and [ 131 I]-human serum albumin containing phagosomes in the livers of rats subjected to starvation or detergent treatment. (author)

  10. Early intervention with human albumin to reduce the tissue plasminogen activator-mediated blood-brain barrier permeability damaged by delayed reperfusion: an experimental study in rats

    International Nuclear Information System (INIS)

    Lu Haitao; Zhao Jungong; Li Minghua; Li Yongdong; Zhang Peilei

    2011-01-01

    Objective: To clarify whether early use of high-dose human albumin can reduce the permeability of blood-brain barrier (BBB) damaged by delayed thrombolysis or not, and, in tun, reduce the vasogenic brain edema. Methods: A total of 138 male SD rats weighing 320-380 grams were randomly divided into 4 groups: sham operation group (n=3), control group (n=45), albumin group (n=45) and albumin+rt-PA group (n=45). According to the reperfusion time after the onset of middle cerebral artery occlusion (MCAO), each group, except sham operation group, was divided into three subgroups of 2 h, 3 h and 4 h with 15 rats in each subgroup. Rats in albumin group and albumin+rt-PA group received an intravenous infusion of 20% human albumin (2.5 g/kg) 2 hours after the onset of MCAO, and rats in albumin+rt-PA group received an intravenous infusion of rt-PA (10 mg/kg) at all points of reperfusion time via the rat's femoral vein immediately after the reperfusion. All rats were sacrificed 24 hours after MCAO, the infarct volume of the brain was determined with TTC dye method, the leakage extent of BBB was quantitatively estimated by using Evans blue method, and the matrix metalloproteinase-9 (MMP-9) expression was assessed with immunohistochemistry technique. Results: Early intervention with the use of high-dose human albumin could significantly improve the neurological score at 24 h. In MCAO 3 h albumin group, MCAO 4 h albumin group and MCAO 3 h albumin+rt-PA group, neurological score was significantly better than that in the control group (P 0.05). The volume of the infarct tissue was also significantly smaller in all the treated groups with high-dose human albumin groups (P<0.05) when compared with the control group. The infarct volume of the MCAO 4 h in albumin group and albumin+rt-PA group was reduced by 23% and by 17.3%, respectively. Cerebral hemorrhage transformation occurred in two rats of MCAO 4 h control group, in one rat of MCAO 4 h albumin group and in one rat of MCAO 4 h

  11. Short-term effects of recombinant human growth hormone and feeding on gluconeogenesis in humans

    Science.gov (United States)

    After a short-term fast, lactating women have increased rates of glucose production but not gluconeogenesis (GNG) despite relative hypoinsulinemia. We explored the effects of non-insulin-dependent increase in glucose utilization and recombinant human growth hormone (rhGH) on glucose production, glyc...

  12. Antibody-based enzyme-linked lectin assay (ABELLA) for the sialylated recombinant human erythropoietin present in culture supernatant.

    Science.gov (United States)

    Kim, Hyoung Jin; Lee, Seung Jae; Kim, Hong-Jin

    2008-11-04

    The terminal sialic acid of human erythropoietin (hEPO) is essential for in vivo activity. The current resorcinol and HPLC methods for analyzing alpha2,3-linked sialic acid require more than a microgram of purified rhEPO, and purification takes a great deal of time and labor. In this study, we assessed the use of an antibody-based enzyme-linked lectin assay (ABELLA) for analyzing non-purified recombinant hEPO (rhEPO). The major problem of this method was the high background due to terminal sialylation of components of the assay (antibody and bovine serum albumin) other than rhEPO. To solve this problem, we used a monoclonal antibody (Mab 287) to capture the rhEPO, and oxidized the bovine serum albumin used for blocking with meta-periodate. The sialic acid content of non-purified rhEPO measured by ABELLA was similar to that obtained by the resorcinol method on purified rhEPO. ABELLA has advantages such as adaptability and need for minimal amounts of rhEPO (40 ng/ml). Our observations suggest that ABELLA should reduce the time and labor needed to improve culture conditions so as to increase protein sialylation, and also facilitate the study of sialylation mechanisms.

  13. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    International Nuclear Information System (INIS)

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M.; Al-Lohedan, H.A.; Nigam, Lokesh; Subbarao, Naidu; Hasan Khan, Rizwan

    2015-01-01

    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K b ), enthalpy (ΔH 0 ), entropy (ΔS 0 ) and Gibbs free energy change (ΔG 0 ) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction

  14. Human Serum Albumin Nanoparticles for Use in Cancer Drug Delivery: Process Optimization and In Vitro Characterization

    Directory of Open Access Journals (Sweden)

    Nikita Lomis

    2016-06-01

    Full Text Available Human serum albumin nanoparticles (HSA-NPs are widely-used drug delivery systems with applications in various diseases, like cancer. For intravenous administration of HSA-NPs, the particle size, surface charge, drug loading and in vitro release kinetics are important parameters for consideration. This study focuses on the development of stable HSA-NPs containing the anti-cancer drug paclitaxel (PTX via the emulsion-solvent evaporation method using a high-pressure homogenizer. The key parameters for the preparation of PTX-HSA-NPs are: the starting concentrations of HSA, PTX and the organic solvent, including the homogenization pressure and its number cycles, were optimized. Results indicate a size of 143.4 ± 0.7 nm and 170.2 ± 1.4 nm with a surface charge of −5.6 ± 0.8 mV and −17.4 ± 0.5 mV for HSA-NPs and PTX-HSA-NPs (0.5 mg/mL of PTX, respectively. The yield of the PTX-HSA-NPs was ~93% with an encapsulation efficiency of ~82%. To investigate the safety and effectiveness of the PTX-HSA-NPs, an in vitro drug release and cytotoxicity assay was performed on human breast cancer cell line (MCF-7. The PTX-HSA-NPs showed dose-dependent toxicity on cells of 52%, 39.3% and 22.6% with increasing concentrations of PTX at 8, 20.2 and 31.4 μg/mL, respectively. In summary, all parameters involved in HSA-NPs’ preparation, its anticancer efficacy and scale-up are outlined in this research article.

  15. Fluorometric and molecular docking investigation on the binding characteristics of SB202190 to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Nasruddin, Ahmad N.; Feroz, Shevin R. [Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mukarram, Abdul K. [Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mohamad, Saharuddin B. [Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tayyab, Saad, E-mail: saadtayyab2004@yahoo.com [Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-06-15

    The interaction of SB202190, a p38 mitogen-activated protein kinase inhibitor with the main drug transporter in human circulation, human serum albumin (HSA) was studied using fluorescence spectroscopy and in silico docking methods. The association constant, K{sub a} of the binding reaction was determined to be 3.24±0.07×10{sup 4} M{sup −1} at 25 °C based on fluorescence quenching titration results. The values of enthalpy change and entropy change for the interaction were found as −8.54 kJ mol{sup −1} and 58.01 J mol{sup −1} K{sup −1}, respectively. Both thermodynamic data and docking results suggested the involvement of hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of SB202190–HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Comparison of HSA thermograms obtained in the absence and the presence of SB202190 suggested improved protein thermal stability upon complexation with the drug. Competitive drug displacement results as well as modeling data concluded the preferred binding site of SB202190 on HSA as Sudlow's site I. - Highlights: • SB202190 interacts with HSA with moderate affinity. • Involvement of hydrophobic and van der Waals forces in SB202190 binding. • SB202190 binding results in microenvironmental changes around fluorophores. • Sudlow's site I is the preferred binding site of SB202190.

  16. Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Sánchez, Jesús; Gallardo-Moreno, Amparo M.; Bruque, José M.; González-Martín, M. Luisa, E-mail: mlglez@unex.es

    2016-07-15

    Adsorption of proteins on solid surfaces has been widely studied because of its importance in various biotechnological, medical and technical applications, such as medical implants or biosensors. One of the main problems is the adsorption-induced conformational changes because they often modify the biological activity of the proteins, which is believed to be a key factor on the subsequent cellular adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue development and bone regeneration among others. The study was done through the analysis of the adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the zeta potential (ζ). From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins remain constant when the monolayer is formed. The study also extends the analysis of both adsorption behaviour and ζ potential characterization factors to the influence of the substrate hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light (UV-C) without changes on its chemical composition [1,2]. Differences at low protein concentrations were found for both isotherms and zeta-potential values.

  17. Selective ex-vivo photothermal ablation of human pancreatic cancer with albumin functionalized multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Mocan L

    2011-04-01

    Full Text Available Lucian Mocan1, Flaviu A Tabaran2, Teodora Mocan1, Constantin Bele3, Anamaria Ioana Orza1, Ciprian Lucan4, Rares Stiufiuc1, Ioana Manaila1, Ferencz Iulia1, Iancu Dana1, Florin Zaharie1, Gelu Osian1, Liviu Vlad1, Cornel Iancu11Department of Nanomedicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania; 2Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania; 3Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania; 4Clinical Institute of Urology and Renal Transplantation, Cluj-Napoca, RomaniaAbstract: The process of laser-mediated ablation of cancer cells marked with biofunctionalized carbon nanotubes is frequently called “nanophotothermolysis”. We herein present a method of selective nanophotothermolisys of pancreatic cancer (PC using multiwalled carbon nanotubes (MWCNTs functionalized with human serum albumin (HSA. With the purpose of testing the therapeutic value of these nanobioconjugates, we have developed an ex-vivo experimental platform. Surgically resected specimens from patients with PC were preserved in a cold medium and kept alive via intra-arterial perfusion. Additionally, the HSA-MWCNTs have been intra-arterially administered in the greater pancreatic artery under ultrasound guidance. Confocal and transmission electron microscopy combined with immunohistochemical staining have confirmed the selective accumulation of HSA-MWCNTs inside the human PC tissue. The external laser irradiation of the specimen has significantly produced extensive necrosis of the malign tissue after the intra-arterial administration of HSA-MWCNTs, without any harmful effects on the surrounding healthy parenchyma. We have obtained a selective photothermal ablation of the malign tissue based on the selective internalization of MWCNTs with HSA cargo inside the pancreatic adenocarcinoma after the ex-vivo intra

  18. Interaction of biocompatible natural rosin-based surfactants with human serum albumin: A biophysical study

    Energy Technology Data Exchange (ETDEWEB)

    Ishtikhar, Mohd [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Ali, Mohd Sajid [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Atta, Ayman M. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Petroleum Application department, Egyptian Petroleum Research Institute, Ahmad Elzomor St., Nasr city, Cairo-11727 (Egypt); Al-Lohedan, H.A. [Surfactant Research Chair, Department of Chemistry, King Saud University, P.O. Box-2455, Riyadh 11451 (Saudi Arabia); Nigam, Lokesh; Subbarao, Naidu [Centre for Computational Biology and Bioinformatics, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Hasan Khan, Rizwan, E-mail: rizwanhkhan@hotmail.com [Protein Biophysics Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India)

    2015-11-15

    Biophysical insight into interaction of biocompatible rosin-based surfactants with human serum albumin (HSA) was studied at physiological conditions using various spectroscopic, calorimetric and molecular docking approaches. The binding constant (K{sub b}), enthalpy (ΔH{sup 0}), entropy (ΔS{sup 0}) and Gibbs free energy change (ΔG{sup 0}) were calculated by spectroscopic and calorimetric method. We have also calculated the probability of energy transfer by FRET analysis. The circular dichroism study showed that the cationic surfactant QRMAE significantly altered the secondary structure of HSA as compared to the nonionic rosin surfactants. The thermodynamic study was performed by ITC to determine binding constant as well as change in enthalpy of HSA in presence of rosin surfactants. It clearly showed that hydrogen binding and hydrophobic interaction play an important role in the binding of HSA to rosin surfactants. We have also performed molecular docking studies to locate the binding site on HSA and to visualize the mode of interaction. The present study provides a significant insight into HSA–rosin surfactants interaction, which also improves our understanding of the possible effect of rosin surfactants on human health. - Highlights: • RMPEG 750 has the highest Kb, Kq and Ksv value as compared to other rosin surfactants. • The probability of energy transfer from HSA to rosin surfactants was maximum in the case of RMPEG 750. • Cationic surfactant QRMAE significantly altered the secondary structure of the HSA as compared to other rosin surfactants. • Molecular docking and ITC experiment studies, to locate the binding site on HSA and to investigate the mode of interaction.

  19. Poly(norepinephrine)-coated open tubular column for the separation of proteins and recombination human erythropoietin by capillary electrochromatography.

    Science.gov (United States)

    Xiao, Xue; Zhang, Yamin; Wu, Jia; Jia, Li

    2017-12-01

    Recombinant human erythropoietin is an important therapeutic protein with high economic interest due to the benefits provided by its clinical use for the treatment of anemias associated with chronic renal failure and chemotherapy. In this work, a poly(norepinephrine)-coated open tubular column was successfully prepared based on the self-polymerization of norepinephrine under mild alkaline condition, the favorable film forming and easy adhesive properties of poly(norepinephrine). The poly(norepinephrine) coating was characterized by scanning electron microscopy and measurement of the electro-osmotic flow. The thickness of the coating was about 431 nm. The electrochromatographic performance of the poly(norepinephrine)-coated open tubular column was evaluated by separation of proteins. Some basic and acidic proteins including two variants of bovine serum albumin and two variants of β-lactoglobulin achieved separation in the poly(norepinephrine)-coated open tubular column. More importantly, the column demonstrated separation ability for the glycoforms of recombinant human erythropoietin. In addition, the column demonstrated good repeatability with the run-to-run, day-to-day, and column-to-column relative standard deviations of migration times of proteins less than 3.40%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Unveiling the stimulatory effects of tartrazine on human and bovine serum albumin fibrillogenesis: Spectroscopic and microscopic study

    Science.gov (United States)

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Alsenaidy, Mohammad A.; Alsenaidy, Abdulrahman M.; Khan, Mohd Shahnawaz; Husain, Fohad Mabood; Khan, Mohammad Rashid; Naseem, Mohammad; Sen, Priyankar; Alam, Parvez; Khan, Rizwan Hasan

    2018-02-01

    Amyloid fibrils are playing key role in the pathogenesis of various neurodegenerative diseases. Generally anionic molecules are known to induce amyloid fibril in several proteins. In this work, we have studied the effect of anionic food additive dye i.e., tartrazine (TZ) on the amyloid fibril formation of human serum albumins (HSA) and bovine serum albumin (BSA) at pHs 7.4 and 3.5. We have employed various biophysical methods like, turbidity measurements, Rayleigh Light Scattering (RLS), Dynamic Light Scattering (DLS), intrinsic fluorescence, Congo red assay, far-UV CD, transmission electron microscopy (TEM) and atomic force microscopy (AFM) to decipher the mechanism of TZ-induce amyloid fibril formation in both the serum albumins at pHs 7.4 and 3.5. The obtained results suggest that both the albumins forms amyloid-like aggregates in the presence of 1.0 to 15.0 mM of TZ at pH 3.5, but no amyloid fibril were seen at pH 7.4. The possible cause of TZ-induced amyloid fibril formation is electrostatic and hydrophobic interaction because sulfate group of TZ may have interacted electrostatically with positively charged amino acids of the albumins at pH 3.5 and increased protein-protein and protein-TZ interactions leading to amyloid fibril formation. The TEM, RLS and DLS results are suggesting that BSA forms bigger size amyloids compared to HSA, may be due to high surface hydrophobicity of BSA.

  1. Physiological serum copper concentrations found in malignancies cause unfolding induced aggregation of human serum albumin in vitro.

    Science.gov (United States)

    Rizvi, Asim; Furkan, Mohd; Naseem, Imrana

    2017-12-15

    Malignancies are characterized by several drastic metabolic changes, one of which is a progressive rise in the levels of serum copper. This rise in serum copper is documented across all malignancies and across malignancies in several species. This study aims to explore in vitro the effect of increased copper levels on the structure of the blood protein human serum albumin. Exposure of human serum albumin to physiologically relevant copper concentrations for 21 days resulted in structural modifications in the protein which were evident by changes in the intrinsic florescence. A loss of the predominantly alpha helical structure of human serum albumin was recorded along with a tendency to form protein aggregates. This aggregation was characterized by Thioflavin T and Congo Red assays. Rayleigh light scattering and turbidity assays confirmed aggregation. The aggregates were visually confirmed using transmission electron microscopy. This is the first report implicating increased copper levels as a cause of aggregation of blood proteins in malignancies. The physiological and biochemical implications of this phenomenon are discussed. Copyright © 2017. Published by Elsevier Inc.

  2. Investigation of the interaction between isomeric derivatives and human serum albumin by fluorescence spectroscopy and molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruiyong, E-mail: wangry@zzu.edu.cn; Dou, Huanjing; Yin, Yujing; Xie, Yuanzhe; Sun, Li; Liu, Chunmei; Dong, Jingjing; Huang, Gang; Zhu, Yanyan; Song, Chuanjun, E-mail: chjsong@zzu.edu.cn; Chang, Junbiao, E-mail: changjunbiao@zzu.edu.cn

    2014-10-15

    In this paper, we have synthesized 9H-pyrrolo[1,2-a]indol-9-ones and the isomeric indeno[2,1-b]pyrrol-8-ones. The interactions of human serum albumin with series of isomeric derivatives have been studied by spectrophotometric methods. Results show the intrinsic fluorescence is quenched by the derivatives with a static quenching procedure. The thermodynamics parameters indicate that van der Waals forces and hydrogen bonds play a major role in the interactions. The results of synchronous fluorescence spectra demonstrate that the microenvironments of Trp residue of human serum albumin are disturbed by most derivatives. Thermodynamic results showed that the 9H-pyrrolo[1,2-a]indol-9-ones are stronger quenchers and bind to human serum albumin with the higher affinity than isomeric indeno[2,1-b]pyrrol-8-ones. The influence of molecular structure on the binding aspects has been investigated. - Highlights: • The interactions between isomeric derivatives and HSA have been investigated. • Results reveal that 9H-pyrrolo[1,2-a]indol-9-ones are stronger quenchers for HSA. • Hydrogen bonds and van der Waals forces play major role in the binding process. • The influence of molecular structure on the binding aspects has been investigated. • The binding study was also modeled by molecular docking.

  3. Investigation of the interaction between isomeric derivatives and human serum albumin by fluorescence spectroscopy and molecular modeling

    International Nuclear Information System (INIS)

    Wang, Ruiyong; Dou, Huanjing; Yin, Yujing; Xie, Yuanzhe; Sun, Li; Liu, Chunmei; Dong, Jingjing; Huang, Gang; Zhu, Yanyan; Song, Chuanjun; Chang, Junbiao

    2014-01-01

    In this paper, we have synthesized 9H-pyrrolo[1,2-a]indol-9-ones and the isomeric indeno[2,1-b]pyrrol-8-ones. The interactions of human serum albumin with series of isomeric derivatives have been studied by spectrophotometric methods. Results show the intrinsic fluorescence is quenched by the derivatives with a static quenching procedure. The thermodynamics parameters indicate that van der Waals forces and hydrogen bonds play a major role in the interactions. The results of synchronous fluorescence spectra demonstrate that the microenvironments of Trp residue of human serum albumin are disturbed by most derivatives. Thermodynamic results showed that the 9H-pyrrolo[1,2-a]indol-9-ones are stronger quenchers and bind to human serum albumin with the higher affinity than isomeric indeno[2,1-b]pyrrol-8-ones. The influence of molecular structure on the binding aspects has been investigated. - Highlights: • The interactions between isomeric derivatives and HSA have been investigated. • Results reveal that 9H-pyrrolo[1,2-a]indol-9-ones are stronger quenchers for HSA. • Hydrogen bonds and van der Waals forces play major role in the binding process. • The influence of molecular structure on the binding aspects has been investigated. • The binding study was also modeled by molecular docking

  4. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    Science.gov (United States)

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  5. Granulomatous interstitial pneumonia in a miniature swine associated with repeated intravenous injections of Tc-99m human serum albumin: concise communication

    International Nuclear Information System (INIS)

    Whinnery, J.E.; Young, J.T.

    1980-01-01

    Albumin lung-scanning agents have a proven high degree of safety, with the only contraindication to their use being allergic hypersensitivity. We have used these agents to investigate the physiologic effects of high G/sub z/ acceleratory forces on pulmonary perfusion using the miniature swine. Multiple doses of human macroaggregated albumin and human-albumin microspheres were given to a miniature swine at various levels of centrifugal acceleration over a 6-wk period. The dosages given were the same per kilogram as those used for routine clinical human studies. The animal subsequently died from a severe granulomatous interstitial pneumonia. The granulomatous lesions suggest that the pathogenesis may have involved a cell-mediated delayed hypersensitivity. This interstitial pneumonia may represent the end point in a chronic hypersensitivity response to the human-albumin lung-scanning agents

  6. Probing the interaction of a new synthesized CdTe quantum dots with human serum albumin and bovine serum albumin by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Bardajee, Ghasem Rezanejade, E-mail: rezanejad@pnu.ac.ir; Hooshyar, Zari

    2016-05-01

    A novel CdTe quantum dots (QDs) were prepared in aqueous phase via a facile method. At first, poly (acrylic amide) grafted onto sodium alginate (PAAm-g-SA) were successfully synthesized and then TGA capped CdTe QDs (CdTe-TGA QDs) were embed into it. The prepared CdTe-PAAm-g-SA QDs were optimized and characterized by transmission electron microscopy (TEM), thermo-gravimetric (TG) analysis, Fourier transform infrared (FT-IR), UV–vis and fluorescence spectroscopy. The characterization results indicated that CdTe-TGA QDs, with particles size of 2.90 nm, were uniformly dispersed on the chains of PAAm-g-SA biopolymer. CdTe-PAAm-g-SA QDs also exhibited excellent UV–vis absorption and high fluorescence intensity. To explore biological behavior of CdTe-PAAm-g-SA QDs, the interactions between CdTe-PAAm-g-SA QDs and human serum albumin (HSA) (or bovine serum albumin (BSA)) were investigated by cyclic voltammetry, FT-IR, UV–vis, and fluorescence spectroscopic. The results confirmed the formation of CdTe-PAAm-g-SA QDs-HSA (or BSA) complex with high binding affinities. The thermodynamic parameters (ΔG < 0, ΔH < 0 and ΔS < 0) were indicated that binding reaction was spontaneous and van der Waals interactions and hydrogen-bond interactions played a major role in stabilizing the CdTe-PAAm-g-SA QDs-HSA (or BSA) complexes. The binding distance between CdTe-PAAm-g-SA QDs and HSA (or BSA)) was calculated about 1.37 nm and 1.27 nm, respectively, according to Forster non-radiative energy transfer theory (FRET). Analyzing FT-IR spectra showed that the formation of QDs-HSA and QDs-BSA complexes led to conformational changes of the HSA and BSA proteins. All these experimental results clarified the effective transportation and elimination of CdTe-PAAm-g-SA QDs in the body by binding to HSA and BSA, which could be a useful guideline for the estimation of QDs as a drug carrier. - Highlights: • The CdTe quantum dots coated with polyacrylamide grafted onto sodium alginate. • The

  7. Binding of methacycline to human serum albumin at subdomain IIA using multispectroscopic and molecular modeling methods.

    Science.gov (United States)

    Dong, Chengyu; Lu, Ningning; Liu, Ying

    2013-01-01

    This study was designed to examine the interaction of methacyline (METC) with human serum albumin (HSA) by multispectroscopy and a molecular modeling method under simulative physiological conditions. The quenching mechanism was suggested to be static quenching based on fluorescence and ultraviolet-visible (UV-Vis) spectroscopy. According to the Vant' Hoff equation, the values of enthalpy (∆H) and entropy change (∆S) were calculated to be -95.29 kJ/mol and -218.13 J/mol/K, indicating that the main driving force of the interaction between HSA and METC were hydrogen bonds and van der Waals's forces. By performing displacement measurements, the specific binding of METC in the vicinity of Sudlow's site I of HSA was clarified. An apparent distance of 3.05 nm between Trp214 and METC was obtained via the fluorescence resonance energy transfer (FRET) method. Furthermore, the binding details between METC and HSA were further confirmed by molecular docking studies, which revealed that METC was bound at subdomain IIA through multiple interactions, such as hydrophobic effect, polar forces, hydrogen bonding, etc. The results of three-dimensional fluorescence and Fourier transform infrared (FTIR) spectroscopy showed that METC caused conformational and some microenvironmental changes in HSA and reduced the α-helix significantly in the range of 52.3-40.4% in HSA secondary structure. Moreover, the coexistence of metal ions such as Ca(2+), Al(3+), Fe(3+), Zn(2+), Cu(2+), Cr(3+) and Cd(2+) can decrease the binding constants of METC-HSA. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Diketo modification of curcumin affects its interaction with human serum albumin.

    Science.gov (United States)

    Shaikh, Shaukat Ali M; Singh, Beena G; Barik, Atanu; Ramani, Modukuri V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Indira Priyadarsini, K

    2018-06-15

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×10 5 , 8.4×10 5 and 2.5×10 5 M -1 , which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Complexation of fluoroquinolone antibiotics with human serum albumin: A fluorescence quenching study

    Energy Technology Data Exchange (ETDEWEB)

    Seedher, Neelam, E-mail: nseedher@yahoo.co [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Agarwal, Pooja [Department of Chemistry, Panjab University, Chandigarh 160014 (India)

    2010-10-15

    Mechanism of interaction and detailed physico-chemical characterization of the binding of four fluoroquinolones: levofloxacin, sparfloxacin, ciprofloxacin HCl and enrofloxacin with human serum albumin has been studied at physiological pH (7.4) using fluorescence spectroscopic technique. The stoichiometry of interaction was found to be 1:1 for all the drugs used. The association constants for the interaction were of the order of 10{sup 4} in most cases. At low drug:protein ratios, a significant fraction of the added drug was bound. The predominant interactions involved are hydrogen bonding and Van der Waal's interactions in the case of levofloxacin, hydrophobic interactions in the case of ciprofloxacin hydrochloride and enrofloxacin and hydrogen bonding, hydrophobic and electrostatic interactions in the case of sparfloxacin. The drug binding region did not coincide with that of the hydrophobic probe, 1-anilinonaphthalene-8-sulfonate (ANS). From the displacement of site-specific probes and site-marker drugs, it was concluded that ciprofloxacin hydrochloride is site II-specific while enrofloxacin is a site I-specific drug. Levofloxacin binds at both site I and site II with equal affinity. Sparfloxacin had higher affinity for site II than site I. It is also possible that sparfloxacin binds at the interface between site I and site II. Stern-Volmer analysis of the data showed that the quenching mechanism is predominantly collisional for the binding of ciprofloxacin HCl and enrofloxacin while both static and collisional quenching mechanisms are operative in the case of levofloxacin and sparfloxacin. High magnitude of the rate constant for quenching showed that the process is not entirely diffusion controlled. Circular dichroism (CD) spectroscopic studies showed that the presence of drugs did not cause any major changes in the secondary structure of HSA.

  10. Exploring the mechanism of interaction between sulindac and human serum albumin: Spectroscopic and molecular modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Ping; Hou, Ya-He [Department of Material Engineering, Xuzhou College of Industrial Technology, Xuzhou, Jiangsu 221140 (China); Wang, Li [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Zhang, Ye-Zhong, E-mail: zhangfluorescence@126.com [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Liu, Yi, E-mail: prof.liuyi@263.net [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2013-06-15

    In the present study, a combination of fluorescence, molecular modeling and circular dichroism (CD) approaches had been employed to investigate the interaction between sulindac and human serum albumin (HSA). Results of mechanism discussion demonstrated that the fluorescence quenching of HSA by sulindac was a static quenching procedure. Binding parameters calculated from the modified Stern–Volmer equation showed that sulindac bound to HSA with the binding affinities in the order of 10{sup 5} L mol{sup −1}. The thermodynamic parameters (ΔH=−18.58 kJ mol{sup −1}; ΔS=37.26 J mol{sup −1} K{sup −1}) obtained by the van′t Hoff equation revealed that hydrophobic forces played a leading role in the formation of sulindac–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments revealed a displacement of warfarin by sulindac, which indicated that the binding site of sulindac to HSA located in the sub-domain IIA (Sudlow′s site I). The molecular docking study confirmed the specific binding mode and binding site obtained by fluorescence and site marker competitive experiments. CD and three-dimensional fluorescence spectroscopy were used to investigate the changes of HSA secondary structure and microenvironment in the presence of sulindac. Alterations of HSA conformation were observed with the reduction of α-helix from 60.1% (free HSA) to 57.3%, manifesting a slight unfolding of the polypeptides of protein. -- Highlights: ► The quenching mechanism between sulindac and HSA is a static process. ► The binding of sulindac to HSA takes place in sub-domain IIA (Sudlow′s site I). ► The binding is spontaneous and hydrophobic force plays major role in stabilizing the complex. ► CD and 3-D fluorescence spectra prove the change of the microenvironment and conformation of HSA.

  11. Diketo modification of curcumin affects its interaction with human serum albumin

    Science.gov (United States)

    Shaikh, Shaukat Ali M.; Singh, Beena G.; Barik, Atanu; Ramani, Modukuri V.; Balaji, Neduri V.; Subbaraju, Gottumukkala V.; Naik, Devidas B.; Indira Priyadarsini, K.

    2018-06-01

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3 × 105, 8.4 × 105 and 2.5 × 105 M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.

  12. SPECTROSCOPIC STUDY OF INTERACTION OF SODIUM DOLUTEGRAVIR WITH HUMAN SERUM ALBUMIN

    Directory of Open Access Journals (Sweden)

    A. V. Yegorova

    2017-11-01

    Full Text Available Drug-protein binding has become an important research field in life sciences, chemistry and clinical medicine. Under physiological conditions, in vitro interaction between the antiviral drug 2 Sodium (4R, 12aS-9-{[(2,4-difluorophenylmethyl]carbamoyl}-4-methyl-6,8-dioxo3,4,6,8, 12,12a-hexahydro-2H-pyrido[1’,2’:4,5]pyrazino[2, 1-b][1,3]oxazin-7 –olate (dolutegravir sodium, DN and human serum albumin (HSA was investigated at excitation wavelength 280 nm and at different temperatures (298 K and 313 K by fluorescence emission spectroscopy. The emission of HSA was characterized by a broad emission band at 346 nm. The results of the experiment showed that DN quench the intrinsic fluorescence of the protein as a result of static interaction in the HSA -DN system, which is confirmed by shifts in the difference UV spectra of the HSA -DN and the reduction of the binding constant for the HSA -DN system with increasing temperature. The constant (KA =9,82· 103 L·mol-1 at 298 K and the number of binding sites of the HSA –DN system are established. The negative values of enthalpy change (ΔHº and entropy change (ΔSº can be attributed in part to van der Waals forces and in part to the formation of hydrogen bonds. A value of 2,14 nm for the average distance r between DN (acceptor and tryptophan residues of HSA (donor was derived from the fluorescence resonance energy transfer. The overlap of the absorbance spectrum of DN with the fluorescence emission spectrum of HAS has been shown. Since, the pharmaceutical firms need standardized screens for protein binding in the first step of new drug design, this kind of study of interaction between HSA with DN would be useful in pharmaceutical industry and clinical medicine.

  13. Combined fluorescence and electrochemical investigation on the binding interaction between organic acid and human serum albumin

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Min; GUO Liang-Hong

    2009-01-01

    Human serum albumin (HSA) is a plasma protein responsible for the binding and transport of fatty acids and a variety of exogenous chemicals such as drugs and environmental pollutants. Such binding plays a crucial role in determining the ADME (absorption, distribution, metabolism, and excretion) and bioavailability of the pollutants. We report investigation on the binding interaction between HSA and acetic acid (C2), octanoic acid (C8) and dodecanoic acid (C12) by the combination of site-specific fluorescent probe, tryptophan intrinsic fluorescence and tyrosine electrochemistry. Two fluorescent probes, dansylamide and dansyl-L-proline, were employed in the displacement measurement to study fatty acid interaction with the two drug-binding sites on HSA. Intrinsic fluorescence of tryptophan in HSA was monitored upon addition of the fatty acids into HSA. Electrocatalyzed response of the tyrosine residues in HSA by a redox mediator was used to investigate the binding interaction. Qualitatively, observations made by the three approaches are very similar. HSA did not show any change in either fluorescence or electrochemistry after mixing with C2, suggesting there is no significant interaction with the short-chain fatty acid. For C8, the measured signal dropped in a single-exponential fashion, indicative of independent and non-cooperative binding. The calculated association constant and binding ratio is 3.1×106 L/mol and 1 with drug binding Site I, 1.1×107 L/mol and 1 with Site II, and 7.0×104 L/mol and 4 with the tryptophan site. The measurement with C12 displayed multiple phases of fluorescence change, suggesting cooperativity and allosteric effect of C12 binding. These results correlate well with those obtained by the established methods, and validate the new approach as a viable tool to study the interactions of environmental pollutants with biological molecules.

  14. On-site preparation of technetium-99m labeled human serum albumin for clinical application

    International Nuclear Information System (INIS)

    Wang Yuhfeng; Chuang Meihua; Cham Thauming; Chung Meiing; Chiu Jainnshiun

    2007-01-01

    Technetium-99m labeled human serum albumin (Tc-99m HSA) is an important radiopharmaceutical for clinical applications, such as cardiac function tests or protein-losing gastroenteropathy assessment. However, because of transfusion-induced infectious diseases, the safety of serum products is a serious concern. In this context, serum products acquired from patients themselves are the most ideal tracer. However, the development of rapid separation and easy clinical labeling methods is not yet well established. Under such situation, products from the same ethnic group or country are now recommended by the World Health Organization as an alternative preparation. This article describes the on-site preparation of Tc-99m HSA from locally supplied serum products. Different formulations were prepared and the labeling efficiency and stability were examined. Radio-labeling efficiencies were more than 90% in all preparation protocols, except for one that omitted the stannous solution. The most cost-effective protocol contained HSA 0.1 mg, treated with stannous fluoride 0.2 mg, and mixed with Tc-99m pertechnetate 30 mCi. A biodistribution study was performed in rats using a gamma camera immediately after intravenous administration of radiolabeled HSA. Tissue/organ uptake was obtained by measuring the radioactivity in organs after sacrificing the rats at timed intervals. The biologic half-life was about 32 min, determined from sequential venous blood collections. These data indicate that our preparation of Tc-99m HSA is useful and potentially applicable clinically. In addition, this on-site preparation provides the possibility of labeling a patient's own serum for subsequent clinical application. (author)

  15. Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wangshu; Shi, Lei; Hui, Guangquan [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)

    2013-02-15

    The synthesis of a new biological active reagent, 2-((1,4-dihydroxy)-9,10-anthraquinone) aldehyde thiosemicarbazone (DHAQTS), was designed. The interaction between DHAQTS and HSA was studied by fluorescence spectroscopy in combination with molecular modeling under simulation of physiological conditions. According to the results of fluorescence measurements, the quenching mechanism was suggested to be static. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrophobic interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, DHAQTS was confirmed to be located in site I of HSA. The binding distance r=2.83 nm between the donor HSA and acceptor DHAQTS was obtained according to Foerster's non-radiative energy transfer theory. The three-dimensional fluorescence spectral results showed the conformation and microenvironment of HSA changed in the presence of DHAQTS. The effects of common ions on the binding of DHAQTS to HSA were also evaluated. The experimental results were in agreement with the results obtained via a molecular docking study. - Highlights: Black-Right-Pointing-Pointer 2-((1,4-dihydroxy)-9,10-anthraquinone)aldehyde thiosemicarbazone (DHAQTS) was synthesized. Black-Right-Pointing-Pointer DHAQTS can quench the fluorescence of human serum albumin (HSA) by static quenching mechanism. Black-Right-Pointing-Pointer Hydrophobic interactions were the predominant intermolecular forces. Black-Right-Pointing-Pointer The competitive experiment was carried out to identify the DHAQTS binding site on HSA. Black-Right-Pointing-Pointer Three-dimensional spectra confirmed DHAQTS caused the conformational change of HSA.

  16. Spectroscopic and molecular docking techniques study of the interaction between oxymetholone and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Bagheri, Habibollah; Afkhami, Abbas; Soleimani, Mohammad

    2014-11-15

    In this study, the binding of oxymetholone (OXM), a doping drug, to human serum albumin (HSA) was explored at pH 7.40 by spectroscopic methods including spectrofluorimetry, three dimensional excitation–emission matrix (3D EEM), UV–vis absorption, resonance rayleigh scattering (RRS) and molecular docking. The fluorescence results showed that there was a considerable quenching of the intrinsic fluorescence of HSA upon binding to OXM by static quenching mechanism. The Stern–Volmer quenching constants (K{sub SV}) between OXM and HSA at three different temperatures 295, 303, 308 K, were obtained as 4.63×10{sup 4}, 3.05×10{sup 4} and 1.49×10{sup 4} L mol{sup −1}, respectively. Furthermore this interaction was confirmed by UV–vis spectrophotometric and RRS techniques. The binding site number, n, apparent binding constant, K{sub b}, and corresponding thermodynamic parameters (ΔS, ΔH and ΔG) were measured at different temperatures. The Van der Waals and hydrogen-bond forces were found to stabilize OXM–HSA complex. The distance (r) between the donor and acceptor was obtained from Förster's theory of fluorescence resonance energy transfer (FRET) and found to be 1.67 nm. The 3D EEM showed that OXM slightly changes the secondary structure of HSA. Furthermore, the molecular docking was employed for identification of drug binding sites and interaction of OXM with amino acid residues. - Highlights: • The binding of OXM as a doping drug with HSA was studied by different techniques. • The binding constant of HSA–OXM was calculated. • The binding site of OXM on HSA was characterized with molecular docking. • The thermodynamic parameters were calculated according to fluorescence technique.

  17. Use of biotin targeted methotrexate–human serum albumin conjugated nanoparticles to enhance methotrexate antitumor efficacy

    Science.gov (United States)

    Taheri, Azade; Dinarvand, Rassoul; Nouri, Faranak Salman; Khorramizadeh, Mohammad Reza; Borougeni, Atefeh Taheri; Mansoori, Pooria; Atyabi, Fatemeh

    2011-01-01

    Biotin molecules could be used as suitable targeting moieties in targeted drug delivery systems against tumors. To develop a biotin targeted drug delivery system, we employed human serum albumin (HSA) as a carrier. Methotrexate (MTX) molecules were conjugated to HSA. MTX-HSA nanoparticles (MTX-HSA NPs) were prepared from these conjugates by cross-linking the HSA molecules. Biotin molecules were then conjugated on the surface of MTX-HSA NPs. The anticancer efficacy of biotin targeted MTX-HSA NPs was evaluated in mice bearing 4T1 breast carcinoma. A single dose of biotin targeted MTX-HSA NPs showed stronger in vivo antitumor activity than non-targeted MTX-HSA NPs and free MTX. By 7 days after treatment, average tumor volume in the biotin targeted MTX-HSA NPs-treated group decreased to 17.6% of the initial tumor volume when the number of attached biotin molecules on MTX-HSA-NPs was the highest. Average tumor volume in non-targeted MTX-HSA NPs-treated mice grew rapidly and reached 250.7% of the initial tumor volume. Biotin targeted MTX-HSA NPs increased the survival of tumor-bearing mice to 47.5 ± 0.71 days and increased their life span up to 216.7%. Mice treated with biotin targeted MTX-HSA NPs showed slight body weight loss (8%) 21 days after treatment, whereas non-targeted MTX-HSA NPs treatment at the same dose caused a body weight loss of 27.05% ± 3.1%. PMID:21931482

  18. Elucidation of the binding mechanism of coumarin derivatives with human serum albumin.

    Directory of Open Access Journals (Sweden)

    Archit Garg

    Full Text Available Coumarin is a benzopyrone which is widely used as an anti-coagulant, anti-oxidant, anti-cancer and also to cure arthritis, herpes, asthma and inflammation. Here, we studied the binding of synthesized coumarin derivatives with human serum albumin (HSA at physiological pH 7.2 by using fluorescence spectroscopy, circular dichroism spectroscopy, molecular docking and molecular dynamics simulation studies. By addition of coumarin derivatives to HSA the maximum fluorescence intensity was reduced due to quenching of intrinsic fluorescence upon binding of coumarin derivatives to HSA. The binding constant and free energy were found to be 1.957±0.01×10(5 M(-1, -7.175 Kcal M(-1 for coumarin derivative (CD enamide; 0.837±0.01×10(5 M(-1, -6.685 Kcal M(-1 for coumarin derivative (CD enoate, and 0.606±0.01×10(5 M(-1, -6.49 Kcal M(-1 for coumarin derivative methylprop (CDM enamide. The CD spectroscopy showed that the protein secondary structure was partially unfolded upon binding of coumarin derivatives. Further, the molecular docking studies showed that coumarin derivatives were binding to HSA at sub-domain IB with the hydrophobic interactions and also with hydrogen bond interactions. Additionally, the molecular dynamics simulations studies contributed in understanding the stability of protein-drug complex system in the aqueous solution and the conformational changes in HSA upon binding of coumarin derivatives. This study will provide insights into designing of the new inspired coumarin derivatives as therapeutic agents against many life threatening diseases.

  19. Complexation of fluoroquinolone antibiotics with human serum albumin: A fluorescence quenching study

    International Nuclear Information System (INIS)

    Seedher, Neelam; Agarwal, Pooja

    2010-01-01

    Mechanism of interaction and detailed physico-chemical characterization of the binding of four fluoroquinolones: levofloxacin, sparfloxacin, ciprofloxacin HCl and enrofloxacin with human serum albumin has been studied at physiological pH (7.4) using fluorescence spectroscopic technique. The stoichiometry of interaction was found to be 1:1 for all the drugs used. The association constants for the interaction were of the order of 10 4 in most cases. At low drug:protein ratios, a significant fraction of the added drug was bound. The predominant interactions involved are hydrogen bonding and Van der Waal's interactions in the case of levofloxacin, hydrophobic interactions in the case of ciprofloxacin hydrochloride and enrofloxacin and hydrogen bonding, hydrophobic and electrostatic interactions in the case of sparfloxacin. The drug binding region did not coincide with that of the hydrophobic probe, 1-anilinonaphthalene-8-sulfonate (ANS). From the displacement of site-specific probes and site-marker drugs, it was concluded that ciprofloxacin hydrochloride is site II-specific while enrofloxacin is a site I-specific drug. Levofloxacin binds at both site I and site II with equal affinity. Sparfloxacin had higher affinity for site II than site I. It is also possible that sparfloxacin binds at the interface between site I and site II. Stern-Volmer analysis of the data showed that the quenching mechanism is predominantly collisional for the binding of ciprofloxacin HCl and enrofloxacin while both static and collisional quenching mechanisms are operative in the case of levofloxacin and sparfloxacin. High magnitude of the rate constant for quenching showed that the process is not entirely diffusion controlled. Circular dichroism (CD) spectroscopic studies showed that the presence of drugs did not cause any major changes in the secondary structure of HSA.

  20. Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin

    International Nuclear Information System (INIS)

    Yu, Wangshu; Shi, Lei; Hui, Guangquan; Cui, Fengling

    2013-01-01

    The synthesis of a new biological active reagent, 2-((1,4-dihydroxy)-9,10-anthraquinone) aldehyde thiosemicarbazone (DHAQTS), was designed. The interaction between DHAQTS and HSA was studied by fluorescence spectroscopy in combination with molecular modeling under simulation of physiological conditions. According to the results of fluorescence measurements, the quenching mechanism was suggested to be static. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrophobic interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, DHAQTS was confirmed to be located in site I of HSA. The binding distance r=2.83 nm between the donor HSA and acceptor DHAQTS was obtained according to Förster's non-radiative energy transfer theory. The three-dimensional fluorescence spectral results showed the conformation and microenvironment of HSA changed in the presence of DHAQTS. The effects of common ions on the binding of DHAQTS to HSA were also evaluated. The experimental results were in agreement with the results obtained via a molecular docking study. - Highlights: ► 2-((1,4-dihydroxy)-9,10-anthraquinone)aldehyde thiosemicarbazone (DHAQTS) was synthesized. ► DHAQTS can quench the fluorescence of human serum albumin (HSA) by static quenching mechanism. ► Hydrophobic interactions were the predominant intermolecular forces. ► The competitive experiment was carried out to identify the DHAQTS binding site on HSA. ► Three-dimensional spectra confirmed DHAQTS caused the conformational change of HSA.

  1. Adsorption of human serum albumin: Dependence on molecular architecture of the oppositely charged surface

    Science.gov (United States)

    Sukhishvili, Svetlana A.; Granick, Steve

    1999-05-01

    We contrast the adsorption of human serum albumin (HSA) onto two solid substrates previously primed with the same polyelectrolyte of net opposite charge to form one of two alternative structures: randomly adsorbed polymer and the "brush" configuration. These structures were formed either by the adsorption of quaternized poly-4-vinylpyridine (QPVP) or by end-grafting QPVP chains of the same chemical makeup and the same molecular weight to surfaces onto which QPVP segments did not adsorb. The adsorption of HSA was quantified by using Fourier transform infrared spectroscopy in attenuated total reflection (FTIR-ATR). The two substrates showed striking differences with regard to HSA adsorption. First, the brush substrate induced lesser perturbations in the secondary structure of the adsorbed HSA, reflecting easier conformational adjustment for longer free segments of polyelectrolyte upon binding with the protein. Second, the penetration of HSA into the brush substrate was kinetically retarded relative to the randomly adsorbed polymer, probably due to both pore size restriction and electrostatic sticking between charged groups of HSA and QPVP molecules. Third, release of HSA from the adsorbed layer, as the ionic strength was increased from a low level up to the high level of 1 M NaCl, was largely inhibited for the brush substrate, but occurred easily and rapidly for the substrate with statistically adsorbed QPVP chains. Finally, even after addition of a strong polymeric adsorption competitor (sodium polystyrene sulfonate), HSA remained trapped within a brush substrate though it desorbed slowly from the preadsorbed QPVP layer. This method to produce irreversible trapping of the protein within a brush substrate without major conformational change may find application in biosensor design.

  2. Development of {sup 68}Ga-labelled DTPA galactosyl human serum albumin for liver function imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haubner, Roland [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria); Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Nuklearmedizin, Innsbruck (Austria); Vera, David R.; Farshchi-Heydari, Salman [University of California, Department of Radiology, School of Medicine, and the UCSD Molecular Imaging Program, San Diego, CA (United States); Helbok, Anna; Rangger, Christine; Putzer, Daniel; Virgolini, Irene J. [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2013-08-15

    The hepatic asialoglycoprotein receptor is responsible for degradation of desialylated glycoproteins through receptor-mediated endocytosis. It has been shown that imaging of the receptor density using [{sup 99m}Tc]diethylenetriamine pentaacetic acid (DTPA) galactosyl human serum albumin ([{sup 99m}Tc]GSA) allows non-invasive determination of functional hepatocellular mass. Here we present the synthesis and evaluation of [{sup 68}Ga]GSA for the potential use with positron emission tomography (PET). Labelling of GSA with {sup 68}Ga was carried out using a fractionated elution protocol. For quality control thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and size exclusion chromatography (SEC) techniques were evaluated. Stability of [{sup 68}Ga]GSA was studied in phosphate-buffered saline (PBS) and human serum. For in vivo evaluation [{sup 68}Ga]GSA distribution in Lewis rats was compared with [{sup 99m}Tc]GSA by using a dual isotope protocol. PET and planar imaging studies were performed using the same scaled molar dose of [{sup 68}Ga]GSA and [{sup 99m}Tc]GSA. Time-activity curves (TAC) for heart and liver were generated and corresponding parameters calculated (t50, t90). [{sup 68}Ga]GSA can be produced with high radiochemical purity. The best TLC methods for determining potential free {sup 68}Ga include 0.1 M sodium citrate as eluent. None of the TLC methods tested were able to determine potential colloids. This can be achieved by SEC. HPLC confirmed high radiochemical purity (>98 %). Stability after 120 min incubation at 37 C was high in PBS (>95 % intact tracer) and low in human serum ({proportional_to}27 % intact tracer). Biodistribution studies simultaneously injecting both tracers showed comparable liver uptake, whereas activity concentration in blood was higher for [{sup 68}Ga]GSA compared to [{sup 99m}Tc]GSA. The [{sup 99m}Tc]GSA TACs exhibited a small degree of hepatic metabolism compared to the [{sup 68}Ga]GSA curves. The mean

  3. Conformational changes in the bilirubin-human serum albumin complex at extreme alkaline pH

    DEFF Research Database (Denmark)

    Honoré, B; Frandsen, P C

    1986-01-01

    Light-absorption, c.d. and fluorescence of the bilirubin-albumin complex were investigated at extreme alkaline pH. Above pH 11.1 albumin binds the bilirubin molecule, twisted oppositely to the configuration at more neutral pH. On the basis of light-absorption it is shown that two alkaline...... transitions occur. The first alkaline transition takes place at pH between 11.3 and 11.8, co-operatively dissociating at least six protons. The second alkaline transition takes place at pH between 11.8 and 12.0. It probably implies a reversible unfolding of the albumin molecule, increasing the distance...

  4. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  5. Antiproliferative activity of recombinant human interferon-λ2 ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... antiviral activity, antiproliferative activity and in vivo antitumor activity .... bovine serum albumin (BSA) and 0.05% (v/v) Tween 20 in PBS at room temperature for 1 h .... identified and developed into an important insect embryo.

  6. Validation of quantitation of regional myocardial blood flow in vivo with 11C-labeled human albumin microspheres and positron emission tomography

    International Nuclear Information System (INIS)

    Wilson, R.A.; Shea, M.J.; De Landsheere, C.M.; Turton, D.; Brady, F.; Deanfield, J.E.; Selwyn, A.P.

    1984-01-01

    Use of radiolabeled microspheres is a standard method to measure regional myocardial perfusion in animals. Human albumin microspheres have been given safely to patients, but positron-emitting 67 Ga-labeled human albumin microspheres are characterized by an unstable radiolabel. A new labeling procedure that covalently binds 11 C to human albumin microspheres via 11 CH 3 I was developed. Seven open-chest and two closed-chest dogs were studied. Reference and 11 C-labeled human albumin microspheres (2 to 25 mCi) were both injected into the left atrium. Positron tomographic images were obtained of the myocardial distribution of the 11 C-labeled microspheres. Timed arterial withdrawal was used for both reference gamma-labeled microspheres and 11 C-labeled human albumin microspheres. Regional myocardial perfusion calculated by this technique correlated well with values obtained with reference microspheres over a range of 0.2 to 3.5 ml/min/g. Thus, 11 C human albumin microspheres are stable radiochemically and can be used as a quantitative measure of regional myocardial perfusion

  7. Cobinding of bilirubin and laurate to human serum albumin: spectroscopic characterization of stoichiometric complexes

    DEFF Research Database (Denmark)

    Honoré, B; Sato, H; Brodersen, R

    1988-01-01

    Light absorption and CD spectra of bound bilirubin and albumin fluorescence spectra have been recorded from mixtures containing albumin, A, bilirubin, B, and laurate, L, in Tris-NaCl buffer at pH 8.2, 25 degrees C. Concentrations of the corresponding stoichiometric complexes, ABiLj, for i = 0....../3 and j = 0/3, have been calculated from previously determined stoichiometric cobinding constants (H. Sato et al. (1988) Arch. Biochem. Biophys. 260, 811-821). Spectral data of the complexes have finally been found by iterative computer fitting using the principle of several acceptable solutions (R...

  8. Crystals of Human Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1994-01-01

    This invention pertains to crystals of serum albumin and processes for growing them. The purpose of the invention is to provide crystals of serum albumin which can be studied to determine binding sites for drugs. Form 2 crystals grow in the monoclinic space P2(sub 1), and possesses the following unit cell constraints: a = 58.9 +/- 7, b = 88.3 +/- 7, c = 60.7 +/- 7, Beta = 101.0 +/- 2 degrees. One advantage of the invention is that it will allow rational drug design

  9. Recombinant human endostatin improves tumor vasculature and alleviates hypoxia in Lewis lung carcinoma

    International Nuclear Information System (INIS)

    Peng Fang; Wang Jin; Zou Yi; Bao Yong; Huang Wenlin; Chen Guangming; Luo Xianrong; Chen Ming

    2011-01-01

    Objective: To investigate whether recombinant human endostatin can create a time window of vascular normalization prior to vascular pruning to alleviate hypoxia in Lewis lung carcinoma in mice. Methods: Kinetic changes in morphology of tumor vasculature in response to recombinant human endostatin were detected under a confocal microscope with immunofluorescent staining in Lewis lung carcinomas in mice. The hypoxic cell fraction of different time was assessed with immunohistochemical staining . Effects on tumor growth were monitored as indicated in the growth curve of tumors . Results: Compared with the control group vascularity of the tumors was reduced over time by recombinant human endostatin treatment and significantly regressed for 9 days. During the treatment, pericyte coverage increased at day 3, increased markedly at day 5, and fell again at day 7. The vascular basement membrane was thin and closely associated with endothelial cells after recombinant human endostatin treatment, but appeared thickened, loosely associated with endothelial cells in control tumors. The decrease in hypoxic cell fraction at day 5 after treatment was also found. Tumor growth was not accelerated 5 days after recombinant human endostatin treatment. Conclusions: Recombinant human endostatin can normalize tumor vasculature within day 3 to 7, leading to improved tumor oxygenation. The results provide important experimental basis for combining recombinant human endostatin with radiation therapy in human tumors. (authors)

  10. Crystals of Serum Albumin for Use in Genetic Engineering and Rational Drug Design

    Science.gov (United States)

    Carter, Daniel C. (Inventor)

    1996-01-01

    Serum albumin crystal forms have been produced which exhibit superior x-ray diffraction quality. The crystals are produced from both recombinant and wild-type human serum albumin, canine, and baboon serum albumin and allow the performance of drug-binding studies as well as genetic engineering studies. The crystals are grown from solutions of polyethylene glycol or ammonium sulphate within prescribed limits during growth times from one to several weeks and include the following space groups: P2(sub 1), C2, P1.

  11. Recombinant methods for screening human DNA excision repair proficiency

    International Nuclear Information System (INIS)

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period

  12. Recombinant human erythropoietin therapy in critically ill Jehovah's Witnesses.

    Science.gov (United States)

    Ball, Amanda M; Winstead, P Shane

    2008-11-01

    Blood transfusions and blood products are often given as a life-saving measure in patients with critical illness. However, some patients, such as Jehovah's Witnesses, may refuse their administration due to religious beliefs. Jehovah's Witnesses accept most available medical treatments, but not blood transfusions or blood products due to their religion's interpretation of several passages from the Bible. Since recombinant human erythropoietin (rHuEPO) became available, several cases have been reported in which rHuEPO was successfully administered to critically ill Jehovah's Witnesses. Administration of rHuEPO in combination with other blood conservation techniques has been shown to increase hemoglobin levels and survival in patients who experienced trauma, burns, general surgery, or gastrointestinal hemorrhage. We performed a literature search of the MEDLINE and International Pharmaceutical Abstracts databases of rHuEPO therapy in the Jehovah's Witness population. Fourteen cases were identified in which rHuEPO was administered to Jehovah's Witnesses who required the drug for critical care resuscitation as an alternative to blood products. In each clinical situation, rHuEPO enhanced erythropoiesis; however, time to the start of treatment, dosages, route of administration, and treatment duration varied widely. Supplementation with adjunctive agents, such as iron, folic acid, and vitamin B12, was also beneficial. Use of rHuEPO in Jehovah's Witnesses may provide an alternative to blood transfusions or blood products. Other alternatives, such as hemoglobin-based oxygen carriers and perfluorocarbons, are also being explored.

  13. Radioimmunoassay for urinary albumin

    International Nuclear Information System (INIS)

    Woo, J.; Floyd, M.; Cannon, D.C.; Kahan, B.

    1978-01-01

    We describe a rapid, sensitive, and precise radioimmunoassay for urinary albumin (U/sub alb/). Aliquots of diluted urine were incubated at room temperature for 1 h with 125 I-labelled albumin and a rabbit antiserum monospecifid for human albumin. Phase separation was effected by the double-antibody technique. The dose-response curve was linear in the range of 15.6 to 10,000 ng, equivalent to 4 to 3000 mg/liter of urine. The limit of sensitivity was 16 ng of albumin. The coefficient of assay variation was 4.8%, both at 44 mg/liter and at 1304 mg/liter. A displacement curve obtained with a serially diluted urine sample of high albumin concentration was completely superimposable with the curve for which human albumin was used as a standard. In 26 normal individuals the range for U/sub alb/ was 2.2 to 12.6 mg/24 h, and for albumin clearance (C/sub alb/), 1.8 x 10 -5 --19.6 x 10 -5 ml/min. After renal homografts in 25 patients, U/sub alb/ ranged from 16.9 to 9928 mg/24 h, and C/sub alb/ from 2.7 x 10 -4 to 1.7 x 10 -1 ml/min. Both increased U/sub alb/ and C/sub alb/ correlated well with the severity of renal homograft rejection

  14. Protection and repair of post-thrombolytic brain tissue with high-dose human albumin and magnesium sulfate: an experimental study

    International Nuclear Information System (INIS)

    Li Yongdong; Zhao Jungong; Li Minghua; You Xiaofang; Chen Yingsheng

    2008-01-01

    Objective: To evaluate the neuroprotective effects of high-dose human albumin and magnesium sulfate combined with recombinant tissue plasminogen activator (rt-PA) thrombolysis in a SD rat model of embolic stroke, with the aim to explore the possibility of extention for thrombolytic window. Methods: A thromboembolic stroke model performed on male SD rats (n=40) was randomly assigned into four groups: group A (n=10): rats received an intravenous infusion of 10 mg/kg rt-PA over a period of one hour at 3 h after onset of MCAO; group B (n=10): rats received an intravenous infusion of 10 mg/kg rt-PA over a period of one hour at 6 h after onset of MCAO; group C(n=10): rats received an intravenous infusion of human albumin (2.5 g/kg) and rt-PA(10 mg/kg) at 3 h and 6 h after onset of MCAO; group D(n=10): rats received same dose human albumin and rt-PA as that in group C, in addition, magnesium salfate (500 mg/ kg) was given intraperitoneally 3 h and 18 h after onset of MCAO. MRI was performed in each animal at preischemia, 24 h, 7 d and 14 d after treatment. After the last MR examination, all animals were killed under anesthesia, pathologic study (including electron microscope, light microscope, immuno-histochemistry) was performed in each animal, and LSCM were performed in two animals of each group. Results: The infarct volumes in four groups at 14 d after thrombolysis reduced 5.07% , 2.58%, 10.18% and 35.40% respectively compared with the infarct volume at 3 h after MCAO, with a predominant reduction in group D (P<0.05); increase of rCBV was confirmed at the marginal area of the cerebral infarction from the onset of stroke to 14 d, with significant increase between group A and C from 1 d to 7 d (P<0.05), while no significant difference was found in group B and C. The longest survival exhibited in group D and the shortest in group B, and no significant difference occurred concerning about survival among the four groups (P=0.763, P=0.636). In addition, LSCM showed a slight

  15. Modified method for labeling human platelets with indium-111 oxine using albumin density-gradient separation

    International Nuclear Information System (INIS)

    Bunting, R.W.; Callahan, R.J.; Finkelstein, S.; Lees, R.S.; Strauss, H.W.

    1982-01-01

    When labeling platelets with indium-111 oxine, albumin density-gradient separation minimizes the time spent to resuspend those platelets that have been centrifuged against a hard surface. Labeling efficiency or platelet viability, as measured by platelet survival or aggregation with adenosine diphosphate, are not adversely affected

  16. FORMATION OF HEMOGLOBIN AND ALBUMIN ADDUCTS OF BENZENE OXIDE IN MOUSE, RAT, AND HUMAN BLOOD

    Science.gov (United States)

    Little is known about the formation and disposition of benzene oxide (BO), the initial metabolite arising from oxidation of benzene by cytochrome P450. In this study, reactions of BO with hemoglobin (Hb) and albumin (Alb) were investigated in blood from B6C3F1 mice, F344 rats, ...

  17. Prevalence of IgG antibodies to human parvovirus B19 in haemophilia children treated with recombinant factor (F)VIII only or with at least one plasma-derived FVIII or FIX concentrate: results from the French haemophilia cohort.

    Science.gov (United States)

    Gaboulaud, Valérie; Parquet, Armelle; Tahiri, Cedric; Claeyssens, Ségolène; Potard, Valérie; Faradji, Albert; Peynet, Jocelyne; Costagliola, Dominique

    2002-02-01

    Human parvovirus B19 (B19) has been transmitted by some brands of virally attenuated plasma-derived factor VIII (FVIII) or IX (FIX) concentrates. To quantify the differences of human parvovirus B19 risk transmission between albumin-stabilized recombinant factor and plasma-derived factor, we studied the prevalence of IgG antibodies to B19 (anti-B19) in 193 haemophiliac children between 1 and 6-years of age who had previously been treated with albumin-stabilized recombinant FVIII only (n = 104), and in children previously treated with solvent/detergent high-purity non-immunopurified and non-nanofiltered FVIII or IX concentrates (n = 89). Association between the prevalence of anti-B19 and the treatment group was analysed using multivariate logistic regression. Age, severity and type of haemophilia, number of cumulative days of exposure to factor VIII or IX, previous history of red blood cells or plasma transfusion were considered as potential confounding variables. A higher prevalence of anti-B19 was found in children previously treated with solvent/detergent high-purity non-immunopurified and non-nanofiltered FVIII or IX concentrates than in children treated with albumin- stabilized recombinant FVIII only (OR: 22.3; CI: 7.9-62.8), independently of the other factors studied.

  18. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II.

    Science.gov (United States)

    Doublier, Sophie; Salvidio, Gennaro; Lupia, Enrico; Ruotsalainen, Vesa; Verzola, Daniela; Deferrari, Giacomo; Camussi, Giovanni

    2003-04-01

    We studied the distribution of nephrin in renal biopsies from 17 patients with diabetes and nephrotic syndrome (7 type 1 and 10 type 2 diabetes), 6 patients with diabetes and microalbuminuria (1 type 1 and 5 type 2 diabetes), and 10 normal subjects. Nephrin expression was semiquantitatively evaluated by measuring immunofluorescence intensity by digital image analysis. We found an extensive reduction of nephrin staining in both type 1 (67 +/- 9%; P < 0.001) and type 2 (65 +/- 10%; P < 0.001) diabetic patients with diabetes and nephrotic syndrome when compared with control subjects. The pattern of staining shifted from punctate/linear distribution to granular. In patients with microalbuminuria, the staining pattern of nephrin also showed granular distribution and reduction intensity of 69% in the patient with type 1 diabetes and of 62 +/- 4% (P < 0.001) in the patients with type 2 diabetes. In vitro studies on human cultured podocytes demonstrated that glycated albumin and angiotensin II reduced nephrin expression. Glycated albumin inhibited nephrin synthesis through the engagement of receptor for advanced glycation end products, whereas angiotensin II acted on cytoskeleton redistribution, inducing the shedding of nephrin. This study indicates that the alteration in nephrin expression is an early event in proteinuric patients with diabetes and suggests that glycated albumin and angiotensin II contribute to nephrin downregulation.

  19. Subnanosecond fluorescence spectroscopy of human serum albumin as a method to estimate the efficiency of the depression therapy

    Science.gov (United States)

    Syrejshchikova, T. I.; Gryzunov, Yu. A.; Smolina, N. V.; Komar, A. A.; Uzbekov, M. G.; Misionzhnik, E. J.; Maksimova, N. M.

    2010-05-01

    The efficiency of the therapy of psychiatric diseases is estimated using the fluorescence measurements of the conformational changes of human serum albumin in the course of medical treatment. The fluorescence decay curves of the CAPIDAN probe (N-carboxyphenylimide of the dimethylaminonaphthalic acid) in the blood serum are measured. The probe is specifically bound to the albumin drug binding sites and exhibits fluorescence as a reporter ligand. A variation in the conformation of the albumin molecule substantially affects the CAPIDAN fluorescence decay curve on the subnanosecond time scale. A subnanosecond pulsed laser or a Pico-Quant LED excitation source and a fast photon detector with a time resolution of about 50 ps are used for the kinetic measurements. The blood sera of ten patients suffering from depression and treated at the Institute of Psychiatry were preliminary clinically tested. Blood for analysis was taken from each patient prior to the treatment and on the third week of treatment. For ten patients, the analysis of the fluorescence decay curves of the probe in the blood serum using the three-exponential fitting shows that the difference between the amplitudes of the decay function corresponding to the long-lived (9 ns) fluorescence of the probe prior to and after the therapeutic procedure reliably differs from zero at a significance level of 1% ( p < 0.01).

  20. Study on the conformal variations of bovine and human serum albumin in solution using small angle X-ray scattering

    International Nuclear Information System (INIS)

    Olivieri, Johnny Rizzieri.

    1992-01-01

    It is reported a Small Angle X-Ray Scattering (SAXS) study of BSA (Bovine Serum Albumin) and HSA (Human Serum Albumin) on pH between 2.5 and 7.0. The measured scattering intensities, normalized in relation to incident beam, exposition time and scattering due to solvent and capillary, and corrected due to concentration and beam shape effects, have shown a strong dependence of the protein shape with pH for both albumins. It was found that the radius of gyration varies between 26.7 and 35 A, and the analyses of the distance distribution function. P(r), indicated that these proteins undergoes conformational changes with pH. Different theoretical shapes have been proposed and analysed comparing the computed P(r) function generated from the models with the experimental P(r). A large variety of shapes were found in both proteins, indicating that BSA and HSA are very flexibility macromolecules. (author). 60 refs., 49 figs., 7 tabs

  1. Comparative pharmacology of a new recombinant FSH expressed by a human cell line

    DEFF Research Database (Denmark)

    Koechling, Wolfgang; Plaksin, Daniel; Croston, Glenn E.

    2017-01-01

    Recombinant FSH proteins are important therapeutic agents for the treatment of infertility, including follitropin alfa expressed in Chinese Hamster Ovary (CHO) cells and, more recently, follitropin delta expressed in the human cell line PER.C6. These recombinant FSH proteins have distinct glycosy...

  2. Studies of the labelling of human serum albumin with 99mTc using Sn(II) tartrate and Sn(II)Cl2 as reducing agents

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.; El-Asrag, H.A.; El-Wetery, A.S.; El-Mohty, A.A.

    1990-01-01

    A comparative study has been carried out on the effect of Sn(II) tartrate and Sn(II)Cl 2 on the labelling efficiency and tissue distribution of 99m Tc-human serum albumin. The effect of reductant content, reaction time (incubation time), albumin content, pH, and ascorbic acid on the efficiency of labelling and the tissue distribution of the labelled albumin has been investigated. The percentage of labelling was determined by paper and thin layer radiochromatography. Ascorbic acid shows no effect on either labelling efficiency or tissue distribution of 99m Tc-HSA prepared by Sn(II) tartrate or Sn(II)Cl 2 . (author)

  3. Ligand and proton exchange dynamics in recombinant human myoglobin mutants.

    Science.gov (United States)

    Lambright, D G; Balasubramanian, S; Boxer, S G

    1989-05-05

    Site-specific mutants of human myoglobin have been prepared in which lysine 45 is replaced by arginine (K45R) and aspartate 60 by glutamate (D60E), in order to examine the influence of these residues and their interaction on the dynamics of the protein. These proteins were studied by a variety of methods, including one and two-dimensional proton nuclear magnetic resonance spectroscopy, exchange kinetics for the distal and proximal histidine NH protons as a function of pH in the met cyano forms, flash photolysis of the CO forms, and ligand replacement kinetics. The electronic absorption and proton nuclear magnetic resonance spectra of the CO forms of these proteins are virtually identical, indicating that the structure of the heme pocket is unaltered by these mutations. There are, however, substantial changes in the dynamics of both CO binding and proton exchange for the mutant K45R, whereas the mutant D60E exhibits behavior indistinguishable from the reference human myoglobin. K45R has a faster CO bimolecular recombination rate and slower CO off-rate relative to the reference. The kinetics for CO binding are independent of pH (6.5 to 10) as well as ionic strength (0 to 1 M-NaCl). The exchange rate for the distal histidine NH is substantially lower for K45R than the reference, whereas the proximal histidine NH exchange rate is unaltered. The exchange behavior of the human proteins is similar to that reported for a comparison of the exchange rates for myoglobins having lysine at position 45 with sperm whale myoglobin, which has arginine at this position. This indicates that the differences in exchange rates reflects largely the Lys----Arg substitution. The lack of a simple correlation for the CO kinetics with this substitution means that these are sensitive to other factors as well. Specific kinetic models, whereby substitution of arginine for lysine at position 45 can affect ligand binding dynamics, are outlined. These experiments demonstrate that a relatively

  4. Human serum albumin unfolding pathway upon drug binding: A thermodynamic and spectroscopic description

    International Nuclear Information System (INIS)

    Cheema, Mohammad Arif; Taboada, Pablo; Barbosa, Silvia; Juarez, Josue; Gutierrez-Pichel, Manuel; Siddiq, Mohammad; Mosquera, Victor

    2009-01-01

    The interest on phenothiazine drugs has been increased during last years due to their proved utility in the treatment of several diseases and biomolecular processes. In the present work, the binding of the amphiphilic phenothiazines promazine and thioridazine hydrochlorides to the carrier protein human serum albumin (HSA) has been examined by ζ-potential, isothermal titration calorimetry (ITC), fluorescence and circular dichorism (CD) spectroscopies, and dynamic light scattering (DLS) at physiological pH with the aim of analyzing the role of the different interactions in the drug complexation process with this protein. The ζ-potential results were used to check the existence of complexation. This is confirmed by a progressive screening of the protein charge up to a reversal point as a consequence of drug binding. On the other hand, binding causes alterations on the tertiary and secondary structures of the protein, which were observed by fluorescence and CD spectroscopies, involving a two-step, three-state transition. The thermodynamics of the binding process was derived from ITC results. The binding enthalpies were negative, which reveal the existence of electrostatic interactions between protein and drug molecules. In addition, increases in entropy are consistent with the predominance of hydrophobic interactions. Two different classes of binding sites were detected, viz. Binding to the first class of binding sites is dominated by an enthalpic contribution due to electrostatic interactions whereas binding to a second class of binding sites is dominated by hydrophobic bonding. In the light of these results, protein conformational change resembles the acid-induced denaturation of HSA with accumulation of an intermediate state. Binding isotherms were derived from microcalorimetric results by using a theoretical model based on the Langmuir isotherm. On the other hand, the population distribution of the different species in solution and their sizes were determined

  5. Human serum albumin unfolding pathway upon drug binding: A thermodynamic and spectroscopic description

    Energy Technology Data Exchange (ETDEWEB)

    Cheema, Mohammad Arif [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Taboada, Pablo [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: pablo.taboada@usc.es; Barbosa, Silvia; Juarez, Josue; Gutierrez-Pichel, Manuel [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Siddiq, Mohammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mosquera, Victor [Grupo de Fisica de Coloides y Polimeros, Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Universidad de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-04-15

    The interest on phenothiazine drugs has been increased during last years due to their proved utility in the treatment of several diseases and biomolecular processes. In the present work, the binding of the amphiphilic phenothiazines promazine and thioridazine hydrochlorides to the carrier protein human serum albumin (HSA) has been examined by {zeta}-potential, isothermal titration calorimetry (ITC), fluorescence and circular dichorism (CD) spectroscopies, and dynamic light scattering (DLS) at physiological pH with the aim of analyzing the role of the different interactions in the drug complexation process with this protein. The {zeta}-potential results were used to check the existence of complexation. This is confirmed by a progressive screening of the protein charge up to a reversal point as a consequence of drug binding. On the other hand, binding causes alterations on the tertiary and secondary structures of the protein, which were observed by fluorescence and CD spectroscopies, involving a two-step, three-state transition. The thermodynamics of the binding process was derived from ITC results. The binding enthalpies were negative, which reveal the existence of electrostatic interactions between protein and drug molecules. In addition, increases in entropy are consistent with the predominance of hydrophobic interactions. Two different classes of binding sites were detected, viz. Binding to the first class of binding sites is dominated by an enthalpic contribution due to electrostatic interactions whereas binding to a second class of binding sites is dominated by hydrophobic bonding. In the light of these results, protein conformational change resembles the acid-induced denaturation of HSA with accumulation of an intermediate state. Binding isotherms were derived from microcalorimetric results by using a theoretical model based on the Langmuir isotherm. On the other hand, the population distribution of the different species in solution and their sizes were

  6. Investigation of the effect of mutations of rat albumin on the binding affinity to the alpha(4)beta(1) integrin antagonist, 4-[1-[3-chloro-4-[N'-(2-methylphenyl)ureido]phenylacetyl]-(4S)-fluoro-(2S)-pyrrolidine-2-yl]methoxybenzoic acid (D01-4582), using recombinant rat albumins.

    Science.gov (United States)

    Ito, Takashi; Takahashi, Masayuki; Okazaki, Osamu; Sugiyama, Yuichi

    2010-08-02

    The authors reported previously rat strain differences in plasma protein binding to alpha(4)beta(1) antagonist D01-4582, resulting in a great strain difference in its pharmacokinetics (19-fold differences in the AUC). The previous study suggested that amino acid changes of V238L and/or T293I in albumin reduced the binding affinity. In order to elucidate the relative significance of these mutations, an expression system was developed to obtain recombinant rat albumins (rRSA) using Pichia pastoris, followed by a binding analysis of four rRSAs by the ultracentrifugation method. The equilibrium dissociation constant (K(d)) of wild-type rRSA was 210 nM, while K(d) of rRSA that carried both V238L and T293I mutations was 974 nM. K(d) of artificial rRSA that carried only V238L was 426 nM, and K(d) of artificial rRSA that carried only T293I was 191 nM. These results suggested that V238L would be more important in the alteration of K(d). However, since none of the single mutations were sufficient to explain the reduction of affinity, the possibility was also suggested that T293I interacted cooperatively to reduce the binding affinity of rat albumin to D01-4582. Further investigation is required to elucidate the mechanism of the possible cooperative interaction.

  7. The use of human albumin for the treatment of ascites in patients with liver cirrhosis: item of safety, facts, controversies and perspectives.

    Science.gov (United States)

    Facciorusso, Antonio; Nacchiero, Maurizio Cosimo; Rosania, Rosa; Laonigro, Giulio; Longo, Nunzio; Panella, Carmine; Ierardi, Enzo

    2011-09-01

    Albumin constitutes approximately one half of the proteins in the plasma and plays a pivotal role in modulating the distribution of fluid between body compartments. Hence it is commonly employed in cirrhotic patients in association with diuretics for the treatment of ascites. Nevertheless, its usefulness is controversial in this condition and well-stated only in some circumstances. The item of safety of the drug appears to be convincing due to the accurate cautions in the course of its preparation. Side effects are described in literature only as sporadic events. Indeed, albumin administration is effective to prevent the circulatory dysfunctions after large-volume paracentesis and renal failure and after Spontaneous Bacterial Peritonitis (SBP). Finally albumin represents, associated with vasoconstrictors, the therapeutic gold standard for the hepatorenal-syndrome (HRS). Physiopathological bases of the therapeutic use of albumin in hepatic cirrhosis consist in both hypoalbuminemia and portal hypertension consequences. In fact, cirrhotic patient with ascites, in spite of hydrosaline retention, shows an effective hypovolemia with peripheral arterial vasodilatation and increase in heart rate. Therefore the effectiveness of albumin administration in the treatment of ascites is due to its plasma volume expander property as well as its efficacy in restoring plasmatic oncotic pressure. Trials are in progress in order to define the effectiveness of the prolonged home-administration of human albumin in the treatment and prevention of ascites. Finally, it has been recently demonstrated that the binding, transport and detoxification capacities of human albumin are severely reduced in cirrhotics and this impairment correlates with the degree of liver failure. Therefore, the next challenge will be to determine whether the alterations of non-oncotic properties of albumin are able to forecast mortality in cirrhotics with ascites and exogenous albumin chronic administration will be

  8. Boundary mode lubrication of articular cartilage by recombinant human lubricin.

    Science.gov (United States)

    Gleghorn, Jason P; Jones, Aled R C; Flannery, Carl R; Bonassar, Lawrence J

    2009-06-01

    Lubrication of cartilage involves a variety of physical and chemical factors, including lubricin, a synovial glycoprotein that has been shown to be a boundary lubricant. It is unclear how lubricin boundary lubricates a wide range of bearings from tissue to artificial surfaces, and if the mechanism is the same for both soluble and bound lubricin. In the current study, experiments were conducted to investigate the hypothesis that recombinant human lubricin (rh-lubricin) lubricates cartilage in a dose-dependent manner and that soluble and bound fractions of rh-lubricin both contribute to the lubrication process. An rh-lubricin dose response was observed with maximal lubrication achieved at concentrations of rh-lubricin greater than 50 microg/mL. A concentration-response variable-slope model was fit to the data, and indicated that rh-lubricin binding to cartilage was not first order. The pattern of decrease in equilibrium friction coefficient indicated that aggregation of rh-lubricin or steric arrangement may regulate boundary lubrication. rh-lubricin localized at the cartilage surface was found to lubricate a cartilage-glass interface in boundary mode, as did soluble rh-lubricin at high concentrations (150 microg/mL); however, the most effective lubrication occurred when both soluble and bound rh-lubricin were present at the interface. These findings point to two distinct mechanisms by which rh-lubricin lubricates, one mechanism involving lubricin bound to the tissue surface and the other involving lubricin in solution. Copyright 2008 Orthopaedic Research Society

  9. Recombinant human hyaluronidase-enabled subcutaneous pediatric rehydration.

    Science.gov (United States)

    Allen, Coburn H; Etzwiler, Lisa S; Miller, Melissa K; Maher, George; Mace, Sharon; Hostetler, Mark A; Smith, Sharon R; Reinhardt, Neil; Hahn, Barry; Harb, George

    2009-11-01

    The Increased Flow Utilizing Subcutaneously-Enabled (INFUSE)-Pediatric Rehydration Study was designed to assess efficacy, safety, and clinical utility of recombinant human hyaluronidase (rHuPH20)-facilitated subcutaneous rehydration in children 2 months to 10 years of age. Patients with mild/moderate dehydration requiring parenteral treatment in US emergency departments were eligible for this phase IV, multicenter, single-arm study. They received subcutaneous injection of 1 mL rHuPH20 (150 U), followed by subcutaneous infusion of 20 mL/kg isotonic fluid over the first hour. Subcutaneous rehydration was continued as needed for up to 72 hours. Rehydration was deemed successful if it was attributed by the investigator primarily to subcutaneous fluid infusion and the child was discharged without requiring an alternative method of rehydration. Efficacy was evaluated in 51 patients (mean age: 1.9 years; mean weight: 11.2 kg). Initial subcutaneous catheter placement was achieved with 1 attempt for 46/51 (90.2%) of patients. Rehydration was successful for 43/51 (84.3%) of patients. Five patients (9.8%) were hospitalized but deemed to be rehydrated primarily through subcutaneous therapy, for a total of 48/51 (94.1%) of patients. No treatment-related systemic adverse events were reported, but 1 serious adverse event occurred (cellulitis at infusion site). Investigators found the procedure easy to perform for 96% of patients (49/51 patients), and 90% of parents (43/48 parents) were satisfied or very satisfied. rHuPH20-facilitated subcutaneous hydration seems to be safe and effective for young children with mild/moderate dehydration. Subcutaneous access is achieved easily, and the procedure is well accepted by clinicians and parents.

  10. Therapy with recombinant human erythropoietin in patients with myelodysplastic syndromes.

    Science.gov (United States)

    Stone, R M; Bernstein, S H; Demetri, G; Facklam, D P; Arthur, K; Andersen, J; Aster, J C; Kufe, D

    1994-10-01

    We conducted a Phase I-II trial of recombinant human erythropoietin-beta (rhEPO) in patients with myelodysplastic syndrome (MDS). Patients with anemia and pathologically confirmed MDS were eligible for the study. Treatment consisted of rhEPO by subcutaneous injection thrice weekly for 6 weeks at one of three dose levels (100 U/kg (three patients), 200 U/kg (three patients) and 400 U/kg (14 patients)). Ferrous sulfate (325 mg po tid) was also administered if the transferrin saturation was below 30% (two patients). Patients were monitored with weekly CBC, white cell differential, and reticulocyte counts. Bone marrow examinations were performed at the conclusion of the treatment period and after a 2 week washout period. Patients who responded to therapy were continued on rhEPO at the same dose for 6 additional months. Response criteria included: 50% reduction in transfusion requirements compared with the 6 week pre-study period; doubling of reticulocyte count that was maintained on two determinations at least 1 week apart; or an increase in hemoglobin by at least 1.2 gm/dl without transfusions. Pre-treatment factors potentially predictive of response were analyzed by univariate analysis and in a multivariate fashion by classification and regression trees. Seven of the twenty patients sustained an untransfused rise in serum hemoglobin > or = 1.2 gm/dl. Four of the sixteen patients (including three of seven patients experiencing a rise in serum hemoglobin) who were transfusion-dependent prior to the study achieved a reduction or elimination of their transfusion requirements. Five of thirteen patients who received rhEPO during the extension phase had a continued response. A low baseline erythropoietin level (< 50 mU/ml) was the best predictor of hemoglobin response when controlling for other variables. rhEPO has a role in the treatment of certain patients with MDS, particularly in those whose endogenous serum erythropoietin levels are not markedly elevated.

  11. Tc-99m-Human Serum Albumin Transit Time as a Measure of Arm Breast Cancer-Related Lymphedema

    DEFF Research Database (Denmark)

    Toyserkani, Navid M; Hvidsten, Svend; Tabatabaeifar, Siavosh

    2017-01-01

    34-68 years, with unilateral arm lymphedema following breast cancer treatment underwent bilateral lymphoscintigraphy using intradermal injection in both hands of technetium-99m-labeled human serum albumin and sequential 5 min imaging for 5 hours. The mean transit time (MTT) in the arms was calculated...... based on time activity curves generated from injection site and arm regions. Visual lymphedema scoring was performed based on dermal backflow and lymph node presence. Excess arm volume was calculated from circumference measurements. RESULTS: The MTT (mean ± SD) was significantly longer in the lymphedema...

  12. Photoabsorption of Acridine Yellow and Proflavin Bound to Human Serum Albumin Studied by Means of Quantum Mechanics/Molecular Dynamics

    DEFF Research Database (Denmark)

    Aidas, Kestutis; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2013-01-01

    Attempting to unravel mechanisms in optical probing of proteins, we have performed pilot calculations of two cationic chromophores—acridine yellow and proflavin—located at different binding sites within human serum albumin, including the two primary drug binding sites as well as a heme binding site....... The computational scheme adopted involves classical molecular dynamics simulations of the ligands bound to the protein and subsequent linear response polarizable embedding density functional theory calculations of the excitation energies. A polarizable embedding potential consisting of point charges fitted...

  13. Luminescence quenching by heavy metal ions of probes based on anthracene, pyrene, and eosin in human serum albumin

    Science.gov (United States)

    Naumova, E. V.; Melnikov, A. G.; Melnikov, G. V.

    2013-05-01

    Fluorescence and phosphorescence quenching processes of polar and non-polar luminescent probes associated with human serum albumin (HSA) in phosphate buffer at pH 7.4 were studied. Stern-Volmer quenching constants of anthracene and pyrene fluorescence and eosin phosphorescence and rate constants for quenching of eosin triplet states were determined. The polarity index of pyrene bound to HSA was obtained as a function of thallium nitrate concentration. The influences of structural changes in the proteins that were stimulated by heavy-metal salts and of screening of protein charges by salt ions on quenching processes of singlet and triplet states of the probes were found.

  14. Characteristics and thermodynamics of the interaction of 6-shogaol with human serum albumin as studied by isothermal titration calorimetry

    Directory of Open Access Journals (Sweden)

    Shevin Rizal Feroz

    Full Text Available ABSTRACT The interaction between 6-shogaol, a pharmacologically active ginger constituent, and human serum albumin (HSA, the main in vivo drug transporter, was investigated using isothermal titration calorimetry (ITC. The value of the binding constant, Ka (5.02 ± 1.37 × 104 M−1 obtained for the 6-shogaol-HSA system suggested intermediate affinity. Analysis of the ITC data revealed feasibility of the binding reaction due to favorable enthalpy and entropy changes. The values of the thermodynamic parameters suggested involvement of van der Waals forces, hydrogen bonds and hydrophobic interactions in the 6-shogaol-HSA complex formation.

  15. THE EFFECTS OF GLYCATION ON THE BINDING OF HUMAN SERUM ALBUMIN TO WARFARIN AND L-TRYPTOPHAN

    OpenAIRE

    Joseph, K.S.; Hage, David S.

    2010-01-01

    Diabetes leads to elevated levels of glucose in blood which, in turn, can lead to the non-enzymatic glycation of serum proteins such as human serum albumin (HSA). It has been suggested that this increase in glycation can alter the ability of HSA to bind to drugs and other small solutes. This study used high-performance affinity chromatography (HPAC) to see if there is any significant change related to glycation in the binding of HSA to warfarin and L-tryptophan, which are often used as probe ...

  16. Increased bone marrow blood flow in sickle cell anemia demonstrated by thallium-201 and Tc-99m human albumin microspheres

    International Nuclear Information System (INIS)

    Thrall, J.H.; Rucknagel, D.L.

    1978-01-01

    Lower extremity vascularity in nine patients with sickle cell anemia was studied by intra-arterial /sup 99m/Tc human albumin microspheres or intravenous thallium-201. In eight patients, the normal pattern of greater muscle than bone activity was reversed with marked tracer localization in skeletal parts usually not visualized. In four cases, there were distinct focal abnormalities in the femurs and tibias which correlated with defects on /sup 99m/Tc sulfur colloid marrow scans. TC-99m pyrophosphate bone scans demonstrated normal uptake in the same areas. The scintigraphic findings indicate a markedly increased relative bone marrow blood flow

  17. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    Science.gov (United States)

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  18. Recombinant human DNase in children with airway malacia and lower respiratory tract infection.

    NARCIS (Netherlands)

    Boogaard, R.; Jongste, J.C. de; Vaessen-Verberne, A.A.; Hop, W.C.J.; Merkus, P.J.F.M.

    2009-01-01

    BACKGROUND: Children with airway malacia often have protracted courses of airway infections, because dynamic airway collapse during coughing results in impaired mucociliary clearance. The aim of this study was to determine the effect of the mucolytic drug recombinant human deoxyribonuclease

  19. Pharmacoeconomic review of recombinant human DNase in the management of cystic fibrosis

    NARCIS (Netherlands)

    Zijlstra, Gerrit; Boersma, Cornelis; Frijlink, Henderik W.; Postma, Maarten J.

    For the treatment of patients with cystic fibrosis, recombinant human deoxyribonuclease I is widely used. Deoxyribonuclease I has a positive effect on lung function and the number of hospitalizations. Deoxyribonuclease I is currently administered by nebulization, which is an inefficient

  20. Evaluation of capillary zone electrophoresis for the determination of protein composition in therapeutic immunoglobulins and human albumins.

    Science.gov (United States)

    Christians, Stefan; van Treel, Nadine Denise; Bieniara, Gabriele; Eulig-Wien, Annika; Hanschmann, Kay-Martin; Giess, Siegfried

    2016-07-01

    Capillary zone electrophoresis (CZE) provides an alternative means of separating native proteins on the basis of their inherent electrophoretic mobilities. The major advantage of CZE is the quantification by UV detection, circumventing the drawbacks of staining and densitometry in the case of gel electrophoresis methods. The data of this validation study showed that CZE is a reliable assay for the determination of protein composition in therapeutic preparations of human albumin and human polyclonal immunoglobulins. Data obtained by CZE are in line with "historical" data obtained by the compendial method, provided that peak integration is performed without time correction. The focus here was to establish a rapid and reliable test to substitute the current gel based zone electrophoresis techniques for the control of protein composition of human immunoglobulins or albumins in the European Pharmacopoeia. We believe that the more advanced and modern CZE method described here is a very good alternative to the procedures currently described in the relevant monographs. Copyright © 2016 International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  1. The inhibitory effect of ionizing radiation on Fc and C3 receptors on mouse and human leukocytes, and the protective potential of human albumin

    International Nuclear Information System (INIS)

    Herrera, M.A.; Diaz-Perches, R.; Gutierrez, M.; Gamminio, E.; Liera, C.; Nieto, P.; Weiss-Steider, B.

    1990-01-01

    The effect that ionizing radiation has in vitro on Fc and C3 receptors was evaluated at various doses and measured by means of erythrocytes coated with antibody (EA) and erythrocytes coated with antibody and complement (EAC) rosettes on human peripheral blood leukocytes (PBL) and on mouse bone marrow cells (BMC) and PBL. We found that the number of cells with either EA and EAC rosettes decreased as the radiation doses increased, and that they were almost absent when the highest doses were employed. We obtained evidence that albumin is a natural source of radio-protection for Fc and C3 receptors, and we showed that by increasing the amount of this molecule we could completely protect receptors for EA and EAC in vitro. Finally, the possible therapeutic value of the administration of human albumin to patients undergoing radiotherapy is discussed

  2. Ganoderma extract prevents albumin-induced oxidative damage and chemokines synthesis in cultured human proximal tubular epithelial cells.

    Science.gov (United States)

    Lai, Kar Neng; Chan, Loretta Y Y; Tang, Sydney C W; Leung, Joseph C K

    2006-05-01

    Ganoderma lucidum (Ganoderma or lingzhi) is widely used as an alternative medicine remedy to promote health and longevity. Recent studies have indicated that components extracted from Ganoderma have a wide range of pharmacological actions including suppressing inflammation and scavenging free radicals. We recently reported that tubular secretion of interleukin-8 (IL-8) induced by albumin is important in the pathogenesis of tubulointerstitial injury in the proteinuric state. In this study, we explored the protective effect of Ganoderma extract (LZ) on albumin-induced kidney epithelial injury. Growth arrested human proximal tubular epithelial cells (PTECs) were incubated with 0.625 to 10 mg/ml human serum albumin (HSA) for up to 72 h. HSA induced DNA damage and apoptosis in PTEC in a dose- and time-dependent manner. Co-incubation of PTEC with 4-64 microg/ml LZ significantly reduced the oxidative damage and cytotoxic effect of HSA in a dose-dependent manner (PGanoderma (16 microg/ml). To explore the components of LZ that exhibited most protective effect in HSA-induced PTEC damages, LZ was further separated into two sub-fractions, LZF1 (MW effective in reducing sICAM-1 released from HSA-activated PTEC whereas the high molecular weight LZ (unfractionated LZ) was more effective in diminishing IL-8 production. Our results suggest that Ganoderma significantly reduces oxidative damages and apoptosis in PTEC induced by HSA. The differential reduction of IL-8 or sICAM-1 released from HSA-activated PTEC by different components of the LZ implicates that components of Ganoderma with different molecular weights could play different roles and operate different mechanisms in preventing HSA-induced PTEC damage.

  3. Improved Refolding Efficacy of Recombinant Human Interferon α-2b ...

    African Journals Online (AJOL)

    Different refolding buffers were employed for refolding the target protein. The refolded ... secondary structure of the protein was altered, probably due to increase in alpha-helix from 23.7 % at. pH 7.0 to 28.1 % ... One of the recombinant proteins ...

  4. Short-term effect of recombinant human growth hormone in patients with alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Becker, U; Grønbaek, M

    1994-01-01

    As growth hormone possesses anabolic properties that are active on protein metabolism, and thus of potential benefit to patients with chronic liver disease, we determined the metabolic effects of recombinant human growth hormone on insulin-like growth factor-I (IGF-I) its specific binding proteins......, and liver function. Twenty consecutive patients with cirrhosis were randomized to recombinant human growth hormone (Norditropin, 4 I.U. twice daily) subcutaneously for 6 weeks (n = 10) or conventional medical treatment (n = 10). The serum concentrations of insulin-like growth factor-I in the recombinant...... patients as well as in controls, whereas no change in insulin-like growth factor binding protein-1 concentrations was found. No significant changes were seen in the area under the curve for biochemical liver function tests. We conclude that administration of recombinant human growth hormone induces...

  5. Structure of recombinant human carboxylesterase 1 isolated from whole cabbage looper larvae

    International Nuclear Information System (INIS)

    Greenblatt, Harry M.; Otto, Tamara C.; Kirkpatrick, Melanie G.; Kovaleva, Elena; Brown, Susan; Buchman, George; Cerasoli, Douglas M.; Sussman, Joel L.

    2012-01-01

    Large quantities of recombinant human carboxylesterase 1 have been produced in an economical whole insect larvae system. The crystal structure of this enzyme is essentially identical to that produced by cell culture techniques. The use of whole insect larvae as a source of recombinant proteins offers a more cost-effective method of producing large quantities of human proteins than conventional cell-culture approaches. Human carboxylesterase 1 has been produced in and isolated from whole Trichoplusia ni larvae. The recombinant protein was crystallized and its structure was solved to 2.2 Å resolution. The results indicate that the larvae-produced enzyme is essentially identical to that isolated from cultured Sf21 cells, supporting the use of this expression system to produce recombinant enzymes for crystallization studies

  6. Molecular modeling and multispectroscopic studies of the interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin

    International Nuclear Information System (INIS)

    Shahabadi, Nahid; Falsafi, Monireh; Hadidi, Saba

    2015-01-01

    The interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin (HSA) was studied by using UV–vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that the binding of the drug to HSA caused fluorescence quenching through static quenching mechanism with binding constant of 1.3×103 M −1 . The thermodynamic parameters indicated that the hydrophobic force contacts are the major forces in the stability of protein-drug complex (ΔH>0 and ΔS>0). The displacement experiments using the site probes viz., warfarin and ibuprofen showed that adefovir dipivoxil could bind to the site III of HSA. The results of CD and UV–vis spectroscopy indicated that the binding of the drug induced some conformational changes in HSA. Furthermore, the study of molecular docking also confirmed binding of adefovir dipivoxil to the site III of HSA by hydrophobic interaction. - Highlights: • The interaction of adefovir dipivoxil, drug for the treatment of HIV and HBV with human serum albumin (HSA) is investigated. • The drug bound to HSA by hydrophobic force and induced some conformational changes in HSA. • The study of molecular docking showed that adefovir dipivoxil could bind to the site III of HSA mainly

  7. Effects of pH and ionic strength on the thermodynamics of human serum albumin-photosensitizer binding

    International Nuclear Information System (INIS)

    Jones, Cecil L.; Dickson, TiReJe; Hayes, Ronald; Thomas, Lana

    2012-01-01

    Highlights: ► The pH dependence of entropy and enthalpy changes was determined for zinc phthalocyanine tetrasulfonic acid, ZnPcS 4 binding to human serum albumin, HSA. ► The ionic strength dependence of entropy and enthalpy changes was determined for ZnPcS 4 acid binding to HSA. ► The primary driving force governing the interaction between ZnPcS 4 and HSA over the range of pH and ionic strength was solution dynamics. ► The interplay between entropy and enthalpy changes was demonstrated. - Abstract: Fluorescence spectroscopy was used to measure the effects of pH and ionic strength on thermodynamic parameters governing the interaction of human serum albumin with zinc phthalocyanine tetrasulfonic acid. Fluorescence emission of zinc phthalocyanine increases at 686 nm with increasing concentrations of the protein. The non-linear correlation between protein concentration and emission of the photosensitizer was fitted using Chipman's analysis to calculate the binding affinities. The standard enthalpy and entropy changes were estimated from van’t Hoff analysis of data that were acquired from temperature ramping studies. Results show that reaction is primarily driven by solution dynamics and that the change in enthalpy for the system becomes increasingly unfavorable with increasing pH and ionic strength. The effect of ionic strength on the entropy change for binding is shown to be significantly greater than the effects of pH. The interplay between entropy and enthalpy changes is demonstrated.

  8. Molecular modeling and multispectroscopic studies of the interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Shahabadi, Nahid, E-mail: nahidshahabadi@yahoo.com [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Falsafi, Monireh [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Hadidi, Saba [Department of Chemistry, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of); Medical Biology Research Center (MBRC) Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-11-15

    The interaction of hepatitis B drug, adefovir dipivoxil with human serum albumin (HSA) was studied by using UV–vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that the binding of the drug to HSA caused fluorescence quenching through static quenching mechanism with binding constant of 1.3×103 M{sup −1}. The thermodynamic parameters indicated that the hydrophobic force contacts are the major forces in the stability of protein-drug complex (ΔH>0 and ΔS>0). The displacement experiments using the site probes viz., warfarin and ibuprofen showed that adefovir dipivoxil could bind to the site III of HSA. The results of CD and UV–vis spectroscopy indicated that the binding of the drug induced some conformational changes in HSA. Furthermore, the study of molecular docking also confirmed binding of adefovir dipivoxil to the site III of HSA by hydrophobic interaction. - Highlights: • The interaction of adefovir dipivoxil, drug for the treatment of HIV and HBV with human serum albumin (HSA) is investigated. • The drug bound to HSA by hydrophobic force and induced some conformational changes in HSA. • The study of molecular docking showed that adefovir dipivoxil could bind to the site III of HSA mainly.

  9. Study on the interaction between tabersonine and human serum albumin by optical spectroscopy and molecular modeling methods

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hua; Chen, Rongrong [Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Pu Hanlin, E-mail: tphl@jnu.edu.cn [Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China)

    2012-03-15

    The mechanism of interaction between tabersonine (TAB) and human serum albumin (HSA) was investigated by the methods of fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular modeling under simulative physiological conditions. Results obtained from analysis of fluorescence spectrum and fluorescence intensity indicated that TAB has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching procedure. The binding site number n and apparent binding constant K{sub a}, corresponding thermodynamic parameters {Delta}G, {Delta}H and {Delta}S at different temperatures were calculated. The distance r between donor (human serum albumin) and acceptor (tabersonine) was obtained according to the Foerster theory of non-radiation energy transfer. The effect of common ions on binding constant was also investigated. The synchronous fluorescence and three-dimensional fluorescence spectra were used to investigate the structural change of HSA molecules with addition of TAB. Furthermore, the study of molecular modeling indicated that TAB could bind to the site I of HSA and hydrophobic interaction was the major acting force, which was in agreement with the binding mode study. - Highlights: Black-Right-Pointing-Pointer Fluorescence study of the mechanism of interaction between tabersonine and HSA. Black-Right-Pointing-Pointer The binding parameters and thermodynamic parameters were calculated. Black-Right-Pointing-Pointer The distance r was obtained and common ions effects was investigated. Black-Right-Pointing-Pointer Conformation of HSA and its molecular modeling was analyzed.

  10. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sun Mei; Wu Qianghua

    2010-01-01

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL -1 . The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  11. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  12. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Sun, Mei; Wu, Qianghua

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL(-1). The relative standard deviation (n=7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin. 2009 Elsevier B.V. All rights reserved.

  13. Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays.

    Directory of Open Access Journals (Sweden)

    Lajla Bruntse Hansen

    Full Text Available We have recently developed a high-density photolithographic, peptide array technology with a theoretical upper limit of 2 million different peptides per array of 2 cm(2. Here, we have used this to perform complete and exhaustive analyses of linear B cell epitopes of a medium sized protein target using human serum albumin (HSA as an example. All possible overlapping 15-mers from HSA were synthesized and probed with a commercially available polyclonal rabbit anti-HSA antibody preparation. To allow for identification of even the weakest epitopes and at the same time perform a detailed characterization of key residues involved in antibody binding, the array also included complete single substitution scans (i.e. including each of the 20 common amino acids at each position of each 15-mer peptide. As specificity controls, all possible 15-mer peptides from bovine serum albumin (BSA and from rabbit serum albumin (RSA were included as well. The resulting layout contained more than 200.000 peptide fields and could be synthesized in a single array on a microscope slide. More than 20 linear epitope candidates were identified and characterized at high resolution i.e. identifying which amino acids in which positions were needed, or not needed, for antibody interaction. As expected, moderate cross-reaction with some peptides in BSA was identified whereas no cross-reaction was observed with peptides from RSA. We conclude that high-density peptide microarrays are a very powerful methodology to identify and characterize linear antibody epitopes, and should advance detailed description of individual specificities at the single antibody level as well as serologic analysis at the proteome-wide level.

  14. Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays.

    Science.gov (United States)

    Hansen, Lajla Bruntse; Buus, Soren; Schafer-Nielsen, Claus

    2013-01-01

    We have recently developed a high-density photolithographic, peptide array technology with a theoretical upper limit of 2 million different peptides per array of 2 cm(2). Here, we have used this to perform complete and exhaustive analyses of linear B cell epitopes of a medium sized protein target using human serum albumin (HSA) as an example. All possible overlapping 15-mers from HSA were synthesized and probed with a commercially available polyclonal rabbit anti-HSA antibody preparation. To allow for identification of even the weakest epitopes and at the same time perform a detailed characterization of key residues involved in antibody binding, the array also included complete single substitution scans (i.e. including each of the 20 common amino acids) at each position of each 15-mer peptide. As specificity controls, all possible 15-mer peptides from bovine serum albumin (BSA) and from rabbit serum albumin (RSA) were included as well. The resulting layout contained more than 200.000 peptide fields and could be synthesized in a single array on a microscope slide. More than 20 linear epitope candidates were identified and characterized at high resolution i.e. identifying which amino acids in which positions were needed, or not needed, for antibody interaction. As expected, moderate cross-reaction with some peptides in BSA was identified whereas no cross-reaction was observed with peptides from RSA. We conclude that high-density peptide microarrays are a very powerful methodology to identify and characterize linear antibody epitopes, and should advance detailed description of individual specificities at the single antibody level as well as serologic analysis at the proteome-wide level.

  15. Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yana Dautova

    Full Text Available Calcification is a detrimental process in vascular ageing and in diseases such as atherosclerosis and arthritis. In particular, small calcium phosphate (CaP crystal deposits are associated with inflammation and atherosclerotic plaque de-stabilisation. We previously reported that CaP particles caused human vascular smooth muscle cell (VSMC death and that serum reduced the toxic effects of the particles. Here, we found that the serum proteins fetuin-A and albumin (≥ 1 µM reduced intracellular Ca2+ elevations and cell death in VSMCs in response to CaP particles. In addition, CaP particles functionalised with fetuin-A, but not albumin, were less toxic than naked CaP particles. Electron microscopic studies revealed that CaP particles were internalised in different ways; via macropinocytosis, membrane invagination or plasma membrane damage, which occurred within 10 minutes of exposure to particles. However, cell death did not occur until approximately 30 minutes, suggesting that plasma membrane repair and survival mechanisms were activated. In the presence of fetuin-A, CaP particle-induced damage was inhibited and CaP/plasma membrane interactions and particle uptake were delayed. Fetuin-A also reduced dissolution of CaP particles under acidic conditions, which may contribute to its cytoprotective effects after CaP particle exposure to VSMCs. These studies are particularly relevant to the calcification observed in blood vessels in patients with kidney disease, where circulating levels of fetuin-A and albumin are low, and in pathological situations where CaP crystal formation outweighs calcification-inhibitory mechanisms.

  16. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    Science.gov (United States)

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.

  17. Multispectroscopic and molecular modeling approach to investigate the interaction of diclofop-methyl enantiomers with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping; Liu, Donghui; Li, Zhe; Shen, Zhigang; Wang, Peng [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhou, Meng [Business School, University of Bedfordshire, Luton LU1 3JU (United Kingdom); Zhou, Zhiqiang [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China); Zhu, Wentao, E-mail: wentaozhu@cau.edu.cn [Department of Applied Chemistry, China Agricultural University, Beijing 100193 (China)

    2014-11-15

    Pesticides and related environmental contaminants have always been threated to human health due to their intrinsic toxicity. In the context of this contribution, the interaction between diclofop-methyl (DM) enantiomers and human serum albumin (HSA) has been characterized by steady state and three-dimensional fluorescence, molecular modeling, circular dichroism (CD) and ultraviolet–visible (UV–vis) spectroscopy. The binding constants significantly showed the binding was enantioselective and HSA had higher affinity for S-DM. The thermodynamic parameters of the binding reaction (ΔG, ΔH and ΔS) clearly signified that hydrophobic effects and H-bonds contribute to the formation of DM-HSA complex. The alterations of protein secondary structure in the presence of DM enantiomers were confirmed by CD spectroscopy, UV–vis and three-dimensional fluorescence spectroscopy. In addition, both fluorescence probe study and molecular modeling simulation evidenced the binding of DM enantiomers to HSA primarily took place in subdomain IIIA (Sudlow's site II). This investigation highlights the binding mechanism, specific binding sites and binding region of DM enantiomers on human serum albumin at the first time. Besides, such task can provide important insight to the interaction of the physiological protein HSA with chiral aryloxyphenoxypropionate herbicides and give support to the human health risk assessment. - Highlights: • The binding of DM enantiomers to HSA was enantioselective. • HSA had higher affinity for S-DM than R-DM. • Hydrophobic effects and hydrogen bonds were involved in the DM-HSA interaction. • The binding of DM enantiomers to HSA primarily took place in Sudlow's site II. • DM enantiomers could alter the second structure of HSA.

  18. Multispectroscopic and molecular modeling approach to investigate the interaction of diclofop-methyl enantiomers with human serum albumin

    International Nuclear Information System (INIS)

    Zhang, Ping; Liu, Donghui; Li, Zhe; Shen, Zhigang; Wang, Peng; Zhou, Meng; Zhou, Zhiqiang; Zhu, Wentao

    2014-01-01

    Pesticides and related environmental contaminants have always been threated to human health due to their intrinsic toxicity. In the context of this contribution, the interaction between diclofop-methyl (DM) enantiomers and human serum albumin (HSA) has been characterized by steady state and three-dimensional fluorescence, molecular modeling, circular dichroism (CD) and ultraviolet–visible (UV–vis) spectroscopy. The binding constants significantly showed the binding was enantioselective and HSA had higher affinity for S-DM. The thermodynamic parameters of the binding reaction (ΔG, ΔH and ΔS) clearly signified that hydrophobic effects and H-bonds contribute to the formation of DM-HSA complex. The alterations of protein secondary structure in the presence of DM enantiomers were confirmed by CD spectroscopy, UV–vis and three-dimensional fluorescence spectroscopy. In addition, both fluorescence probe study and molecular modeling simulation evidenced the binding of DM enantiomers to HSA primarily took place in subdomain IIIA (Sudlow's site II). This investigation highlights the binding mechanism, specific binding sites and binding region of DM enantiomers on human serum albumin at the first time. Besides, such task can provide important insight to the interaction of the physiological protein HSA with chiral aryloxyphenoxypropionate herbicides and give support to the human health risk assessment. - Highlights: • The binding of DM enantiomers to HSA was enantioselective. • HSA had higher affinity for S-DM than R-DM. • Hydrophobic effects and hydrogen bonds were involved in the DM-HSA interaction. • The binding of DM enantiomers to HSA primarily took place in Sudlow's site II. • DM enantiomers could alter the second structure of HSA

  19. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production

    International Nuclear Information System (INIS)

    Jarvis, Donald L.

    2003-01-01

    The baculovirus-insect cell expression system is widely used to produce recombinant glycoproteins for many different biomedical applications. However, due to the fundamental nature of insect glycoprotein processing pathways, this system is typically unable to produce recombinant mammalian glycoproteins with authentic oligosaccharide side chains. This minireview summarizes our current understanding of insect protein glycosylation pathways and our recent efforts to address this problem. These efforts have yielded new insect cell lines and baculoviral vectors that can produce recombinant glycoproteins with humanized oligosaccharide side chains

  20. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  1. Advanced glycation end-product (AGE)-albumin from activated macrophage is critical in human mesenchymal stem cells survival and post-ischemic reperfusion injury.

    Science.gov (United States)

    Son, Myeongjoo; Kang, Woong Chol; Oh, Seyeon; Bayarsaikhan, Delger; Ahn, Hyosang; Lee, Jaesuk; Park, Hyunjin; Lee, Sojung; Choi, Junwon; Lee, Hye Sun; Yang, Phillip C; Byun, Kyunghee; Lee, Bonghee

    2017-09-14

    Post-ischemic reperfusion injury (PIRI) triggers an intense inflammatory response which is essential for repair but is also implicated in pathogenesis of post-ischemic remodeling in several organs in human. Stem cell therapy has recently emerged as a promising method for treatment of PIRI in human. However, satisfactory results have not been reported due to severe loss of injected stem cells in PIRI including critical limb ischemia (CLI). For investigating the advanced glycation end-product-albumin (AGE-albumin) from activated macrophages is critical in both muscle cell and stem cell death, we evaluated the recovery of PIRI-CLI by injection of human bone marrow derived mesenchymal stem cells (hBD-MSCs) with or without soluble receptor for AGEs (sRAGE). Our results showed that activated M1 macrophages synthesize and secrete AGE-albumin, which induced the skeletal muscle cell death and injected hBD-MSCs in PIRI-CLI through RAGE increase. Combined injection of sRAGE and hBD-MSCs resulted in enhanced survival of hBD-MSCs and angiogenesis in PIRI-CLI mice. Taken together, AGE-albumin from activated macrophages is critical for both skeletal muscle cell and hBD-MSCs death in PIRI-CLI. Therefore, the inhibition of AGE-albumin from activated macrophages could be a successful therapeutic strategy for treatment of PIRI including CLI with or without stem cell therapy.

  2. Probing the interaction of human serum albumin with DPPH in the absence and presence of the eight antioxidants.

    Science.gov (United States)

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2015-02-25

    Albumin represents a very abundant and important circulating antioxidant in plasma. DPPH radical is also called 2,2-diphenyl-1-picrylhydrazyl. It has been widely used for measuring the efficiency of antioxidants. In this paper, the ability of human serum albumin (HSA) to scavenge DPPH radical was investigated using UV-vis absorption spectra. The interaction between HSA and DPPH was investigated in the absence and presence of eight popular antioxidants using fluorescence spectroscopy. These results indicate the antioxidant activity of HSA against DPPH radical is similar to glutathione and the value of IC50 is 5.200×10(-5) mol L(-1). In addition, the fluorescence experiments indicate the quenching mechanism of HSA, by DPPH, is a static process. The quenching process of DPPH with HSA is easily affected by the eight antioxidants, however, they cannot change the quenching mechanism of DPPH with HSA. The binding of DPPH to HSA primarily takes place in subdomain IIA and exists two classes of binding sites with two different interaction behaviors. The decreased binding constants and the number of binding sites of DPPH with HSA by the introduction of the eight antioxidants may result from the competition of the eight antioxidants and DPPH binding to HSA. The binding of DPPH to HSA may induce the micro-environment of the lone Trp-214 from polar to slightly nonpolar. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.

    Science.gov (United States)

    Onafuwa-Nuga, Adewunmi; Telesnitsky, Alice

    2009-09-01

    The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.

  4. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    Science.gov (United States)

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effect of Human and Bovine Serum Albumin on kinetic Chemiluminescence of Mn (III-Tetrakis (4-Sulfonatophenyl Porphyrin-Luminol-Hydrogen Peroxide System

    Directory of Open Access Journals (Sweden)

    Sayed Yahya Kazemi

    2012-01-01

    Full Text Available The present work deals with an attempt to study the effect of human and bovine serum albumin on kinetic parameters of chemiluminescence of luminol-hydrogen peroxide system catalyzed by manganese tetrasulfonatophenyl porphyrin (MnTSPP. The investigated parameters involved pseudo-first-order rise and fall rate constant for the chemiluminescence burst, maximum level intensity, time to reach maximum intensity, total light yield, and values of the intensity at maximum CL which were evaluated by nonlinear least square program KINFIT. Because of interaction of metalloporphyrin with proteins, the CL parameters are drastically affected. The systems resulted in Stern-Volmer plots with values of 3.17×105 and 3.7×105M−1 in the quencher concentration range of 1.5×10−6 to 1.5×10−5 M for human serum albumin (HSA and bovine serum albumin (BSA, respectively.

  6. Application of pressure ultrafiltration in determining the binding capacity of drugs to human albumin and to plasma proteins of intact and irradiated rat females

    International Nuclear Information System (INIS)

    Zima, M.

    1976-01-01

    The significance of the binding of drugs to plasma proteins has repeatedly been demonstrated and draws the interest of many pharmacologists. The described experiments served to study the binding of isoniazid (INH) to human albumin of various dilution and to whole plasma proteins of irradiated (on the Oth, 3rd and 6th day after exposure to 154.8 mC/kg=600 R) and non-irradiated rats using the technique of modified accelerated ultrafiltration through cellophane. The total characteristics of the binding and its changes were demonstrated by the equilibrium constant, the numbers of binding sites and the changes of free binding energy. The results show that the dilution of human albumin affects the strength of the INH binding on this albumin and further that the normally weak INH binding is diminished even more in irradiated rats. This cannot be explained by the change in the percentage composition of the rat plasma. (author)

  7. Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits

    NARCIS (Netherlands)

    Massoud, M.; Bischoff, Rainer; Dalemans, W.; Pointu, H.; Attal, J.; Schultz, H.; Clesse, D.; Stinnakre, M.G.; Pavirani, A.; Houdebine, L.M.

    1991-01-01

    A DNA construct containing the human alpha 1-antitrypsin gene including 1.5 and 4 kb of 5' and 3' flanking sequences, was microinjected into the pronucleus of rabbit embryos. The recombinant human protein was (a) expressed in the blood circulation of F0 and F1 transgenic rabbits at an average

  8. Biologic activities of recombinant human-beta-defensin-4 toward cultured human cancer cells.

    Science.gov (United States)

    Gerashchenko, O L; Zhuravel, E V; Skachkova, O V; Khranovska, N N; Filonenko, V V; Pogrebnoy, P V; Soldatkina, M A

    2013-06-01

    The aim of the study was in vitro analysis of biological activity of recombinant human beta-defensin-4 (rec-hBD-4). hBD-4 cDNA was cloned into pGEX-2T vector, and recombinant plasmid was transformed into E. coli BL21(DE3) cells. To purify soluble fusion GST-hBD-4 protein, affinity chromatography was applied. Rec-hBD-4 was cleaved from the fusion protein with thrombin, and purified by reverse phase chromatography on Sep-Pack C18. Effects of rec-hBD-4 on proliferation, viability, cell cycle distribution, substrate-independent growth, and mobility of cultured human cancer cells of A431, A549, and TPC-1 lines were analyzed by direct cell counting technique, MTT assay, flow cytofluorometry, colony forming assay in semi-soft medium, and wound healing assay. Rec-hBD-4 was expressed in bacterial cells as GST-hBD-4 fusion protein, and purified by routine 3-step procedure (affine chromatography on glutathione-agarose, cleavage of fusion protein by thrombin, and reverse phase chromatography). Analysis of in vitro activity of rec-hBD-4 toward three human cancer cell lines has demonstrated that the defensin is capable to affect cell behaviour in concentration-dependent manner. In 1-100 nM concentrations rec-hBD-4 significantly stimulates cancer cell proliferation and viability, and promotes cell cycle progression through G2/M checkpoint, greatly enhances colony-forming activity and mobility of the cells. Treatment of the cells with 500 nM of rec-hBD-4 resulted in opposite effects: significant suppression of cell proliferation and viability, blockage of cell cycle in G1/S checkpoint, significant inhibition of cell migration and colony forming activity. Recombinant human beta-defensin-4 is biologically active peptide capable to cause oppositely directed effects toward biologic features of cancer cells in vitro dependent on its concentration.

  9. Addition of a sequence from α2-antiplasmin transforms human serum albumin into a blood clot component that speeds clot lysis

    Directory of Open Access Journals (Sweden)

    Gataiance Sharon

    2009-03-01

    Full Text Available Abstract Background The plasma protein α2-antiplasmin (α2AP is cross-linked to fibrin in blood clots by the transglutaminase factor XIIIa, and in that location retards clot lysis. Competition for this effect could be clinically useful in patients with thrombosis. We hypothesized that fusion of N-terminal portions of α2-antiplasmin to human serum albumin (HSA and production of the chimeric proteins in Pichia pastoris yeast would produce a stable and effective competitor protein. Results Fusion protein α2AP(13-42-HSA was efficiently secreted from transformed yeast and purified preparations contained within a mixed population the full-length intact form, while fusions with longer α2AP moieties were inefficiently secreted and/or degraded. The α2AP(13-42-HSA protein, but not recombinant HSA, was cross-linked to both chemical lysine donors and fibrin or fibrinogen by factor XIIIa, although with less rapid kinetics than native α2AP. Excess α2AP(13-42-HSA competed with α2AP for cross-linking to chemical lysine donors more effectively than a synthetic α2AP(13-42 peptide, and reduced the α2AP-dependent resistance to fibrinolysis of plasma clots equally effectively as the peptide. Native α2AP was found in in vivo clots in rabbits to a greater extent than α2AP(13-42, however. Conclusion In this first report of transfer of transglutamination substrate status from one plasma protein to another, fusion protein α2AP(13-42-HSA was shown to satisfy initial requirements for a long-lasting, well-tolerated competitive inhibitor of α2-antiplasmin predicted to act in a clot-localized manner.

  10. A novel exendin-4 human serum albumin fusion protein, E2HSA, with an extended half-life and good glucoregulatory effect in healthy rhesus monkeys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Wang, Lin; Meng, Zhiyun; Gan, Hui; Gu, Ruolan; Wu, Zhuona; Gao, Lei; Zhu, Xiaoxia; Sun, Wenzhong; Li, Jian; Zheng, Ying; Dou, Guifang, E-mail: douguifang@vip.163.com

    2014-03-07

    Highlights: • E2HSA has an extended half-life and good plasma stability. • E2HSA could improve glucose-dependent insulin secretion. • E2HSA has excellent glucoregulatory effects in vivo. • E2HSA could potentially be used as a new long-acting GLP-1 receptor agonist for type 2 diabetes management. - Abstract: Glucagon-like peptide-1 (GLP-1) has attracted considerable research interest in terms of the treatment of type 2 diabetes due to their multiple glucoregulatory functions. However, the short half-life, rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native incretin hormone. Therefore, efforts are being made to develop the long-acting incretin mimetics via modifying its structure. Here we report a novel recombinant exendin-4 human serum albumin fusion protein E2HSA with HSA molecule extends their circulatory half-life in vivo while still retaining exendin-4 biological activity and therapeutic properties. In vitro comparisons of E2HSA and exendin-4 showed similar insulinotropic activity on rat pancreatic islets and GLP-1R-dependent biological activity on RIN-m5F cells, although E2HSA was less potent than exendin-4. E2HSA had a terminal elimation half-life of approximate 54 h in healthy rhesus monkeys. Furthermore, E2HSA could reduce postprandial glucose excursion and control fasting glucose level, dose-dependent suppress food intake. Improvement in glucose-dependent insulin secretion and control serum glucose excursions were observed during hyperglycemic clamp test (18 h) and oral glucose tolerance test (42 h) respectively. Thus the improved physiological characterization of E2HSA make it a new potent anti-diabetic drug for type 2 diabetes therapy.

  11. Thallium-201 myocardial scintigraphy and cardiac pool scintigraphy with technetium-99m labelled human serum albumin of complicated anomalous heart

    International Nuclear Information System (INIS)

    Tanaka, Minoru; Watanabe, Takashi; Murase, Mitsuya; Shimizu, Ken; Abe, Toshio

    1979-01-01

    Nuclear cardiology has been used in the diagnosis of congenital heart disease, but these studies have not shown the dramatic increase that has occurred in their use in coronary heart disease. In this report, thallium-201 myocardial scintigraphy and cardiac pool scintigraphy with technetium-99m labelled human serum albumin of 13 patients with complicated congenital heart disease were compared with contrast angiography. The application of these scanning methods to visualization of the size and shape of ventricle and interventricular septum was very useful. At times these methods give us the more accurate information about cardiac shape, especially of complicated anomalous heart, than contrast angiography. Of course these methods will never replace cardiac catheterization and contrast angiography. But these studies are non-invasive. So it was concluded that these scanning methods had better be applied in patients with complicated cardiac anomaly before invasive contrast angiography. (author)

  12. Investigation of binding behaviour of procainamide hydrochloride with human serum albumin using synchronous, 3D fluorescence and circular dichroism

    Directory of Open Access Journals (Sweden)

    Kirthi Byadagi

    2017-04-01

    Full Text Available Interaction of procainamide hydrochloride (PAH with human serum albumin (HSA is of great significance in understanding the pharmacokinetic and pharmacodynamic mechanisms of the drug. Multi-spectroscopic techniques were used to investigate the binding mode of PAH to HSA and results revealed the presence of static type of quenching mechanism. The number of binding sites, binding constants and thermodynamic parameters were calculated. The results showed a spontaneous binding of PAH to HSA and hydrophobic interactions played a major role. In addition, the distance between PAH and the Trp–214 was estimated employing the Förster's theory. Site marker competitive experiments indicated that the binding of PAH to HSA primarily took place in subdomain IIA (Sudlow's site I. The influence of interference of some common metal ions on the binding of PAH to HSA was studied. Synchronous fluorescence spectra (SFS, 3D fluorescence spectra and circular dichroism (CD results indicated the conformational changes in the structure of HSA.

  13. Impact of high glucose concentration on aspirin-induced acetylation of human serum albumin: An in vitro study

    Directory of Open Access Journals (Sweden)

    Francesco Finamore

    2014-06-01

    Full Text Available Aspirin (ASA plays a key role in protecting high risk cardiovascular patients from ischaemic events. The modifications underlying its effects are the results of the trans-acetylation that occurs between ASA and the amino groups made up of lysine and N-terminal residues. ASA's effects have also been demonstrated on several plasma proteins, including human serum albumin (HSA. However, its beneficial effects seem to be lower in diabetic patients, suggesting that protein glycation may impair ASA's acetylation process. Using immunoblotting and mass spectrometry, this study characterized the degree of HSA acetylation mediated by ASA in vitro, as well as the impact of high glucose concentrations. Glycation's influence on HSA acetylation might impair the latter's biological functions, leading to a potential failure of ASA to prevent cardiovascular complications in diabetes.

  14. Combined molecular docking and multi-spectroscopic investigation on the interaction between Eosin B and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qing; Zhou Ximin [National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [National Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 (China); Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-04-15

    The binding of Eosin B to human serum albumin (HSA) was studied using molecular docking, fluorescence, UV-vis, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The mechanism of interaction between Eosin B and HSA in terms of the binding parameters, the thermodynamic functions and the effect of Eosin B on the conformation of HSA were investigated. Protein-ligand docking study indicated that Eosin B bound to residues located in the subdomain IIA of HSA and Eosin B-HSA complex was stabilized by hydrophobic force and hydrogen bonding. In addition, fluorescence data revealed that Eosin B strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure. Furthermore, alteration of the secondary structure of HSA in the presence of the dye was conformed by UV-vis, FT-IR and CD spectroscopy.

  15. Combined molecular docking and multi-spectroscopic investigation on the interaction between Eosin B and human serum albumin

    International Nuclear Information System (INIS)

    Yang Qing; Zhou Ximin; Chen Xingguo

    2011-01-01

    The binding of Eosin B to human serum albumin (HSA) was studied using molecular docking, fluorescence, UV-vis, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. The mechanism of interaction between Eosin B and HSA in terms of the binding parameters, the thermodynamic functions and the effect of Eosin B on the conformation of HSA were investigated. Protein-ligand docking study indicated that Eosin B bound to residues located in the subdomain IIA of HSA and Eosin B-HSA complex was stabilized by hydrophobic force and hydrogen bonding. In addition, fluorescence data revealed that Eosin B strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure. Furthermore, alteration of the secondary structure of HSA in the presence of the dye was conformed by UV-vis, FT-IR and CD spectroscopy.

  16. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    International Nuclear Information System (INIS)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2011-01-01

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10 5 M -1 was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the α-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: → Fisetin-BSA system was studied by fluorescence spectroscopy. → Binding parameters, association constant and number of sites were estimated. → Binding site of fisetin was identified by competitive experiments. → Conformational changes in HSA and fisetin were evidenced by circular dichroism. → TDDFT calculated CD spectra supported the experimental data.

  17. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2011-08-15

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.

  18. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    Science.gov (United States)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  19. SERS spectroscopy of kaempferol and galangin under the interaction of human serum albumin with adsorbed silver nanoparticles

    Science.gov (United States)

    Zhang, Wei; Bai, Xueyuan; Wang, Yingping; Zhao, Bing; Zhao, Daqing; Zhao, Yu

    Raman and surface-enhanced Raman scattering (SERS) spectroscopy were employed to probe the interaction of the flavonol drugs, kaempferol and galangin, with human serum albumin (HSA). SERS spectra of both flavonol derivatives were obtained from a colloidal silver surface in physiological condition, based on the high performance of the enhanced substrate, the most enhanced modes of kaempferol and galangin were those with certain motions perpendicular to the metal surface. The SERS spectra were allowed to predict similar orientation geometry for both of the drugs on the colloidal surface with minor difference. In addition, both flavonols-HSA complexes were prepared in different concentration ratios and the orientated differences between kaempferol and galangin were investigated by SERS.

  20. Human serum albumin (HSA) adsorption onto a-SiC:H thin films deposited by hot wire chemical vapor deposition

    International Nuclear Information System (INIS)

    Swain, Bibhu P.

    2006-01-01

    In the present paper, we report the study of the adsorption behavior of human serum albumin (HSA) onto surfaces of a-SiC:H thin films deposited by using the hot wire chemical vapor deposition (HWCVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, AFM and contact angle measurements. At the immediate effect of HSA interaction with a-SiC:H films N is adsorbed on the surface and stabilized after 3 days. Preliminary observation found that Si and O atom are desorbed from the surface while C and N set adsorbed to the surface of the a-SiC:H film

  1. Human serum albumin (HSA) adsorption onto a-SiC:H thin films deposited by hot wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Bombay (India) and Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, India, Kanpur 208016 (India)]. E-mail: bibhup@iitb.ac.in

    2006-12-15

    In the present paper, we report the study of the adsorption behavior of human serum albumin (HSA) onto surfaces of a-SiC:H thin films deposited by using the hot wire chemical vapor deposition (HWCVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy, AFM and contact angle measurements. At the immediate effect of HSA interaction with a-SiC:H films N is adsorbed on the surface and stabilized after 3 days. Preliminary observation found that Si and O atom are desorbed from the surface while C and N set adsorbed to the surface of the a-SiC:H film.

  2. Tratamiento con eritropoyetina humana recombinante Human recombinant erythropoietin therapy

    Directory of Open Access Journals (Sweden)

    Hugo Donato

    2006-02-01

    Full Text Available La eritropoyetina recombinante (rHuEPO se ha transformado en la citoquina más utilizada terapéuticamente en el mundo. Luego del éxito obtenido en pacientes con insuficiencia renal terminal, se pudo establecer la utilidad de la terapia con rHuEPO para mejorar otras anemias, incluso en pacientes pediátricos y neonatos. El tratamiento o la prevención de la anemia del prematuro mediante el uso de rHuEPO llevó a una significativa reducción en cantidad de transfusiones y en exposición a dadores. Aún debe establecerse una clara definición sobre cuáles niños prematuros deben recibir tratamiento rutinariamente. Otras indicaciones en período neonatal incluyen anemias hiporregenerativas y hemolíticas. La eficacia de la rHuEPO en niños mayores, con excepción de la insuficiencia renal crónica, no ha sido tan exhaustivamente evaluada como en adultos. Mientras que durante los últimos años se han realizado gran cantidad de estudios en adultos con anemia asociada al cáncer o a infección por HIV, permitiendo establecer conclusiones claras sobre su eficacia, sólo escasa cantidad de estudios con pequeño número de pacientes han sido realizados en niños. Hasta la fecha, los resultados sugieren que la terapia con rHuEPO en niños es tan útil como en adultos, pero la realización de estudios aleatorizados prospectivos incluyendo gran número de pacientes es esencial para alcanzar conclusiones definitivas. Los resultados de estudios dirigidos a evaluar la eficacia de la rHuEpo para mantener una dosis adecuada de ribavirina en pacientes en tratamiento por hepatitis C son alentadores. La utilización potencial de los efectos no hemopoyéticos de la rHuEPO en neonatos es un terreno novedoso y apasionante. El rol de la Epo como citoprotector para sistema nervioso central y mucosa intestinal está bajo investigación exhaustiva.Recombinant human erythropoietin (rHuEpo has become the most widely used cytokine in the world. Following the success of

  3. Comparison of the stability of Y-90-, Lu-177- and Ga-68- labeled human serum albumin microspheres (DOTA-HSAM)

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Gerd [Department of Nuclear Medicine, University Hospital, 01307 Dresden (Germany); Schiller, Eik, E-mail: eisc@rotop-pharmaka.d [ROTOP Pharmaka AG, 01454 Radeberg (Germany); Bergmann, Ralf; Pietzsch, Hans-Juergen [Forschungszentrum Dresden-Rossendorf, Institute of Radiopharmacy, P.O. Box 510119, 01314 Dresden (Germany)

    2010-11-15

    Introduction: Microparticles derived from denatured human serum albumin (DOTA-derivatized human serum albumin microspheres, or DOTA-HSAM) are attractive carriers of radionuclides for both therapeutic and diagnostic purposes. In this article, we describe a labeling procedure for diagnostic (Ga-68) and therapeutic (Y-90, Lu-177) radionuclides and report on the results of stability studies of these products. Methods: DOTA-HSAM was labeled in 0.5 M ammonium acetate buffer, pH 5.0, containing 0.02 mg/ml detergent. After adding the radionuclide, the mixture was shaken for 15 min at 90{sup o}C. Labeling yields and in vitro stability were determined by thin-layer chromatography. For determination of the in vivo stability of Ga-68 and Y-90 DOTA-HSAM, the particles were injected intravenously in Wistar rats. Results: Labeling yields up to 95% in the case of Ga-68 and Lu-177 were achieved. Ga-68-labeled DOTA-HSAM showed high in vitro and in vivo stability. The amount of particle-bound radioactivity of Lu-177 DOTA-HSAM declines slowly in a linear manner to approximately 72% after 13 days. For Y-90, the labeling yield decreased with increasing radioactivity level. We presume radiolysis as the reason for these findings. Conclusion: The labeling of DOTA-HSAM with different radionuclides is easy to perform. The radiation-induced cleavage of the labeled chelator together with the rather short half-life of radioactivity fixation in vivo (3.7 days) is, in our opinion, opposed to therapeutic applications of DOTA-HSAM. On the other hand, the high stability of Ga-68 DOTA-HSAM makes them an attractive candidate for the measurement of regional perfusion by PET.

  4. Comparison of the stability of Y-90-, Lu-177- and Ga-68- labeled human serum albumin microspheres (DOTA-HSAM)

    International Nuclear Information System (INIS)

    Wunderlich, Gerd; Schiller, Eik; Bergmann, Ralf; Pietzsch, Hans-Juergen

    2010-01-01

    Introduction: Microparticles derived from denatured human serum albumin (DOTA-derivatized human serum albumin microspheres, or DOTA-HSAM) are attractive carriers of radionuclides for both therapeutic and diagnostic purposes. In this article, we describe a labeling procedure for diagnostic (Ga-68) and therapeutic (Y-90, Lu-177) radionuclides and report on the results of stability studies of these products. Methods: DOTA-HSAM was labeled in 0.5 M ammonium acetate buffer, pH 5.0, containing 0.02 mg/ml detergent. After adding the radionuclide, the mixture was shaken for 15 min at 90 o C. Labeling yields and in vitro stability were determined by thin-layer chromatography. For determination of the in vivo stability of Ga-68 and Y-90 DOTA-HSAM, the particles were injected intravenously in Wistar rats. Results: Labeling yields up to 95% in the case of Ga-68 and Lu-177 were achieved. Ga-68-labeled DOTA-HSAM showed high in vitro and in vivo stability. The amount of particle-bound radioactivity of Lu-177 DOTA-HSAM declines slowly in a linear manner to approximately 72% after 13 days. For Y-90, the labeling yield decreased with increasing radioactivity level. We presume radiolysis as the reason for these findings. Conclusion: The labeling of DOTA-HSAM with different radionuclides is easy to perform. The radiation-induced cleavage of the labeled chelator together with the rather short half-life of radioactivity fixation in vivo (3.7 days) is, in our opinion, opposed to therapeutic applications of DOTA-HSAM. On the other hand, the high stability of Ga-68 DOTA-HSAM makes them an attractive candidate for the measurement of regional perfusion by PET.

  5. High-level secretion of native recombinant human calreticulin in yeast

    DEFF Research Database (Denmark)

    Čiplys, Evaldas; Žitkus, Eimantas; Gold, Leslie I.

    2015-01-01

    , Saccharomyces cerevisiae and Pichia pastoris. RESULTS: Expression of a full-length human CRT precursor including its native signal sequence resulted in high-level secretion of mature recombinant protein into the culture medium by both S. cerevisiae and P. pastoris. To ensure the structural and functional...... by non-denaturing PAGE. Moreover, limited trypsin digestion yielded identical fragment patterns of calcium-binding recombinant and native CRT suggesting that the yeast-derived CRT was correctly folded. Furthermore, both native and recombinant CRT induced cellular proliferation (MTS assay) and migration...... recombinant CRT protein with yields reaching 75 % of total secreted protein and with production levels of 60 and 200 mg/l from S. cerevisiae and P. pastoris, respectively. Finally, cultivation of P. pastoris in a bioreactor yielded CRT secretion titer to exceed 1.5 g/l of culture medium. CONCLUSIONS: Yeasts...

  6. Endocytosis of Albumin by Podocytes Elicits an Inflammatory Response and Induces Apoptotic Cell Death

    Science.gov (United States)

    Okamura, Kayo; Dummer, Patrick; Kopp, Jeffrey; Qiu, Liru; Levi, Moshe; Faubel, Sarah; Blaine, Judith

    2013-01-01

    The presence of albuminuria is strongly associated with progression of chronic kidney disease. While albuminuria has been shown to injure renal proximal tubular cells, the effects of albumin on podocytes have been less well studied. We have addressed the hypothesis that exposure of podocytes to albumin initiates an injury response. We studied transformed human-urine derived podocytes-like epithelial cells (HUPECS, or podocytes). Upon differentiation, these cells retain certain characteristics of differentiated podocytes, including expression of synaptopodin, CD2AP, and nestin. We exposed podocytes to recombinant human albumin, which lacks lipids and proteins that bind serum albumin; this reagent allowed a direct examination of the effects of albumin. Podocytes endocytosed fluoresceinated albumin and this process was inhibited at 4°C, suggesting an energy-dependent process. Exposure to albumin at concentrations of 5 and 10 mg/ml was associated with increased cell death in a dose-dependent manner. The mechanism of cell death may involve apoptosis, as caspase 3/7 were activated and the pan-caspase inhibitor z-VAD reduced cell death. Albumin exposure also increased nuclear factor (NF)-κB activation and increased transcription and release of interleukin (IL-) 1β, tumor necrosis factor (TNF), and IL-6. We extended these findings to an in vivo model. Glomeruli isolated from mice with nephrotic syndrome also had increased expression of IL-1β and TNF RNA. These data suggest that while podocyte injury begets albuminuria, albumin in the glomerular ultrafiltrate may also beget podocyte injury. Thus, an additional mechanism by which anti-proteinuric therapies are beneficial in the treatment of glomerular diseases may be a reduction in injury to the podocyte by albumin. PMID:23382978

  7. Use of Recombinant Human Erythropoietin in Renal Anemia in Children

    Directory of Open Access Journals (Sweden)

    Habibur Rahman

    2009-11-01

    Full Text Available Erythropoietin is a hormone highly effective as like as natural erythropoietin to maintain target hemoglobin and hematocrit level in renal anemia. Its advantage over blood transfusion has been proved by improving the quality of life and decreasing morbidity and mortality in ESRD patients. Effectiveness of r-erythropoietin depends on absences of infection, inflammation and vitamin deficiency and iron status. Iron supplementation is needed before r-erythropoietin administration and sub-cutaneous rout is better in renal anemia because of slow and sustained releases of r-erythropoietin from the site of administration. Target hemoglobin level is 11-12.5 gm/dl and hematocrit is 33% which can be achieved by this hormone therapy. Key words- Recombinant erythropoietin, renal anemia, end stage renal disease.DOI: 10.3329/bsmmuj.v2i1.3713 BSMMU J 2009; 2(1: 50-53  

  8. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  9. Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part II. Effect of process variables on protein model drug encapsulation efficiency

    Czech Academy of Sciences Publication Activity Database

    Shubhra, Q. T. H.; Feczkó, T.; Kardos, A. F.; Tóth, J.; Macková, Hana; Horák, Daniel; Dósa, G.; Gyenis, J.

    2014-01-01

    Roč. 31, č. 2 (2014), s. 156-165 ISSN 0265-2048 R&D Projects: GA AV ČR(CZ) KAN401220801 Institutional support: RVO:61389013 Keywords : encapsulation efficiency * experimental design * human serum albumin Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.585, year: 2014

  10. Evidence that L-Arginine inhibits glycation of human serum albumin (HSA) in vitro

    International Nuclear Information System (INIS)

    Servetnick, D.A.; Wiesenfeld, P.L.; Szepesi, B.

    1990-01-01

    Previous work by Brownlee has shown that glycation of bovine serum albumin can be reduced in the presence of aminoguanidine (AG). Presumably, the guanidinium group on AG interferes with further rearrangement of amadori products to advanced glycosylated end products (AGE). Since L-arginine (ARG) also contains a guanidinium group, its ability to inhibit the formation of AGE products was investigated. HSA was incubated at 37 degrees C in the presence or absence of glucose; with glucose and fructose; or with sugars in the presence or absence of ARG or AG. A tracer amount of U- 14 C-glucose was added to each tube containing sugars. Protein bound glucose was separated from unreacted glucose by gel filtration. Radioactivity, total protein, fluorescence, and glucose concentration were measured. Preliminary data show enhanced binding of 14 C-glucose to HSA with fructose at all time points. A 30-40% decrease in 14 C-glucose incorporation was observed when ARG or AG as present. ARG and AG were equally effective in inhibiting incorporation of 14 C-glucose. FPLC analysis is in progress to determine the type and degree of HSA crosslinking during the 2 week incubation period

  11. Effect of albumin-bound DHA on phosphoinositide phosphorylation in collagen stimulated human platelets

    International Nuclear Information System (INIS)

    Gaudette, D.C.; Holub, B.J.

    1990-01-01

    The effect of exogenous albumin-bound docosahexaenoic acid (22:6n-3) (DHA), arachidonic acid (20:4n-6) (AA), and eicosapendaenoic acid (20:5n-3) (EPA) on phosphoinositide metabolism following collagen stimulation was studied using [3H]inositol prelabelled platelets. Collagen stimulation (3 min, 1.8 micrograms/ml) increased the labelling of both phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4,5-biphosphate (PIP2). Of the fatty acids tested, only pre-incubation (2 min) with DHA (20 microM) significantly attenuated the collagen-induced increased PIP and PIP2 labelling; EPA was without effect, while AA enhanced PIP labelling. Forty microM DHA was less effective at attenuating the increased PIP and PIP2 labelling even though this concentration of DHA resulted in greater inhibition of platelet aggregation. Neither concentration of DHA attenuated the increased polyphosphoinositide labelling resulting from stimulation by the endoperoxide analogue U46619, or the phorbol ester, PMA. These data suggest that the effect of DHA on attenuating the increased PIP and PIP2 labelling following collagen stimulation likely occurs before thromboxane receptor occupancy, may not occur at the level of protein kinase C activation, and could be mediated in part via a lessened synthesis of thromboxane A2

  12. Binding thermodynamics of Diclofenac and Naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study

    International Nuclear Information System (INIS)

    Bou-Abdallah, Fadi; Sprague, Samuel E.; Smith, Britannia M.; Giffune, Thomas R.

    2016-01-01

    Highlights: • The binding affinity of Diclofenac and Naproxen to BSA and HSA is on the order of 10 4 –10 6 M −1 . • Two Diclofenac molecules bind per BSA or HSA but only 0.75 and 3 Naproxen molecules bind to BSA and HSA, respectively. • Drugs binding to BSA is only enthalpically favored and both enthalpically and entropically favored for HSA. • Fluorescence quenching data suggest dynamic collisions and the formation of ground-state protein-drug complexes. • DSC data show multiple sequential unfolding events and strong drug stabilization effects. - Abstract: Serum albumins are ubiquitous proteins able to bind a variety of exogenous and endogenous ligands including hydrophobic pharmaceuticals. Most drugs bind to two very active binding regions located within sub-domains IIA and IIIA of the protein, also known as Sudlow’s sites. The drug binding mode of serum albumin provides important pharmacological information and influences drug solubility, efficacy, biological distribution, and excretion. Here, the binding thermodynamics of Diclofenac and Naproxen, two non-steroidal anti-inflammatory drugs (NSAIDs) to bovine and human serum albumins (BSA and HSA, respectively) were studied by isothermal titration calorimetry (ITC), fluorescence spectroscopy and differential scanning calorimetry (DSC). The ITC data show that the binding affinity (K) of Diclofenac to BSA and HSA is on the order of 10 4 M −1 with a binding stoichiometry (n) of 2 drug molecules per protein. Naproxen binding to the two proteins exhibits a different profile with K and n values on the order of 10 6 M −1 and 0.75 for BSA, and 10 5 M −1 and 3 for HSA, respectively. The binding of the two drugs to HSA is found to be both enthalpically and entropically favored suggesting the formation of hydrogen bonds and van der Waals hydrophobic effects. Binding of the two drugs to BSA is only enthalpically favored with an unfavorable entropy term. Significant enthalpy–entropy compensation

  13. Recombinant human interleukin 2 acts as a B cell growth and differentiation promoting factor

    OpenAIRE

    Emmrich, F.; Moll, Heidrun; Simon, Markus M.

    2009-01-01

    Human B cells appropriately activated by a B cell mitogen are rendered susceptible to human Interleukin 2 (IL-2) as demonstrated with recombinant human IL-2 (rec. h IL-2). They show increased proliferation and drastically enhanced immunoglobulin secretion. Susceptibility to IL-2 is accompanied with the expression of the IL-2 receptor (Tac antigen) on B cells. The data suggest that IL-2 is one of the lymphokines directly involved in the activation of B lymphocytes.

  14. Competitive Protein Adsorption of Albumin and Immunoglobulin G from Human Serum onto Polymer Surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2010-01-01

    protein adsorption from diluted human serum solutions with relatively low protein concentrations, but the nonfouling character was weakened when less diluted human serum solutions with higher protein concentrations were used. The observed adsorption trend is independent of adsorption time, indicating...

  15. The 8p23 inversion polymorphism determines local recombination heterogeneity across human populations.

    Science.gov (United States)

    Alves, Joao M; Chikhi, Lounès; Amorim, António; Lopes, Alexandra M

    2014-04-01

    For decades, chromosomal inversions have been regarded as fascinating evolutionary elements as they are expected to suppress recombination between chromosomes with opposite orientations, leading to the accumulation of genetic differences between the two configurations over time. Here, making use of publicly available population genotype data for the largest polymorphic inversion in the human genome (8p23-inv), we assessed whether this inhibitory effect of inversion rearrangements led to significant differences in the recombination landscape of two homologous DNA segments, with opposite orientation. Our analysis revealed that the accumulation of genetic differentiation is positively correlated with the variation in recombination profiles. The observed recombination dissimilarity between inversion types is consistent across all populations analyzed and surpasses the effects of geographic structure, suggesting that both structures (orientations) have been evolving independently over an extended period of time, despite being subjected to the very same demographic history. Aside this mainly independent evolution, we also identified a short segment (350 kb, inversion) in the central region of the inversion where the genetic divergence between the two structural haplotypes is diminished. Although it is difficult to demonstrate it, this could be due to gene flow (possibly via double-crossing over events), which is consistent with the higher recombination rates surrounding this segment. This study demonstrates for the first time that chromosomal inversions influence the recombination landscape at a fine-scale and highlights the role of these rearrangements as drivers of genome evolution.

  16. Effects of recombinant human collagen VI from Escherichia coli on ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... In this study, we reported the cloning and over expression of a gene coding for human collagen peptide. (CP6) in Escherichia coli and investigated the protective effects of CP6 on UVA-irradiated human skin fibroblasts cells. The collagen peptide (CP6) was highly soluble and the expression level was.

  17. Characterization of receptors for recombinant human tumor necrosis factor-alpha from human placental membranes

    International Nuclear Information System (INIS)

    Aiyer, R.A.; Aggarwal, B.B.

    1990-01-01

    High affinity receptors for recombinant human tumor necrosis factor-alpha (rhTNF-alpha) were identified on membranes prepared from full term human placenta. Highly purified rhTNF-alpha iodinated by the iodogen method was found to bind placental membranes in a displaceable manner with an approximate dissociation constant (KD) of 1.9 nM. The membrane bound TNF-alpha receptor could be solubilized by several detergents with optimum extraction being obtained with 1% Triton X-100. The binding of 125I-rhTNF-alpha to the solubilized receptor was found to be time and temperature dependent, yielding maximum binding within 1 h, 24 h and 48 h at 37 degrees C, 24 degrees C and 4 degrees C, respectively. However, the maximum binding obtainable at 4 degrees C was only 40% of that at 37 degrees C. The binding 125I-rhTNF-alpha to solubilized placental membrane extracts was displaceable by unlabeled rhTNF-alpha, but not by a related protein recombinant human tumor necrosis factor-beta (rhTNF-beta; previously called lymphotoxin). This is similar to the behavior of TNF-alpha receptors derived from detergent-solubilized cell extracts, although on intact cells, both rhTNF-alpha and rhTNF-beta bind with equal affinity to TNF receptors. The Scatchard analysis of the binding data of the solubilized receptor revealed high affinity binding sites with a KD of approximately 0.5 nM and a receptor concentration of about 1 pmole/mg protein. Gel filtration of the solubilized receptor-ligand complexes on Sephacryl S-300 revealed two different peaks of radioactivity at approximate molecular masses of 50,000 Da and 400,000 Da. The 400,000 dalton peak corresponded to the receptor-ligand complex. Overall, our results suggest that high affinity receptors for TNF-alpha are present on human placental membranes and provide evidence that these receptors may be different from that of rhTNF-beta

  18. High-resolution recombination patterns in a region of human chromosome 21 measured by sperm typing.

    Directory of Open Access Journals (Sweden)

    Irene Tiemann-Boege

    2006-05-01

    Full Text Available For decades, classical crossover studies and linkage disequilibrium (LD analysis of genomic regions suggested that human meiotic crossovers may not be randomly distributed along chromosomes but are focused instead in "hot spots." Recent sperm typing studies provided data at very high resolution and accuracy that defined the physical limits of a number of hot spots. The data were also used to test whether patterns of LD can predict hot spot locations. These sperm typing studies focused on several small regions of the genome already known or suspected of containing a hot spot based on the presence of LD breakdown or previous experimental evidence of hot spot activity. Comparable data on target regions not specifically chosen using these two criteria is lacking but is needed to make an unbiased test of whether LD data alone can accurately predict active hot spots. We used sperm typing to estimate recombination in 17 almost contiguous ~5 kb intervals spanning 103 kb of human Chromosome 21. We found two intervals that contained new hot spots. The comparison of our data with recombination rates predicted by statistical analyses of LD showed that, overall, the two datasets corresponded well, except for one predicted hot spot that showed little crossing over. This study doubles the experimental data on recombination in men at the highest resolution and accuracy and supports the emerging genome-wide picture that recombination is localized in small regions separated by cold areas. Detailed study of one of the new hot spots revealed a sperm donor with a decrease in recombination intensity at the canonical recombination site but an increase in crossover activity nearby. This unique finding suggests that the position and intensity of hot spots may evolve by means of a concerted mechanism that maintains the overall recombination intensity in the region.

  19. Stopped-flow studies of spectral changes in human serum albumin following an alkaline pH jump

    DEFF Research Database (Denmark)

    Honoré, B

    1987-01-01

    A stopped-flow technique was used to study the spectral changes occurring in albumin following a pH jump from 11.3 to 11.8 at 25 degrees C. Ultraviolet difference spectra between various albumin species participating in the process are reported. These spectra are similar in shape to the difference...

  20. Application of Recombinant Proteins for Serodiagnosis of Visceral Leishmaniasis in Humans and Dogs.

    Science.gov (United States)

    Farahmand, Mahin; Nahrevanian, Hossein

    2016-07-01

    Visceral leishmaniasis (VL) is a zoonotic disease caused by leishmania species. Dogs are considered to be the main reservoir of VL. A number of methods and antigen-based assays are used for the diagnosis of leishmaniasis. However, currently available methods are mainly based on direct examination of tissues for the presence of parasites, which is highly invasive. A variety of serological tests are commonly applied for VL diagnosis, including indirect fluorescence antibody test, enzyme-linked immunosorbent assay (ELISA), dot-ELISA, direct agglutination test, Western-blotting, and immunochromatographic test. However, when soluble antigens are used, serological tests are less specific due to cross-reactivity with other parasitic diseases. Several studies have attempted to replace soluble antigens with recombinant proteins to improve the sensitivity and the specificity of the immunodiagnostic tests. Major technological advances in recombinant antigens as reagents for the serological diagnosis of VL have led to high sensitivity and specificity of these serological tests. A great number of recombinant proteins have been shown to be effective for the diagnosis of leishmania infection in dogs, the major reservoir of L. infantum. Although few recombinant proteins with high efficacy provide reasonable results for the diagnosis of human and canine VL, more optimization is still needed for the appropriate antigens to provide high-throughput performance. This review aims to explore the application of different recombinant proteins for the serodiagnosis of VL in humans and dogs.

  1. The cytotoxic effect of spiroflavanone derivatives, their binding ability to human serum albumin (HSA) and a DFT study on the mechanism of their synthesis

    Science.gov (United States)

    Budzisz, Elzbieta; Paneth, Piotr; Geromino, Inacrist; Muzioł, Tadeusz; Rozalski, Marek; Krajewska, Urszula; Pipiak, Paulina; Ponczek, Michał B.; Małecka, Magdalena; Kupcewicz, Bogumiła

    2017-06-01

    This paper examines the cytotoxic effect of nine compounds with spiropyrazoline structures, and determines the reaction mechanism between diazomethane and selected benzylideneflavanones, their lipophilicity, and their binding ability to human serum albumin. The cytotoxic effect was determined on two human leukaemia cell lines (HL-60 and NALM-6) and melanoma WM-115 cells, as well as on normal human umbilical vein endothelial cells (HUVEC). The highest cytotoxicity was exhibited by compound B7: it was found to have an IC50 of less than 10 μM for all three cancer cell lines, with five to 12-fold lower sensitivity against normal cells (HUVEC). All the compounds exhibit comparable affinity energy in human serum albumin binding (from -8.1 to -8.6 kcal mol-1) but vary in their binding sites depending on the substituent. X-ray crystallography of two derivatives confirmed their synthetic pathway, and their structures were carefully examined.

  2. Genetic battle between Helicobacter pylori and humans. The mechanism underlying homologous recombination in bacteria, which can infect human cells.

    Science.gov (United States)

    Hanada, Katsuhiro; Yamaoka, Yoshio

    2014-10-01

    Helicobacter pylori is a gram-negative pathogenic bacterium that colonises the human stomach. The chronic infection it causes results in peptic ulcers and gastric cancers. H. pylori can easily establish a chronic infection even if the immune system attacks this pathogen with oxidative stress agents and immunoglobulins. This is attributed to bacterial defence mechanisms against these stresses. As a defence mechanism against oxidative stresses, in bacterial genomes, homologous recombination can act as a repair pathway of DNA's double-strand breaks (DSBs). Moreover, homologous recombination is also involved in the antigenic variation in H. pylori. Gene conversion alters genomic structures of babA and babB (encoding outer membrane proteins), resulting in escape from immunoglobulin attacks. Thus, homologous recombination in bacteria plays an important role in the maintenance of a chronic infection. In addition, H. pylori infection causes DSBs in human cells. Homologous recombination is also involved in the repair of DSBs in human cells. In this review, we describe the roles of homologous recombination with an emphasis on the maintenance of a chronic infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Intraarticular Sprifermin (Recombinant Human Fibroblast Growth Factor 18) in Knee Osteoarthritis

    DEFF Research Database (Denmark)

    Lohmander, L. S.; Hellot, S.; Dreher, D.

    2014-01-01

    Objective. To evaluate the efficacy and safety of intraarticular sprifermin (recombinant human fibroblast growth factor 18) in the treatment of symptomatic knee osteoarthritis (OA). Methods. The study was a randomized, double-blind, placebo-controlled, proof-of-concept trial. Intraarticular sprif...

  4. Antigenic profile of human recombinant PrP: generation and chracterization of a versatile polyclonal antiserum

    NARCIS (Netherlands)

    Sachsamanoglou, M.; Paspaltzis, I.; Petrakis, S.; Verghese-Nikolakaki, S.; Panagiotidis, C.H.; Voitlander, T.; Budka, H.; Langeveld, J.P.M.; Sklaviadis, T.

    2004-01-01

    We describe the quality of a rabbit polyclonal antiserum (Sal1) that was raised against mature human recombinant prion protein (rhuPrP). Epitope mapping demonstrated that the Sal1 antiserum recognized six to eight linear antigenic sites, depending on the animal species. The versatility of the

  5. IgM-specific serodiagnosis of acute human cytomegalovirus infection using recombinant autologous fusion proteins

    NARCIS (Netherlands)

    Vornhagen, R; Hinderer, W; Sonneborn, HH; Bein, G; Matter, L; The, T. Hauw; Enders, G; Jahn, G; Plachter, B

    Portions of three human cytomegalovirus (HCMV) polypeptides, which were shown previously to be highly reactive with patient sera, were expressed in Escherichia coli as autologous fusion proteins. Purified recombinant polypeptides were used as antigens in enzyme linked immunosorbent assay (ELISA) and

  6. Structural Evolution of Human Recombinant alfaB-Crystallin under UV Irradiation

    DEFF Research Database (Denmark)

    Sugiyama, Masaaki; Fujii, Noriko; Morimoto, Yukio

    2008-01-01

    External stresses cause certain proteins to lose their regular structure and aggregate. In order to clarify this abnormal aggregation process, a structural evolution of human recombinant aB-crystallin under UV irradiation was observed with in situ small-angle neutron scattering. The abnormal...

  7. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients

    DEFF Research Database (Denmark)

    Martí-Carvajal, Arturo J; Solà, Ivan; Gluud, Christian

    2012-01-01

    Sepsis is a common and frequently fatal condition. Human recombinant activated protein C (APC) has been introduced to reduce the high risk of death associated with severe sepsis or septic shock. This systematic review is an update of a Cochrane review originally published in 2007....

  8. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    International Nuclear Information System (INIS)

    Germann, U.A.; Willingham, M.C.; Pastan, I.; Gottesman, M.M.

    1990-01-01

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by [ 3 H]azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the [ 3 H]azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart

  9. A Child with Local Lipohypertrophy following Recombinant Human Growth Hormone Administration

    NARCIS (Netherlands)

    Koppen, Ilan J. N.; Bakx, Roel; de Kruiff, Chris C.; van Trotsenburg, A. S. Paul

    2016-01-01

    Local lipohypertrophy due to recombinant human growth hormone (rhGH) administration is a rare phenomenon. Here, we report a case of an 11-year-old girl who presented with a paraumbilical swelling, approximately one year after the start of rhGH treatment for short stature due to the presumed

  10. RECOMBINANT HUMAN INTERLEUKIN-6 INDUCES A RAPID AND REVERSIBLE ANEMIA IN CANCER-PATIENTS

    NARCIS (Netherlands)

    NIEKEN, J; MULDER, NH; VELLENGA, E; LIMBURG, PC; PIERS, DA; DEVRIES, EGE

    1995-01-01

    Initial studies have shown that recombinant human interleukin-6 (rhIL-6) induces anemia. Until now, the pathophysiologic mechanism of this induced anemia has been unknown. To unravel the underlying mechanism, we examined 15 cancer patients receiving rhIL-6 as an antitumor immunotherapy in a phase II

  11. Development of a transgenic mouse model to study the immunogenicity of recombinant human insulin

    NARCIS (Netherlands)

    Torosantucci, Riccardo; Brinks, Vera; Kijanka, Grzegorz; Halim, Liem Andhyk; Sauerborn, Melody; Schellekens, Huub; Jiskoot, Wim

    2014-01-01

    Mouse models are commonly used to assess the immunogenicity of therapeutic proteins and to investigate the immunological processes leading to antidrug antibodies. The aim of this work was to develop a transgenic (TG) Balb/c mouse model for evaluating the immunogenicity of recombinant human insulin

  12. Short-term effect of recombinant human growth hormone in patients with alcoholic cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Becker, U; Grønbaek, M

    1994-01-01

    As growth hormone possesses anabolic properties that are active on protein metabolism, and thus of potential benefit to patients with chronic liver disease, we determined the metabolic effects of recombinant human growth hormone on insulin-like growth factor-I (IGF-I) its specific binding proteins...

  13. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats.

    Science.gov (United States)

    Yin, Weiqin; Xu, Shiqing; Wang, Zai; Liu, Honglin; Peng, Liang; Fang, Qing; Deng, Tingting; Zhang, Wenjian; Lou, Jinning

    2018-01-01

    GLP-1-based treatment improves glycemia through stimulation of insulin secretion and inhibition of glucagon secretion. Recently, more and more findings showed that GLP-1 could also protect kidney from diabetic nephropathy. Most of these studies focused on glomeruli, but the effect of GLP-1 on tubulointerstitial and tubule is not clear yet. In this study, we examined the renoprotective effect of recombinant human GLP-1 (rhGLP-1), and investigated the influence of GLP-1 on inflammation and tubulointerstitial injury using diabetic nephropathy rats model of STZ-induced. The results showed that rhGLP-1 reduced urinary albumin without influencing the body weight and food intake. rhGLP-1 could increased the serum C-peptide slightly but not lower fasting blood glucose significantly. In diabetic nephropathy rats, beside glomerular sclerosis, tubulointerstitial fibrosis was very serious. These lesions could be alleviated by rhGLP-1. rhGLP-1 decreased the expression of profibrotic factors collagen I, α-SMA, fibronectin, and inflammation factors MCP-1 and TNFα in tubular tissue and human proximal tubular cells (HK-2 cells). Furthermore, rhGLP-1 significantly inhibited the phosphorylation of NF-κB, MAPK in both diabetic tubular tissue and HK-2 cells. The inhibition of the expression of TNFα, MCP-1, collagen I and α-SMA in HK-2 cells by GLP-1 could be mimicked by blocking NF-κB or MAPK. These results indicate that rhGLP-1 exhibit renoprotective effect by alleviation of tubulointerstitial injury via inhibiting phosphorylation of MAPK and NF-κB. Therefore, rhGLP-1 may be a potential drug for treatment of diabetic nephropathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Study on the molecular interaction of graphene quantum dots with human serum albumin: Combined spectroscopic and electrochemical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shan; Qiu, Hangna; Lu, Shuangyan; Zhu, Fawei [College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001 (China); Xiao, Qi, E-mail: qi.xiao@whu.edu.cn [College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001 (China); State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

    2015-03-21

    Highlights: • The interactions between GQDs and HSA were systematically investigated. • GQDs could quench the intrinsic fluorescence of HSA via static mode. • The binding site of GQDs was mainly located in site I of HSA. • The potential toxicity of GQDs resulted in the structural damage of HSA. - Abstract: Graphene quantum dots (GQDs) have attracted great attention in biological and biomedical applications due to their super properties, but their potential toxicity investigations are rarely involved. Since few studies have addressed whether GQDs could bind and alter the structure and function of human serum albumin (HSA), the molecular interaction between GQDs and HSA was systematically characterized by the combination of multispectroscopic and electrochemical approaches. GQDs could quench the intrinsic fluorescence of HSA via static mode. The competitive binding fluorescence assay revealed that the binding site of GQDs was site I of HSA. Some thermodynamic parameters suggested that GQDs interacted with HSA mainly through van der Waals interactions and hydrogen bonding interactions, and protonation might also participate in the process. As further revealed by FT-IR spectroscopy and circular dichroism technique, GQDs could cause the global and local conformational change of HSA, which illustrated the potential toxicity of GQDs that resulted in the structural damage of HSA. Electrochemical techniques demonstrated the complex formation between GQDs and HSA. Our results offered insights into the binding mechanism of GQDs with HSA and provided important information for possible toxicity risk of GQDs to human health.

  15. Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhiwu Sun

    2015-02-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP of RSV infection in children at high risk. We found that maleic anhydride (ML-modified human serum albumin (HSA, designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries.

  16. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    Science.gov (United States)

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin, E-mail: wqing07@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Zhang Yaheng, E-mail: zhangyah04@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Sun Huijun, E-mail: sun.hui.jun-04@163.co [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-02-15

    Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy {Delta}H{sup 0} and entropy {Delta}S{sup 0}, have been calculated to be -29.52 kJ mol{sup -1} and -24.23 J mol{sup -1} K{sup -1}, respectively, according to the Van't Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies. - Research highlights: The interaction between butyl p-hydroxybenzoate with HSA has been investigated for the first time. Molecular modeling study can provide theoretical direction for experimental design. Multi-spectroscopic method can provide the binding parameters and thermodynamic parameters. These results are important for food safety and human health when using parabens as a preservative.

  18. Probing the interaction of a therapeutic flavonoid, pinostrobin with human serum albumin: multiple spectroscopic and molecular modeling investigations.

    Directory of Open Access Journals (Sweden)

    Shevin R Feroz

    Full Text Available Interaction of a pharmacologically important flavonoid, pinostrobin (PS with the major transport protein of human blood circulation, human serum albumin (HSA has been examined using a multitude of spectroscopic techniques and molecular docking studies. Analysis of the fluorescence quenching data showed a moderate binding affinity (1.03 × 10(5 M(-1 at 25°C between PS and HSA with a 1∶1 stoichiometry. Thermodynamic analysis of the binding data (ΔS = +44.06 J mol(-1 K(-1 and ΔH = -15.48 kJ mol(-1 and molecular simulation results suggested the involvement of hydrophobic and van der Waals forces, as well as hydrogen bonding in the complex formation. Both secondary and tertiary structural perturbations in HSA were observed upon PS binding, as revealed by intrinsic, synchronous, and three-dimensional fluorescence results. Far-UV circular dichroism data revealed increased thermal stability of the protein upon complexation with PS. Competitive drug displacement results suggested the binding site of PS on HSA as Sudlow's site I, located at subdomain IIA, and was well supported by the molecular modelling data.

  19. Layer-by-Layer Heparinization of the Cell Surface by Using Heparin-Binding Peptide Functionalized Human Serum Albumin.

    Science.gov (United States)

    Song, Guowei; Hu, Yaning; Liu, Yusheng; Jiang, Rui

    2018-05-20

    Layer-by-layer heparinization of therapeutic cells prior to transplantation is an effective way to inhibit the instant blood-mediated inflammatory reactions (IBMIRs), which are the major cause of early cell graft loss during post-transplantation. Here, a conjugate of heparin-binding peptide (HBP) and human serum albumin (HSA), HBP-HSA, was synthesized by using heterobifunctional crosslinker. After the first heparin layer was coated on human umbilical vein endothelial cells (HUVECs) by means of the HBP-polyethylene glycol-phospholipid conjugate, HBP-HSA and heparin were then applied to the cell surface sequentially to form multiple layers. The immobilization and retention of heparin were analyzed by confocal microscopy and flow cytometry, respectively, and the cytotoxity of HBP-HSA was further evaluated by cell viability assay. Results indicated that heparin was successfully introduced to the cell surface in a layer-by-layer way and retained for at least 24 h, while the cytotoxity of HBP-HSA was negligible at the working concentration. Accordingly, this conjugate provides a promising method for co-immobilization of heparin and HSA to the cell surface under physiological conditions with improved biocompatibility.

  20. Recombinant human laminin isoforms can support the undifferentiated growth of human embryonic stem cells

    International Nuclear Information System (INIS)

    Miyazaki, Takamichi; Futaki, Sugiko; Hasegawa, Kouichi; Kawasaki, Miwa; Sanzen, Noriko; Hayashi, Maria; Kawase, Eihachiro; Sekiguchi, Kiyotoshi; Nakatsuji, Norio; Suemori, Hirofumi

    2008-01-01

    Human embryonic stem cells (hESCs) are thought to be a promising cell source for cell transplantation therapy. For such a clinical application, the hESCs should be manipulated using appropriate and qualified materials. In this study, we examined the efficacy of recombinant human laminin (rhLM) isoforms on the undifferentiated growth of hESCs. We first determined the major integrins expressed on the hESCs to reveal the preference of the hESCs for rhLMs, and found that the hESCs mainly expressed integrin α6β1, which binds predominantly to laminin-111, -332 and -511/-521. When the hESCs were seeded onto rhLMs, the cells indeed adhered markedly to rhLM-332, and to rhLM-511 and rhLM-111 to a lesser extent. The hESCs proliferated on these three rhLMs for several passages while preserving their pluripotency. These results show that rhLM-111, -332, and -511 are good substrates to expand undifferentiated hESCs due to their high affinity to integrin α6β1 expressed on hESCs

  1. Kinetics of photodissociated oxygen recombination to human oxyhemoglobin

    International Nuclear Information System (INIS)

    Bokut', S.B.; Syakhovich, V.E.; Parul', D.A.; Lepeshkevich, S.V.; Dzhagarov, B.M.

    2001-01-01

    Oxygen binding to the tetrameric hemoglobin (Hb) is a basic reaction for study of a cooperativity and allosteric homotropic and heterotropic interactions in proteins. In tetrameric hemoglobin the certain sites in the α 1 β 2 -interface have the precise geometry and chemical reactivity to bind 2,3-diphosphoglycerate, protons, chloride and hence shift the equilibrium away from the oxyconformation, thereby favoring O 2 release. Post-translational modifications of the major hemoglobin fraction Hb A 1 with sugar moiety in the Hb central cavity leads to differences in geometry of the effectors binding region providing a useful experimental tool to study the long range relationship in the tetramer molecule. Here we present the results of the nongeminate biomolecular association of Hb and O 2 obtained by nanosecond laser flash-photolysis. All measurements were carried out in 50 mM potassium-phosphate buffer pH 7.4 with the following samples Hb A 1 , HbA 1c , HbA 1b , and HbA 1 in the presence of the tenfold excess of inositol hexaphosphate (IHP). Our results show that oxygen recombination kinetics are characterized by two processes with different decay times and Hb-form-dependent contributions. This process can be described by the following expression: A(t)=A 1 exp(-t/τ 1 )+A 2 exp(-t/τ 2 ), where A(t) is a normalized number of the deoxy-Hb molecules. The short-live component has a lifetime τ 1 , which is Hb-type dependent and changes in the intervals 30-60 μs, the second component has a lifetime τ 2 around 100 μs, and also is sample-dependent value. A(t=0) is proportional to apparent quantum yields of the photodissociation and determines by geminate stages of oxygen binding to Fe from the protein matrix areas. These results show that post-translational modifications of the major hemoglobin component HbA 1 have influence on hemoglobin transport function via the long range relationship in the tetramer molecule

  2. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow's site I ligands

    Energy Technology Data Exchange (ETDEWEB)

    Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary); Li, Yin; Matisz, Gergely [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); Kunsági-Máté, Sándor [Department of General and Physical Chemistry, University of Pécs, Pécs H-7624 (Hungary); János Szentágothai Research Center, Pécs H-7624 (Hungary); Kőszegi, Tamás, E-mail: koszegit@freemail.hu [Institute of Laboratory Medicine, University of Pécs, Ifjúság u. 13, Pécs H-7624 (Hungary)

    2014-01-15

    Albumin, the most abundant plasma protein is an approximately 67 kDa sized water-soluble macromolecule. Since several drugs and xenobiotics circulate in the blood at least partially in albumin-bound form, albumin plays a key role in the pharmacokinetics/toxicokinetics of these chemicals. Most of the drugs and xenobiotics are Sudlow's site I ligands. In numerous studies, bovine serum albumin (BSA) is used for modeling albumin–ligand interactions and the results are extrapolated to human serum albumin (HSA). Furthermore, only limited information is available related to albumin–ligand interactions of different albumin species. Therefore, in our study, we have focused on the quantification of differences between bovine, human and rat serum albumin (RSA) using four Sudlow's site I ligands (luteolin, ochratoxin A, phenylbutazone and warfarin). Interactions were analyzed by fluorescence spectroscopy. Stability constants as well as competing capacities of the ligands were determined, and thermodynamic study was also performed. Our results highlight that there could be major differences between BSA, HSA and RSA in their ligand binding properties. Based on our observations we emphasize that in molecular aspects BSA behaves considerably differently from HSA or from albumins of other species therefore, it is strongly recommended to apply at least some confirmatory measurements when data obtained from other species are attempted to be extrapolated to HSA. -- Highlights: • Albumin–ligand interactions of human, bovine and rat albumins were studied. • Four Sudlow's site I ligands were tested by fluorescence spectroscopy. • Substantial differences were found in stability constants among albumin complexes. • Competing capacity of ligands showed major differences in the studied species. • Data obtained for BSA cannot be directly extrapolated to human albumin.

  3. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector

    Science.gov (United States)

    Rocke, T.E.; Dein, F.J.; Fuchsberger, M.; Fox, B.C.; Stinchcomb, D.T.; Osorio, J.G.

    2004-01-01

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  4. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector.

    Science.gov (United States)

    Rocke, Tonie E; Dein, F Joshua; Fuchsberger, Martina; Fox, Barry C; Stinchcomb, Dan T; Osorio, Jorge E

    2004-07-29

    A laboratory accident resulted in human exposure to a recombinant raccoon poxvirus (RCN) developed as a vaccine vector for antigens of Yersinia pestis for protection of wild rodents (and other animals) against plague. Within 9 days, the patient developed a small blister that healed within 4 weeks. Raccoon poxvirus was cultured from the lesion, and the patient developed antibody to plague antigen (F1) and RCN. This is the first documented case of human exposure to RCN.

  5. Comparison of pituitary and recombinant human thyrotropin standards in an immunoradiometric system

    International Nuclear Information System (INIS)

    Blanca Fernandez, Silvia; Rodriguez Gonzalez, Julio Cesar; Nisembaum Alas, Amaparo; Sevy Gonzalez, O.

    1998-01-01

    Results of two standards of human thyrotropin of pituitaries (B) and recombinant (C) origen supplied by the Instituto of pesquisas Energeticas y Nucleares, Brazil, were compared in our immunoradiometric reference system that use an human thyrotropin pituitary standard of local production (A). This work was supported by the International Atomic Energy Agency for an inter-regional comparison and set up of a reference standard

  6. Simultaneous presence of dynamic and sphere action component in the fluorescence quenching of human serum albumin by diphthaloylmaslinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Bolívar, J.A., E-mail: jmb@uma.es [Departamento de Física Aplicada II, Escuela de Ingenierías, Universidad de Málaga, Campus de Teatinos, 29071, Málaga (Spain); Ruiz, C. Carnero [Departamento de Física Aplicada II, Escuela de Ingenierías, Universidad de Málaga, Campus de Teatinos, 29071, Málaga (Spain); Galisteo-González, F. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Medina-O' Donnell, M.; Parra, A. [Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2016-10-15

    The fluorescence quenching of human serum albumin (HSA) by diphthaloylmaslinic acid (FMA) at different pH and temperature values was investigated by both steady-state and time-resolved fluorescence. The quenching was found to be appreciable, and an upward-curving Stern–Volmer trend was detected in all cases studied at high drug concentrations. This non-linear dependence reveals the presence of a not purely dynamic fluorescence-quenching mechanism. The experimental data were analyzed using the ground-state complex and sphere action quenching models. The latter model offers a good fit with the experimental results. Time-resolved studies corroborate the simultaneous presence of dynamic and sphere action quenching. The pH significantly affects the binging affinity of FMA to HSA, being stronger at pH 7.4 than at pH 3.0. Thermodynamic parameters ΔG°, ΔH°, and ΔS° were evaluated at different temperatures to examine the nature of the binding forces between FMA and HSA. At pH 7.4, electrostatic interactions controlled the association process, whereas at pH 3.0 the dominant forces seemed to be the hydrophobic interactions. The probable binding site of FMA on HSA was located at subdomain IIA, as suggested by displacement measurements. The surface electrical charge of FMA–HSA complexes was studied by measuring their electrophoretic mobility. Results corroborated the binding of the ligand to the protein. Circular dichroism experiments showed that the FMA binding does not alter the secondary structure of the protein. - Highlights: • The interaction between diphthaloylmaslinic acid and human serum albumin was studied at different temperature and pH values. • Fluorescence studies suggested the simultaneous quenching by dynamic and static mechanisms. • Electrostatic interactions dominate the association process at physiological pH. • Hydrophobic forces control the binding at pH 3.0. • Circular dichroism studies revealed that the secondary structure of HSA was

  7. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    Science.gov (United States)

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus. © 2012 The Authors. Immunology © 2012 Blackwell Publishing Ltd.

  8. Expression of Recombinant Streptokinase from Streptococcus Pyogenes and its Reaction with Infected Human and Murine Sera

    Science.gov (United States)

    Molaee, Neda; Abtahi, Hamid; Mosayebi, Ghasem

    2013-01-01

    Objective(s): Streptokinase (SKa) is an antigenic protein which is secreted by Streptococcus pyogenes. Streptokinase induces inflammation by complement activation, which may play a role in post infectious diseases. In the present study, recombinant streptokinase from S. pyogenes was produced and showed that recombinant SKa protein was recognized by infected human sera using Western blot analysis. Materials and Methods: In this study, the ska gene from S. pyogenes was amplified and cloned into pET32a which is a prokaryotic expression vector. pET32a-ska was transformed to Escherichia coli BL21 (DE3) pLysS and gene expression was induced by IPTG. Protein production was improved by modification of composition of the bacterial culture media and altering the induction time by IPTG. The expressed protein was purified by affinity chromatography using the Ni-NTA resin. The integrity of the product was confirmed by Westernblot analysis using infected mice. Serum reactivity of five infected individuals was further analyzed against the recombinant SKa protein. Results: Data indicated that recombinant SKa protein from S. pyogenes can be recognized by patient and mice sera. The concentration of the purified recombinant protein was 3.2 mg/L of initial culture. The highest amount of the expressed protein after addition of IPTG was obtained in a bacterial culture without glucose with the culture optical density of 0.8 (OD600 = 0.8). Conclusion : Present data shows, recombinant SKa protein has same epitopes with natural form of this antigen. Recombinant SKa also seemed to be a promising antigen for the serologic diagnosis of S. pyogenes infections. PMID:24171077

  9. Expression of Recombinant Streptokinase from Streptococcus Pyogenes and Its Reaction with Infected Human and Murine Sera

    Directory of Open Access Journals (Sweden)

    Neda Molaee

    2013-09-01

    Full Text Available   Objective(s: Streptokinase (SKa is an antigenic protein which is secreted by Streptococcus pyogenes. Streptokinase induces inflammation by complement activation, which may play a role in post infectious diseases. In the present study, recombinant streptokinase from S. pyogenes was produced and showed that recombinant SKa protein was recognized by infected human sera using Western blot analysis.   Materials and Methods: In this study, the ska gene from S. pyogenes was amplified and cloned into pET32a which is a prokaryotic expression vector. pET32a-ska was transformed to Escherichia coli BL21 (DE3 pLysS and gene expression was induced by IPTG. Protein production was improved by modification of composition of the bacterial culture media and altering the induction time by IPTG. The expressed protein was purified by affinity chromatography using the Ni-NTA resin. The integrity of the product was confirmed by Westernblot analysis using infected mice. Serum reactivity of five infected individuals was further analyzed against the recombinant SKa protein. Results: Data indicated that recombinant SKa protein from S. pyogenes can be recognized by patient and mice sera. The concentration of the purified recombinant protein was 3.2 mg/L of initial culture. The highest amount of the expressed protein after addition of IPTG was obtained in a bacterial culture without glucose with the culture optical density of 0.8 (OD600 = 0.8. Conclusion : Present data shows, recombinant SKa protein has same epitopes with natural form of this antigen. Recombinant SKa also seemed to be a promising antigen for the serologic diagnosis of S. pyogenes infections.

  10. Development of radiochemical method of analysis of binding of tritium labeled drotaverine hydrochloride with human blood serum albumin

    International Nuclear Information System (INIS)

    Kim, A.A.; Djuraeva, G.T.; Shukurov, B.V.; Mavlyanov, I.R.

    2004-01-01

    Full text: The albumin, being a basic functional linkage of numerous endogenous and exogenous substances is the most important protein of blood plasma. At the diseases connected to liver disfunction, collected in blood metabolite reduce connecting ability of albumino. The aim of the present research was a development of radiochemical method of determination of ability of albumin to bind the tritium labeled preparation drotaverine hydrochloride (no - spa). We had developed a micromethod of definition of connecting ability of albumin, allowing to analyse 20 mkl of blood serum. The method consists in incubation of tritium labeled drotaverine hydrochloride with blood serum in vitro, the following fractionation of serum proteins by gel - filtration on a microcolumn with Sephadex G-25, and direct measurement of the radioactivity connected to fraction of proteins of blood serum. The method has been tested on a series of blood serum of control group of healthy people and on a series of blood serum of patients with hepatitis B. We received quantitative characteristics of binding of drotaverine hydrochloride with albumin of patients with hepatitis B. It was preliminary established that binding ability of serum albumin of children with various forms of acute virus hepatitis tends to decrease in comparison with group of the control. Advantage of the developed radiochemical method is high precision and the high sensitivity of detection of infringement of binding ability of albumin. Application of tritium labeled drotaverine hydrochloride allows to measure directly levels of binding of a preparation with albumin

  11. Hypermutability of CpG dinucleotides in the propeptide-encoding sequence of the human albumin gene

    International Nuclear Information System (INIS)

    Brennan, S.O.; Peach, R.; Myles, T.; George, P.; Arai, Kunio; Madison, J.; Watkins, S.; Putnam, F.W.; Laurell, C.B.; Galliano, M.

    1990-01-01

    An electrophoretically slow albumin variant was detected with a phenotype frequency of about 1:1,000 in Sweden and was also found in a family of Scottish descent from Kaikoura, New Zealand, and in five families in Tradate, Italy. Structural study established that the major variant component was arginyl-albumin, in which arginine at the -1 position of the propeptide is still attached to the processed albumin. A minor component with the amino-terminal sequence of proalbumin was also present as 3-6% of the total albumin. After amplification of the gene segment encoding the prepro sequence of albumin, specific hybridization of DNA to an oligonucleotide probe encoding cysteine at position -2 indicated the mutation of arginine at the -2 position to cysteine (-2 Arg → Cys). This produced the propeptide sequence Arg-Gly-Val-Phe-Cys-Arg. This was confirmed by sequence analysis after pyridylethylation of the cysteine. This mutation produces an alternate signal peptidase cleavage site in the variant proalbumin precursor of arginyl-albumin giving rise to two possible products, arginyl-albumin and the variant proalbumin. Another plasma from Bremen had an alloalbumin with a previously described substitution (1 Asp → Val), which also affects propeptide cleavage. Hypermutability of two CpG dinucleotides in the codons for the diarginyl sequence may account for the frequency of mutations in the propeptide. Mutation at these two sites results in a series of recurrent proalbumin variants that have arisen independently in diverse populations

  12. Recombinant production of human Aquaporin-1 to an exceptional high membrane density in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Julie Bomholt

    Full Text Available In the present paper we explored the capacity of yeast Saccharomyces cerevisiae as host for heterologous expression of human Aquaporin-1. Aquaporin-1 cDNA was expressed from a galactose inducible promoter situated on a plasmid with an adjustable copy number. Human Aquaporin-1 was C-terminally tagged with yeast enhanced GFP for quantification of functional expression, determination of sub-cellular localization, estimation of in vivo folding efficiency and establishment of a purification protocol. Aquaporin-1 was found to constitute 8.5 percent of total membrane protein content after expression at 15°C in a yeast host over-producing the Gal4p transcriptional activator and growth in amino acid supplemented minimal medium. In-gel fluorescence combined with western blotting showed that low accumulation of correctly folded recombinant Aquaporin-1 at 30°C was due to in vivo mal-folding. Reduction of the expression temperature to 15°C almost completely prevented Aquaporin-1 mal-folding. Bioimaging of live yeast cells revealed that recombinant Aquaporin-1 accumulated in the yeast plasma membrane. A detergent screen for solubilization revealed that CYMAL-5 was superior in solubilizing recombinant Aquaporin-1 and generated a monodisperse protein preparation. A single Ni-affinity chromatography step was used to obtain almost pure Aquaporin-1. Recombinant Aquaporin-1 produced in S. cerevisiae was not N-glycosylated in contrast to the protein found in human erythrocytes.

  13. Selection of LNA-containing DNA aptamers against recombinant human CD73

    DEFF Research Database (Denmark)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G

    2015-01-01

    tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences......LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX...... with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several...

  14. Low risk of inhibitor formation in haemophilia A patients following en masse switch in treatment to a third generation full length plasma and albumin-free recombinant factor VIII product (ADVATE®).

    LENUS (Irish Health Repository)

    Bacon, C L

    2011-05-01

    Previous studies have suggested that development of inhibitors in previously treated patients (PTPs) may be attributable to a switch in factor VIII (FVIII) therapeutic product. Consequently, it is widely recognized that inhibitor development must be assessed in PTPs following the introduction of any new FVIII product. Following a national tender process in 2006, all patients with haemophilia A in Ireland changed their FVIII treatment product en masse to a plasma and albumin-free recombinant full-length FVIII product (ADVATE(®)). In this study, we retrospectively reviewed the case records of Irish PTPs to evaluate risk of inhibitor formation following this treatment switch. One hundred and thirteen patients participated in the study. Most patients (89%) had severe haemophilia. Only one of 96 patients with no inhibitor history developed an inhibitor. Prior to the switch in his recombinant FVIII (rFVIII) treatment of choice, this child had only experienced three exposure days (EDs). Consequently, in total he had only received 6 EDs when his inhibitor was first diagnosed. In keeping with this lack of de novo inhibitor development, we observed no evidence of any recurrent inhibitor formation in any of 16 patients with previously documented inhibitors. Similarly, following a previous en masse switch, we have previously reported that changing from a Chinese hamster ovary cell-produced to a baby hamster kidney cell-produced rFVIII was also associated with a low risk of inhibitor formation in PTPs. Our cumulative findings from these two studies clearly emphasizes that the risk of inhibitor development for PTPs following changes in commercial rFVIII product is low, at least in the Irish population.

  15. An integrative 'omics' solution to the detection of recombinant human erythropoietin and blood doping.

    Science.gov (United States)

    Pitsiladis, Yannis P; Durussel, Jérôme; Rabin, Olivier

    2014-05-01

    Administration of recombinant human erythropoietin (rHumanEPO) improves sporting performance and hence is frequently subject to abuse by athletes, although rHumanEPO is prohibited by the WADA. Approaches to detect rHumanEPO doping have improved significantly in recent years but remain imperfect. A new transcriptomic-based longitudinal screening approach is being developed that has the potential to improve the analytical performance of current detection methods. In particular, studies are being funded by WADA to identify a 'molecular signature' of rHumanEPO doping and preliminary results are promising. In the first systematic study to be conducted, the expression of hundreds of genes were found to be altered by rHumanEPO with numerous gene transcripts being differentially expressed after the first injection and further transcripts profoundly upregulated during and subsequently downregulated up to 4 weeks postadministration of the drug; with the same transcriptomic pattern observed in all participants. The identification of a blood 'molecular signature' of rHumanEPO administration is the strongest evidence to date that gene biomarkers have the potential to substantially improve the analytical performance of current antidoping methods such as the Athlete Biological Passport for rHumanEPO detection. Given the early promise of transcriptomics, research using an 'omics'-based approach involving genomics, transcriptomics, proteomics and metabolomics should be intensified in order to achieve improved detection of rHumanEPO and other doping substances and methods difficult to detect such a recombinant human growth hormone and blood transfusions.

  16. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Lennon, V A; Lambert, E H; Leiby, K R; Okarma, T B; Talib, S

    1991-04-01

    A synthetic gene encoding the 210 N-terminal residues of the alpha-subunit of the nicotinic acetylcholine receptor (AChR) of human skeletal muscle was cloned into an inducible expression plasmid to produce a fusion protein in high yield in Escherichia coli. Like native human AChR, the recombinant human alpha 1-210 protein induced AChR-binding, AChR-modulating, and AChR-blocking autoantibodies in rats when injected once intradermally as an emulsion in CFA, with Bordetella pertussis vaccine as supplementary adjuvant. The minimum dose of recombinant protein required to induce biochemical signs of experimental autoimmune myasthenia gravis (EAMG) with 100% incidence was 2.2 micrograms. With 6.6 to 22 micrograms, serum levels of autoantibodies were persistent, and clinically apparent EAMG lasted more than a month. Clinical, electrophysiological, and biochemical indices of EAMG induced by doses of 66 micrograms or more were more uniformly severe and persistent, with 33% fatality. Rats receiving a control extract of E. coli containing plasmid without the alpha 1-210 codon insert, with adjuvants, did not develop autoantibodies or signs of EAMG. This highly reproducible new model of EAMG induced by a recombinant human autoantigen should be valuable for testing Ag-specific immunotherapeutic strategies that might be applicable to treating acquired myasthenia gravis in humans.

  17. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods.

    Science.gov (United States)

    Poureshghi, Fatemeh; Ghandforoushan, Parisa; Safarnejad, Azam; Soltani, Somaieh

    2017-01-01

    Lamotrigine (an epileptic drug) interaction with human serum albumin (HSA) was investigated by fluorescence, UV-Vis, FTIR, CD spectroscopic techniques, and molecular modeling methods. Binding constant (K b ) of 5.74×10 3 and number of binding site of 0.97 showed that there is a slight interaction between lamotrigine and HSA. Thermodynamic studies was constructed using the flourimetric titrations in three different temperatures and the resulted data used to calculate the parameters using Vant Hoff equation. Decreased Stern Volmer quenching constant by enhanced temperature revealed the static quenching mechanism. Negative standard enthalpy (ΔH) and standard entropy (ΔS) changes indicated that van der Waals interactions and hydrogen bonds were dominant forces which facilitate the binding of Lamotrigine to HSA, the results were confirmed by molecular docking studies which showed no hydrogen binding. The FRET studies showed that there is a possibility of energy transfer between Trp214 and lamotrigine. Also the binding of lamotrigine to HSA in the studied concentrations was not as much as many other drugs, but the secondary structure of the HSA was significantly changed following the interaction in a way that α-helix percentage was reduced from 67% to 57% after the addition of lamotrigine in the molar ratio of 4:1 to HSA. According to the docking studies, lamotrigine binds to IB site preferably. Copyright © 2016. Published by Elsevier B.V.

  18. Safety assessment of genetically modified rice expressing human serum albumin from urine metabonomics and fecal bacterial profile.

    Science.gov (United States)

    Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao

    2015-02-01

    The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin.

    Science.gov (United States)

    Dabrowski, Marcin; Cieplak, Maciej; Sharma, Piyush Sindhu; Borowicz, Pawel; Noworyta, Krzysztof; Lisowski, Wojciech; D'Souza, Francis; Kuhn, Alexander; Kutner, Wlodzimierz

    2017-08-15

    Nanostructured artificial receptor materials with unprecedented hierarchical structure for determination of human serum albumin (HSA) are designed and fabricated. For that purpose a new hierarchical template is prepared. This template allowed for simultaneous structural control of the deposited molecularly imprinted polymer (MIP) film on three length scales. A colloidal crystal templating with optimized electrochemical polymerization of 2,3'-bithiophene enables deposition of an MIP film in the form of an inverse opal. Thickness of the deposited polymer film is precisely controlled with the number of current oscillations during potentiostatic deposition of the imprinted poly(2,3'-bithiophene) film. Prior immobilization of HSA on the colloidal crystal allows formation of molecularly imprinted cavities exclusively on the internal surface of the pores. Furthermore, all binding sites are located on the surface of the imprinted cavities at locations corresponding to positions of functional groups present on the surface of HSA molecules due to prior derivatization of HSA molecules with appropriate functional monomers. This synergistic strategy results in a material with superior recognition performance. Integration of the MIP film as a recognition unit with a sensitive extended-gate field-effect transistor (EG-FET) transducer leads to highly selective HSA determination in the femtomolar concentration range. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Study on the interaction of tussilagone with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Hong-Sheng; Liu, Yu-Feng; Sang, Yu-Li

    2017-12-01

    Tussilagone is a sesquiterpenoid which exhibits a variety of pharmacological activities. The interaction of tussilagone with human serum albumin (HSA) was investigated using fluorescence spectroscopy, UV-vis absorption, fluorescence probe experiments, synchronous fluorescence, circular dichroism (CD) spectra, three-dimensional spectra and molecular docking techniques under simulative physiological conditions. The results clarified that the fluorescence quenching of HSA by tussilagone was a static quenching process as a result of HSA-tussilagone (1:1) complex. Tussilagone spontaneously bound to HSA in site I (subdomain IIA), which was primarily driven by hydrophobic forces and hydrogen bonds (ΔH° = -13.89 kJ mol-1, ΔS° = 16.39 J mol-1 K-1). The binding constant was calculated to be 2.182 × 103 L mol-1 and the binding distance was estimated to be 2.07 nm at 291 K, showing the occurrence of fluorescence energy transfer. The results of CD, synchronous and three-dimensional fluorescence spectra all revealed that tussilagone induced the conformational changes of HSA. Meanwhile, the study of molecular docking also indicated that tussilagone could bind to the site I of HSA mainly by hydrophobic and hydrogen bond interactions.

  1. Separation and identification of anthocyanin extracted from mulberry fruit and the pigment binding properties toward human serum albumin.

    Science.gov (United States)

    Sheng, Feng; Wang, Yuning; Zhao, Xingchen; Tian, Na; Hu, Huali; Li, Pengxia

    2014-07-16

    Purple pigments were isolated from mulberry extracts using preparative high-speed countercurrent chromatography (HSCCC) and identified by ESI-MS/MS and high performance liquid chromatography (HPLC) techniques. The solvent system containing methyl tert-butyl ether, 1-butanol, acetonitrile, water, and trifluoroacetic acid (10:30:10:50:0.05; %, v/v) was developed in order to separate anthocyanins with different polarities. Cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-galactopyranoside) (also known as keracyanin) is the major component present in mulberry (41.3%). Other isolated pigments are cyanidin 3-O-(6″-O-α-rhamnopyranosyl-β-glucopyranoside) and petunidin 3-O-β-glucopyranoside. The binding characteristics of keracyanin with human serum albumin (HSA) were investigated by fluorescence and circular dichroism (CD) spectroscopy. Spectroscopic analysis reveals that HSA fluorescence quenched by keracyanin follows a static mode. Binding of keracyanin to HSA mainly depends on van der Waals force or H-bonds with average binding distance of 2.82 nm. The results from synchronous fluorescence, three-dimensional fluorescence, and CD spectra show that adaptive structure rearrangement and decrease of α-helical structure occur in the presence of keracyanin.

  2. Development of Acyclovir-Loaded Albumin Nanoparticles and Improvement of Acyclovir Permeation Across Human Corneal Epithelial T Cells.

    Science.gov (United States)

    Suwannoi, Panita; Chomnawang, Mullika; Sarisuta, Narong; Reichl, Stephan; Müller-Goymann, Christel C

    2017-12-01

    The aim of the present study was to develop acyclovir (ACV) ocular drug delivery systems of bovine serum albumin (BSA) nanoparticles as well as to assess their in vitro transcorneal permeation across human corneal epithelial (HCE-T) cell multilayers. The ACV-loaded BSA nanoparticles were prepared by desolvation method along with physicochemical characterization, cytotoxicity, as well as in vitro transcorneal permeation studies across HCE-T cell multilayers. The nanoparticles appeared to be spherical in shape and nearly uniform in size of about 200 nm. The size of nanoparticles became smaller with decreasing BSA concentration, while the ratios of water to ethanol seemed not to affect the size. Increasing the amount of ethanol in desolvation process led to significant reduction of drug entrapment of nanoparticles with smaller size and more uniformity. The ACV-loaded BSA nanoparticles prepared were shown to have no cytotoxic effect on HCE-T cells used in permeation studies. The in vitro transcorneal permeation results revealed that ACV could permeate through the HCE-T cell multilayers significantly higher from BSA nanoparticles than from aqueous ACV solutions. The ACV-loaded BSA nanoparticles could be prepared by desolvation method without glutaraldehyde in the formulation. ACV could increasingly permeate through the multilayers of HCE-T cells from the ACV-loaded BSA nanoparticles. Therefore, the ACV-loaded BSA nanoparticles could be a highly potential ocular drug delivery system.

  3. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    Science.gov (United States)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  4. Interaction enthalpies of solid human serum albumin with water-dioxane mixtures: comparison with water and organic solvent vapor sorption

    International Nuclear Information System (INIS)

    Sirotkin, Vladimir A.; Faizullin, Djihanguir A.

    2004-01-01

    Enthalpy changes (ΔH tot ) on the immersion of dehydrated human serum albumin (HSA) into water-dioxane mixtures have been measured using a Setaram BT-2.15 calorimeter at 298 K. Thermodynamic activity of water was varied from 0 to 1. Calorimetric results are discussed together with the FTIR-spectroscopic data on water and organic solvent vapor adsorption/desorption isotherms on solid HSA. Dioxane sorption exhibits a pronounced hysteresis. Calorimetric and dioxane desorption dependencies consist of two parts. No dioxane sorption was observed in low water activity region (a w tot values are close to zero. At water activity about 0.5 the sharp exothermic drop of the interaction enthalpy values was observed. This exothermic drop is accompanied by the sharp increase in the amount of sorbed dioxane and additional water sorption (compared with that for pure water). Dioxane adsorption branch resembles a smooth curve. In this case, solid HSA binds more than 300 mol dioxane/mol HSA at low water activities. By using a water activity-based comparison we distinguished between dioxane-assisted and dioxane-competitive effect on water sorption. The obtained results demonstrate that the hydration 'history' of solid protein is an important factor that controls as the state of protein macromolecule as well as the sorption of low-molecular organic molecules

  5. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    Science.gov (United States)

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-08

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids.

  6. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2014-11-01

    Full Text Available By using fluorescence correlation spectroscopy (FCS, we have studied the adsorption of human serum albumin (HSA onto Fe–Pt nanoparticles (NPs, 6 nm radius, CdSe/ZnS quantum dots (QDs, 5 nm radius and Au and Ag nanoclusters (1–4 nm radius, which are enshrouded by various water-solubilizing surface layers exposing different chemical functional groups (carboxyl, amino and both, thereby endowing the NPs with different surface charges. We have also measured the effects of modified surface functionalizations on the protein via succinylation and amination. A step-wise increase in hydrodynamic radius with protein concentration was always observed, revealing formation of protein monolayers coating the NPs, independent of their surface charge. The differences in the thickness of the protein corona were rationalized in terms of the different orientations in which HSA adsorbs onto the NPs. The midpoints of the binding transition, which quantifies the affinity of HSA toward the NP, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of specific Coulombic interactions between the proteins and the NP surfaces.

  7. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Galván, Andrés, E-mail: andres.rodriguez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Instituto de Física, Dpto. Física Experimental, Universidad Nacional Autónoma de México, Coyoacán, México, DF 04510 (Mexico); Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, México, DF 14080 (Mexico); Heredia, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Amelines-Sarria, Oscar; Rivera, Margarita [Instituto de Física, Dpto. Materia Condensada, Universidad Nacional Autónoma de México, Coyoacán, 04510 México D.F. (Mexico); and others

    2015-03-15

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT–AgNCs–HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV–vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  8. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    International Nuclear Information System (INIS)

    Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita

    2015-01-01

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT–AgNCs–HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV–vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications

  9. Thermodynamic study of the effects of ethanol on the interaction of ochratoxin A with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yin [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Czibulya, Zsuzsanna [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Poór, Miklós [Institute of Laboratory Medicine, University of Pécs, Ifjúság 13, H-7624, Pécs (Hungary); Lecomte, Sophie [Chimie et Biologie des Membranes et Nanoobjets, CNRS-Université de Bordeaux, UMR 52478, ENITAB, Pessac (France); Kiss, László [Department of General and Physical Chemistry, University of Pécs, Ifjúság 6, H-7624 Pécs (Hungary); János Szentágothai Research Center, Ifjúság 20, H-7624 Pécs (Hungary); and others

    2014-04-15

    Ethanol effect on the interaction of ochratoxin A (OTA) with human serum albumin (HSA) was investigated by using fluorescence spectroscopy and Raman spectroscopy. The Raman results showed that after the binding of OTA, the microenvironment of tryptophan residue on HSA became less hydrophobic. The fluorescence quenching observations revealed that the binding constant for the binding of OTA to HSA decreased as ethanol concentration increased. The thermodynamic studies showed that the binding process of OTA to HSA switched from being entropy-driven to enthalpy-driven in the presence of increasing concentrations (0.7–24.7%, vol/vol) of ethanol. Enthalpy–entropy compensation effect for the binding of OTA to HSA in the presence of different ethanol concentrations had been found. Based on the thermodynamic analyses, we concluded that the ethanol-induced variation of the shape of binding site of OTA on HSA and the solvent reorganization surrounding the OTA–HSA complex are the two dominant effects. -- Highlights: • The presence of ethanol can prohibit the binding of OTA to HSA. • Microenvironment of Trp214 on HSA becomes less hydrophobic after the binding of OTA. • Ethanol induces the interaction from being entropy-driven to enthalpy-driven. • Enthalpy–entropy compensation for the interaction was found.

  10. The influence of the flavonoid quercetin on the interaction of propranolol with human serum albumin: Experimental and theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni-Shahri, Fatemeh S., E-mail: fmohsenishahri@gmail.com [Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Housaindokht, Mohammad R. [Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Bozorgmehr, Mohammad R. [Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Moosavi-Movahedi, Ali A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-10-15

    The binding of propranolol (PROP) to human serum albumin (HSA) in the absence and presence of quercetin (QUER) in aqueous solution was investigated by multiple techniques. The presence of quercetin (QUER) increased binding constant of propranolol (PROP) with HSA. Fluorescence spectroscopy showed that quercetin (QUER) could quench the HSA fluorescence spectra. The results of synchronous fluorescence, resonance light scattering (RLS) and three-dimensional fluorescence spectra showed that propranolol (PROP) and quercetin (QUER) would alter the micro-environment around tryptophan (Trp) and tyrosine (Tyr) residues. According molecular dynamics (MD) simulation results suggested that these ligands can interact with the protein, with affecting the secondary structure of HSA and with a modification of its tertiary structure. Molecular docking studies showed that the affinity and binding site of each of the ligands to HSA altered in the presence of the other. All above results may have related consequence in rationalizing the interferences of ordinary food to cardiac dysrhythmias treatments. - Highlights: • The presence of quercetin increased binding constant of propranolol with HSA. • Quercetin quenched the fluorescence of HSA through a static quenching mechanism. • The binding of propranolol and quercetin with HSA induced partial unfolding. • The tertiary structure of HSA changed after ligand binding. • After the binding of quercetin, the helix content of HSA declined.

  11. Study of the interactions between fluoroquinolones and human serum albumin by affinity capillary electrophoresis and fluorescence method

    International Nuclear Information System (INIS)

    Zhang Liwei; Wang Kun; Zhang Xinxiang

    2007-01-01

    The interactions between fluoroquinolones and human serum albumin (HSA) were investigated by affinity capillary electrophoresis (ACE) and fluorescence quenching technique. Based on the efficient separation of several fluoroquinolones using a simple phosphate buffer, the binding constants of fluoroquinolones with HSA were determined simultaneously during one set of electrophoresis by ACE method. The thermodynamic parameters were obtained from data at different temperatures, and the negative ΔH and ΔS values showed that both hydrogen bonds and van der Waals interaction played major roles in the binding of fluoroquinolones to HSA. The interactions were also studied by fluorescence quenching technique. The results of fluorescence titration revealed that fluoroquinolones had the strong ability to quenching the intrinsic fluorescence of HSA through the static quenching procedure. The binding site number n, apparent binding constant K b and the Stern-Volmer quenching constant K sv were determined. The thermodynamic parameters were also studied by fluorescence method, and the results were consonant with that of ACE

  12. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  13. Investigation of the Interaction between Patulin and Human Serum Albumin by a Spectroscopic Method, Atomic Force Microscopy, and Molecular Modeling

    Directory of Open Access Journals (Sweden)

    Li Yuqin

    2014-01-01

    Full Text Available The interaction of patulin with human serum albumin (HSA was studied in vitro under normal physiological conditions. The study was performed using fluorescence, ultraviolet-visible spectroscopy (UV-Vis, circular dichroism (CD, atomic force microscopy (AFM, and molecular modeling techniques. The quenching mechanism was investigated using the association constants, the number of binding sites, and basic thermodynamic parameters. A dynamic quenching mechanism occurred between HSA and patulin, and the binding constants (K were 2.60 × 104, 4.59 × 104, and 7.01 × 104 M−1 at 288, 300, and 310 K, respectively. Based on fluorescence resonance energy transfer, the distance between the HSA and patulin was determined to be 2.847 nm. The ΔG0, ΔH0, and ΔS0 values across various temperatures indicated that hydrophobic interaction was the predominant binding force. The UV-Vis and CD results confirmed that the secondary structure of HSA was altered in the presence of patulin. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with patulin. In addition, molecular modeling showed that the patulin-HSA complex was stabilized by hydrophobic and hydrogen bond forces. The study results suggested that a weak intermolecular interaction occurred between patulin and HSA. Overall, the results are potentially useful for elucidating the toxigenicity of patulin when it is combined with the biomolecular function effect, transmembrane transport, toxicological, testing and other experiments.

  14. A meta-analysis of the association of serum ischaemia-modified albumin levels with human hypothyroidism and hyperthyroidism.

    Science.gov (United States)

    Reddy, Varikasuvu Seshadri; Bukke, Suman; Mahato, Khageshwar; Kumar, Vinod; Reddy, Netala Vasudeva; Munikumar, Manne; Vodelu, Bramahanapally

    2017-02-28

    Serum levels of ischaemia-modified albumin (IMA) have been studied as a novel and simple measure of oxidative stress (OXS) in different thyroid pathologies. However, results of available studies in the literature were not consistent. This meta-analysis was attempted to quantify the overall effect size for serum IMA levels in human hypothyroidism (HT) and hyperthyroidism (HYT) and to study its associations with the thyroid profile. Databases of PubMed/Medline, EMBASE, Google Scholar, Web of Science and Science Direct were searched for articles. Data on serum IMA levels in HT, HYT patients and euthyroid controls were extracted to compute standardized mean differences (SMD) by the random-effects model. The associations between IMA and thyroid profile were computed by the meta-analysis of correlation coefficients. IMA levels in HT patients (SMD=1.12; Z=2.76; P=0.006) and HYT patients (SMD=1.64; Z=2.57; P=0.01) were significantly higher than in euthyroid controls and the thyroid treatment showed a favourble effect on serum IMA levels. There were strong and significant correlations between IMA and hormonal status in HT and HYT groups. This meta-analysis showing increased IMA level in both HT and HYT patients and its association with thyroid profile suggests that serum IMA could be used as a simple measure of increased OXS in thyroid dysfunction. © 2017 The Author(s).

  15. A viscometric approach of pH effect on hydrodynamic properties of human serum albumin in the normal form.

    Science.gov (United States)

    Monkos, Karol

    2013-03-01

    The paper presents the results of viscosity determinations on aqueous solutions of human serum albumin (HSA) at isoelectric point over a wide range of concentrations and at temperatures ranging from 5°C to 45°C. On the basis of a modified Arrhenius equation and Mooney's formula some hydrodynamic parameters were obtained. They are compared with those previously obtained for HSA in solutions at neutral pH. The activation energy and entropy of viscous flow and the intrinsic viscosity reach a maximum value, and the effective specific volume, the self-crowding factor and the Huggins coefficient a minimum value in solutions at isoelectric point. Using the dimensionless parameter [η]c, the existence of three ranges of concentrations: diluted, semi-diluted and concentrated, was shown. By applying Lefebvre's relation for the relative viscosity in the semi-dilute regime, the Mark-Houvink-Kuhn-Sakurada (MHKS) exponent was established. The analysis of the results obtained from the three ranges of concentrations showed that both conformation and stiffness of HSA molecules in solutions at isoelectric point and at neutral pH are the same.

  16. Investigations of the interactions of peimine and peiminine with human serum albumin by spectroscopic methods and docking studies

    International Nuclear Information System (INIS)

    Xiao, Dan; Zhang, Lili; Wang, Qing; Lin, Xia; Sun, Jinyu; Li, Hui

    2014-01-01

    The primary objective of this study is to evaluate the interactions of human serum albumin (HSA) with peimine (PE) and peiminine (PEN) in physiological conditions by fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy, Raman spectroscopy, and molecular modeling. PE and PEN were isolated from Bulbus Fritillariae thunbergii miq. The binding constants K a and the number of binding sites n were calculated at different temperatures. Enthalpy change (ΔH), entropy change (ΔS), and Gibbs free energy change (ΔG) were also determined. The results suggested that quenching of HSA fluorescence by PE and PEN is a static process. Three-dimensional fluorescence, FT-IR, CD, and Raman spectra showed that the binding of PE and PEN to HSA can induce conformational changes in the latter. Moreover, important differences in binding ability were observed between PE and PEN, and PE showed stronger binding affinity to HSA than PEN. -- Highlights: • This paper provides the whole separation and purification process of peimine and peiminine and their detailed structure information. • A comparative study between peimine and peiminine shows the difference of their structure affects their binding ability to HSA. • FT-IR, three-dimensional fluorescence, CD and Raman spectra were used to explain the conformational changes of HSA reasonably. • Time-resolved fluorescence was used to distinguish the quenching mechanisms

  17. Investigations of the interactions of peimine and peiminine with human serum albumin by spectroscopic methods and docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Dan; Zhang, Lili; Wang, Qing; Lin, Xia; Sun, Jinyu; Li, Hui, E-mail: lihuilab@sina.com

    2014-02-15

    The primary objective of this study is to evaluate the interactions of human serum albumin (HSA) with peimine (PE) and peiminine (PEN) in physiological conditions by fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy, Raman spectroscopy, and molecular modeling. PE and PEN were isolated from Bulbus Fritillariae thunbergii miq. The binding constants K{sub a} and the number of binding sites n were calculated at different temperatures. Enthalpy change (ΔH), entropy change (ΔS), and Gibbs free energy change (ΔG) were also determined. The results suggested that quenching of HSA fluorescence by PE and PEN is a static process. Three-dimensional fluorescence, FT-IR, CD, and Raman spectra showed that the binding of PE and PEN to HSA can induce conformational changes in the latter. Moreover, important differences in binding ability were observed between PE and PEN, and PE showed stronger binding affinity to HSA than PEN. -- Highlights: • This paper provides the whole separation and purification process of peimine and peiminine and their detailed structure information. • A comparative study between peimine and peiminine shows the difference of their structure affects their binding ability to HSA. • FT-IR, three-dimensional fluorescence, CD and Raman spectra were used to explain the conformational changes of HSA reasonably. • Time-resolved fluorescence was used to distinguish the quenching mechanisms.

  18. Ultrasonic microdialysis coupled with capillary electrophoresis electrochemiluminescence study the interaction between trimetazidine dihydrochloride and human serum albumin.

    Science.gov (United States)

    Sun, Shuangjiao; Long, Chanjuan; Tao, Chunyao; Meng, Sa; Deng, Biyang

    2014-12-03

    The paper describes a homemade ultrasonic microdialysis device coupled with capillary electrophoresis electrochemiluminescence (CE-ECL) for studying the interaction between human serum albumin (HSA) and trimetazidine dihydrochloride (TMZ). The time required for equilibrium by ultrasonic microdialysis was 45min, which was far less than that by traditional dialysis (240min). It took 80min to achieve the required combination equilibrium by normal incubation and only 20min by ultrasonic. Compared with traditional dialysis, the use of ultrasonic microdialysis simplified experimental procedures, shortened experimental time and saved consumption of sample. A simple, sensitive and selective determination of TMZ was developed using CE-ECL and the parameters that affected ECL intensity were optimized. Under the optimized conditions, the linear range of TMZ was from 0.075 to 80μmol/L (r(2)=0.9974). The detection limit was 26nmol/L with RSD of 2.8%. The number of binding sites and binding constant were 1.54 and 15.17L/mol, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Exploring the site-selective binding of jatrorrhizine to human serum albumin: spectroscopic and molecular modeling approaches.

    Science.gov (United States)

    Mi, Ran; Hu, Yan-Jun; Fan, Xiao-Yang; Ouyang, Yu; Bai, Ai-Min

    2014-01-03

    This paper exploring the site-selective binding of jatrorrhizine to human serum albumin (HSA) under physiological conditions (pH=7.4). The investigation was carried out using fluorescence spectroscopy, UV-vis spectroscopy, and molecular modeling. The results of fluorescence quenching and UV-vis absorption spectra experiments indicated the formation of the complex of HSA-jatrorrhizine. Binding parameters calculating from Stern-Volmer method and Scatchard method were calculated at 298, 304 and 310 K, with the corresponding thermodynamic parameters ΔG, ΔH and ΔS as well. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that jatrorrhizine bind to HSA with the binding affinities of the order 10(4) L mol(-1). The thermodynamic parameters studies revealed that the binding was characterized by negative enthalpy and positive entropy changes and the electrostatic interactions play a major role for jatrorrhizine-HSA association. Site marker competitive displacement experiments and molecular modeling calculation demonstrating that jatrorrhizine is mainly located within the hydrophobic pocket of the subdomain IIIA of HSA. Furthermore, the synchronous fluorescence spectra suggested that the association between jatrorrhizine and HSA changed molecular conformation of HSA. Copyright © 2013. Published by Elsevier B.V.

  20. Abacavir and warfarin modulate allosterically kinetics of NO dissociation from ferrous nitrosylated human serum heme-albumin

    International Nuclear Information System (INIS)

    Ascenzi, Paolo; Imperi, Francesco; Coletta, Massimo; Fasano, Mauro

    2008-01-01

    Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., k off ) is reported. In the absence of drugs, the value of k off is (1.3 ± 0.2) x 10 -4 s -1 . Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the k off value increases to (8.6 ± 0.9) x 10 -4 s -1 . From the dependence of k off on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 ± 0.2) x 10 -3 M and (6.2 ± 0.7) x 10 -5 M, respectively) were determined. The increase of k off values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow's site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors

  1. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    Science.gov (United States)

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed.

  2. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging.

    Science.gov (United States)

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg

    2014-05-01

    Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling.

    Science.gov (United States)

    Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua

    2013-04-01

    The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Preparation and characterization of microspheres of albumin-heparin conjugates

    NARCIS (Netherlands)

    Kwon, Glen S.; Bae, You Han; Kim, Sung Wan; Cremers, Harry; Cremers, H.F.M.; Feijen, Jan

    1991-01-01

    Albumin-heparin microspheres have been prepared as a new drug carrier. A soluble albumin-heparin conjugate was synthesized by forming amide bonds between human serum albumin and heparin. After purification the albumin-heparin conjugate was crosslinked in a water-in-oil emulsion to form

  5. Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Alok Raghav

    Full Text Available Albumin glycation and subsequent formation of advanced glycation end products (AGEs correlate with diabetes and associated complications.Human Serum Albumin (HSA was modified with D-glucose for a 40 day period under sterile conditions at 37°C. Modified samples along with native HSA (unmodified were analyzed for structural modifications by UV and fluorescence, FTIR, Liquid chromatography mass spectrometry (LCMS and X-ray crystallography. New-Zealand white female rabbits immunized with AGEs, represent auto-antibodies formation as assessed by competitive and direct binding enzyme-linked immunosorbent assay (ELISA. Neo-epitopesagainst In-vitro formed AGEs were characterized in patients with diabetes mellitus type 2 (n = 50, type 1 (n = 50, gestational diabetes (n = 50 and type 2 with chronic kidney disease (CKD with eGFR level 60-89 mL/min (n = 50 from serum direct binding ELISA.Glycated-HSA showed amarked increase in hyperchromicity of 65.82%,71.98%, 73.62% and 76.63% at λ280 nm along with anincreasein fluorescence intensity of 65.82%, 71.98%, 73.62% and 76.63% in glycated-HSA compared to native. FTIR results showed theshifting of Amide I peak from 1656 cm_1 to 1659 cm_1 and Amide II peak from 1554 cm_1 to 1564 cm_1 in glycated-HSA, with anew peak appearance of carbonyl group at 1737 cm-1. LCMS chromatogram of glycated-HSA showed thepresence of carboxymethyl lysine (CML at 279.1 m/z. Immunological analysis showed high antibody titre>1:12,800 in theserum of rabbits immunized with glycated-HSA (modified with 400 mg/dL glucose and inhibition of 84.65% at anantigen concentration of 20μg/mL. Maximum serum auto-antibody titre was found in T2DM (0.517±0.086, T1DM (0.108±0.092, GDM (0.611±0.041 and T2DM+CKD (0.096±0.25 patients immunized with glycated-HSA (modified with 400 mg/dL glucose.Non-enzymatic glycosylation of HSA manifests immunological complications in diabetes mellitus due to change in its structure that enhances neo-epitopes generation.

  6. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  7. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Davis, J.M.; Arakawa, T.; Strickland, T.W.; Yphantis, D.A.

    1987-01-01

    Physicochemical properties of recombinant human erythropoietin were examined. This protein, produced in Chinese hamster ovary cells, showed a conformation apparently identical with the natural product isolated from human urine when examined by circular dichroism, UV absorbance, and fluorescence spectroscopy. Sedimentation equilibrium experiments showed the recombinant erythropoietin preparation to be essentially a single macromolecular component with a molecular weight of 30,400 and a carbohydrate content of 39%. The Stokes radius of recombinant erythropoietin was estimated to be 32 A from gel filtration, much larger than the 20-A radius calculated for a sphere of the observed molecular weight. This difference may be ascribed to the extensive glycosylation. The fluorescence and phosphorescence spectra showed that the luminescent tryptophan(s) is (are) solvent-exposed and can be quenched by I - and acrylamide but not by Cs + . On acid titration, the recombinant erythropoietin showed a conformational transition with a midpoint of pH 4.1. This suggests that the net charges on the protein moiety rather than on the whole molecule play a role in protein structure stability

  8. A novel multi-epitope recombined protein for diagnosis of human brucellosis.

    Science.gov (United States)

    Yin, Dehui; Li, Li; Song, Xiuling; Li, Han; Wang, Juan; Ju, Wen; Qu, Xiaofeng; Song, Dandan; Liu, Yushen; Meng, Xiangjun; Cao, Hongqian; Song, Weiyi; Meng, Rizeng; Liu, Jinhua; Li, Juan; Xu, Kun

    2016-05-21

    In epidemic regions of the world, brucellosis is a reemerging zoonosis with minimal mortality but is a serious public hygiene problem. Currently, there are various methods for brucellosis diagnosis, however few of them are available to be used to diagnose, especially for serious cross-reaction with other bacteria. To overcome this disadvantage, we explored a novel multi-epitope recombinant protein as human brucellosis diagnostic antigen. We established an indirect enzyme-linked immunosorbent assay (ELISA) based on this recombinant protein. 248 sera obtained from three different groups including patients with brucellosis (146 samples), non-brucellosis patients (82 samples), and healthy individuals (20 samples) were tested by indirect ELISA. To evaluate the assay, a receiver-operating characteristic (ROC) analysis and immunoblotting were carried out using these characterized serum samples. For this test, the area under the ROC curve was 0.9409 (95 % confidence interval, 0.9108 to 0.9709), and a sensitivity of 88.89 % and a specificity of 85.54 % was given with a cutoff value of 0.3865 from this ROC analysis. The Western blot results indicate that it is feasible to differentiate human brucellosis and non-brucellosis with the newly established method based on this recombinant protein. Our results obtained high diagnostic accuracy of the ELISA assay which encourage the use of this novel recombinant protein as diagnostic antigen to implement serological diagnosis of brucellosis.

  9. Recombinant expression of homodimeric 660 kDa human thyroglobulin in soybean seeds: an alternative source of human thyroglobulin.

    Science.gov (United States)

    Powell, Rebecca; Hudson, Laura C; Lambirth, Kevin C; Luth, Diane; Wang, Kan; Bost, Kenneth L; Piller, Kenneth J

    2011-07-01

    Soybean seeds possess many qualities that make them ideal targets for the production of recombinant proteins. However, one quality often overlooked is their ability to stockpile large amounts of complex storage proteins. Because of this characteristic, we hypothesized that soybean seeds would support recombinant expression of large and complex proteins that are currently difficult or impossible to express using traditional plant and non-plant-based host systems. To test this hypothesis, we transformed soybeans with a synthetic gene encoding human thyroglobulin (hTG)-a 660 kDa homodimeric protein that is widely used in the diagnostic industry for screening and detection of thyroid disease. In the absence of a recombinant system that can produce recombinant hTG, research and diagnostic grade hTG continues to be purified from cadaver and surgically removed thyroid tissue. These less-than-ideal tissue sources lack uniform glycosylation and iodination and therefore introduce variability when purified hTG is used in sensitive ELISA screens. In this study, we report the successful expression of recombinant hTG in soybean seeds. Authenticity of the soy-derived protein was demonstrated using commercial ELISA kits developed specifically for the detection of hTG in patient sera. Western analyses and gel filtration chromatography demonstrated that recombinant hTG and thyroid-purified hTG are biologically similar with respect to size, mass, charge and subunit interaction. The recombinant protein was stable over three generations and accumulated to ~1.5% of total soluble seed protein. These results support our hypothesis that soybeans represent a practical alternative to traditional host systems for the expression of large and complex proteins.

  10. Analysis of human reticulocyte genes reveals altered erythropoiesis: potential use to detect recombinant human erythropoietin doping.

    Science.gov (United States)

    Varlet-Marie, Emmanuelle; Audran, Michel; Lejeune, Mireille; Bonafoux, Béatrice; Sicart, Marie-Therese; Marti, Jacques; Piquemal, David; Commes, Thérèse

    2004-08-01

    Enhancement of oxygen delivery to tissues is associated with improved sporting performance. One way of enhancing oxygen delivery is to take recombinant human erythropoietin (rHuEpo), which is an unethical and potentially dangerous practice. However, detection of the use of rHuEpo remains difficult in situations such as: i) several days after the end of treatment ii) when a treatment with low doses is conducted iii) if the rHuEpo effect is increased by other substances. In an attempt to detect rHuEpo abuse, we selected erythroid gene markers from a SAGE library and analyzed the effects of rHuEpo administration on expression of the HBB, FTL and OAZ genes. Ten athletes were assigned to the rHuEpo or placebo group. The rHuEpo group received subcutaneous injections of rHuEpo (50 UI/kg three times a week, 4 weeks; 20 UI/kg three times a week, 2 weeks). HBB, FTL and OAZ gene profiles were monitored by real time-polymerase chain reaction (PCR) quantification during and for 3 weeks after drug administration. The global analysis of these targeted genes detected in whole blood samples showed a characteristic profile of subjects misusing rHuEpo with a increase above the threshold levels. The individual analysis of OAZ mRNA seemed indicative of rHuEpo treatment. The performance-enhancing effect of rHuEpo treatment is greater than the duration of hematologic changes associated with rHuEpo misuse. Although direct electrophoretic methods to detect rHuEpo have been developed, recombinant isoforms of rHuEpo are not detectable some days after the last subcutaneous injection. To overcome these limitations indirect OFF models have been developed. Our data suggest that, in the near future, it will be possible to consolidate results achievable with the OFF models by analyzing selected erythroid gene markers as a supplement to indirect methods.

  11. Superior serum half life of albumin tagged TNF ligands

    International Nuclear Information System (INIS)

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus; Wajant, Harald

    2010-01-01

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.

  12. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    Science.gov (United States)

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Characterization of the interactions of human serum albumin (HSA), gatifloxacin, and metronidazole using spectroscopic and electrochemical methods

    International Nuclear Information System (INIS)

    Fu, Li; Liu, Xiu-fen; Zhou, Qiu-xiang; Zhang, Ji-xiang; Dong, Jing-ya; Wang, Jian-fang

    2014-01-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, is an important carrier for many drugs. Understanding HSA-drug interactions is critical in being able to interpret the distribution and acting mechanisms of these drugs, which is particularly important in the case of multi-drug therapy. In this study, we investigated the interactions between HSA and two commonly used antibiotics, gatifloxacin (GFLX) and metronidazole (MET), in Tris–HCl buffer solution (pH=7.4). The efficacy of the individual drugs (GFLX or MET) and the efficacy of a combination of GFLX and MET were measured using fluorescence spectroscopy, UV absorption spectroscopy, and electrochemical methods. Our results demonstrated that GFLX and MET have a synergistic effect. Briefly, one drug decreased the binding stability with HSA of the other drug, thus increasing the concentration of free drug at the action sites. The interaction of drugs with HSA is a process of complex-formation static quenching. There is approximately one binding site between HSA and the drug (GFLX or MET). The binding distance, r, between the drug and HSA was determined on the basis of the theory of Forster-type non-radiative energy transfer. It was shown that the interaction between the two drugs increased the r-value. Using thermodynamic parameters, we found that the binding of drug-HSA interactions is mainly controlled by electrostatic force. Analysis of the synchronous fluorescence spectrum suggested that the interactions between the drugs have important effects on protein conformation. In conclusion, combining GFLX and MET enhances treatment efficacy. Our study provides a basis to understand the mechanism of the interaction of MET, GFLX and HSA in the human body. - Highlights: • The synergistic effects between MET and GFLX were founed. • The type of interaction between the drugs and HSA was identified

  14. Biophysical study on the interaction between two palladium(II) complexes and human serum albumin by Multispectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Saeidifar, Maryam, E-mail: saeidifar@merc.ac.ir [Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Mansouri-Torshizi, Hassan [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Akbar Saboury, Ali [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-11-15

    The interaction of [Pd(bpy)(n-pr-dtc)]Br (I) and ([Pd(phen)(n-pr-dtc)]Br (II) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline and n-pr-dtc=n-propyldithiocarbamate) with human serum albumin (HSA) was investigated using fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH=7.4). It was observed that the two complexes interact with HSA via static fluorescence quenching. The thermodynamic parameters indicate that the binding process was spontaneous and that hydrogen bonds and van der Waals forces play a major role in the association of the HSA–Pd(II) complexes. The activation energy (E{sub a}), binding constant (K{sub b}) and number of binding sites (n) of the HSA–Pd(II) complexes were calculated from fluorescence data at 293 K, 303 K and 311 K. The conformational alternations of protein secondary structure in the presence of Pd(II) complexes were demonstrated using synchronous fluorescence, three-dimensional fluorescence spectra, UV–vis absorption and circular dichroism techniques. Furthermore, the apparent distance between donor (HSA) and acceptor (Pd(II) complexes) was determined using fluorescence resonance energy transfer (FRET). The binding studies between these complexes and HSA give us key insights into the transportation, distribution and toxicity of newly design antitumor Pd(II) complexes in human blood. - Highlights: • The HSA binding properties of two Palladium (II) complexes were studied. • Static quenching mechanism is effective in the interaction of HSA with Pd(II) complexes. • Hydrogen bonds and van der Waals forces were involved in the Pd(II) complexes–HSA interaction. • 3D fluorescence was used to study the interaction between two complexes and HSA.

  15. LaPO4:Eu fluorescent nanorods, synthesis, characterization and spectroscopic studies on interaction with human serum albumin

    Science.gov (United States)

    Guo, Xingjia; Yao, Jie; Liu, Xuehui; Wang, Hongyan; Zhang, Lizhi; Xu, Liping; Hao, Aijun

    2018-06-01

    Eu3+ doped LaPO4 fluorescent nanorods (LaPO4:Eu) was successfully fabricated by a hydrothermal process. The obtained LaPO4:Eu nanorods under the optimal conditions were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD) technique, Fourier transform infrared (FTIR), UV-vis absorption and fluorescence spectroscopy. The nanorods with a length of 50-100 nm and a diameter of about 10 nm, can emit strong red fluorescence upon excitation at 241 nm. The FTIR result confirmed that there are lots of phosphate groups on the surfaces of nanorods. In order to better understand the physiological behavior of nanorods in human body, multiple spectroscopic methods were used to study the interaction between the LaPO4:Eu nanorods and human serum albumin (HSA) in the simulated physiological conditions. The results indicated that the nanorods can effectively quench the intrinsic fluorescence of HSA through a dynamic quenching mode with the association constants of the order of 103 L mol-1. The values of the thermodynamic parameters suggested that the binding of the nanorods to HSA was a spontaneous process and van der Waals forces and hydrogen bonds played a predominant role. The displacement experiments verified that the binding site of nanorods on HSA was mainly located in the hydrophobic pocket of subdomain IIA (site I) of HSA. The binding distance between nanorods and HSA was calculated to be 4.2 nm according to the theory of Förster non-radiation energy transfer. The analysis of synchronous fluorescence, three-dimensional fluorescence (3D) and circular dichroism (CD) spectra indicated that there the addition of LaPO4:Eu nanorods did not caused significant alterations in conformation of HSA secondary structure and the polarity around the amino acid residues.

  16. Repression of the albumin gene in Novikoff hepatoma cells

    International Nuclear Information System (INIS)

    Capetanaki, Y.G.; Flytzanis, C.N.; Alonso, A.

    1982-01-01

    Novikoff hepatoma cells have lost their capacity to synthesize albumin. As a first approach to study the mechanisms underlying this event, in vitro translation in a reticulocyte system was performed using total polyadenylated mRNA from rat liver and Novikoff hepatoma cells. Immunoprecipitation of the in vitro translation products with albumin-specific antibody revealed a total lack of albumin synthesis in Novikoff hepatoma, suggesting the absence of functional albumin mRNA in these cells. Titration experiments using as probe albumin cDNA cloned in pBR322 plasmid demonstrated the absence of albumin-specific sequences in both polysomal and nuclear polyadenylated and total RNA from Novikoff cells. This albumin recombinant plasmid was obtained by screening a rat liver cDNA library with albumin [/sup 32/P]cDNA reverse transcribed from immuno-precipitated mRNA. The presence of an albumin-specific gene insert was documented with translation assays as well as by restriction mapping. Repression of the albumin gene at the transcriptional level was further demonstrated by RNA blotting experiments using the cloned albumin cDNA probe. Genomic DNA blots using the cloned albumin cDNA as probe did not reveal any large-scale deletions, insertions, or rearrangements in the albumin gene, suggesting that the processes involved in the suppression of albumin mRNA synthesis do not involve extensive genomic rearrangements

  17. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport?

    DEFF Research Database (Denmark)

    Lundby, C; Robach, P; Boushel, R

    2008-01-01

    This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during...... before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery....

  18. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    Science.gov (United States)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  19. LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data.

    Science.gov (United States)

    Guo, Jing; Chen, Hao; Yang, Peng; Lee, Yew Ti; Wu, Min; Przytycka, Teresa M; Kwoh, Chee Keong; Zheng, Jie

    2018-04-20

    Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. DATABASE URL: http://histone.scse.ntu.edu.sg/LDSplitDB.

  20. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris

    Science.gov (United States)

    Ningrum, R. A.; Santoso, A.; Herawati, N.

    2017-05-01

    Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought.

  1. Overproduction, purification and characterization of human interferon alpha2a-human serum albumin fusion protein produced in methilotropic yeast Pichia pastoris

    International Nuclear Information System (INIS)

    Ningrum, R A; Santoso, A; Herawati, N

    2017-01-01

    Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought. (paper)

  2. Urine Albumin and Albumin/ Creatinine Ratio

    Science.gov (United States)

    ... it used? The urine albumin