WorldWideScience

Sample records for recombinant dna clones

  1. Construction of recombinant DNA clone for bovine viral diarrhea virus

    International Nuclear Information System (INIS)

    Yeo, S.G.; Cho, H.J.; Masri, S.A.

    1992-01-01

    Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus (BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone (No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3 -end. 32 P-labeled DNA probes of 300~1, 800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EooR I, Sst I, Hind III and Pst I restriction enzymes in the DNA fragment

  2. Efficient preparation of shuffled DNA libraries through recombination (Gateway) cloning.

    Science.gov (United States)

    Lehtonen, Soili I; Taskinen, Barbara; Ojala, Elina; Kukkurainen, Sampo; Rahikainen, Rolle; Riihimäki, Tiina A; Laitinen, Olli H; Kulomaa, Markku S; Hytönen, Vesa P

    2015-01-01

    Efficient and robust subcloning is essential for the construction of high-diversity DNA libraries in the field of directed evolution. We have developed a more efficient method for the subcloning of DNA-shuffled libraries by employing recombination cloning (Gateway). The Gateway cloning procedure was performed directly after the gene reassembly reaction, without additional purification and amplification steps, thus simplifying the conventional DNA shuffling protocols. Recombination-based cloning, directly from the heterologous reassembly reaction, conserved the high quality of the library and reduced the time required for the library construction. The described method is generally compatible for the construction of DNA-shuffled gene libraries. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Evaluation of the efficiency and utility of recombinant enzyme-free seamless DNA cloning methods

    Directory of Open Access Journals (Sweden)

    Ken Motohashi

    2017-03-01

    Full Text Available Simple and low-cost recombinant enzyme-free seamless DNA cloning methods have recently become available. In vivo Escherichia coli cloning (iVEC can directly transform a mixture of insert and vector DNA fragments into E. coli, which are ligated by endogenous homologous recombination activity in the cells. Seamless ligation cloning extract (SLiCE cloning uses the endogenous recombination activity of E. coli cellular extracts in vitro to ligate insert and vector DNA fragments. An evaluation of the efficiency and utility of these methods is important in deciding the adoption of a seamless cloning method as a useful tool. In this study, both seamless cloning methods incorporated inserting DNA fragments into linearized DNA vectors through short (15–39 bp end homology regions. However, colony formation was 30–60-fold higher with SLiCE cloning in end homology regions between 15 and 29 bp than with the iVEC method using DH5α competent cells. E. coli AQ3625 strains, which harbor a sbcA gene mutation that activates the RecE homologous recombination pathway, can be used to efficiently ligate insert and vector DNA fragments with short-end homology regions in vivo. Using AQ3625 competent cells in the iVEC method improved the rate of colony formation, but the efficiency and accuracy of SLiCE cloning were still higher. In addition, the efficiency of seamless cloning methods depends on the intrinsic competency of E. coli cells. The competency of chemically competent AQ3625 cells was lower than that of competent DH5α cells, in all cases of chemically competent cell preparations using the three different methods. Moreover, SLiCE cloning permits the use of both homemade and commercially available competent cells because it can use general E. coli recA− strains such as DH5α as host cells for transformation. Therefore, between the two methods, SLiCE cloning provides both higher efficiency and better utility than the iVEC method for seamless DNA plasmid

  4. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    Science.gov (United States)

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  5. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    Full Text Available Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3. The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  6. A Gateway MultiSite recombination cloning toolkit.

    Directory of Open Access Journals (Sweden)

    Lena K Petersen

    Full Text Available The generation of DNA constructs is often a rate-limiting step in conducting biological experiments. Recombination cloning of single DNA fragments using the Gateway system provided an advance over traditional restriction enzyme cloning due to increases in efficiency and reliability. Here we introduce a series of entry clones and a destination vector for use in two, three, and four fragment Gateway MultiSite recombination cloning whose advantages include increased flexibility and versatility. In contrast to Gateway single-fragment cloning approaches where variations are typically incorporated into model system-specific destination vectors, our Gateway MultiSite cloning strategy incorporates variations in easily generated entry clones that are model system-independent. In particular, we present entry clones containing insertions of GAL4, QF, UAS, QUAS, eGFP, and mCherry, among others, and demonstrate their in vivo functionality in Drosophila by using them to generate expression clones including GAL4 and QF drivers for various trp ion channel family members, UAS and QUAS excitatory and inhibitory light-gated ion channels, and QUAS red and green fluorescent synaptic vesicle markers. We thus establish a starter toolkit of modular Gateway MultiSite entry clones potentially adaptable to any model system. An inventory of entry clones and destination vectors for Gateway MultiSite cloning has also been established (www.gatewaymultisite.org.

  7. Cloning of human tumor necrosis factor (TNF) receptor cDNA and expression of recombinant soluble TNF-binding protein

    International Nuclear Information System (INIS)

    Gray, P.W.; Barrett, K.; Chantry, D.; Turner, M.; Feldmann, M.

    1990-01-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extracellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10 -9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ)

  8. Cloning of Human Tumor Necrosis Factor (TNF) Receptor cDNA and Expression of Recombinant Soluble TNF-Binding Protein

    Science.gov (United States)

    Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc

    1990-10-01

    The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).

  9. Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone

    International Nuclear Information System (INIS)

    Balasuriya, Udeni B.R.; Dobbe, Jessika C.; Heidner, Hans W.; Smalley, Victoria L.; Navarrette, Andrea; Snijder, Eric J.; MacLachlan, N. James

    2004-01-01

    We have used an infectious cDNA clone of equine arteritis virus (EAV) and reverse genetics technology to further characterize the neutralization determinants in the GP5 envelope glycoprotein of the virus. We generated a panel of 20 recombinant viruses, including 10 chimeric viruses that each contained the ORF5 (which encodes GP5) of different laboratory, field, and vaccine strains of EAV, a chimeric virus containing the N-terminal ectodomain of GP5 of a European strain of porcine reproductive and respiratory syndrome virus, and 9 mutant viruses with site-specific substitutions in their GP5 proteins. The neutralization phenotype of each recombinant chimeric/mutant strain of EAV was determined with EAV-specific monoclonal antibodies and EAV strain-specific polyclonal equine antisera and compared to that of their parental viruses from which the substituted ORF5 was derived. The data unequivocally confirm that the GP5 ectodomain contains critical determinants of EAV neutralization. Furthermore, individual neutralization sites are conformationally interactive, and the interaction of GP5 with the unglycosylated membrane protein M is likely critical to expression of individual epitopes in neutralizing conformation. Substitution of individual amino acids within the GP5 ectodomain usually resulted in differences in neutralization phenotype of the recombinant viruses, analogous to differences in the neutralization phenotype of field strains of EAV and variants generated during persistent infection of EAV carrier stallions

  10. Recombination-assisted megaprimer (RAM) cloning

    Science.gov (United States)

    Mathieu, Jacques; Alvarez, Emilia; Alvarez, Pedro J.J.

    2014-01-01

    No molecular cloning technique is considered universally reliable, and many suffer from being too laborious, complex, or expensive. Restriction-free cloning is among the simplest, most rapid, and cost-effective methods, but does not always provide successful results. We modified this method to enhance its success rate through the use of exponential amplification coupled with homologous end-joining. This new method, recombination-assisted megaprimer (RAM) cloning, significantly extends the application of restriction-free cloning, and allows efficient vector construction with much less time and effort when restriction-free cloning fails to provide satisfactory results. The following modifications were made to the protocol:•Limited number of PCR cycles for both megaprimer synthesis and the cloning reaction to reduce error propagation.•Elimination of phosphorylation and ligation steps previously reported for cloning methods that used exponential amplification, through the inclusion of a reverse primer in the cloning reaction with a 20 base pair region of homology to the forward primer.•The inclusion of 1 M betaine to enhance both reaction specificity and yield. PMID:26150930

  11. Cloning of human and mouse genes homologous to RAD52, a yeast gene involved in DNA repair and recombination.

    NARCIS (Netherlands)

    D.F.R. Muris; O.Y. Bezzubova (Olga); J-M. Buerstedde; K. Vreeken; A.S. Balajee; C.J. Osgood; C. Troelstra (Christine); J.H.J. Hoeijmakers (Jan); K. Ostermann; H. Schmidt (Henning); A.T. Natarajan; J.C.J. Eeken; P.H.M. Lohmann (Paul); A. Pastink (Albert)

    1994-01-01

    textabstractThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were

  12. Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

  13. Recent advances in yeast molecular biology: recombinant DNA

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis

  14. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  15. DNA cloning: a practical approach. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Glover, D M [ed.

    1985-01-01

    This book is written for the advanced molecular biologist who needs a detailed discussion of cloning technology. Topics of discussion include: genomic library cloning (size of a genomic library, screening methods, chromosome walking, host cell genetics, and general features of bacteriophage Iambda); use of gt10 and gt11 cDNA lambda vectors and general cDNA cloning; RNase H-Pol I cDNA synthesis; method of detecting fusion proteins produced in bacteria; pEMBL family of double-stranded plasmid vectors that can be used to generate single strands; Escherichia coli transformation; production of mutations in cloned sequences; and cloning in gram negative bacteria.

  16. Cloning and expression of recombinant, functional ricin B chain

    International Nuclear Information System (INIS)

    Chang, M.S.; Russell, D.W.; Uhr, J.W.; Vitetta, E.S.

    1987-01-01

    The cDNA encoding the B chain of the plant toxin ricin has been cloned and expressed in monkey kidney COS-M6 cells. The recombinant B chain was detected by labeling the transfected cells with [ 35 S]methionine and [ 35 S]-cysteine and demonstrating the secretion of a protein with a M/sub r/ of 30,000-32,000 that was not present in the medium of mock-transfected COS-M6 cells. This protein was specifically immunoprecipitated by an anti-ricin or anti-B-chain antibody and the amount of recombinant B chain secreted by the COS-M6 cells was determined by a radioimmunoassay. Virtually all of the recombinant B chain formed active ricin when mixed with native A chain; it could also bind to the galactose-containing glycoprotein asialofetuin as effectively as native B chain.These results indicate that the vast majority of recombinant B chains secreted into the medium of the COS-M6 cells retain biological function

  17. Rapid customised operon assembly by yeast recombinational cloning.

    Science.gov (United States)

    Liu, Michael A; Kenyon, Johanna J; Lee, Jason; Reeves, Peter R

    2017-06-01

    We have developed a system called the Operon Assembly Protocol (OAP), which takes advantage of the homologous recombination DNA repair pathway in Saccharomyces cerevisiae to assemble full-length operons from a series of overlapping PCR products into a specially engineered yeast-Escherichia coli shuttle vector. This flexible, streamlined system can be used to assemble several operon clones simultaneously, and each clone can be expressed in the same E. coli tester strain to facilitate direct functional comparisons. We demonstrated the utility of the OAP by assembling and expressing a series of E. coli O1A O-antigen gene cluster clones containing various gene deletions or replacements. We then used these constructs to assess the substrate preferences of several Wzx flippases, which are responsible for translocation of oligosaccharide repeat units (O units) across the inner membrane during O-antigen biosynthesis. We were able to identify several O unit structural features that appear to be important determinants of Wzx substrate preference. The OAP system should be broadly applicable for the genetic manipulation of any bacterial operon and can be modified for use in other host species. It could also have potential uses in fields such as glycoengineering.

  18. MOLECULAR CLONING OF OVINE cDNA LEPTIN GENE

    Directory of Open Access Journals (Sweden)

    CLAUDIA TEREZIA SOCOL

    2008-05-01

    Full Text Available An efficient bacterial transformation system suitable for cloning the coding sequence of the ovine leptin gene in E. coli DH5α host cells using the pGEMT easy vector it is described in this paper. The necessity of producing leptin is based on the fact that the role of this molecule in the animal and human organism is still unknown, leptin not existing as commercial product on the Romanian market. The results obtained in the bacterial transformation, cloning, recombinant clones selection, control of the insertion experiments and DNA computational analysis represent the first steps in further genetic engineering experiments such as production of DNA libraries, DNA sequencing, protein expression, etc., for a further contribution in elucidating the role of leptin in the animal and human organism.

  19. Molecular cloning of lupin leghemoglobin cDNA

    DEFF Research Database (Denmark)

    Konieczny, A; Jensen, E O; Marcker, K A

    1987-01-01

    Poly(A)+ RNA isolated from root nodules of yellow lupin (Lupinus luteus, var. Ventus) has been used as a template for the construction of a cDNA library. The ds cDNA was synthesized and inserted into the Hind III site of plasmid pBR 322 using synthetic Hind III linkers. Clones containing sequences...... specific for nodules were selected by differential colony hybridization using 32P-labeled cDNA synthesized either from nodule poly(A)+ RNA or from poly(A)+ RNA of uninfected root as probes. Among the recombinant plasmids, the cDNA gene for leghemoglobin was identified. The protein structure derived from...... its nucleotide sequence was consistent with known amino acid sequence of lupin Lb II. The cloned lupin Lb cDNA hybridized to poly(A)+ RNA from nodules only, which is in accordance with the general concept, that leghemoglobin is expressed exclusively in nodules. Udgivelsesdato: 1987-null...

  20. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    A new amylase gene APGA1 was cloned from Aureobasidium pullulans NRRL 12974 and expressed in Pichia pastoris. This is the first report on cloning and expression of amylolytic gene from the industrially important microorganism A. pullulans. The purified recombinant protein with MW of 66 kDa and specific activity of ...

  1. Cloning and expression of cDNA coding for bouganin.

    Science.gov (United States)

    den Hartog, Marcel T; Lubelli, Chiara; Boon, Louis; Heerkens, Sijmie; Ortiz Buijsse, Antonio P; de Boer, Mark; Stirpe, Fiorenzo

    2002-03-01

    Bouganin is a ribosome-inactivating protein that recently was isolated from Bougainvillea spectabilis Willd. In this work, the cloning and expression of the cDNA encoding for bouganin is described. From the cDNA, the amino-acid sequence was deduced, which correlated with the primary sequence data obtained by amino-acid sequencing on the native protein. Bouganin is synthesized as a pro-peptide consisting of 305 amino acids, the first 26 of which act as a leader signal while the 29 C-terminal amino acids are cleaved during processing of the molecule. The mature protein consists of 250 amino acids. Using the cDNA sequence encoding the mature protein of 250 amino acids, a recombinant protein was expressed, purified and characterized. The recombinant molecule had similar activity in a cell-free protein synthesis assay and had comparable toxicity on living cells as compared to the isolated native bouganin.

  2. Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Science.gov (United States)

    Schmid, Christoph D.; Bühlmann, Tobias; Louis, Edward J.; Beck, Hans-Peter

    2011-01-01

    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member. PMID:21408186

  3. Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis

    Science.gov (United States)

    2011-09-01

    future predictive modeling toolkits. 1 1. Introduction The use of Bacillus anthracis as a bio - weapon in the United States in 2001 affirmed the need...for improved sensing and detection of biological weapons of mass destruction (WMD). Protective Antigen (PA) protein of Bacillus anthracis is the...Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis by Deborah A. Sarkes, Joshua M. Kogot, Irene Val-Addo

  4. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Directory of Open Access Journals (Sweden)

    Athanasios Niarchos

    Full Text Available During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  5. TA-GC cloning: A new simple and versatile technique for the directional cloning of PCR products for recombinant protein expression.

    Science.gov (United States)

    Niarchos, Athanasios; Siora, Anastasia; Konstantinou, Evangelia; Kalampoki, Vasiliki; Lagoumintzis, George; Poulas, Konstantinos

    2017-01-01

    During the last few decades, the recombinant protein expression finds more and more applications. The cloning of protein-coding genes into expression vectors is required to be directional for proper expression, and versatile in order to facilitate gene insertion in multiple different vectors for expression tests. In this study, the TA-GC cloning method is proposed, as a new, simple and efficient method for the directional cloning of protein-coding genes in expression vectors. The presented method features several advantages over existing methods, which tend to be relatively more labour intensive, inflexible or expensive. The proposed method relies on the complementarity between single A- and G-overhangs of the protein-coding gene, obtained after a short incubation with T4 DNA polymerase, and T and C overhangs of the novel vector pET-BccI, created after digestion with the restriction endonuclease BccI. The novel protein-expression vector pET-BccI also facilitates the screening of transformed colonies for recombinant transformants. Evaluation experiments of the proposed TA-GC cloning method showed that 81% of the transformed colonies contained recombinant pET-BccI plasmids, and 98% of the recombinant colonies expressed the desired protein. This demonstrates that TA-GC cloning could be a valuable method for cloning protein-coding genes in expression vectors.

  6. Generation of Infectious Poliovirus with Altered Genetic Information from Cloned cDNA.

    Science.gov (United States)

    Bujaki, Erika

    2016-01-01

    The effect of specific genetic alterations on virus biology and phenotype can be studied by a great number of available assays. The following method describes the basic protocol to generate infectious poliovirus with altered genetic information from cloned cDNA in cultured cells.The example explained here involves generation of a recombinant poliovirus genome by simply replacing a portion of the 5' noncoding region with a synthetic gene by restriction cloning. The vector containing the full length poliovirus genome and the insert DNA with the known mutation(s) are cleaved for directional cloning, then ligated and transformed into competent bacteria. The recombinant plasmid DNA is then propagated in bacteria and transcribed to RNA in vitro before RNA transfection of cultured cells is performed. Finally, viral particles are recovered from the cell culture.

  7. Chimeric infectious DNA clones, chimeric porcine circoviruses and uses thereof

    OpenAIRE

    2011-01-01

    The present invention relates to infectious DNA clones, infectious chimeric DNA clones of porcine circovirus (PCV), vaccines and means of protecting pigs against viral infection or postweaning multisystemic wasting syndrome (PMWS) caused by PCV2. The new chimeric infectious DNA clone and its derived, avirulent chimeric virus are constructed from the nonpathogenic PCV1 in which the immunogenic ORF gene of the pathogenic PCV2 replaces a gene of the nonpathogenic PCV1, preferably in the same pos...

  8. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    International Nuclear Information System (INIS)

    Thomas, S.M.; Sedgwick, S.G.

    1989-01-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli

  9. Expansion of the gateway multisite recombination cloning toolkit.

    Science.gov (United States)

    Shearin, Harold K; Dvarishkis, Alisa R; Kozeluh, Craig D; Stowers, R Steven

    2013-01-01

    Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.

  10. Cloning and characterization of BKV(MM) DNA and its use for detection of BKV DNA in human urine

    International Nuclear Information System (INIS)

    Harley, E.H.; Olliver, C.L.; Rhodes-Harrison, L.; Mew, R.T.; Lecatsas, G.; Naude, W. du T.

    1982-01-01

    The two fragments produced by restriction of BKV(MM) DNA with the endonucleases Pst I and Eco RI have been cloned separately into the vector pBR322 and amplified in E. coli HB101. Eight recombinant plasmids were characterized by gel electrophoresis of Pst I/Eco RI double digestions or Hind III digestions of the DNA and by hybridization of Southern gel blots to a nick-translated BKV(MM) DNA probe. Four of the recombinant plasmids contained the large Pst I/Eco RI BKV(MM) DNA fragment and four contained the small fragment. Two of these recombinant plasmids were then used to make a probe for the identification of BK DNA in a urine specimen from a patient known to be exreting particles with the morphological features of papovavirus [af

  11. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  12. Cloning and characterization of cDNA encoding xyloglucan ...

    African Journals Online (AJOL)

    Jane

    2011-08-22

    Aug 22, 2011 ... plays important role in growth and development of plants. XETs are a family of enzymes .... cloned into pGEM-T Easy vector (Promega Corporation, WI, USA). The recombinant ..... wall modification in the poaceae. Protein Sci.

  13. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency.

    Science.gov (United States)

    Tu, Qiang; Yin, Jia; Fu, Jun; Herrmann, Jennifer; Li, Yuezhong; Yin, Yulong; Stewart, A Francis; Müller, Rolf; Zhang, Youming

    2016-04-20

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and recombineering efficiency in E. coli and several other gram-negative bacteria thereby economizing time and cost. Increased transformation efficiency of large DNA molecules is a significant advantage that might facilitate the cloning of large fragments from genomic DNA preparations and metagenomics samples.

  14. Infectious Maize rayado fino virus from cloned cDNA

    Science.gov (United States)

    Maize rayado fino virus (MRFV) is the type member of the marafiviruses within the family Tymoviridae. A cDNA clone from which infectious RNA can be transcribed was produced from a US isolate of MRFV (MRFV-US). Infectivity of transcripts derived from cDNA clones was demonstrated by infection of mai...

  15. Transcription and recombination: when RNA meets DNA.

    Science.gov (United States)

    Aguilera, Andrés; Gaillard, Hélène

    2014-08-01

    A particularly relevant phenomenon in cell physiology and proliferation is the fact that spontaneous mitotic recombination is strongly enhanced by transcription. The most accepted view is that transcription increases the occurrence of double-strand breaks and/or single-stranded DNA gaps that are repaired by recombination. Most breaks would arise as a consequence of the impact that transcription has on replication fork progression, provoking its stalling and/or breakage. Here, we discuss the mechanisms responsible for the cross talk between transcription and recombination, with emphasis on (1) the transcription-replication conflicts as the main source of recombinogenic DNA breaks, and (2) the formation of cotranscriptional R-loops as a major cause of such breaks. The new emerging questions and perspectives are discussed on the basis of the interference between transcription and replication, as well as the way RNA influences genome dynamics. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Differences in mutagenic and recombinational DNA repair in enterobacteria

    International Nuclear Information System (INIS)

    Sedgwick, S.G.; Goodwin, P.A.

    1985-01-01

    The incidence of recombinational DNA repair and inducible mutagenic DNA repair has been examined in Escherichia coli and 11 related species of enterobacteria. Recombinational repair was found to be a common feature of the DNA repair repertoire of at least 6 genera of enterobacteria. This conclusion is based on observations of (i) damage-induced synthesis of RecA-like proteins, (ii) nucleotide hybridization between E. coli recA sequences and some chromosomal DNAs, and (iii) recA-negative complementation by plasmids showing SOS-inducible expression of truncated E. coli recA genes. The mechanism of DNA damage-induced gene expression is therefore sufficiently conserved to allow non-E. coli regulatory elements to govern expression of these cloned truncated E. coli recA genes. In contrast, the process of mutagenic repair, which uses umuC+ umuD+ gene products in E. coli, appeared less widespread. Little ultraviolet light-induced mutagenesis to rifampicin resistance was detected outside the genus Escherichia, and even within the genus induced mutagenesis was detected in only 3 out of 6 species. Nucleotide hybridization showed that sequences like the E. coli umuCD+ gene are not found in these poorly mutable organisms. Evolutionary questions raised by the sporadic incidence of inducible mutagenic repair are discussed

  17. A simple DNA recombination screening method by RT-PCR as an alternative to Southern blot

    DEFF Research Database (Denmark)

    Albers, Eliene; Sbroggiò, Mauro; Martin Gonzalez, Javier

    2017-01-01

    The generation of genetically engineered mouse models (GEMMs), including knock-out (KO) and knock-in (KI) models, often requires genomic screening of many mouse ES cell (mESC) clones by Southern blot. The use of large targeting constructs facilitates the recombination of exogenous DNA in a specific...

  18. Cloning, sequencing and expression of cDNA encoding growth ...

    Indian Academy of Sciences (India)

    Unknown

    of medicine, animal husbandry, fish farming and animal ..... northern pike (Esox lucius) growth hormone; Mol. Mar. Biol. ... prolactin 1-luciferase fusion gene in African catfish and ... 1988 Cloning and sequencing of cDNA that encodes goat.

  19. (PCR) for direct cloning of blunt-end DNA fragments

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... Key words: Blunt-end cloning, phosphorylated DNA fragment, dephosphorylated blunt-end vector. INTRODUCTION ... With this method, a lot of steps are saved, which includes restriction .... pBSK-blunt (data not shown).

  20. Recombinant DNA. Rifkin's regulatory revivalism runs riot.

    Science.gov (United States)

    David, P

    Jeremy Rifkin, activist opponent of genetic engineering, has adopted tactics of litigation, persuasion, and confrontation in his campaign to halt genetic experimentation. The Recombinant DNA Advisory Committee of the National Institutes of Health has often been the target of his criticism, most recently for its failure to prepare an environmental risk assessment for some DNA tests it approved. Rifkin has won support for his position from religious organizations in the United States, and in June 1983 persuaded an ecumenical group of religious leaders to ask Congress to ban genetic experiments that would affect the human germ line.

  1. Cloning of the human androgen receptor cDNA

    International Nuclear Information System (INIS)

    Govindan, M.V.; Burelle, M.; Cantin, C.; Kabrie, C.; Labrie, F.; Lachance, Y.; Leblanc, G.; Lefebvre, C.; Patel, P.; Simard, J.

    1988-01-01

    The authors discuss how in order to define the functional domains of the human androgen receptor, complementary DNA (cDNA) clones encoding the human androgen receptor (hAR) have been isolated from a human testis λgtll cDNA library using synthetic oligonnucleotide probes, homologous to segments of the human glucocorticoid, estradiol and progesterone receptors. The cDNA clones corresponding to the human glucocorticoid, estradiol and progesterone receptors were eliminated after cross-hybridization with their respective cDNA probes and/or after restriction mapping of the cDNA clones. The remaining cDNA clones were classified into different groups after analysis by restriction digestion and cross-hybridization. Two of the largest cDNA clones from each group were inserted into an expression vector in both orientations. The linearized plasmids were used as templates in in vitro transcription with T7 RNA polymerase. Subsequent in vitro translation of the purified transcripts in rabbit reticulocyte lysate followed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) permitted the characterization of the encoded polyeptides. The expressed proteins larger than 30,000 Da were analyzed for their ability to bind tritium-labelled dihydrotestosterone ([ 3 H] DHT) with high affinity and specificity

  2. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  3. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II.

    Science.gov (United States)

    Sidoli, A; Tamborini, E; Giuntini, I; Levi, S; Volonté, G; Paini, C; De Lalla, C; Siccardi, A G; Baralle, F E; Galliani, S

    1993-10-15

    The molecular cloning of the cDNA encoding for an isoallergenic form of Lol p II, a major rye grass (Lolium perenne) pollen allergen, was performed by polymerase chain reaction amplification on mRNA extracted from pollen. The amino acid sequence derived from the cDNA was truncated by 4 and 5 residues at the NH2- and COOH-terminal ends, respectively, and differed only in one position from that previously reported. This cDNA was expressed in Escherichia coli by fusion to the carboxyl terminus of the human ferritin H-chain. The molecule was produced in high yields as a soluble protein and was easily purified. The protein retains the multimeric quaternary structure of ferritin, and it exposes on the surface the allergenic moiety, which can be recognized in Western blotting and in enzyme-linked immunosorbent assay experiments by specific IgE from allergic patients. The recombinant allergen was used to analyze the sera of 26 patients allergic to L. perenne compared with control sera. The results were in good agreement with the values obtained with the radioallergosorbent test assay. In addition, histamine release experiments in whole blood from an allergic patient and skin prick tests showed that the recombinant allergen retains some of the biological properties of the natural compound. These findings indicate that the availability of homogeneous recombinant allergens may be useful for the development of more specific diagnostic and therapeutic procedures. Moreover, this expression system may be of more general interest for producing large amounts of soluble protein domains in E. coli.

  4. Cloning of the cDNA for human 12-lipoxygenase

    International Nuclear Information System (INIS)

    Izumi, T.; Hoshiko, S.; Radmark, O.; Samuelsson, B.

    1990-01-01

    A full-length cDNA clone encoding 12-lipoxygenase was isolated from a human platelet cDNA library by using a cDNA for human reticulocyte 15-lipoxygenase as probe for the initial screening. The cDNA had an open reading frame encoding 662 amino acid residues with a calculated molecular weight of 75,590. Three independent clones revealed minor heterogeneities in their DNA sequences. Thus, in three positions of the deduced amino acid sequence, there is a choice between two different amino acids. The deduced sequence from the clone plT3 showed 65% identity with human reticulocyte 15-lipoxygenase and 42% identity with human leukocyte 5-lipoxygenase. The 12-lipoxygenase cDNA recognized a 3.0-kilobase mRNA species in platelets and human erythroleukemia cells (HEL cells). Phorbol 12-tetradecanoyl 13-acetate induced megakaryocytic differentiation of HEL cells and 12-lipoxygenase activity and increased mRNA for 12-lipoxygenase. The identity of the cloned 12-lipoxygenase was assured by expression in a mammalian cell line (COS cells). Human platelet 12-lipoxygenase has been difficult to purify to homogeneity. The cloning of this cDNA will increase the possibilities to elucidate the structure and function of this enzyme

  5. DNA microarrays : a molecular cloning manual

    National Research Council Canada - National Science Library

    Sambrook, Joseph; Bowtell, David

    2002-01-01

    .... This manual, designed to extend and to complement the information in the best-selling Molecular Cloning, is a synthesis of the expertise and experience of more than 30 contributors all innovators in a fast moving field...

  6. Isolation of full-length putative rat lysophospholipase cDNA using improved methods for mRNA isolation and cDNA cloning

    International Nuclear Information System (INIS)

    Han, J.H.; Stratowa, C.; Rutter, W.J.

    1987-01-01

    The authors have cloned a full-length putative rat pancreatic lysophospholipase cDNA by an improved mRNA isolation method and cDNA cloning strategy using [ 32 P]-labelled nucleotides. These new methods allow the construction of a cDNA library from the adult rat pancreas in which the majority of recombinant clones contained complete sequences for the corresponding mRNAs. A previously recognized but unidentified long and relatively rare cDNA clone containing the entire sequence from the cap site at the 5' end to the poly(A) tail at the 3' end of the mRNA was isolated by single-step screening of the library. The size, amino acid composition, and the activity of the protein expressed in heterologous cells strongly suggest this mRNA codes for lysophospholipase

  7. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.

    Science.gov (United States)

    Fakruddin, Md; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.

  8. Molecular characterization of a Leishmania donovani cDNA clone with similarity to human 20S proteasome a-type subunit

    DEFF Research Database (Denmark)

    Christensen, C B; Jørgensen, L; Jensen, A T

    2000-01-01

    Using plasma from patients infected or previously infected with Leishmania donovanii, we isolated a L. donovanii cDNA clone with similarity to the proteasome a-type subunit from humans and other eukaryotes. The cDNA clone, designated LePa, was DNA sequenced and Northern blot analysis of L....... donovanii poly(A(+))mRNA indicated the isolation of a full length cDNA clone with a transcript size of 1.9 kb. The expressed recombinant LePa fusion protein induced proliferation of peripheral blood mononuclear cells in one out of seven patients who had suffered from visceral leishmaniasis. Plasma from 16...

  9. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  10. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  11. Recombinant Protein Production from TPO Gen Cloning and Expression for Early Detection of Autoimmune Thyroid Diseases

    Science.gov (United States)

    Aulanni'am, Aulanni'am; Kinasih Wuragil, Dyah; Wahono Soeatmadji, Djoko; Zulkarnain; Marhendra, Agung Pramana W.

    2018-01-01

    Autoimmune Thyroid Disease (AITD) is an autoimmune disease that has many clinical symptoms but is difficult to detect at the onset of disease progression. Most thyroid autoimmune disease patients are positive with high titre of thyroid autoantibodies, especially thyroid peroxidase (TPO). The detection AITD are still needed because these tests are extremely high cost and have not regularly been performed in most of clinical laboratories. In the past, we have explored the autoimmune disease marker and it has been developed as source of polyclonal antibodies from patient origin. In the current study, we develop recombinant protein which resulted from cloning and expression of TPO gene from normal person and AITD patients. This work flows involves: DNA isolation and PCR to obtain TPO gene from human blood, insertion of TPO gene to plasmid and transformation to E. coli BL21, Bacterial culture to obtain protein product, protein purification and product analysis. This products can use for application to immunochromatography based test. This work could achieved with the goal of producing autoimmune markers with a guaranteed quality, sensitive, specific and economically. So with the collaboration with industries these devices could be used for early detection. Keywords: recombinant protein, TPO gene, Autoimmune thyroid diseases (AITD)ction of the diseases in the community.

  12. An Aspergillus oryzae acetyl xylan esterase: molecular cloning and characteristics of recombinant enzyme expressed in Pichia pastoris.

    Science.gov (United States)

    Koseki, Takuya; Miwa, Yozo; Akao, Takeshi; Akita, Osamu; Hashizume, Katsumi

    2006-02-10

    We screened 20,000 clones of an expressed sequence tag (EST) library from Aspergillus oryzae (http://www.nrib.go.jp/ken/EST/db/index.html) and obtained one cDNA clone encoding a protein with similarity to fungal acetyl xylan esterase. We also cloned the corresponding gene, designated as Aoaxe, from the genomic DNA. The deduced amino acid sequence consisted of a putative signal peptide of 31-amino acids and a mature protein of 276-amino acids. We engineered Aoaxe for heterologous expression in P. pastoris. Recombinant AoAXE (rAoAXE) was secreted by the aid of fused alpha-factor secretion signal peptide and accumulated as an active enzyme in the culture medium to a final level of 190 mg/l after 5 days. Purified rAoAXEA before and after treatment with endoglycosidase H migrated by SDS-PAGE with a molecular mass of 31 and 30 kDa, respectively. Purified rAoAXE displayed the greatest hydrolytic activity toward alpha-naphthylacetate (C2), lower activity toward alpha-naphthylpropionate (C3) and no detectable activity toward acyl-chain substrates containing four or more carbon atoms. The recombinant enzyme catalyzed the release of acetic acid from birchwood xylan. No activity was detectable using methyl esters of ferulic, caffeic or sinapic acids. rAoAXE was thermolabile in comparison to other AXEs from Aspergillus.

  13. Chronic exposure to sublethal doses of radiation mimetic ZeocinTM selects for clones deficient in homologous recombination

    International Nuclear Information System (INIS)

    Delacote, Fabien; Deriano, Ludovic; Lambert, Sarah; Bertrand, Pascale; Saintigny, Yannick; Lopez, Bernard S.

    2007-01-01

    DNA double-strand breaks (DSBs) are highly toxic lesions leading to genome variability/instability. The balance between homologous recombination (HR) and non-homologous end-joining (NHEJ), two alternative DSB repair systems, is essential to ensure genome maintenance in mammalian cells. Here, we transfected CHO hamster cells with the pcDNA TM 3.1/Zeo plasmid, and selected transfectants with Zeocin TM , a bleomycin analog which produces DSBs. Despite the presence of a Zeocin TM resistance gene in pcDNA TM 3.1/Zeo, Zeocin TM induced 8-10 γ-H2AX foci per cell. This shows that the Zeocin TM resistance gene failed to fully detoxify cells treated with Zeocin TM , and that during selection cells were submitted to a chronic sublethal DSB stress. Selected clones show decreases in both spontaneous and induced intrachromosomal HR. In contrast, in an in vitro assay, these clones show an increase in NHEJ products specific to the KU86 pathway. We selected cells, in the absence of pcDNA TM 3.1/Zeo, with low and sublethal doses of Zeocin TM , producing a mean 8-10 γ-H2AX foci per cell. Newly selected clones exhibited similar phenotypes: HR decrease accompanied by an increase in KU86-dependent NHEJ efficiency. Thus chronic exposure to sublethal numbers of DSBs selects cells whose HR versus NHEJ balance is altered. This may well have implications for radio- and chemotherapy, and for management of environmental hazards

  14. DNA microarrays : a molecular cloning manual

    National Research Council Canada - National Science Library

    Sambrook, Joseph; Bowtell, David

    2002-01-01

    .... DNA Microarrays provides authoritative, detailed instruction on the design, construction, and applications of microarrays, as well as comprehensive descriptions of the software tools and strategies...

  15. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    Science.gov (United States)

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  16. Distribution and uses of legume DNA clone resources

    International Nuclear Information System (INIS)

    Young, N.D.

    2001-01-01

    Since 1990, my lab has developed and distributed various DNA clone resources for the legumes. In the first several years, the focus was on members of the tropical genus, Vigna, including the widely cultivated species, mungbean (V. radiata) and cowpea (V. unguiculata). Both of these grain legumes play key roles in agriculture in developing countries of Asia (mungbean) and Africa (cowpea). Moreover, because there is substantial genome conservation among legumes, these genetic resources have also been utilized by a wide range of researchers in other crop species. In 1997, my lab began to focus on the development and distribution of a new generation of DNA clone resources; Bacterial Artificial Chromosomes (BAC). A library of these clones was constructed in soybean (Glycine max) the most important legume species worldwide in terms of economic value. Again, the library has become a valuable resource for the legume research community and has been widely used in studies of legume genomics. (author)

  17. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.

    Science.gov (United States)

    Osipiuk, J; Joachimiak, A

    1997-09-12

    We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.

  18. Phylogeographic variation in recombination rates within a global clone of Methicillin-Resistant Staphylococcus aureus (MRSA)

    DEFF Research Database (Denmark)

    Castillo-Ramirez, Santiago; Corander, Jukka; Marttinen, Pekka

    2012-01-01

    by employing a recently developed Bayesian approach, BRATNextGen, for detecting recombination on an expanded NGS dataset of the globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clone ST239. RESULTS: The data confirm strong geographical clustering at continental, national and city scales...... that the rapid global dissemination of a single pathogenic bacterial clone results in local variation in measured recombination rates. Possible explanatory variables include the size and time since emergence of each defined sub-population (as determined by the sampling frame), variation in transmission dynamics...

  19. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    RPS16 of eukaryote is a component of the 40S small ribosomal subunit encoded by RPS16 gene and is also a homolog of prokaryotic RPS9. The cDNA and genomic sequence of RPS16 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using reverse transcription-polymerase chain ...

  20. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    Science.gov (United States)

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Purification, characterization and molecular cloning of TGP1, a novel G-DNA binding protein from Tetrahymena thermophila.

    OpenAIRE

    Lu, Q; Schierer, T; Kang, S G; Henderson, E

    1998-01-01

    G-DNA, a polymorphic family of four-stranded DNA structures, has been proposed to play roles in a variety of biological processes including telomere function, meiotic recombination and gene regulation. Here we report the purification and cloning of TGP1, a G-DNA specific binding protein from Tetrahymena thermophila. TGP1 was purified by three-column chromatographies, including a G-DNA affinity column. Two major proteins (approximately 80 and approximately 40 kDa) were present in the most high...

  2. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J

    2008-01-01

    -length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A...

  3. Molecular cloning, sequencing and recombinant expression of a ...

    African Journals Online (AJOL)

    The 4D8 gene was recently discovered in Ixodes scapularis and identified as a tick protective antigen. Vaccination using recombinant 4D8 from I. scapularis showed a significant reduction against I. scapularis tick infestation in a sheep model. This protein is expressed in both salivary gland and gut tissues, and is thought to ...

  4. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    Jane

    2011-06-13

    Jun 13, 2011 ... recombinant glucoamylase with optimal pH of 4.5, and temperature of 60°C, showed good hydrolytic ... from Dr. James Swezey, collection manager of ARS culture collection (NRRL). ... genes and was grown at 37°C in LB medium containing 1.0% (w/v) tryptone ..... However, the enzyme was inactivated.

  5. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  6. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik

    2013-01-01

    Background Infectious cDNA clones are a prerequisite for directed genetic manipulation of RNA viruses. Here, a strategy to facilitate manipulation and rescue of classical swine fever viruses (CSFVs) from full-length cDNAs present within bacterial artificial chromosomes (BACs) is described....... This strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable...

  7. Protein expression of Myt272-3 recombinant clone and in silico ...

    African Journals Online (AJOL)

    Purpose: To investigate the expression of Myt272-3 recombinant protein and also to predict a possible protein vaccine candidate against Mycobacterium tuberculosis. Methods: Myt272-3 protein was expressed in pET30a+-Myt272-3 clone. The purity of the protein was determined using Dynabeads® His-Tag Isolation ...

  8. RPA homologs and ssDNA processing during meiotic recombination.

    Science.gov (United States)

    Ribeiro, Jonathan; Abby, Emilie; Livera, Gabriel; Martini, Emmanuelle

    2016-06-01

    Meiotic homologous recombination is a specialized process that involves homologous chromosome pairing and strand exchange to guarantee proper chromosome segregation and genetic diversity. The formation and repair of DNA double-strand breaks (DSBs) during meiotic recombination differs from those during mitotic recombination in that the homologous chromosome rather than the sister chromatid is the preferred repair template. The processing of single-stranded DNA (ssDNA) formed on intermediate recombination structures is central to driving the specific outcomes of DSB repair during meiosis. Replication protein A (RPA) is the main ssDNA-binding protein complex involved in DNA metabolism. However, the existence of RPA orthologs in plants and the recent discovery of meiosis specific with OB domains (MEIOB), a widely conserved meiosis-specific RPA1 paralog, strongly suggest that multiple RPA complexes evolved and specialized to subdivide their roles during DNA metabolism. Here we review ssDNA formation and maturation during mitotic and meiotic recombination underlying the meiotic specific features. We describe and discuss the existence and properties of MEIOB and multiple RPA subunits in plants and highlight how they can provide meiosis-specific fates to ssDNA processing during homologous recombination. Understanding the functions of these RPA homologs and how they interact with the canonical RPA subunits is of major interest in the fields of meiosis and DNA repair.

  9. Functional cDNA expression cloning: Pushing it to the limit

    Science.gov (United States)

    OKAYAMA, Hiroto

    2012-01-01

    The 1970s and the following decade are the era of the birth and early development of recombinant DNA technologies, which have entirely revolutionized the modern life science by providing tools that enable us to know the structures of genes and genomes and to dissect their components and understand their functions at the molecular and submolecular levels. One major objective of the life sciences is to achieve molecular and chemical understandings of the functions of genes and their encoded proteins, which are responsible for the manifestation of all biological phenomena in organisms. In the early 1980s, I developed, together with Paul Berg, a new technique that enables the cloning of full-length complementary DNAs (cDNAs) on the basis of their functional expression in a given cell of interest. I review the development, application and future implications in the life sciences of this gene-cloning technique. PMID:22450538

  10. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed

  11. Cloning of the DNA repair gene, uvsF, by transformation of Aspergillus nidulans.

    Science.gov (United States)

    Oza, K; Käfer, E

    1990-06-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr+ uvs+ cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when BglII-digested genomic DNA was probed with the vector. Both types produced uvsF- recombinants without vector sequences in homozygous crosses, but only those with the larger band also produced haploid uvs+ progeny. Using BglII-digested genomic DNA to transform Escherichia coli, plasmids of the corresponding two sizes could be rescued. Their inserts had a short internal region in common, giving evidence of rearrangement(s). In secondary transformation of uvsF mutants, only the plasmids with the larger insert showed complementation and these were used to screen Aspergillus libraries. Three types of genomic and two overlapping cDNA clones were identified. The cDNAs hybridized not only to each other, but also to the common region of the rescued plasmids. Therefore, cDNA subclones were used to map the putative uvsF sequences to a short segment in one genomic clone. In Northerns, the complementing large plasmid hybridized to three mRNAs, while the cDNA subclone identified one of these as the probable uvsF message.

  12. Development of a recombinant DNA assay system for the detection of genetic change in astronauts' cells

    International Nuclear Information System (INIS)

    Atchley, S.V.; Chen, D.J.C.; Strniste, G.F.; Walters, R.A.; Moyzis, R.K.

    1984-01-01

    We are developing a new recombinant DNA system for the detection and measurement of genetic change in humans caused by exposure to low level ionizing radiation. A unique feature of the method is the use of cloned repetitive DNA probes to assay human DNA for structural changes during or after irradiation. Repetitive sequences exist in different families. Collectively they constitute over 25% of the DNA in a human cell. Repeat families have between 10 and 500,000 members. We have constructed repetitive DNA sequence libraries using recombinant DNA techniques. From these libraries we have isolated and characterized individual repeats comprising 75 to 90% of the mass of human repetitive DNA. Repeats used in our assay system exist in tandem arrays in the genome. Perturbation of these sequences in a cell, followed by detection with a repeat probe, produces a new, multimeric ''ladder'' pattern on an autoradiogram. The repeat probe used in our initial study is complementary to 1% of human DNA. Therefore, the sensitivity of this method is several orders of magnitude better than existing assays. Preliminary evidence from human skin cells exposed to acute, low-dose x-ray treatments indicates that DNA is affected at a dose as low as 5R. The radiation doses used in this system are well within the range of doses received by astronauts during spaceflight missions. Due to its small material requirements, this technique could easily be adapted for use in space. 16 refs., 1 fig

  13. Brain cDNA clone for human cholinesterase

    International Nuclear Information System (INIS)

    McTiernan, C.; Adkins, S.; Chatonnet, A.; Vaughan, T.A.; Bartels, C.F.; Kott, M.; Rosenberry, T.L.; La Du, B.N.; Lockridge, O.

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase

  14. Infectious Maize rayado fino virus from Cloned cDNA.

    Science.gov (United States)

    Edwards, Michael C; Weiland, John J; Todd, Jane; Stewart, Lucy R

    2015-06-01

    A full-length cDNA clone was produced from a U.S. isolate of Maize rayado fino virus (MRFV), the type member of the genus Marafivirus within the family Tymoviridae. Infectivity of transcripts derived from cDNA clones was demonstrated by infection of maize plants and protoplasts, as well as by transmission via the known leafhopper vectors Dalbulus maidis and Graminella nigrifrons that transmit the virus in a persistent-propagative manner. Infection of maize plants through vascular puncture inoculation of seed with transcript RNA resulted in the induction of fine stipple stripe symptoms typical of those produced by wild-type MRFV and a frequency of infection comparable with that of the wild type. Northern and Western blotting confirmed the production of MRFV-specific RNAs and proteins in infected plants and protoplasts. An unanticipated increase in subgenomic RNA synthesis over levels in infected plants was observed in protoplasts infected with either wild-type or cloned virus. A conserved cleavage site motif previously demonstrated to function in both Oat blue dwarf virus capsid protein and tymoviral nonstructural protein processing was identified near the amino terminus of the MRFV replicase polyprotein, suggesting that cleavage at this site also may occur.

  15. Rogue athletes and recombinant DNA technology: challenges for doping control.

    Science.gov (United States)

    Azzazy, Hassan M E; Mansour, Mai M H

    2007-10-01

    The quest for athletic excellence holds no limit for some athletes, and the advances in recombinant DNA technology have handed these athletes the ultimate doping weapons: recombinant proteins and gene doping. Some detection methods are now available for several recombinant proteins that are commercially available as pharmaceuticals and being abused by dopers. However, researchers are struggling to come up with efficient detection methods in preparation for the imminent threat of gene doping, expected in the 2008 Olympics. This Forum article presents the main detection strategies for recombinant proteins and the forthcoming detection strategies for gene doping as well as the prime analytical challenges facing them.

  16. Selection of new clones of linalool chemotype from genetic recombination in Lippia alba

    Directory of Open Access Journals (Sweden)

    Elcio Rodrigo Rufino

    2012-01-01

    Full Text Available The aromatic and medicinal species Lippia alba is vigorous and rugged native to the South America (Atlantic Rainforest. Because it is an allogamous and self-incompatible species, natural populations have high morphological and chemical variability. This work had as objective to conduct a preliminary screening to identify new promising clones from a novel (recombinant base population of Lippia alba with regard to its agronomic and phytochemical traits, using the linalool oil or chemotype as model. The two superior linalool clones, obtained by collection, were used as controls. Traits evaluated included: dry mass of leaves (DML, oil yield percentage (EOY%, oil production per plant (OP, and linalool percentage (LN%. Forty linalool chemotype clones were evaluated in three experiments, in a random block design with four replicates and four cuttings (clones per plot. Besides means comparisons, multivariate analysis was used in order to aid in the preliminary selection of clones. There were positive correlations from moderate to strong for DML vs. EOY%, OP vs. EOY% and DML vs. OP. Linalool clones superior or similar to both controls were identified for the DML, EOY%, OP, and LN% traits (univariate analyses, aimed at further validating experimentation. Five distinct groups were defined in the cluster analysis (UPGMA, each containing subgroups as well.

  17. Recombinant DNA production of spider silk proteins.

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies

    Science.gov (United States)

    Richardson, Ruth E.; Suzuki, Yo

    2015-01-01

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work. PMID:26348330

  19. Exponential megapriming PCR (EMP cloning--seamless DNA insertion into any target plasmid without sequence constraints.

    Directory of Open Access Journals (Sweden)

    Alexander Ulrich

    Full Text Available We present a fast, reliable and inexpensive restriction-free cloning method for seamless DNA insertion into any plasmid without sequence limitation. Exponential megapriming PCR (EMP cloning requires two consecutive PCR steps and can be carried out in one day. We show that EMP cloning has a higher efficiency than restriction-free (RF cloning, especially for long inserts above 2.5 kb. EMP further enables simultaneous cloning of multiple inserts.

  20. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase

    Directory of Open Access Journals (Sweden)

    Garg Neha

    2012-10-01

    Full Text Available Abstract Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac. Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was

  1. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase.

    Science.gov (United States)

    Garg, Neha; Bieler, Nora; Kenzom, Tenzin; Chhabra, Meenu; Ansorge-Schumacher, Marion; Mishra, Saroj

    2012-10-23

    Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg(-1) protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Laccase of C. bulleri was successfully produced extra-cellularly to a high level of 7200

  2. A Simplified Method for Gene Knockout and Direct Screening of Recombinant Clones for Application in Paenibacillus polymyxa.

    Directory of Open Access Journals (Sweden)

    Seong-Bin Kim

    Full Text Available Paenibacillus polymyxa is a bacterium widely used in agriculture, industry, and environmental remediation because it has multiple functions including nitrogen fixation and produces various biologically active compounds. Among these compounds are the antibiotics polymyxins, and the bacterium is currently being reassessed for medical application. However, a lack of genetic tools for manipulation of P. polymyxa has limited our understanding of the biosynthesis of these compounds.To facilitate an understanding of the genetic determinants of the bacterium, we have developed a system for marker exchange mutagenesis directly on competent cells of P. polymyxa under conditions where homologous recombination is enhanced by denaturation of the suicide plasmid DNA. To test this system, we targeted P. polymyxa α-and β-amylase genes for disruption. Chloramphenicol or erythromycin resistance genes were inserted into the suicide plasmid pGEM7Z-f+ (Promega. To mediate homologous recombination and replacement of the targeted genes with the antibiotic resistance genes nucleotide sequences of the α-and β-amylase genes were cloned into the plasmid flanking the antibiotic resistance genes.We have created a simple system for targeted gene deletion in P. polymyxa E681. We propose that P. polymyxa isogenic mutants could be developed using this system of marker exchange mutagenesis. α-and β-amylase genes provide a useful tool for direct recombinant screening in P. polymyxa.

  3. Molecular cloning and restriction analysis of EcoRI-fragments of Vicia faba rDNA

    International Nuclear Information System (INIS)

    Yakura, Kimitaka; Tanifuji, Shigeyuki.

    1983-01-01

    EcoRI-fragments of Vicia faba rDNA were cloned in plasmid pBR325. Southern blot hybridization of BamHI-digests of these cloned plasmids and Vicia genomic DNA led to the determination of relative positions of BamHI sites in the rDNA and the physical map that had been tentatively made is corrected. (author)

  4. Molecular cloning of growth hormone encoding cDNA of Indian

    Indian Academy of Sciences (India)

    A modified rapid amplification of cDNA ends (RACE) strategy has been developed for cloning highly conserved cDNA sequences. Using this modified method, the growth hormone (GH) encoding cDNA sequences of Labeo rohita, Cirrhina mrigala and Catla catla have been cloned, characterized and overexpressed in ...

  5. Paramyosin from the parasitic mite Sarcoptes scabiei: cDNA cloning and heterologous expression.

    Science.gov (United States)

    Mattsson, J G; Ljunggren, E L; Bergström, K

    2001-05-01

    The burrowing mite Sarcoptes scabiei is the causative agent of the highly contagious disease sarcoptic mange or scabies. So far, there is no in vitro propagation system for S. scabiei available, and mites used for various purposes must be isolated from infected hosts. Lack of parasite-derived material has limited the possibilities to study several aspects of scabies, including pathogenesis and immunity. It has also hampered the development of high performance serological assays. We have now constructed an S. scabiei cDNA expression library with mRNA purified from mites isolated from red foxes. Immunoscreening of the library enabled us to clone a full-length cDNA coding for a 102.5 kDa protein. Sequence similarity searches identified the protein as a paramyosin. Recombinant S. scabiei paramyosin expressed in Escherichia coli was recognized by sera from dogs and swine infected with S. scabiei. We also designed a small paramyosin construct of about 17 kDa that included the N-terminal part, an evolutionary variable part of the helical core, and the C-terminal part of the molecule. The miniaturized protein was efficiently expressed in E. coli and was recognized by sera from immunized rabbits. These data demonstrate that the cDNA library can assist in the isolation of important S. scabiei antigens and that recombinant proteins can be useful for the study of scabies.

  6. Analysis of the mycoplasma genome by recombinant DNA technology

    DEFF Research Database (Denmark)

    Christiansen, C; Frydenberg, Jane; Christiansen, G

    1984-01-01

    A library of DNA fragments from Mycoplasma sp. strain PG50 has been made in the vector pBR325. Analysis in Escherichia coli minicells of randomly picked clones from this library demonstrated that many plasmids can promote synthesis of mycoplasma protein in the E. coli genetic background. Screening....... The DNA sequence of 16S rRNA and the surrounding control regions has been determined....

  7. Cloning of low dose radiation induced gene RIG1 by RACE based on non-cloned cDNA library

    International Nuclear Information System (INIS)

    Luo Ying; Sui Jianli; Tie Yi; Zhang Yuanping; Zhou Pingkun; Sun Zhixian

    2001-01-01

    Objective: To obtain full-length cDNA of radiation induced new gene RIG1 based on its EST fragment. Methods: Based on non-cloned cDNA library, enhanced nested RACE PCR and biotin-avidin labelled probe for magnetic bead purification was used to obtain full-length cDNA of RIG1. Results: About 1 kb of 3' end of RIG1 gene was successfully cloned by this set of methods and cloning of RIG1 5' end is proceeding well. Conclusion: The result is consistent with the design of experiment. This set of protocol is useful for cloning of full-length gene based on EST fragment

  8. Single Molecule Study of DNA Organization and Recombination

    Science.gov (United States)

    Xiao, Botao

    We have studied five projects related to DNA organization and recombination using mainly single molecule force-spectroscopy and statistical tools. First, HU is one of the most abundant DNA-organizing proteins in bacterial chromosomes and participates in gene regulation. We report experiments that study the dependence of DNA condensation by HU on force, salt and HU concentration. A first important result is that at physiological salt levels, HU only bends DNA, resolving a previous paradox of why a chromosome-compacting protein should have a DNA-stiffening function. A second major result is quantitative demonstration of strong dependencies of HU-DNA dissociation on both salt concentration and force. Second, we have used a thermodynamic Maxwell relation to count proteins driven off large DNAs by tension, an effect important to understanding DNA organization. Our results compare well with estimates of numbers of proteins HU and Fis in previous studies. We have also shown that a semi-flexible polymer model describes our HU experimental data well. The force-dependent binding suggests mechano-chemical mechanisms for gene regulation. Third, the elusive role of protein H1 in chromatin has been clarified with purified H1 and Xenopus extracts. We find that H1 compacts DNA by both bending and looping. Addition of H1 enhances chromatin formation and maintains the plasticity of the chromatin. Fourth, the topology and mechanics of DNA twisting are critical to DNA organization and recombination. We have systematically measured DNA extension as a function of linking number density from 0.08 to -2 with holding forces from 0.2 to 2.4 pN. Unlike previous proposals, the DNA extension decreases with negative linking number. Finally, DNA recombination is a dynamic process starting from enzyme-DNA binding. We report that the Int-DBD domain of lambda integrase binds to DNA without compaction at low Int-DBD concentration. High concentration of Int-DBD loops DNA below a threshold force

  9. Aberrant DNA methylation in 5'regions of DNA methyltransferase genes in aborted bovine clones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  10. Isolation of Specific Clones from Nonarrayed BAC Libraries through Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Mikhail Nefedov

    2011-01-01

    Full Text Available We have developed a new approach to screen bacterial artificial chromosome (BAC libraries by recombination selection. To test this method, we constructed an orangutan BAC library using an E. coli strain (DY380 with temperature inducible homologous recombination (HR capability. We amplified one library segment, induced HR at 42∘C to make it recombination proficient, and prepared electrocompetent cells for transformation with a kanamycin cassette to target sequences in the orangutan genome through terminal recombineering homologies. Kanamycin-resistant colonies were tested for the presence of BACs containing the targeted genes by the use of a PCR-assay to confirm the presence of the kanamycin insertion. The results indicate that this is an effective approach for screening clones. The advantage of recombination screening is that it avoids the high costs associated with the preparation, screening, and archival storage of arrayed BAC libraries. In addition, the screening can be conceivably combined with genetic engineering to create knockout and reporter constructs for functional studies.

  11. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Ficarelli, A; Tassi, F; Restivo, F M

    1999-03-01

    We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.

  12. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  13. Cloning

    Science.gov (United States)

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  14. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  15. Determination of radioinduced delay in DNA synthesis in two-garlic-clones cells (Allium Sativum L.)

    International Nuclear Information System (INIS)

    Perez Lezcano, A.; Perez Talavera, S.

    1989-01-01

    To contribute to tech improvement of the use of ionizing radiations as an auxiliary tool in the fitoimprovement, dose-effect curves for the 'Martinez' and 'Sancti Spiritus-3' clones were stablished by using as effect the delay induced by radiations in DNA synthesis determined by the 'Martinez' clone which induces a delay of 50% in reference to the control is approximately 11 Gy, while the dose value for the 'Sancti Spiritus-3' clone is 18 Gy, thus the 'Martinez' clones has a higher sensitivity to radiations than the other clone, therefore it coincides with what we found for these clones other indexes are used as radiosensitivity criteria

  16. DNA damage in Populus tremuloides clones exposed to elevated O3

    International Nuclear Information System (INIS)

    Tai, Helen H.; Percy, Kevin E.; Karnosky, David F.

    2010-01-01

    The effects of elevated concentrations of atmospheric tropospheric ozone (O 3 ) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO 2 ) were examined. Growing season mean hourly O 3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O 3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O 3 concentrations were 79 and 89 ppb, respectively. Elevated CO 2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O 3 and CO 2 in combination with O 3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O 3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O 3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O 3 tolerance or sensitivity. - Ozone tolerant clones and sensitive Populus tremuloides clones show differences in DNA damage and repair.

  17. Choreography of recombination proteins during the DNA damage response

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2009-01-01

    Genome integrity is frequently challenged by DNA lesions from both endogenous and exogenous sources. A single DNA double-strand break (DSB) is lethal if unrepaired and may lead to loss of heterozygosity, mutations, deletions, genomic rearrangements and chromosome loss if repaired improperly. Such...... research. Here we review the cell biological response to DSBs in mitotically growing cells with an emphasis on homologous recombination pathways in yeast Saccharomyces cerevisiae and in mammalian cells....

  18. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms.

    Science.gov (United States)

    Ryzhikov, Mikhail; Gupta, Richa; Glickman, Michael; Korolev, Sergey

    2014-10-17

    Recombination mediator proteins (RMPs) are important for genome stability in all organisms. Several RMPs support two alternative reactions: initiation of homologous recombination and DNA annealing. We examined mechanisms of RMPs in both reactions with Mycobacterium smegmatis RecO (MsRecO) and demonstrated that MsRecO interacts with ssDNA by two distinct mechanisms. Zinc stimulates MsRecO binding to ssDNA during annealing, whereas the recombination function is zinc-independent and is regulated by interaction with MsRecR. Thus, different structural motifs or conformations of MsRecO are responsible for interaction with ssDNA during annealing and recombination. Neither annealing nor recombinase loading depends on MsRecO interaction with the conserved C-terminal tail of single-stranded (ss) DNA-binding protein (SSB), which is known to bind Escherichia coli RecO. However, similarly to E. coli proteins, MsRecO and MsRecOR do not dismiss SSB from ssDNA, suggesting that RMPs form a complex with SSB-ssDNA even in the absence of binding to the major protein interaction motif. We propose that alternative conformations of such complexes define the mechanism by which RMPs initiate the repair of stalled replication and support two different functions during recombinational repair of DNA breaks. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  20. Rapid production of functionalized recombinant proteins: marrying ligation independent cloning and in vitro protein ligation.

    Science.gov (United States)

    Kushnir, Susanna; Marsac, Yoann; Breitling, Reinhard; Granovsky, Igor; Brok-Volchanskaya, Vera; Goody, Roger S; Becker, Christian F W; Alexandrov, Kirill

    2006-01-01

    Functional genomics and proteomics have been very active fields since the sequencing of several genomes was completed. To assign a physiological role to the newly discovered coding genes with unknown function, new generic methods for protein production, purification, and targeted functionalization are needed. This work presents a new vector, pCYSLIC, that allows rapid generation of Escherichia coli expression constructs via ligation-independent cloning (LIC). The vector is designed to facilitate protein purification by either Ni-NTA or GSH affinity chromatography. Subsequent proteolytic removal of affinity tags liberates an N-terminal cysteine residue that is then used for covalent modification of the target protein with different biophysical probes via protein ligation. The described system has been tested on 36 mammalian Rab GTPases, and it was demonstrated that recombinant GTPases produced with pCYSLIC could be efficiently modified with fluorescein or biotin in vitro. Finally, LIC was compared with the recently developed In-Fusion cloning method, and it was demonstrated that In-Fusion provides superior flexibility in choice of expression vector. By the application of In-Fusion cloning Cys-Rab6A GTPase with an N-terminal cysteine residue was generated employing unmodified pET30a vector and TVMV protease.

  1. Cloning of a Recombinant Plasmid Encoding Thiol-Specific Antioxidant Antigen (TSA) Gene of Leishmania majorand Expression in the Chinese Hamster Ovary Cell Line.

    Science.gov (United States)

    Fatemeh, Ghaffarifar; Fatemeh, Tabatabaie; Zohreh, Sharifi; Abdolhosein, Dalimiasl; Mohammad Zahir, Hassan; Mehdi, Mahdavi

    2012-01-01

    TSA (thiol-specific antioxidant antigen) is the immune-dominant antigen of Leishmania major and is considered to be the most promising candidate molecule for a recombinant or DNA vaccine against leishmaniasis. The aim of the present work was to express a plasmid containing the TSA gene in eukaryotic cells. Genomic DNA was extracted, and the TSA gene was amplified by polymerase chain reaction (PCR). The PCR product was cloned into the pTZ57R/T vector, followed by subcloning into the eukaryotic expression vector pcDNA3 (EcoRI and HindIII sites). The recombinant plasmid was characterised by restriction digest and PCR. Eukaryotic Chinese hamster ovary cells were transfected with the plasmid containing the TSA gene. Expression of the L. major TSA gene was confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting. The plasmid containing the TSA gene was successfully expressed, as demonstrated by a band of 22.1 kDa on Western blots. The plasmid containing the TSA gene can be expressed in a eukaryotic cell line. Thus, the recombinant plasmid may potentially be used as a DNA vaccine in animal models.

  2. DNA repair and its relation to recombination-deficient and other mutations in Bacillus subtilis

    International Nuclear Information System (INIS)

    Ganesan, A.T.

    1975-01-01

    DNA repair processes operating in Bacillus subtilis are similar to other transformable bacterial systems. Radiation-sensitive, recombination-deficient mutants are blocked in distinct steps leading to recombination. DNA polymerase I is essential for the repair of x-ray-induced damage to DNA but not for recombination

  3. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs

    Directory of Open Access Journals (Sweden)

    Gong Shiaochin

    2009-03-01

    Full Text Available Abstract Background Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. Results We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1 subclone genes of interest into BAC linking vectors, (2 insert desired reporter genes into respective genes and (3 link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. Conclusion The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  4. A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs.

    Science.gov (United States)

    Maye, Peter; Stover, Mary Louise; Liu, Yaling; Rowe, David W; Gong, Shiaochin; Lichtler, Alexander C

    2009-03-13

    Reporter gene mice are valuable animal models for biological research providing a gene expression readout that can contribute to cellular characterization within the context of a developmental process. With the advancement of bacterial recombination techniques to engineer reporter gene constructs from BAC genomic clones and the generation of optically distinguishable fluorescent protein reporter genes, there is an unprecedented capability to engineer more informative transgenic reporter mouse models relative to what has been traditionally available. We demonstrate here our first effort on the development of a three stage bacterial recombination strategy to physically link multiple genes together with their respective fluorescent protein (FP) reporters in one DNA fragment. This strategy uses bacterial recombination techniques to: (1) subclone genes of interest into BAC linking vectors, (2) insert desired reporter genes into respective genes and (3) link different gene-reporters together. As proof of concept, we have generated a single DNA fragment containing the genes Trap, Dmp1, and Ibsp driving the expression of ECFP, mCherry, and Topaz FP reporter genes, respectively. Using this DNA construct, we have successfully generated transgenic reporter mice that retain two to three gene readouts. The three stage methodology to link multiple genes with their respective fluorescent protein reporter works with reasonable efficiency. Moreover, gene linkage allows for their common chromosomal integration into a single locus. However, the testing of this multi-reporter DNA construct by transgenesis does suggest that the linkage of two different genes together, despite their large size, can still create a positional effect. We believe that gene choice, genomic DNA fragment size and the presence of endogenous insulator elements are critical variables.

  5. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

    Directory of Open Access Journals (Sweden)

    Nicole A. Najor

    2016-12-01

    Full Text Available In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.

  6. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex

    DEFF Research Database (Denmark)

    Géli, Vincent; Lisby, Michael

    2015-01-01

    and colleagues shows that also physiological threats to genome integrity such as DNA secondary structure-forming triplet repeat sequences relocalize to the NPC during DNA replication. Mutants that fail to reposition the triplet repeat locus to the NPC cause repeat instability. Here, we review the types of DNA...... lesions that relocalize to the NPC, the putative mechanisms of relocalization, and the types of recombinational repair that are stimulated by the NPC, and present a model for NPC-facilitated repair....

  7. Jeremy Rifkin challenges recombinant DNA research: A rhetoric of heresy

    Energy Technology Data Exchange (ETDEWEB)

    Futrell, W.M.

    1992-01-01

    One significant issue to come before the public in recent years is recombinant DNA research or genetic engineering and its applications. An important spokesman on this issue is Jeremy Rifkin. Rifkin is of rhetorical interest because of his strategies to sustain the dialogue and define the parameters in which it occurs. This dissertation analyzes a broad range of Rifkin's rhetorical artifacts and those of scientists engaged in recombinant DNA research. They are examined against criteria developed to identify and understand heresy. The five areas of analysis are: the nearness/remoteness phenomenon, the social construction of heresy, the social consequences of heresy, the doctrinal consequences of heresy, and the heresy-hunt ritual. The first two criteria focus on the rhetorical strategies of the heretic. The last three concentrate on the rhetorical strategies of the defenders of the institutional orthodoxy. This dissertation examines the rhetorical strategies of a heretical challenge to the scientific establishment and the consequences of that challenge. This dissertation also analyzes the rhetorical strategies employed by the defenders of the scientific orthodoxy. Although an understanding of the rhetorical strategies employed on both sides of this conflict is important, the implications for the role of rhetoric in highly controversial issues such as recombinant DNA are even more critical.

  8. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  9. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  10. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  11. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II isozymes

    International Nuclear Information System (INIS)

    Chung, T.D.Y.; Drake, F.H.; Tan, K.B.; Per, S.R.; Crooke, S.T.; Mirabelli, C.K.

    1989-01-01

    Several DNA topoisomerase II partial cDNA clones obtained from a human Raji-HN2 cDNA library were sequenced and two classes of nucleotide sequences were found. One member of the first class, SP1, was identical to an internal fragment of human HeLa cell Topo II cDNA described earlier. A member of the second class, SP11, shared extensive nucleotide (75%) and predicted peptide (92%) sequence similarities with the first two-thirds of HeLa Topo II. Each class of cDNAs hybridized to unique, nonoverlapping restriction enzyme fragments of genomic DNA from several human cell lines. Synthetic 24-mer oligonucleotide probes specific for each cDNA class hybridized to 6.5-kilobase mRNAs; furthermore, hybridization of probe specific for one class was not blocked by probe specific for the other. Antibodies raised against a synthetic SP1-encoded dodecapeptide specifically recognized the 170-kDa form of Topo II, while antibodies raised against the corresponding SP11-encoded dodecapeptide, or a second unique SP11-encoded tridecapeptide, selectively recognized the 180-kDa form of Topo II. These data provide genetic and immunochemical evidence for two Topo II isozymes

  12. Cold Spring Harbor symposia on quantitative biology: Volume 49, Recombination at the DNA level

    International Nuclear Information System (INIS)

    1984-01-01

    This volume contains full papers prepared by the participants to the 1984 Cold Springs Harbor Symposia on Quantitative Biology. This year's theme is entitled Recombination at the DNA level. The volume consists of 93 articles grouped into subject areas entitled chromosome mechanics, yeast systems, mammalian homologous recombination, transposons, mu, plant transposons/T4 recombination, topoisomerase, resolvase and gyrase, Escherichia coli general recombination, RecA, repair, leukaryotic enzymes, integration and excision of bacteriophage, site-specific recombination, and recombination in vitro

  13. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    International Nuclear Information System (INIS)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-01-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, 32 P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV

  14. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  15. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    Science.gov (United States)

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  16. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    International Nuclear Information System (INIS)

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M.

    1989-01-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K m , low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus

  17. Recombinant methods for screening human DNA excision repair proficiency

    International Nuclear Information System (INIS)

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period

  18. Sequence of a cloned cDNA encoding human ribosomal protein S11

    Energy Technology Data Exchange (ETDEWEB)

    Lott, J B; Mackie, G A

    1988-02-11

    The authors have isolated a cloned cDNA that encodes human ribosomal protein (rp) S11 by screening a human fibroblast cDNA library with a labelled 204 bp DNA fragment encompassing residues 212-416 of pRS11, a rat rp Sll cDNA clone. The human rp S11 cloned cDNA consists of 15 residues of the 5' leader, the entire coding sequence and all 51 residues of the 3' untranslated region. The predicted amino acid sequence of 158 residues is identical to rat rpS11. The nucleotide sequence in the coding region differs, however, from that in rat in the first position in two codons and in the third position in 44 codons.

  19. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna

    2015-01-01

    Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that pro......Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway...... that produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...... facilitating the advanced engineering of robust cell factories....

  20. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    OpenAIRE

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The d...

  1. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Science.gov (United States)

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  2. Software-Supported USER Cloning Strategies for Site-Directed Mutagenesis and DNA Assembly

    DEFF Research Database (Denmark)

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen

    2015-01-01

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER...... cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein...... (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at ....

  3. Nuclear transfer to prevent mitochondrial DNA disorders: revisiting the debate on reproductive cloning.

    Science.gov (United States)

    Bredenoord, A L; Dondorp, W; Pennings, G; De Wert, G

    2011-02-01

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount to reproductive cloning, one theoretical variant, blastomere transfer does. This seems the most challenging both technically and ethically. It is prohibited by many jurisdictions and also the scientific community seems to avoid it. Nevertheless, this paper examines the moral acceptability of blastomere transfer as a method to prevent mtDNA disorders. The reason for doing so is that most objections against reproductive cloning refer to reproductive adult cloning, while blastomere transfer would amount to reproductive embryo cloning. After clarifying this conceptual difference, this paper examines whether the main non-safety objections brought forward against reproductive cloning also apply in the context of blastomere transfer. The conclusion is that if this variant were to become safe and effective, dismissing it because it would involve reproductive cloning is unjustified. Nevertheless, as it may lead to more complex ethical appraisals than the other variants, researchers should initially focus on the development of the other types of nuclear transfer to prevent mtDNA disorders. Copyright © 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  4. Human uroporphyrinogen III synthase: Molecular cloning, nucleotide sequence, and expression of a full-length cDNA

    International Nuclear Information System (INIS)

    Tsai, Shihfeng; Bishop, D.F.; Desnick, R.J.

    1988-01-01

    Uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway, is responsible for conversion of the linear tetrapyrrole, hydroxymethylbilane, to the cyclic tetrapyrrole, uroporphyrinogen III. The deficient activity of URO-synthase is the enzymatic defect in the autosomal recessive disorder congenital erythropoietic porphyria. To facilitate the isolation of a full-length cDNA for human URO-synthase, the human erythrocyte enzyme was purified to homogeneity and 81 nonoverlapping amino acids were determined by microsequencing the N terminus and four tryptic peptides. Two synthetic oligonucleotide mixtures were used to screen 1.2 x 10 6 recombinants from a human adult liver cDNA library. Eight clones were positive with both oligonucleotide mixtures. Of these, dideoxy sequencing of the 1.3 kilobase insert from clone pUROS-2 revealed 5' and 3' untranslated sequences of 196 and 284 base pairs, respectively, and an open reading frame of 798 base pairs encoding a protein of 265 amino acids with a predicted molecular mass of 28,607 Da. The isolation and expression of this full-length cDNA for human URO-synthase should facilitate studies of the structure, organization, and chromosomal localization of this heme biosynthetic gene as well as the characterization of the molecular lesions causing congenital erythropoietic porphyria

  5. Construction of C35 gene bait recombinants and T47D cell cDNA library.

    Science.gov (United States)

    Yin, Kun; Xu, Chao; Zhao, Gui-Hua; Liu, Ye; Xiao, Ting; Zhu, Song; Yan, Ge

    2017-11-20

    C35 is a novel tumor biomarker associated with metastasis progression. To investigate the interaction factors of C35 in its high expressed breast cancer cell lines, we constructed bait recombinant plasmids of C35 gene and T47D cell cDNA library for yeast two-hybrid screening. Full length C35 sequences were subcloned using RT-PCR from cDNA template extracted from T47D cells. Based on functional domain analysis, the full-length C35 1-348bp was also truncated into two fragments C351-153bp and C35154-348bp to avoid auto-activation. The three kinds of C35 genes were successfully amplified and inserted into pGBKT7 to construct bait recombinant plasmids pGBKT7-C351-348bp, pGBKT7-C351-153bp and pGBKT7-C35154-348bp, then transformed into Y187 yeast cells by the lithium acetate method. Auto-activation and toxicity of C35 baits were detected using nutritional deficient medium and X-α-Gal assays. The T47D cell ds cDNA was generated by SMART TM technology and the library was constructed using in vivo recombination-mediated cloning in the AH109 yeast strain using a pGADT7-Rec plasmid. The transformed Y187/pGBKT7-C351-348bp line was intensively inhibited while the truncated Y187/pGBKT7-C35 lines had no auto-activation and toxicity in yeast cells. The titer of established cDNA library was 2 × 10 7 pfu/mL with high transformation efficiency of 1.4 × 10 6 , and the insert size of ds cDNA was distributed homogeneously between 0.5-2.0 kb. Our research generated a T47D cell cDNA library with high titer, and the constructed two C35 "baits" contained a respective functional immunoreceptor tyrosine based activation motif (ITAM) and the conserved last four amino acids Cys-Ile-Leu-Val (CILV) motif, and therefore laid a foundation for screening the C35 interaction factors in a BC cell line.

  6. Analysis of a cDNA clone expressing a human autoimmune antigen: full-length sequence of the U2 small nuclear RNA-associated B antigen

    International Nuclear Information System (INIS)

    Habets, W.J.; Sillekens, P.T.G.; Hoet, M.H.; Schalken, J.A.; Roebroek, A.J.M.; Leunissen, J.A.M.; Van de Ven, W.J.M.; Van Venrooij, W.J.

    1987-01-01

    A U2 small nuclear RNA-associated protein, designated B'', was recently identified as the target antigen for autoimmune sera from certain patients with systemic lupus erythematosus and other rheumatic diseases. Such antibodies enabled them to isolate cDNA clone λHB''-1 from a phage λgt11 expression library. This clone appeared to code for the B'' protein as established by in vitro translation of hybrid-selected mRNA. The identity of clone λHB''-1 was further confirmed by partial peptide mapping and analysis of the reactivity of the recombinant antigen with monospecific and monoclonal antibodies. Analysis of the nucleotide sequence of the 1015-base-pair cDNA insert of clone λHB''-1 revealed a large open reading frame of 800 nucleotides containing the coding sequence for a polypeptide of 25,457 daltons. In vitro transcription of the λHB''-1 cDNA insert and subsequent translation resulted in a protein product with the molecular size of the B'' protein. These data demonstrate that clone λHB''-1 contains the complete coding sequence of this antigen. The deduced polypeptide sequence contains three very hydrophilic regions that might constitute RNA binding sites and/or antigenic determinants. These findings might have implications both for the understanding of the pathogenesis of rheumatic diseases as well as for the elucidation of the biological function of autoimmune antigens

  7. Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum.

    Science.gov (United States)

    Ribeiro Corrêa, Thamy Lívia; de Queiroz, Marisa Vieira; de Araújo, Elza Fernandes

    2015-01-01

    The phy gene, which encodes a phytase in Penicillium chrysogenum CCT 1273, was cloned into the vector pAN-52-1-phy and the resulting plasmid was used for the cotransformation of Penicillium griseoroseum PG63 protoplasts. Among the 91 transformants obtained, 23 were cotransformants. From there, the phytase activity of these 23 transformants was evaluated and P. griseoroseum T73 showed the highest. The recombinant strain P. griseoroseum T73 contained the phy gene integrated in at least three sites of the genome and showed a 5.1-fold increase in phytase activity in comparison to the host strain (from 0.56 ± 0.2 to 2.86 ± 0.4 U μg protein(-1)). The deduced PHY protein has 483 amino acids; an isoelectric point (pI) higher than that reported for phytases from filamentous fungi (7.6); higher activity at pH 2.0 (73%), pH 5.0 (100%) and 50 °C; and is stable at pH values 3.0-8.0 and temperatures 70-80 °C. PHY produced by the recombinant strain P. griseoroseum T73 was stable after four weeks of storage at -20, 8 and 25 °C and was effective in releasing Pi, especially from soybeans. The data presented here show that P. griseoroseum is a successful host for expression of heterologous protein and suggest the potential use of PHY in the animal nutrition industry. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Identification of cDNA clones expressing immunodiagnostic antigens from Trichinella spiralis

    International Nuclear Information System (INIS)

    Zarlenga, D.; Gamble, H.R.

    1987-01-01

    A cDNA expression library was built in lambda gt11 phage using poly A mRNA isolated from Trichinella spiralis muscle stage larvae. This library was screened with rabbit antibodies to parasite excretory-secretory (ES) products and greater than 180 clones were isolated. Thirteen clones producing highly immunogenic protein antigens were plaque purified and rescreened with pig antisera to T.spiralis, Trichuris suis or Ascaris suum to identify clones producing epitopes specific to T.spiralis ES products, only. Two clones, TsAc-2 and TsAc-8, which displayed strong interactions with pig antisera to T. spiralis were lysogenized in E. coli Y1089 and the protein extracted. Western blots of the crude fusion proteins revealed molecular weights of 133 kD and 129 kD, respectively. Northern blot analysis of total RNA with 32 P labelled cDNA:lambda gt11 probes indicated single RNA transcripts for each clone with molecular sizes corresponding to 800-850 nucleotides. dscDNA inserts were estimated by southern blot analysis to be 500 bp and 340 bp, respectively, with no cross-hybridization observed between the cloned sequences. Dot blots using pig sera to screen crude fusion protein preparations, total bacterial protein (negative controls) and crude worm extract or ES products from T.spiralis, T.suis and A.suum (positive controls) corroborated the specificity and sensitivity of these clones as potential diagnostic antigens for swine trichinellosis

  9. Cloning, expression and purification of recombinant streptokinase: partial characterization of the protein expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    L. Avilán

    1997-12-01

    Full Text Available We cloned the streptokinase (STK gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a Km = 0.70 µM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing

  10. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    Science.gov (United States)

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  11. AFEAP cloning: a precise and efficient method for large DNA sequence assembly.

    Science.gov (United States)

    Zeng, Fanli; Zang, Jinping; Zhang, Suhua; Hao, Zhimin; Dong, Jingao; Lin, Yibin

    2017-11-14

    Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.

  12. Cloning of a cDNA encoding a surface antigen of Schistosoma mansoni schistosomula recognized by sera of vassinated mice

    International Nuclear Information System (INIS)

    Dalton, J.P.; Tom, T.D.; Strand, M.

    1987-01-01

    Spleen cells of mice vaccinated with radiation-attenuated Schistosoma mansoni cercariae were used to produce monoclonal antibodies directed against newly transformed schistosomular surface antigens. One of these monoclonal antibodies recognized a polypeptide of 18 kDa. Binding was measured by radioimmunoassay. This glycoprotein was purified by monoclonal antibody immunoaffinity chromatography and a polyclonal antiserum was prepared against it. Immunofluorescence assays showed that the polyclonal antiserum bound to the surface of newly transformed schistosomula and lung-stage organisms but not to the surface of liver-stage and adult worms. Using this polyclonal antiserum we isolated recombinant clones from an adult worm cDNA expression library constructed in λgt11. Clone 654.2 contained an insert of 0.52 kilobase and hybridized to a 1.2-kilobase mRNA species from adult worms. Most importantly, clone 654.2 produced a fusion protein of 125 kDa that was reactive with sera of vaccinated mice that are capable of transferring resistance. This result encourages future vaccination trials with the fusion protein

  13. Molecular cloning and characterization of a cDNA encoding ...

    African Journals Online (AJOL)

    enoh

    2012-03-29

    Mar 29, 2012 ... Cloning and Functional. Expression of Cycloartenol Synthases from Mangrove Species. Rhizophora stylosa Griff. And Kandelia candel (L.) Druce. Biosci. Biotechnol. Biochem. 71(7): 1788-1792. Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39:783-791 ...

  14. Cloning and characterization of cDNA encoding xyloglucan ...

    African Journals Online (AJOL)

    Evolutionary studies using phylogenetic tree indicated its grouping with XETs from maize (with >95% bootstrap support), barley, rice, etc. This is the first report on cloning and characterization of an XET (PgXET1) from pearl millet, an important dual-purpose crop. Key words: Xyloglucan endotransglucosylase, Pennisetum ...

  15. cDNA cloning, structural analysis, SNP detection and tissue ...

    Indian Academy of Sciences (India)

    THOMAS NAICY

    detection and tissue expression profile of the IGF1 gene in Malabari and Attappady Black goats of India. J. Genet. ... Keywords. gene cloning; gene expression; goat; insulin-like growth factor 1; mRNA; single-nucleotide ..... cle tenderness (Koohmaraie et al. .... growth factor (IGF) system in the bovine oviduct at oestrus and.

  16. Cloning, sequencing, and expression of cDNA for human β-glucuronidase

    International Nuclear Information System (INIS)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-01-01

    The authors report here the cDNA sequence for human placental β-glucuronidase (β-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH 2 -terminal amino acid sequence determined for human spleen β-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human β-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human β-glucuronidase, demonstrate the existence of two populations of mRNA for β-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length

  17. Cloning of cDNA encoding steroid 11β-hydroxylase (P450c11)

    International Nuclear Information System (INIS)

    Chua, S.C.; Szabo, P.; Vitek, A.; Grzeschik, K.H.; John, M.; White, P.C.

    1987-01-01

    The authors have isolated bovine and human adrenal cDNA clones encoding the adrenal cytochrome P-450 specific for 11β-hydroxylation (P450c11). A bovine adrenal cDNA library constructed in the bacteriophage λ vector gt10 was probed with a previously isolated cDNA clone corresponding to part of the 3' untranslated region of the 4.2-kilobase (kb) mRNA encoding P450c11. Several clones with 3.2-kb cDNA inserts were isolated. Sequence analysis showed that they overlapped the original probe by 300 base pairs (bp). Combined cDNA and RNA sequence data demonstrated a continuous open reading frame of 1509 bases. P450c11 is predicted to contain 479 amino acid residues in the mature protein in addition to a 24-residue amino-terminal mitochondrial signal sequence. A bovine clone was used to isolate a homologous clone with a 3.5-kb insert from a human adrenal cDNA library. A region of 1100 bp was 81% homologous to 769 bp of the coding sequence of the bovine cDNA except for a 400-bp segment presumed to be an unprocessed intron. Hybridization of the human cDNA to DNA from a panel of human-rodent somatic cell hybrid lines and in situ hybridization to metaphase spreads of human chromosomes localized the gene to the middle of the long arm of chromosome 8. These data should be useful in developing reagents for heterozygote detection and prenatal diagnosis of 11β-hydroxylase deficiency, the second most frequent cause of congenital adrenal hyperplasia

  18. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats

    Directory of Open Access Journals (Sweden)

    Daniël O. Warmerdam

    2016-03-01

    Full Text Available rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5 as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability.

  19. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Matthew G Cottingham

    2008-02-01

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  20. Successful development of recombinant DNA-derived pharmaceuticals.

    Science.gov (United States)

    Werner, R G; Pommer, C H

    1990-11-01

    Successful development of recombinant DNA-derived pharmaceuticals, a new class of therapeutic agents, is determined by a variety of factors affecting the selection and positioning of the compound under development. For an efficient development it is of utmost importance that the mechanism of action of the compound selected be understood on a molecular level. The compound's potential therapeutical profile and a strong patent position are key positioning considerations, as well as vital elements in shortening the development phase and protecting innovation. Installation of an interdisciplinary project management team, along with a clear definition of team members' responsibilities, is required to avoid delays and improve communication during development. Selection of the organism to be used in production must take into consideration both the structure of the protein and the quality and safety of the final product. New technologies require a considerable investment in new manufacturing facilities and equipment. Often, the decision for such an investment must be made early and with a high degree of uncertainty. Desired product yield, expected dosage, and estimated market potential are the most important considerations in this decision. Following public disclosure of the plan to develop recombinant DNA-derived products, approval of the production plant and expansion or adaptation to the new process and technology may be delayed. For this reason, they should be considered as a critical step in the overall development phase. Recruitment of qualified staff is a time-consuming and critical element of the production process. Its impact on the product timeline should not be underestimated, especially if such technologies are new to the company. The entire production process must be validated in respect to identity, purity, and safety of the product to guarantee constant product quality, as well as for safety aspects in the environment. Adequate in-process and final product

  1. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  2. Construction of Infectious cDNA Clone of a Chrysanthemum stunt viroid Korean Isolate

    Directory of Open Access Journals (Sweden)

    Ju-Yeon Yoon

    2014-03-01

    Full Text Available Chrysanthemum stunt viroid (CSVd, a noncoding infectious RNA molecule, causes seriously economic losses of chrysanthemum for 3 or 4 years after its first infection. Monomeric cDNA clones of CSVd isolate SK1 (CSVd-SK1 were constructed in the plasmids pGEM-T easy vector and pUC19 vector. Linear positive-sense transcripts synthesized in vitro from the full-length monomeric cDNA clones of CSVd-SK1 could infect systemically tomato seedlings and chrysanthemum plants, suggesting that the linear CSVd RNA transcribed from the cDNA clones could be replicated as efficiently as circular CSVd in host species. However, direct inoculation of plasmid cDNA clones containing full-length monomeric cDNA of CSVd-SK1 failed to infect tomato and chrysanthemum and linear negative-sense transcripts from the plasmid DNAs were not infectious in the two plant species. The cDNA sequences of progeny viroid in systemically infected tomato and chrysanthemum showed a few substitutions at a specific nucleotide position, but there were no deletions and insertions in the sequences of the CSVd progeny from tomato and chrysanthemum plants.

  3. Luciferase assay to study the activity of a cloned promoter DNA fragment.

    Science.gov (United States)

    Solberg, Nina; Krauss, Stefan

    2013-01-01

    Luciferase based assays have become an invaluable tool for the analysis of cloned promoter DNA fragments, both for verifying the ability of a potential promoter fragment to drive the expression of a luciferase reporter gene in various cellular contexts, and for dissecting binding elements in the promoter. Here, we describe the use of the Dual-Luciferase(®) Reporter Assay System created by Promega (Promega Corporation, Wisconsin, USA) to study the cloned 6.7 kilobases (kb) mouse (m) Tcf3 promoter DNA fragment in mouse embryonic derived neural stem cells (NSC). In this system, the expression of the firefly luciferase driven by the cloned mTcf3 promoter DNA fragment (including transcription initiation sites) is correlated with a co-transfected control reporter expressing Renilla luciferase from the herpes simplex virus (HSV) thymidine kinase promoter. Using an internal control reporter allows to normalize the activity of the experimental reporter to the internal control, which minimizes experimental variability.

  4. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli

    OpenAIRE

    Fakruddin, Md.; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md. Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the s...

  5. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  6. Sequencing and characterization of asclepain f: the first cysteine peptidase cDNA cloned and expressed from Asclepias fruticosa latex.

    Science.gov (United States)

    Trejo, Sebastián A; López, Laura M I; Caffini, Néstor O; Natalucci, Claudia L; Canals, Francesc; Avilés, Francesc X

    2009-07-01

    Asclepain f is a papain-like protease previously isolated and characterized from latex of Asclepias fruticosa. This enzyme is a member of the C1 family of cysteine proteases that are synthesized as preproenzymes. The enzyme belongs to the alpha + beta class of proteins, with two disulfide bridges (Cys22-Cys63 and Cys56-Cys95) in the alpha domain, and another one (Cys150-Cys201) in the beta domain, as was determined by molecular modeling. A full-length 1,152 bp cDNA was cloned by RT-RACE-PCR from latex mRNA. The sequence was predicted as an open reading frame of 340 amino acid residues, of which 16 residues belong to the signal peptide, 113 to the propeptide and 211 to the mature enzyme. The full-length cDNA was ligated to pPICZalpha vector and expressed in Pichia pastoris. Recombinant asclepain f showed endopeptidase activity on pGlu-Phe-Leu-p-nitroanilide and was identified by PMF-MALDI-TOF MS. Asclepain f is the first peptidase cloned and expressed from mRNA isolated from plant latex, confirming the presence of the preprocysteine peptidase in the latex.

  7. Horse cDNA clones encoding two MHC class I genes

    Energy Technology Data Exchange (ETDEWEB)

    Barbis, D.P.; Maher, J.K.; Stanek, J.; Klaunberg, B.A.; Antczak, D.F.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  8. A role for recombination junctions in the segregation of mitochondrial DNA in yeast.

    Science.gov (United States)

    Lockshon, D; Zweifel, S G; Freeman-Cook, L L; Lorimer, H E; Brewer, B J; Fangman, W L

    1995-06-16

    In S. cerevisiae, mitochondrial DNA (mtDNA) molecules, in spite of their high copy number, segregate as if there were a small number of heritable units. The rapid segregation of mitochondrial genomes can be analyzed using mtDNA deletion variants. These small, amplified genomes segregate preferentially from mixed zygotes relative to wild-type mtDNA. This segregation advantage is abolished by mutations in a gene, MGT1, that encodes a recombination junction-resolving enzyme. We show here that resolvase deficiency causes a larger proportion of molecules to be linked together by recombination junctions, resulting in the aggregation of mtDNA into a small number of cytological structures. This change in mtDNA structure can account for the increased mitotic loss of mtDNA and the altered pattern of mtDNA segregation from zygotes. We propose that the level of unresolved recombination junctions influences the number of heritable units of mtDNA.

  9. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing.

    Science.gov (United States)

    Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit

    2018-01-01

    Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.

  10. nuvA, an Aspergillus nidulans gene involved in DNA repair and recombination, is a homologue of Saccharomyces cerevisiae RAD18 and Neurospora crassa uvs-2.

    Science.gov (United States)

    Iwanejko, L; Cotton, C; Jones, G; Tomsett, B; Strike, P

    1996-03-01

    A 40 kb genomic clone and 2.3 kb EcoRI subclone that rescued the DNA repair and recombination defects of the Aspergillus nidulans nuvA11 mutant were isolated and the subclone sequenced. The subclone hybridized to a cosmid in a chromosome-specific library confirming the assignment of nuvA to linkage group IV and indicating its closeness to bimD. Amplification by PCR clarified the relative positions of nuvA and bimD. A region identified within the subclone, encoding a C3HC4 zinc finger motif, was used as a probe to retrieve a cDNA clone. Sequencing of this clone showed that the nuvA gene has an ORF of 1329 bp with two introns of 51 bp and 60 bp. Expression of nuvA appears to be extremely low. The putative NUVA polypeptide has two zinc finger motifs, a molecular mass of 48906 Da and has 39% identity with the Neurospora crassa uvs-2 and 25% identity with the Saccharomyces cerevisiae RAD18 translation products. Although mutations in nuvA, uvs-2 and RAD18 produce similar phenotypes, only the nuvA11 mutation affects meiotic recombination. A role for nuvA in both DNA repair and genetic recombination is proposed.

  11. Cloning, enzyme characterization of recombinant human Eg5 and the development of a new inhibitor.

    Science.gov (United States)

    Yang, Lei; Jiang, Cheng; Liu, Fei; You, Qi-Dong; Wu, Wu-Tong

    2008-07-01

    The microtubule-dependent motor protein Eg5 is essential for the development and function of the mitotic spindle. Now it has become an anti-mitotic drug target in high throughput screening for anticancer dugs in vitro. Here is a protocol for cloning, expression and purification of a human Eg5 that codes for motor and linker domain in Escherichia coli BL21 (DE3) cells. The effects of temperature, pH, metal ions and DMSO on ATPase activity were investigated. A new compound CPUYL064 showed good inhibitory effect against Eg5 (IC(50) value, 100 nM). It inhibited the proliferation of human hepatocellular liver carcinoma cell line HepG2 in a dose- and time-dependent manner. CPUYL064 induced a clear G(2)/M phase arrest and caused the monastral spindle in HepG2 cells. Induction of apoptosis was further confirmed by changes in membrane phospholipids, changes in mitochondrial membrane potential and by detection of DNA fragmentation. These results indicate that CPUYL064 could be developed as a new, potent mitotic arrest compound.

  12. Recombinant thermostable AP exonuclease from Thermoanaerobacter tengcongensis: cloning, expression, purification, properties and PCR application

    DEFF Research Database (Denmark)

    Dabrowski, Slawomir; Brillowska-Dabrowska, Anna; Ahring, Birgitte Kiær

    2013-01-01

    Apurinic/apyrimidinic (AP) sites in DNA are considered to be highly mutagenic and must be corrected to preserve genetic integrity, especially at high temperatures. The gene encoding a homologue of AP exonuclease was cloned from the thermophilic anaerobic bacterium Thermoanaerobacter tengcongensis......) of fully active and soluble His6-tagged Tte AP enzyme with His6-tag on C-terminal end was obtained in Escherichia coli Rosetta (DE3) pLysS. The active enzyme was purified up to 98% homogeneity in one chromatographic step using metal-affinity chromatography on Ni(2+)-IDA-Sepharose resin. The yield was 90 mg......, pH 8.0 and at low Mg2+ concentration (0.5 mM). Higher Mg2+ concentration (> 1 mM) enhanced 3'-5' exonuclease activity and at Mg2+ concentration > 2.0 mM 3' nuclease activity was observed. Because of the endonuclease activity of Tte AP exonuclease, the enzyme was applied in PCR amplification of long...

  13. Chicken line-dependent mortality after experimental infection with three type IIxIII recombinant Toxoplasma gondii clones.

    Science.gov (United States)

    Schares, G; Herrmann, D C; Maksimov, P; Matzkeit, B; Conraths, F J; Moré, G; Preisinger, R; Weigend, S

    2017-09-01

    Three genetically different clones of Toxoplasma gondii, also different in mouse virulence, were studied by experimental infection in chickens. For the experiments, four chicken lines were used, which differed in phylogenetic origin and performance level: two white egg layer lines, one with high laying performance (WLA), one with low (R11) and two brown layer lines, also displaying high (BLA) and low (L68) egg number. Chickens were intraperitoneally infected with three different T. gondii isolates representing type IIxIII recombinant clones, i.e. showing both, type II- and type III-specific alleles. These clones (K119/2 2C10, B136/1 B6H6, K119/2 A7) had exhibited virulence differences in a mouse model. In chickens, a significantly higher mortality was observed in white layer lines, but not in brown layer lines, suggesting that differences in the phylogenetic background may influence the susceptibility of chickens for toxoplasmosis. In addition, antibody (IgY) levels varied in surviving chickens at 31 days post infection. While low to intermediate antibody levels were observed in white layers, intermediate to high levels were measured in brown layers. Infection with a T. gondii clone showing low chicken virulence resulted in higher antibody levels in all chicken lines compared to infection with T. gondii clones of intermediate or high chicken virulence. This was in agreement with the parasite load as determined by real-time PCR. Overall, results show that progeny resulting from natural sexual recombination of T. gondii clonal lineages, may differ in their virulence for mice and chickens. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Development of three full-length infectious cDNA clones of distinct brassica yellows virus genotypes for agrobacterium-mediated inoculation.

    Science.gov (United States)

    Zhang, Xiao-Yan; Dong, Shu-Wei; Xiang, Hai-Ying; Chen, Xiang-Ru; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2015-02-02

    Brassica yellows virus is a newly identified species in the genus of Polerovirus within the family Luteoviridae. Brassica yellows virus (BrYV) is prevalently distributed throughout Mainland China and South Korea, is an important virus infecting cruciferous crops. Based on six BrYV genomic sequences of isolates from oilseed rape, rutabaga, radish, and cabbage, three genotypes, BrYV-A, BrYV-B, and BrYV-C, exist, which mainly differ in the 5' terminal half of the genome. BrYV is an aphid-transmitted and phloem-limited virus. The use of infectious cDNA clones is an alternative means of infecting plants that allows reverse genetic studies to be performed. In this study, full-length cDNA clones of BrYV-A, recombinant BrYV5B3A, and BrYV-C were constructed under control of the cauliflower mosaic virus 35S promoter. An agrobacterium-mediated inoculation system of Nicotiana benthamiana was developed using these cDNA clones. Three days after infiltration with full-length BrYV cDNA clones, necrotic symptoms were observed in the inoculated leaves of N. benthamiana; however, no obvious symptoms appeared in the upper leaves. Reverse transcription-PCR (RT-PCR) and western blot detection of samples from the upper leaves showed that the maximum infection efficiency of BrYVs could reach 100%. The infectivity of the BrYV-A, BrYV-5B3A, and BrYV-C cDNA clones was further confirmed by northern hybridization. The system developed here will be useful for further studies of BrYV, such as host range, pathogenicity, viral gene functions, and plant-virus-vector interactions, and especially for discerning the differences among the three genotypes. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Construction of recombinant adenovirus with Egr-1 promoter and Smad7 cDNA and study of the Egr-1 promoter's biological activity

    International Nuclear Information System (INIS)

    Cai Xuwei; Fu Xiaolong; Yang Jian; Song Houyan

    2005-01-01

    Objective: To construct a recombinant replication-defective adenovirus containing Egr-1 promoter and Smad7 cDNA, then to evaluate the biological activity of Egr-1 promoter. Methods: Based on Adeno- X TM expression system, CMV promoter of the pShuttle vector was replaced by Egr-1 promoter, and the Smad7 cDNA was subcloned into the MCS(multiple cloning site) of pShuttle. The recombinant pShuttle was then sub-cloned into the Adeno-X TM genome, which was transformed into E. coli to get recombinant Adeno-X TM plasmid DNA. The recombinant adenovirus was packaged and amplified in the transfected HEK293 cells before it was purified and tested for viral titer. The fibroblasts (3T6 cells) infected by the recombinant adenovirus were irradiated , and the activity of Egr-1 promoter was quantitively determined by the amount of Smad7 protein expressed in the 3T6 cells using Western blot. Results: Identified by restriction endonuclease analysis and PCR, the recombinant adenovirus containing Egr-1 promoter and Smad7 cDNA was constructed successfully, with a viral titer of 1.0 x 10 11 TCID 50 /ml. The expressed amount of Smad7 protein varied at different dose levels and different time points post-irradiation in the 3T6 cells infected with the recombinant adenovirus. The amount of Smad7 protein increased along with the rising of the irradiation dose, and remained at a high expression level from 8 Gy to 15 Gy. The amount of Smad7 protein started to increase at 2 hours post-irradiation, and maintained a relatively high level for the next 5 hours before it descended, which was not observed in the control 3T6 cells. Conclusions: With the aid of Adeno-X TM expression system and molecular cloning techniques, construction of recombinant adenovirus could be quick and efficient. The recombined Egr-1 promoter has the activity of regulating the expression of downstream Smad7 cDNA. The increase in Smad7 expression under control of Egr-1 promoter induced by ionizing radiation is time- and dose

  16. Recombinant DNA in Cambridge: lessons for nuclear energy

    International Nuclear Information System (INIS)

    Federow, H.

    1977-09-01

    The 1976 experience of Cambridge, Massachusetts, in settling the recombinant DNA research issue is unique in recent history as the first instance of essentially lay panels judging the conduct of scientific research. Furthermore, because the panel was composed of citizens who would be affected by the research, the experience suggests a model for conflict resolution in other areas of public controversy. With one of these, nuclear energy, the controversy has two important points in common: although the primary burden of any accident would be borne by the local community, benefits of the DNA research or reactor operation accrue to a much broader range of people; and in both issues there is a need to resolve the question, ''How safe is safe enough.'' It is therefore proposed that a panel similar to the Cambridge one could be established to deal with the controversy surrounding a proposed nuclear plant. In any community where there was such controversy, a panel could be convened to assess whether the plant was acceptable to that community. Such a panel would be composed of members of the community who were not affected directly by the plant. It would also have to have a restricted range of inquiry, oriented toward the specifics of the proposed plant. Such a plant review panel, under properly designed procedures, could change the licensing process to one concerned solely with safety and provide an appropriate forum for issues concerning the acceptability of nuclear power

  17. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Cambridge CD

    2013-05-01

    Full Text Available Chino D Cambridge, Shree R Singh, Alain B Waffo, Stacie J Fairley, Vida A DennisCenter for NanoBiotechnology Research (CNBR, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP and encapsulated it in chitosan nanoparticles (DMCNP using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 µg/mL to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and

  18. Heterogeneity of rat tropoelastin mRNA revealed by cDNA cloning

    International Nuclear Information System (INIS)

    Pierce, R.A.; Deak, S.B.; Stolle, C.A.; Boyd, C.D.

    1990-01-01

    A λgt11 library constructed from poly(A+) RNA isolated from aortic tissue of neonatal rats was screened for rat tropoelastin cDNAs. The first, screen, utilizing a human tropoelastin cDNA clone, provided rat tropoelastin cDNAs spanning 2.3 kb of carboxy-terminal coding sequence and extended into the 3'-untranslated region. A subsequent screen using a 5' rat tropoelastin cDNA clone yielded clones extending into the amino-terminal signal sequence coding region. Sequence analysis of these clones has provided the complete derived amino acid sequence of rat tropoelastin and allowed alignment and comparison with published bovine cDNA sequence. While the overall structure of rat tropoelastin is similar to bovine sequence, numerous substitutions, deletions, and insertions demonstrated considerable heterogeneity between species. In particular, the pentapeptide repeat VPGVG, characteristic of all tropoelastins analyzed to date, is replaced in rat tropoelastin by a repeating pentapeptide, IPGVG. The hexapeptide repeat VGVAPG, the bovine elastin receptor binding peptide, is not encoded by rat tropoelastin cDNAs. Variations in coding sequence between rat tropoelastin CDNA clones were also found which may represent mRNA heterogeneity produced by alternative splicing of the rat tropoelastin pre-mRNA

  19. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    Science.gov (United States)

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  20. Mechanism of Homologous Recombination and Implications for Aging-Related Deletions in Mitochondrial DNA

    Science.gov (United States)

    2013-01-01

    SUMMARY Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells. PMID:24006472

  1. cDNA cloning and immunological characterization of the rye grass allergen Lol p I.

    Science.gov (United States)

    Perez, M; Ishioka, G Y; Walker, L E; Chesnut, R W

    1990-09-25

    The complete amino acid sequence of two "isoallergenic" forms of Lol p I, the major rye grass (Lolium perenne) pollen allergen, was deduced from cDNA sequence analysis. cDNA clones isolated from a Lolium perenne pollen library contained an open reading frame coding for a 240-amino acid protein. Comparison of the nucleotide and deduced amino acid sequence of two of these clones revealed four changes at the amino acid level and numerous nucleotide differences. Both clones contained one possible asparagine-linked glycosylation site. Northern blot analysis shows one RNA species of 1.2 kilobases. Based on the complete amino acid sequence of Lol p I, overlapping peptides covering the entire molecule were synthesized. Utilizing these peptides we have identified a determinant within the Lol p I molecule that is recognized by human leukocyte antigen class II-restricted T cells obtained from persons allergic to rye grass pollen.

  2. Cloning of the cDNA and gene for a human D2 dopamine receptor

    International Nuclear Information System (INIS)

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O.; Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C.

    1989-01-01

    A clone encoding a human D 2 dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D 2 receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed

  3. cDNA cloning and mRNA expression of heat shock protein 70 gene ...

    African Journals Online (AJOL)

    In this study, the full-length heat shock protein 70 of Tegillarca granosa was cloned from cDNA library by rapid amplification of cDNA end (RACE). The open reading frame (ORF) of heat shock protein 70 was 1968 bp, and it encoded a protein of 655 amino acids with a predicted molecular weight of 71.48 kDa and an ...

  4. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas

    2017-04-19

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana. Gainand loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.

  5. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA

    DEFF Research Database (Denmark)

    Cowell, G M; Kønigshøfer, E; Danielsen, E M

    1988-01-01

    The complete primary structure (967 amino acids) of an intestinal human aminopeptidase N (EC 3.4.11.2) was deduced from the sequence of a cDNA clone. Aminopeptidase N is anchored to the microvillar membrane via an uncleaved signal for membrane insertion. A domain constituting amino acid 250...

  6. cDNA, genomic cloning and sequence analysis of ribosomal protein ...

    African Journals Online (AJOL)

    enoh

    2012-03-13

    Mar 13, 2012 ... cDNA and the genomic sequence of RPS4X were cloned successfully from ... S4 genes plays a role in Turner syndrome; however, this ..... Project of Educational Committee of Sichuan Province ... Molecular biology of the cell.

  7. cDNA, genomic sequence cloning and analysis of the ribosomal ...

    African Journals Online (AJOL)

    Ribosomal protein L37A (RPL37A) is a component of 60S large ribosomal subunit encoded by the RPL37A gene, which belongs to the family of ribosomal L37AE proteins, located in the cytoplasm. The complementary deoxyribonucleic acid (cDNA) and the genomic sequence of RPL37A were cloned successfully from giant ...

  8. Cloning, sequencing and expression of a novel xylanase cDNA from ...

    African Journals Online (AJOL)

    A strain SH 2016, capable of producing xylanase, was isolated and identified as Aspergillus awamori, based on its physiological and biochemical characteristics as well as its ITS rDNA gene sequence analysis. A xylanase gene of 591 bp was cloned from this newly isolated A. awamori and the ORF sequence predicted a ...

  9. Cloning of oleosin, a putative new hazelnut allergen, using a hazelnut cDNA library

    NARCIS (Netherlands)

    Akkerdaas, Jaap H.; Schocker, Frauke; Vieths, Stefan; Versteeg, Serge; Zuidmeer, Laurian; Hefle, Sue L.; Aalberse, Rob C.; Richter, Klaus; Ferreira, Fatima; van Ree, Ronald

    2006-01-01

    The clinical presentation of non-pollen related allergy to hazelnut can be severe and systemic. So far, only a limited number of non-pollen related hazelnut allergens have been identified and characterized. The aim of this study was to identify and clone new hazelnut allergens. A lambda ZAP cDNA

  10. cDNA cloning and primary structure analysis of invariant chain in ...

    African Journals Online (AJOL)

    cDNA cloning and primary structure analysis of invariant chain in Chinese Pengze crucian carp. X Liu, W Yu, J Li, F Chen, S Liu, C Wu, J Xu. Abstract. Invariant chain (Ii) plays an important role in MHC class II molecules assembly and exogenous peptide presentation in vertebrates. Although mammalian Ii has been ...

  11. Evidence of animal mtDNA recombination between divergent populations of the potato cyst nematode Globodera pallida.

    Science.gov (United States)

    Hoolahan, Angelique H; Blok, Vivian C; Gibson, Tracey; Dowton, Mark

    2012-03-01

    Recombination is typically assumed to be absent in animal mitochondrial genomes (mtDNA). However, the maternal mode of inheritance means that recombinant products are indistinguishable from their progenitor molecules. The majority of studies of mtDNA recombination assess past recombination events, where patterns of recombination are inferred by comparing the mtDNA of different individuals. Few studies assess contemporary mtDNA recombination, where recombinant molecules are observed as direct mosaics of known progenitor molecules. Here we use the potato cyst nematode, Globodera pallida, to investigate past and contemporary recombination. Past recombination was assessed within and between populations of G. pallida, and contemporary recombination was assessed in the progeny of experimental crosses of these populations. Breeding of genetically divergent organisms may cause paternal mtDNA leakage, resulting in heteroplasmy and facilitating the detection of recombination. To assess contemporary recombination we looked for evidence of recombination between the mtDNA of the parental populations within the mtDNA of progeny. Past recombination was detected between a South American population and several UK populations of G. pallida, as well as between two South American populations. This suggests that these populations may have interbred, paternal mtDNA leakage occurred, and the mtDNA of these populations subsequently recombined. This evidence challenges two dogmas of animal mtDNA evolution; no recombination and maternal inheritance. No contemporary recombination between the parental populations was detected in the progeny of the experimental crosses. This supports current arguments that mtDNA recombination events are rare. More sensitive detection methods may be required to adequately assess contemporary mtDNA recombination in animals.

  12. Mutations affecting RNA polymerase I-stimulated exchange and rDNA recombination in yeast

    International Nuclear Information System (INIS)

    Lin, Y.H.; Keil, R.L.

    1991-01-01

    HOT1 is a cis-acting recombination-stimulatory sequence isolated from the rDNA repeat unit of yeast. The ability of HOT1 to stimulate mitotic exchange appears to depend on its ability to promote high levels of RNA polymerase I transcription. A qualitative colony color sectoring assay was developed to screen for trans-acting mutations that alter the activity of HOT1. Both hypo-recombination and hyper-recombination mutants were isolated. Genetic analysis of seven HOT1 recombination mutants (hrm) that decrease HOT1 activity shows that they behave as recessive nuclear mutations and belong to five linkage groups. Three of these mutations, hrm1, hrm2, and hrm3, also decrease rDNA exchange but do not alter recombination in the absence of HOT1. Another mutation, hrm4, decreases HOT1-stimulated recombination but does not affect rDNA recombination or exchange in the absence of HOT1. Two new alleles of RAD52 were also isolated using this screen. With regard to HOT1 activity, rad52 is epistatic to all four hrm mutations indicating that the products of the HRM genes and of RAD52 mediate steps in the same recombination pathway. Finding mutations that decrease both the activity of HOT1 and exchange in the rDNA supports the hypothesis that HOT1 plays a role in rDNA recombination

  13. Cloning and characterization of the human colipase cDNA

    International Nuclear Information System (INIS)

    Lowe, M.E.; Rosenblum, J.L.; McEwen, P.; Strauss, A.W.

    1990-01-01

    Pancreatic lipase hydrolyzes dietary triglycerides to monoglycerides and fatty acids. In the presence of bile salts, the activity of pancreatic lipase is markedly decreased. The activity can be restored by the addition of colipase, a low molecular weight protein secreted by the pancreas. The action of pancreatic lipase in the gut lumen is dependent upon its interaction with colipase. As a first step in elucidating the molecular events governing the interaction of lipase and colipase with each other and with fatty acids, a cDNA encoding human colipase was isolated from a λgt11 cDNA library with a rabbit polyclonal anti-human colipase antibody. The full-length 525 bp cDNA contained an open reading frame encoding 112 amino acids, including a 17 amino acid signal peptide. The predicted sequence contains 100% of the published protein sequence for human colipase determined by chemical methods, but predicts the presence of five additional NH 2 -terminal amino acids and four additional COOH-terminal amino acids. Comparison of the predicted protein sequence with the known sequences of colipase from other species reveals regions of extensive identity. The authors report, for the first time, a cDNA for colipase. The cDNA predicts a human procolipase an suggests that there may also be processing at the COOH-terminus. The regions of identity with colipase from other species will aid in defining the interaction with lipase and lipids through site-specific mutagenesis

  14. Cloning and analysis of the mouse Fanconi anemia group a cDNA and an overlapping penta zinc finger cDNA

    NARCIS (Netherlands)

    Wong, JCY; Alon, N; Norga, K; Kruyt, FAE; Youssoufian, H; Buchwald, M

    2000-01-01

    Despite the cloning of four disease-associated genes for Fanconi anemia (FA), the molecular pathogenesis of FA remains largely unknown. To study FA complementation group A using the mouse as a mode I system, we cloned and characterized the mouse homolog of the human FANCA cDNA, The mouse cDNA

  15. Cloning and expression of human deoxycytidine kinase cDNA

    International Nuclear Information System (INIS)

    Chottiner, E.G.; Shewach, D.S.; Datta, N.S.; Ashcraft, E.; Gribbin, D.; Ginsburg, D.; Fox, I.H.; Mitchell, B.S.

    1991-01-01

    Deoxycytidine (dCyd) kinase is required for the phosphorylation of several deoxyribonucleosides and certain nucleoside analogs widely employed as antiviral and chemotherapeutic agents. Detailed analysis of this enzyme has been limited, however, by its low abundance and instability. Using oligonucleotides based on primary amino acid sequence derived from purified dCyd kinase, the authors have screened T-lymphoblast cDNA libraries and identified a cDNA sequence that encodes a 30.5-kDa protein corresponding to the subunit molecular mass of the purified protein. Expression of the cDNA in Escherichia coli results in a 40-fold increase in dCyd kinase activity over control levels. Northern blot analysis reveals a single 2.8-kilobase mRNA expressed in T lymphoblasts at 5- to 10-fold higher levels than in B lymphoblasts, and decreased dCyd kinase mRNA levels are present in T-lymphoblast cell lines resistant to arabinofuranosylcytosine and dideoxycytidine. These findings document that this cDNA encodes the T-lymphoblast dCyd kinase responsible for the phosphorylation of dAdo and dGuo as well as dCyd and arabinofuranosylcytosine

  16. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... basic machinery of protein synthesis and regulation, but also in various ... The genomic DNA was isolated from Giant Panda muscle tissue according to the ... for 45 s, 72°C for 2 min in the first cycle and the anneal temperature deceased 0.2°C ..... edition, Cold Spring Harbor aboratory Press. Cold Spring ...

  17. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries.

    Science.gov (United States)

    Lam, Kathy N; Charles, Trevor C

    2015-01-01

    Clone libraries provide researchers with a powerful resource to study nucleic acid from diverse sources. Metagenomic clone libraries in particular have aided in studies of microbial biodiversity and function, and allowed the mining of novel enzymes. Libraries are often constructed by cloning large inserts into cosmid or fosmid vectors. Recently, there have been reports of GC bias in fosmid metagenomic libraries, and it was speculated to be a result of fragmentation and loss of AT-rich sequences during cloning. However, evidence in the literature suggests that transcriptional activity or gene product toxicity may play a role. To explore possible mechanisms responsible for sequence bias in clone libraries, we constructed a cosmid library from a human microbiome sample and sequenced DNA from different steps during library construction: crude extract DNA, size-selected DNA, and cosmid library DNA. We confirmed a GC bias in the final cosmid library, and we provide evidence that the bias is not due to fragmentation and loss of AT-rich sequences but is likely occurring after DNA is introduced into Escherichia coli. To investigate the influence of strong constitutive transcription, we searched the sequence data for promoters and found that rpoD/σ(70) promoter sequences were underrepresented in the cosmid library. Furthermore, when we examined the genomes of taxa that were differentially abundant in the cosmid library relative to the original sample, we found the bias to be more correlated with the number of rpoD/σ(70) consensus sequences in the genome than with simple GC content. The GC bias of metagenomic libraries does not appear to be due to DNA fragmentation. Rather, analysis of promoter sequences provides support for the hypothesis that strong constitutive transcription from sequences recognized as rpoD/σ(70) consensus-like in E. coli may lead to instability, causing loss of the plasmid or loss of the insert DNA that gives rise to the transcription. Despite

  18. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    Science.gov (United States)

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  19. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats

    OpenAIRE

    Warmerdam, Daniël O.; van den Berg, Jeroen; Medema, René H.

    2016-01-01

    rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of b...

  20. Anti-DNA antibodies: Sequencing, cloning, and expression

    Energy Technology Data Exchange (ETDEWEB)

    Barry, M.M.

    1992-01-01

    To gain some insight into the mechanism of systemic lupus erythematosus, and the interactions involved in proteins binding to DNA four anti-DNA antibodies have been investigated. Two of the antibodies, Hed 10 and Jel 242, have previously been prepared from female NZB/NZW mice which develop an autoimmune disease resembling human SLE. The remaining two antibodies, Jel 72 and Jel 318, have previously been produced via immunization of C57BL/6 mice. The isotypes of the four antibodies investigated in this thesis were determined by an enzyme-linked-immunosorbent assay. All four antibodies contained [kappa] light chains and [gamma]2a heavy chains except Jel 318 which contains a [gamma]2b heavy chain. The complete variable regions of the heavy and light chains of these four antibodies were sequenced from their respective mRNAs. The gene segments and variable gene families expressed in each antibody were identified. Analysis of the genes used in the autoimmune anti-DNA antibodies and those produced by immunization indicated no obvious differences to account for their different origins. Examination of the amino acid residues present in the complementary-determining regions of these four antibodies indicates a preference for aromatic amino acids. Jel 72 and Jel 242 contain three arginine residues in the third complementary-determining region. A single-chain Fv and the variable region of the heavy chain of Hed 10 were expressed in Escherichia coli. Expression resulted in the production of a 26,000 M[sub r] protein and a 15,000 M[sub r] protein. An immunoblot indicated that the 26,000 M[sub r] protein was the Fv for Hed 10, while the 15,000 M[sub r] protein was shown to bind poly (dT). The contribution of the heavy chain to DNA binding was assessed.

  1. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats

    NARCIS (Netherlands)

    Warmerdam, Daniel O.; van den Berg, Jeroen; Medema, Rene H.

    2016-01-01

    rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded

  2. FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51

    DEFF Research Database (Denmark)

    Chu, Wai Kit; Payne, Miranda J; Beli, Petra

    2015-01-01

    Unscheduled homologous recombination (HR) can lead to genomic instability, which greatly increases the threat of neoplastic transformation in humans. The F-box DNA helicase 1 (FBH1) is a 3'-5' DNA helicase with a putative function as a negative regulator of HR. It is the only known DNA helicase t...

  3. A new approach for cloning hLIF cDNA from genomic DNA isolated from the oral mucous membrane.

    Science.gov (United States)

    Cui, Y H; Zhu, G Q; Chen, Q J; Wang, Y F; Yang, M M; Song, Y X; Wang, J G; Cao, B Y

    2011-11-25

    Complementary DNA (cDNA) is valuable for investigating protein structure and function in the study of life science, but it is difficult to obtain by traditional reverse transcription. We employed a novel strategy to clone human leukemia inhibitory factor (hLIF) gene cDNA from genomic DNA, which was directly isolated from the mucous membrane of mouth. The hLIF sequence, which is 609 bp long and is composed of three exons, can be acquired within a few hours by amplifying each exon and splicing all of them using overlap-PCR. This new approach developed is simple, time- and cost-effective, without RNA preparation or cDNA synthesis, and is not limited to the specific tissues for a particular gene and the expression level of the gene.

  4. Cloning and expression of the recombinant NP24I protein from ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... protein from tomato fruit and study of its antimicrobial ... the recombinant NP24, as well as to prove the activity of native protein on the bacterial as well as fungal .... The antifungal effect of the recombinant NP24I protein was.

  5. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Yuxin Feng

    Full Text Available Estrogen receptor alpha (ERα, a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER's ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER's transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy.

  6. Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Nesmelova, Irina; Dings, Ruud P.M.; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2005-01-01

    Anginex, a designed peptide 33-mer, is a potent angiogenesis inhibitor and anti-tumor agent in vivo. Anginex functions by inhibiting endothelial cell (EC) proliferation and migration leading to detachment and apoptosis of activated EC's. To better understand tumor endothelium targeting properties of anginex and enable its use in gene therapy, we constructed an artificial gene encoding the biologically exogenous peptide and produced the protein recombinantly in Pichia pastoris. Mass spectrometry shows recombinant anginex to be a dimer and circular dichroism shows the recombinant protein folds with β-strand structure like the synthetic peptide. Moreover, like parent anginex, the recombinant protein is active at inhibiting EC growth and migration, as well as inhibiting angiogenesis in vivo in the chorioallantoic membrane of the chick embryo. This study demonstrated that it is possible to produce a functionally active protein version of a rationally designed peptide, using an artificial gene and the recombinant protein approach

  7. Enhanced specificity in immunoscreening of expression cDNA clones using radiolabeled antigen overlay

    International Nuclear Information System (INIS)

    Chao, S.; Chao, L.; Chao, J.

    1989-01-01

    A highly sensitive and specific method has been developed for immunoscreening clones from an expression cDNA library. The procedures utilize a radiolabeled antigen detection method described originally for the immunoblotting of plasma proteins. Screening of rat alpha 1-antitrypsin clones was used. Comparison between Western blots of alpha 1-antitrypsin using both labeled antigen and protein A detection methods showed that the former yielded lower background and greater sensitivity than the latter. Further, this technique was shown to have a lower detection limit of less than 20 ng through Western blot analysis of varying concentrations of alpha 1-antitrypsin. The procedures are based on the expression of the protein by cDNA clones containing the DNA inserts in the correct reading frame. Following the transfer of phage proteins to nitrocellulose membranes, the bivalent antibodies bind monovalently to both nitrocellulose-bound-antigen in the phage lysates and radiolabeled antigen. The radiolabeled antigen overlay method is superior to the protein A detection method in sensitivity, specificity and reproducibility. This improved method can be applied in general for screening expression cDNA libraries, provided that the specific antiserum and radiolabeled antigen are available

  8. Cloning and sequence analysis of cDNA coding for rat nucleolar protein C23

    International Nuclear Information System (INIS)

    Ghaffari, S.H.; Olson, M.O.J.

    1986-01-01

    Using synthetic oligonucleotides as primers and probes, the authors have isolated and sequenced cDNA clones encoding protein C23, a putative nucleolus organizer protein. Poly(A + ) RNA was isolated from rat Novikoff hepatoma cells and enriched in C23 mRNA by sucrose density gradient ultracentrifugation. Two deoxyoligonuleotides, a 48- and a 27-mer, were synthesized on the basis of amino acid sequence from the C-terminal half of protein C23 and cDNA sequence data from CHO cell protein. The 48-mer was used a primer for synthesis of cDNA which was then inserted into plasmid pUC9. Transformed bacterial colonies were screened by hybridization with 32 P labeled 27-mer. Two clones among 5000 gave a strong positive signal. Plasmid DNAs from these clones were purified and characterized by blotting and nucleotide sequence analysis. The length of C23 mRNA was estimated to be 3200 bases in a northern blot analysis. The sequence of a 267 b.p. insert shows high homology with the CHO cDNA with only 9 nucleotide differences and an identical amino acid sequence. These studies indicate that this region of the protein is highly conserved

  9. 75 FR 31795 - Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting

    Science.gov (United States)

    2010-06-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology Activities; Recombinant DNA Research: Amended Notice of Meeting ACTION: Notice of cancellation of... information. Dated: May 26, 2010. Jacqueline Corrigan-Curay, Acting Director, Office of Biotechnology...

  10. SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Waaqo Daddacha

    2017-08-01

    Full Text Available DNA double-strand break (DSB repair by homologous recombination (HR is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.

  11. [Fingerprints identification of Gynostemma pentaphyllum by RAPD and cloning and analysis of its specific DNA fragment].

    Science.gov (United States)

    Jiang, Jun-fu; Li, Xiong-ying; Wu, Yao-sheng; Luo, Yu; Zhao, Rui-qiang; Lan, Xiu-wan

    2009-02-01

    To identify the resources of Gynostemma pentaphyllum and its spurious breed plant Cayratia japonica at level of DNA. Two random primers ( WGS001, WGS004) screened were applied to do random amplification with genomic DNA extracted from Gynostemma pentaphyllum and Cayratia japonica which were collected from different habitats. After amplificated with WGS004, one characteristic fragment about 500 bp which was common to all Gynostemma pentaphyllum samples studied but not to Cayratia japonica was cloned and sequenced. Then these sequences obtained were analyzed for identity and compared by Blastn program in GenBank. There were obvious different bands amplified by above two primers in their fingerprints of genomic DNA. On the basis of these different bands of DNA fingerprints, they could distinguish Gynostemma pentaphyllum and Cayratia japonica obviously. Sequence alignment of seven cloned bands showed that their identities ranged from 45.7% - 94.5%. There was no similar genome sequences searched in GenBank. This indicated that these seven DNA fragments had not been reported before and they should be new sequences. RAPD technique can be used for the accurate identification of Gynostemma pentaphyllum and its counterfeit goods Cayratia japonica. Besides, these specific DNA sequences for Gynostemmna pentaphyllum in this study are useful for the further research on identification of species and assisted selection breeding in Gynostemma pentaphyllum.

  12. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  13. Construction of Agrobacterium tumefaciens-mediated tomato black ring virus infectious cDNA clones.

    Science.gov (United States)

    Zarzyńska-Nowak, Aleksandra; Ferriol, Inmaculada; Falk, Bryce W; Borodynko-Filas, Natasza; Hasiów-Jaroszewska, Beata

    2017-02-15

    Tomato black ring virus (TBRV, genus Nepovirus) infects a wide range of economically important plants such as tomato, potato, tobacco and cucumber. Here, a successful construction of infectious full-length cDNA clones of the TBRV genomic RNAs (RNA1 and RNA2) is reported for the first time. The engineered constructs consisting of PCR-amplified DNAs were cloned into binary vector pJL89 immediately downstream of a double cauliflower mosaic virus (CaMV) 35S promoter, and upstream of the hepatitis delta virus (HDV) ribozyme and nopaline synthase terminator (NOS). The symptoms induced on plants agroinoculated with both constructs were indistinguishable from those caused by the wild-type virus. The infectivity of obtained clones was verified by reinoculation to Nicotiana tabacum cv. Xanthi, Chenopodium quinoa and Cucumis sativus. The presence of viral particles and RNA was confirmed by electron microscopy and reverse transcription polymerase chain reaction, respectively. Constructed full-length infectious cDNA clones will serve as an excellent tool to study virus-host-vector interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  15. Genetic recombination in escherichia coli and its relationship with DNA replication

    International Nuclear Information System (INIS)

    Siddiqui, O.

    1974-01-01

    Relationship of DNA replication with genetic recombination in Escherichia Coli was investigated by mating Hfr donors labelled with H 3 -thymine, C 13 and N 15 to C 13 N 15 labelled recipients. The DNA extracted from the zygotes was analysed on CsCl density gradients. The results show that all of the biparentally labelled DNA arises from the single strand insertions of the donor DNA. (M.G.B.)

  16. Binding proteins for the regulatory subunit (RII-B) of brain cAMP-dependent protein kinase II: isolation and initial characterization of cDNA clones

    International Nuclear Information System (INIS)

    Bregman, D.B.; Hu, E.; Rubin, C.S.

    1987-01-01

    In mammalian brain several proteins bind RII-B with high affinity. An example is P75, which co-purifies with RII-B and also complexes Ca 2+ -calmodulin. Thus, RII-B binding proteins (RBPs) might play a role in integrating the Ca 2+ and cAMP signalling pathways in the CNS. In order to study the structure and function of these polypeptides they have isolated cloned cDNAs for RBPs by screening brain λgt11 expression libraries using a functional assay: the binding of 32 P-labeled RII to fusion proteins produced by recombinants expressing RII binding domains. Inserts from rat brain recombinant clones λ7B and λ10B both hybridize to a brain mRNA of 7000 nucleotides. Northern gel analyses indicate that the putative RBP mRNA is also expressed in lung, but not in several other tissues. The λ7B insert was subcloned into the expression plasmid pINIA. A 50 kDa high affinity RII-B binding polypeptide accumulated in E. coli transformed with pINIA-7B. Two RBP cDNAs (λ77, λ100A) have been retrieved from a bovine λgt 11 library using a monoclonal antibody directed against P75 and the binding assay respectively. On Southern blots the insert from λ100A hybridizes to the cDNA insert from clones λ77, suggesting that λ 77 cDNA might contain sequences coding for both an RII binding domain and a P75 epitope. The bovine λ100A insert also hybridizes with the rat λ7B clone indicating that an RII binding domain is conserved in the two species

  17. RFLP for Duchenne muscular dystrophy cDNA clone 44-1

    Energy Technology Data Exchange (ETDEWEB)

    Laing, N G; Siddique, T; Bartlett, R J; Yamaoka, L H; Chen, J C; Walker, A P; Hung, W Y; Roses, A D [Duke Univ. Medical Center, Durham, NC (USA)

    1988-07-25

    Clone 44-1 is one of six cDNA clones which comprise the cDNA for the Duchenne muscular dystrophy gene. It is a 0.9kb fragment in the EcoR1 site of Bluescript. Taq1 (TlCGA) identifies two alleles with bands at 6.8 and 5.7kb, as well as four constant bands at 4.8, 3.9, 3.5 and 2.5kb. Its frequency was studied in 62 unrelated individuals. Mendelian inheritance was demonstrated in one three generation and three two generation informative families, 26 individuals. There were no problems on RFLP analysis under normal stringency conditions.

  18. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone.

    Science.gov (United States)

    Weger-Lucarelli, James; Duggal, Nisha K; Bullard-Feibelman, Kristen; Veselinovic, Milena; Romo, Hannah; Nguyen, Chilinh; Rückert, Claudia; Brault, Aaron C; Bowen, Richard A; Stenglein, Mark; Geiss, Brian J; Ebel, Gregory D

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease. Copyright © 2016 American Society for Microbiology.

  19. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    International Nuclear Information System (INIS)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.; Tanaka, K.

    1986-01-01

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the β-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonal monospecific antibody. Single-stranded [ 32 P]labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting

  20. DNA secondary structures are associated with recombination in major Plasmodium falciparum variable surface antigen gene families

    DEFF Research Database (Denmark)

    Sander, Adam F.; Lavstsen, Thomas; Rask, Thomas Salhøj

    2014-01-01

    falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome...... of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens....

  1. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    International Nuclear Information System (INIS)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in λ gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated λ hARG6 and λ hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying λ hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes

  2. Cloning of the PYR3 gene of Ustilago maydis and its use in DNA transformation

    Energy Technology Data Exchange (ETDEWEB)

    Banks, G.R.; Taylor, S.Y. (National Institute for Medical Research, London (England))

    1988-12-01

    The Ustilago maydis PYR3 gene encoding dihydroorotase activity was cloned by direct complementation of Escherichia coli pyrC mutations. PYR3 transformants of E. coli pyrC mutants expressed homologous transcripts of a variety of sizes and regained dihydroorotase activity. PYR3 also complemented Saccharomyces cerevisiae ura4 mutations, and again multiple transcripts were expressed in transformants, and enzyme activity was regained. A 1.25-kilobase poly(rA)+ PYR3 transcript was detected in U. maydis itself. Linear DNA carrying the PYR3 gene transformed a U. maydis pyr3-1 pyrimidine auxotroph to prototrophy. Hybridization analysis revealed that three different types of transformants could be generated, depending on the structure of the transforming DNA used. The first type involved exchange of chromosomal mutant gene sequences with the cloned wild-type plasmid sequences. A second type had integrated linear transforming DNA at the chromosomal PYR3 locus, probably via a single crossover event. The third type had integrated transforming DNA sequences at multiple sites in the U. maydis genome. In the last two types, tandemly reiterated copies of the transforming DNA were found to have been integrated. All three types had lost the sensitivity of the parental pyr3-1 mutant to UV irradiation. They had also regained dihydroorotase activity, although its level did not correlate with the PYR3 gene copy number.

  3. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 kb......, respectively, hybridizing specifically with the β2gpI cDNA. Upon isoelectric focusing, recombinant β2gpI obtained from expression of β2gpI cDNA in baby hamster kidney cells showed the same pattern of bands as β2gpI isolated from plasma, and at least 5 polypeptides were visible...

  4. Quantification and persistence of recombinant DNA of Roundup Ready corn and soybean in rotation.

    Science.gov (United States)

    Lerat, Sylvain; Gulden, Robert H; Hart, Miranda M; Powell, Jeff R; England, Laura S; Pauls, K Peter; Swanton, Clarence J; Klironomos, John N; Trevors, Jack T

    2007-12-12

    The presence of the recombinant cp4 epsps gene from Roundup Ready (RR) corn and RR soybean was quantified using real-time PCR in soil samples from a field experiment growing RR and conventional corn and soybean in rotation. RR corn and RR soybean cp4 epsps persisted in soil for up to 1 year after seeding. The concentration of recombinant DNA in soil peaked in July and August in RR corn and RR soybean plots, respectively. A small fraction of soil samples from plots seeded with conventional crops contained recombinant DNA, suggesting transgene dispersal by means of natural process or agricultural practices. This research will aid in the understanding of the persistence of recombinant DNA in agricultural cropping systems.

  5. Self-regulation of recombinant DNA technology in Japan in the 1970s.

    Science.gov (United States)

    Nagai, Hiroyuki; Nukaga, Yoshio; Saeki, Koji; Akabayashi, Akira

    2009-07-01

    Recombinant DNA technology was developed in the United States in the early 1970s. Leading scientists held an international Asilomar Conference in 1975 to examine the self regulation of recombinant DNA technology, followed by the U.S. National Institutes of Health drafting the Recombinant DNA Research Guidelines in 1976. The result of this conference significantly affected many nations, including Japan. However, there have been few historical studies on the self-regulation of recombinant technologies conducted by scientists and government officials in Japan. The purpose of this paper is to analyze how the Science Council of Japan, the Ministry of Education, Science adn Culture, and the Science and Technology Agency developed self-regulation policies for recombinant DNA technology in Japan in the 1970s. Groups of molecular biologist and geneticists played a key role in establishing guidelines in cooperation with government officials. Our findings suggest that self-regulation policies on recombinant DNA technology have influenced safety management for the life sciences and establishment of institutions for review in Japan.

  6. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.

    Science.gov (United States)

    Van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S; Britton, Robert A

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution.

  7. Human placental Na+, K+-ATPase α subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    International Nuclear Information System (INIS)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-01-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na + , K + -ATPase α subunit was cloned from human placenta and its sequence was identical to that encoding the α subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na + , K + -ATPase gene from various human tissues and cell lines revealed only one band (≅ 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) λgt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the α subunit is on the short is on the short arm (band p11-p13) of chromosome 1

  8. Breaks in the 45S rDNA Lead to Recombination-Mediated Loss of Repeats.

    Science.gov (United States)

    Warmerdam, Daniël O; van den Berg, Jeroen; Medema, René H

    2016-03-22

    rDNA repeats constitute the most heavily transcribed region in the human genome. Tumors frequently display elevated levels of recombination in rDNA, indicating that the repeats are a liability to the genomic integrity of a cell. However, little is known about how cells deal with DNA double-stranded breaks in rDNA. Using selective endonucleases, we show that human cells are highly sensitive to breaks in 45S but not the 5S rDNA repeats. We find that homologous recombination inhibits repair of breaks in 45S rDNA, and this results in repeat loss. We identify the structural maintenance of chromosomes protein 5 (SMC5) as contributing to recombination-mediated repair of rDNA breaks. Together, our data demonstrate that SMC5-mediated recombination can lead to error-prone repair of 45S rDNA repeats, resulting in their loss and thereby reducing cellular viability. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli

    International Nuclear Information System (INIS)

    Moreau, P.L.

    1988-01-01

    Overproduction of single-stranded DNA (ssDNA)-binding protein (SSB) in uvr Escherichia coli mutants results in a wide range of altered phenotypes. (i) Cell survival after UV irradiation is decreased; (ii) expression of the recA-lexA regulon is slightly reduced after UV irradiation, whereas it is increased without irradiation; and (iii) recombination of UV-damaged lambda DNA is inhibited, whereas recombination of nonirradiated DNA is unaffected. These results are consistent with the idea that in UV-damaged bacteria, SSB is first required to allow the formation of short complexes of RecA protein and ssDNA that mediate cleavage of the LexA protein. However, in a second stage, SSB should be displaced from ssDNA to permit the production of longer RecA-ssDNA nucleoprotein filaments that are required for strand pairing and, hence, recombinational repair. Since bacteria overproducing SSB appear identical in physiological respects to recF mutant bacteria, it is suggested that the RecF protein (alone or with other proteins of the RecF pathway) may help RecA protein to release SSB from ssDNA

  10. DNA degradation and reduced recombination following UV irradiation during meiosis in yeast (Saccharomyces cerevisiae)

    International Nuclear Information System (INIS)

    Salts, Y.; Pinon, R.; Simchen, G.

    1976-01-01

    Irradiation of meiotic yeast cells with moderate doses of ultraviolet irradiation (1,600 erg/mm 2 ) leads to the arrest of premeiotic DNA synthesis, massive (5-40%) DNA degradation, and a 40-50% loss of cell viability. In contrast, such doses of UV irradiation had a minor effect on viability (15-20% loss) of logarithmically growing cells, and no comparable DNA degradation was observed in irradiated synchronized vegetative cells. Meiotic recombination is also affected by UV irradiation. When administered at a stage comparable to meiotic prophase, low doses of irradiation result in a reduction in recombination frequency without significantly affecting cell viability. (orig.) [de

  11. Gene sequencing, cloning, and expression of the recombinant L- Asparaginase of Pseudomonas aeruginosa SN4 strain in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-dalfard

    2016-03-01

    Full Text Available Introduction: L- asparaginase is in an excessive demand in medical applications and in food treating industries, the request for this therapeutic enzyme is growing several folds every year. Materials and methods: In this study, a L- asparaginase gene from Pseudomonas aeruginosa strain SN4 was sequenced and cloned in E. coli. Primers were designed based on L- asparaginase from P. aeruginosa DSM 50071, which show high similarity to SN4 strain, according to 16S rRNA sequence. The L- asparaginase gene was exposed to restriction digestion with NdeI and XhoI enzymes and then ligated into pET21a plasmid. The ligated sample was transformed into competent E. coli (DE3 pLysS DH5a cells, according to CaCl2 method. The transformed E. coli cells were grown into LB agar plate containing 100 µg/ml ampicillin, IPTG (1 mM. Results: Recombinant L- asparaginase from E. coli BL21 induced after 9 h of incubation and showed high L- asparaginase activity about 93.4 IU/ml. Recombinant L- asparaginase sequencing and alignments showed that the presumed amino acid sequence composed of 350 amino acid residues showed high similarity with P. aeruginosa L- asparaginases about 99%. The results also indicated that SN4 L- asparaginase has the catalytic residues and conserve region similar to other L- asparaginases. Discussion and conclusion: This is the first report on cloning and expression of P. aeruginosa L- asparaginases in Escherichia coli. These results indicated a potent source of L- asparaginase for in vitro and in vivio anticancer consideration. 

  12. Construction and biological activities of the first infectious cDNA clones of the genus Foveavirus

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Baozhong, E-mail: bmeng@uoguelph.ca [Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G2W1 (Canada); Venkataraman, Srividhya; Li, Caihong; Wang, Weizhou [Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G2W1 (Canada); Dayan-Glick, Cathy; Mawassi, Munir [The Plant Pathology Department-The Virology Unit, Plant Protection Institute, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50250 (Israel)

    2013-01-20

    Grapevine rupestris stem pitting-associated virus (GRSPaV, genus Foveavirus, family Betaflexiviridae) is one of the most prevalent viruses in grapevines and is associated with three distinct diseases: rupestris stem pitting, vein necrosis and Syrah decline. Little is known about the biology and pathological properties of GRSPaV. In this work, we engineered a full-length infectious cDNA clone for GRSPaV and a GFP-tagged variant, both under the transcriptional control of Cauliflower mosaic virus 35 S promoter. We demonstrated that these cDNA clones were infectious in grapevines and Nicotiana benthamiana through fluorescence microscopy, RT-PCR, Western blotting and immuno electron microscopy. Interestingly, GRSPaV does not cause systemic infection in four of the most commonly used herbaceous plants, even in the presence of the movement proteins of two other viruses which are known to complement numerous movement-defective viruses. These infectious clones are the first of members of Foveavirus which would allow further investigations into mechanisms governing different aspects of replication for GRSPaV and perhaps related viruses.

  13. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  14. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    International Nuclear Information System (INIS)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S.; Rocchi, M.

    1991-01-01

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH 2 -terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH 2 -terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids

  15. Cloning and restriction enzyme mapping of ribosomal DNA of Giardia duodenalis, Giardia ardeae and Giardia muris.

    Science.gov (United States)

    van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1991-06-01

    In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.

  16. Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows

    Science.gov (United States)

    Ding, Fangrong; Wang, Tao; Liu, Wenjie; Lindquist, Susanne; Hernell, Olle; Wang, Jianwu; Li, Jing; Li, Ling; Zhao, Yaofeng; Dai, Yunping; Li, Ning

    2017-01-01

    Bile salt-stimulated lipase (BSSL) is a lipolytic digestive enzyme with broad substrate specificity secreted from exocrine pancreas into the intestinal lumen in all species and from the lactating mammary gland into the milk of some species, notably humans but not cows. BSSL in breast milk facilitates digestion and absorption of milk fat and promotes growth of small for gestational age preterm infants. Thus, purified recombinant human BSSL (rhBSSL) can be used for treatment of patients with fat malabsorption and expressing rhBSSL in the milk of transgenic cloned cows would therefore be a mean to meet a medical need. In the present study, a vector pBAC-hLF-hBSSL was constructed, which efficiently expressed active rhBSSL in milk of transgenic cloned cows to a concentration of 9.8 mg/ml. The rhBSSL purified from cow milk had the same enzymatic activity, N-terminal amino acid sequence, amino acid composition and isoelectric point and similar physicochemical characteristics as human native BSSL. Our study supports the use of transgenic cattle for the cost-competitive, large-scale production of therapeutic rhBSSL. PMID:28475629

  17. Cloning, recombinant production, crystallization and preliminary X-ray diffraction analysis of a family 101 glycoside hydrolase from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Gregg, Katie J.; Boraston, Alisdair B.

    2009-01-01

    The catalytic module of a family 101 glycoside hydrolase from S. pneumoniae was cloned, recombinantly produced and crystallized. Streptococcus pneumoniae is a serious human pathogen that is responsible for a wide range of diseases including pneumonia, meningitis, septicaemia and otitis media. The full virulence of this bacterium is reliant on carbohydrate processing and metabolism, as revealed by biochemical and genetic studies. One carbohydrate-processing enzyme is a family 101 glycoside hydrolase (SpGH101) that is responsible for catalyzing the liberation of galactosyl β1,3-N-acetyl-d-galactosamine (Galβ1,3GalNAc) α-linked to serine or threonine residues of mucin-type glycoproteins. The 124 kDa catalytic module of this enzyme (SpGH101CM) was cloned and overproduced in Escherichia coli and purified. Crystals were obtained in space group P2 1 and diffracted to 2.0 Å resolution, with unit-cell parameters a = 81.86, b = 88.91, c = 88.77 Å, β = 112.46°. SpGH101CM also qualitatively displayed good activity towards the synthetic substrate p-nitrophenyl-2-acetamido-2-deoxy-3-O-(β-d-galactopyranosyl) -α-d-galactopyranoside, which is consistent with the classification of this enzyme as an endo-α-N-acetylgalactosaminidase

  18. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly.

    Science.gov (United States)

    Bland, Michael J; Ducos-Galand, Magaly; Val, Marie-Eve; Mazel, Didier

    2017-07-14

    Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.

  19. DNA fragmentation and cytotoxicity by recombinant human tumor necrosis factor in L929 fibroblast cells

    International Nuclear Information System (INIS)

    Kosaka, T.; Kuwabara, M.; Koide, F.

    1992-01-01

    Induction of cell DNA fragmentation by treatment of recombinant human Tumor Necrosis Factor alpha (rhTNF alpha) was examined by using mouse L929 cells derived from mouse fibroblast cells. The amount of DNA fragments derived from rhTNF alpha-treated cells, detected by alkaline elution technique, was smaller than that derived from X-irradiated cells. The rhTNF alpha caused the DNA fragmentation depending on its incubation time and concentration. The DNA damage caused by rhTNF alpha treatment correlated with its cytotoxicity. This result suggested that the DNA fragmentation is one of causes of cell death. The treatment with proteinase K of DNA obtained from rhTNF alpha-treated cells did not increase the amount of DNA fragmentation, which indicates that rhTNF alpha causes DNA-fragmentation but not DNA-protein cross-linking

  20. Generation of Modified Pestiviruses by Targeted Recombination

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Friis, Martin Barfred; Risager, Peter Christian

    involves targeted modification of viral cDNA genomes, cloned within BACs, by Red/ET recombination-mediated mutagenesis in E.coli DH10B cells. Using recombination-mediated mutagenesis for the targeted design, the work can be expedited and focused in principal on any sequence within the viral genome...

  1. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lynn C. Thomason

    2016-09-01

    Full Text Available Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion.

  2. Molecular cloning and characterization of a Streptococcus sanguis DNase necessary for repair of DNA damage induced by UV light and methyl methanesulfonate

    International Nuclear Information System (INIS)

    Lindler, L.E.; Macrina, F.L.

    1987-01-01

    We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci

  3. Isolation and characterization of human cDNA clones encoding the α and the α' subunits of casein kinase II

    International Nuclear Information System (INIS)

    Lozeman, F.J.; Litchfield, D.W.; Piening, C.; Takio, Koji; Walsh, K.A.; Krebs, E.G.

    1990-01-01

    Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two α or α' subunits (or one of each) and two β subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell λgt 10 library using cDNA clones isolated from Drosophila melanogasten. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 close was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 by (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of α and α' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the α and α' subunits of casein kinase II. These studies show that there are two distinct catalytic subunits for casein II (α and α') and that the sequence of these subunits is largely conserved between the bovine and the human

  4. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery.

    Science.gov (United States)

    Kidane, Dawit; Ayora, Silvia; Sweasy, Joann B; Graumann, Peter L; Alonso, Juan C

    2012-01-01

    Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective.

  5. The identification of specific cDNA clones from tall and dwarf rice plants

    International Nuclear Information System (INIS)

    Youssefian, S.; Kamada, I.; Sano, H.

    1990-01-01

    Full text: The use of dwarfing genes in rice breeding has proceeded for several years without a clear understanding of the genetic, hormonal and physiological mechanisms involved. This issue was addressed by focussing on the isolation of specific clones from tall- and dwarf-derived cDNA libraries. The materials used include near-isogenic lines of the tall rice cultivar 'Shiokari', differing at the DGWG or 'Tanginbozu' dwarfing gene loci. Also used were tall and dwarf 'Ginbozu' rice, the latter having been induced by treatment with 5-azacytidine, a potent demethylating agent. Subtractive and differential hybridisation have, to date, identified several candidate tall- and dwarf-specific clones. Their further characterisation is currently underway. (author)

  6. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    Science.gov (United States)

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  7. Cloning and Expression of Phytase appA Gene from Shigella sp. CD2 in Pichia pastoris and Comparison of Properties with Recombinant Enzyme Expressed in E. coli.

    Directory of Open Access Journals (Sweden)

    Moushree Pal Roy

    Full Text Available The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg(-1, respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp.

  8. Cloning and Expression of Phytase appA Gene from Shigella sp. CD2 in Pichia pastoris and Comparison of Properties with Recombinant Enzyme Expressed in E. coli.

    Science.gov (United States)

    Pal Roy, Moushree; Mazumdar, Deepika; Dutta, Subhabrata; Saha, Shyama Prasad; Ghosh, Shilpi

    2016-01-01

    The phytase gene appAS was isolated from Shigella sp. CD2 genomic library. The 3.8 kb DNA fragment contained 1299 bp open reading frame encoding 432 amino acid protein (AppAS) with 22 amino acid signal peptide at N-terminal and three sites of N-glycosylation. AppAS contained the active site RHGXRXP and HDTN sequence motifs, which are conserved among histidine acid phosphatases. It showed maximum identity with phytase AppA of Escherichia coli and Citrobacter braakii. The appAS was expressed in Pichia pastoris and E. coli to produce recombinant phytase rAppAP and rAppAE, respectively. Purified glycosylated rAppAP and nonglycosylated rAppAE had specific activity of 967 and 2982 U mg(-1), respectively. Both had pH optima of 5.5 and temperature optima of 60°C. Compared with rAppAE, rAppAP was 13 and 17% less active at pH 3.5 and 7.5 and 11 and 18% less active at temperature 37 and 50°C, respectively; however, it was more active at higher incubation temperatures. Thermotolerance of rAppAP was 33% greater at 60°C and 24% greater at 70°C, when compared with rAppAE. Both the recombinant enzymes showed high specificity to phytate and resistance to trypsin. To our knowledge, this is the first report on cloning and expression of phytase from Shigella sp.

  9. Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1.

    Science.gov (United States)

    Pryce, David W; Ramayah, Soshila; Jaendling, Alessa; McFarlane, Ramsay J

    2009-03-24

    DNA replication stress has been implicated in the etiology of genetic diseases, including cancers. It has been proposed that genomic sites that inhibit or slow DNA replication fork progression possess recombination hotspot activity and can form potential fragile sites. Here we used the fission yeast, Schizosaccharomyces pombe, to demonstrate that hotspot activity is not a universal feature of replication fork barriers (RFBs), and we propose that most sites within the genome that form RFBs do not have recombination hotspot activity under nonstressed conditions. We further demonstrate that Swi1, the TIMELESS homologue, differentially controls the recombination potential of RFBs, switching between being a suppressor and an activator of recombination in a site-specific fashion.

  10. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    Science.gov (United States)

    2012-01-01

    Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose following a Michaelis

  11. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    Directory of Open Access Journals (Sweden)

    Amore Antonella

    2012-12-01

    Full Text Available Abstract Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose

  12. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Science.gov (United States)

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  13. Molecular cloning of chicken metallothionein. Deduction of the complete amino acid sequence and analysis of expression using cloned cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Wei, D; Andrews, G K

    1988-01-25

    A cDNA library was constructed using RNA isolated from the livers of chickens which had been treated with zinc. This library was screened with a RNA probe complementary to mouse metallothionein-I (MT), and eight chicken MT cDNA clones were obtained. All of the cDNA clones contained nucleotide sequences homologous to regions of the longest (375 bp) cDNA clone. The latter contained an open reading frame of 189 bp, and the deduced amino acid sequence indicates a protein of 63 amino acids of which 20 are cysteine residues. Amino acid composition and partial amino acid sequence analyses of purified chicken MT protein agreed with the amino acid composition and sequence deduced from the cloned cDNA. Amino acid sequence comparison establish that chicken MT shares extensive homology with mammalian MTs. Southern blot analysis of chicken DNA indicates that the chicken MT gene is not a part of a large family of related sequences, but rather is likely to be a unique gene sequence. In the chicken liver, levels of chicken MT mRNA were rapidly induced by metals (Cd/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/), glucocorticoids and lipopolysaccharide. MT mRNA was present in low levels in embryonic liver and increased to high levels during the first week after hatching before decreasing again to the basal levels found in adult liver. The results of this study establish that MT is highly conserved between birds and mammals and is regulated in the chicken by agents which also regulate expression of mammalian MT genes. However, in contrast to the mammals, the results suggest the existence of a single isoform of MT in the chicken.

  14. Cloning of cDNA sequences of a progestin-regulated mRNA from MCF7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chalbos, D; Westley, B; Alibert, C; Rochefort, H

    1986-01-24

    A cDNA clone corresponding to an mRNA regulated by the progestin R5020, has been isolated by differential screening of a cDNA library from the MCF7 breast cancer cell line, which contains estrogen and progesterone receptors. This probe hybridized with a single species of poly A + RNA of 8-kb molecular weight as shown by Northern blot analysis and could also be used to total RNA preparation. This recombinant cone hybridized specifically to an mRNA coding for a 250,000 daltons protein when translated in vitro. This protein was identical to the 250 kDa progestin-regulated protein that the authors previously described as shown by immunoprecipitation with specific rabbit polyclonal antibodies. Dose-response curve and specificity studies show that the accumulation of the Pg8 mRNA and that of the 250-kDa protein was increased by 5 to 30-fold following progestin treatment and that this effect was mediated by the progesterone receptor. Time course of induction indicated that the accumulation of mRNA was rapid and preceded that of the protein. This is the first report on a cloned cDNA probe of progestin-regulated mRNA in human cell lines.

  15. Cloning, molecular characterization and expression of a cDNA encoding a functional NADH-cytochrome b5 reductase from Mucor racemosus PTCC 5305 in E. coli

    Directory of Open Access Journals (Sweden)

    NED A SETAYESH

    2009-01-01

    Full Text Available The present work aims to study a new NADH-cytochrome b5 reductase (cb5r from Mucor racemosus PTCC 5305. A cDNA coding for cb s r was isolated from a Mucor racemosus PTCC 5305 cDNA library. The nucleotide sequence of the cDNA including coding and sequences flanking regions was determined. The open reading frame starting from ATG and ending with TAG stop codon encoded 228 amino acids and displayed the closest similarity (73% with Mortierella alpina cb s r. Lack of hydrophobic residues in the N-terminal sequence was apparent, suggesting that the enzyme is a soluble isoform. The coding sequence was then cloned in the pET16b transcription vector carrying an N-terminal-linked His-Tag® sequence and expressed in Escherichia coli BL21 (DE3. The enzyme was then homogeneously purified by a metal affinity column. The recombinant Mucor enzyme was shown to have its optimal activity at pH and temperature of about 7.5 and 40 °C, respectively. The apparent Km value was calculated to be 13 μM for ferricyanide. To our knowledge, this is the first report on cloning and expression of a native fungal soluble isoform of NADH-cytochrome b5 reductase in E. coli.

  16. cDNA cloning and mRNA expression of cat and dog Cdkal1

    Directory of Open Access Journals (Sweden)

    Sako T

    2012-08-01

    Full Text Available Ichiro Yamamoto, Shingo Ishikawa, Li Gebin, Hiroshi Takemitsu, Megumi Fujiwara, Nobuko Mori, Yutaka Hatano, Tomoko Suzuki, Akihiro Mori, Nobuhiro Nakao, Koh Kawasumi, Toshinori Sako, Toshiro AraiLaboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, Tokyo, JapanAbstract: The cyclin-dependent kinase 5 regulatory subunit–associated protein 1–like 1 (CDKAL1 gene encodes methylthiotransferase, and the gene contains risk variants for type 2 diabetes in humans. In this study, we performed complementary DNA cloning for Cdkal1 in the cat and dog and characterized the tissue expression profiles of its messenger RNA. Cat and dog Cdkal1 complementary DNA encoded 576 and 578 amino acids, showing very high sequence homology to mammalian CDKAL1 (>88.4%. Real-time polymerase chain reaction analyses revealed that Cdkal1 messenger RNA is highly expressed in smooth muscle and that tissue distribution of Cdkal1 is similar in cats and dogs. Genotyping analysis of single-nucleotide polymorphism for cat Cdkal1 revealed that obese cats had different tendencies from normal cats. These findings suggest that the cat and dog Cdkal1 gene is highly conserved among mammals and that cat Cdkal1 may be a candidate marker for genetic diagnosis of obesity.Keywords: cat, dog, Cdkal1, obese, cDNA cloning, Q-PCR

  17. Regulatory Control of the Resolution of DNA Recombination Intermediates during Meiosis and Mitosis

    OpenAIRE

    Matos, Joao; Blanco, Miguel G.; Maslen, Sarah; Skehel, J. Mark; West, Stephen C.

    2011-01-01

    The efficient and timely resolution of DNA recombination intermediates is essential for bipolar chromosome segregation. Here, we show that the specialized chromosome segregation patterns of meiosis and mitosis, which require the coordination of recombination with cell-cycle progression, are achieved by regulating the timing of activation of two crossover-promoting endonucleases. In yeast meiosis, Mus81-Mms4 and Yen1 are controlled by phosphorylation events that lead to their sequential activa...

  18. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry.

    Science.gov (United States)

    Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin

    2011-09-01

    A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.

  19. Single-Molecule Tethered Particle Motion: Stepwise Analyses of Site-Specific DNA Recombination

    Directory of Open Access Journals (Sweden)

    Hsiu-Fang Fan

    2018-05-01

    Full Text Available Tethered particle motion/microscopy (TPM is a biophysical tool used to analyze changes in the effective length of a polymer, tethered at one end, under changing conditions. The tether length is measured indirectly by recording the Brownian motion amplitude of a bead attached to the other end. In the biological realm, DNA, whose interactions with proteins are often accompanied by apparent or real changes in length, has almost exclusively been the subject of TPM studies. TPM has been employed to study DNA bending, looping and wrapping, DNA compaction, high-order DNA–protein assembly, and protein translocation along DNA. Our TPM analyses have focused on tyrosine and serine site-specific recombinases. Their pre-chemical interactions with DNA cause reversible changes in DNA length, detectable by TPM. The chemical steps of recombination, depending on the substrate and the type of recombinase, may result in a permanent length change. Single molecule TPM time traces provide thermodynamic and kinetic information on each step of the recombination pathway. They reveal how mechanistically related recombinases may differ in their early commitment to recombination, reversibility of individual steps, and in the rate-limiting step of the reaction. They shed light on the pre-chemical roles of catalytic residues, and on the mechanisms by which accessory proteins regulate recombination directionality.

  20. In vitro recombination of bacteriophage T7 DNA damaged by uv radiation

    International Nuclear Information System (INIS)

    Masker, W.E.; Kuemmerle, N.B.

    1980-01-01

    A system capable of in vitro packaging of exogenous bacteriophage T7 DNA has been used to monitor the biological activity of DNA replicated in vitro. This system has been used to follow the effects of uv radiation on in vitro replication and recombination. During the in vitro replication process, a considerable exchange of genetic information occurs between T7 DNA molecules present in the reaction mixture. This in vitro recombination is reflected in the genotype of the T7 phage produced after in vitro encapsulation; depending on the genetic markers selected, recombinants can comprise nearly 20% of the total phage production. When uv-irradiated DNA is incubated in this system, the amount of in vitro synthesis is reduced and the total amount of viable phage produced after in vitro packaging is diminished. In vitro recombination rates are also lower when the participating DNA molecules have been exposed to uv. However, biochemical and genetic measurements confirmed that there is little or no transfer of pyrimidine dimers from irradiated DNA into undamaged molecules

  1. cDNA Cloning, Overexpression, Purification and Pharmacologic Evaluation for Anticancer Activity of Ribosomal Protein L23A Gene (RPL23A from the Giant Panda

    Directory of Open Access Journals (Sweden)

    Si-Nan Zhang

    2012-02-01

    Full Text Available RPL23A gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L23P family of ribosomal proteins, which is located in the cytoplasm. The purpose of this paper was to explore the structure and anti-cancer function of ribosomal protein L23A (RPL23A gene of the Giant Panda (Ailuropoda melanoleuca. The cDNA of RPL23A was cloned successfully from the Giant Panda using RT-PCR technology. We constructed a recombinant expression vector containing RPL23A cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified by using Ni chelating affinity chromatography. Recombinant protein of RPL23A obtained from the experiment acted on Hep-2 cells and human HepG-2 cells, then the growth inhibitory effect of these cells was observed by MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay. The result indicated that the length of the fragment cloned is 506 bp, and it contains an open-reading frame (ORF of 471 bp encoding 156 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL23A protein is 17.719 kDa with a theoretical pI 11.16. The molecular weight of the recombinant protein RPL23A is 21.265 kDa with a theoretical pI 10.57. The RPL23A gene can be really expressed in E. coli and the RPL23A protein, fusioned with the N-terminally His-tagged protein, gave rise to the accumulation of an expected 22 KDa polypeptide. The data showed that the recombinant protein RPL23A had a time- and dose-dependency on the cell growth inhibition rate. The data also indicated that the effect at low concentrations was better than at high concentrations on Hep-2 cells, and that the concentration of 0.185 μg/mL had the best rate of growth inhibition of 36.31%. All results of the experiment revealed that the recombinant protein RPL23A exhibited anti-cancer function on the Hep-2 cells. The study provides a scientific basis and aids

  2. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    OpenAIRE

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding t...

  3. Cloning of the DNA Repair Gene, Uvsf, by Transformation of Aspergillus Nidulans

    OpenAIRE

    Oza, K.; Kafer, E.

    1990-01-01

    As a first step in the cloning of the DNA repair gene uvsF of Aspergillus nidulans, uvsF pyrG double mutant strains were transformed with a genomic library which carried the complementing Neurospora pyr-4 gene in the vector. Rare pyr(+) uvs(+) cotransformants were obtained on media lacking pyrimidines, overlayed with MMS (methyl-methane sulfonate) to which uvsF is hypersensitive. Among MMS-resistant transformants, Southerns revealed two types which showed single bands of different sizes when ...

  4. DNA hybrids suggesting a recombination process repairing radiation-induced DNA double-strand breaks in Ehrlich Ascites tumor cells

    International Nuclear Information System (INIS)

    Barthel, H.R.

    1984-01-01

    The results presented suggest the possibility of repair of DNA double-strand breaks by recombination, at least in the S and G 2 -phases of the cell cycle, in mammalian cells. Further experiments with synchronized cell cultures will have to show whether this process may also occur in the G 1 -phase of the cell cycle. (orig./AJ) [de

  5. Role of teh Rad52 Amino-terminal DNA Binding Activity in DNA Strand Capture in Homologous Recombination

    DEFF Research Database (Denmark)

    Shi, Idina; Hallwyl, Swee Chuang Lim; Seong, Changhyun

    2009-01-01

    Saccharomyces cerevisiae Rad52 protein promotes homologous recombination by nucleating the Rad51 recombinase onto replication protein A-coated single-stranded DNA strands and also by directly annealing such strands. We show that the purified rad52-R70A mutant protein, with a compromised amino-ter...

  6. Isolation and sequence analysis of a cDNA clone encoding the fifth complement component

    DEFF Research Database (Denmark)

    Lundwall, Åke B; Wetsel, Rick A; Kristensen, Torsten

    1985-01-01

    DNA clone of 1.85 kilobase pairs was isolated. Hybridization of the mixed-sequence probe to the complementary strand of the plasmid insert and sequence analysis by the dideoxy method predicted the expected protein sequence of C5a (positions 1-12), amino-terminal to the anticipated priming site. The sequence......, subcloned into M13 mp8, and sequenced at random by the dideoxy technique, thereby generating a contiguous sequence of 1703 base pairs. This clone contained coding sequence for the C-terminal 262 amino acid residues of the beta-chain, the entire C5a fragment, and the N-terminal 98 residues of the alpha......'-chain. The 3' end of the clone had a polyadenylated tail preceded by a polyadenylation recognition site, a 3'-untranslated region, and base pairs homologous to the human Alu concensus sequence. Comparison of the derived partial human C5 protein sequence with that previously determined for murine C3 and human...

  7. Molecular and immunological characterization of a DNA-launched yellow fever virus 17D infectious clone.

    Science.gov (United States)

    Jiang, Xiaohong; Dalebout, Tim J; Lukashevich, Igor S; Bredenbeek, Peter J; Franco, David

    2015-04-01

    Yellow fever virus (YFV)-17D is an empirically developed, highly effective live-attenuated vaccine that has been administered to human beings for almost a century. YFV-17D has stood as a paradigm for a successful viral vaccine, and has been exploited as a potential virus vector for the development of recombinant vaccines against other diseases. In this study, a DNA-launched YFV-17D construct (pBeloBAC-FLYF) was explored as a new modality to the standard vaccine to combine the commendable features of both DNA vaccine and live-attenuated viral vaccine. The DNA-launched YFV-17D construct was characterized extensively both in cell culture and in mice. High titres of YFV-17D were generated upon transfection of the DNA into cells, whereas a mutant with deletion in the capsid-coding region (pBeloBAC-YF/ΔC) was restricted to a single round of infection, with no release of progeny virus. Homologous prime-boost immunization of AAD mice with both pBeloBAC-FLYF and pBeloBAC-YF/ΔC elicited specific dose-dependent cellular immune response against YFV-17D. Vaccination of A129 mice with pBeloBAC-FLYF resulted in the induction of YFV-specific neutralizing antibodies in all vaccinated subjects. These promising results underlined the potential of the DNA-launched YFV both as an alternative to standard YFV-17D vaccination and as a vaccine platform for the development of DNA-based recombinant YFV vaccines. © 2015.

  8. Modified-cytosine restriction-system-induced recombinant cloning artefacts in Escherichia coli

    DEFF Research Database (Denmark)

    Williamson, M R; Doherty, J P; Woodcock, D M

    1993-01-01

    .HpaII plus M.HhaI) or (2) methylated with M.SssI which methylates at all CpG dinucleotides. These two protocols generated theoretical levels of DNA methylation in the central fragment of 10.5% and 33%, respectively. The construct was transformed into a series of isogenic (recA+) bacterial strains that were...

  9. MEIOB targets single-strand DNA and is necessary for meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Benoit Souquet

    Full Text Available Meiotic recombination is a mandatory process for sexual reproduction. We identified a protein specifically implicated in meiotic homologous recombination that we named: meiosis specific with OB domain (MEIOB. This protein is conserved among metazoan species and contains single-strand DNA binding sites similar to those of RPA1. Our studies in vitro revealed that both recombinant and endogenous MEIOB can be retained on single-strand DNA. Those in vivo demonstrated the specific expression of Meiob in early meiotic germ cells and the co-localization of MEIOB protein with RPA on chromosome axes. MEIOB localization in Dmc1 (-/- spermatocytes indicated that it accumulates on resected DNA. Homologous Meiob deletion in mice caused infertility in both sexes, due to a meiotic arrest at a zygotene/pachytene-like stage. DNA double strand break repair and homologous chromosome synapsis were impaired in Meiob (-/- meiocytes. Interestingly MEIOB appeared to be dispensable for the initial loading of recombinases but was required to maintain a proper number of RAD51 and DMC1 foci beyond the zygotene stage. In light of these findings, we propose that RPA and this new single-strand DNA binding protein MEIOB, are essential to ensure the proper stabilization of recombinases which is required for successful homology search and meiotic recombination.

  10. RFLP for Duchenne muscular dystrophy cDNA clone 30-2

    Energy Technology Data Exchange (ETDEWEB)

    Walker, A P; Bartlett, R J; Laing, N G; Siddique, T; Yamaoka, L H; Chen, J C; Hung, W Y; Roses, A D [Duke Univ. Medical Center, Durham, NC (USA)

    1988-09-26

    30-2 is one of 6 cDNA clones which comprise the cDNA for the Duchenne muscular dystrophy gene. It is a 1.15 kb fragment in the EcoRI site of Bluescribe. TaqI (T{down arrow}CGA) identifies two bands with alleles at 3.7 and 3.5 kb, as well as eight constant bands at 9.0, 7.5, 4.6, 3.6, 3.4, 2.5, 1.7 and 1.4 kb. The allele frequency was studied in 47 unrelated DMD males: 3.7 kb allele 0.45; and 3.5 kb allele 0.55. Co-dominant X-linked segregation was demonstrated in two 2-generation families. 1.1% agarose gels required to resolve the bands. The polymorphism is also recognized by PERT 87-15.

  11. Utilization of a cloned alphoid repeating sequence of human DNA in the study of polymorphism of chromosomal heterochromatin regions

    International Nuclear Information System (INIS)

    Kruminya, A.R.; Kroshkina, V.G.; Yurov, Yu.B.; Aleksandrov, I.A.; Mitkevich, S.P.; Gindilis, V.M.

    1988-01-01

    The chromosomal distribution of the cloned PHS05 fragment of human alphoid DNA was studied by in situ hybridization in 38 individuals. It was shown that this DNA fraction is primarily localized in the pericentric regions of practically all chromosomes of the set. Significant interchromosomal differences and a weakly expressed interindividual polymorphism were discovered in the copying ability of this class of repeating DNA sequences; associations were not found between the results of hybridization and the pattern of Q-polymorphism

  12. Cloning and Expression of Recombinant Nucleoprotein of Influenza H1N1

    Directory of Open Access Journals (Sweden)

    Somaie Tavakoli

    2015-04-01

    Full Text Available Background: Influenza virus is the major cause of lower respiratory tract illnesses on the worldwide. Vaccination can be an effective tool to prevent its outbreak. Highly conserved viral nucleoprotein is an effective vaccine candidate to provide heterosubtypic immunity, offering resistance against various influenza virus strains.Materials and Methods: In present research NP gene was inserted in pET-22b expression vector. New construct (pET-22b/NP was transformed into E. coli BL21 (DE3 strain and the expression of nucleoprotein was induced by IPTG. It was analyzed by SDS-PAGE and confirmed by Western blotting.Results: Western blotting confirmed the expression and production of recombinant Influenza nucleoprotein.Conclusion: These results suggest that the codon-optimized influenza A virus NP gene can be efficiently expressed in E. coli.

  13. Molecular cloning and characterization of an acetylcholinesterase cDNA in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.

  14. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    Science.gov (United States)

    1987-10-13

    after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell

  15. Isolation and characterization of a replication-competent molecular clone of an HIV-1 circulating recombinant form (CRF33_01B.

    Directory of Open Access Journals (Sweden)

    Kok Keng Tee

    Full Text Available A growing number of emerging HIV-1 recombinants classified as circulating recombinant forms (CRFs have been identified in Southeast Asia in recent years, establishing a molecular diversity of increasing complexity in the region. Here, we constructed a replication-competent HIV-1 clone for CRF33_01B (designated p05MYKL045.1, a newly identified recombinant comprised of CRF01_AE and subtype B. p05MYKL045.1 was reconstituted by cloning of the near full-length HIV-1 sequence from a newly-diagnosed individual presumably infected heterosexually in Kuala Lumpur, Malaysia. The chimeric clone, which contains the 5' LTR (long terminal repeat region of p93JP-NH1 (a previously isolated CRF01_AE infectious clone, showed robust viral replication in the human peripheral blood mononuclear cells. This clone demonstrated robust viral propagation and profound syncytium formation in CD4+, CXCR4-expressing human glioma NP-2 cells, indicating that p05MYKL045.1 is a CXCR4-using virus. Viral propagation, however, was not detected in various human T cell lines including MT-2, M8166, Sup-T1, H9, Jurkat, Molt-4 and PM1. p05MYKL045.1 appears to proliferate only in restricted host range, suggesting that unknown viral and/or cellular host factors may play a role in viral infectivity and replication in human T cell lines. Availability of a CRF33_01B molecular clone will be useful in facilitating the development of vaccine candidates that match the HIV-1 strains circulating in Southeast Asia.

  16. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  17. Construction and characterization of the alpha form of a cardiac myosin heavy chain cDNA clone and its developmental expression in the Syrian hamster.

    OpenAIRE

    Liew, C C; Jandreski, M A

    1986-01-01

    A cDNA clone, pVHC1, was isolated from a Syrian hamster heart cDNA library and was compared to the rat alpha (pCMHC21) and beta (pCMHC5) ventricular myosin heavy chain cDNA clones. The DNA sequence and amino acid sequence deducted from the DNA show more homology with pCMHC21 than pCMHC5. This indicates that pVHC1 is an alpha ventricular myosin heavy chain cDNA clone. However, even though pVHC1 shows a high degree of nucleotide and amino acid conservation with the rat myosin heavy chain sequen...

  18. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B.

    Directory of Open Access Journals (Sweden)

    Monica K Akre

    Full Text Available Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80-90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.

  19. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    International Nuclear Information System (INIS)

    Fletcher, H.L.

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is. (orig./AJ)

  20. Resistance to radiation, recombination, repair of DNA and chromosome organisation

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, H L [East Anglia Univ., Norwich (UK). School of Biological Sciences

    1981-01-01

    The model advanced here proposes that death is caused by destructive lesions, mainly double-strand breaks, in all the inter-repairable copies so close together that recombination repair cannot function. Death is related to the exponential of dose where r is the number of copies of the genome. A graph of ln(-ln survival) against ln dose is used to produce a linear dose-survival relationship, the slope of which gives the number of inter-repairable copies of the genome (= number of hits per lethal event). In Ustilago maydis it seems that unless all the chromatids are broken within a few thousand base pairs all ds breaks are repaired. The size of this critical target is similar to the size of a gene. Meiotic pairing in fungi starts outside the genes, and it is therefore suggested that specific pairing sites between genes define the ends of the targets. The model also describes the radiation-induced death of Micrococcus radiodurans and Sacchromyces cerevisiae. Cultured mammalian cells also show a linear ln(-ln survival)/ln dose relationship with a slope of 1.5 showing that both 1st and 2nd order killing occured. Sublethal radiation induces recombination in heterozygous diploid U. maydis proportional to the square of the dose. Sister-chromatid repair is preferred. Polyploid yeast can only use pairs of chromosomes for repair, showing that chromosome pairing is required for recombination repair, and mitotic pairing is restricted to bivalents in the same way that meiotic pairing is.

  1. Phenol emulsion-enhanced DNA-driven subtractive cDNA cloning: isolation of low-abundance monkey cortex-specific mRNAs

    International Nuclear Information System (INIS)

    Travis, G.H.; Sutcliffe, J.G.

    1988-01-01

    To isolate cDNA clones of low-abundance mRNAs expressed in monkey cerebral cortex but absent from cerebellum, the authors developed an improved subtractive cDNA cloning procedure that requires only modest quantities of mRNA. Plasmid DNA from a monkey cerebellum cDNA library was hybridized in large excess to radiolabeled monkey cortex cDNA in a phenol emulsion-enhanced reaction. The unhybridized cortex cDNA was isolated by chromatography on hydroxyapatite and used to probe colonies from a monkey cortex cDNA library. Of 60,000 colonies screened, 163 clones were isolated and confirmed by colony hybridization or RNA blotting to represent mRNAs, ranging from 0.001% to 0.1% abundance, specific to or highly enriched in cerebral cortex relative to cerebellum. Clones of one medium-abundance mRNA were recovered almost quantitatively. Two of the lower-abundance mRNAs were expressed at levels reduced by a factor of 10 in Alzheimer disease relative to normal human cortex. One of these was identified as the monkey preprosomatostatin I mRNA

  2. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.

    Science.gov (United States)

    Thomason, Lynn C; Costantino, Nina; Court, Donald L

    2016-09-13

    Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion. Bacteriophage homologous recombination systems are widely used for in vivo genetic engineering in bacteria. Single- or double-stranded linear DNA substrates containing short flanking homologies to chromosome targets are used to generate precise and accurate genetic modifications when introduced into bacteria expressing phage recombinases. Understanding the molecular mechanism of these recombination systems will facilitate improvements in the technology. Here, two phage-specific systems are shown to require exposure of complementary single-strand homologous targets for efficient recombination; these single

  3. A Novel Cold-Active Lipase from Candida albicans: Cloning, Expression and Characterization of the Recombinant Enzyme

    Directory of Open Access Journals (Sweden)

    Dong-Ming Lan

    2011-06-01

    Full Text Available A novel lipase gene lip5 from the yeast Candida albicans was cloned and sequenced. Alignment of amino acid sequences revealed that 86–34% identity exists with lipases from other Candida species. The lipase and its mutants were expressed in the yeast Pichia pastoris, where alternative codon usage caused the mistranslation of 154-Ser and 293-Ser as leucine. 154-Ser to leucine resulted in loss of expression of Lip5, and 293-Ser to leucine caused a marked reduction in the lipase activity. Lip5-DM, which has double mutations that revert 154 and 293 to serine residues, showed good lipase activity, and was overexpressed and purified by (NH42SO4 precipitation and ion-exchange chromatography. The pure Lip5-DM was stable at low temperatures ranging from 15–35 °C and pH 5–9, with the optimal conditions being 15–25 °C and pH 5–6. The activation energy of recombinant lipase was 8.5 Kcal/mol between 5 and 25 °C, suggesting that Lip5-DM was a cold–active lipase. Its activity was found to increase in the presence of Zn2+, but it was strongly inhibited by Fe2+, Fe3+, Hg2+ and some surfactants. In addition, the Lip5-DM could not tolerate water-miscible organic solvents. Lip5-DM exhibited a preference for the short- and medium-chain length p-nitrophenyl (C4 and C8 acyl group esters rather than the long chain length p-nitrophenyl esters (C12, C16 and C18 acyl group with highest activity observed with the C8 derivatives. The recombinant enzyme displayed activity toward triacylglycerols, such as olive oil and safflower oil.

  4. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  5. Cre-dependent DNA recombination activates a STING-dependent innate immune response

    Science.gov (United States)

    Pépin, Geneviève; Ferrand, Jonathan; Höning, Klara; Jayasekara, W. Samantha N.; Cain, Jason E.; Behlke, Mark A.; Gough, Daniel J.; G. Williams, Bryan R.; Hornung, Veit

    2016-01-01

    Abstract Gene-recombinase technologies, such as Cre/loxP-mediated DNA recombination, are important tools in the study of gene function, but have potential side effects due to damaging activity on DNA. Here we show that DNA recombination by Cre instigates a robust antiviral response in mammalian cells, independent of legitimate loxP recombination. This is due to the recruitment of the cytosolic DNA sensor STING, concurrent with Cre-dependent DNA damage and the accumulation of cytoplasmic DNA. Importantly, we establish a direct interplay between this antiviral response and cell–cell interactions, indicating that low cell densities in vitro could be useful to help mitigate these effects of Cre. Taking into account the wide range of interferon stimulated genes that may be induced by the STING pathway, these results have broad implications in fields such as immunology, cancer biology, metabolism and stem cell research. Further, this study sets a precedent in the field of gene-engineering, possibly applicable to other enzymatic-based genome editing technologies. PMID:27166376

  6. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    International Nuclear Information System (INIS)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from λgt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A) + RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species

  7. Isolation and characterization of cDNA clones for human erythrocyte β-spectrin

    International Nuclear Information System (INIS)

    Prchal, J.T.; Morley, B.J.; Yoon, S.H.; Coetzer, T.L.; Palek, J.; Conboy, J.G.; Kan, Y.W.

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical α (M/sub r/ 240,000) and β (M/sub r/ 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. The authors report here the isolation and characterization of a human erythroid-specific β-spectrin cDNA clone that encodes parts of the β-9 through β-12 repeat segments. This cDNA was used as a hybridization probe to assign the β-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte β-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the β-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities

  8. Selection of LNA-containing DNA aptamers against recombinant human CD73

    DEFF Research Database (Denmark)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G

    2015-01-01

    tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences......LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX...... with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several...

  9. Are High School Students Ready for Recombinant DNA?: The UOP Experience.

    Science.gov (United States)

    Minch, Michael J.

    1989-01-01

    Discusses a three-week summer college honors course for talented high school juniors with three exams, lab six days a week, a research paper, field trips, and student panel discussions. Presents an overview of the course. Describes the lab which uses "E. coli" for DNA recombination. (MVL)

  10. The "Frankenplasmid" Lab: An Investigative Exercise for Teaching Recombinant DNA Methods

    Science.gov (United States)

    Dean, Derek M.; Wilder, Jason A.

    2011-01-01

    We describe an investigative laboratory module designed to give college undergraduates strong practical and theoretical experience with recombinant DNA methods within 3 weeks. After deducing restriction enzyme maps for two different plasmids, students ligate the plasmids together in the same reaction, transform "E. coli" with this mixture of…

  11. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry.

    Science.gov (United States)

    Babrak, Lmar; McGarvey, Jeffery A; Stanker, Larry H; Hnasko, Robert

    2017-10-01

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibodies (rAb). This determination can be achieved by sequence analysis of immunoglobulin (Ig) transcripts obtained from a monoclonal antibody (MAb) producing hybridoma and subsequent expression of a rAb. However the polyploidy nature of a hybridoma cell often results in the added expression of aberrant immunoglobulin-like transcripts or even production of anomalous antibodies which can confound production of rAb. An incorrect VR sequence will result in a non-functional rAb and de novo assembly of Ig primary structure without a sequence map is challenging. To address these problems, we have developed a methodology which combines: 1) selective PCR amplification of VR from both the heavy and light chain IgG from hybridoma, 2) molecular cloning and DNA sequence analysis and 3) tandem mass spectrometry (MS/MS) on enzyme digests obtained from the purified IgG. Peptide analysis proceeds by evaluating coverage of the predicted primary protein sequence provided by the initial DNA maps for the VR. This methodology serves to both identify and verify the primary structure of the MAb VR for production as rAb. Published by Elsevier Ltd.

  12. Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12

    Directory of Open Access Journals (Sweden)

    Ramli Aizi

    2011-11-01

    Full Text Available Abstract Background Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14 play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food. Results A gene encoding a cold-adapted chitinase (CHI II from Glaciozyma antarctica PI12 was isolated using Rapid Amplification of cDNA Ends (RACE and RT-PCR techniques. The isolated gene was successfully expressed in the Pichia pastoris expression system. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 1,215 bp, which encodes a 404 amino acid protein. The recombinant chitinase was secreted into the medium when induced with 1% methanol in BMMY medium at 25°C. The purified recombinant chitinase exhibited two bands, corresponding to the non-glycosylated and glycosylated proteins, by SDS-PAGE with molecular masses of approximately 39 and 50 kDa, respectively. The enzyme displayed an acidic pH characteristic with an optimum pH at 4.0 and an optimum temperature at 15°C. The enzyme was stable between pH 3.0-4.5 and was able to retain its activity from 5 to 25°C. The presence of K+, Mn2+ and Co2+ ions increased the enzyme activity up to 20%. Analysis of the insoluble substrates showed that the purified recombinant chitinase had a strong affinity towards colloidal chitin and little effect on glycol chitosan. CHI II recombinant chitinase exhibited higher Vmax and Kcat values toward colloidal chitin than other substrates at low

  13. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes

    International Nuclear Information System (INIS)

    Cole, G.M.; Mortimer, R.K.

    1989-01-01

    The Saccharomyces cerevisiae RAD54 gene is transcriptionally regulated by a broad spectrum of DNA-damaging agents. Induction of RAD54 by DNA-damaging agents is under positive control. Sequences responsible for DNA damage induction (the DRS element) lie within a 29-base-pair region from -99 to -70 from the most proximal transcription start site. This inducible promoter element is functionally separable from a poly(dA-dT) region immediately downstream which is required for constitutive expression. Deletions which eliminate induction of RAD54 transcription by DNA damage but do not affect constitutive expression have no effect on growth or survival of noninducible strains relative to wild-type strains in the presence of DNA-damaging agents. The DRS element is also not required for homothallic mating type switching, transcriptional induction of RAD54 during meiosis, meiotic recombination, or spontaneous or X-ray-induced mitotic recombination. We find no phenotype for a lack of induction of RAD54 message via the damage-inducible DRS, which raises significant questions about the physiology of DNA damage induction in S. cerevisiae

  14. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    Science.gov (United States)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  15. Functional Cloning and Expression of the Schizophyllum commune Glucuronoyl Esterase Gene and Characterization of the Recombinant Enzyme

    Science.gov (United States)

    Wong, Dominic W. S.; Chan, Victor J.; McCormack, Amanda A.; Hirsch, Ján; Biely, Peter

    2012-01-01

    The gene encoding Schizophyllum commune glucuronoyl esterase was identified in the scaffold 17 of the genome, containing two introns of 50 bp and 48 bp, with a transcript sequence of 1179 bp. The gene was synthesized and cloned into Pichia pastoris expression vector pGAPZα to achieve constitutive expression and secretion of the recombinant enzyme in soluble active form. The purified protein was 53 kD with glycosylation and had an acidic pI of 3.7. Activity analysis on several uronic acids and their derivatives suggests that the enzyme recognized only esters of 4-O-methyl-D-glucuronic acid derivatives, even with a 4-nitrophenyl aglycon but did not hydrolyze the ester of D-galacturonic acid. The kinetic values were K m 0.25 mM, V max 16.3 μM·min−1, and k cat 9.27 s−1 with 4-nitrophenyl 2-O-(methyl 4-O-methyl-α-D-glucopyranosyluronate)-β-D-xylopyranoside as the substrate. PMID:22844600

  16. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    Science.gov (United States)

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients.

  17. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis

    International Nuclear Information System (INIS)

    Midha, Shuchi; Mishra, Rajeev; Aziz, M.A.; Sharma, Meenakshi; Mishra, Ashish; Khandelwal, Puneet; Bhatnagar, Rakesh

    2005-01-01

    Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with L-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of L-arginine, N ω -hydroxy-L-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS-like protein

  18. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  19. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III; Billheimer, J.T.

    1991-01-01

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP 2 ). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP 2 amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP 2 . The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A) + RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP 2 gene in the human genome or that the SCP 2 gene is very large. Coexpression of the SCP 2 cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP 2 plays a role in regulating steroidogenesis, among other possible functions

  20. Growth hormone and prolactin in Andrias davidianus: cDNA cloning, tissue distribution and phylogenetic analysis.

    Science.gov (United States)

    Yang, Liping; Meng, Zining; Liu, Yun; Zhang, Yong; Liu, Xiaochun; Lu, Danqi; Huang, Junhai; Lin, Haoran

    2010-01-15

    The Chinese giant salamander (Andrias davidianus) is one of the largest and 'living fossil' species of amphibian. To obtain genetic information for this species, the cDNAs encoding growth hormone (adGH) and prolactin (adPRL) were cloned from a pituitary cDNA library. The isolated adGH cDNA consisted of 864 bp and encoded a propeptide of 215 amino acids, while the cDNA of adPRL was 1106 bp in length and encoded a putative peptide of 229 amino acids. Expression of the GH and PRL mRNA was only detected in the pituitary. Phylogenetic analyses were performed based on the isolated pituitary hormone sequences using maximum parsimony and neighbor-joining algorithms. The clustering results are similar to that based on the morphological characteristics or the rRNA genes, which indicate that the two orders (Anura and Caudata) of amphibian were monophyletic, and that A. davidianus was diverged early in the Caudate clade. These results indicated that both the GH and PRL sequence might be useful to study the phylogenies of relatively moderate evolved groups.

  1. Characterization of DNA binding, transcriptional activation, and regulated nuclear association of recombinant human NFATp

    Directory of Open Access Journals (Sweden)

    Seto Anita G

    2000-11-01

    Full Text Available Abstract Background NFATp is one member of a family of transcriptional activators whose nuclear accumulation and hence transcriptional activity is regulated in mammalian cells. Human NFATp exists as a phosphoprotein in the cytoplasm of naive T cells. Upon antigen stimulation, NFATp is dephosphorylated, accumulates in nuclei, and functions to regulate transcription of genes including those encoding cytokines. While the properties of the DNA binding domain of NFATp have been investigated in detail, biochemical studies of the transcriptional activation and regulated association with nuclei have remained unexplored because of a lack of full length, purified recombinant NFATp. Results We developed methods for expressing and purifying full length recombinant human NFATp that has all of the properties known to be associated with native NFATp. The recombinant NFATp binds DNA on its own and cooperatively with AP-1 proteins, activates transcription in vitro, is phosphorylated, can be dephosphorylated by calcineurin, and exhibits regulated association with nuclei in vitro. Importantly, activation by recombinant NFATp in a reconstituted transcription system required regions of the protein outside of the central DNA binding domain. Conclusions We conclude that NFATp is a bona fide transcriptional activator. Moreover, the reagents and methods that we developed will facilitate future studies on the mechanisms of transcriptional activation and nuclear accumulation by NFATp, a member of an important family of transcriptional regulatory proteins.

  2. Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme

    International Nuclear Information System (INIS)

    Abbotts, J.; SenGupta, D.N.; Zmudzka, B.; Widen, S.G.; Notario, V.; Wilson, S.H.

    1988-01-01

    The coding region of a human β-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with β-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as β-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural β-polymerases. The purified enzyme was free of nuclease activity. The authors studied detailed catalytic properties of the recombinant β-polymerase using defined template-primer systems. The results indicate that this β-polymerase is essentially identical with natural β-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and a double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N 3 -methyl-dT or O 6 -methyl-dG

  3. Radioactive and enzymatic cloned cDNA probes for bovine enteric coronavirus detection by molecular hybridization

    International Nuclear Information System (INIS)

    Collomb, J.; Finance, C.; Alabouch, S.; Laporte, J.

    1992-01-01

    Genomic RNA of F15 strain bovine enteric coronavirus (BECV) was cloned in E. coli. Three clones (174, 160, PG 78), selected in the cDNA library, including a large portion of the nucleocapsid (N), matrix (M) and peplomeric (S) protein genes , were used as probes for a slot blot hybridization assay. Two probe labelling techniques were compared, radiolabelling with 32 P and enzymatic labelling through covalent linkage to peroxidase and chemiluminescence detection. The radioactive probe 174 detected as little as 1 to 3 pg of viral RNA, while the less sensitive enzymatic probe could not reveal more than 100 pg of RNA. No significant detection amplification was achieved when a mixture of the three probes was used. Probe 174 allowed specific identification for BECV. No hybridization was noticed either with rotaviruses or even with other antigenically unrelated members of the family Coronaviridae such as transmissible gastroenteritis virus. The test proved valid for detection of BECV in the supernatant of infected HRT-18 cells: genomic RNA could be detected after direct spotting of samples, but prior nucleic acid extraction after proteinase K treatment improved virus detection. BECV diagnosis in faecal samples using enzymatic probe was compared with conventional diagnostic methods. (authors)

  4. Radioactive and enzymatic cloned cDNA probes for bovine enteric coronavirus detection by molecular hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Collomb, J; Finance, C; Alabouch, S [Lab. de Microbiologie Moleculaire, Faculte des Sciences Pharmaceutiques et Biologiques, Univ. de Nancy I, Nancy (France); Laporte, J [Station de Virologie et d' Immunologie Moleculaires, INRA, Jouy-en-Josas (France)

    1992-01-01

    Genomic RNA of F15 strain bovine enteric coronavirus (BECV) was cloned in E. coli. Three clones (174, 160, PG 78), selected in the cDNA library, including a large portion of the nucleocapsid (N), matrix (M) and peplomeric (S) protein genes , were used as probes for a slot blot hybridization assay. Two probe labelling techniques were compared, radiolabeled with [sup 32]P and enzymatic labeled through covalent linkage to peroxidase for chemiluminescence detection. The radioactive probe 174 detected as little as 1-3 pg of viral RNA, while the less sensitive enzymatic probe could not reveal more than 100 pg of RNA. No significant detection amplification was achieved when a mixture of the three probes was used. Probe 174 allowed specific identification for BECV. No hybridization was noticed either with rotaviruses or even with other antigenically unrelated members of the family Coronaviridae such as transmissible gastroenteritis virus. The test proved valid for detection of BECV in the supernatant of infected HRT-18 cells: genomic RNA could be detected after direct spotting of samples, but prior nucleic acid extraction after proteinase K treatment improved virus detection. BECV diagnosis in fecal samples using enzymatic probe was compared with conventional diagnostic methods. (authors).

  5. MPO cDNA clone identifies an RFLP with PstI

    Energy Technology Data Exchange (ETDEWEB)

    Miki, T; Weil, S C; Rosner, G L; Reid, M S; Kidd, K K

    1988-02-25

    A myeloperoxidase (MPO) cDNA clone (pHMP7: 270 base pair insert in the vector pGEM-1reverse arrow was isolated from a library created from human promyelocytic (HL-60) cell mRNA. PstI (CTGCA/G) (New England Biolabs) identifies a simple two-allele polymorphism with bands at either 2.2 kb (Al) or 2.0 kb (A2). There are three constant bands at 2.8 kb, 0.95 kb and 0.6 kb. Preliminary family data show evidence of linkage to several markers in proximal 17q, with MPO closest to the Growth Hormone cluster at 17q22-q24. Autosomal condominant segregation was observed in four large reference pedigrees with several informative matings.

  6. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development

    Science.gov (United States)

    The bacterial composition of chlorinated drinking water was analyzed using 16S rRNA gene clone libraries derived from DNA extracts of 12 samples and compared to clone libraries previously generated using RNA extracts from the same samples. Phylogenetic analysis of 761 DNA-based ...

  7. cDNA cloning of human DNA topoisomerase I. Catalytic activity of a 67.7-kDa carboxyl-terminal fragment

    International Nuclear Information System (INIS)

    D'Arpa, P.; Machlin, P.S.; Ratrie, H. III; Rothfield, N.F.; Cleveland, D.W.; Earnshaw, W.C.

    1988-01-01

    cDNA clones encoding human topoisomerase I were isolated from an expression vector library (λgt11) screened with autoimmune anti-topoisomerase I serum. One of these clones has been expressed as a fusion protein comprised of a 32-kDa fragment of the bacterial TrpE protein linked to 67.7 kDa of protein encoded by the cDNA. Three lines of evidence indicate that the cloned cDNA encodes topoisomerase I. (i) Proteolysis maps of the fusion protein and human nuclear topoisomerase I are essentially identical. (ii) The fusion protein relaxes supercoiled DNA, an activity that can be immunoprecipitated by anti-topoisomerase I serum. (iii) Sequence analysis has revealed that the longest cDNA clone (3645 base pairs) encodes a protein of 765 amino acids that shares 42% identity with Saccharomyces cerevisiae topoisomerase I. The sequence data also show that the catalytically active 67.7-kDa fragment is comprised of the carboxyl terminus

  8. Recovery of infectious pariacoto virus from cDNA clones and identification of susceptible cell lines.

    Science.gov (United States)

    Johnson, K N; Ball, L A

    2001-12-01

    Pariacoto virus (PaV) is a nodavirus that was recently isolated in Peru from the Southern armyworm, Spodoptera eridania. Virus particles are non enveloped and about 30 nm in diameter and have T=3 icosahedral symmetry. The 3.0-A crystal structure shows that about 35% of the genomic RNA is icosahedrally ordered, with the RNA forming a dodecahedral cage of 25-nucleotide (nt) duplexes that underlie the inner surface of the capsid. The PaV genome comprises two single-stranded, positive-sense RNAs: RNA1 (3,011 nt), which encodes the 108-kDa catalytic subunit of the RNA-dependent RNA polymerase, and RNA2 (1,311 nt), which encodes the 43-kDa capsid protein precursor alpha. In order to apply molecular genetics to the structure and assembly of PaV, we identified susceptible cell lines and developed a reverse genetic system for this virus. Cell lines that were susceptible to infection by PaV included those from Spodoptera exigua, Helicoverpa zea and Aedes albopictus, whereas cells from Drosophila melanogaster and Spodoptera frugiperda were refractory to infection. To recover virus from molecular clones, full-length cDNAs of PaV RNAs 1 and 2 were cotranscribed by T7 RNA polymerase in baby hamster kidney cells that expressed T7 RNA polymerase. Lysates of these cells were infectious both for cultured cells from Helicoverpa zea (corn earworm) and for larvae of Galleria mellonella (greater wax moth). The combination of infectious cDNA clones, cell culture infectivity, and the ability to produce milligram amounts of virus allows the application of DNA-based genetic methods to the study of PaV structure and assembly.

  9. Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor

    International Nuclear Information System (INIS)

    Dewji, N.N.; Wenger, D.A.; O'Brien, J.S.

    1987-01-01

    Two cDNA clones encoding prepro-sphingolipid activator protein 1 (SAP-1) were isolated from a λ gt11 human hepatoma expression library using polyclonal antibodies. These had inserts of ≅ 2 kilobases (λ-S-1.2 and λ-S-1.3) and both were both homologous with a previously isolated clone (λ-S-1.1) for mature SAP-1. The authors report here the nucleotide sequence of the longer two EcoRI fragments of S-1.2 and S-1.3 that were not the same and the derived amino acid sequences of mature SAP-1 and its prepro form. The open reading frame encodes 19 amino acids, which are colinear with the amino-terminal sequence of mature SAP-1, and extends far beyond the predicted carboxyl terminus of mature SAP-1, indicating extensive carboxyl-terminal processing. The nucleotide sequence of cDNA encoding prepro-SAP-1 includes 1449 bases from the assigned initiation codon ATG at base-pair 472 to the stop codon TGA at base-pair 1921. The first 23 amino acids coded after the initiation ATG are characteristic of a signal peptide. The calculated molecular mass for a polypeptide encoded by 1449 bases is ≅ 53 kDa, in keeping with the reported value for pro-SAP-1. The data indicate that after removal of the signal peptide mature SAP-1 is generated by removing an additional 7 amino acids from the amino terminus and ≅ 373 amino acids from the carboxyl terminus. One potential glycosylation site was previously found in mature SAP-1. Three additional potential glycosylation sites are present in the processed carboxyl-terminal polypeptide, which they designate as P-2

  10. Comparative Genomics of DNA Recombination and Repair in Cyanobacteria: Biotechnological Implications

    Science.gov (United States)

    Cassier-Chauvat, Corinne; Veaudor, Théo; Chauvat, Franck

    2016-01-01

    Cyanobacteria are fascinating photosynthetic prokaryotes that are regarded as the ancestors of the plant chloroplast; the purveyors of oxygen and biomass for the food chain; and promising cell factories for an environmentally friendly production of chemicals. In colonizing most waters and soils of our planet, cyanobacteria are inevitably challenged by environmental stresses that generate DNA damages. Furthermore, many strains engineered for biotechnological purposes can use DNA recombination to stop synthesizing the biotechnological product. Hence, it is important to study DNA recombination and repair in cyanobacteria for both basic and applied research. This review reports what is known in a few widely studied model cyanobacteria and what can be inferred by mining the sequenced genomes of morphologically and physiologically diverse strains. We show that cyanobacteria possess many E. coli-like DNA recombination and repair genes, and possibly other genes not yet identified. E. coli-homolog genes are unevenly distributed in cyanobacteria, in agreement with their wide genome diversity. Many genes are extremely well conserved in cyanobacteria (mutMS, radA, recA, recFO, recG, recN, ruvABC, ssb, and uvrABCD), even in small genomes, suggesting that they encode the core DNA repair process. In addition to these core genes, the marine Prochlorococcus and Synechococcus strains harbor recBCD (DNA recombination), umuCD (mutational DNA replication), as well as the key SOS genes lexA (regulation of the SOS system) and sulA (postponing of cell division until completion of DNA reparation). Hence, these strains could possess an E. coli-type SOS system. In contrast, several cyanobacteria endowed with larger genomes lack typical SOS genes. For examples, the two studied Gloeobacter strains lack alkB, lexA, and sulA; and Synechococcus PCC7942 has neither lexA nor recCD. Furthermore, the Synechocystis PCC6803 lexA product does not regulate DNA repair genes. Collectively, these findings

  11. Molecular cloning and sequence analysis of hamster CENP-A cDNA

    Directory of Open Access Journals (Sweden)

    Valdivia Manuel M

    2002-05-01

    Full Text Available Abstract Background The centromere is a specialized locus that mediates chromosome movement during mitosis and meiosis. This chromosomal domain comprises a uniquely packaged form of heterochromatin that acts as a nucleus for the assembly of the kinetochore a trilaminar proteinaceous structure on the surface of each chromatid at the primary constriction. Kinetochores mediate interactions with the spindle fibers of the mitotic apparatus. Centromere protein A (CENP-A is a histone H3-like protein specifically located to the inner plate of kinetochore at active centromeres. CENP-A works as a component of specialized nucleosomes at centromeres bound to arrays of repeat satellite DNA. Results We have cloned the hamster homologue of human and mouse CENP-A. The cDNA isolated was found to contain an open reading frame encoding a polypeptide consisting of 129 amino acid residues with a C-terminal histone fold domain highly homologous to those of CENP-A and H3 sequences previously released. However, significant sequence divergence was found at the N-terminal region of hamster CENP-A that is five and eleven residues shorter than those of mouse and human respectively. Further, a human serine 7 residue, a target site for Aurora B kinase phosphorylation involved in the mechanism of cytokinesis, was not found in the hamster protein. A human autoepitope at the N-terminal region of CENP-A described in autoinmune diseases is not conserved in the hamster protein. Conclusions We have cloned the hamster cDNA for the centromeric protein CENP-A. Significant differences on protein sequence were found at the N-terminal tail of hamster CENP-A in comparison with that of human and mouse. Our results show a high degree of evolutionary divergence of kinetochore CENP-A proteins in mammals. This is related to the high diverse nucleotide repeat sequences found at the centromere DNA among species and support a current centromere model for kinetochore function and structural

  12. B-G cDNA clones have multiple small repeats and hybridize to both chicken MHC regions

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1989-01-01

    We used rabbit antisera to the chicken MHC erythrocyte molecule B-G and to the class I alpha chain (B-F) to screen lambda gt11 cDNA expression libraries made with RNA selected by oligo-dT from bone marrow cells of anemic B19 homozygous chickens. Eight clones were found to encode B-G molecules which...

  13. Cloning of a cDNA encoding a novel human nuclear phosphoprotein belonging to the WD-40 family

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder

    1994-01-01

    We have cloned and expressed in vaccinia virus a cDNA encoding an ubiquitous 501-amino-acid (aa) phosphoprotein that corresponds to protein IEF SSP 9502 (79,400 Da, pI 4.5) in the master 2-D-gel keratinocyte protein database [Celis et al., Electrophoresis 14 (1993) 1091-1198]. The deduced aa...

  14. Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient

    NARCIS (Netherlands)

    Huizing, M.; Iacobazzi, V.; IJlst, L.; Savelkoul, P.; Ruitenbeek, W.; van den Heuvel, L.; Indiveri, C.; Smeitink, J.; Trijbels, F.; Wanders, R.; Palmieri, F.

    1997-01-01

    The carnitine-acylcarnitine carrier (CAC) catalyzes the translocation of long-chain fatty acids across the inner mitochondrial membrane. We cloned and sequenced the human CAC cDNA, which has an open reading frame of 903 nucleotides. Northern blot studies revealed different expression levels of CAC

  15. cDNA cloning and transcriptional controlling of a novel low dose radiation-induced gene and its function analysis

    International Nuclear Information System (INIS)

    Zhou Pingkun; Sui Jianli

    2002-01-01

    Objective: To clone a novel low dose radiation-induced gene (LRIGx) and study its function as well as its transcriptional changes after irradiation. Methods: Its cDNA was obtained by DDRT-PCR and RACE techniques. Northern blot hybridization was used to investigate the gene transcription. Bioinformatics was employed to analysis structure and function of this gene. Results: LRIGx cDNA was cloned. The sequence of LRIGx was identical to a DNA clone located in human chromosome 20 q 11.2-12 Bioinformatics analysis predicted an encoded protein with a conserved helicase domain. Northern analysis revealed a ∼8.5 kb transcript which was induced after 0.2 Gy as well as 0.02 Gy irradiation, and the transcript level was increased 5 times at 4 h after 0.2 Gy irradiation. The induced level of LRIGx transcript by 2.0 Gy high dose was lower than by 0.2 Gy. Conclusion: A novel low dose radiation-induced gene has been cloned. It encodes a protein with a conserved helicase domain that could involve in DNA metabolism in the cellular process of radiation response

  16. Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA

    International Nuclear Information System (INIS)

    Smider, V.; Rathmell, W.K.; Chu, G.; Lieber, M.R.

    1994-01-01

    Three genetic complementation groups of rodent cells are defective for both repair of x-ray-induced double-strand breaks and V(D)J recombination. Cells from one group lack a DNA end-binding activity that is biochemically and antigenically similar to the Ku autoantigen. Transfection of complementary DNA (cDNA) that encoded the 86-kilodalton subunit of Ku rescued these mutant cells for DNA end-binding activity, x-ray resistance, and V(D)J recombination activity. These results establish a role for Ku in DNA repair and recombination. Furthermore, as a component of a DNA-dependent protein kinase, Ku may initiate a signaling pathway induced by DNA damage

  17. Microsatellite DNA fingerprinting, differentiation, and genetic relationships of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus.

    Science.gov (United States)

    Rahman, Muhammad H; Rajora, Om P

    2002-12-01

    Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same

  18. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair.

    Science.gov (United States)

    Serrano, M A; Li, Z; Dangeti, M; Musich, P R; Patrick, S; Roginskaya, M; Cartwright, B; Zou, Y

    2013-05-09

    Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.

  19. Molecular mechanisms of mutagenesis determined by the recombinant DNA technology

    International Nuclear Information System (INIS)

    Lee, W.R.

    1985-01-01

    A study of the alteration of the DNA in the mutant gene can determine mechanisms of mutation by distinguishing between mutations induced by transition, transversion, frameshifts of a single base and deletions involving many base pairs. The association of a specific pattern of response with a mutagen will permit detecting mutants induced by the mutagen with a reduced background by removing mutations induced by other mechanisms from the pool of potential mutants. From analyses of studies that have been conducted, it is quite apparent that there are substantial differences among mutagens in their modes of action. Of 31 x-ray induced mutants, 20 were large deletions while only 3 showed normal Southern blots. Only one mutant produced a sub-unit polypeptide of normal molecular weight and charge in the in vivo test whereas in vitro synthesis produced a second one. In contrast, nine of thirteen EMS induced mutants produced cross-reacting proteins with sub-unit polypeptide molecular weights equivalent to wild type. Two of three ENU induced mutants recently analyzed in our laboratory produced protein with sub-unit polypeptide molecular weight and electrical charge similar to the wild type stock in which the mutants were induced. One ENU induced mutation is a large deletion. 21 refs., 1 fig

  20. Plasmid ColE1 as a Molecular Vehicle for Cloning and Amplification of DNA

    Science.gov (United States)

    Hershfield, Vickers; Boyer, Herbert W.; Yanofsky, Charles; Lovett, Michael A.; Helinski, Donald R.

    1974-01-01

    DNA fragments obtained from EcoRI endonuclease digestion of bacteriophage ϕ80pt190 (trp+) and the plasmid ColE1 were covalently joined with polynucleotide ligase. Transformation of Escherichia coli trp- strains to tryptophan independence with the recombined DNA selected for reconstituted ColE1 plasmids containing the tryptophan operon and the ϕ80 immunity region. Similarly, an EcoRI endonuclease generated fragment of plasmid pSC105 DNA containing the genetic determinant of kanamycin resistance was inserted into the ColE1 plasmid and recovered in E. coli. The plasmids containing the trp operon (ColE1-trp) and the kanamycin resistance gene were maintained under logarithmic growth conditions at a level of 25-30 copies per cell and accumulate to the extent of several hundred copies per cell in the presence of chloramphenicol. Cells carrying the ColE1-trp plasmid determined the production of highly elevated levels of trp operon-specific mRNA and tryptophan biosynthetic enzymes. Images PMID:4610576

  1. Tomato protoplast DNA transformation : physical linkage and recombination of exogenous DNA sequences

    NARCIS (Netherlands)

    Jongsma, Maarten; Koornneef, Maarten; Zabel, Pim; Hille, Jacques

    1987-01-01

    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There

  2. Specific modifications of histone tails, but not DNA methylation, mirror the temporal variation of mammalian recombination hotspots.

    Science.gov (United States)

    Zeng, Jia; Yi, Soojin V

    2014-10-16

    Recombination clusters nonuniformly across mammalian genomes at discrete genomic loci referred to as recombination hotspots. Despite their ubiquitous presence, individual hotspots rapidly lose their activities, and the molecular and evolutionary mechanisms underlying such frequent hotspot turnovers (the so-called "recombination hotspot paradox") remain unresolved. Even though some sequence motifs are significantly associated with hotspots, multiple lines of evidence indicate that factors other than underlying sequences, such as epigenetic modifications, may affect the evolution of recombination hotspots. Thus, identifying epigenetic factors that covary with recombination at fine-scale is a promising step for this important research area. It was previously reported that recombination rates correlate with indirect measures of DNA methylation in the human genome. Here, we analyze experimentally determined DNA methylation and histone modification of human sperms, and show that the correlation between DNA methylation and recombination in long-range windows does not hold with respect to the spatial and temporal variation of recombination at hotspots. On the other hand, two histone modifications (H3K4me3 and H3K27me3) overlap extensively with recombination hotspots. Similar trends were observed in mice. These results indicate that specific histone modifications rather than DNA methylation are associated with the rapid evolution of recombination hotspots. Furthermore, many human recombination hotspots occupy "bivalent" chromatin regions that harbor both active (H3K4me3) and repressive (H3K27me3) marks. This may explain why human recombination hotspots tend to occur in nongenic regions, in contrast to yeast and Arabidopsis hotspots that are characterized by generally active chromatins. Our results highlight the dynamic epigenetic underpinnings of recombination hotspot evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for

  3. Hands on Group Work Paper Model for Teaching DNA Structure, Central Dogma and Recombinant DNA

    Science.gov (United States)

    Altiparmak, Melek; Nakiboglu Tezer, Mahmure

    2009-01-01

    Understanding life on a molecular level is greatly enhanced when students are given the opportunity to visualize the molecules. Especially understanding DNA structure and function is essential for understanding key concepts of molecular biology such as DNA, central dogma and the manipulation of DNA. Researches have shown that undergraduate…

  4. Serine Protease Variants Encoded by Echis ocellatus Venom Gland cDNA: Cloning and Sequencing Analysis

    Directory of Open Access Journals (Sweden)

    S. S. Hasson

    2010-01-01

    Full Text Available Envenoming by Echis saw-scaled viper is the leading cause of death and morbidity in Africa due to snake bite. Despite its medical importance, there have been few investigations into the toxin composition of the venom of this viper. Here, we report the cloning of cDNA sequences encoding four groups or isoforms of the haemostasis-disruptive Serine protease proteins (SPs from the venom glands of Echis ocellatus. All these SP sequences encoded the cysteine residues scaffold that form the 6-disulphide bonds responsible for the characteristic tertiary structure of venom serine proteases. All the Echis ocellatus EoSP groups showed varying degrees of sequence similarity to published viper venom SPs. However, these groups also showed marked intercluster sequence conservation across them which were significantly different from that of previously published viper SPs. Because viper venom SPs exhibit a high degree of sequence similarity and yet exert profoundly different effects on the mammalian haemostatic system, no attempt was made to assign functionality to the new Echis ocellatus EoSPs on the basis of sequence alone. The extraordinary level of interspecific and intergeneric sequence conservation exhibited by the Echis ocellatus EoSPs and analogous serine proteases from other viper species leads us to speculate that antibodies to representative molecules should neutralise (that we will exploit, by epidermal DNA immunization the biological function of this important group of venom toxins in vipers that are distributed throughout Africa, the Middle East, and the Indian subcontinent.

  5. Quantification and Sequencing of Crossover Recombinant Molecules from Arabidopsis Pollen DNA.

    Science.gov (United States)

    Choi, Kyuha; Yelina, Nataliya E; Serra, Heïdi; Henderson, Ian R

    2017-01-01

    During meiosis, homologous chromosomes undergo recombination, which can result in formation of reciprocal crossover molecules. Crossover frequency is highly variable across the genome, typically occurring in narrow hotspots, which has a significant effect on patterns of genetic diversity. Here we describe methods to measure crossover frequency in plants at the hotspot scale (bp-kb), using allele-specific PCR amplification from genomic DNA extracted from the pollen of F 1 heterozygous plants. We describe (1) titration methods that allow amplification, quantification and sequencing of single crossover molecules, (2) quantitative PCR methods to more rapidly measure crossover frequency, and (3) application of high-throughput sequencing for study of crossover distributions within hotspots. We provide detailed descriptions of key steps including pollen DNA extraction, prior identification of hotspot locations, allele-specific oligonucleotide design, and sequence analysis approaches. Together, these methods allow the rate and recombination topology of plant hotspots to be robustly measured and compared between varied genetic backgrounds and environmental conditions.

  6. A Polymerase Chain Reaction-Based Method for Isolating Clones from a Complimentary DNA Library in Sheep

    Science.gov (United States)

    Friis, Thor Einar; Stephenson, Sally; Xiao, Yin; Whitehead, Jon

    2014-01-01

    The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes. PMID:24447069

  7. Top3 processes recombination intermediates and modulates checkpoint activity after DNA damage

    DEFF Research Database (Denmark)

    Mankouri, Hocine W; Hickson, Ian D

    2006-01-01

    Mutation of TOP3 in Saccharomyces cerevisiae causes poor growth, hyperrecombination, and a failure to fully activate DNA damage checkpoints in S phase. Here, we report that overexpression of a dominant-negative allele of TOP3, TOP3(Y356F), which lacks the catalytic (decatenation) activity of Top3......, the catalytic activity of Top3 is not required for DNA damage checkpoint activation, but it is required for normal S-phase progression after DNA damage. We also present evidence that the checkpoint-mediated cell cycle delay and persistence of X-shaped DNA molecules resulting from overexpression of TOP3(Y356F......) are downstream of Rad51 function. We propose that Top3 functions in S phase to both process homologous recombination intermediates and modulate checkpoint activity....

  8. Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry.

    Science.gov (United States)

    Zhao, Weixing; Vaithiyalingam, Sivaraja; San Filippo, Joseph; Maranon, David G; Jimenez-Sainz, Judit; Fontenay, Gerald V; Kwon, Youngho; Leung, Stanley G; Lu, Lucy; Jensen, Ryan B; Chazin, Walter J; Wiese, Claudia; Sung, Patrick

    2015-07-16

    The tumor suppressor BRCA2 is thought to facilitate the handoff of ssDNA from replication protein A (RPA) to the RAD51 recombinase during DNA break and replication fork repair by homologous recombination. However, we find that RPA-RAD51 exchange requires the BRCA2 partner DSS1. Biochemical, structural, and in vivo analyses reveal that DSS1 allows the BRCA2-DSS1 complex to physically and functionally interact with RPA. Mechanistically, DSS1 acts as a DNA mimic to attenuate the affinity of RPA for ssDNA. A mutation in the solvent-exposed acidic domain of DSS1 compromises the efficacy of RPA-RAD51 exchange. Thus, by targeting RPA and mimicking DNA, DSS1 functions with BRCA2 in a two-component homologous recombination mediator complex in genome maintenance and tumor suppression. Our findings may provide a paradigm for understanding the roles of DSS1 in other biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Formation of (DNA)2-LNA triplet with recombinant base recognition: A quantum mechanical study

    Science.gov (United States)

    Mall, Vijaya Shri; Tiwari, Rakesh Kumar

    2018-05-01

    The formation of DNA triple helix offers the verity of new possibilities in molecular biology. However its applications are limited to purine and pyrimidine rich sequences recognized by forming Hoogsteen/Reverse Hoogsteen triplets in major groove sites of DNA duplex. To overcome this drawback modification in bases backbone and glucose of nucleotide unit of DNA have been proposed so that the third strand base recognized by both the bases of DNA duplex by forming Recombinant type(R-type) of bonding in mixed sequences. Here we performed Quanrum Mechanical (Hartree-Fock and DFT) methodology on natural DNA and Locked Nucleic Acids(LNA) triplets using 6-31G and some other new advance basis sets. Study suggests energetically stable conformation has been observed for recombinant triplets in order of G-C*G > A-T*A > G-C*C > T-A*T for both type of triplets. Interestingly LNA leads to more stable conformation in all set of triplets, clearly suggests an important biological tool to overcome above mentioned drawbacks.

  10. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  11. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Tschunko, A.H.; Loechel, R.H.; McLaren, N.C.; Allen, S.L.

    1987-01-01

    DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. Inverted repeated sequences were present in one clone. This clone, pTtFBl, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. DNA was labeled with [ 33 P]-labeled dATP. The authors found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat are totally eliminated during macronuclear development-and contain open reading frames. The significance of retained inverted repeats to the process of elimination is discussed

  12. Molecular cloning and sequence analysis of growth hormone cDNA of Neotropical freshwater fish Pacu (Piaractus mesopotamicus

    Directory of Open Access Journals (Sweden)

    Janeth Silva Pinheiro

    2008-01-01

    Full Text Available RT-PCR was used for amplifying Piaractus mesopotamicus growth hormone (GH cDNA obtained from mRNA extracted from pituitary cells. The amplified fragment was cloned and the complete cDNA sequence was determined. The cloned cDNA encompassed a sequence of 543 nucleotides that encoded a polypeptide of 178 amino acids corresponding to mature P. mesopotamicus GH. Comparison with other GH sequences showed a gap of 10 amino acids localized in the N terminus of the putative polypeptide of P. mesopotamicus. This same gap was also observed in other members of the family. Neighbor-joining tree analysis with GH sequences from fishes belonging to different taxonomic groups placed the P. mesopotamicus GH within the Otophysi group. To our knowledge, this is the first GH sequence of a Neotropical characiform fish deposited in GenBank.

  13. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Saijoh, Kiyofumi; Sumino, Kimiaki [Department of Public Health, Kobe University School of Medicine (Japan); Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako [Department of Pharmacology, Kobe University of Medicine (Japan)

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using /sup 32/P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author).

  14. Molecular cloning of cDNA for rat brain metallothionein-2 and regulation of its gene expression

    International Nuclear Information System (INIS)

    Saijoh, Kiyofumi; Sumino, Kimiaki; Kuno, Takayoshi; Shuntoh, Hisato; Tanaka, Chikako

    1989-01-01

    A rat brain metallothionein-II (MT-II) complementary DNA (cDNA) clone was isolated from a cDNA plasmid library, which was prepared from non-treated rat brain mRNA, by a colony screening procedure using 32 P-labeled synthetic oligonucleotide probes. It is deduced that the clone encodes for a protein of 61 amino acids comprising 20 cysteines, which is highly homologous to MT-IIs in other species. Northern blot analysis demonstrated major mRNA species in the brain, liver and kidneys (approximately 350 b in size), which is induced in response to dexamethasone, zinc, cadmium and mercury but not to methyl mercury. These findings confirm that MT-II genes are expressed and regulated both by steroid and heavy metals in the brain as well as in peripheral organs. (author)

  15. Purification, cDNA Cloning, and Developmental Expression of the Nodule-Specific Uricase from Phaseolus vulgaris L. 1

    Science.gov (United States)

    Sánchez, Federico; Campos, Francisco; Padilla, Jaime; Bonneville, Jean-Marc; Enríquez, Consuelo; Caput, Daniel

    1987-01-01

    Nodule-specific uricase (uricase II) from Phaseolus vulgaris L. was purified to homogeneity by chromatographic methods. Purification data indicated that uricase II is approximately 2% of the total soluble protein from mature nodules. Specific antiserum was raised and used to determine the developmental expression and for immunoselection of polysomes. Uricase II was antigenically detected early in nodule development, 2 to 3 days before nitrogen fixation. Uricase-encoding cDNA clones were isolated by hybridizing a nodule-specific pUC9 cDNA library with labeled mRNA from immunoselected polysomes and a 35,000 molecular weight uricase II-encoding cDNA from soybean. An homologous clone (pNF-UR07) was used to assess the expression pattern of the specific transcript during development. Northern-blot analysis indicated that uricase II mRNA is exclusively expressed in nodule tissue. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16665575

  16. Characterization of a pollen-specific cDNA clone from Nicotiana tabacum expressed during microgametogenesis and germination.

    Science.gov (United States)

    Weterings, K; Reijnen, W; van Aarssen, R; Kortstee, A; Spijkers, J; van Herpen, M; Schrauwen, J; Wullems, G

    1992-04-01

    This report describes the isolation and characterization of a cDNA clone representing a gene specifically expressed in pollen. A cDNA library was constructed against mRNA from mature pollen of Nicotiana tabacum. It was screened differentially against cDNA from mRNA of leaf and of pollen. One clone, NTPc303, was further characterized. On northern blot this clone hybridizes to a transcript 2100 nucleotides in length. NTPc303 is abundant in pollen. Expression of the corresponding gene is restricted to pollen, because no other generative or vegetative tissue contains transcripts hybridizing to NTPc303. Expression of NTP303 is evolutionarily conserved: homologous transcripts are present in pollen from various plant species. The first NTP303 transcripts are detectable on northern blot at the early bi-nucleate stage and accumulate until the pollen has reached maturity. During germination and pollen tube growth in vitro new NTP303 transcripts appear. This transcription has been proved by northern blots as well as by pulse labelling experiments. Nucleotide sequence analysis revealed that NTPc303 has an open reading frame coding for a predicted protein of 62 kDa. This protein shares homology to ascorbate oxidase and other members of the blue copper oxidase family. A possible function for this clone during pollen germination is discussed.

  17. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  18. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    Science.gov (United States)

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  19. Molecular cloning of a mouse DNA repair gene that complements the defect of group-A xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Tanaka, K.; Satokata, I.; Ogita, Z.; Uchida, T.; Okada, Y.

    1989-01-01

    For isolation of the gene responsible for xeroderma pigmentosum (XP) complementation group A, plasmid pSV2gpt and genomic DNA from a mouse embryo were cotransfected into XP2OSSV cells, a group-A XP cell line. Two primary UV-resistant XP transfectants were isolated from about 1.6 X 10(5) pSV2gpt-transformed XP colonies. pSV2gpt and genomic DNA from the primary transfectants were again cotransfected into XP2OSSV cells and a secondary UV-resistant XP transfectant was obtained by screening about 4.8 X 10(5) pSV2gpt-transformed XP colonies. The secondary transfectant retained fewer mouse repetitive sequences. A mouse gene that complements the defect of XP2OSSV cells was cloned into an EMBL3 vector from the genome of a secondary transfectant. Transfections of the cloned DNA also conferred UV resistance on another group-A XP cell line but not on XP cell lines of group C, D, F, or G. Northern blot analysis of poly(A)+ RNA with a subfragment of cloned mouse DNA repair gene as the probe revealed that an approximately 1.0 kilobase mRNA was transcribed in the donor mouse embryo and secondary transfectant, and approximately 1.0- and approximately 1.3-kilobase mRNAs were transcribed in normal human cells, but none of these mRNAs was detected in three strains of group-A XP cells. These results suggest that the cloned DNA repair gene is specific for group-A XP and may be the mouse homologue of the group-A XP human gene

  20. Generation of a vector system facilitating cloning of DMBT1 variants and recombinant expression of functional full-length DMBT1

    DEFF Research Database (Denmark)

    End, Caroline; Lyer, Stefan; Renner, Marcus

    2005-01-01

    of a vector system that facilitates cloning of DMBT1 variants. We demonstrate applicability of the vector system by expression of the largest DMBT1 variant in a tetracycline-inducible mammalian expression system using the Chinese hamster ovary cell line. Yields up to 30 mg rDMBT1 per litre of cell culture......Deleted in malignant brain tumours 1 (DMBT1) codes for a approximately 340kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer, defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant...... yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this study, we report on the setup...

  1. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    International Nuclear Information System (INIS)

    Chen, J.; Varner, J.E.

    1985-01-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) + RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) + RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) + RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 as a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding

  2. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c/sub 2/ gene

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, T.J.; McEwan, A.G.; Kaplan, S.

    1986-11-01

    The Rhodobacter sphaeroides cytochrome c/sub 2/ functions as a mobile electron carrier in both aerobic and photosynthetic electron transport chains. Synthetic deoxyoligonucleotide probes, based on the known amino acid sequence of this protein (M/sub r/ 14,000), were used to identify and clone the cytochrome c/sub 2/ structural gene (cycA). DNA sequence analysis of the cycA gene indicated the presence of a typical procaryotic 21-residue signal sequence, suggesting that this periplasmic protein is synthesized in vivo as a precursor. Synthesis of an immunoreactive cytochrome c/sub 2/ precursor protein (M/sub r/ 15,500) was observed in vitro when plasmids containing the cycA gene were used as templates in an R. sphaeroides coupled transcription-translation system. Approximately 500 base pairs of DNA upstream of the cycA gene was sufficient to allow expression of this gene product in vitro. Northern blot analysis with an internal cycA-specific probe identified at least two possibly monocistronic transcripts present in both different cellular levels and relative stoichiometries in steady-state cells grown under different physiological conditions. The ratio of the small (740-mucleotide) and large (920-nucleotide) cycA-specific mRNA species was dependent on cultural conditions but was not affected by light intensity under photosynthetic conditions. These results suggest that the increase in the cellular level of the cytochrome c/sub 2/ protein found in photosynthetic cells was due, in part, to increased transcription of the single-copy cyc operon.

  3. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  4. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Margaret L.; Tan, Frederick J.; Lai, David C.; Celniker, Sue E.; Hoskins, Roger A.; Dunham, Maitreya J.; Zheng, Yixian; Koshland, Douglas

    2010-08-27

    Genome rearrangements often result from non-allelic homologous recombination (NAHR) between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs) induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR) occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.

  5. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination.

    Directory of Open Access Journals (Sweden)

    Margaret L Hoang

    2010-12-01

    Full Text Available Genome rearrangements often result from non-allelic homologous recombination (NAHR between repetitive DNA elements dispersed throughout the genome. Here we systematically analyze NAHR between Ty retrotransposons using a genome-wide approach that exploits unique features of Saccharomyces cerevisiae purebred and Saccharomyces cerevisiae/Saccharomyces bayanus hybrid diploids. We find that DNA double-strand breaks (DSBs induce NAHR-dependent rearrangements using Ty elements located 12 to 48 kilobases distal to the break site. This break-distal recombination (BDR occurs frequently, even when allelic recombination can repair the break using the homolog. Robust BDR-dependent NAHR demonstrates that sequences very distal to DSBs can effectively compete with proximal sequences for repair of the break. In addition, our analysis of NAHR partner choice between Ty repeats shows that intrachromosomal Ty partners are preferred despite the abundance of potential interchromosomal Ty partners that share higher sequence identity. This competitive advantage of intrachromosomal Tys results from the relative efficiencies of different NAHR repair pathways. Finally, NAHR generates deleterious rearrangements more frequently when DSBs occur outside rather than within a Ty repeat. These findings yield insights into mechanisms of repeat-mediated genome rearrangements associated with evolution and cancer.

  6. Acidic-alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Tong, Xiaoxue; Pilgaard, Bo

    2016-01-01

    A novel ferulic acid esterase encoding gene CtFae, was successfully cloned from a highly esterase active strain of the thermophile ascomycetous fungus Chaetomium thermophilum var. dissitum; the gene was heterologously expressed in Pichia pastoris KM71H. The recombinant enzyme (CtFae) was purified...... to homogeneity and subsequently characterized. CtFae was active towards synthetic esters of ferulic, p-coumaric, and caffeic acids, as well as towards wide range of p-nitrophenyl substrates. Its temperature and pH optima were 55 °C and pH 6.0, respectively. Enzyme rare features were broad pH optimum, high...

  7. DNA repair characteristics of a hybrid cell clone between xeroderma pigmentosum and Potorous tridactilis

    International Nuclear Information System (INIS)

    Ida, Kenji

    1986-01-01

    A hybrid cell clone PX1 was isolated by fusing UV sensitive XP20S(SV)neo, an SV-40-transformed, neomycin-resistant xeroderma pigmentosum (XP) cell line, and Pt K2, a rat kangaroo (Potorous tridactilis) cell line. The UV-survival curve of PX1 cells fell midway between those of Pt K2 and XP20S(SV)neo cells, since mean lethal doses(D 0 ) were 2.5, 4.7 and 0.27 J/m 2 for PX1, Pt K2 and XP20S(SV)neo, respectively. Amounts of unscheduled DNA synthesis (UDS) after UV, relative to normal human cells, were 60.4 % for Pt K2, 37.7 % for PX1 and 0.1 % for XP20S(SV)neo. Such relative UDS capacities for excision repair of Pt K2, PX1 and XP20S(SV)neo were also consistent with the respective relative capacities of host cell reactivation (HCR) of UV-irradiated Herpes simplex virus. Apparently, there was no single Pt K2 chromosome in the PX1 cells. One possibility is that a gene which may account for the partial restoration of the UV resistance has been transferred from Pt K2 to PX1. (author)

  8. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea.

    Science.gov (United States)

    Zhu, Changfu; Yamamura, Saburo; Koiwa, Hiroyuki; Nishihara, Masashiro; Sandmann, Gerhard

    2002-02-01

    All cDNAs involved in carotenoid biosynthesis leading to lycopene in yellow petals of Gentiana lutea have been cloned from a cDNA library. They encode a geranylgeranyl pyrophosphate synthase, a phytoene synthase, a phytoene desaturase and a zeta-carotene desaturase. The indicated function of all cDNAs was established by heterologous complementation in Escherichia coli. The amino acid sequences deduced from the cDNAs were between 47.5% and 78.9% identical to those reported for the corresponding enzymes from other higher plants. Southern analysis suggested that the genes for each enzyme probably represent a small multi-gene family. Tissue-specific expression of the genes and expression during flower development was investigated. The expression of the phytoene synthase gene, psy, was enhanced in flowers but transcripts were not detected in stems and leaves by northern blotting. Transcripts of the genes for geranylgeranyl pyrophosphate (ggpps), phytoene desaturase (pds) and zeta-carotene desaturase (zds) were detected in flowers and leaves but not in stems. Analysis of the expression of psy and zds in petals revealed that levels of the transcripts were lowest in young buds and highest in fully open flowers, in parallel with the formation of carotenoids. Obviously, the transcription of these genes control the accumulation of carotenoids during flower development in G. lutea. For pds only a very slight increase of mRNA was found whereas the transcripts of ggpps decreased during flower development.

  9. Cloning, Characterization, and Functional Expression of Phospholipase Dα cDNA from Banana (Musa acuminate L.

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-01-01

    Full Text Available Phospholipase D (PLD plays a key role in adaptive responses of postharvest fruits. A cDNA clone of banana (Musa acuminate L. PLDα (MaPLDα was obtained by RT-PCR in this study. The MaPLDα gene contains a complete open reading frame (ORF encoding a 92-kDa protein composed of 832 amino acid residues and possesses a characteristic C2 domain and two catalytic H×K×××D (abbr. HKD motifs. The two HKD motifs are separated by 341 amino acid residues in the primary structure. Relatively higher PLD activity and expression of MaPLDα mRNA were detected in developing tissues compared to senescent or mature tissues in individual leaves, flower, stem, and fruit organs, respectively. The expression profile of PLDα mRNA in postharvest banana fruits at different temperatures was determined, and the MaPLDα mRNA reached the highest expression peak on day 5 at 25°C and on day 7 at 12°C. The results provide useful information for maintaining postharvest quality and extending the storage life of banana fruit.

  10. Biological activity of cloned mammary tumor virus DNA fragments that bind purified glucocorticoid receptor protein in vitro

    International Nuclear Information System (INIS)

    Yamamoto, K.R.; Payvar, F.; Firestone, G.L.; Maler, B.A.; Wrange, O.; Carlstedt-Duke, J.; Gustafsson, J.A.; Chandler, V.L.; Karolinska Institutet, Stockholm, Sweden)

    1983-01-01

    To test whether high-affinity receptor:DNA interactions can be correlated with receptor effects on promoter function in vivo, we have mapped in greater detail the receptor-binding regions on murine mammary tumor virus DNA, using both nitrocellulose-filter binding and electron microscopy. Recombinant plasmids bearing these receptor-binding domains have been transfected into cultured cells, and the expression of the plasmid sequences has been monitored for hormonal regulation. The results are considered in terms of a speculative proposal that the glucocorticoid receptor may effect changes in promoter activity via specific alteration of chromatin and/or DNA structure. 37 references, 6 figures, 2 tables

  11. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    Fritz, E.

    1994-06-01

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.) [de

  12. cDNA cloning and nucleotide sequence comparison of Chinese hamster metallothionein I and II mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, B B; Walters, R A; Enger, M D; Hildebrand, C E; Griffith, J K

    1983-01-01

    Polyadenylated RNA was extracted from a cadmium resistant Chinese hamster (CHO) cell line, enriched for metal-induced, abundant RNA sequences and cloned as double-stranded cDNA in the plasmid pBR322. Two cDNA clones, pCHMT1 and pCHMT2, encoding two Chinese hamster isometallothioneins were identified, and the nucleotide sequence of each insert was determined. The two Chinese hamster metallothioneins show nucleotide sequence homologies of 80% in the protein coding region and approximately 35% in both the 5' and 3' untranslated regions. Interestingly, an 8 nucleotide sequence (TGTAAATA) has been conserved in sequence and position in the 3' untranslated regions of each metallothionein mRNA sequenced thus far. Estimated nucleotide substitution rates derived from interspecies comparisons were used to calculate a metallothionein gene duplication time of 45 to 120 million years ago. 39 references, 1 figure, 1 table.

  13. Research in Undergraduate Instruction: A Biotech Lab Project for Recombinant DNA Protein Expression in Bacteria

    Science.gov (United States)

    Brockman, Mark; Ordman, Alfred B.; Campbell, A. Malcolm

    1996-06-01

    In the sophomore-level Molecular Biology and Biotechnology course at Beloit College, students learn basic methods in molecular biology in the context of pursuing a semester-long original research project. We are exploring how DNA sequence affects expression levels of proteins. A DNA fragment encoding all or part of the guanylate monokinase (gmk) sequence is cloned into pSP73 and expressed in E. coli. A monoclonal antibody is made to gmk. The expression level of gmk is determined by SDS gel elctrophoresis, a Western blot, and an ELISA assay. Over four years, an increase in enrollment in the course from 9 to 34 students, the 85% of majors pursuing advanced degrees, and course evaluations all support the conclusion that involving students in research during undergraduate courses encourages them to pursue careers in science.

  14. A cDNA Cloning of a Novel Alpha-Class Tyrosinase of Pinctada fucata: Its Expression Analysis and Characterization of the Expressed Protein

    Directory of Open Access Journals (Sweden)

    Ryousuke Takgi

    2014-01-01

    Full Text Available Tyrosinase plays an important role in the formation of the shell matrix and melanin synthesis in mollusks shells. A cDNA clone encoding a 47 kDa protein was isolated from the pearl oyster Pinctada fucata. The cDNA was 1,957 base pairs long and encodes a 417 residue protein that has extensive sequence identity with tyrosinase (polyphenol oxidase: EC 1.14.18.1. This tyrosinase-like protein, termed PfTy, contains an N-terminal signal sequence and the two copper-binding domain signatures (CuA and CuB, suggesting that PfTy belongs to the α-subclass of type-3 copper proteins. Enzyme activity of PfTy was examined by a spectrophotometric method using the translation product derived from an S30 T7 high-yield protein expression system. Tyrosinase activity was seen in this recombinant product. RT-PCR analysis showed that PfTy mRNA was expressed in the mantle pallial, but not in the mantle edge. Therefore, PfTy may participate in insoluble shell matrix formation of the nacreous layer. PfTy expression was also observed in the foot, liver, and adductor muscle, suggesting that PfTy participates in the synthesis of melanins, which are effective scavengers of free radicals formed in multiple intracellular oxidative processes. This is the first report of a novel α-class tyrosinase from the pearl oyster P. fucata.

  15. Characterization of the env gene and long terminal repeat of molecularly cloned Friend mink cell focus-inducing virus DNA.

    OpenAIRE

    Adachi, A; Sakai, K; Kitamura, N; Nakanishi, S; Niwa, O; Matsuyama, M; Ishimoto, A

    1984-01-01

    The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. ...

  16. Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.

    Science.gov (United States)

    Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro

    2010-05-07

    Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.

  17. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination.

    Science.gov (United States)

    Kobayashi, Maki; Aida, Masatoshi; Nagaoka, Hitoshi; Begum, Nasim A; Kitawaki, Yoko; Nakata, Mikiyo; Stanlie, Andre; Doi, Tomomitsu; Kato, Lucia; Okazaki, Il-mi; Shinkura, Reiko; Muramatsu, Masamichi; Kinoshita, Kazuo; Honjo, Tasuku

    2009-12-29

    To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.

  18. DNA Sequence-Mediated, Evolutionarily Rapid Redistribution of Meiotic Recombination Hotspots

    Science.gov (United States)

    Wahls, Wayne P.; Davidson, Mari K.

    2011-01-01

    Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor. PMID:22084420

  19. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    Science.gov (United States)

    Nicolas, Laura; Cols, Montserrat; Choi, Jee Eun; Chaudhuri, Jayanta; Vuong, Bao

    2018-01-01

    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity. PMID:29744038

  20. Hibiscus latent Fort Pierce virus in Brazil and synthesis of its biologically active full-length cDNA clone.

    Science.gov (United States)

    Gao, Ruimin; Niu, Shengniao; Dai, Weifang; Kitajima, Elliot; Wong, Sek-Man

    2016-10-01

    A Brazilian isolate of Hibiscus latent Fort Pierce virus (HLFPV-BR) was firstly found in a hibiscus plant in Limeira, SP, Brazil. RACE PCR was carried out to obtain the full-length sequences of HLFPV-BR which is 6453 nucleotides and has more than 99.15 % of complete genomic RNA nucleotide sequence identity with that of HLFPV Japanese isolate. The genomic structure of HLFPV-BR is similar to other tobamoviruses. It includes a 5' untranslated region (UTR), followed by open reading frames encoding for a 128-kDa protein and a 188-kDa readthrough protein, a 38-kDa movement protein, 18-kDa coat protein, and a 3' UTR. Interestingly, the unique feature of poly(A) tract is also found within its 3'-UTR. Furthermore, from the total RNA extracted from the local lesions of HLFPV-BR-infected Chenopodium quinoa leaves, a biologically active, full-length cDNA clone encompassing the genome of HLFPV-BR was amplified and placed adjacent to a T7 RNA polymerase promoter. The capped in vitro transcripts from the cloned cDNA were infectious when mechanically inoculated into C. quinoa and Nicotiana benthamiana plants. This is the first report of the presence of an isolate of HLFPV in Brazil and the successful synthesis of a biologically active HLFPV-BR full-length cDNA clone.

  1. Nucleic acids in mummified plant seeds: screening of twelve specimens by gel-electrophoresis, molecular hybridization and DNA cloning.

    Science.gov (United States)

    Rollo, F; La Marca, A; Amici, A

    1987-02-01

    Twelve seed specimens of varying ages and from different archaeological sites were analyzed for the presence of polymerized DNA and RNA. Amongst the samples tested, one of Vitis vinifera from an archaeological site in Iran (2,000-3,000 B.C.) was found to be completely devoid of nucleic acids. Zea mais seeds of Precolumbial age from Peru (about 800 A.D.) contained depolymerized DNA and RNA. Samples of Vitis vinifera and Rubus sp. from a Lombard archaeological site (800 A.D.) as well as radiocarbon dated seeds from the site of the "Spring Sanctuary" near Metaponto (I-IV century B.C.) were found to contain polymerized DNA and rRNA bands. However the electrophoretic properties of the rRNAs in one case and hybridization experiments performed with cloned seed DNA in the other, clearly demonstrated that the polymerized nucleic acids were not of plant origin.

  2. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brian H. Carrick

    2016-03-01

    Full Text Available Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  3. Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing.

    Directory of Open Access Journals (Sweden)

    Olivier J Becherel

    2013-04-01

    Full Text Available Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2, plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI. Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops, and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

  4. Dual recombinant Lactococcus lactis for enhanced delivery of DNA vaccine reporter plasmid pPERDBY.

    Science.gov (United States)

    Yagnik, Bhrugu; Sharma, Drashya; Padh, Harish; Desai, Priti

    2017-04-01

    Food grade Lactococcus lactis has been widely used as an antigen and DNA delivery vehicle. We have previously reported the use of non-invasive L. lactis to deliver the newly constructed immunostimulatory DNA vaccine reporter plasmid, pPERDBY. In the present report, construction of dual recombinant L. lactis expressing internalin A of Listeria monocytogenes and harboring pPERDBY (LL InlA + pPERDBY) to enhance the efficiency of delivery of DNA by L. lactis is outlined. After confirmation and validation of LL InlA + pPERDBY, its DNA delivery potential was compared with previously developed non-invasive r- L. lactis::pPERDBY. The use of invasive L. lactis resulted in around threefold increases in the number of enhanced green fluorescent protein-expressing Caco-2 cells. These findings reinforce the prospective application of invasive strain of L. lactis for delivery of DNA/RNA and antigens. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  5. Isolation of dihydroflavonol 4-reductase cDNA clones from Angelonia x angustifolia and heterologous expression as GST fusion protein in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Christian Gosch

    Full Text Available Blue Angelonia × angustifolia flowers can show spontaneous mutations resulting in white/blue and white flower colourations. In such a white line, a loss of dihydroflavonol 4-reductase (DFR activity was observed whereas chalcone synthase and flavanone 3-hydroxylase activity remained unchanged. Thus, cloning and characterization of a DFR of Angelonia flowers was carried out for the first time. Two full length DFR cDNA clones, Ang.DFR1 and Ang.DFR2, were obtained from a diploid chimeral white/blue Angelonia × angustifolia which demonstrated a 99% identity in their translated amino acid sequence. In comparison to Ang.DFR2, Ang.DFR1 was shown to contain an extra proline in a proline-rich region at the N-terminus along with two exchanges at the amino acids 12 and 26 in the translated amino acid sequence. The recombinant Ang.DFR2 obtained by heterologous expression in yeast was functionally active catalyzing the NADPH dependent reduction of dihydroquercetin (DHQ and dihydromyricetin (DHM to leucocyanidin and leucomyricetin, respectively. Dihydrokaempferol (DHK in contrast was not accepted as a substrate despite the presence of asparagine in a position assumed to determine DHK acceptance. We show that substrate acceptance testing of DFRs provides biased results for DHM conversion if products are extracted with ethyl acetate. Recombinant Ang.DFR1 was inactive and functional activity could only be restored via exchanges of the amino acids in position 12 and 26 as well as the deletion of the extra proline. E. coli transformation of the pGEX-6P-1 vector harbouring the Ang.DFR2 and heterologous expression in E. coli resulted in functionally active enzymes before and after GST tag removal. Both the GST fusion protein and purified DFR minus the GST tag could be stored at -80°C for several months without loss of enzyme activity and demonstrated identical substrate specificity as the recombinant enzyme obtained from heterologous expression in yeast.

  6. Cloning of the nptII gene of Escherichia coli and construction of a recombinant strain harboring functional recA and nptII antibiotic resistance.

    Science.gov (United States)

    Ghanem, S

    2011-01-01

    In an attempt to clone the ORF of the nptII gene of Escherichia coli K12 (ATCC 10798), two degenerate primers were designed based on the nptII sequence of its Tn5 transposon. The nptII ORF was placed under the control of the E. coli hybrid trc promoter, in the pKK388-1 vector, transformed into E. coli DH5α ΔrecA (recombinant, deficient strain). Transferred cells were tested for ampicillin, tetracycline, kanamycin, neomycin, geneticin, paromomycin, penicillin, and UV resistance. The neomycin phosphotransferase gene of E. coli was cloned successfully and conferred kanamycin, neomycin, geneticin, and paromomycin resistance to recombinant DH5α; this did not inhibit insertion of additional antibiotic resistance against ampicillin and tetracycline, meaning the trc promoter can express two different genes carried by two different plasmids harbored in the same cell. This resistance conferral process could be considered as an emulation of horizontal gene transfer occurring in nature and would be a useful tool for understanding mechanisms of evolution of multidrug-resistant strains.

  7. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    DEFF Research Database (Denmark)

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa

    2015-01-01

    We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We ...

  8. Comparative evaluation of prokaryotic 16S rDNA clone libraries and SSCP in groundwater samples.

    Science.gov (United States)

    Larentis, Michael; Alfreider, Albin

    2011-06-01

    A comparison of ribosomal RNA sequence analysis methods based on clone libraries and single-strand conformational polymorphism technique (SSCP) was performed with groundwater samples obtained between 523-555 meters below surface. The coverage of analyzed clones by phylotype-richness estimates was between 88-100%, confirming that the clone libraries were adequately examined. Analysis of individual bands retrieved from SSCP gels identified 1-6 different taxonomic units per band, suggesting that a single SSCP band does often represent more than one single prokaryotic species. The prokaryotic diversity obtained by both methods showed an overall difference of 42-80%. In comparison to SSCP, clone libraries underestimated the phylogenetic diversity and only 36-66% of the phylotypes observed with SSCP were also detected with the clone libraries. An exception was a sample where the SSCP analysis of Archaea identified only half of the phylotypes retrieved by the clone library. Overall, this study suggests that the clone library and the SSCP approach do not provide an identical picture of the prokaryotic diversity in groundwater samples. The results clearly show that the SSCP method, although this approach is prone to generate methodological artifacts, was able to detect significantly more phylotypes than microbial community analysis based on clone libraries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A 90-day safety study in Sprague-Dawley rats fed milk powder containing recombinant human lactoferrin (rhLF) derived from transgenic cloned cattle.

    Science.gov (United States)

    Zhou, Cui; Wang, Jian Wu; Huang, Kun Lun; He, XiaoYun; Chen, Xiu Ping; Sun, Hong; Yu, Tian; Che, Hui Lian

    2011-10-01

    Transgenic cloned animals expressing beneficial human nutritional traits offer a new strategy for large-scale production of some kinds of functional substances. In some cases, the required safety testing for genetically modified (GM) foods do not seem appropriate for human food safety, though regulations do not seem to provide alternatives. A 90-day rat feeding study is the core study for the safety assessment of GM foods. The test material in this 90-day study was prepared nonfat milk powder containing recombinant human lactoferrin (rhLF), which was expressed in transgenic cloned cattle. Groups of 10 male and female Sprague-Dawley rats were given a nutritionally balanced purified diet containing 7.5, 15, or 30% transgenic or conventional milk powder for 90 days. A commercial AIN93G diet was used as an additional control group. Clinical, biological, and pathological parameters were compared between groups. The only significant effect of treatment was higher mean ferritin and Fe(+) concentrations for both male and female rats fed the transgenic milk powder diets, as compared to rats fed nontransgenic milk diets or the commercial diet. The results of the present study are consistent with previous research, which indicates that milk powder containing rhLF derived from healthy transgenic cloned cattle is as safe as conventional milk powder.

  10. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    Science.gov (United States)

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  11. Construction and characterization of a full-length infectious cDNA clone of foot-and-mouth disease virus strain O/JPN/2010 isolated in Japan in 2010.

    Science.gov (United States)

    Nishi, Tatsuya; Onozato, Hiroyuki; Ohashi, Seiichi; Fukai, Katsuhiko; Yamada, Manabu; Morioka, Kazuki; Kanno, Toru

    2016-06-01

    A full-length infectious cDNA clone of the genome of a foot-and-mouth disease virus isolated from the 2010 epidemic in Japan was constructed and designated pSVL-f02. Transfection of Cos-7 or IBRS-2 cells with this clone allowed the recovery of infectious virus. The recovered virus had the same in vitro characterization as the parental virus with regard to antigenicity in neutralization and indirect immunofluorescence tests, plaque size and one-step growth. Pigs were experimentally infected with the parental virus or the recombinant virus recovered from pSVL-f02 transfected cells. There were no significant differences in clinical signs or antibody responses between the two groups, and virus isolation and viral RNA detection from clinical samples were similar. Virus recovered from transfected cells therefore retained the in vitro characteristics and the in vivo pathogenicity of their parental strain. This cDNA clone should be a valuable tool to analyze determinants of pathogenicity and mechanisms of virus replication, and to develop genetically engineered vaccines against foot-and-mouth disease virus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. [Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells].

    Science.gov (United States)

    Misic, V; El-Mogy, M; Geng, S; Haj-Ahmad, Y

    2016-01-01

    Endonuclease G (EndoG) is a mitochondrial apoptosis regulator that also has roles outside of programmed cell death. It has been implicated as a defence DNase involved in the degradation of exogenous DNA after transfection of mammalian cells and in homologous recombination of viral and endogenous DNA. In this study, we looked at the effect of EndoG depletion on plasmid DNA uptake and the levels of homologous recombination in HeLa cells. We show that the proposed defence role of EndoG against uptake of non-viral DNA vectors does not extend to the cervical carcinoma HeLa cells, as targeting of EndoG expression by RNA interference failed to increase intracellular plasmid DNA levels. However, reducing EndoG levels in HeLa cells resulted in a statistically significant reduction of homologous recombination between two plasmid DNA substrates. These findings suggest that non-viral DNA vectors are also substrates for EndoG in its role in homologous recombination.

  13. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  14. Characterization of a recombinant humanized anti-cocaine monoclonal antibody produced from multiple clones for the selection of a master cell bank candidate.

    Science.gov (United States)

    Wetzel, Hanna N; Webster, Rose P; Saeed, Fatima O; Kirley, Terence L; Ball, William J; Norman, Andrew B

    2017-06-03

    We have generated a humanized anti-cocaine monoclonal antibody (mAb), which is at an advanced stage of pre-clinical development. We report here in vitro binding affinity studies, and in vivo pharmacokinetic and efficacy studies of the recombinant mAb. The overall aim was to characterize the recombinant antibody from each of the three highest producing transfected clones and to select one to establish a master cell bank. In mAb pharmacokinetic studies, after injection with h2E2 (120 mg/kg iv) blood was collected from the tail tip of mice over 28 days. Antibody concentrations were quantified using ELISA. The h2E2 concentration as a function of time was fit using a two-compartment pharmacokinetic model. To test in vivo efficacy, mice were injected with h2E2 (120 mg/kg iv), then one hour later injected with an equimolar dose of cocaine. Blood and brain were collected 5 min after cocaine administration. Cocaine concentrations were quantified using LC/MS. The affinity of the antibody for cocaine was determined using a [ 3 H] cocaine binding assay. All three antibodies had long elimination half-lives, 2-5 nM Kd for cocaine, and prevented cocaine's entry into the brain by sequestering it in the plasma. Pharmacokinetic and radioligand binding assays supported designation of the highest producing clone 85 as the master cell bank candidate. Overall, the recombinant h2E2 showed favorable binding properties, pharmacokinetics, and in vivo efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    Science.gov (United States)

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of

  16. Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays.

    Science.gov (United States)

    Wu, Min; Li, Jin; Yue, Lei; Bai, Lu; Li, Yaming; Chen, Jieliang; Zhang, Xiaonan; Yuan, Zhenghong

    2018-04-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Obtaining classical swine fever virus E2 recombinant protein and DNA-vaccine on the basis of one subunit

    International Nuclear Information System (INIS)

    Deryabin, O.; Deryabina, O.; Verbitskiy, P.; Kordyum, V.

    2005-01-01

    Three forms of E2 recombinant protein were expressed in E. coli. Swine sera obtained against different forms of the recombinant protein were cross-studied with indirect ELISA. Using individual proteins as an antigen, only 15% of sera against other forms of protein reacted positively, while 100% of heterologous sera showed positive reaction with fused protein. Challenge experiments showed the existence of protective action only from the individual protein. Specificity and activity of sera obtained from the animals after control challenge was confirmed in a blocking variant of ELISA. Genetic construction used a eukaryotic vector that contained the E2 protein gene. Immunization of mice with the resulting DNA induced synthesis of specific antibodies, the titre of which increased considerably after additional single immunization with the E2 recombinant protein, expressed in E. coli. This demonstrated the effectiveness of animal priming by DNA vaccine, and the possibility of using the E2 recombinant protein in E. coli for booster vaccination. (author)

  18. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.

  19. [Cloning and sequencing of KIR2DL1 framework gene cDNA and identification of a novel allele].

    Science.gov (United States)

    Sun, Ge; Wang, Chang; Zhen, Jianxin; Zhang, Guobin; Xu, Yunping; Deng, Zhihui

    2016-10-01

    To develop an assay for cDNA cloning and haplotype sequencing of KIR2DL1 framework gene and determine the genotype of an ethnic Han from southern China. Total RNA was isolated from peripheral blood sample, and complementary DNA (cDNA) transcript was synthesized by RT-PCR. The entire coding sequence of the KIR2DL1 framework gene was amplified with a pair of KIR2DL1-specific PCR primers. The PCR products with a length of approximately 1.2 kb were then subjected to cloning and haplotype sequencing. A specific target fragment of the KIR2DL1 framework gene was obtained. Following allele separation, a wild-type KIR2DL1*00302 allele and a novel variant allele, KIR2DL1*031, were identified. Sequence alignment with KIR2DL1 alleles from the IPD-KIR Database showed that the novel allele KIR2DL1*031 has differed from the closest allele KIR2DL1*00302 by a non-synonymous mutation at CDS nt 188A>G (codon 42 GAG>GGG) in exon 4, which has caused an amino acid change Glu42Gly. The sequence of the novel allele KIR2DL1*031 was submitted to GenBank under the accession number KP025960 and to the IPD-KIR Database under the submission number IWS40001982. A name KIR2DL1*031 has been officially assigned by the World Health Organization (WHO) Nomenclature Committee. An assay for cDNA cloning and haplotype sequencing of KIR2DL1 has been established, which has a broad applications in KIR studies at allelic level.

  20. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. cDNA cloning of a snake venom metalloproteinase from the eastern diamondback rattlesnake (Crotalus adamanteus), and the expression of its disintegrin domain with anti-platelet effects

    Science.gov (United States)

    Suntravat, Montamas; Jia, Ying; Lucena, Sara E.; Sánchez, Elda E.; Pérez, John C.

    2013-01-01

    A 5′ truncated snake venom metalloproteinase was identified from a cDNA library constructed from venom glands of an eastern diamondback rattlesnake (Crotalus adamanteus). The 5′-rapid amplification of cDNA ends (RACE) was used to obtain the 1865 bp full-length cDNA sequence of a snake venom metalloproteinase (CamVMPII). CamVMPII encodes an open reading frame of 488 amino acids, which includes a signal peptide, a pro-domain, a metalloproteinase domain, a spacer, and an RGD-disintegrin domain. The predicted amino acid sequence of CamVMPII showed a 91%, 90%, 83%, and 82% sequence homology to the P-II class enzymes of C. adamanteus metalloproteinase 2, C. atrox CaVMP-II, Gloydius halys agkistin, and Protobothrops jerdonii jerdonitin, respectively. Disintegrins are potent inhibitors of both platelet aggregation and integrin-dependent cell adhesion. Therefore, the disintegrin domain (Cam-dis) of CamVMPII was amplified by PCR, cloned into a pET-43.1a vector, and expressed in Escherichia coli BL21. Affinity purified recombinantly modified Cam-dis (r-Cam-dis) with a yield of 8.5 mg/L culture medium was cleaved from the fusion tags by enterokinase cleavage. r-Cam-dis was further purified by two-step chromatography consisting of HiTrap™ Benzamidine FF column, followed by Talon Metal affinity column with a final yield of 1 mg/L culture. r-Cam-dis was able to inhibit all three processes of platelet thrombus formation including platelet adhesion with an estimated IC50 of 1 nM, collagen- and ADP-induced platelet aggregation with the estimated IC50s of 18 and 6 nM, respectively, and platelet function on clot retraction. It is a potent anti-platelet inhibitor, which should be further investigated for drug discovery to treat stroke patients or patients with thrombotic disorders. PMID:23313448

  2. The Mitochondrial DNA (mtDNA)-Associated Protein SWIB5 Influences mtDNA Architecture and Homologous Recombination

    KAUST Repository

    Blomme, Jonas; Van Aken, Olivier; Van Leene, Jelle; Jé gu, Teddy; De Rycke, Riet Maria; De Bruyne, Michiel; Vercruysse, Jasmien; Nolf, Jonah; Van Daele, Twiggy; De Milde, Liesbeth; Vermeersch, Mattias; Colas des Francs-Small, Catherine; De Jaeger, Geert; Benhamed, Moussa; Millar, A. Harvey; Inzé , Dirk; Gonzalez, Nathalie

    2017-01-01

    In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes

  3. Cloning and analysis of the mouse Fanconi anemia group A cDNA and an overlapping penta zinc finger cDNA.

    Science.gov (United States)

    Wong, J C; Alon, N; Norga, K; Kruyt, F A; Youssoufian, H; Buchwald, M

    2000-08-01

    Despite the cloning of four disease-associated genes for Fanconi anemia (FA), the molecular pathogenesis of FA remains largely unknown. To study FA complementation group A using the mouse as a model system, we cloned and characterized the mouse homolog of the human FANCA cDNA. The mouse cDNA (Fanca) encodes a 161-kDa protein that shares 65% amino acid sequence identity with human FANCA. Fanca is located at the distal region of mouse chromosome 8 and has a ubiquitous pattern of expression in embryonic and adult tissues. Expression of the mouse cDNA in human FA-A cells restores the cellular drug sensitivity to normal levels. Thus, the expression pattern, protein structure, chromosomal location, and function of FANCA are conserved in the mouse. We also isolated a novel zinc finger protein, Zfp276, which has five C(2)H(2) domains. Interestingly, Zfp276 is situated in the Fanca locus, and the 3'UTR of its cDNA overlaps with the last four exons of Fanca in a tail-to-tail manner. Zfp276 is expressed in the same tissues as Fanca, but does not complement the mitomycin C (MMC)-sensitive phenotype of FA-A cells. The overlapping genomic organization between Zfp276 and Fanca may have relevance to the disease phenotype of FA. Copyright 2000 Academic Press.

  4. cDNA cloning of porcine brain prolyl endopeptidase and identification of the active-site seryl residue

    Energy Technology Data Exchange (ETDEWEB)

    Rennex, D.; Hemmings, B.A.; Hofsteenge, J.; Stone, S.R. (Friedrich Miescher-Institut, Basel (Switzerland))

    1991-02-26

    Prolyl endopeptidase is a cytoplasmic serine protease. The enzyme was purified from porcine kidney, and oligonucleotides based on peptide sequences from this protein were used to isolate a cDNA clone from a porcine brain library. This clone contained the complete coding sequence of prolyl endopeptidase and encoded a polypeptide with a molecular mass of 80751 Da. The deduced amino acid sequence of prolyl endopeptidase showed no sequence homology with other known serine proteases. ({sup 3}H)Diisopropyl fluorophosphate was used to identify the active-site serine of prolyl endopeptidase. One labeled peptide was isolated and sequenced. The sequence surrounding the active-site serine was Asn-Gly-Gly-Ser-Asn-Gly-Gly. This sequence is different from the active-site sequences of other known serine proteases. This difference and the lack of overall homology with the known families of serine proteases suggest that prolyl endopeptidase represents a new type of serine protease.

  5. RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells

    DEFF Research Database (Denmark)

    Sleeth, Kate M; Sørensen, Claus Storgaard; Issaeva, Natalia

    2007-01-01

    The replication protein A (RPA) is involved in most, if not all, nuclear metabolism involving single-stranded DNA. Here, we show that RPA is involved in genome maintenance at stalled replication forks by the homologous recombination repair system in humans. Depletion of the RPA protein inhibited...... the formation of RAD51 nuclear foci after hydroxyurea-induced replication stalling leading to persistent unrepaired DNA double-strand breaks (DSBs). We demonstrate a direct role of RPA in homology directed recombination repair. We find that RPA is dispensable for checkpoint kinase 1 (Chk1) activation...... and that RPA directly binds RAD52 upon replication stress, suggesting a direct role in recombination repair. In addition we show that inhibition of Chk1 with UCN-01 decreases dissociation of RPA from the chromatin and inhibits association of RAD51 and RAD52 with DNA. Altogether, our data suggest a direct role...

  6. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  7. Human placental Na/sup +/, K/sup +/-ATPase. cap alpha. subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-11-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na/sup +/, K/sup +/-ATPase ..cap alpha.. subunit was cloned from human placenta and its sequence was identical to that encoding the ..cap alpha.. subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na/sup +/, K/sup +/-ATPase gene from various human tissues and cell lines revealed only one band (approx. = 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) lambdagt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the ..cap alpha.. subunit is on the short is on the short arm (band p11-p13) of chromosome 1.

  8. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  9. Cloning and characterization of an insecticidal crystal protein gene ...

    Indian Academy of Sciences (India)

    A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against ...

  10. Effect of mutagens, chemotherapeutic agents and defects in DNA repair genes on recombination in F' partial diploid Escherichia coli

    International Nuclear Information System (INIS)

    Norin, A.J.; Goldschmidt, E.P.

    1979-01-01

    The ability of mutagenic agents, nonmutagenic substances and defects in DNA repair to alter the genotype of F' partial diploid (F30) Escherichia coli was determined. The frequency of auxotrophic mutants and histidine requiring (His - ) haploid colonies was increased by mutagen treatment but Hfr colonies were not detected in F30 E. coli even with specific selection techniques. Genotype changes due to nonreciprocal recombination were determined by measuring the frequency of His - homogenotes, eg. F' hisC780, hisI + /hisC780, hisI + , arising from a His + heterogenote, F' hisC780 hisI + /hisC + , his1903. At least 75% of the recombinants were homozygous for histidine alleles which were present on the F' plasmid (exogenote) of the parental hetergenote rather than for histidine alleles on the chromosome. Mutagens, chemotherapeutic agents which block DNA synthesis and a defective DNA polymerase I gene, polA1, were found to increase the frequency of nonreciprocal recombination. A defect in the ability to excise thymine dimers, uvrC34, did not increase spontaneous nonreciprocal recombination. However, UV irradiation but not methyl methanesulfonate (MMS) induced greater recombination in this excision-repair defective mutant than in DNA-repair-proficient strains. (Auth.)

  11. Molecular cloning of a human glycophorin B cDNA: nucleotide sequence and genomic relationship to glycophorin A

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1987-01-01

    The authors describe the isolation and nucleotide sequence of a human glycophorin B cDNA. The cDNA was identified by differential hybridization of synthetic oligonucleotide probes to a human erythroleukemic cell line (K562) cDNA library constructed in phage vector λgt10. The nucleotide sequence of the glycophorin B cDNA was compared with that of a previously cloned glycophorin A cDNA. The nucleotide sequences encoding the NH 2 -terminal leader peptide and first 26 amino acids of the two proteins are nearly identical. This homologous region is followed by areas specific to either glycophorin A or B and a number of small regions of homology, which in turn are followed by a very homologous region encoding the presumed membrane-spanning portion of the proteins. They used RNA blot hybridization with both cDNA and synthetic oligonucleotide probes to prove our previous hypothesis that glycophorin B is encoded by a single 0.5- to 0.6-kb mRNA and to show that glycophorins A and B are negatively and coordinately regulated by a tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. They established the intron/exon structure of the glycophorin A and B genes by oligonucleotide mapping; the results suggest a complex evolution of the glycophorin genes

  12. Cloning and characterization of transferrin cDNA and rapid detection of transferrin gene polymorphism in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Tange, N; Jong-Young, L; Mikawa, N; Hirono, I; Aoki, T

    1997-12-01

    A cDNA clone of rainbow trout (Oncorhynchus mykiss) transferrin was obtained from a liver cDNA library. The 2537-bp cDNA sequence contained an open reading frame encoding 691 amino acids and the 5' and 3' noncoding regions. The amino acid sequences at the iron-binding sites and the two N-linked glycosylation sites, and the cysteine residues were consistent with known, conserved vertebrate transferrin cDNA sequences. Single N-linked glycosylation sites existed on the N- and C-lobe. The deduced amino acid sequence of the rainbow trout transferrin cDNA had 92.9% identities with transferrin of coho salmon (Oncorhynchus kisutch); 85%, Atlantic salmon (Salmo salar); 67.3%, medaka (Oryzias latipes); 61.3% Atlantic cod (Gadus morhua); and 59.7%, Japanese flounder (Paralichthys olivaceus). The long and accurate polymerase chain reaction (LA-PCR) was used to amplify approximately 6.5 kb of the transferrin gene from rainbow trout genomic DNA. Restriction fragment length polymorphisms (RFLPs) of the LA-PCR products revealed three digestion patterns in 22 samples.

  13. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase

    Science.gov (United States)

    Roldán-Arjona, Teresa; Wei, Ying-Fei; Carter, Kenneth C.; Klungland, Arne; Anselmino, Catherine; Wang, Rui-Ping; Augustus, Meena; Lindahl, Tomas

    1997-01-01

    The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7,8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen. PMID:9223306

  14. Cloning and expression of a human kidney cDNA for an α2-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Regan, J.W.; Kobilka, T.S.; Yang-Feng, T.L.; Caron, M.G.; Lefkowitz, R.J.; Kobilka, B.K.

    1988-01-01

    An α 2 -adrenergic receptor subtype has been cloned from a human kidney cDNA library using the gene for the human platelet α 2 -adrenergic receptor as a probe. The deduced amino acid sequence resembles the human platelet α 2 -adrenergic receptor and is consistent with the structure of other members of he family of guanine nucleotide-binding protein-coupled receptors. The cDNA was expressed in a mammalian cell line (COS-7), and the α 2 -adrenergic ligand [ 3 H]rauwolscine was bound. Competition curve analysis with a variety of adrenergic ligands suggests that this cDNA clone represents the α 2 B-adrenergic receptor. The gene for this receptor is on human chromosome 4, whereas the gene for the human platelet α 2 -adrenergic receptor (α 2 A) lies on chromosome 10. This ability to express the receptor in mammalian cells, free of other adrenergic receptor subtypes, should help in developing more selective α-adrenergic ligands

  15. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    Science.gov (United States)

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  16. Molecular cloning of a catalase cDNA from Nicotiana glutinosa L. and its repression by tobacco mosaic virus infection.

    Science.gov (United States)

    Yi, S Y; Yu, S H; Choi, D

    1999-06-30

    Recent reports revealed that catalase has a role in the plant defense mechanism against a broad range of pathogens through being inhibited by salicylic acid (SA). During an effort to clone disease resistance-responsive genes, a cDNA encoding catalase (Ngcat1; Nicotiana glutinosa cat1) was isolated from a tobacco cDNA library. In N. glutinosa, catalase is encoded by a small gene family. The deduced amino acid sequence of the Ngcat1 cDNA has 98% homology with the cat1 gene of N. plumbaginifolia. The Ngcat1 expression is controlled by the circadian clock, and its mRNA level is the most abundant in leaves. Both the expression of Ngcat1 mRNA and its enzyme activity in the tobacco plant undergoing a hypersensitive response (HR) to TMV infection were repressed. The repression of the mRNA level was also observed following treatment with SA. These results imply that SA may act as an inhibitor of catalase transcription during the HR of tobacco. Cloning and expression of the Ngcat1 in tobacco following pathogen infection and SA treatment are presented.

  17. Alkyladenine DNA glycosylase (Aag) in somatic hypermutation and class switch recombination.

    Science.gov (United States)

    Longerich, Simonne; Meira, Lisiane; Shah, Dharini; Samson, Leona D; Storb, Ursula

    2007-12-01

    Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.

  18. Methotrexate induces DNA damage and inhibits homologous recombination repair in choriocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Xie L

    2016-11-01

    Full Text Available Lisha Xie,1,* Tiancen Zhao,1,2,* Jing Cai,1 You Su,1 Zehua Wang,1 Weihong Dong1 1Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 2Department of Obstetrics and Gynecology, Central Hospital of Wuhan, Wuhan, China *These authors contributed equally to this work Objective: The objective of this study was to investigate the mechanism of sensitivity to methotrexate (MTX in human choriocarcinoma cells regarding DNA damage response. Methods: Two choriocarcinoma cancer cell lines, JAR and JEG-3, were utilized in this study. An MTX-sensitive osteosarcoma cell line MG63, an MTX-resistant epithelial ovarian cancer cell line A2780 and an MTX-resistant cervical adenocarcinoma cell line Hela served as controls. Cell viability assay was carried out to assess MTX sensitivity of cell lines. MTX-induced DNA damage was evaluated by comet assay. Quantitative reverse transcription polymerase chain reaction was used to detect the mRNA levels of BRCA1, BRCA2, RAD51 and RAD52. The protein levels of γH2AX, RAD 51 and p53 were analyzed by Western blot. Results: Remarkable DNA strand breaks were observed in MTX-sensitive cell lines (JAR, JEG-3 and MG63 but not in MTX-resistant cancer cells (A2780 and Hela after 48 h of MTX treatment. Only in the choriocarcinoma cells, the expression of homologous recombination (HR repair gene RAD51 was dramatically suppressed by MTX in a dose- and time-dependent manner, accompanied with the increase in p53. Conclusion: The MTX-induced DNA strand breaks accompanied by deficiencies in HR repair may contribute to the hypersensitivity to chemotherapy in choriocarcinoma. Keywords: choriocarcinoma, chemotherapy hypersensitivity, DNA double-strand break, RAD51, p53

  19. Safety and protective efficacy of porcine reproductive and respiratory syndrome recombinant virus vaccines in young pigs.

    NARCIS (Netherlands)

    Verheije, M.H.; Kroese, M.V.; Linden, van der I.F.A.; Boer-Luijtze, de E.A.; Rijn, van P.A.; Pol, J.M.A.; Meulenberg, J.J.M.; Steverink, P.J.G.M.

    2003-01-01

    Three porcine reproductive and respiratory syndrome virus (PRRSV) recombinants, generated by mutagenesis of an infectious cDNA clone of the Lelystad virus (LV) isolate, were tested for their safety and protective efficacy as potential PRRSV vaccines in pigs. Recombinant vABV688 contains two amino

  20. Hairpin-induced tRNA-mediated (HITME) recombination in HIV-1

    NARCIS (Netherlands)

    Konstantinova, Pavlina; de Haan, Peter; Das, Atze T.; Berkhout, Ben

    2006-01-01

    Recombination due to template switching during reverse transcription is a major source of genetic variability in retroviruses. In the present study we forced a recombination event in human immunodeficiency virus type 1 (HIV-1) by electroporation of T cells with DNA from a molecular HIV-1 clone that

  1. Inhibitors of the proteasome suppress homologous DNA recombination in mammalian cells.

    Science.gov (United States)

    Murakawa, Yasuhiro; Sonoda, Eiichiro; Barber, Louise J; Zeng, Weihua; Yokomori, Kyoko; Kimura, Hiroshi; Niimi, Atsuko; Lehmann, Alan; Zhao, Guang Yu; Hochegger, Helfrid; Boulton, Simon J; Takeda, Shunichi

    2007-09-15

    Proteasome inhibitors are novel antitumor agents against multiple myeloma and other malignancies. Despite the increasing clinical application, the molecular basis of their antitumor effect has been poorly understood due to the involvement of the ubiquitin-proteasome pathway in multiple cellular metabolisms. Here, we show that treatment of cells with proteasome inhibitors has no significant effect on nonhomologous end joining but suppresses homologous recombination (HR), which plays a key role in DNA double-strand break (DSB) repair. In this study, we treat human cells with proteasome inhibitors and show that the inhibition of the proteasome reduces the efficiency of HR-dependent repair of an artificial HR substrate. We further show that inhibition of the proteasome interferes with the activation of Rad51, a key factor for HR, although it does not affect the activation of ATM, gammaH2AX, or Mre11. These data show that the proteasome-mediated destruction is required for the promotion of HR at an early step. We suggest that the defect in HR-mediated DNA repair caused by proteasome inhibitors contributes to antitumor effect, as HR plays an essential role in cellular proliferation. Moreover, because HR plays key roles in the repair of DSBs caused by chemotherapeutic agents such as cisplatin and by radiotherapy, proteasome inhibitors may enhance the efficacy of these treatments through the suppression of HR-mediated DNA repair pathways.

  2. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor

    International Nuclear Information System (INIS)

    Antalis, T.M.; Clark, M.A.; Barnes, T.; Lehrbach, P.R.; Devine, P.L.; Schevzov, G.; Goss, N.H.; Stephens, R.W.; Tolstoshev, P.

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A) + RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the λ P/sub L/ promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated M/sub r/ of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators

  3. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    Science.gov (United States)

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  4. Molecular cloning and recombinant expression of the VP28 carboxyl-terminal hydrophilic region from a brazilian white spot syndrome virus isolate

    Directory of Open Access Journals (Sweden)

    Patricia Braunig

    2011-04-01

    Full Text Available In the present study, a fragment of the VP28 coding sequence from a Brazilian WSSV isolate (BrVP28 was cloned, sequenced and expressed in E. coli BL21(DE3 pLysS strain in order to produce the VP28 carboxyl-terminal hydrophilic region. The expression resulted in a protein of about 21 kDa, which was purified under denaturing conditions, resulting in a final highly purified BrVP28 preparation. The recombinant protein obtained can be used in several biotechnology applications, such as the production of monoclonal antibodies which could be used in the development of diagnostic tools as well as in the studies on the characterization of white spot syndrome virus (WSSV isolated in Brazil.

  5. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadi Tashakkori

    2016-01-01

    Conclusion: These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB.

  6. SV40 host-substituted variants: a new look at the monkey DNA inserts and recombinant junctions.

    Science.gov (United States)

    Singer, Maxine; Winocour, Ernest

    2011-04-10

    The available monkey genomic data banks were examined in order to determine the chromosomal locations of the host DNA inserts in 8 host-substituted SV40 variant DNAs. Five of the 8 variants contained more than one linked monkey DNA insert per tandem repeat unit and in all cases but one, the 19 monkey DNA inserts in the 8 variants mapped to different locations in the monkey genome. The 50 parental DNAs (32 monkey and 18 SV40 DNA segments) which spanned the crossover and flanking regions that participated in monkey/monkey and monkey/SV40 recombinations were characterized by substantial levels of microhomology of up to 8 nucleotides in length; the parental DNAs also exhibited direct and inverted repeats at or adjacent to the crossover sequences. We discuss how the host-substituted SV40 variants arose and the nature of the recombination mechanisms involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Functional intersection of ATM and DNA-dependent protein kinase catalytic subunit in coding end joining during V(D)J recombination

    DEFF Research Database (Denmark)

    Lee, Baeck-Seung; Gapud, Eric J; Zhang, Shichuan

    2013-01-01

    V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) ar......V(D)J recombination is initiated by the RAG endonuclease, which introduces DNA double-strand breaks (DSBs) at the border between two recombining gene segments, generating two hairpin-sealed coding ends and two blunt signal ends. ATM and DNA-dependent protein kinase catalytic subunit (DNA......-PKcs) are serine-threonine kinases that orchestrate the cellular responses to DNA DSBs. During V(D)J recombination, ATM and DNA-PKcs have unique functions in the repair of coding DNA ends. ATM deficiency leads to instability of postcleavage complexes and the loss of coding ends from these complexes. DNA...... when ATM is present and its kinase activity is intact. The ability of ATM to compensate for DNA-PKcs kinase activity depends on the integrity of three threonines in DNA-PKcs that are phosphorylation targets of ATM, suggesting that ATM can modulate DNA-PKcs activity through direct phosphorylation of DNA...

  8. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].

    Science.gov (United States)

    Liu, Xiuying; He, Xiuping; Lu, Ying; Zhang, Borun

    2011-07-01

    Ethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, in the process of industrial production of ethanol, both cell growth and fermentation of ethanologenic S. cerevisiae are dramatically affected by environmental stresses, such as thermal stress. In this study, we improved both the thermotolerance and fermentation performance of industrial ethanologenic S. cerevisiae by combined usage of chemical mutagenesis and genomic DNA mutagenesis-based genetic recombination method. The recombinant S. cerevisiae strain T44-2 could grow at 44 degrees C, 3 degrees C higher than that of the original strain CE6. The survival rate of T44-2 was 1.84 and 1.87-fold of that of CE6 when heat shock at 48 degrees C and 52 degrees C for 1 h respectively. At temperature higher than 37 degrees C, recombinant strain T44-2 always gave higher cell growth and ethanol production than those of strain CE6. Meanwhile, from 30 degrees C to 40 degrees C, recombinant strain T44-2 produces 91.2-83.8 g/L of ethanol from 200 g/L of glucose, which indicated that the recombinant strain T44-2 had both thermotolerance and broad thermal adaptability. The work offers a novel method, called genomic DNA mutagenesis-based genetic recombination, to improve the physiological functions of S. cerevisiae.

  9. Nuclear transfer to prevent mitochondrial DNA disorders : revisiting the debate on reproductive cloning

    NARCIS (Netherlands)

    Bredenoord, A. L.; Dondorp, W.; Pennings, G.; De Wert, G.

    Preclinical experiments are currently performed to examine the feasibility of several types of nuclear transfer to prevent mitochondrial DNA (mtDNA) disorders. Whereas the two most promising types of nuclear transfer to prevent mtDNA disorders, spindle transfer and pronuclear transfer, do not amount

  10. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme.

    Science.gov (United States)

    Wang, Miaomiao; Wu, Jing; Wu, Dan

    2018-02-15

    Kojibiose as a prebiotic and inhibitor of α-glucosidase exhibits potential for a wide range of applications in the food and medicine fields; however, large-scale separation and extraction of kojibiose from nature is difficult. Sucrose phosphorylase (SPase) can be used for the production of kojibiose, and currently, SPase is only heterologously expressed in E. coli, making it unsuitable for use in the food industry. However, Bacillus subtilis is generally considered to be a safe organism potentially useful for SPase expression. Here, for the first time, we heterologously expressed Bifidobacterium adolescentis SPase in a food-grade B. subtilis strain. The results showed that SPase was efficiently secreted into the extracellular medium in the absence of a signal peptide. After culturing the recombinant strain in a 3-L bioreactor, crude SPase yield and activity reached 7.5 g/L and 5.3 U/mL, respectively, the highest levels reported to date. The optimal reaction conditions for kojibiose synthesis catalyzed by recombinant SPase were as follows: 0.5 M sucrose, 0.5 M glucose, 0.02 U enzyme /mg all_substrates , pH 7.0, 50 °C, and 30 h. Furthermore, the substrate-conversion rate reached 40.01%, with kojibiose accounting for 104.45 g/L and selectivity for kojibiose production at 97%. Here, we successfully expressed SPase in B. subtilis in the absence of a signal peptide and demonstrated its secretion into the extracellular medium. Our results indicated high levels of recombinant enzyme expression, with a substrate-conversion rate of 40.01%. These results provide a basis for large-scale preparation of kojibiose by the recombinant SPase.

  11. A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA.

    Science.gov (United States)

    Clark, S J; Templeton, M D; Sullivan, P A

    1997-04-01

    A secreted aspartic proteinase from Glomerella cingulata (GcSAP) was purified to homogeneity by ion exchange chromatography. The enzyme has an M, of 36000 as estimated by SDS-PAGE, optimal activity from pH 3.5 to pH 4.0 and is inhibited by pepstatin. The N-terminal sequence, 23 residues long, was used to design a gene-specific primer. This was used in 3' RACE (rapid amplification of cDNA ends) PCR to amplify a 1.2 kb fragment of the gcsap cDNA. A second gene-specific primer was designed and used in 5' RACE PCR to clone the 5' region. This yielded a 600 bp DNA fragment and completed the open reading frame. The gcsap open reading frame encodes a protein with a 78 residue prepro-sequence typical of other fungal secreted aspartic proteinases. Based on the deduced sequence, the mature enzyme contains 329 amino acids and shows approximately 40% identity to other fungal aspartic proteinases. Subsequent cloning and sequencing of gcsap fragments obtained from PCR with genomic DNA revealed a 73 bp intron beginning at nt 728. Southern analyses at medium and high stringency indicated that G. cingulata possesses one gene for the secreted aspartic proteinase, and Northern blots indicated that gene expression was induced by exogenous protein and repressed by ammonium salts. GcSAP is a putative pathogenicity factor of G. cingulata, and it will now be possible to create SAP-mutants and assess the role GcSAP plays in pathogenicity.

  12. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    OpenAIRE

    Somayeh Kadkhodayan; Shiva Irani; Seyed Mehdi Sadat; Fatemeh Fotouhi; Azam Bolhassani

    2016-01-01

    Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa) could act as a cell penetrating peptide (CPP). In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confi...

  13. Escherichia coli ArgR mutants defective in cer/Xer recombination, but not in DNA binding.

    Science.gov (United States)

    Sénéchal, Hélène; Delesques, Jérémy; Szatmari, George

    2010-04-01

    The Escherichia coli arginine repressor (ArgR) is an L-arginine-dependent DNA-binding protein that controls the expression of the arginine biosynthetic genes and is required as an accessory factor for Xer site-specific recombination at cer and related recombination sites in plasmids. We used the technique of pentapeptide scanning mutagenesis to isolate a series of ArgR mutants that were considerably reduced in cer recombination, but were still able to repress an argA::lacZ fusion. DNA sequence analysis showed that all of the mutants mapped to the same nucleotide, resulting in a five amino acid insertion between residues 149 and 150 of ArgR, corresponding to the end of the alpha6 helix. A truncated ArgR containing a stop codon at residue 150 displayed the same phenotype as the protein with the five amino acid insertion, and both mutants displayed sequence-specific DNA-binding activity that was L-arginine dependent. These results show that the C-terminus of ArgR is more important in cer/Xer site-specific recombination than in DNA binding.

  14. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  15. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    Science.gov (United States)

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  16. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion.

    Science.gov (United States)

    Chen, Tianbao; Gagliardo, Ron; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-12-01

    Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.

  17. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    Science.gov (United States)

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.

  18. Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State

    Directory of Open Access Journals (Sweden)

    Federico González

    2013-03-01

    Full Text Available Induced pluripotent stem cells (iPSCs hold great promise for personalized regenerative medicine. However, recent studies show that iPSC lines carry genetic abnormalities, suggesting that reprogramming may be mutagenic. Here, we show that the ectopic expression of reprogramming factors increases the level of phosphorylated histone H2AX, one of the earliest cellular responses to DNA double-strand breaks (DSBs. Additional mechanistic studies uncover a direct role of the homologous recombination (HR pathway, a pathway essential for error-free repair of DNA DSBs, in reprogramming. This role is independent of the use of integrative or nonintegrative methods in introducing reprogramming factors, despite the latter being considered a safer approach that circumvents genetic modifications. Finally, deletion of the tumor suppressor p53 rescues the reprogramming phenotype in HR-deficient cells primarily through the restoration of reprogramming-dependent defects in cell proliferation and apoptosis. These mechanistic insights have important implications for the design of safer approaches to creating iPSCs.

  19. DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Choudhury Swarup

    2010-07-01

    Full Text Available Abstract Background The DNA repair and recombination (DRR proteins protect organisms against genetic damage, caused by environmental agents and other genotoxic agents, by removal of DNA lesions or helping to abide them. Results We identified genes potentially involved in DRR mechanisms in Arabidopsis and rice using similarity searches and conserved domain analysis against proteins known to be involved in DRR in human, yeast and E. coli. As expected, many of DRR genes are very similar to those found in other eukaryotes. Beside these eukaryotes specific genes, several prokaryotes specific genes were also found to be well conserved in plants. In Arabidopsis, several functionally important DRR gene duplications are present, which do not occur in rice. Among DRR proteins, we found that proteins belonging to the nucleotide excision repair pathway were relatively more conserved than proteins needed for the other DRR pathways. Sub-cellular localization studies of DRR gene suggests that these proteins are mostly reside in nucleus while gene drain in between nucleus and cell organelles were also found in some cases. Conclusions The similarities and dissimilarities in between plants and other organisms' DRR pathways are discussed. The observed differences broaden our knowledge about DRR in the plants world, and raises the potential question of whether differentiated functions have evolved in some cases. These results, altogether, provide a useful framework for further experimental studies in these organisms.

  20. DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice.

    Science.gov (United States)

    Singh, Sanjay K; Roy, Sujit; Choudhury, Swarup Roy; Sengupta, Dibyendu N

    2010-07-21

    The DNA repair and recombination (DRR) proteins protect organisms against genetic damage, caused by environmental agents and other genotoxic agents, by removal of DNA lesions or helping to abide them. We identified genes potentially involved in DRR mechanisms in Arabidopsis and rice using similarity searches and conserved domain analysis against proteins known to be involved in DRR in human, yeast and E. coli. As expected, many of DRR genes are very similar to those found in other eukaryotes. Beside these eukaryotes specific genes, several prokaryotes specific genes were also found to be well conserved in plants. In Arabidopsis, several functionally important DRR gene duplications are present, which do not occur in rice. Among DRR proteins, we found that proteins belonging to the nucleotide excision repair pathway were relatively more conserved than proteins needed for the other DRR pathways. Sub-cellular localization studies of DRR gene suggests that these proteins are mostly reside in nucleus while gene drain in between nucleus and cell organelles were also found in some cases. The similarities and dissimilarities in between plants and other organisms' DRR pathways are discussed. The observed differences broaden our knowledge about DRR in the plants world, and raises the potential question of whether differentiated functions have evolved in some cases. These results, altogether, provide a useful framework for further experimental studies in these organisms.

  1. Mixed infection of Sida jamaicensis in Jamaica reveals the presence of three recombinant begomovirus DNA A components.

    Science.gov (United States)

    Stewart, Cheryl; Kon, Tatsuya; Rojas, Maria; Graham, André; Martin, Darren; Gilbertson, Robert; Roye, Marcia

    2014-09-01

    Begomoviruses impose serious constraints on agriculture throughout the temperate, tropical and subtropical regions. Previously, we characterised a sida golden yellow vein virus isolate, SiGYVV-[JM:Lig2:08] (HQ009519-20) from a symptomatic Sida jamaicensis plant. With the aim of establishing whether it was hosting a mixed infection that could facilitate recombination, PCR-RFLP was done on DNA extracted from this plant, and the results suggested the presence of two additional genetically distinct DNA-A molecules. Sequence analysis of these two DNA-A molecules (relying on BLAST searches and the CLUSTAL V algorithm within the DNASTAR MegAlign module) revealed that they belonged to novel species, and we have tentatively named these viruses sida golden mosaic Braco virus-[Jamaica:Liguanea:2008] and sida golden mosaic Liguanea virus-[Jamaica:1:2008]. Using RDP4 (recombination detection program), we determined that all three viruses were recombinant, with bases ~10 to ~440 of both SiGMLigV-[JM:Lig:08] and SiGYVV-[JM:Lig2:08] having been derived from a relative of SiGMBV-[JM:Lig:08] (P<2.070×10(-7) for all seven of the recombination detection methods). SiGMBV-[JM:Lig:08] was itself a product of recombination, deriving bases ~490-1195 from a virus that was ~92% similar to malvastrum yellow mosaic Helshire virus. Phylogenetically, these DNA-A components are most closely related to those of malvaceous weed-infecting begomoviruses from Jamaica, Cuba, Florida and Mexico. The SiGMBV DNA-A was able to elicit symptomatic infection in N. benthamiana.

  2. Cloning of the cDNA for U1 small nuclear ribonucleoprotein particle 70K protein from Arabidopsis thaliana

    Science.gov (United States)

    Reddy, A. S.; Czernik, A. J.; An, G.; Poovaiah, B. W.

    1992-01-01

    We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.

  3. Molecular Profiling of Microbial Communities from Contaminated Sources: Use of Subtractive Cloning Methods and rDNA Spacer Sequences; FINAL

    International Nuclear Information System (INIS)

    Robb, Frank T.

    2001-01-01

    The major objective of this research was to provide appropriate sequences and assemble a DNA array of oligonucleotides to be used for rapid profiling of microbial populations from polluted areas and other areas of interest. The sequences to be assigned to the DNA array were chosen from cloned genomic DNA taken from groundwater sites having well characterized pollutant histories at Hanford Nuclear Plant and Lawrence Livermore Site 300. Glass-slide arrays were made and tested; and a new multiplexed, bead-based method was developed that uses nucleic acid hybridization on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences. The test data revealed considerable strain variation between sample sites showing a striking distribution of sequences. It also suggests that diversity varies greatly with bioremediation, and that there are many bacterial intergenic spacer region sequences that can indicate its effects. The bead method exhibited superior sequence discrimination and has features for easier and more accurate measurement

  4. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    Science.gov (United States)

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

  5. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis.

    Science.gov (United States)

    Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun

    2017-03-01

    Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.

  6. Total DNA of Glycyrrhiza uralensis transformed into Hansenula anomala by ion implantation:Preparing Glycyrrhizic acid in recombined yeasts

    International Nuclear Information System (INIS)

    Jin Xiang; Mao Peihong; Lu Jie; Ma Yuan

    2010-01-01

    Glycyrrhizic acid (GA) in Glycyrrhiza uralensis (G. uralensis) is physiologically active. In this study, the total DNA of wild G. uralensis was randomly transformed into Hansenula anomaly by implantation of low-energy Ar + and N + , to produce five recombinant yeast strains relating to biological synthesis of the GA or Glycyrrhetinic acid (GAs). After culturing in liquid medium for 96 h, the resultant GA, 18α-GAs and 18β-Gas were determined by reversed-phase high performance liquid chromatography (RP-HPLC), and the corresponding concentrations were 114.49, 0.56, and 0.81 mg·L -1 . After one hundred primers were analyzed with random amplified polymorphic DNA (RAPD), the seven different DNA fragments were produced by the N7059 strain of recombined yeasts, and, the polymerase chain reaction (PCR) verified that one of them came from the genome of G. uralensis, indicating a successful transfer of genetic information by ion implantation. (authors)

  7. cDNA Clones with Rare and Recurrent Mutations Found in Cancers | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at UT- MD Anderson Cancer Center has developed High-Throughput Mutagenesis and Molecular Barcoding (HiTMMoB)1,2 pipeline to construct mutant alleles open reading frame expression clones that are either recurrent or rare in cancers. These barcoded genes can be used for context-specific functional validation, detection of novel biomarkers (pathway activation) and targets (drug sensitivity).

  8. Functional cloning using pFB retroviral cDNA expression libraries.

    Science.gov (United States)

    Felts, Katherine A; Chen, Keith; Zaharee, Kim; Sundar, Latha; Limjoco, Jamie; Miller, Anna; Vaillancourt, Peter

    2002-09-01

    Retroviral cDNA expression libraries allow the efficient introduction of complex cDNA libraries into virtually any mitotic cell type for screening based on gene function. The cDNA copy number per cell can be easily controlled by adjusting the multiplicity of infection, thus cell populations may be generated in which >90% of infected cells contain one to three cDNAs. We describe the isolation of two known oncogenes and one cell-surface receptor from a human Burkitt's lymphoma (Daudi) cDNA library inserted into the high-titer retroviral vector pFB.

  9. Recombineering in Streptococcus mutans Using Direct Repeat-Mediated Cloning-Independent Markerless Mutagenesis (DR-CIMM).

    Science.gov (United States)

    Zhang, Shan; Zou, Zhengzhong; Kreth, Jens; Merritt, Justin

    2017-01-01

    Studies of the dental caries pathogen Streptococcus mutans have benefitted tremendously from its sophisticated genetic system. As part of our own efforts to further improve upon the S. mutans genetic toolbox, we previously reported the development of the first cloning-independent markerless mutagenesis (CIMM) system for S. mutans and illustrated how this approach could be adapted for use in many other organisms. The CIMM approach only requires overlap extension PCR (OE-PCR) protocols to assemble counterselectable allelic replacement mutagenesis constructs, and thus greatly increased the speed and efficiency with which markerless mutations could be introduced into S. mutans . Despite its utility, the system is still subject to a couple limitations. Firstly, CIMM requires negative selection with the conditionally toxic phenylalanine analog p -chlorophenylalanine (4-CP), which is efficient, but never perfect. Typically, 4-CP negative selection results in a small percentage of naturally resistant background colonies. Secondly, CIMM requires two transformation steps to create markerless mutants. This can be inherently problematic if the transformability of the strain is negatively impacted after the first transformation step, which is used to insert the counterselection cassette at the mutation site on the chromosome. In the current study, we develop a next-generation counterselection cassette that eliminates 4-CP background resistance and combine this with a new direct repeat-mediated cloning-independent markerless mutagenesis (DR-CIMM) system to specifically address the limitations of the prior approach. DR-CIMM is even faster and more efficient than CIMM for the creation of all types of deletions, insertions, and point mutations and is similarly adaptable for use in a wide range of genetically tractable bacteria.

  10. Amino acid sequence of bovine muzzle epithelial desmocollin derived from cloned cDNA: a novel subtype of desmosomal cadherins.

    Science.gov (United States)

    Koch, P J; Goldschmidt, M D; Walsh, M J; Zimbelmann, R; Schmelz, M; Franke, W W

    1991-05-01

    Desmosomes are cell-type-specific intercellular junctions found in epithelium, myocardium and certain other tissues. They consist of assemblies of molecules involved in the adhesion of specific cell types and in the anchorage of cell-type-specific cytoskeletal elements, the intermediate-size filaments, to the plasma membrane. To explore the individual desmosomal components and their functions we have isolated DNA clones encoding the desmosomal glycoprotein, desmocollin, using antibodies and a cDNA expression library from bovine muzzle epithelium. The cDNA-deduced amino-acid sequence of desmocollin (presently we cannot decide to which of the two desmocollins, DC I or DC II, this clone relates) defines a polypeptide with a calculated molecular weight of 85,000, with a single candidate sequence of 24 amino acids sufficiently long for a transmembrane arrangement, and an extracellular aminoterminal portion of 561 amino acid residues, compared to a cytoplasmic part of only 176 amino acids. Amino acid sequence comparisons have revealed that desmocollin is highly homologous to members of the cadherin family of cell adhesion molecules, including the previously sequenced desmoglein, another desmosome-specific cadherin. Using riboprobes derived from cDNAs for Northern-blot analyses, we have identified an mRNA of approximately 6 kb in stratified epithelia such as muzzle epithelium and tongue mucosa but not in two epithelial cell culture lines containing desmosomes and desmoplakins. The difference may indicate drastic differences in mRNA concentration or the existence of cell-type-specific desmocollin subforms. The molecular topology of desmocollin(s) is discussed in relation to possible functions of the individual molecular domains.

  11. cDNA cloning of chicken orexin receptor and tissue distribution: sexually dimorphic expression in chicken gonads.

    Science.gov (United States)

    Ohkubo, T; Tsukada, A; Shamoto, K

    2003-12-01

    Orexin-A and -B are known to stimulate food intake in mammals. However, the critical roles of orexins in birds are not fully understood, since orexins have no stimulatory effect on food intake in the chicken. To understand the physiological role(s) of orexins in birds, we have cloned chicken orexin receptor (cOXR) cDNA by RT-PCR, and analysed the tIssue distribution of OXR mRNA in the chicken. The cOXR cDNA is 1869 bp long and encodes 501 amino acids. The cloned cDNA for cOXR corresponds to the type 2 OXR in mammals, and shows approximately 80% similarity to those of mammals at the amino acid level. Expression analysis by RNase protection assay revealed OXR mRNA was distributed widely in brain regions, and expression in the cerebrum, hypothalamus and optic tectum were abundant. In peripheral tIssues, OXR mRNA was expressed in the pituitary gland, adrenal gland and testis, but no mRNA expression was observed in other tIssues examined. Furthermore, we found that the amount of cOXR mRNA was different between testis and ovary, while prepro-orexin mRNA is equally expressed in the gonads of both sexes in the chicken. These data indicate that the orexins have neuroendocrine actions in chickens, which are mediated through hypothalamic receptors as has been observed in mammals. In addition, orexin may have specific role(s) in the regulation of gonadal function in which sex-dependent mechanisms could be involved.

  12. Isolation of a cDNA clone complementary to sequences for a 34-kilodalton protein which is a pp60v-src substrate.

    OpenAIRE

    Tomasiewicz, H G; Cook-Deegan, R; Chikaraishi, D M

    1984-01-01

    We have isolated a partial cDNA clone containing sequences complementary to a mRNA encoding a 34- to 36-kilodalton normal chicken cell protein which is a substrate for pp60v-src kinase activity. Using this 34-kilodalton cDNA clone as a probe, we determined that the size of the 34-kilodalton mRNA was 1,100 nucleotides and the level of the 34-kilodalton RNA was the same in various tissues of mature chickens but was significantly higher in chicken embryo fibroblast cells.

  13. Histone dosage regulates DNA damage sensitivity in a checkpoint-independent manner by the homologous recombination pathway

    Science.gov (United States)

    Liang, Dun; Burkhart, Sarah Lyn; Singh, Rakesh Kumar; Kabbaj, Marie-Helene Miquel; Gunjan, Akash

    2012-01-01

    In eukaryotes, multiple genes encode histone proteins that package genomic deoxyribonucleic acid (DNA) and regulate its accessibility. Because of their positive charge, ‘free’ (non-chromatin associated) histones can bind non-specifically to the negatively charged DNA and affect its metabolism, including DNA repair. We have investigated the effect of altering histone dosage on DNA repair in budding yeast. An increase in histone gene dosage resulted in enhanced DNA damage sensitivity, whereas deletion of a H3–H4 gene pair resulted in reduced levels of free H3 and H4 concomitant with resistance to DNA damaging agents, even in mutants defective in the DNA damage checkpoint. Studies involving the repair of a HO endonuclease-mediated DNA double-strand break (DSB) at the MAT locus show enhanced repair efficiency by the homologous recombination (HR) pathway on a reduction in histone dosage. Cells with reduced histone dosage experience greater histone loss around a DSB, whereas the recruitment of HR factors is concomitantly enhanced. Further, free histones compete with the HR machinery for binding to DNA and associate with certain HR factors, potentially interfering with HR-mediated repair. Our findings may have important implications for DNA repair, genomic stability, carcinogenesis and aging in human cells that have dozens of histone genes. PMID:22850743

  14. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    DEFF Research Database (Denmark)

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia

    2016-01-01

    to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during...... recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits...

  15. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination.

    Science.gov (United States)

    Sammler, Svenja; Bleidorn, Christoph; Tiedemann, Ralph

    2011-01-14

    Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB

  16. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae provide evidence for pervasive mitochondrial DNA recombination

    Directory of Open Access Journals (Sweden)

    Bleidorn Christoph

    2011-01-01

    Full Text Available Abstract Background Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni and 22,737 bp (P. panini, they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. Conclusions The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB, which has been

  17. Detection of Hepatocyte Clones Containing Integrated Hepatitis B Virus DNA Using Inverse Nested PCR.

    Science.gov (United States)

    Tu, Thomas; Jilbert, Allison R

    2017-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC), leading to ~600,000 deaths per year worldwide. Many of the steps that occur during progression from the normal liver to cirrhosis and/or HCC are unknown. Integration of HBV DNA into random sites in the host cell genome occurs as a by-product of the HBV replication cycle and forms a unique junction between virus and cellular DNA. Analyses of integrated HBV DNA have revealed that HCCs are clonal and imply that they develop from the transformation of hepatocytes, the only liver cell known to be infected by HBV. Integrated HBV DNA has also been shown, at least in some tumors, to cause insertional mutagenesis in cancer driver genes, which may facilitate the development of HCC. Studies of HBV DNA integration in the histologically normal liver have provided additional insight into HBV-associated liver disease, suggesting that hepatocytes with a survival or growth advantage undergo high levels of clonal expansion even in the absence of oncogenic transformation. Here we describe inverse nested PCR (invPCR), a highly sensitive method that allows detection, sequencing, and enumeration of virus-cell DNA junctions formed by the integration of HBV DNA. The invPCR protocol is composed of two major steps: inversion of the virus-cell DNA junction and single-molecule nested PCR. The invPCR method is highly specific and inexpensive and can be tailored to DNA extracted from large or small amounts of liver. This procedure also allows detection of genome-wide random integration of any known DNA sequence and is therefore a useful technique for molecular biology, virology, and genetic research.

  18. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  19. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library

    International Nuclear Information System (INIS)

    Teitz, T.; Naiman, T.; Avissar, S.S.; Bar, S.; Okayama, H.; Canaani, D.

    1987-01-01

    In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion

  20. Meiotic recombination breakpoints are associated with open chromatin and enriched with repetitive DNA elements in potato

    Science.gov (United States)

    Meiotic recombination provides the framework for the genetic variation in natural and artificial populations of eukaryotes through the creation of novel haplotypes. Thus, determining the molecular characteristics of meiotic recombination remains essential for future plant breeding efforts, which hea...

  1. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    Science.gov (United States)

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  2. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  3. Cloning, recombinant production, crystallization and preliminary X-ray diffraction analysis of SDF2-like protein from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Radzimanowski, Jens; Ravaud, Stephanie; Schott, Andrea; Strahl, Sabine; Sinning, Irmgard

    2009-01-01

    Overexpression, purification, crystallization and preliminary X-ray diffraction of the stromal-cell-derived factor 2-like protein of Arabidopsis thaliana are reported. The crystals belonged to the space group P6 1 and diffracted to 1.95 Å resolution. The stromal-cell-derived factor 2-like protein of Arabidopsis thaliana (AtSDL) has been shown to be highly up-regulated in response to unfolded protein response (UPR) inducing reagents, suggesting that it plays a crucial role in the plant UPR pathway. AtSDL has been cloned, overexpressed, purified and crystallized using the vapour-diffusion method. Two crystal forms have been obtained under very similar conditions. The needle-shaped crystals did not diffract X-rays, while the other form diffracted to 1.95 Å resolution using a synchrotron-radiation source and belonged to the hexagonal space group P6 1 , with unit-cell parameters a = b = 96.1, c = 69.3 Å

  4. Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens

    International Nuclear Information System (INIS)

    Ficko-Blean, Elizabeth; Boraston, Alisdair B.

    2005-01-01

    Crystallization of a family 84 glycoside hydrolase, a putative virulence factor, secreted by C. perfringens is reported. Clostridium perfringens is a ubiquitous environmental organism that is capable of causing a variety of diseases in mammals, including gas gangrene and necrotic enteritis in humans. The activity of a secreted hyaluronidase, attributed to the NagH protein, contributes to the pathogenicity of this organism. The family 84 catalytic module of one of the three homologues of NagH found in C. perfringens (ATCC 13124) has been cloned. The 69 kDa catalytic module of NagJ, here called GH84C, was overproduced in Escherichia coli and purified by immobilized metal-affinity chromatography (IMAC). Crystals belonging to space group I222 or I2 1 2 1 2 1 with unit-cell parameters a = 130.39, b = 150.05, c = 155.43 Å were obtained that diffracted to 2.1 Å. Selenomethionyl crystals have also been produced, leading to the possibility of solving the phase problem by MAD using synchrotron radiation

  5. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    Science.gov (United States)

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  6. Plant molecular biology and biotechnology research in the post-recombinant DNA era.

    Science.gov (United States)

    Tyagi, Akhilesh K; Khurana, Jitendra P

    2003-01-01

    After the beginning of the recombinant DNA era in the mid-1970s, researchers in India started to make use of the new technology to understand the structure of plant genes and regulation of their expression. The outcome started to appear in print in early the 1980s and genes for histones, tubulin, photosynthetic membrane proteins, phototransduction components, organelles and those regulated differentially by developmental and extrinsic signals were sequenced and characterized. Some genes of biotechnological importance like those encoding an interesting seed protein and the enzyme glyoxalase were also isolated. While work on the characterization of genome structure and organization was started quite early, it remained largely focused on the identification of DNA markers and genetic variability. In this context, the work on mustard, rice and wheat is worth mentioning. In the year 2000, India became a member of the international consortium to sequence entire rice genome. Several laboratories have also given attention to regulated expression of plastid and nuclear genes as well as to isolate target-specific promoters or design promoters with improved potential. Simultaneously, transgenic systems for crops like mustard, rice, wheat, cotton, legumes and several vegetables have been established. More recently, genes of agronomic importance like those for insect resistance, abiotic stress tolerance, nutritional improvement and male sterility, isolated in India or abroad, have been utilized for raising transgenics for crop improvement. Some of these transgenics have already shown their potential in containment facility or limited field trials conducted under the stipulated guidelines. Plant molecular biology and biotechnology are thus clearly poised to make an impact on research in basic biology and agriculture in the near future.

  7. Excision of HIV-1 proviral DNA by recombinant cell permeable tre-recombinase.

    Directory of Open Access Journals (Sweden)

    Lakshmikanth Mariyanna

    Full Text Available Over the previous years, comprehensive studies on antiretroviral drugs resulted in the successful introduction of highly active antiretroviral therapy (HAART into clinical practice for treatment of HIV/AIDS. However, there is still need for new therapeutic approaches, since HAART cannot eradicate HIV-1 from the infected organism and, unfortunately, can be associated with long-term toxicity and the development of drug resistance. In contrast, novel gene therapy strategies may have the potential to reverse the infection by eradicating HIV-1. For example, expression of long terminal repeat (LTR-specific recombinase (Tre-recombinase has been shown to result in chromosomal excision of proviral DNA and, in consequence, in the eradication of HIV-1 from infected cell cultures. However, the delivery of Tre-recombinase currently depends on the genetic manipulation of target cells, a process that is complicating such therapeutic approaches and, thus, might be undesirable in a clinical setting. In this report we demonstrate that E.coli expressed Tre-recombinases, tagged either with the protein transduction domain (PTD from the HIV-1 Tat trans-activator or the translocation motif (TLM of the Hepatitis B virus PreS2 protein, were able to translocate efficiently into cells and showed significant recombination activity on HIV-1 LTR sequences. Tre activity was observed using episomal and stable integrated reporter constructs in transfected HeLa cells. Furthermore, the TLM-tagged enzyme was able to excise the full-length proviral DNA from chromosomal integration sites of HIV-1-infected HeLa and CEM-SS cells. The presented data confirm Tre-recombinase activity on integrated HIV-1 and provide the basis for the non-genetic transient application of engineered recombinases, which may be a valuable component of future HIV eradication strategies.

  8. Cloning and Characterization of a Complex DNA Fingerprinting Probe for Candida parapsilosis

    Science.gov (United States)

    Enger, Lee; Joly, Sophie; Pujol, Claude; Simonson, Patricia; Pfaller, Michael; Soll, David R.

    2001-01-01

    Candida parapsilosis accounts for a significant number of nosocomial fungemias, but in fact, no effective and verified genetic fingerprinting method has emerged for assessing the relatedness of independent isolates for epidemiological studies. A complex 15-kb DNA fingerprinting probe, Cp3-13, was therefore isolated from a library of C. parapsilosis genomic DNA fragments. The efficacy of Cp3-13 for DNA fingerprinting was verified by a comparison of its clustering capacity with those of randomly amplified polymorphic DNA analysis and internally transcribed spacer region sequencing, by testing species specificity, and by assessing its capacity to identify microevolutionary changes both in vitro and in vivo. Southern blot hybridization of EcoRI/SalI-digested DNA with Cp3-13 provides a fingerprinting system that (i) identifies the same strain in independent isolates, (ii) discriminates between unrelated isolates, (iii) separates independent isolates into valid groups in a dendrogram, (iv) identifies microevolution in infecting populations, and (v) is amenable to automatic computer-assisted DNA fingerprint analysis. This probe is now available for epidemiological studies. PMID:11158125

  9. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

    KAUST Repository

    Yamashita, Mami; Xu, Jian; Morokuma, Daisuke; Hirata, Kazuma; Hino, Masato; Mon, Hiroaki; Takahashi, Masateru; Hamdan, Samir; Sakashita, Kosuke; Iiyama, Kazuhiro; Banno, Yutaka; Kusakabe, Takahiro; Lee, Jae Man

    2017-01-01

    The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

  10. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

    KAUST Repository

    Yamashita, Mami

    2017-05-08

    The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

  11. Construction of a trivalent candidate vaccine against Shigella species with DNA recombination

    Institute of Scientific and Technical Information of China (English)

    王恒樑; 冯尔玲; 林云; 廖翔; 金明; 黄留玉; 苏国富; 黄翠芬

    2002-01-01

    In this work asd gene of Shigella flexneri 2a strain T32 was replaced by Vibrio cholerae toxin B subunit (ctxB) gene with DNA recombination in vivo and in vitro. The resulting derivative of T32, designed as FWL01, could stably express CtxB, but its growth in LB medium depended on the presence of diaminopimelic acid (DAP). Then form I plasmid of Shigella sonnei strain S7 was labeled with strain T32 asd gene and mobilized into FWL01. Thus a trivalent candidate oral vaccine strain, designed as FSW01, was constructed. In this candidate strain, a balanced-lethal system was constituted between the host strain and the form I plasmid expressing S. sonnei O antigen. Therefore the candidate strain can express stably not only its own O antigen but also CtxB and O antigen of S. sonnei in the absence of any antibiotic. Experiments showed that FSW01 did not invade HeLa cells or cause keratoconjunctivitis in guinea pigs. However, rabbits immunized FSW01 can elicit significant immune responses. In mice and rhesus monkey models, vaccinated animals were protected against the challenges of wild S. flexneri 2a strain 2457T and S. sonnei strain S9.

  12. Generation of a Lineage II Powassan Virus (Deer Tick Virus) cDNA Clone: Assessment of Flaviviral Genetic Determinants of Tick and Mosquito Vector Competence.

    Science.gov (United States)

    Kenney, Joan L; Anishchenko, Michael; Hermance, Meghan; Romo, Hannah; Chen, Ching-I; Thangamani, Saravanan; Brault, Aaron C

    2018-05-21

    The Flavivirus genus comprises a diverse group of viruses that utilize a wide range of vertebrate hosts and arthropod vectors. The genus includes viruses that are transmitted solely by mosquitoes or vertebrate hosts as well as viruses that alternate transmission between mosquitoes or ticks and vertebrates. Nevertheless, the viral genetic determinants that dictate these unique flaviviral host and vector specificities have been poorly characterized. In this report, a cDNA clone of a flavivirus that is transmitted between ticks and vertebrates (Powassan lineage II, deer tick virus [DTV]) was generated and chimeric viruses between the mosquito/vertebrate flavivirus, West Nile virus (WNV), were constructed. These chimeric viruses expressed the prM and E genes of either WNV or DTV in the heterologous nonstructural (NS) backbone. Recombinant chimeric viruses rescued from cDNAs were characterized for their capacity to grow in vertebrate and arthropod (mosquito and tick) cells as well as for in vivo vector competence in mosquitoes and ticks. Results demonstrated that the NS elements were insufficient to impart the complete mosquito or tick growth phenotypes of parental viruses; however, these NS genetic elements did contribute to a 100- and 100,000-fold increase in viral growth in vitro in tick and mosquito cells, respectively. Mosquito competence was observed only with parental WNV, while infection and transmission potential by ticks were observed with both DTV and WNV-prME/DTV chimeric viruses. These data indicate that NS genetic elements play a significant, but not exclusive, role for vector usage of mosquito- and tick-borne flaviviruses.

  13. Radiation induced asymmetries in mitotic recombination: evidence for a directional bias in the formation of asymmetric hybrid DNA in yeast

    International Nuclear Information System (INIS)

    Friedman, L.R.; Sobell, H.M.

    We have examined radiation-induced mitotic recombination using two alleles (his1-36, his1-49) in the his1 gene. When the haploid containing his1-36 is irradiated with varying doses of γ rays and then mated with the unirradiated strain containing his1-49, analyses of the selected prototrophs show them to be primarily + +/+ 49. If, on the other hand, the haploid strain containing his1-49 is the irradiated parent, the prototrophic diploids are primarily + +/36 +. In control experiments, where either both strains are irradiated or not irradiated, no such asymmetries are found. These data indicate that the irradiated haploid chromosome tends to be the recipient of genetic information. We interpret these results as indicating a directional bias in the formation of hybrid DNA in radiation-induced mitotic recombination, and discuss these results in terms of current models of genetic recombination

  14. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFI

    International Nuclear Information System (INIS)

    Vieira, P.; De Waal-Malefyt, R.; Dang, M.N.; Johnson, K.E.; Kastelein, R.; Fiorentino, D.F.; DeVries, J.E.; Roncarolo, M.G.; Mosmann, T.R.; Moore, K.W.

    1991-01-01

    The authors demonstrated the existence of human cytokine synthesis inhibitory factor (DSIF) [interleukin 10 (IL-10)]. cDNA clones encoding human IL-10 (hIL-10) were isolated from a tetanus toxin-specific human T-cell clone. Like mouse IL-10, hIL-10 exhibits strong DNA and amino acid sequence homology to an open reading frame in the Epstein-Barr virus, BDRFL. hIL-10 and the BCRFI product inhibit cytokine synthesis by activated human peripheral blood mononuclear cells and by a mouse Th1 clone. Both hIL-10 and mouse IL-10 sustain the viability of a mouse mast cell line in culture, but BCRFI lacks comparable activity in this way, suggesting that BCRFI may have conserved only a subset of hIL-10 activities

  15. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFI

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, P.; De Waal-Malefyt, R.; Dang, M.N.; Johnson, K.E.; Kastelein, R.; Fiorentino, D.F.; DeVries, J.E.; Roncarolo, M.G.; Mosmann, T.R.; Moore, K.W. (DNAX Research Inst. of Molecular and Cellular Biology, Palo Alto, CA (United States))

    1991-02-15

    The authors demonstrated the existence of human cytokine synthesis inhibitory factor (DSIF) (interleukin 10 (IL-10)). cDNA clones encoding human IL-10 (hIL-10) were isolated from a tetanus toxin-specific human T-cell clone. Like mouse IL-10, hIL-10 exhibits strong DNA and amino acid sequence homology to an open reading frame in the Epstein-Barr virus, BDRFL. hIL-10 and the BCRFI product inhibit cytokine synthesis by activated human peripheral blood mononuclear cells and by a mouse Th1 clone. Both hIL-10 and mouse IL-10 sustain the viability of a mouse mast cell line in culture, but BCRFI lacks comparable activity in this way, suggesting that BCRFI may have conserved only a subset of hIL-10 activities.

  16. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-09-18

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.

  17. Virulence in pigs of vPader10 rescued from an infectious cDNA clone of the CSFV strain Paderborn

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Nielsen, Jens; Uttenthal, Åse

    The BAC clone, pBeloPader10, contains a complete cDNA of the CSFV strain Paderborn. Virus, named vPader10, was rescued from this construct by electroporation of RNA transcripts into porcine PK15 cells. To further study the characteristics of vPader10, we evaluated the virulence of this virus...

  18. Purification of MUC1 from Bovine Milk-Fat Globules and Characterization of a Corresponding Full-Length cDNA Clone

    DEFF Research Database (Denmark)

    Pallesen, Lone Tjener; Andersen, Mikkel Holmen; Nielsen, Rune

    2001-01-01

    acid sequences obtained by peptide mapping. The complete amino acid sequence of MUC1 was determined by cloning and sequencing the corresponding bovine mammary gland cDNA, which was shown to encode a protein of 580 amino acid residues comprising a cleavable signal peptide of 22 residues. The deduced...

  19. The proviral genome of radiation leukemia virus (RadLV): molecular cloning, restriction analysis and integration sites in tumor cell DNA

    International Nuclear Information System (INIS)

    Janowski, M.; Merregaert, J.; Nuyten, J.M.; Maisin, J.R.

    1984-01-01

    An infectious clone of the linear, unintegrated RadLV provirus was obtained by insertion in the plasmid pBR322. Its restriction map was indistinguishable from that of the majority of the multiple proviral copies, which are found apparently at random sites in the DNA of RadLV-induced rat thymic lymphomas [fr

  20. Detection of a new submicroscopic Norrie disease deletion interval with a novel DNA probe isolated by differential Alu PCR fingerprint cloning

    NARCIS (Netherlands)

    Bergen, A. A.; Wapenaar, M. C.; Schuurman, E. J.; Diergaarde, P. J.; Lerach, H.; Monaco, A. P.; Bakker, E.; Bleeker-Wagemakers, E. M.; van Ommen, G. J.

    1993-01-01

    Differential Alu PCR fingerprint cloning was used to isolate a DNA probe from the Xp11.4-->p11.21 region of the human X chromosome. This novel sequence, cpXr318 (DXS742), detects a new submicroscopic deletion interval at the Norrie disease locus (NDP). Combining our data with the consensus genetic

  1. Molecular cloning of a cDNA encoding human calumenin, expression in Escherichia coli and analysis of its Ca2+-binding activity

    DEFF Research Database (Denmark)

    Vorum, H; Liu, X; Madsen, Peder

    1998-01-01

    By microsequencing and cDNA cloning we have identified the transformation-sensitive protein No. IEF SSP 9302 as the human homologue of calumenin. The nucleotide sequence predicts a 315 amino acid protein with high identity to murine and rat calumenin. The deduced protein contains a 19 amino acid N...

  2. Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant

    DEFF Research Database (Denmark)

    Al-Mashhadi, Rozh Husain; Sørensen, Charlotte Brandt; Kragh, Peter M.

    2013-01-01

    dominant hypercholesterolemia and accelerates atherosclerosis in humans. Using Sleeping Beauty DNA transposition and cloning by somatic cell nuclear transfer, we created Yucatan minipigs with liver-specific expression of human D374Y-PCSK9. D374Y-PCSK9 transgenic pigs displayed reduced hepatic low...

  3. 16S rRNA Gene Sequence Analysis of Drinking Water Using RNA and DNA Extracts as Targets for Clone Library Development - Poster

    Science.gov (United States)

    We examined the bacterial composition of chlorinated drinking water using 16S rRNA gene clone libraries derived from RNA and DNA extracted from twelve water samples collected in three different months (June, August, and September of 2007). Phylogenetic analysis of 1234 and 1117 ...

  4. The DNA-instability test as a specific marker of malignancy and its application to detect cancer clones in borderline malignancy

    Directory of Open Access Journals (Sweden)

    M Fukuda

    2009-06-01

    Full Text Available Recent progress in cytogenetic and biochemical mutator assay technologies has enabled us to detect single gene alterations and gross chromosomal rearrangements, and it became clear that all cancer cells are genetically unstable. In order to detect the genome-wide instability of cancer cells, a new simple method, the DNA-instability test, was developed. The methods to detect genomic instability so far reported have only demonstrated the presence of qualitative and quantitative alterations in certain specific genomic loci. In contrast to these commonly used methods to reveal the genomic instability at certain specific DNA regions, the newly introduced DNA-instability test revealed the presence of physical DNA-instability in the entire DNA molecule of a cancer cell nucleus as revealed by increased liability to denature upon HCl hydrolysis or formamide exposure. When this test was applied to borderline malignancies, cancer clones were detected in all cases at an early-stage of cancer progression. We proposed a new concept of “procancer” clones to define those cancer clones with “functional atypia” showing positivities for various cancer markers, as well as DNA-instability testing, but showing no remarkable ordinary “morphological atypia” which is commonly used as the basis of histopathological diagnosis of malignancy.

  5. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    Science.gov (United States)

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  6. Genetic recombination induced by DNA double-strand break in bacteriophage T4: nature of the left/right bias.

    Science.gov (United States)

    Shcherbakov, Victor P; Shcherbakova, Tamara; Plugina, Lidiya; Sizova, Svetlana; Kudryashova, Elena; Granovsky, Igor

    2008-06-01

    The experimental system combining double-strand breaks (DSBs), produced site-specifically by SegC endonuclease, with the famous advantages of the bacteriophage T4 rII mutant recombination analysis was used here to elucidate the origin of the recombination bias on two sides of the DSB, especially pronounced in gene 39 (topoisomerase II) and gene 59 (41-helicase loader) mutants. Three sources were found to contribute to the bias: (1) the SegC endonuclease may remain bound to the end of the broken DNA and thus protect it from exonuclease degradation; (2) in heteroduplex heterozygotes (HHs), arising as the recombinant products in the left-hand crosses, the transcribed strands are of rII mutant phenotype, so they, in contrast to the right-hand HHs, do not produce plaques on the lawn of the lambda-lysogenic host; and (3) the intrinsic polarity of T4 chromosome, reflected in transcription, may be a cause for discrimination of promoter-proximal and promoter-distal DNA sequences. It is shown that the apparent recombination bias does not imply one-sidedness of the DSB repair but just reflects a different depth of the end processing. It is inferred that the cause, underlying the "intrinsic" bias, might be interference between strand exchange and transcription. Topoisomerase and helicase functions are necessary to turn the process in favor of strand exchange. The idea is substantiated that the double-stranded to single-stranded DNA transition edge (not ss-DNA tip) serves as an actual recombinogenic element.

  7. Molecular cloning and analysis of DNA repair gene from the radioresistant bacterium deinococcus radiodurans

    International Nuclear Information System (INIS)

    Du Zeji; Wang Mingsuo

    1998-12-01

    Deinococcus radiodurans (Dr) possesses a prominent ability to repair DNA injury induced by various DNA-damaging agents including mitomycin C (MC), ultraviolet light (UV) and ionizing radiation. A DNA repair mutant Dr KH3111 is a streptomycin resistant (Sm R ) derivative of KH311 which is generated by treatment with nitrosoguanidine and is sensitive to MC, 8-trimethyl-psoralen, UV and γ-ray irradiation. Gene affected by a mutation in the mutant is identified and its nucleotide sequence is determined. A complete open reading frame (ORF) which encompassed the KH3111 mutation region is found and tentatively designated as orf144b. The deduced amino acid (aa) sequence of orf144b consists of 284 aa and has no significant homology to other known proteins. The exact KH3111 mutation site is one nucleotide altered (G to A) in the sequence of orf144b in the mutant. The KH3111 mutation causes the substitution of Gly for Glu at aa position 149 of Orf144b. Survival measurements of a revertant KH3112 which was produced by transforming with DNA containing a part of the orf144b gene of KD8301 showed that the resistances to MC, UV and γ-ray in the revertant were fully restored at a level equal to the wild type. Thus, the orf144b gene required for the multiple-DNA-damaging agent resistance of Dr was designated with the name of pprA (Pleiotropic gene promoting DNA repair). This new gene can express in E. coli at very high level, and make the host E. coli resistant to MC, UV and γ-ray. The pprA gene does not express in normal Dr, but it can be induced to express by treatment with MC, UV and γ-ray. It was thought that the PprA polypeptide is a cytoplasmic protein because of the absence of characteristics found in the aa sequence of membrane proteins

  8. Molecular cloning and functional analysis of a recombinant ribosome-inactivating protein (alpha-momorcharin) from Momordica charantia.

    Science.gov (United States)

    Wang, Shuzhen; Zhang, Yubo; Liu, Honggao; He, Ying; Yan, Junjie; Wu, Zhihua; Ding, Yi

    2012-11-01

    Alpha-momorcharin (α-MC), a member of the ribosome-inactivating protein (RIP) family, has been used not only as antiviral, antimicrobial, and antitumor agents, but also as toxicant to protozoa, insects, and fungi. In this study, we expressed the protein in Escherichia coli Rosetta (DE3) pLysS strain and purified it by nickel-nitrilotriacetic acid affinity chromatography. A total of 85 mg of homogeneous protein was obtained from 1 l culture supernatant of Rosetta (DE3) pLysS, showing a high recovery rate of 73.9%. Protein activity assay indicated that α-MC had both N-glycosidase activity and DNA-nuclease activity, the former releasing RIP diagnostic RNA fragment (Endo's fragment) from rice rRNAs and the latter converting supercoiled circular DNA of plasmid pET-32a(+) into linear conformations in a concentration-dependent manner. Specially, we found that α-MC could inhibit the mycelial growth of Fusarium solani and Fusarium oxysporum with IC(50) values of 6.23 and 4.15 μM, respectively. Results of optical microscopy and transmission electron microscopy demonstrated that α-MC caused extensive septum formation, loss of integrity of the cell wall, separation of the cytoplasm from the cell wall, deformation of cells with irregular budding sites, and apoptosis in F. solani. Moreover, α-MC was active against Pseudomonas aeruginosa with an IC(50) value of 0.59 μM. The α-MC protein carries a high potential for the design of new antifungal drugs or the development of transgenic crops resistant to pathogens.

  9. Quantitative real-time PCR technique for the identification of E. coli residual DNA in streptokinase recombinant product.

    Science.gov (United States)

    Fazelahi, Mansoureh; Kia, Vahid; Kaghazian, Hooman; Paryan, Mahdi

    2017-11-26

    Recombinant streptokinase is a biopharmaceutical which is usually produced in E. coli. Residual DNA as a contamination and risk factor may remain in the product. It is necessary to control the production procedure to exclude any possible contamination. The aim of the present study was to develop a highly specific and sensitive quantitative real-time PCR-based method to determine the amount of E. coli DNA in recombinant streptokinase. A specific primers and a probe was designed to detect all strains of E. coli. To determine the specificity, in addition to using NCBI BLASTn, 28 samples including human, bacterial, and viral genomes were used. The results confirmed that the assay detects no genomic DNA but E. coli's and the specificity was determined to be 100%. To determine the sensitivity and limit of detection of the assay, a 10-fold serial dilution (10 1 to 10 7 copies/µL) was tested in triplicate. The sensitivity of the test was determined to be 101 copies/µL or 35 fg/µL. Inter-assay and intra-assay were determined to be 0.86 and 1.69%, respectively. Based on the results, this assay can be used as an accurate method to evaluate the contamination of recombinant streptokinase in E. coli.

  10. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination.

    Science.gov (United States)

    Masani, Shahnaz; Han, Li; Meek, Katheryn; Yu, Kefei

    2016-02-02

    Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammals and resolves the DSBs generated during both V(D)J recombination in developing lymphocytes and class switch recombination (CSR) in antigen-stimulated B cells. In contrast to the absolute requirement for NHEJ to resolve DSBs associated with V(D)J recombination, DSBs associated with CSR can be resolved in NHEJ-deficient cells (albeit at a reduced level) by a poorly defined alternative end-joining (A-EJ) pathway. Deletion of DNA ligase IV (Lig4), a core component of the NHEJ pathway, reduces CSR efficiency in a mouse B-cell line capable of robust cytokine-stimulated CSR in cell culture. Here, we report that CSR levels are not further reduced by deletion of either of the two remaining DNA ligases (Lig1 and nuclear Lig3) in Lig4(-/-) cells. We conclude that in the absence of Lig4, Lig1, and Lig3 function in a redundant manner in resolving switch region DSBs during CSR.

  11. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  12. Serological diagnosis of Strongylus vulgaris infection: use of a recombinant protein

    DEFF Research Database (Denmark)

    Andersen, Ulla Vestergaard; Howe, Daniel K.; Olsen, Susanne Nautrup

    , an immunoreactive cDNA clone was subcloned into E. coli and the plasmid sequenced, the open reading frame encoding the mature protein was cloned into a pET22b expression vector and expressed as a His-tagged recombinant protein in BL21 expression cells. The recombinant protein was used in an indirect enzyme....... vulgaris (n=9) reacted against the recombinant protein, expressed as optic density (OD) readings of >24 % of a positive control, while sera from negative horses had OD readings

  13. Cloning and sequencing of Indian Water buffalo (Bubalus bubalis) interleukin-3 cDNA

    KAUST Repository

    Sugumar, Thennarasu; Harishankar, M.; Dhinakar Raj, G.

    2011-01-01

    Full-length cDNA (435 bp) of the interleukin-3(IL-3) gene of the Indian water buffalo was amplified by reverse transcriptase-polymerase chain reaction and sequenced. This sequence had 96% nucleotide identity and 92% amino acid identity with bovine

  14. Cloning a cDNA for the lysosomal alpha-glucosidase

    NARCIS (Netherlands)

    KONINGS, A.; HUPKES, P.; Versteeg, R.; Grosveld, G.; Reuser, A.; Galjaard, H.

    1984-01-01

    Messenger RNA was isolated from monkey testes and size-fractionated on sucrose gradients. In vitro translation of these mRNA fractions resulted in nascent, labeled alpha-glucosidase that could be precipitated with anti human alpha-glucosidase antiserum. A cDNA library was constructed from the most

  15. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation

    Science.gov (United States)

    Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente

    2001-01-01

    We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814

  16. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods

    NARCIS (Netherlands)

    Gabor, Esther; de Vries, Erik; Janssen, DB

    2003-01-01

    Using direct and cell extraction-based (indirect) isolation methods, DNA was obtained from environmental samples with largely differing characteristics (loam soil, sand soil, sediment, activated sludge, and compost) and evaluated with respect to the comprised bacterial diversity and its suitability

  17. cDNA cloning and characterization of a mannose-binding lectin from ...

    Indian Academy of Sciences (India)

    Unknown

    of kit protocol except that the RT step was prolonged for a further reaction ... ing a dA-tailing Kit (Sangon). DNA ligation with ... RT-PCR amplification was performed three times. 2.8 Expression of ..... of a new mannose-binding lectin gene from Taxus media; J. Biosci. ... ing: A Laboratory Manual, 2nd edition (New York: Cold.

  18. Cloning a T-DNA-Linked Phosphate Gene that mediates Salt Tolerance on Mutant of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Njoroge, N.C; Tremblay, L.; Lefebvre, D.D.

    2006-01-01

    T-DNA insertionally mutagenized seeds of Arabidopsis thaliana were used to unravel genetic mechanisms underlying salt tolerance in plants. Over a period of two weeks, kanamycin homozygous (KK) seeds of the mutant NN143 attain germination levels of 65% and 77% on 175mM Nacl and 300mM mannitol respectively. Under these conditions of osmotic stress, the wild type seeds were incapable of germination. The mutant was also capable of germination on a medium containing 2μM abscisic acid (ABA). After two weeks on 2μM ABA, it attained 100% germination and the wild type did not germinate. The ABA level in the mutant was 40% higher than the wild type. Segregation analysis indicated that salt tolerance in the mutant is T-DNA linked. Genetic analysis of the F1 and F2 generations indicated that the salt tolerance trait in the mutant is dominant. The putative salt tolerance gene of mutant NN143 was cloned by plasmid rescue and sequence data indicated involvement of a protein phosphatase. The possible mechanism underlying salt tolerance in the mutant is discussed.(author)

  19. Human cDNA clones for an α subunit of G/sub i/ signal-transduction protein

    International Nuclear Information System (INIS)

    Bray, P.; Carter, A.; Guo, V.; Puckett, C.; Kamholz, J.; Spiegel, A.; Nirenberg, M.

    1987-01-01

    Two cDNA clones were obtained from a λgt11 cDNA human brain library that correspond to α/sub i/ subunits of G signal-transduction proteins (where α/sub i/ subunits refer to the α subunits of G proteins that inhibit adenylate cyclase). The nucleotide sequence of human brain α/sub i/ is highly homologous to that of bovine brain α/sub i/ and the predicted amino acid sequences are identical. However, human and bovine brain α/sub i/ cDNAs differ significantly from α/sub i/ cDNAs from human monocytes, rat glioma, and mouse macrophages in amino acid (88% homology) and nucleotide (71-75% homology) sequences. In addition, the nucleotide sequences of the 3' untranslated regions of human and bovine brain α/sub i/ cDNAs differ markedly from the sequences of human monocyte, rat glioma, and mouse macrophage α/sub i/ cDNAs. These results suggest there are at least two classes of α/sub i/ mRNA

  20. Cloning of a cDNA encoding the human cation-dependent mannose 6-phosphate-specific receptor

    International Nuclear Information System (INIS)

    Pohlmann, R.; Nagel, G.; Schmidt, B.

    1987-01-01

    Complementary DNA clones for the human cation-dependent mannose 6-phosphate-specific receptor have been isolated from a human placenta library in λgt11. The nucleotide sequence of the 2463-base-pair cDNA insert includes a 145-base-pair 5' untranslated region, an open reading frame of 831 base pairs corresponding to 277 amino acids, and a 1487-base-pair 3' untranslated region. The deduced amino acid sequence is colinear with that determined by amino acid sequencing of the N-terminus peptide (41 residues) and nine tryptic peptides (93 additional residues). The receptor is synthesized as a precursor with a signal peptide of 20 amino acids. The hydrophobicity profile of the receptor indicates a single membrane-spanning domain, which separates an N-terminal region containing five potential N-glycosylation sites from a C-terminal region lacking N-glycosylation sites. Thus the N-terminal (M/sub r/ = 18,299) and C-terminal (M/sub r/ ≤ 7648) segments of the mature receptor are assumed to be exposed to the extracytosolic and cytosolic sides of the membrane, respectively. Analysis of a panel of somatic cell (mouse-human) hybrids shows that the gene for the receptor is located on human chromosome 12

  1. Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358

    International Nuclear Information System (INIS)

    Griffin, H.G.; Foster, T.J.; Silver, S.; Misra, T.K.

    1987-01-01

    The broad-spectrum mercurial-resistance plasmid pDU1358 was analyzed by cloning the resistance determinants and preparing a physical and genetic map of a 45-kilobase (kb) region of the plasmid that contains two separate mercurial-resistance operons that mapped about 20 kb apart. One encoded narrow-spectrum mercurial resistance to Hg 2+ and a few organomercurials; the other specified broad-spectrum resistance to phenylmercury and additional organomercurials. Each determinant governed mercurial transport functions. Southern DNA x DNA hybridization experiments using gene-specific probes from the plasmid R100 mer operon indicated close homology with the R100 deteminant. The 2153 base pairs of the promoter-distal part of the broad-spectrum Hg 2+ -resistance operon of pDU1358 were sequenced. This region included the 3'-terminal part of the merA gene, merD, unidentified reading frame URF1, and a part of URF2 homologous to previously sequenced determinants of plasmid R100. Between the merA and merD genes, an open reading frame encoding a 212 amino acid polypeptide was identified as the merB gene that determines the enzyme organomercurial lyase that cleaves the C-Hg bond of phenylmercury

  2. Human beta 2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas

    DEFF Research Database (Denmark)

    Wewer, U M; Gerecke, D R; Durkin, M E

    1994-01-01

    or other known laminin genes. Immunostaining showed that the beta 2 chain is localized to the smooth muscle basement membranes of the arteries, while the homologous beta 1 chain is confined to the subendothelial basement membranes. The beta 2 chain was found in the basement membranes of ovarian carcinomas......Overlapping cDNA clones that encode the full-length human laminin beta 2 chain, formerly called the S chain, were isolated. The cDNA of 5680 nt contains a 5391-nt open reading frame encoding 1797 amino acids. At the amino terminus is a 32-amino-acid signal peptide that is followed by the mature...... beta 2 chain polypeptide of 1765 amino acids with a calculated molecular mass of 192,389 Da. The human beta 2 chain is predicted to have all of the seven structural domains typical of the beta chains of laminin, including the short cysteine-rich alpha region. The amino acid sequence of human beta 2...

  3. Purification, reactivity with IgE and cDNA cloning of parvalbumin as the major allergen of mackerels.

    Science.gov (United States)

    Hamada, Y; Tanaka, H; Ishizaki, S; Ishida, M; Nagashima, Y; Shiomi, K

    2003-08-01

    Three species of mackerels (Scomber japonicus, S. australasicus and S. scombrus) are widely consumed and considered to be most frequently involved in incidents of IgE-mediated fish allergy in Japan. In this study, parvalbumin, a possible candidate for the major allergen, was purified from the white muscle of three species of mackerels by gel filtration on Sephadex G-75 and reverse-phase HPLC on TSKgel ODS-120T. All the purified preparations from three species gave a single band of about 11 kDa and were clearly identified as parvalbumins by analyses of their partial amino acid sequences. In ELISA experiments, four of five sera from fish-allergic patients reacted to all the purified parvalbumins, demonstrating that parvalbumin is the major allergen in common with the mackerels. Antigenic cross-reactivity among the mackerel parvalbumins was also established by ELISA inhibition experiments. A cDNA library was constructed from the white muscle of S. japonicus and the cDNA encoding parvalbumin was cloned. The amino acid sequence translated from the nucleotide sequence revealed that the S. japonicus parvalbumin is composed of 108 residues, being a member of beta-type parvalbumins.

  4. cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognized by autoimmune antisera

    International Nuclear Information System (INIS)

    Aris, J.P.; Blobel, G.

    1991-01-01

    The authors have isolated a 1.1-kilobase cDNA clone that encodes human fibrillarin by screening a hepatoma library in parallel with DNA probes derived from the fibrillarin genes of Saccharomyces cerevisiae (NOP1) and Xenopus laevis. RNA blot analysis indicates that the corresponding mRNA is ∼1,300 nucleotides in length. Human fibrillarin expressed in vitro migrates on SDS gels as a 36-kDa protein that is specifically immunoprecipitated by antisera from humans with scleroderma autoimmune disease. Human fibrillarin contains an amino-terminal repetitive domain ∼75-80 amino acids in length that is rich in glycine and arginine residues and is similar to amino-terminal domains in the yeast and Xenopus fibrillarins. The occurrence of a putative RNA-binding domain and an RNP consensus sequence within the protein is consistent with the association of fibrillarin with small nucleolar RNAs. Protein sequence alignments show that 67% of amino acids from human fibrillarin are identical to those in yeast fibrillarin and that 81% are identical to those in Xenopus fibrillarin. This identity suggests the evolutionary conservation of an important function early in the pathway for ribosome biosynthesis

  5. cDNA, genomic sequence cloning and overexpression of ribosomal protein S25 gene (RPS25) from the Giant Panda.

    Science.gov (United States)

    Hao, Yan-Zhe; Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Peng, Zheng-Song

    2009-11-01

    RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a "living fossil", are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first

  6. Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast.

    Directory of Open Access Journals (Sweden)

    Bilge Argunhan

    Full Text Available Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs. The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI whereas no significant reduction was found in smaller chromosomes (III and VI. On the other hand, the absence of Rad17 (a critical component of the ATR pathway lead to an increase in DSB formation (chromosomes VII and II were tested. We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.

  7. Molecular cloning of the human gene SUVCC3 associated with the formation of DNA-protein crosslinks following exposure to solar UV radiation

    International Nuclear Information System (INIS)

    Rosenstein, B.S.; Vaslet, C.A.

    1995-01-01

    DRP 153 cells, which are hypersensitive to solar UV and deficient in the formation of DNA-protein crosslinks (DPC) following irradiation, were transfected with human DNA and a secondary transformant obtained in which a normal DPC response and solar UV sensitivity reestablished. DNA from this secondary transformant was used to construct a genomic DNA library from which a recombinant phage was isolated containing the human gene capable of restoring a normal DPC response and solar UV sensitivity to DRP 153. This gene has been designated SUVCC3 to denote solar UV cross-complementing gene number 3. 27 refs., 5 figs., 2 tabs

  8. Characterization of a new (R)-hydroxynitrile lyase from the Japanese apricot Prunus mume and cDNA cloning and secretory expression of one of the isozymes in Pichia pastoris.

    Science.gov (United States)

    Fukuta, Yasuhisa; Nanda, Samik; Kato, Yasuo; Yurimoto, Hiroya; Sakai, Yasuyoshi; Komeda, Hidenobu; Asano, Yasuhisa

    2011-01-01

    PmHNL, a hydroxynitrile lyase from Japanese apricot ume (Prunus mume) seed was purified to homogeneity by ammonium sulfate fractionation and chromatographic steps. The purified enzyme was a monomer with molecular mass of 58 kDa. It was a flavoprotein similar to other hydroxynitrile lyases of the Rosaceae family. It was active over a broad temperature, and pH range. The N-terminal amino acid sequence (20 amino acids) was identical with that of the enzyme from almond (Prunus dulcis). Based on the N-terminal sequence of the purified enzyme and the conserved amino acid sequences of the enzymes from Pr. dulcis, inverse PCR method was used for cloning of a putative PmHNL (PmHNL2) gene from a Pr. mume seedling. Then the cDNA for the enzyme was cloned. The deduced amino acid sequence was found to be highly similar (95%) to that of an enzyme from Pr. serotina, isozyme 2. The recombinant Pichia pastoris transformed with the PmHNL2 gene secreted an active enzyme in glycosylated form.

  9. 77 FR 54584 - Final Action Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH...

    Science.gov (United States)

    2012-09-05

    ... changes. Human gene transfer also raises scientific, medical, social, and ethical considerations that... currently reviewed under Section III-B-1, Experiments Involving the Cloning of Toxin Molecules with LD50 of...

  10. Cloning, sequencing and expression of a novel xylanase cDNA from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... First strand cDNA was synthesized by RT-PCR with Oligo(dT)15 using mRNA isolated ... 4°C. Single colonies were picked into 5 mL BMGY medium for preculture, and incubated ... to fold properly into a native conformation. Without the .... polymorphism is often used in taxonomy, but now, it is being well ...

  11. Cloning of Bacteroides fragilis plasmid genes affecting metronidazole resistance and ultraviolet survival in Escherichia coli

    International Nuclear Information System (INIS)

    Wehnert, G.U.; Abratt, V.R.; Goodman, H.J.; Woods, D.R.

    1990-01-01

    Since reduced metronidazole causes DNA damage, resistance to metronidazole was used as a selection method for the cloning of Bacteroides fragilis genes affecting DNA repair mechanisms in Escherichia coli. Genes from B. fragilis Bf-2 were cloned on a recombinant plasmid pMT100 which made E. coli AB1157 and uvrA, B, and C mutant strains more resistant to metronidazole, but more sensitive to far uv irradiation under aerobic conditions. The loci affecting metronidazole resistance and uv sensitivity were linked and located on a 5-kb DNA fragment which originated from the small 6-kb cryptic plasmid pBFC1 present in B. fragilis Bf-2 cells

  12. Cloning and Expression Analysis of a Giant Gourami Vasa-Like cDNA

    Directory of Open Access Journals (Sweden)

    ALIMUDDIN

    2011-09-01

    Full Text Available Molecular marker is useful in the development of testicular cells transplantation for detecting donor-derived germ cells in the recipient gonad. In this study, a giant gourami (Osphronemus goramy vasa-like gene (GgVLG was cloned and characterized for use as a molecular marker for germ cells in this species. Nucleotide sequence analysis revealed that GgVLG comprises 2,340 bps with an open reading frame of 1,962 bps encoding 653 amino acids. The deduced amino acid sequence contained 17 arginine-glycine or arginine-glycine-glycine motifs and eight conserved motifs belonging to the DEAD-box protein family. The GgVLG sequence showed high similarity to Drosophila vasa, common carp vasa homolog and tilapia vasa homolog for 66.2, 85.9, and 90.7%, respectively. In adult tissues, the GgVLG transcripts were specifically detected in ovary and testis. In situ hybridization analysis showed that GgVLG mRNA was detected in oocytes of the ovary and spermatogonia of the testis. There was no signal detected in the spermatocytes, spermatids and other gonadal somatic cells. Thus, consensus sequences, specific localization of GgVLG mRNA in the germ cells, amino acid sequence similarity and phylogenic analysis all suggest that GgVLG is the giant gourami vasa-like gene. Further, GgVLG can be used as a molecular marker for giant gourami germ cells.

  13. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    Science.gov (United States)

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  14. Bioinformatics and expressional analysis of cDNA clones from floral buds

    Science.gov (United States)

    Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Cebula, Justyna; Hincha, Dirck; ZiÄ bska, Karolina; PlÄ der, Wojciech; Przybecki, Zbigniew

    2017-08-01

    The application of genomic approaches may serve as an initial step in understanding the complexity of biochemical network and cellular processes responsible for regulation and execution of many developmental tasks. The molecular mechanism of sex expression in cucumber is still not elucidated. A study of differential expression was conducted to identify genes involved in sex determination and floral organ morphogenesis. Herein, we present generation of expression sequence tags (EST) obtained by differential hybridization (DH) and subtraction technique (cDNA-DSC) and their characteristic features such as molecular function, involvement in biology processes, expression and mapping position on the genome.

  15. Cloning and sequencing of Indian Water buffalo (Bubalus bubalis) interleukin-3 cDNA

    KAUST Repository

    Sugumar, Thennarasu

    2011-12-12

    Full-length cDNA (435 bp) of the interleukin-3(IL-3) gene of the Indian water buffalo was amplified by reverse transcriptase-polymerase chain reaction and sequenced. This sequence had 96% nucleotide identity and 92% amino acid identity with bovine IL-3. There are 10 amino acid substitutions in buffalo compared with that of bovine. The amino acid sequence of buffalo IL-3 also showed very high identity with that of other ruminants, indicating functional cross-reactivity. Structural homology modelling of buffalo IL-3 protein with human IL-3 showed the presence of five helical structures.

  16. 16S/18S ribosomal DNA clone library analysis of rumen microbial diversity

    International Nuclear Information System (INIS)

    Wright, A.G.; Kiyoshi Tajima; Aminov, R.I.

    2005-01-01

    The rumen contains a complex ecosystem where billions of bacteria, archaea, protozoa and fungi reside. This diverse microbiota is well adapted to live in the rumen and play an important role in the digestion of feed and nutrient supply to the host in the form of microbial protein and volatile fatty acids. It is estimated that the rumen microbial population consists of about 10 6 protozoa/ml, 10 3 -10 7 fungi/ml, 10 10 bacteria/ml, and 10 9 methanogens/ml. To better understand the complex relationships in the rumen, it is necessary to gain an insight into the diversity of the rumen microbes and how the quantity and composition of rumen micro-organisms are altered by a number of different host factors such as age, genetics and diet. In the past, the diversity of micro-organisms from the digestive tracts of domesticated ruminants has been identified by classical microbiological techniques. However, given the fastidious growth requirements of rumen micro-organisms, it is reasonable to concede that the culture-dependent methods may select against some species, or taxonomic groups, leading researchers to underestimate the microbial diversity that is actually present in the rumen. In fact, it has been speculated that 90% of micro-organisms in nature have escaped traditional cultivation methods. Therefore, a major challenge in microbial ecology has been to assess the diversity and structure of natural microbial communities. The field of molecular biology has advanced with many innovative technological breakthroughs. The ability to extract and to isolate high-molecular weight DNA from rumen digesta, PCR amplify genes from specific microbial groups and obtain gene sequence data is now a routine event. The small subunit ribosomal RNA (SSU-rRNA) gene, called 16S in prokaryotes and 18S in eukaryotes, is the most widely used molecular marker to presumptively identify morphologically indistinguishable species, to infer their phylogenetic relationships, and to elucidate microbial

  17. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  18. Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination.

    Science.gov (United States)

    Thakur, Roshan S; Basavaraju, Shivakumar; Somyajit, Kumar; Jain, Akshatha; Subramanya, Shreelakshmi; Muniyappa, Kalappa; Nagaraju, Ganesh

    2013-04-01

    In order to survive and replicate in a variety of stressful conditions during its life cycle, Mycobacterium tuberculosis must possess mechanisms to safeguard the integrity of the genome. Although DNA repair and recombination related genes are thought to play key roles in the repair of damaged DNA in all organisms, so far only a few of them have been functionally characterized in the tubercle bacillus. In this study, we show that M. tuberculosis RecG (MtRecG) expression was induced in response to different genotoxic agents. Strikingly, expression of MtRecG in Escherichia coli ∆recG mutant strain provided protection against mitomycin C, methyl methane sulfonate and UV induced cell death. Purified MtRecG exhibited higher binding affinity for the Holliday junction (HJ) compared with a number of canonical recombinational DNA repair intermediates. Notably, although MtRecG binds at the core of the mobile and immobile HJs, and with higher binding affinity for the immobile HJ, branch migration was evident only in the case of the mobile HJ. Furthermore, immobile HJs stimulate MtRecG ATPase activity less efficiently than mobile HJs. In addition to HJ substrates, MtRecG exhibited binding affinity for a variety of branched DNA structures including three-way junctions, replication forks, flap structures, forked duplex and a D-loop structure, but demonstrated strong unwinding activity on replication fork and flap DNA structures. Together, these results support that MtRecG plays an important role in processes related to DNA metabolism under normal as well as stress conditions. © 2013 The Authors Journal compilation © 2013 FEBS.

  19. Stock characterization and improvement: DNA fingerprinting and cold tolerance of Populus and Salix clones

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dolly; Hubbes, M.; Zsuffa, L. [Toronto Univ., ON (Canada). Faculty of Forestry; Tsarouhas, V.; Gullberg, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Howe, G.; Hackett, W.; Gardner, G.; Furnier, G. [Minnesota Univ., St. Paul, MN (United States). Dept. of Forest Resources; Tuskan, G. [Oak Ridge National Lab., TN (United States)

    1998-12-31

    Molecular characterization of advanced-generation pedigrees and evaluation of cold tolerance are two aspects of Populus and Salix genetic improvement programmes worldwide that have traditionally received little emphasis. As such, chloroplast DNA markers were tested as a means of determining multi-generation parental contributions to hybrid progeny. Likewise, greenhouse, growth chamber and field studies were used to assess cold tolerance in Populus and Salix. Chloroplast DNA markers did not reveal size polymorphisms among four tested Populus species, but did produce sequence polymorphisms between P. maximowiczii and P. trichocarpa. Additional crosses between multiple genotypes from each species are being used to evaluate the utility of the detected polymorphism for ascertaining parentage within interspecific crosses. Short-day, cold tolerance greenhouse studies revealed that bud set date and frost damage are moderately heritable and genetically correlated in Populus. The relationship between greenhouse and field studies suggests that factors other than short days contribute to cold tolerance in Populus. In Salix, response to artificial fall conditioning varied among full-sibling families, with the fastest growing family displaying the greatest amount of cold tolerance 26 refs, 3 tabs

  20. Isolation of cDNA clones coding for human tissue factor: primary structure of the protein and cDNA

    International Nuclear Information System (INIS)

    Spicer, E.K.; Horton, R.; Bloem, L.

    1987-01-01

    Tissue factor is a membrane-bound procoagulant protein that activates the extrinsic pathway of blood coagulation in the presence of factor VII and calcium. λ Phage containing the tissue factor gene were isolated from a human placental cDNA library. The amino acid sequence deduced from the nucleotide sequence of the cDNAs indicates that tissue factor is synthesized as a higher molecular weight precursor with a leader sequence of 32 amino acids, while the mature protein is a single polypeptide chain composed of 263 residues. The derived primary structure of tissue factor has been confirmed by comparison to protein and peptide sequence data. The sequence of the mature protein suggests that there are three distinct domains: extracellular, residues 1-219; hydrophobic, residues 220-242; and cytoplasmic, residues 243-263. Three potential N-linked carbohydrate attachment sites occur in the extracellular domain. The amino acid sequence of tissue factor shows no significant homology with the vitamin K-dependent serine proteases, coagulation cofactors, or any other protein in the National Biomedical Research Foundation sequence data bank (Washington, DC)

  1. When two is not enough: a CtIP tetramer is required for DNA repair by Homologous Recombination.

    Science.gov (United States)

    Forment, Josep V; Jackson, Stephen P; Pellegrini, Luca

    2015-01-01

    Homologous recombination (HR) is central to the repair of double-strand DNA breaks that occur in S/G2 phases of the cell cycle. HR relies on the CtIP protein (Ctp1 in fission yeast, Sae2 in budding yeast) for resection of DNA ends, a key step in generating the 3'-DNA overhangs that are required for the HR strand-exchange reaction. Although much has been learned about the biological importance of CtIP in DNA repair, our mechanistic insight into its molecular functions remains incomplete. It has been recently discovered that CtIP and Ctp1 share a conserved tetrameric architecture that is mediated by their N-terminal domains and is critical for their function in HR. The specific arrangement of protein chains in the CtIP/Ctp1 tetramer indicates that an ability to bridge DNA ends might be an important feature of CtIP/Ctp1 function, establishing an intriguing similarity with the known ability of the MRE11-RAD50-NBS1 complex to link DNA ends. Although the exact mechanism of action remains to be elucidated, the remarkable evolutionary conservation of CtIP/Ctp1 tetramerisation clearly points to its crucial role in HR.

  2. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kalpana Mujoo

    2017-11-01

    Full Text Available The nitric oxide (NO-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1. Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18, which causes stem cell differentiation has no effect on double-strand break (DSB repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells.

  3. Recombinant DNA derived monomeric insulin analogue: comparison with soluble human insulin in normal subjects.

    Science.gov (United States)

    Vora, J P; Owens, D R; Dolben, J; Atiea, J A; Dean, J D; Kang, S; Burch, A; Brange, J

    1988-11-12

    To compare the rate of absorption from subcutaneous tissue and the resulting hypoglycaemic effect of iodine-125 labelled soluble human insulin and a monomeric insulin analogue derived by recombinant DNA technology. Single blind randomised comparison of equimolar doses of 125I labelled soluble human insulin and insulin analogue. Study in normal people at a diabetes research unit and a university department of medical physics. Seven healthy male volunteers aged 20-39 not receiving any other drugs. After an overnight fast and a basal period of one hour two doses (0.05 and 0.1 U/kg) of 125I labelled soluble human insulin and insulin analogue were injected subcutaneously into the anterior abdominal wall on four separate days. To find a fast acting insulin for meal related requirements in insulin dependent diabetics. MEASUREMENTS and main results--Residual radioactivity at the injection site was measured continuously for the first two hours after injection of the 125I labelled preparations and thereafter for five minutes simultaneously with blood sampling. Frequent venous blood samples were obtained over six hours for determination of plasma immunoreactive insulin, insulin analogue, glucose, and glucagon values. Time to 50% of initial radioactivity at the injection site for the insulin analogue compared with soluble insulin was 61 v 135 minutes (p less than 0.05) with 0.05 U/kg and 67 v 145 minutes (p less than 0.001) with 0.1 U/kg. Concentrations in plasma increased faster after the insulin analogue compared with soluble insulin, resulting in higher plasma concentrations between 10 and 150 minutes (0.001 less than p less than 0.05) after 0.05 U/kg and between 40 and 360 minutes (0.001 less than p less than 0.05) after 0.1 U/kg. The hypoglycaemic response to insulin analogue was a plasma glucose nadir at 60 minutes with both doses compared with 90 and 120 minutes with soluble insulin at 0.5 and 0.1 U/kg respectively. The response of glucagon substantiated the earlier and

  4. Purification, cDNA cloning and modification of a defensin from the coconut rhinoceros beetle, Oryctes rhinoceros.

    Science.gov (United States)

    Ishibashi, J; Saido-Sakanaka, H; Yang, J; Sagisaka, A; Yamakawa, M

    1999-12-01

    A novel member of the insect defensins, a family of antibacterial peptides, was purified from larvae of the coconut rhinoceros beetle, Oryctes rhinoceros, immunized with Escherichia coli. A full-size cDNA was cloned by combining reverse-transcription PCR (RT-PCR), and 5'- and 3'-rapid amplification of cDNA ends (RACE). Analysis of the O. rhinoceros defensin gene expression showed it to be expressed in the fat body and hemocyte, midgut and Malpighian tubules. O. rhinoceros defensin showed strong antibacterial activity against Staphylococcus aureus. A 9-mer peptide amidated at its C-terminus, AHCLAICRK-NH2 (Ala22-Lys30-NH2), was synthesized based on the deduced amino-acid sequence, assumed to be an active site sequence by analogy with the sequence of a defensin isolated from larvae of the beetle Allomyrina dichotoma. This peptide showed antibacterial activity against S. aureus, methicillin-resistant S. aureus, E. coli and Pseudomonas aeruginosa. We further modified this oligopeptide and synthesized five 9-mer peptides, ALRLAIRKR-NH2, ALLLAIRKR-NH2, AWLLAIRKR-NH2, ALYLAIRKR-NH2 and ALWLAIRKR-NH2. These oligopeptides showed strong antibacterial activity against Gram-negative and Gram-positive bacteria. The antibacterial effect of Ala22-Lys30-NH2 analogues was due to its interaction with bacterial membranes, judging from the leakage of liposome-entrapped glucose. These Ala22-Lys30-NH2 analogues did not show haemolytic activity and did not inhibit the growth of murine fibroblast cells or macrophages, except for AWLLAIRKR-NH2.

  5. 78 FR 27977 - Office of Biotechnology Activities; Recombinant DNA Research: Proposed Actions Under the NIH...

    Science.gov (United States)

    2013-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Office of Biotechnology... Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) SUMMARY: The NIH Office of Biotechnology... of Biotechnology Activities, National Institutes of Health, 6705 Rockledge Drive, Suite 750, Bethesda...

  6. Cloning the human lysozyme cDNA: Inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells

    International Nuclear Information System (INIS)

    Chung, L.P.; Keshav, S.; Gordon, S.

    1988-01-01

    Lysozyme is a major secretory product of human and rodent macrophages and a useful marker for myelomonocytic cells. Based on the known human lysozyme amino acid sequence, oligonucleotides were synthesized and used as probes to screen a phorbol 12-myristate 13-acetate-treated U937 cDNA library. A full-length human lysozyme cDNA clone, pHL-2, was obtained and characterized. Sequence analysis shows that human lysozyme, like chicken lysozyme, has in 18-amino-acid-long signal peptide, but unlike the chicken lysozyme cDNA, the human lysozyme cDNA has a >1-kilobase-long 3' nontranslated sequence. Interestingly, within this 3' region, an inverted repeat of the Alu family of repetitive sequences was discovered. In RNA blot analyses, DNA probes prepared from pHL-2 can be used to detect lysozyme mRNA not only from human but also from mouse and rat. Moreover, by in situ hybridization, complementary RNA transcripts have been used as probes to detect lysozyme mRNA in mouse macrophages and Paneth cells. This human lysozyme cDNA clone is therefore likely to be a useful molecular probe for studying macrophage distribution and gene expression

  7. Cloning and characterisation of the sagA gene of Aspergillus nidulans: a gene which affects sensitivity to DNA-damaging agents.

    Science.gov (United States)

    Jones, G W; Hooley, P; Farrington, S M; Shawcross, S G; Iwanejko, L A; Strike, P

    1999-03-01

    Mutations within the sagA gene of Aspergillus nidulans cause sensitisation to DNA-damaging chemicals but have no effect upon spontaneous or damage-induced mutation frequency. The sagA gene was cloned on a 19-kb cosmid-derived fragment by functional complementation of a sagA1 sagC3 double mutant; subsequently, a fragment of the gene was also isolated on a 3.9-kb genomic subclone. Initial sequencing of a small section of the 19-kb fragment allowed the design of primers that were subsequently used in RTPCR experiments to show that this DNA is transcribed. A 277-bp fragment derived from the transcribed region was used to screen an A. nidulans cDNA library, resulting in the isolation of a 1.4-kb partial cDNA clone which had sequence overlap with the genomic sagA fragment. This partial cDNA was incomplete but appeared to contain the whole coding region of sagA. The sagA1 mutant was shown to possess two mutations; a G-T transversion and a+ 1 frameshift due to insertion of a T. causing disruption to the C-terminal region of the SagA protein. Translation of the sagA cDNA predicts a protein of 378 amino acids, which has homology to the Saccharomyces cerevisiae End3 protein and also to certain mammalian proteins capable of causing cell transformation.

  8. Effects of DNA double-strand and single-strand breaks on intrachromosomal recombination events in cell-cycle-arrested yeast cells

    International Nuclear Information System (INIS)

    Galli, A.; Schiestl, R.H.

    1998-01-01

    Intrachromosomal recombination between repeated elements can result in deletion (DEL recombination) events. We investigated the inducibility of such intrachromosomal recombination events at different stages of the cell cycle and the nature of the primary DNA lesions capable of initiating these events. Two genetic systems were constructed in Saccharomyces cerevisiae that select for DEL recombination events between duplicated alleles of CDC28 and TUB2. We determined effects of double-strand breaks (DSBs) and single-strand breaks (SSBs) between the duplicated alleles on DEL recombination when induced in dividing cells or cells arrested in G1 or G2. Site-specific DSBs and SSBs were produced by overexpression of the I-Sce I endonuclease and the gene II protein (gIIp), respectively. I-Sce I-induced DSBs caused an increase in DEL recombination frequencies in both dividing and cell-cycle-arrested cells, indicating that G1- and G2-arrested cells are capable of completing DSB repair. In contrast, gIIp-induced SSBs caused an increase in DEL recombination frequency only in dividing cells. To further examine these phenomena we used both γ-irradiation, inducing DSBs as its most relevant lesion, and UV, inducing other forms of DNA damage. UV irradiation did not increase DEL recombination frequencies in G1 or G2, whereas γ-rays increased DEL recombination frequencies in both phases. Both forms of radiation, however, induced DEL recombination in dividing cells. The results suggest that DSBsbut not SSBs induce DEL recombination, probably via the single-strand annealing pathway. Further, DSBs in dividing cells may result from the replication of a UV or SSB-damaged template. Alternatively, UV induced events may occur by replication slippage after DNA polymerase pausing in front of the damage. (author)

  9. Revisiting the identification and cDNA cloning of T cell-replacing factor/interleukin-5

    Directory of Open Access Journals (Sweden)

    Kiyoshi eTakatsu

    2014-12-01

    Full Text Available This is a perspective based on the paper Cloning of complementary DNA encoding T cell replacing factor and identity with B cell growth factor II, by Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tominaga A, Bergstedt-Lindqvist S, Takahashi M, Matsuda F, Yaoita Y, Takatsu K, and Honjo, T. Nature (1986 32(6092: 70-3. We have been interested in understanding the molecular basis of T-B cell cooperation for antibody formation. Although many investigators had described a number of different soluble factors that appeared to have biological relevance to T-B cell interactions, molecular basis of such active substances remained unknown for a long period of time. In this perspective, I will briefly summarize the history of the initial discovery of T cell-replacing factor/B cell growth factor II that appeared to be involved in B-cell growth and differentiation, and outline the discovery and characterization of interleukin-5. Studies of interleukin-5 have provided strong evidence that a single cytokine exerts a variety of activities on diverse target cells.

  10. Cloning and characterization of the complementary DNA for the B chain of normal human serum C1q.

    Science.gov (United States)

    Reid, K B; Bentley, D R; Wood, K J

    1984-09-06

    Normal human C1q is a serum glycoprotein of 460 kDa containing 18 polypeptide chains (6A, 6B, 6C) each 226 amino acids long and each containing an N-terminal collagen-like domain and a C-terminal globular domain. Two unusual forms of C1q have been described: a genetically defective form, which has a molecular mass of approximately 160 kDa and is found in the sera of homozygotes for the defect who show a marked susceptibility to immune complex related disease; a fibroblast form, shown to be synthesized and secreted, in vitro, with a molecular mass of about 800 kDa and with chains approximately 16 kDa greater than those of normal C1q. A higher than normal molecular mass form of C1q has also been described in human colostrum and a form of C1q has been claimed to represent one of the types of Fc receptor on guinea-pig macrophages. To initiate studies, at the genomic level, on these various forms of C1q, and to investigate the possible relation between the C1q genes and the procollagen genes, the complementary DNA corresponding to the B chain of normal C1q has been cloned and characterized.

  11. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas.

    Science.gov (United States)

    Li, Xing-Xia; Yu, Wen-Chao; Cai, Zhong-Qiang; He, Cheng; Wei, Na; Wang, Xiao-Tong; Yue, Xi-Qing

    2016-01-01

    The shell of the pearl oyster ( Pinctada fucata ) mainly comprises aragonite whereas that of the Pacific oyster ( Crassostrea gigas ) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM) and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization.

  12. Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Xing-Xia Li

    2016-01-01

    Full Text Available The shell of the pearl oyster (Pinctada fucata mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization.

  13. In vitro and in silico cloning of Xenopus laevis SOD2 cDNA and its phylogenetic analysis.

    Science.gov (United States)

    Purrello, Michele; Di Pietro, Cinzia; Ragusa, Marco; Pulvirenti, Alfredo; Giugno, Rosalba; Di Pietro, Valentina; Emmanuele, Giovanni; Travali, Salvo; Scalia, Marina; Shasha, Dennis; Ferro, Alfredo

    2005-02-01

    By using the methodology of both wet and dry biology (i.e., RT-PCR and cycle sequencing, and biocomputational technology, respectively) and the data obtained through the Genome Projects, we have cloned Xenopus laevis SOD2 (MnSOD) cDNA and determined its nucleotide sequence. These data and the deduced protein primary structure were compared with all the other SOD2 nucleotide and amino acid sequences from eukaryotes and prokaryotes, published in public databases. The analysis was performed by using both Clustal W, a well known and widely used program for sequence analysis, and AntiClustAl, a new algorithm recently created and implemented by our group. Our results demonstrate a very high conservation of the enzyme amino acid sequence during evolution, which proves a close structure-function relationship. This is to be expected for very ancient molecules endowed with critical biological functions, performed through a specific structural organization. The nucleotide sequence conservation is less pronounced: this too was foreseeable, due to neutral mutations and to the species-specific codon usage. The data obtained by using AntiClustAl are comparable with those produced with Clustal W, which validates this algorithm as an important new tool for biocomputational analysis. Finally, it is noteworthy that evolutionary trees, drawn by using all the available data on SOD2 nucleotide sequences and amino acid and either Clustal W or AntiClustAl, are comparable to those obtained through phylogenetic analysis based on fossil records.

  14. Some properties and cDNA cloning of proteinaceous toxins from two species of lionfish (Pterois antennata and Pterois volitans).

    Science.gov (United States)

    Kiriake, Aya; Shiomi, Kazuo

    2011-11-01

    Lionfish, members of the genera Pterois, Parapterois and Dendrochirus, are well known to be venomous, having venomous glandular tissues in dorsal, pelvic and anal spines. The lionfish toxins have been shown to cross-react with the stonefish toxins by neutralization tests using the commercial stonefish antivenom, although their chemical properties including structures have been little characterized. In this study, an antiserum against neoverrucotoxin, the stonefish Synanceia verrucosa toxin, was first raised in a guinea pig and used in immunoblotting and inhibition immunoblotting to confirm that two species of Pterois lionfish (P. antennata and P. volitans) contain a 75kDa protein (corresponding to the toxin subunit) cross-reacting with neoverrucotoxin. Then, the amino acid sequences of the P. antennata and P. volitans toxins were successfully determined by cDNA cloning using primers designed from the highly conserved sequences of the stonefish toxins. Notably, either α-subunits (699 amino acid residues) or β-subunits (698 amino acid residues) of the P. antennata and P. volitans toxins share as high as 99% sequence identity with each other. Furthermore, both α- and β-subunits of the lionfish toxins exhibit high sequence identity (70-80% identity) with each other and also with the β-subunits of the stonefish toxins. As reported for the stonefish toxins, the lionfish toxins also contain a B30.2/SPRY domain (comprising nearly 200 amino acid residues) in the C-terminal region of each subunit. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Molecular cloning and sequence of cDNA encoding the plasma membrane proton pump (H+-ATPase) of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Harper, J.F.; Surowy, T.K.; Sussman, M.R.

    1989-01-01

    In plants, the transport of solutes across the plasma membrane is driven by a proton pump (H + -ATPase) that produces an electric potential and pH gradient. The authors isolated and sequenced a full-length cDNA clone that encodes this enzyme in Arabidopsis thaliana. The protein predicted from its nucleotide sequence encodes 959 amino acids and has a molecular mass of 104,207 Da. The plant protein shows structural features common to a family of cation-translocating ATPases found in the plasma membrane of prokaryotic and eukaryotic cells, with the greatest overall identity in amino acid sequence (36%) to the H + -ATPase observed in the plasma membrane of fungi. The structure predicted from a hydropathy plant contains at least eight transmembrane segments, with most of the protein (73%) extending into the cytoplasm and only 5% of the residues exposed on the external surface. Unique features of the plant enzyme include diverged sequences at the amino and carboxyl termini as well as greater hydrophilic character in three extracellular loops

  16. In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin A

    NARCIS (Netherlands)

    Azevedo, de M.; Karczewski, J.; Lefevre, F.; Azevedo, V.; Miyoshi, A.; Wells, J.; Langella, P.; Chatel, J.M.

    2012-01-01

    Background The use of food-grade Lactic Acid Bacteria (LAB) as DNA delivery vehicles represents an attractive strategy to deliver DNA vaccines at the mucosal surfaces as they are generally regarded as safe (GRAS). We previously showed that either native Lactococcus lactis (LL) or recombinant

  17. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Directory of Open Access Journals (Sweden)

    Alamar Santiago

    2009-09-01

    Full Text Available Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new

  18. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Science.gov (United States)

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an

  19. Protection of genetic heritage in the era of cloning

    OpenAIRE

    Oliveira Júnior,Eudes Quintino de; Oliveira,Pedro Bellentani Quintino de

    2012-01-01

    Research on human beings has expanded greatly due to progress and the evolution of society as well as customs. Not only the unceasing development of research on human beings, but also interference in the beginning and end of life with homologous and heterogonous human reproduction, surrogate motherhood, cloning, gene therapies, eugenics, euthanasia, dysthanasia, orthothanasia, assisted suicide, genetic engineering, reassignment surgery in cases of transsexuality, the use of recombinant DNA te...

  20. Molecular cloning of cDNA for the human tumor-associated antigen CO-029 and identification of related transmembrane antigens

    International Nuclear Information System (INIS)

    Szala, S.; Kasai, Yasushi; Steplewski, Z.; Rodeck, U.; Koprowski, H.; Linnenbach, A.J.

    1990-01-01

    The human tumor-associated antigen CO-029 is a monoclonal antibody-defined cell surface glycoprotein of 27-34 kDa. By using the high-efficiency COS cell expression system, a full-length cDNA clone for CO-029 was isolated. When transiently expressed in COS cells, the cDNA clone directed the synthesis of an antigen reactive to monoclonal antibody CO-029 in mixed hemadsorption and immunoblot assays. Sequence analysis revealed that CO-029 belongs to a family of cell surface antigens that includes the melanoma-associated antigen ME491, the leukocyte cell surface antigen CD37, and the Sm23 antigen of the parasitic helminth Schistosoma mansoni. CO-029 and ME491 antigen expression and the effect of their corresponding monoclonal antibodies on cell growth were compared in human tumor cell lines of various histologic origins