WorldWideScience

Sample records for recombinant c-myc max

  1. The Max b-HLH-LZ can transduce into cells and inhibit c-Myc transcriptional activities.

    Directory of Open Access Journals (Sweden)

    Martin Montagne

    Full Text Available The inhibition of the functions of c-Myc (endogenous and oncogenic was recently shown to provide a spectacular therapeutic index in cancer mouse models, with complete tumor regression and minimal side-effects in normal tissues. This was achieved by the systemic and conditional expression of omomyc, the cDNA of a designed mutant of the b-HLH-LZ of c-Myc named Omomyc. The overall mode of action of Omomyc consists in the sequestration of Max and the concomitant competition of the Omomyc/Max complex with the endogenous c-Myc/Max heterodimer. This leads to the inhibition of the transactivation of Myc target genes involved in proliferation and metabolism. While this body of work has provided extraordinary insights to guide the future development of new cancer therapies that target c-Myc, Omomyc itself is not a therapeutic agent. In this context, we sought to exploit the use of a b-HLH-LZ to inhibit c-Myc in a cancer cell line in a more direct fashion. We demonstrate that the b-HLH-LZ domain of Max (Max* behaves as a bona fide protein transduction domain (PTD that can efficiently transduce across cellular membrane via through endocytosis and translocate to the nucleus. In addition, we show that the treatment of HeLa cells with Max* leads to a reduction of metabolism and proliferation rate. Accordingly, we observe a decrease of the population of HeLa cells in S phase, an accumulation in G1/G0 and the induction of apoptosis. In agreement with these phenotypic changes, we show by q-RT-PCR that the treatment of HeLa cells with Max* leads to the activation of the transcription c-Myc repressed genes as well as the repression of the expression of c-Myc activated genes. In addition to the novel discovery that the Max b-HLH-LZ is a PTD, our findings open up new avenues and strategies for the direct inhibition of c-Myc with b-HLH-LZ analogs.

  2. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    Directory of Open Access Journals (Sweden)

    Michael Allevato

    Full Text Available The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX bind Enhancer box (E-box DNA elements (CANNTG and have the greatest affinity for the canonical MYC E-box (CME CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87% of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  3. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells.

    Science.gov (United States)

    Wang, Jiandong; Ma, Xiaoli; Jones, Hannah M; Chan, Leo Li-Ying; Song, Fang; Zhang, Weiyuan; Bae-Jump, Victoria L; Zhou, Chunxiao

    2014-08-21

    Epithelial ovarian carcinoma is the most lethal gynecological cancer due to its silent onset and recurrence with resistance to chemotherapy. Overexpression of oncogene c-Myc is one of the most frequently encountered events present in ovarian carcinoma. Disrupting the function of c-Myc and its downstream target genes is a promising strategy for cancer therapy. Our objective was to evaluate the potential effects of small-molecule c-Myc inhibitor, 10058-F4, on ovarian carcinoma cells and the underlying mechanisms by which 10058-F4 exerts its actions. Using MTT assay, colony formation, flow cytometry and Annexin V FITC assays, we found that 10058-F4 significantly inhibited cell proliferation of both SKOV3 and Hey ovarian cancer cells in a dose dependent manner through induction of apoptosis and cell cycle G1 arrest. Treatment with 10058-F4 reduced cellular ATP production and ROS levels in SKOV3 and Hey cells. Consistently, primary cultures of ovarian cancer treated with 10058-F4 showed induction of caspase-3 activity and inhibition of cell proliferation in 15 of 18 cases. The response to 10058-F4 was independent the level of c-Myc protein over-expression in primary cultures of ovarian carcinoma. These novel findings suggest that the growth of ovarian cancer cells is dependent upon c-MYC activity and that targeting c-Myc-Max heterodimerization could be a potential therapeutic strategy for ovarian cancer.

  4. Evaluation of Molecular Inhibitors of the c-Myc Oncoprotein

    National Research Council Canada - National Science Library

    Prochownik, Edward V

    2005-01-01

    .... All of these functions require that C-Myc physically associate with another protein. Max. Example of diseases in which c-Myc deregulation occurs include breast cancer (approx. 30% of cases), colon cancer (>85...

  5. Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion

    Directory of Open Access Journals (Sweden)

    Sanders Jennifer A

    2012-03-01

    Full Text Available Abstract Background The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre. Results Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy. Conclusions c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.

  6. Structural and dynamic studies of the dimerization and DNA-binding domains of the transcription factors v-Myc and Max

    International Nuclear Information System (INIS)

    Fieber, W.

    2001-05-01

    In the present work, solution structural and dynamic properties of the dimerization and DNA binding domains of the transcription factors v-Myc and Max were characterized by NMR and CD spectroscopy. It could be demonstrated that v-Myc in the absence of its authentic binding partner Max does not homodimerize, but exists in a monomeric and prestructured form. Two separated α-helical regions in the leucine zipper region and in the basic-H1 region, respectively, could be identified, while the latter appeared to be less stable. Both helices lack stabilizing tertiary side chain interactions and represent exceptional examples for loosely coupled, structured segments in a native protein. The structure of v-Myc is dynamic and can be described as a distribution of conformational substates. Motion within the substates comprise fast (picosecond to nanosecond) local backbone fluctuations like helical fraying, whereas motion between the substates comprise the relative orientation of the two helices and occur at larger time scales (microsecond to millisecond). The preformation of the specific protein and DNA binding sites, leucine zipper and the basic region, presumably allows rapid and accurate recognition of the respective binding partners. v-Myc-Max and Max-Max protein preparations were shown to form stable dimers. Thermodynamic analysis of the dissociation reactions of v-Myc-Max revealed a significant higher stability of the heterodimer than of the Max-Max homodimer over the whole temperature range. It could be demonstrated that the restricted conformational space of the v-Myc bHLHZip domain reduces the entropy penalty associated with dimerization and contributes to the preference of Max to form heterodimers with v-Myc rather than homodimers. (author)

  7. Transcriptional regulation of BRD7 expression by Sp1 and c-Myc

    Directory of Open Access Journals (Sweden)

    Li Shufang

    2008-12-01

    Full Text Available Abstract Background Bromodomain is an evolutionally conserved domain that is found in proteins strongly implicated in signal-dependent transcriptional regulation. Genetic alterations of bromodomain genes contributed to the development of many human cancers and other disorders. BRD7 is a recently identified bromodomain gene. It plays a critical role in cellular growth, cell cycle progression, and signal-dependent gene expression. Previous studies showed that BRD7 gene exhibited much higher-level of mRNA expression in normal nasopharyngeal epithelia than in nasopharyngeal carcinoma (NPC biopsies and cell lines. However, little is known about its transcriptional regulation. In this study, we explored the transcriptional regulation of BRD7 gene. Method Potential binding sites of transcription factors within the promoter region of BRD7 gene were predicted with MatInspector Professional http://genomatix.de/cgi-bin/matinspector_prof/mat_fam.pl. Mutation construct methods and luciferase assays were performed to define the minimal promoter of BRD7 gene. RT-PCR and western blot assays were used to detect the endogenous expression of transcription factor Sp1, c-Myc and E2F6 in all cell lines used in this study. Electrophoretic mobility shift assays (EMSA and Chromatin immunoprecipitation (ChIP were used to detect the direct transcription factors that are responsible for the promoter activity of BRD7 gene. DNA vector-based siRNA technology and cell transfection methods were employed to establish clone pools that stably expresses SiRNA against c-Myc expression in nasopharyngeal carcinoma 5-8F cells. Real-time PCR was used to detect mRNA expression of BRD7 gene in 5-8F/Si-c-Myc cells. Results We defined the minimal promoter of BRD7 gene in a 55-bp region (from -266 to -212bp, and identified that its promoter activity is inversely related to c-Myc expression. Sp1 binds to the Sp1/Myc-Max overlapping site of BRD7 minimal promoter, and slightly positively

  8. Fluorescent Dansyl-Guanosine Conjugates that Bind c-MYC Promoter G-Quadruplex and Downregulate c-MYC Expression.

    Science.gov (United States)

    Pavan Kumar, Y; Saha, Puja; Saha, Dhurjhoti; Bessi, Irene; Schwalbe, Harald; Chowdhury, Shantanu; Dash, Jyotirmayee

    2016-03-02

    The four-stranded G-quadruplex present in the c-MYC P1 promoter has been shown to play a pivotal role in the regulation of c-MYC transcription. Small-molecule compounds capable of inhibiting the c-MYC promoter activity by stabilising the c-MYC G-quadruplex could potentially be used as anticancer agents. In this context, here we report the synthesis of dansyl-guanosine conjugates through one-pot modular click reactions. The dansyl-guanosine conjugates can selectively detect c-MYC G-quadruplex over other biologically relevant quadruplexes and duplex DNA and can be useful as staining reagents for selective visualisation of c-MYC G-quadruplex over duplex DNA by gel electrophoresis. NMR spectroscopic titrations revealed the preferential binding sites of these dansyl ligands to the c-MYC G-quadruplex. A dual luciferase assay and qRT-PCR revealed that a dansyl-bisguanosine ligand represses the c-MYC expression, possibly by stabilising the c-MYC G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia.

    Science.gov (United States)

    Eberhart, Charles G; Kratz, John; Wang, Yunyue; Summers, Krista; Stearns, Duncan; Cohen, Kenneth; Dang, Chi V; Burger, Peter C

    2004-05-01

    Several molecular and histopathological prognostic markers have been proposed for the therapeutic stratification of medulloblastoma patients. Amplification of the c-myc oncogene, elevated levels of c-myc mRNA, or tumor anaplasia have been associated with worse clinical outcomes. In contrast, high TrkC mRNA expression generally presages longer survival. The goal of this study was to evaluate the prognostic value of c-myc, N-myc and TrkC expression in medulloblastomas and compare them to histopathological classification. We used in situ hybridization to measure expression of these molecular markers. c-myc mRNA was detected in 18 of 59 (31%) cases, and was significantly associated with shorter patient survival times on both univariate and multivariate analyses (p = 0.04). The presence of c-myc mRNA was also significantly associated with tumor anaplasia. While survival rates were higher for patients with low N-myc or high TrkC expression, these differences were not statistically significant. The group of patients with either moderate or severely anaplastic tumors showed only a trend towards shorter survival (p = 0.11). However, severe anaplasia alone was significantly prognostic (p = 0.002). Given the prognostic import of c-myc, we investigated 2 potential mechanisms by which its expression might be regulated: Wnt signaling and Mxi-1 mutation. Nuclear translocation of beta-catenin, a marker of Wnt pathway activation, was more common in medulloblastomas with high c-myc than in tumors overall, but the difference was not statistically significant. No Mxi-1 mutations were detected in the 22 cases examined. The association we describe between c-myc expression, tumor anaplasia, and worse clinical outcomes provides further evidence for the importance of this oncogene in medulloblastoma pathobiology.

  10. A proteomic study of cMyc improvement of CHO culture

    Directory of Open Access Journals (Sweden)

    Dunn Michael J

    2010-03-01

    Full Text Available Abstract Background The biopharmaceutical industry requires cell lines to have an optimal proliferation rate and a high integral viable cell number resulting in a maximum volumetric recombinant protein product titre. Nutrient feeding has been shown to boost cell number and productivity in fed-batch culture, but cell line engineering is another route one may take to increase these parameters in the bioreactor. The use of CHO-K1 cells with a c-myc plasmid allowing for over-expressing c-Myc (designated cMycCHO gives a higher integral viable cell number. In this study the differential protein expression in cMycCHO is investigated using two-dimensional gel electrophoresis (2-DE followed by image analysis to determine the extent of the effect c-Myc has on the cell and the proteins involved to give the new phenotype. Results Over 100 proteins that were differentially expressed in cMycCHO cells were detected with high statistical confidence, of which 41 were subsequently identified by tandem mass spectrometry (LC-MS/MS. Further analysis revealed proteins involved in a variety of pathways. Some examples of changes in protein expression include: an increase in nucleolin, involved in proliferation and known to aid in stabilising anti-apoptotic protein mRNA levels, the cytoskeleton and mitochondrial morphology (vimentin, protein biosysnthesis (eIF6 and energy metabolism (ATP synthetase, and a decreased regulation of all proteins, indentified, involved in matrix and cell to cell adhesion. Conclusion These results indicate several proteins involved in proliferation and adhesion that could be useful for future approaches to improve proliferation and decrease adhesion of CHO cell lines which are difficult to adapt to suspension culture.

  11. c-myc overexpression causes anaplasia in medulloblastoma.

    Science.gov (United States)

    Stearns, Duncan; Chaudhry, Aneeka; Abel, Ty W; Burger, Peter C; Dang, Chi V; Eberhart, Charles G

    2006-01-15

    Both anaplasia and increased c-myc gene expression have been shown to be negative prognostic indicators for survival in medulloblastoma patients. myc gene amplification has been identified in many large cell/anaplastic medulloblastoma, but no causative link between c-myc and anaplastic changes has been established. To address this, we stably overexpressed c-myc in two medulloblastoma cell lines, DAOY and UW228, and examined the changes in growth characteristics. When analyzed in vitro, cell lines with increased levels of c-myc had higher rates of growth and apoptosis as well as significantly improved ability to form colonies in soft agar compared with control. When injected s.c. into nu/nu mice, flank xenograft tumors with high levels of c-myc in DAOY cell line background were 75% larger than those derived from control. Overexpression of c-myc was required for tumor formation by UW228 cells. Most remarkably, the histopathology of the Myc tumors was severely anaplastic, with large areas of necrosis/apoptosis, increased nuclear size, and macronucleoli. Indices of proliferation and apoptosis were also significantly higher in Myc xenografts. Thus, c-myc seems to play a causal role in inducing anaplasia in medulloblastoma. Because anaplastic changes are often observed in recurrent medulloblastoma, we propose that c-myc dysregulation is involved in the progression of these malignant embryonal neoplasms.

  12. Targeting c-Myc: JQ1 as a promising option for c-Myc-amplified esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wang, Jingyuan; Liu, Zhentao; Wang, Ziqi; Wang, Shubin; Chen, Zuhua; Li, Zhongwu; Zhang, Mengqi; Zou, Jianling; Dong, Bin; Gao, Jing; Shen, Lin

    2018-04-10

    c-Myc amplification-induced cell cycle dysregulation is a common cause for esophageal squamous cell carcinoma (ESCC), but no approved targeted drug is available so far. The bromodomain inhibitor JQ1, which targets c-Myc, exerts anti-tumor activity in multiple cancers. However, the role of JQ1 in ESCC remains unknown. In this study, we reported that JQ1 had potent anti-proliferative effects on ESCC cells in both time- and dose-dependent manners by inducing cell cycle arrest at G1 phase, cell apoptosis, and the mesenchymal-epithelial transition. Follow-up studies revealed that both c-Myc/cyclin/Rb and PI3K/AKT signaling pathways were inactivated by JQ1, as indicated by the downregulation of c-Myc, cyclin A/E, and phosphorylated Rb, AKT and S6. Tumor suppression induced by JQ1 in c-Myc amplified or highly expressed xenografts was higher than that in xenografts with low expression, suggesting its potential role in prediction. In conclusion, targeting c-Myc by JQ1 could cause significant tumor suppression in ESCC both in vitro and in vivo. Also, c-Myc amplification or high expression might serve as a potential biomarker and provide a promising therapeutic option for ESCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. c-MYC amplification and c-myc protein expression in pancreatic acinar cell carcinomas. New insights into the molecular signature of these rare cancers.

    Science.gov (United States)

    La Rosa, Stefano; Bernasconi, Barbara; Vanoli, Alessandro; Sciarra, Amedeo; Notohara, Kenji; Albarello, Luca; Casnedi, Selenia; Billo, Paola; Zhang, Lizhi; Tibiletti, Maria Grazia; Sessa, Fausto

    2018-05-02

    The molecular alterations of pancreatic acinar cell carcinomas (ACCs) and mixed acinar-neuroendocrine carcinomas (MANECs) are not completely understood, and the possible role of c-MYC amplification in tumor development, progression, and prognosis is not known. We have investigated c-MYC gene amplification in a series of 35 ACCs and 4 MANECs to evaluate its frequency and a possible prognostic role. Gene amplification was investigated using interphasic fluorescence in situ hybridization analysis simultaneously hybridizing c-MYC and the centromere of chromosome 8 probes. Protein expression was immunohistochemically investigated using a specific monoclonal anti-c-myc antibody. Twenty cases had clones with different polysomies of chromosome 8 in absence of c-MYC amplification, and 5 cases had one amplified clone and other clones with chromosome 8 polysomy, while the remaining 14 cases were diploid for chromosome 8 and lacked c-MYC amplification. All MANECs showed c-MYC amplification and/or polysomy which were observed in 54% pure ACCs. Six cases (15.3%) showed nuclear immunoreactivity for c-myc, but only 4/39 cases showed simultaneous c-MYC amplification/polysomy and nuclear protein expression. c-myc immunoreactivity as well as c-MYC amplification and/or chromosome 8 polysomy was not statistically associated with prognosis. Our study demonstrates that a subset of ACCs shows c-MYC alterations including gene amplification and chromosome 8 polysomy. Although they are not associated with a different prognostic signature, the fact that these alterations are present in all MANECs suggests a role in the acinar-neuroendocrine differentiation possibly involved in the pathogenesis of MANECs.

  14. c-Myc-Dependent Cell Competition in Human Cancer Cells.

    Science.gov (United States)

    Patel, Manish S; Shah, Heta S; Shrivastava, Neeta

    2017-07-01

    Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Mechanisms of c-myc degradation by nickel compounds and hypoxia.

    Directory of Open Access Journals (Sweden)

    Qin Li

    2009-12-01

    Full Text Available Nickel (Ni compounds have been found to cause cancer in humans and animal models and to transform cells in culture. At least part of this effect is mediated by stabilization of hypoxia inducible factor (HIF1a and activating its downstream signaling. Recent studies reported that hypoxia signaling might either antagonize or enhance c-myc activity depending on cell context. We investigated the effect of nickel on c-myc levels, and demonstrated that nickel, hypoxia, and other hypoxia mimetics degraded c-myc protein in a number of cancer cells (A549, MCF-7, MDA-453, and BT-474. The degradation of the c-Myc protein was mediated by the 26S proteosome. Interestingly, knockdown of both HIF-1alpha and HIF-2alpha attenuated c-Myc degradation induced by Nickel and hypoxia, suggesting the functional HIF-1alpha and HIF-2alpha was required for c-myc degradation. Further studies revealed two potential pathways mediated nickel and hypoxia induced c-myc degradation. Phosphorylation of c-myc at T58 was significantly increased in cells exposed to nickel or hypoxia, leading to increased ubiquitination through Fbw7 ubiquitin ligase. In addition, nickel and hypoxia exposure decreased USP28, a c-myc de-ubiquitinating enzyme, contributing to a higher steady state level of c-myc ubiquitination and promoting c-myc degradation. Furthermore, the reduction of USP28 protein by hypoxia signaling is due to both protein degradation and transcriptional repression. Nickel and hypoxia exposure significantly increased the levels of dimethylated H3 lysine 9 at the USP28 promoter and repressed its expression. Our study demonstrated that Nickel and hypoxia exposure increased c-myc T58 phosphorylation and decreased USP28 protein levels in cancer cells, which both lead to enhanced c-myc ubiquitination and proteasomal degradation.

  16. Use of a transfected and amplified Drosophila heat shock promoter construction for inducible production of toxic mouse c-myc proteins in CHO cells

    International Nuclear Information System (INIS)

    Wurm, F.M.; Gwinn, K.A.; Papoulas, O.; Pallavicini, M.; Kingston, R.E.

    1987-01-01

    After transfection and selection with methotrexate, CHO cell lines were established which contained up to 2000 copies of an expression vector for c-myc protein. The vector contained the Drosophila heat shock protein 70 (hsp70) promoter fused with the coding region of the mouse c-myc gene. Incubation of cells for up to 3 hours at 43 0 C resulted in at least a 100-fold induction of recombinant c-myc mRNA. When cells were shifted back to 37 0 C, within 1 to 4 hours, this RNA was translated into protein to yield about 250 μg per 10 9 cells. Cells died a few hours later, suggesting that high concentrations of intracellular c-myc are cytotoxic. 47 refs., 5 figs

  17. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  18. Clinicopathological significance of c-MYC in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Lian, Yu; Niu, Xiangdong; Cai, Hui; Yang, Xiaojun; Ma, Haizhong; Ma, Shixun; Zhang, Yupeng; Chen, Yifeng

    2017-07-01

    Esophageal squamous cell carcinoma is one of the most common malignant tumors. The oncogene c-MYC is thought to be important in the initiation, promotion, and therapy resistance of cancer. In this study, we aim to investigate the clinicopathologic roles of c-MYC in esophageal squamous cell carcinoma tissue. This study is aimed at discovering and analyzing c-MYC expression in a series of human esophageal tissues. A total of 95 esophageal squamous cell carcinoma samples were analyzed by the western blotting and immunohistochemistry techniques. Then, correlation of c-MYC expression with clinicopathological features of esophageal squamous cell carcinoma patients was statistically analyzed. In most esophageal squamous cell carcinoma cases, the c-MYC expression was positive in tumor tissues. The positive rate of c-MYC expression in tumor tissues was 61.05%, obviously higher than the adjacent normal tissues (8.42%, 8/92) and atypical hyperplasia tissues (19.75%, 16/95). There was a statistical difference among adjacent normal tissues, atypical hyperplasia tissues, and tumor tissues. Overexpression of the c-MYC was detected in 61.05% (58/95) esophageal squamous cell carcinomas, which was significantly correlated with the degree of differentiation (p = 0.004). The positive rate of c-MYC expression was 40.0% in well-differentiated esophageal tissues, with a significantly statistical difference (p = 0.004). The positive rate of c-MYC was 41.5% in T1 + T2 esophageal tissues and 74.1% in T3 + T4 esophageal tissues, with a significantly statistical difference (p = 0.001). The positive rate of c-MYC was 45.0% in I + II esophageal tissues and 72.2% in III + IV esophageal tissues, with a significantly statistical difference (p = 0.011). The c-MYC expression strongly correlated with clinical staging (p = 0.011), differentiation degree (p = 0.004), lymph node metastasis (p = 0.003), and invasion depth (p = 0.001) of patients with esophageal squamous cell carcinoma. The c-MYC was

  19. Ezrin mediates c-Myc actions in prostate cancer cell invasion

    DEFF Research Database (Denmark)

    Chuan, Yin Choy; Iglesias Gato, Diego; Fernandez-Perez, L

    2010-01-01

    The forced overexpression of c-Myc in mouse prostate and in normal human prostate epithelial cells results in tumor transformation with an invasive phenotype. How c-Myc regulates cell invasion is poorly understood. In this study, we have investigated the interplay of c-Myc and androgens in the re...

  20. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation.

    Science.gov (United States)

    Conacci-Sorrell, Maralice; Ngouenet, Celine; Eisenman, Robert N

    2010-08-06

    The Myc oncoprotein family comprises transcription factors that control multiple cellular functions and are widely involved in oncogenesis. Here we report the identification of Myc-nick, a cytoplasmic form of Myc generated by calpain-dependent proteolysis at lysine 298 of full-length Myc. Myc-nick retains conserved Myc box regions but lacks nuclear localization signals and the bHLHZ domain essential for heterodimerization with Max and DNA binding. Myc-nick induces alpha-tubulin acetylation and altered cell morphology by recruiting histone acetyltransferase GCN5 to microtubules. During muscle differentiation, while the levels of full-length Myc diminish, Myc-nick and acetylated alpha-tubulin levels are increased. Ectopic expression of Myc-nick accelerates myoblast fusion, triggers the expression of myogenic markers, and permits Myc-deficient fibroblasts to transdifferentiate in response to MyoD. We propose that the cleavage of Myc by calpain abrogates the transcriptional inhibition of differentiation by full-length Myc and generates Myc-nick, a driver of cytoplasmic reorganization and differentiation. Copyright 2010 Elsevier Inc. All rights reserved.

  1. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Florea

    Full Text Available The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4 were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  2. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress.

    Science.gov (United States)

    Kfoury, Alain; Armaro, Marzia; Collodet, Caterina; Sordet-Dessimoz, Jessica; Giner, Maria Pilar; Christen, Stefan; Moco, Sofia; Leleu, Marion; de Leval, Laurence; Koch, Ute; Trumpp, Andreas; Sakamoto, Kei; Beermann, Friedrich; Radtke, Freddy

    2018-03-01

    Although c-Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the Nras Q61K INK4a -/- mouse melanoma model to show that c-Myc is essential for tumor initiation, maintenance, and metastasis. c-Myc-expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c-Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c-Myc-positive melanoma cells activated and became dependent on the metabolic energy sensor AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c-Myc-expressing melanoma cells, while AMPK activation protected against cell death of c-Myc-depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early-stage human melanoma samples revealed an inverse correlation between C-MYC and patient survival, suggesting that C-MYC expression levels could serve as a prognostic marker for early-stage disease. © 2018 The Authors.

  3. Efficacy, pharmacokinetics, tisssue distribution, and metabolism of the Myc-Max disruptor, 10058-F4 [Z,E]-5-[4-ethylbenzylidine]-2-thioxothiazolidin-4-one, in mice.

    Science.gov (United States)

    Guo, Jianxia; Parise, Robert A; Joseph, Erin; Egorin, Merrill J; Lazo, John S; Prochownik, Edward V; Eiseman, Julie L

    2009-03-01

    c-Myc is commonly activated in many human tumors and is functionally important in cellular proliferation, differentiation, apoptosis and cell cycle progression. The activity of c-Myc requires noncovalent interaction with its client protein Max. In vitro studies indicate the thioxothiazolidinone, 10058-F4, inhibits c-Myc/Max dimerization. In this study, we report the efficacy, pharmacokinetics and metabolism of this novel protein-protein disruptor in mice. SCID mice bearing DU145 or PC-3 human prostate cancer xenografts were treated with either 20 or 30 mg/kg 10058-F4 on a qdx5 schedule for 2 weeks for efficacy studies. For pharmacokinetics and metabolism studies, mice bearing PC-3 or DU145 xenografts were treated with 20 mg/kg of 10058-F4 i.v. Plasma and tissues were collected 5-1440 min after dosing. The concentration of 10058-F4 in plasma and tissues was determined by HPLC, and metabolites were characterized by LC-MS/MS. Following a single iv dose, peak plasma 10058-F4 concentrations of approximately 300 muM were seen at 5 min and declined to below the detection limit at 360 min. Plasma concentration versus time data were best approximated by a two-compartment, open, linear model. The highest tissue concentrations of 10058-F4 were found in fat, lung, liver, and kidney. Peak tumor concentrations of 10058-F4 were at least tenfold lower than peak plasma concentrations. Eight metabolites of 10058-F4 were identified in plasma, liver, and kidney. The terminal half-life of 10058-F4 was approximately 1 h, and the volume of distribution was >200 ml/kg. No significant inhibition of tumor growth was seen after i.v. treatment of mice with either 20 or 30 mg/kg 10058-F4. The lack of significant antitumor activity of 10058-F4 in tumor-bearing mice may have resulted from its rapid metabolism and low concentration in tumors.

  4. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30{sup II} accessory protein and the induction of oncogenic cellular transformation by p30{sup II}/c-MYC

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Megan M.; Ko, Bookyung; Kim, Janice; Brady, Rebecca; Heatley, Hayley C.; He, Jeffrey; Harrod, Carolyn K.; Barnett, Braden [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States); Ratner, Lee [Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Lairmore, Michael D. [University of California-Davis, School of Veterinary Medicine, One Shields Avenue, Davis, CA 95618 (United States); Martinez, Ernest [Department of Biochemistry, University of California, Riverside, CA 92521 (United States); Lüscher, Bernhard [Institute of Biochemistry, Klinikum, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen (Germany); Robson, Craig N. [Northern Institute for Cancer Research, Newcastle University, The Medical School, Newcastle upon Tyne, NE2 4HH (United Kingdom); Henriksson, Marie [Department of Microbiology, Cell and Tumor Biology, Karolinska Institutet, Stockholm (Sweden); Harrod, Robert, E-mail: rharrod@smu.edu [Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275-0376 (United States)

    2015-02-15

    The human T-cell leukemia retrovirus type-1 (HTLV-1) p30{sup II} protein is a multifunctional latency-maintenance factor that negatively regulates viral gene expression and deregulates host signaling pathways involved in aberrant T-cell growth and proliferation. We have previously demonstrated that p30{sup II} interacts with the c-MYC oncoprotein and enhances c-MYC-dependent transcriptional and oncogenic functions. However, the molecular and biochemical events that mediate the cooperation between p30{sup II} and c-MYC remain to be completely understood. Herein we demonstrate that p30{sup II} induces lysine-acetylation of the c-MYC oncoprotein. Acetylation-defective c-MYC Lys→Arg substitution mutants are impaired for oncogenic transformation with p30{sup II} in c-myc{sup −/−} HO15.19 fibroblasts. Using dual-chromatin-immunoprecipitations (dual-ChIPs), we further demonstrate that p30{sup II} is present in c-MYC-containing nucleoprotein complexes in HTLV-1-transformed HuT-102 T-lymphocytes. Moreover, p30{sup II} inhibits apoptosis in proliferating cells expressing c-MYC under conditions of genotoxic stress. These findings suggest that c-MYC-acetylation is required for the cooperation between p30{sup II}/c-MYC which could promote proviral replication and contribute to HTLV-1-induced carcinogenesis. - Highlights: • Acetylation of c-MYC is required for oncogenic transformation by HTLV-1 p30{sup II}/c-MYC. • Acetylation-defective c-MYC mutants are impaired for foci-formation by p30{sup II}/c-MYC. • The HTLV-1 p30{sup II} protein induces lysine-acetylation of c-MYC. • p30{sup II} is present in c-MYC nucleoprotein complexes in HTLV-1-transformed T-cells. • HTLV-1 p30{sup II} inhibits apoptosis in c-MYC-expressing proliferating cells.

  5. A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis.

    Science.gov (United States)

    Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo

    2017-05-11

    The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.

  6. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  7. Driver or passenger effects of augmented c-Myc and Cdc20 in gliomagenesis.

    Science.gov (United States)

    Ji, Ping; Zhou, Xinhui; Liu, Qun; Fuller, Gregory N; Phillips, Lynette M; Zhang, Wei

    2016-04-26

    Cdc20 and c-Myc are commonly overexpressed in a broad spectrum of cancers, including glioblastoma (GBM). Despite this clear association, whether c-Myc and Cdc20 overexpression is a driver or passenger event in gliomagenesis remains unclear. Both c-Myc and Cdc20 induced the proliferation of primary glial progenitor cells. c-Myc also promoted the formation of soft agar anchorage-independent colonies. In the RCAS/Ntv-a glia-specific transgenic mouse model, c-Myc increased the GBM incidence from 19.1% to 47.4% by 12 weeks of age when combined with kRas and Akt3 in Ntv-a INK4a-ARF (also known as CDKN2A)-null mice. In contrast, Cdc20 decreased the GBM incidence from 19.1% to 9.1%. Moreover, cell differentiation was modulated by c-Myc in kRas/Akt3-induced GBM on the basis of Nestin/GFAP expression (glial progenitor cell differentiation), while Cdc20 had no effect on primary glial progenitor cell differentiation. We used glial progenitor cells from Ntv-a newborn mice to evaluate the role of c-Myc and Cdc20 in the proliferation and transformation of GBM in vitro and in vivo. We further determined whether c-Myc and Cdc20 have a driver or passenger role in GBM development using kRas/Akt3 signals in a RCAS/Ntv-a mouse model. These results suggest that the driver or passenger of oncogene signaling is dependent on cellular status. c-Myc is a driver when combined with kRas/Akt3 oncogenic signals in gliomagenesis, whereas Cdc20 overexpression is a passenger. Inhibition of cell differentiation of c-Myc may be a target for anti-glioma therapy.

  8. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  9. Targeting oncogenic Myc as a strategy for cancer treatment.

    Science.gov (United States)

    Chen, Hui; Liu, Hudan; Qing, Guoliang

    2018-01-01

    The MYC family oncogene is deregulated in >50% of human cancers, and this deregulation is frequently associated with poor prognosis and unfavorable patient survival. Myc has a central role in almost every aspect of the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. Although Myc inhibition would be a powerful approach for the treatment of many types of cancers, direct targeting of Myc has been a challenge for decades owing to its "undruggable" protein structure. Hence, alternatives to Myc blockade have been widely explored to achieve desirable anti-tumor effects, including Myc/Max complex disruption, MYC transcription and/or translation inhibition, and Myc destabilization as well as the synthetic lethality associated with Myc overexpression. In this review, we summarize the latest advances in targeting oncogenic Myc, particularly for cancer therapeutic purposes.

  10. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong

    2013-12-01

    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  11. c-Myc activates BRCA1 gene expression through distal promoter elements in breast cancer cells

    International Nuclear Information System (INIS)

    Chen, Yinghua; Xu, Jinhua; Borowicz, Stanley; Collins, Cindy; Huo, Dezheng; Olopade, Olufunmilayo I

    2011-01-01

    The BRCA1 gene plays an important role in the maintenance of genomic stability. BRCA1 inactivation contributes to breast cancer tumorigenesis. An increasing number of transcription factors have been shown to regulate BRCA1 expression. c-Myc can act as a transcriptional activator, regulating up to 15% of all genes in the human genome and results from a high throughput screen suggest that BRCA1 is one of its targets. In this report, we used cultured breast cancer cells to examine the mechanisms of transcriptional activation of BRCA1 by c-Myc. c-Myc was depleted using c-Myc-specific siRNAs in cultured breast cancer cells. BRCA1 mRNA expression and BRCA1 protein expression were determined by quantitative RT-PCR and western blot, respectively and BRCA1 promoter activities were examined under these conditions. DNA sequence analysis was conducted to search for high similarity to E boxes in the BRCA1 promoter region. The association of c-Myc with the BRCA1 promoter in vivo was tested by a chromatin immunoprecipitation assay. We investigated the function of the c-Myc binding site in the BRCA1 promoter region by a promoter assay with nucleotide substitutions in the putative E boxes. BRCA1-dependent DNA repair activities were measured by a GFP-reporter assay. Depletion of c-Myc was found to be correlated with reduced expression levels of BRCA1 mRNA and BRCA1 protein. Depletion of c-Myc decreased BRCA1 promoter activity, while ectopically expressed c-Myc increased BRCA1 promoter activity. In the distal BRCA1 promoter, DNA sequence analysis revealed two tandem clusters with high similarity, and each cluster contained a possible c-Myc binding site. c-Myc bound to these regions in vivo. Nucleotide substitutions in the c-Myc binding sites in these regions abrogated c-Myc-dependent promoter activation. Furthermore, breast cancer cells with reduced BRCA1 expression due to depletion of c-Myc exhibited impaired DNA repair activity. The distal BRCA1 promoter region is associated with c-Myc

  12. Glutathione Depletion Induced by c-Myc Downregulation Triggers Apoptosis on Treatment with Alkylating Agents1

    Science.gov (United States)

    Biroccio, Annamaria; Benassi, Barbara; Fiorentino, Francesco; Zupi, Gabriella

    2004-01-01

    Abstract Here we investigate the mechanism(s) involved in the c-Myc-dependent drug response of melanoma cells. By using three M14-derived c-Myc low-expressing clones, we demonstrate that alkylating agents, cisplatin and melphalan, trigger apoptosis in the c-Myc antisense transfectants, but not in the parental line. On the contrary, topoisomerase inhibitors, adriamycin and camptothecin, induce apoptosis to the same extent regardless of c-Myc expression. Because we previously demonstrated that c-Myc downregulation decreases glutathione (GSH) content, we evaluated the role of GSH in the apoptosis induced by the different drugs. In control cells treated with one of the alkylating agents or the others, GSH depletion achieved by l-buthionine-sulfoximine preincubation opens the apoptotic pathway. The apoptosis proceeded through early Bax relocalization, cytochrome c release, and concomitant caspase-9 activation, whereas reactive oxygen species production and alteration of mitochondria membrane potential were late events. That GSH was determining in the c-Myc-dependent drug-induced apoptosis was demonstrated by altering the intracellular GSH content of the c-Myc low-expressing cells up to the level of controls. Indeed, GSH ethyl ester-mediated increase of GSH abrogated apoptosis induced by cisplatin and melphalan by inhibition of Bax/cytochrome c redistribution. The relationship among c-Myc, GSH content, and the response to alkylating agent has been also evaluated in the M14 Myc overexpressing clones as well as in the melanoma JR8 c-Myc antisense transfectants. All together, these results demonstrate that GSH plays a key role in governing c-Myc-dependent drug-induced apoptosis. PMID:15153331

  13. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  14. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zheng [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao Bei, Guangzhou 510515 (China); Zhou, Yuning [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Wang, Qingding, E-mail: qingding.wang@uky.edu [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  15. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    International Nuclear Information System (INIS)

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-01-01

    Highlights: ► Rictor associates with FBXW7 to form an E3 complex. ► Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. ► Knockdown of rictor increases protein levels of c-Myc and cylin E. ► Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. ► Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor–FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  16. MYC as therapeutic target in leukemia and lymphoma

    Directory of Open Access Journals (Sweden)

    Cortiguera MG

    2015-07-01

    Full Text Available Maria G Cortiguera,1 Ana Batlle-López,1,2 Marta Albajar,1,2 M Dolores Delgado,1,3 Javier León1,3 1Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC, CSIC-University of Cantabria, 2Department of Hemathology, Hospital Universitario Marqués de Valdecilla, 3Department of Molecular Biology, University of Cantabria, Santander, Spain Abstract: MYC is a transcription factor that is involved in the expression of many genes. Deregulated MYC is found in about half of human tumors, being more prevalent in hematological neoplasms. Deregulation mechanisms include chromosomal translocation (particularly in lymphoma, amplification, and hyperactivation of MYC transcription. Here we review MYC involvement in the major types of leukemia and lymphoma. MYC rearrangements appear in all Burkitt lymphomas and are common in other lymphoma types, whereas in acute lymphoblastic leukemia, acute myeloid leukemia, lymphoproliferative, and myeloproferative diseases, they are less frequent. However, MYC overexpression is present in all types of hematological malignancies and often correlates with a worse prognosis. Data in leukemia-derived cells and in animal models of lymphomagenesis and leukemogenesis suggest that MYC would be a good therapeutic target. Several MYC-directed therapies have been assayed in preclinical settings and even in clinical trials. First, peptides and small molecules that interrupt the MYC–MAX interaction impair MYC-mediated tumorogenesis in several mouse models of solid tumors, although not yet in lymphoma and leukemia models. Second, there are a number of small molecules inhibiting the interaction of MYC–MAX heterodimers with DNA, still in the preclinical research phase. Third, inhibitors of MYC expression via the inhibition of BRD4 (a reader of acetylated histones have been shown to control the growth of MYC-transformed leukemia and lymphoma cells and are being used in clinic trials. Finally, we review a number of promising MYC

  17. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma1

    Science.gov (United States)

    Armstrong, Michael B; Mody, Rajen J; Ellis, D Christian; Hill, Adam B; Erichsen, David A; Wechsler, Daniel S

    2013-01-01

    Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation. PMID:24403858

  18. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.

    Science.gov (United States)

    Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J

    2014-06-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.

  19. c-myc Amplification Is Frequent in Esophageal Adenocarcinoma and Correlated with the Upregulation of VEGF-A Expression

    Directory of Open Access Journals (Sweden)

    Burkhard H.A. von Rahden

    2006-09-01

    Full Text Available BACKGROUND: Deregulation of c-myc plays a major role in the carcinogenesis of human malignancies. We investigated the amplification of the c-myc gene in a surgical series of Barrett cancers. METHODS: Primary resected esophageal (Barrett adenocarcinomas (n = 84 were investigated for c-myc amplification using chromogene in situ hybridization. Tumor samples were assembled in a tissue microarray. c-myc gene dosage was correlated with clinicopathologic parameters, including the survival and gene expression of cyclooxygenases (COX-1 and COX-2 and proangiogenic growth factors (VEGF-A and VEGF-C. RESULTS: The majority (70 of 84; 83.3% exhibited amplification of the c-myc gene. There were low-level amplifications in 63 (75.0% cases and high-level amplifications in 7 (8.3% cases. No amplification was found in 14 (16.7% cases. Tumors without c-myc amplification had lower VEGF-A, VEGF-C, and COX-2 expression levels than tumors with low-level and high-level c-myc amplification (statistically significant for VEGF-A; P = .0348. c-myc amplification was not correlated with clinicopathological parameters or survival. Only diffuse and mixed-type tumors, according to Lauren classification, exhibited c-myc amplifications more frequently (P = .0466. CONCLUSIONS: Amplifications of the c-myc gene are frequent in Barrett cancer. c-myc may be involved in the regulation of angiogenesis.

  20. Differential cellular responses by oncogenic levels of c-Myc expression in long-term confluent retinal pigment epithelial cells.

    Science.gov (United States)

    Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay

    2018-06-01

    c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.

  1. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  2. Low expression of c-Myc protein predicts poor outcomes in patients with hepatocellular carcinoma after resection.

    Science.gov (United States)

    Ji, Fei; Zhang, Zhi-Heng; Zhang, Yi; Shen, Shun-Li; Cao, Qing-Hua; Zhang, Long-Juan; Li, Shao-Qiang; Peng, Bao-Gang; Liang, Li-Jian; Hua, Yun-Peng

    2018-04-24

    Embryonic Liver Fodrin (ELF) is an adaptor protein of transforming growth factor (TGF-β) signaling cascade. Disruption of ELF results in mislocalization of Smad3 and Smad4, leading to compromised TGF-β signaling. c-Myc is an important oncogenic transcription factor, and the disruption of TGF-β signaling promotes c-Myc-induced hepatocellular carcinoma (HCC) carcinogenesis. However, the prognostic significance of c-Myc in HCC is less understood METHODS: The expression of c-Myc protein and mRNA were measured by immunohistochemistry (IHC) and qRT- PCR, respectively. IHC was performed to detect TGF-β1 and ELF expression in HCC tissues. Their relationship with clinicopathological factors and overall survival (OS) and disease free survival (DFS) were examined. The expression of c-Myc protein and mRNA in HCC tissues were significantly higher in HCC area than those in normal liver tissues. However, the expression were low compared with those adjacent to HCC area. c-Myc protein was independently predictive of DFS and OS, and it was negatively correlated with tumor size (P = 0.031), tumor number (P = 0.038), and recurrence (P = 0.001). Low c-Myc expression was associated with short-term recurrence and poor prognosis. The predictive value of c-Myc combined with TGF-β1 or/and ELF was higher than that of any other single marker. Low c-Myc, high TGF-β1 or/and low ELF expression was associated with the worst DFS and OS. Low expression of c-Myc protein predicts poor outcomes in patients with HCC with hepatectomy. The combination of the expression of c-Myc, TGF-β1, and ELF can be used to accurately predict outcomes of patients with HCC.

  3. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo

    NARCIS (Netherlands)

    Phesse, T. J.; Myant, K. B.; Cole, A. M.; Ridgway, R. A.; Pearson, H.; Muncan, V.; van den Brink, G. R.; Vousden, K. H.; Sears, R.; Vassilev, L. T.; Clarke, A. R.; Sansom, O. J.

    2014-01-01

    Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC

  4. Immortalization of human neural stem cells with the c-myc mutant T58A.

    Directory of Open Access Journals (Sweden)

    Lidia De Filippis

    Full Text Available Human neural stem cells (hNSC represent an essential source of renewable brain cells for both experimental studies and cell replacement therapies. Their relatively slow rate of proliferation and physiological senescence in culture make their use cumbersome under some experimental and pre-clinical settings. The immortalization of hNSC with the v-myc gene (v-IhNSC has been shown to generate stem cells endowed with enhanced proliferative capacity, which greatly facilitates the study of hNSCs, both in vitro and in vivo. Despite the excellent safety properties displayed by v-IhNSCs--which do not transform in vitro and are not tumorigenic in vivo--the v-myc gene contains several mutations and recombination elements, whose role(s and effects remains to be elucidated, yielding unresolved safety concerns. To address this issue, we used a c-myc T58A retroviral vector to establish an immortal cell line (T-IhNSC from the same hNSCs used to generate the original v-IhNSCs and compared their characteristics with the latter, with hNSC and with hNSC immortalized using c-myc wt (c-IhNSC. T-IhNSCs displayed an enhanced self-renewal ability, with their proliferative capacity and clonogenic potential being remarkably comparable to those of v-IhNSC and higher than wild type hNSCs and c-IhNSCs. Upon growth factors removal, T-IhNSC promptly gave rise to well-differentiated neurons, astrocytes and most importantly, to a heretofore undocumented high percentage of human oligodendrocytes (up to 23%. Persistent growth-factor dependence, steady functional properties, lack of ability to generate colonies in soft-agar colony-forming assay and to establish tumors upon orthotopic transplantation, point to the fact that immortalization by c-myc T58A does not bring about tumorigenicity in hNSCs. Hence, this work describes a novel and continuous cell line of immortalized human multipotent neural stem cells, in which the immortalizing agent is represented by a single gene which, in

  5. Mitochondrial structure, function and dynamics are temporally controlled by c-Myc.

    Directory of Open Access Journals (Sweden)

    J Anthony Graves

    Full Text Available Although the c-Myc (Myc oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS, the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.

  6. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    International Nuclear Information System (INIS)

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene

  7. Macrocyclic peptides decrease c-Myc protein levels and reduce prostate cancer cell growth.

    Science.gov (United States)

    Mukhopadhyay, Archana; Hanold, Laura E; Thayele Purayil, Hamsa; Gisemba, Solomon A; Senadheera, Sanjeewa N; Aldrich, Jane V

    2017-08-03

    The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC 50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.

  8. Overexpression and amplification of the c-myc gene in mouse tumors induced by chemical and radiations

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, Ohtsura; Enoki, Yoshitaka; Yokoro, Kenjiro

    1989-03-01

    We examined expression of the c-myc gene by the dot blot hybridization of total cellular RNA from mouse primary tumors induced by chemicals and radiations. Expression of the c-myc gene was found to be elevated in 69 cases among 177 independently induced tumors of 12 different types. DNA from tumors overexpressing the myc gene was analyzed by Southern blotting. No case of rearrangement was detected. However, amplification of the c-myc gene was found in 7 cases of primary sarcomas. These included 4 cases out of 24 methylcholanthrene-induced sarcomas and 3 cases out of 7 /alpha/-tocopherol-induced sacromas. We also analyzed 8 cases of sarcomas induced by radiations, but could not find changes in the gene structure of the c-myc gene. Thus, our data indicate tumor type specificity and agent specificity of c-myc gene amplification. (author).

  9. Mechanism of estrogen activation of c-myc oncogene expression.

    Science.gov (United States)

    Dubik, D; Shiu, R P

    1992-08-01

    The estrogen receptor complex is a known trans-acting factor that regulates transcription of specific genes through an interaction with a specific estrogen-responsive cis-acting element (ERE). In previous studies we have shown that in estrogen-responsive human breast cancer cells estrogen rapidly activates c-myc expression. This activated expression occurs through enhanced transcription and does not require the synthesis of new protein intermediates; therefore, an ERE is present in the human c-myc gene regulatory region. To localize the ERE, constructs containing varying lengths of the c-myc 5'-flanking region ranging from -2327 to +25 (relative to the P1 promoter) placed adjacent to the chloramphenicol acetyl transferase reporter gene (CAT) were prepared. They were used in transient transfection studies in MCF-7 and HeLa cells co-transfected with an estrogen receptor expression vector. These studies reveal that all constructs containing the P2 promoter region exhibited estrogen-regulated CAT expression and that a 116-bp region upstream and encompassing the P2 TATA box is necessary for this activity. Analysis of this 116-bp region failed to identify a cis-acting element with sequences resembling the consensus ERE; however, co-transfection studies with mutant estrogen receptor expression vectors showed that the DNA-binding domain of the receptor is essential for estrogen-regulated CAT gene expression. We have also observed that anti-estrogen receptor complexes can weakly trans-activate from this 116-bp region but fail to do so from the ERE-containing ApoVLDLII-CAT construct. To explain these results we propose a new mechanism of estrogen trans-activation in the c-myc gene promoter.

  10. AP-2α Inhibits c-MYC Induced Oxidative Stress and Apoptosis in HaCaT Human Keratinocytes

    Directory of Open Access Journals (Sweden)

    Lei Yu

    2009-01-01

    AP-2 may have a direct effect on the c-myc gene. Chromatin immunoprecipitation assays demonstrated that AP-2 proteins bound to a cluster of AP-2 binding sites located within a 2 kb upstream regulatory region of c-myc These results suggest that the negative regulation of AP-2 on c-MYC activity was achieved through binding of AP-2 protein to the c-myc gene. The effects of AP-2 on c-MYC induced ROS accumulation and apoptosis in epidermal keratinocytes are likely to play an important role in cell growth, differentiation and carcinogenesis of the skin.

  11. Ford C-Max plug-in hybrid; Ford C-Max mit Plug-in-Hybridtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, Andreas; D' Annunzio, Julie; Iorio, Rob [Ford Motor Company, Dearborn, MI (United States); Schmitz, Peter [Ford-Forschungszentrum Aachen GmbH, Aachen (Germany)

    2013-03-01

    Ford provides consumers a broad choice of electrified vehicles globally, including full hybrids, plug-in hybrids and all-electric vehicles. The all-new 2013 model year C-Max Energi Plug-in Hybrid utilises the third generation of Ford hybrid technology. This article discusses the hybrid powersplit architecture and components, as well as the charging capability and human-machine interfaces, used in the C-Max Energi Plug-In Hybrid. (orig.)

  12. Soluble expression of recomb inant cMyc, Klf4, Oct4, and Sox2 proteins in bacteria and transduction into living cells

    Directory of Open Access Journals (Sweden)

    Guo-Dan Liu

    2017-04-01

    Full Text Available AIM: To develop a new method to produce recombinant reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, in soluble format with low cost for the generation of induced pluripotent stem cells (iPSCs. METHODS: A short polypeptide sequence derived from the HIV trans-activator of transcription protein (TAT and the nucleus localization signal (NLS polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into pCold-SUMO vector which can extremely improve the solubility of recombinant proteins. Then these vector plasmids were transformed into E. coli BL21 (DE3 Chaperone competent cells for amplification. The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining. The recombinant proteins were purified by Ni-NTA resin and identified by Western blot. The transduction of these proteins into HEK 293T cells were evaluated by immunofluorescence staining. RESULTS: These four reprogramming proteins could be produced in soluble format in pCold-SUMO expression vector system with the assistance of chaperone proteins in bacteria. The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells. CONCLUSION: The results in the present study indicate the four important reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, can be produced in soluble format in bacteria with low cost. Our new method thus might be expected to greatly contribute to the future study of iPSCs.

  13. The effect of Glut1 and c-myc on prognosis in esophageal squamous cell carcinoma of Kazakh and Han patients.

    Science.gov (United States)

    Zhou, Ya-Xing; Zhou, Ke-Ming; Liu, Qian; Wang, Hui; Wang, Wen; Shi, Yi; Ma, Yu-Qing

    2018-04-09

    Glucose transporter type 1 (Glut1) plays a crucial role in cancer-specific metabolism. We explored the expression of Glut1 and c-myc, the relationship between them and the effect of Glut1, c-myc on prognosis in esophageal squamous cell carcinoma. Immunohistochemistry was used to examine the expression of Glut1 and c-myc. χ 2 test analyzes the relationship between c-myc, Glut1 and pathological parameters. Spearman correlation analyzes the relationship between c-myc and Glut1. Survival analysis was used to investigate the effect of Glut1 and c-myc on prognosis. Glut1 positivity was associated with tumor size (p C-myc positivity was associated with tumor location (p = 0.015), depth of invasion (p = 0.022) and lymph node metastasis (p = 0.035). There was a positive correlation between c-myc and Glut1 (r = 0.321). Patients with Glut1 c-myc co-expression had poorer prognosis. Inhibiting Glut1 c-myc co-expression may improve the prognosis of esophageal squamous cell carcinoma.

  14. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Holm, G.M.N.; Krabbe, J.S.

    2009-01-01

    Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overex...

  15. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    Energy Technology Data Exchange (ETDEWEB)

    Vališ, Karel, E-mail: karel.valis@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Talacko, Pavel; Grobárová, Valéria [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic); Černý, Jan [Faculty of Science, Charles University, Prague (Czech Republic); Novák, Petr, E-mail: pnovak@biomed.cas.cz [Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, v.v.i., The Czech Academy of Sciences, Prague (Czech Republic); Faculty of Science, Charles University, Prague (Czech Republic)

    2016-12-10

    The general mechanism underlying the tumor suppressor activity of the Hippo signaling pathway remains unclear. In this study, we explore the molecular mechanisms connecting the Hippo signaling pathway with glucose metabolism. We have found that two key regulators of glycolysis, C-MYC and GLUT1, are targets of the Hippo signaling pathway in human leukemia cells. Our results revealed that activation of MST1 by the natural compound shikonin inhibited the expression of GLUT1 and C-MYC. Furthermore, RNAi experiments confirmed the regulation of GLUT1 and C-MYC expression via the MST1-YAP1-TEAD1 axis. Surprisingly, YAP1 was found to positively regulate C-MYC mRNA levels in complex with TEAD1, while it negatively regulates C-MYC levels in cooperation with MST1. Hence, YAP1 serves as a rheostat for C-MYC, which is regulated by MST1. In addition, depletion of MST1 stimulates lactate production, whereas the specific depletion of TEAD1 has an opposite effect. The inhibition of lactate production and cellular proliferation induced by shikonin also depends on the Hippo pathway activity. Finally, a bioinformatic analysis revealed conserved TEAD-binding motifs in the C-MYC and GLUT1 promoters providing another molecular data supporting our observations. In summary, regulation of glucose metabolism could serve as a new tumor suppressor mechanism orchestrated by the Hippo signaling pathway. - Highlights: • Shikonin inhibits C-MYC and GLUT1 expression in MST1 and YAP1 dependent manner. • YAP1-TEAD1 interaction activates C-MYC and GLUT1 expression. • MST1 in cooperation with YAP1 inhibits C-MYC and GLUT1 expression. • MST1-YAP1-TEAD1 axis regulates lactate production by leukemic cells. • MST1 and YAP1 proteins block proliferation of leukemic cells.

  16. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro

    International Nuclear Information System (INIS)

    Habel, Marie-Eve; Jung, Daniel

    2006-01-01

    Burkitt's lymphoma is an aggressive B-cell neoplasm resulting from deregulated c-myc expression. We have previously shown that proliferation of Burkitt's lymphoma cell lines such as Ramos is markedly reduced by iron treatment. It has been shown that iron induces expression of c-myc which, owing to its transcriptional regulatory functions, regulates genes involved in iron metabolism. Transient enhancement of c-myc expression by iron could increase the expression of genes involved in iron incorporation, which could lead to an accumulation of intracellular free iron. Here, we have investigated whether cells with a high basal level of c-Myc were more likely to accumulate free iron. Our results suggest that the basal level of c-Myc in Ramos cells is twofold higher than what is seen in HL-60 cells. Moreover, in Ramos cells, where c-Myc is expressed at a high level, H-ferritin expression is down-regulated, transferrin receptor (CD71) expression is increased, and ferritin translation is inhibited. These modifications in iron metabolism, resulting from the strong basal expression of c-Myc, and amplified by iron addition, could lead to a disruption in homeostasis and consequently to growth arrest

  17. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks.

    Science.gov (United States)

    Barfeld, Stefan J; Urbanucci, Alfonso; Itkonen, Harri M; Fazli, Ladan; Hicks, Jessica L; Thiede, Bernd; Rennie, Paul S; Yegnasubramanian, Srinivasan; DeMarzo, Angelo M; Mills, Ian G

    2017-04-01

    Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  18. c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks

    Directory of Open Access Journals (Sweden)

    Stefan J. Barfeld

    2017-04-01

    Full Text Available Prostate cancer (PCa is the most common non-cutaneous cancer in men. The androgen receptor (AR, a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen, and Glycine N-Methyltransferase (GNMT, in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa.

  19. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    International Nuclear Information System (INIS)

    Yoshida, Go J.; Saya, Hideyuki

    2014-01-01

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 high / Fbw7 high / c-Myc low and proliferative cancer stem-like cells with CD44v8-10 high / Fbw7 low / c-Myc high

  20. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China); Fan, Jie, E-mail: jief67@sina.com [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  1. Insertion of the LINE-1 element in the C-MYC gene and immunoreactivity of C-MYC, p53, p21 and p27 proteins in different morphological patterns of the canine TVT

    Directory of Open Access Journals (Sweden)

    C.R.O. Lima

    2016-06-01

    Full Text Available ABSTRACT The canine transmissible venereal tumor (TVT affects the external genitalia of dogs by the natural transplant of viable tumor cells. Thus, this research aimed to diagnose and characterize TVT morphological patterns, identify the insertion of the LINE-1 element in C-MYC gene, by means of the polymerase chain reaction (PCR, and evaluate the immunohistochemical expression of C-MYC, p53, p21 and p27 proteins. The relationship between C-MYC and p53 proteins and their interference on the expression of p21 and p27 were also studied. For that, 20 samples of naturally occurring TVT were used, subjected to cytopathological, histopathological and immunohistochemical analysis, and to molecular diagnosis of neoplasia. The increased tissue expression and the correlation among C-MYC, p53, p21 and p27 proteins indicate reduction and/or loss of their functionality in the TVT microenvironment, with consequent apoptotic suppression, maintenance of cell growth and progression of neoplasia.

  2. Identification of a c-Jun N-terminal kinase-2-dependent signal amplification cascade that regulates c-Myc levels in ras transformation

    DEFF Research Database (Denmark)

    Mathiasen, D.P.; Egebjerg, C.; Andersen, S.H.

    2012-01-01

    are essential for ras transformation. Previous studies show that ERK-mediated serine 62 phosphorylation protects c-Myc from proteasomal degradation. ERK is, however, not alone sufficient to stabilize c-Myc but requires the cooperation of cancerous inhibitor of protein phosphatase 2A (CIP2A), an oncogene...... that counteracts protein phosphatase 2A-mediated dephosphorylation of c-Myc. Here we show that JNK2 regulates Cip2a transcription via ATF2. ATF2 and c-Myc cooperate to activate the transcription of ATF3. Remarkably, not only ectopic JNK2, but also ectopic ATF2, CIP2A, c-Myc and ATF3 are sufficient to rescue...... the defective ras transformation of JNK2-deficient cells. Thus, these data identify the key signal converging point of JNK2 and ERK pathways and underline the central role of CIP2A in ras transformation.Oncogene advance online publication, 27 June 2011; doi:10.1038/onc.2011.230....

  3. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell.

    Science.gov (United States)

    Hu, Yudong; Yu, Kaikai; Wang, Gang; Zhang, Depeng; Shi, Chaoji; Ding, Yunhe; Hong, Duo; Zhang, Dan; He, Huiqiong; Sun, Lei; Zheng, Jun-Nian; Sun, Shuyang; Qian, Feng

    2018-04-01

    Gastric cancer is the third common cause of cancer mortality in the world with poor prognosis and high recurrence due to lack of effective medicines. Our studies revealed that lanatoside C, a FDA-approved cardiac glycoside, had an anti-proliferation effect on different human cancer cell lines (MKN-45; SGC-7901; HN4; MCF-7; HepG2) and gastric cell lines MKN-45 and SGC-7901 were the most sensitive cell lines to lanatoside C. MKN-45 cells treated with lanatoside C showed cell cycle arrest at G2/M phase and inhibition of cell migration. Meanwhile, upregulation of cleaved caspase-9 and cleaved PARP and downregulation of Bcl-xl were accompanied with the loss of mitochondrial membrane potential (MMP) and induction of intracellular reactive oxygen species (ROS). Lanatoside C inhibited Wnt/β-catenin signaling with downregulation of c-Myc, while overexpression of c-Myc reversed the anti-tumor effect of lanatoside C, confirming that c-Myc is a key drug target of lanatoside C. Furthermore, we discovered that lanatoside C prompted c-Myc degradation in proteasome-ubiquitin pathway with attenuating the binding of USP28 to c-Myc. These findings indicate that lanatoside C targeted c-Myc ubiquitination to inhibit MKN-45 proliferation and support the potential value of lanatoside C as a chemotherapeutic candidate. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Combined use of nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 for hepatocellular carcinoma detection in high-risk chronic hepatitis C patients.

    Science.gov (United States)

    Attallah, A M; El-Far, M; Abdelrazek, M A; Omran, M M; Attallah, A A; Elkhouly, A A; Elkenawy, H M; Farid, K

    2017-10-01

    Hepatocellular carcinoma (HCC) is a multistage process resulting from various genetic changes. We aimed to determine nuclear phosphoprotein c-Myc and cellular phosphoprotein p53 expression and to evaluate their importance in HCC diagnosis. One hundred and twenty chronic hepatitis C (CHC) patients (60 non-HCC CHC patients and 60 HCC patients who had a single small (c-Myc and p53 were identified in liver tissues and serum samples using immunostaining, western blot and ELISA. Immunohistochemical detection of c-Myc and p53 with monospecific antibodies revealed intense and diffuse cytoplasmic staining patterns. Accumulated mutant proteins, released from tumour cells into the extracellular serum, were detected at 62 KDa, for c-Myc, and 53 KDa, for p53, using western blotting. In contrast to alpha feto-protein, there was a significant increase (p c-Myc (86.7% vs. 6.7%) and p53 (78.3% vs. 8.3%) in the malignant vs. non-malignant patients. The parallel combination of c-Myc and p53 reach the absolute sensitivity (100%), for more accurate and reliable HCC detection (specificity was 87%). c-Myc and p53 are potential HCC diagnostic biomarkers, and convenient combinations of them could improve diagnostic accuracy of HCC.

  5. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2014-01-10

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells. That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.

  6. Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.

    Science.gov (United States)

    Ciccarelli, Carmela; Di Rocco, Agnese; Gravina, Giovanni Luca; Mauro, Annunziata; Festuccia, Claudio; Del Fattore, Andrea; Berardinelli, Paolo; De Felice, Francesca; Musio, Daniela; Bouché, Marina; Tombolini, Vincenzo; Zani, Bianca Maria; Marampon, Francesco

    2018-06-29

    Prostate cancer (PCa) cell radioresistance causes the failure of radiation therapy (RT) in localized or locally advanced disease. The aberrant accumulation of c-Myc oncoprotein, known to promote PCa onset and progression, may be due to the control of gene transcription and/or MEK/ERK-regulated protein stabilization. Here, we investigated the role of MEK/ERK signaling in PCa. LnCAP, 22Rv1, DU145, and PC3 PCa cell lines were used in in vitro and in vivo experiments. U0126, trametinib MEK/ERK inhibitors, and c-Myc shRNAs were used. Radiation was delivered using an x-6 MV photon linear accelerator. U0126 in vivo activity alone or in combination with irradiation was determined in murine xenografts. Inhibition of MEK/ERK signaling down-regulated c-Myc protein in PCa cell lines to varying extents by affecting expression of RNA and protein, which in turn determined radiosensitization in in vitro and in vivo xenograft models of PCa cells. The crucial role played by c-Myc in the MEK/ERK pathways was demonstrated in 22Rv1 cells by the silencing of c-Myc by means of short hairpin mRNA, which yielded effects resembling the targeting of MEK/ERK signaling. The clinically approved compound trametinib used in vitro yielded the same effects as U0126 on growth and C-Myc expression. Notably, U0126 and trametinib induced a drastic down-regulation of BMX, which is known to prevent apoptosis in cancer cells. The results of our study suggest that signal transduction-based therapy can, by disrupting the MEK/ERK/c-Myc axis, reduce human PCa radioresistance caused by increased c-Myc expression in vivo and in vitro and restores apoptosis signals.

  7. Interrelationship between chromosome 8 aneuploidy, C-MYC amplification and increased expression in individuals from northern Brazil with gastric adenocarcinoma

    Science.gov (United States)

    Calcagno, Danielle Queiroz; Leal, Mariana Ferreira; Seabra, Aline Damaceno; Khayat, André Salim; Chen, Elizabeth Suchi; Demachki, Samia; Assumpção, Paulo Pimentel; Faria, Mario Henrique Girão; Rabenhorst, Silvia Helena Barem; Ferreira, Márcia Valéria Pitombeira; Smith, Marília de Arruda Cardoso; Burbano, Rommel Rodríguez

    2006-01-01

    AIM: To investigate chromosome 8 numerical aberrations, C-MYC oncogene alterations and its expression in gastric cancer and to correlate these findings with histopathological characteristics of gastric tumors. METHODS: Specimens were collected surgically from seven patients with gastric adenocarcinomas. Immunostaining for C-MYC and dual-color fluorescence in situ hybridization (FISH) for C-MYC gene and chromosome 8 centromere were performed. RESULTS: All the cases showed chromosome 8 aneuploidy and C-MYC amplification, in both the diffuse and intestinal histopathological types of Lauren. No significant difference (P < 0.05) was observed between the level of chromosome 8 ploidy and the site, stage or histological type of the adenocarcinomas. C-MYC high amplification, like homogeneously stained regions (HSRs) and double minutes (DMs), was observed only in the intestinal-type. Structural rearrangement of C-MYC, like translocation, was observed only in the diffuse type. Regarding C-MYC gene, a significant difference (P < 0.05) was observed between the two histological types. The C-MYC protein was expressed in all the studied cases. In the intestinal-type the C-MYC immunoreactivity was localized only in the nucleus and in the diffuse type in the nucleus and cytoplasm. CONCLUSION: Distinct patterns of alterations between intestinal and diffuse types of gastric tumors support the hypothesis that these types follow different genetic pathways. PMID:17036397

  8. Profiling and bioinformatic analysis of circular RNA expression regulated by c-Myc.

    Science.gov (United States)

    Gou, Qiheng; Wu, Ke; Zhou, Jian-Kang; Xie, Yuxin; Liu, Lunxu; Peng, Yong

    2017-09-22

    The c-Myc transcription factor is involved in cell proliferation, cell cycle and apoptosis by activating or repressing transcription of multiple genes. Circular RNAs (circRNAs) are widely expressed non-coding RNAs participating in the regulation of gene expression. Using a high-throughput microarray assay, we showed that Myc regulates the expression of certain circRNAs. A total of 309 up- and 252 down-regulated circRNAs were identified. Among them, randomly selected 8 circRNAs were confirmed by real-time PCR. Subsequently, Myc-binding sites were found to generally exist in the promoter regions of differentially expressed circRNAs. Based on miRNA sponge mechanism, we constructed circRNAs/miRNAs network regulated by Myc, suggesting that circRNAs may widely regulate protein expression through miRNA sponge mechanism. Lastly, we took advantage of Gene Ontology and KEGG analyses to point out that Myc-regulated circRNAs could impact cell proliferation through affecting Ras signaling pathway and pathways in cancer. Our study for the first time demonstrated that Myc transcription factor regulates the expression of circRNAs, adding a novel component of the Myc tumorigenic program and opening a window to investigate the function of certain circRNAs in tumorigenesis.

  9. Expression of p27 and c-Myc by immunohistochemistry in breast ductal cancers in African American women.

    Science.gov (United States)

    Khan, Farhan; Ricks-Santi, Luisel J; Zafar, Rabia; Kanaan, Yasmine; Naab, Tammey

    2018-06-01

    Proteins p27 and c-Myc are both key players in the cell cycle. While p27, a tumor suppressor, inhibits progression from G1 to S phase, c-Myc, a proto-oncogene, plays a key role in cell cycle regulation and apoptosis. The objective of our study was to determine the association between expression of c-Myc and the loss of p27 by immunohistochemistry (IHC) in the four major subtypes of breast cancer (BC) (Luminal A, Luminal B, HER2, and Triple Negative) and with other clinicopathological factors in a population of 202 African-American (AA) women. Tissue microarrays (TMAs) were constructed from FFPE tumor blocks from primary ductal breast carcinomas in 202 AA women. Five micrometer sections were stained with a mouse monoclonal antibody against p27 and a rabbit monoclonal antibody against c-Myc. The sections were evaluated for intensity of nuclear reactivity (1-3) and percentage of reactive cells; an H-score was derived from the product of these measurements. Loss of p27 expression and c-Myc overexpression showed statistical significance with ER negative (p c-Myc expression/p27 loss and luminal A/B and Her2 overexpressing subtypes. In our study, a statistically significant association between c-Myc expression and p27 loss and the triple negative breast cancers (TNBC) was found in AA women. A recent study found that constitutive c-Myc expression is associated with inactivation of the axin 1 tumor suppressor gene. p27 inhibits cyclin dependent kinase2/cyclin A/E complex formation. Axin 1 and CDK inhibitors may represent possible therapeutic targets for TNBC. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. c-Myc affects mRNA translation, cell proliferation and progenitor cell function in the mammary gland

    Directory of Open Access Journals (Sweden)

    Trumpp Andreas

    2009-09-01

    Full Text Available Abstract Background The oncoprotein c-Myc has been intensely studied in breast cancer and mouse mammary tumor models, but relatively little is known about the normal physiological role of c-Myc in the mammary gland. Here we investigated functions of c-Myc during mouse mammary gland development using a conditional knockout approach. Results Generation of c-mycfl/fl mice carrying the mammary gland-specific WAPiCre transgene resulted in c-Myc loss in alveolar epithelial cells starting in mid-pregnancy. Three major phenotypes were observed in glands of mutant mice. First, c-Myc-deficient alveolar cells had a slower proliferative response at the start of pregnancy, causing a delay but not a block of alveolar development. Second, while milk composition was comparable between wild type and mutant animals, milk production was reduced in mutant glands, leading to slower pup weight-gain. Electron microscopy and polysome fractionation revealed a general decrease in translational efficiency. Furthermore, analysis of mRNA distribution along the polysome gradient demonstrated that this effect was specific for mRNAs whose protein products are involved in milk synthesis. Moreover, quantitative reverse transcription-polymerase chain reaction analysis revealed decreased levels of ribosomal RNAs and ribosomal protein-encoding mRNAs in mutant glands. Third, using the mammary transplantation technique to functionally identify alveolar progenitor cells, we observed that the mutant epithelium has a reduced ability to repopulate the gland when transplanted into NOD/SCID recipients. Conclusion We have demonstrated that c-Myc plays multiple roles in the mouse mammary gland during pregnancy and lactation. c-Myc loss delayed, but did not block proliferation and differentiation in pregnancy. During lactation, lower levels of ribosomal RNAs and proteins were present and translation was generally decreased in mutant glands. Finally, the transplantation studies suggest a role

  11. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing.

    Science.gov (United States)

    Rajagopalan, Vishal; Vaidyanathan, Muthukumar; Janardhanam, Vanisree Arambakkam; Bradner, James E

    2014-10-01

    Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.

  12. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    International Nuclear Information System (INIS)

    Bueren, André O von; Shalaby, Tarek; Oehler-Jänne, Christoph; Arnold, Lucia; Stearns, Duncan; Eberhart, Charles G; Arcaro, Alexandre; Pruschy, Martin; Grotzer, Michael A

    2009-01-01

    With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly

  13. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    Directory of Open Access Journals (Sweden)

    Arcaro Alexandre

    2009-01-01

    Full Text Available Abstract Background With current treatment strategies, nearly half of all medulloblastoma (MB patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. Methods To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425. Results siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. Conclusion In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly.

  14. c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients

    Directory of Open Access Journals (Sweden)

    Stearns Duncan

    2011-02-01

    Full Text Available Abstract Background To study whether and how c-MYC expression determines response to radio- and chemotherapy in childhood medulloblastoma (MB. Methods We used DAOY and UW228 human MB cells engineered to stably express different levels of c-MYC, and tested whether c-MYC expression has an effect on radio- and chemosensitivity using the colorimetric 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium inner salt (MTS assay, clonogenic survival, apoptosis assays, cell cycle analysis, and western blot assessment. In an effort to validate our results, we analyzed c-MYC mRNA expression in formalin-fixed paraffin-embedded tumor samples from well-documented patients with postoperative residual tumor and compared c-MYC mRNA expression with response to radio- and chemotherapy as examined by neuroradiological imaging. Results In DAOY - and to a lesser extent in UW228 - cells expressing high levels of c-MYC, the cytotoxicity of cisplatin, and etoposide was significantly higher when compared with DAOY/UW228 cells expressing low levels of c-MYC. Irradiation- and chemotherapy-induced apoptotic cell death was enhanced in DAOY cells expressing high levels of c-MYC. The response of 62 of 66 residual tumors was evaluable and response to postoperative radio- (14 responders (CR, PR vs. 5 non-responders (SD, PD or chemotherapy (23 CR/PR vs. 20 SD/PD was assessed. c-MYC mRNA expression was similar in primary MB samples of responders and non-responders (Mann-Whitney U test, p = 0.50, ratio 0.49, 95% CI 0.008-30.0 and p = 0.67, ratio 1.8, 95% CI 0.14-23.5, respectively. Conclusions c-MYC sensitizes MB cells to some anti-cancer treatments in vitro. As we failed to show evidence for such an effect on postoperative residual tumors when analyzed by imaging, additional investigations in xenografts and larger MB cohorts may help to define the exact function of c-MYC in modulating response to treatment.

  15. Distribution of C-myc Antisense Oligonucleotides in Rabbits after Local Delivery by Implanted Gelatin Coated Piatinium -iridium Stent

    Institute of Scientific and Technical Information of China (English)

    张新霞; 庞志功; 崔长琮; 许香广; 胡雪松; 方卫华

    2003-01-01

    Objectives To assess the feasibility, efficiency and tissue distribution of localdelivered c - myc antisense oligonucleotides (ASODN)by implanted gelatin coated Platinium- Iridium (Pt-Ir) stent. Methods Gelatin coated Pt- Ir stentwhich absorbed carboxyfluorescein - 5 - succimidylester (FAM) labeled c -myc ASODN were implantedin the right carotid arteries of 6 rabbits under vision.Blood samples were collected at the indicated times.The target artery、 left carotid artery、 heart、 liver andkidney obtained at 45 minutes、 2 hours and 6hours. The concentration of c - myc ASODN in plasmaand tissues were determined by Thin Layer Fluorome-try. Tissue distribution of c- myc ASODN were as-sessed by fluorescence microscopy. Results At 45min, 2 h, 6 h, the concentration of FAM labeled c -myc ASODN in target artery was 244.39, 194.44,126.94(μg/g tissues) respectively, and the deliveryefficiency were 44.4% 、 35.4% and 23.1% respec-tively. At the same indicated time point, the plasmaconcentration was 8.41, 5. 83, 14.75 (μg/ml) respec-tively. Therefore c -myc ASODN concentrations in thetarget vessel were 29、 33 and 9 -fold higher than thatin the plasma. There was circumferential distribution oflabeled c -myc in the area of highest fluorescein co-inciding with the site of medial dissecting from stent-ing, and the label was most intense in target vesselmedia harvested at 45 min time point and then dis-persed to adventitia. Conclusions Gelatin coated Pt- Ir stent mediated local delivery of c - myc ASODN isfeasible and efficient. The localization of ASODN ismainly in target vessel wall.

  16. Nucleotide sequence of the human N-myc gene

    International Nuclear Information System (INIS)

    Stanton, L.W.; Schwab, M.; Bishop, J.M.

    1986-01-01

    Human neuroblastomas frequently display amplification and augmented expression of a gene known as N-myc because of its similarity to the protooncogene c-myc. It has therefore been proposed that N-myc is itself a protooncogene, and subsequent tests have shown that N-myc and c-myc have similar biological activities in cell culture. The authors have now detailed the kinship between N-myc and c-myc by determining the nucleotide sequence of human N-myc and deducing the amino acid sequence of the protein encoded by the gene. The topography of N-myc is strikingly similar to that of c-myc: both genes contain three exons of similar lengths; the coding elements of both genes are located in the second and third exons; and both genes have unusually long 5' untranslated regions in their mRNAs, with features that raise the possibility that expression of the genes may be subject to similar controls of translation. The resemblance between the proteins encoded by N-myc and c-myc sustains previous suspicions that the genes encode related functions

  17. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal.

    Science.gov (United States)

    Kanatsu-Shinohara, Mito; Tanaka, Takashi; Ogonuki, Narumi; Ogura, Atsuo; Morimoto, Hiroko; Cheng, Pei Feng; Eisenman, Robert N; Trumpp, Andreas; Shinohara, Takashi

    2016-12-01

    Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. © 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Expression of c-myc and c-fos and binding sites for estradiol and progesterone in human pituitary tumors.

    Science.gov (United States)

    Machiavelli, G A; Rivolta, C M; Artese, R; Basso, A; Burdman, J A

    1998-12-01

    We studied the concentration of mRNA from the oncogenes c-myc and c-fos in human pituitary adenomas by Northern blot hybridization (35 somatotrophinomas, 9 prolactinomas, 21 nonsecreting and 3 adrenocorticotrophinomas). The concentration of estrogens and progesterone receptors was also investigated. The levels of c-myc and c-fos mRNA was higher in nonsecreting tumors which were generally the largest and had a higher percentage of recurrence after surgery than the other groups. High concentration of estrogen receptors was observed in tumors derived from cells which are normally the target of this hormone, mainly prolactinomas. They were also present in somatotrophic and nonsecreting adenomas, related to the presence of prolactin or gonadotrophin cells in these tumors. The presence of estrogen receptors indicates that the tumor cells maintain their differentiation and a good prognosis as is the case for prolactinomas. We did not find any relationship between estrogen receptors and the concentration of c-myc and c-fos oncogenes. Larger adenomas (mainly nonsecreting) had higher levels of c-myc and c-fos mRNA than the other tumors and they had an important percentage of recurrence after surgery. It is clear that tumor size is related to the outcome after surgery and that nonsecreting adenomas are usually large because of the late diagnosis. However two large somatotrophinomas with extrasellar expansion also had overexpression of both oncogenes and both relapsed after surgery.

  19. Astroglial c-Myc overexpression predisposes mice to primary malignant gliomas

    DEFF Research Database (Denmark)

    Jensen, Niels Aagaard; Pedersen, Karen-Marie; Lihme, Frederikke

    2003-01-01

    Malignant astrocytomas are common human primary brain tumors that result from neoplastic transformation of astroglia or their progenitors. Here we show that deregulation of the c-Myc pathway in developing astroglia predisposes mice to malignant astrocytomas within 2-3 weeks of age. The genetically...... engineered murine (GEM) gliomas harbor a molecular signature resembling that of human primary glioblastoma multiforme, including up-regulation of epidermal growth factor receptor and Mdm2. The GEM gliomas seem to originate in an abnormal population of glial fibrillary acidic protein-expressing cells...... the neoplastic process, presumably by inducing the sustained growth of early astroglial cells. This is in contrast to most other transgenic studies in which c-Myc overexpression requires co-operating transgenes for rapid tumor induction....

  20. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  1. Drosophila Myc is required for normal DREF gene expression

    International Nuclear Information System (INIS)

    Dang Thi Phuong Thao; Seto, Hirokazu; Yamaguchi, Masamitsu

    2008-01-01

    The Drosophila DNA replication-related element-binding factor (dDREF) is required for the expression of many proliferation-related genes carrying the DRE sequence, 5'-TATCGATA. Finding a canonical E-box, 5'-CACGTG, in the dDREF gene promoter prompted us to explore the possibility that the dDREF gene is a target of Drosophila Myc (dMyc). Luciferase transient expression assays combined with RNA interference in Drosophila S2 cells revealed that knockdown of dmyc reduced dDREF gene promoter activity by 35% to 82%, an effect at least partly mediated by the E-box in the promoter. dm 4 /Y hemizygous mutant larvae demonstrated no maternal dMyc and severe impairment of dDREF mRNA transcription. dMyc loss of function in dm 2 /dm 2 homozygous mutant follicle cell clones also resulted in loss of anti-dDREF immunostaining in nuclei. In contrast, co-expression of dMyc-dMax up-regulated dDREF promoter activity in S2 cells. Furthermore, dMyc over-expressing clones exhibited a high level of dDREF gene expression in wing and eye discs. These results taken together indicate that dMyc is indeed required for dDREF gene expression

  2. Gamabufotalin triggers c-Myc degradation via induction of WWP2 in multiple myeloma cells.

    Science.gov (United States)

    Yu, Zhenlong; Li, Tao; Wang, Chao; Deng, Sa; Zhang, Baojing; Huo, Xiaokui; Zhang, Bo; Wang, Xiaobo; Zhong, Yuping; Ma, Xiaochi

    2016-03-29

    Deciding appropriate therapy for multiple myeloma (MM) is challenging because of the occurrence of multiple chromosomal changes and the fatal nature of the disease. In the current study, gamabufotalin (GBT) was isolated from toad venom, and its tumor-specific cytotoxicity was investigated in human MM cells. We found GBT inhibited cell growth and induced apoptosis with the IC50 values <50 nM. Mechanistic studies using functional approaches identified GBT as an inhibitor of c-Myc. Further analysis showed that GBT especially evoked the ubiquitination and degradation of c-Myc protein, thereby globally repressing the expression of c-Myc target genes. GBT treatment inhibited ERK and AKT signals, while stimulating the activation of JNK cascade. An E3 ubiquitin-protein ligase, WWP2, was upregulated following JNK activation and played an important role in c-Myc ubiquitination and degradation through direct protein-protein interaction. The antitumor effect of GBT was validated in a xenograft mouse model and the suppression of MM-induced osteolysis was verified in a SCID-hu model in vivo. Taken together, our study identified the potential of GBT as a promising therapeutic agent in the treatment of MM.

  3. 1,25 dihydroxyvitamin D3 (1,25) regulation of c-myc mRNA in HL-60 leukemia cells

    International Nuclear Information System (INIS)

    Simpson, R.U.; Bresnick, E.H.; Begley, D.A.

    1986-01-01

    Recently, 1,25 was shown to induce differentiation and decrease c-myc levels in HL-60 cells. The authors have confirmed these observations by RNA dot blot analysis. Cells treated with 50 nM 1,25 for 4, 24 and 48 hr showed c-myc mRNA levels of 26, 17 and 15% of control respectively. β-Actin mRNA levels were not altered. To ascertain whether 1, 25 regulated c-myc transcriptionally, an HL-60 nuclear RNA runoff assay was developed. Assay of total nuclei transcriptional activity revealed that 50% of RNA elongation was α-amanitin (0.8 μg/ml) sensitive and was linear with nuclei concentration (0.1-1 x 10 7 nuclei). 1,25 (50 nM) treated (45-96 hr) cells had decreased (approx.40%) total transcription rate relative to control. Decreased total RNA synthesis occurred concomitant with NBT reducing activity. 32 P-RNA runoff transcripts from HL-60 nuclei were hybridized to excess (5 μg DNA was excess) Pst I linearized c-myc and β-actin clones (in pBR322) immobilized on nitrocellulose filter. 32 P-RNA input from 2 x 10 6 to 2 x 10 7 cpm yielded linear hybridization signal. Analysis of blot dot intensity revealed no difference in transcription of c-myc in nuclei from 1,25 dosed or control cells. (myc/actin ratios: 1,25 (50 nM, 72 hr) =1.1 +/- 0.3 and control (72 hr) = 1.0, N=3 or 2 or 3 dots ea). These preliminary data suggest 1,25 does not affect c-myc transcription in HL-60 nuclei and may regulate c-myc mRNA post-transcriptionally

  4. Cellular MYCro economics: Balancing MYC function with MYC expression.

    Science.gov (United States)

    Levens, David

    2013-11-01

    The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.

  5. Acidosis Decreases c-Myc Oncogene Expression in Human Lymphoma Cells: A Role for the Proton-Sensing G Protein-Coupled Receptor TDAG8

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-10-01

    Full Text Available Acidosis is a biochemical hallmark of the tumor microenvironment. Here, we report that acute acidosis decreases c-Myc oncogene expression in U937 human lymphoma cells. The level of c-Myc transcripts, but not mRNA or protein stability, contributes to c-Myc protein reduction under acidosis. The pH-sensing receptor TDAG8 (GPR65 is involved in acidosis-induced c-Myc downregulation. TDAG8 is expressed in U937 lymphoma cells, and the overexpression or knockdown of TDAG8 further decreases or partially rescues c-Myc expression, respectively. Acidic pH alone is insufficient to reduce c-Myc expression, as it does not decrease c-Myc in H1299 lung cancer cells expressing very low levels of pH-sensing G protein-coupled receptors (GPCRs. Instead, c-Myc is slightly increased by acidosis in H1299 cells, but this increase is completely inhibited by ectopic overexpression of TDAG8. Interestingly, TDAG8 expression is decreased by more than 50% in human lymphoma samples in comparison to non-tumorous lymph nodes and spleens, suggesting a potential tumor suppressor function of TDAG8 in lymphoma. Collectively, our results identify a novel mechanism of c-Myc regulation by acidosis in the tumor microenvironment and indicate that modulation of TDAG8 and related pH-sensing receptor pathways may be exploited as a new approach to inhibit Myc expression.

  6. Lack of induction of tissue transglutaminase but activation of the preexisting enzyme in c-Myc-induced apoptosis of CHO cells.

    Science.gov (United States)

    Balajthy, Z; Kedei, N; Nagy, L; Davies, P J; Fésüs, L

    1997-07-18

    The intracellular activity and expression of tissue transglutaminase, which crosslinks proteins through epsilon(gamma-glutamyl)lysine isodipeptide bond, was investigated in CHO cells and those stably transfected with either inducible c-Myc (which leads to apoptosis) or with c-myc and the apoptosis inhibitor Bcl-2. Protein-bound cross-link content was significantly higher when apoptosis was induced by c-Myc while the concomitant presence of Bcl-2 markedly reduced both apoptosis and enzymatic protein cross-linking. The expression of tissue transglutaminase did not change following the initiation of apoptosis by c-Myc or when it was blocked by Bcl-2. Studying transiently co-transfected elements of the mouse tissue transglutaminase promoter linked to a reporter enzyme revealed their overall repression in cells expressing c-Myc. This repression was partially suspended in cells also carrying Bcl-2. Our data suggest that tissue transglutaminase is not induced when c-Myc initiates apoptosis but the pre-existing endogenous enzyme is activated.

  7. DNA repair in the c-myc proto-oncogene locus: Possible involvement in susceptibility or resistance to plasmacytoma induction in BALB/c mice

    International Nuclear Information System (INIS)

    Beecham, E.J.; Mushinski, J.F.; Shacter, E.; Potter, M.; Bohr, V.A.

    1991-01-01

    This report describes an unexpected difference in the efficiency of removal of UV-induced DNA damage in the c-myc locus in splenic B lymphoblasts from two inbred strains of mice. In cells from plasmacytoma-resistant DBA/2N mice, 35% of UV-induced damage in the regulatory and 5' flank of c-myc is removed by 12 h. However, in cells from plasmacytoma-susceptible BALB/cAn mice, damage is not removed from this region. In the protein-encoding region and 3' flank of c-myc as well as in two dihydrofolate reductase gene fragments, UV damage is repaired with similar efficiency in B lymphoblasts from both strains of mice. Furthermore, in the protein-encoding portion and 3' flank of c-myc, damage is selectively removed from only the transcribed strand. No repair is detected in the nontranscribed strand. In contrast, DNA repair in the 5' flank of c-myc is not strand specific; in DNA from DBA/2N cells, UV damage is rapidly removed from both the transcribed and nontranscribed strands. In BALB/cAn cells no repair was detected in either strand in the 5'flank, consistent with the results with double-stranded, nick-translated probes to this region of c-myc. In addition to the repair studies, we have detected post-UV-damage formation: in most of the genes studied, we find that additional T4 endonuclease-sensitive sites are formed in the DNA 2 h after irradiation. Our findings provide new insights into the details of gene-specific and strand-specific DNA repair and suggest that there may be close links between DNA repair and B-cell neoplastic development

  8. Myc suppression of Nfkb2 accelerates lymphomagenesis

    International Nuclear Information System (INIS)

    Keller, Ulrich; Huber, Jürgen; Nilsson, Jonas A; Fallahi, Mohammad; Hall, Mark A; Peschel, Christian; Cleveland, John L

    2010-01-01

    Deregulated c-Myc expression is a hallmark of several human cancers where it promotes proliferation and an aggressive tumour phenotype. Myc overexpression is associated with reduced activity of Rel/NF-κB, transcription factors that control the immune response, cell survival, and transformation, and that are frequently altered in cancer. The Rel/NF-κB family member NFKB2 is altered by chromosomal translocations or deletions in lymphoid malignancies and deletion of the C-terminal ankyrin domain of NF-κB2 augments lymphocyte proliferation. Precancerous Eμ-Myc-transgenic B cells, Eμ-Myc lymphomas and human Burkitt lymphoma samples were assessed for Nfkb2 expression. The contribution of Nfkb2 to Myc-driven apoptosis, proliferation, and lymphomagenesis was tested genetically in vivo. Here we report that the Myc oncoprotein suppresses Nfkb2 expression in vitro in primary mouse fibroblasts and B cells, and in vivo in the Eμ-Myc transgenic mouse model of human Burkitt lymphoma (BL). NFKB2 suppression by Myc was also confirmed in primary human BL. Promoter-reporter assays indicate that Myc-mediated suppression of Nfkb2 occurs at the level of transcription. The contribution of Nfkb2 to Myc-driven lymphomagenesis was tested in vivo, where Nfkb2 loss was shown to accelerate lymphoma development in Eμ-Myc transgenic mice, by impairing Myc's apoptotic response. Nfkb2 is suppressed by c-Myc and harnesses Myc-driven lymphomagenesis. These data thus link Myc-driven lymphomagenesis to the non-canonical NF-κB pathway

  9. Aberrant immunoglobulin and c-myc gene rearrangements in patients with nonmalignant monoclonal cryoglobulinemia

    International Nuclear Information System (INIS)

    Perl, A.; Wang, N.; Williams, J.M.; Hunt, M.J.; Rosenfeld, S.I.; Condemi, J.J.; Packman, C.H.; Abraham, G.N.

    1987-01-01

    The status of the immunoglobulin (Ig) genes was investigated in patients with idiopathic nonmalignant monoclonal IgG cryoglobulinemia (NCG). In NCG, monoclonal antibodies are synthesized at an accelerated rate by nonmalignant B lymphocytes. In order to determine whether this high production rate is related to a clonal B cell expansion, the rearrangement of the Ig genes was investigated by Southern blot analysis of genomic, 32 P-labelled, DNA extracted from the peripheral blood lymphocytes of four NCG patients. In three of four (VI, BR, and CH) clonal expansion of B cells was detected using probes specific for the genes. BamHI digestion of DNA from VI and BR produced three rearranged fragments which cohybridized with two of the probes. This finding suggested the presence of additional nonsecretory B cell clones and/or disruption of the gene segments spanned by and detected with the probes. In addition, the possibility of aberrant gene rearrangements was supported by noting the alteration of the c-myc gene locus in genomic DNA from peripheral blood leukocytes of VI and CH. Northern blot analysis of RNA isolated from peripheral blood B cells of VI and CH demonstrated aberrant transcripts of the c-myc gene, showing an active role of the altered c-myc locus. Detection of c-myc rearrangement in NCG patients clearly shows that this event may not be a final step in malignant B cell transformation

  10. Nac1 promotes self-renewal of embryonic stem cells through direct transcriptional regulation of c-Myc.

    Science.gov (United States)

    Ruan, Yan; He, Jianrong; Wu, Wei; He, Ping; Tian, Yanping; Xiao, Lan; Liu, Gaoke; Wang, Jiali; Cheng, Yuda; Zhang, Shuo; Yang, Yi; Xiong, Jiaxiang; Zhao, Ke; Wan, Ying; Huang, He; Zhang, Junlei; Jian, Rui

    2017-07-18

    The pluripotency transcriptional network in embryonic stem cells (ESCs) is composed of distinct functional units including the core and Myc units. It is hoped that dissection of the cellular functions and interconnections of network factors will aid our understanding of ESC and cancer biology. Proteomic and genomic approaches have identified Nac1 as a member of the core pluripotency network. However, previous studies have predominantly focused on the role of Nac1 in psychomotor stimulant response and cancer pathogenesis. In this study, we report that Nac1 is a self-renewal promoting factor, but is not required for maintaining pluripotency of ESCs. Loss of function of Nac1 in ESCs results in a reduced proliferation rate and an enhanced differentiation propensity. Nac1 overexpression promotes ESC proliferation and delays ESC differentiation in the absence of leukemia inhibitory factor (LIF). Furthermore, we demonstrated that Nac1 directly binds to the c-Myc promoter and regulates c-Myc transcription. The study also revealed that the function of Nac1 in promoting ESC self-renewal appears to be partially mediated by c-Myc. These findings establish a functional link between the core and c-Myc-centered networks and provide new insights into mechanisms of stemness regulation in ESCs and cancer.

  11. Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and Chemoresistance of Prostate Cancer

    Science.gov (United States)

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c -Myc Oncogenic Pathway in Castration Resistance and...DATES COVERED 15Sept2013 - 14Sept2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using a Novel Transgenic Mouse Model to Study c -Myc Oncogenic...ABSTRACT We previously made a PB-Cre4/Ai-Myc model for Cre-induced and androgen-independent expression of c -Myc and Luc2 in prostate. This is designed

  12. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation.

    Directory of Open Access Journals (Sweden)

    Guangzhen Hu

    Full Text Available Long noncoding RNAs (lncRNAs are important regulators of transcription; however, their involvement in protein translation is not well known. Here we explored whether the lncRNA GAS5 is associated with translation initiation machinery and regulates translation. GAS5 was enriched with eukaryotic translation initiation factor-4E (eIF4E in an RNA-immunoprecipitation assay using lymphoma cell lines. We identified two RNA binding motifs within eIF4E protein and the deletion of each motif inhibited the binding of GAS5 with eIF4E. To confirm the role of GAS5 in translation regulation, GAS5 siRNA and in vitro transcribed GAS5 RNA were used to knock down or overexpress GAS5, respectively. GAS5 siRNA had no effect on global protein translation but did specifically increase c-Myc protein level without an effect on c-Myc mRNA. The mechanism of this increase in c-Myc protein was enhanced association of c-Myc mRNA with the polysome without any effect on protein stability. In contrast, overexpression of in vitro transcribed GAS5 RNA suppressed c-Myc protein without affecting c-Myc mRNA. Interestingly, GAS5 was found to be bound with c-Myc mRNA, suggesting that GAS5 regulates c-Myc translation through lncRNA-mRNA interaction. Our findings have uncovered a role of GAS5 lncRNA in translation regulation through its interactions with eIF4E and c-Myc mRNA.

  13. EFFECT OF STENT ABSORBED c-myc ANTISENSE OLIGODEOXYNUCLEOTIDE ON SMOOTH MUSCLE CELLS APOPTOSIS IN RABBIT CAROTID ARTERY

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 李江; 崔翰斌; 徐仓宝; 朱参战

    2002-01-01

    Objective To investigate the effect of gelatin coated Platinium-Iridium stent absorbed c-myc antisense oligodeoxynucleotide (ASODN) on smooth muscle cells apoptosis in a normal rabbit carotid arteries. Methods Gelatin coated Platinium-Iridium stents were implanted in the right carotid arteries of 32 rabbits under vision. Animals were randomly divided into control group and treated group receiving c-myc ASODN (n=16, respectively). On 7, 14, 30 and 90 days following the stenting procedure ,morphometry for caculation of neointimal area and mean neointimal thickness were performed.The expression of c-myc protein was detected by immunohistochemical method. Apoptotic smooth muscle cells was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL). Results At 7 and 14 days after stenting,there were no detectable apoptotic cells in both groups. The apoptotic cells occurred in the neointima 30 and 90 days after stenting, and the number of apoptotic cells at 30 days were less [4.50±1.29 vs 25.75±1.89 (number/0.1mm2)] than that at 90 days [13.50±1.91 vs 41.50±6.46 (number/0.1mm2)]. Meanwhile c-myc ASODN induced more apoptotic cells than the control group(P<0.0001). c-myc protein expression was weak positive or negative in treated group and positive in control group.Conclusion c-myc ASODN can induce smooth muscle cells apoptosis after stenting in normal rabbit carotid arteries,and it can be used to prevent in-stent restenosis.

  14. c-Myc oncogene expression in selected odontogenic cysts and tumors: An immunohistochemical study

    Science.gov (United States)

    Moosvi, Zama; Rekha, K

    2013-01-01

    Aim: To investigate the role of c-Myc oncogene in selected odontogenic cysts and tumors. Materials and Methods: Ten cases each of ameloblastoma, adenomatoid odontogenic tumor (AOT), odontogenic keratocyst (OKC), dentigerous cyst, and radicular cyst were selected and primary monoclonal mouse anti-human c-Myc antibody was used in a dilution of 1: 50. Statistical Analysis was performed using Mann Whitney U test. Results: 80% positivity was observed in ameloblastoma, AOT and OKC; 50% positivity in radicular cyst and 20% positivity in dentigerous cyst. Comparison of c-Myc expression between ameloblastoma and AOT did not reveal significant results. Similarly, no statistical significance was observed when results of OKC were compared with ameloblastoma and AOT. In contrast, significant differences were seen on comparison of dentigerous cyst with ameloblastoma and AOT and radicular cyst with AOT. Conclusion: From the above data we conclude that (1) Ameloblastoma and AOT have similar proliferative potential and their biologic behavior cannot possibly be attributed to it. (2) OKC has an intrinsic growth potential which is absent in other cysts and reinforces its classification as keratocystic odontogenic tumor. PMID:23798830

  15. Suppression of c-Myc induces apoptosis via an AMPK/mTOR-dependent pathway by 4-O-methyl-ascochlorin in leukemia cells.

    Science.gov (United States)

    Shin, Jae-Moon; Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Bae, Young-Seuk; Chang, Young-Chae

    2016-05-01

    4-O-Methyl-ascochlorin (MAC) is a methylated derivative of the prenyl-phenol antibiotic ascochlorin, which was isolated from an incomplete fungus, Ascochyta viciae. Although the effects of MAC on apoptosis have been reported, the underlying mechanisms remain unknown. Here, we show that MAC promoted apoptotic cell death and downregulated c-Myc expression in K562 human leukemia cells. The effect of MAC on apoptosis was similar to that of 10058-F4 (a c-Myc inhibitor) or c-Myc siRNA, suggesting that the downregulation of c-Myc expression plays a role in the apoptotic effect of MAC. Further investigation showed that MAC downregulated c-Myc by inhibiting protein synthesis. MAC promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its target proteins, including p70S6 K and 4E-BP-1. Treatment of cells with AICAR (an AMPK activator), rapamycin (an mTOR inhibitor), or mTOR siRNA downregulated c-Myc expression and induced apoptosis to a similar extent to that of MAC. These results suggest that the effect of MAC on apoptosis induction in human leukemia cells is mediated by the suppression of c-Myc protein synthesis via an AMPK/mTOR-dependent mechanism.

  16. Cooverexpression of EpCAM and c-myc genes in malignant breast

    Indian Academy of Sciences (India)

    oncogene, affects progression, treatment, and diagnosis of many adenocarcinomas. C-myc has been shown to be a downstream target of EpCAM and is also one of the most important proto-oncogenes routinely overexpressed in breast cancer.

  17. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Christopher C.; Bloodworth, Jeffrey C. [Division of Pharmacology, Columbus, OH 43210 (United States); Mythreye, Karthikeyan [Duke University, Department of Medicine, Durham, NC 27708 (United States); Lee, Nam Y., E-mail: lee.5064@osu.edu [Division of Pharmacology, Columbus, OH 43210 (United States); Davis Heart and Lung Research Institute, Columbus, OH 43210 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.

  18. Targeting C-Myc Promoter: Helquats As Novel G-Quadruplex Stabilizing Ligands

    Czech Academy of Sciences Publication Activity Database

    Kužmová, Erika; Kozák, Jaroslav; Komárková, Veronika; Pytlík, R.; Teplý, Filip; Hájek, Miroslav

    2014-01-01

    Roč. 124, č. 21 (2014) ISSN 0006-4971. [Annual Meeting of the American Society of Hematology /56./. 06.12.2014-09.12.2014, San Francisco] Institutional support: RVO:61388963 Keywords : helquats * C-Myc * leukemia Subject RIV: CE - Biochemistry

  19. Multiple fractions of gamma rays do not induce overexpression of c-myc or c-Ki-ras oncogenes in human cervical carcinoma cells

    International Nuclear Information System (INIS)

    Osmak, M.; Soric, J.; Matulic, M.

    1993-01-01

    Multiple fractions of gamma rays (0.5 Gy daily, 30 fractions) had previously been found to change the sensitivity of human cervical carcinoma HeLa cells to anticancer drugs. Preirradiated cells became resistant to cisplatin, methotrexate and vincristine but retained the same sensitivity to gamma rays and ultraviolet light. Some mechanisms involved in the resistance of preirradiated cells to cisplatin and vincristine were determined, i.e. the increased levels of metallothioneins and increased expression of plasma membrane P glycoprotein. As recent reports indicated that the resistance to cisplatin and ionizing radiation may involve the expression of oncogenes, the problem was studied whether multiple fractions of gamma rays can change the expression of c-myc and c-Ki-ras oncogenes in HeLa cells and whether there is a correlation between the expression of these oncogenes and the sensitivity of preirradiated cells to cisplatin and gamma rays. The expression of c-myc and c-Ki-ras oncogenes was examined using the DNA dot blot, the RNA dot blot and Northern blot analysis. The results show that preirradiation induced neither amplification nor elevated expression of c-myc and c-Ki-ras oncogenes. Furthermore, there is no correlation between the expression of c-myc and c-Ki-ras oncogenes and the acquired resistance to cisplatin. (author) 3 figs., 32 refs

  20. Effects of c-myc oncogene modulation on differentiation of human small cell lung carcinoma cell lines

    NARCIS (Netherlands)

    Van Waardenburg, RCAM; Meijer, C; Pinto-Sietsma, SJ; De Vries, EGE; Timens, W; Mulder, NM

    1998-01-01

    Amplification and over-expression of oncogenes of the myc family are related to the prognosis of certain solid tumors such as small cell lung cancer (SCLC). For SCLC, c-myc is the oncogene most consistently found to correlate with the end stage behaviour of the tumour, in particular with survival

  1. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kyung-Soo [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Park, Jun-Ik [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Dao, Trong Tuan; Oh, Won Keun [BK21 Project Team, College of Pharmacy, Chosun University, Gwangju (Korea, Republic of); Kang, Chi-Dug, E-mail: kcdshbw@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Kim, Sun-Hee, E-mail: ksh7738@pusan.ac.kr [Department of Biochemistry, Pusan National University School of Medicine, Yangsan (Korea, Republic of); Research Center for Ischemic Tissue regeneration, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2012-03-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  2. Involvement of SIRT1 in hypoxic down-regulation of c-Myc and β-catenin and hypoxic preconditioning effect of polyphenols

    International Nuclear Information System (INIS)

    Hong, Kyung-Soo; Park, Jun-Ik; Kim, Mi-Ju; Kim, Hak-Bong; Lee, Jae-Won; Dao, Trong Tuan; Oh, Won Keun; Kang, Chi-Dug; Kim, Sun-Hee

    2012-01-01

    SIRT1 has been found to function as a Class III deacetylase that affects the acetylation status of histones and other important cellular nonhistone proteins involved in various cellular pathways including stress responses and apoptosis. In this study, we investigated the role of SIRT1 signaling in the hypoxic down-regulations of c-Myc and β-catenin and hypoxic preconditioning effect of the red wine polyphenols such as piceatannol, myricetin, quercetin and resveratrol. We found that the expression of SIRT1 was significantly increased in hypoxia-exposed or hypoxic preconditioned HepG2 cells, which was closely associated with the up-regulation of HIF-1α and down-regulation of c-Myc and β-catenin expression via deacetylation of these proteins. In addition, blockade of SIRT1 activation using siRNA or amurensin G, a new potent SIRT1 inhibitor, abolished hypoxia-induced HIF-1α expression but increased c-Myc and β-catenin expression. SIRT1 was also found to stabilize HIF-1α protein and destabilize c-Myc, β-catenin and PHD2 under hypoxia. We also found that myricetin, quercetin, piceatannol and resveratrol up-regulated HIF-1α and down-regulated c-Myc, PHD2 and β-catenin expressions via SIRT1 activation, in a manner that mimics hypoxic preconditioning. This study provides new insights of the molecular mechanisms of hypoxic preconditioning and suggests that polyphenolic SIRT1 activators could be used to mimic hypoxic/ischemic preconditioning. -- Graphical abstract: Polyphenols mimicked hypoxic preconditioning by up-regulating HIF-1α and SIRT1 and down-regulating c-Myc, PHD2, and β-catenin. HepG2 cells were pretreated with the indicated doses of myricetin (MYR; A), quercetin (QUR; B), or piceatannol (PIC; C) for 4 h and then exposed to hypoxia for 4 h. Levels of HIF-1α, SIRT1, c-Myc, β-catenin, and PHD2 were determined by western blot analysis. The data are representative of three individual experiments. Highlights: ► SIRT1 expression is increased in hypoxia

  3. In vivo distribution of c-myc antisense oligodeoxynucleotides local delivered by gelatin-coated platinmn-iridium stents in rabbits and its effect on apoptosis

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 许香广; 胡雪松; 方卫华; 邝碧娟

    2004-01-01

    Background Post-stenting restenosis is a significant clinical problem, involving vascular smooth muscle cells(VSMCs) proliferation and apoptosis. It is reported that c-myc antisense oligodeoxynucleotides (ASODNs) local delivered by catheter can inhibit VSMCs proliferation. This study was designed to assess tissue distribution of c-myc ASODN local delivered using gelatin-coated platinum-iridium (Pt-Ir) stents, and its effect on apoptosis of VSMCs. Methods Gelatin-coated Pt-Ir stents that had absorbed caroboxyfluorescein-5-succimidyl ester (FAM) labeled c-myc ASODNs (550 μg per stent) were implanted into the right carotid arteries of 6 rabbits. Tissue samples were obtained at 45 minutes, 2 hours, and 6 hours. Tissue distribution of c- myc ASODNs was assessed by fluorescence microscopy. In addition, 32 rabbits were randomly divided into two groups. Rabbits in the control group (n=16) were implanted with gelatin-coated Pt-Ir stents, and those in the treatment group (n=16) were implanted with gelatin-coated stents that had absorbed c-myc ASODNs. 7, 14, 30, or 90 days (n=4, respectively, for each group) after the stenting procedure, the stented segments were harvested, and histopathological examinations were performed to calculate neointimal area and mean neointimal thickness. The expression of c-myc was assessed using in situ hybridization (ISH) and immunohistochemical methods. Apoptotic VSMCs were detected using terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) and transmission electron microscope (TEM). Results According to fluorescence microscopic results, FAM-labeled c-myc ASODNs were concentrated in the target vessel media at the 45 minutes time point, and then dispersed to the adventitia. Morphometric analysis showed that neointimal area and mean neointimal thickness increased continuously up to 90 days after stent implantation, but that total neointimal area and mean neointimal thickness were less in the treatment group than in the

  4. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu; Zhong, Cuiping [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Hong, Liu [First Division of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Wang, Ye; Qiao, Li [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China); Qiu, Jianhua, E-mail: qiujh@fmmu.edu.cn [Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 Shaanxi Province (China)

    2009-12-18

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110 dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.

  5. Effect of c-myc on the ultrastructural structure of cochleae in guinea pigs with noise induced hearing loss

    International Nuclear Information System (INIS)

    Han, Yu; Zhong, Cuiping; Hong, Liu; Wang, Ye; Qiao, Li; Qiu, Jianhua

    2009-01-01

    Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110 dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.

  6. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  7. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  8. Increased radiation-induced transformation in C3H/10T1/2 cells after transfer of an exogenous c-myc gene

    International Nuclear Information System (INIS)

    Sorrentino, V.; Drozdoff, V.; Zeitz, L.; Fleissner, E.

    1987-01-01

    C3H/10T 1/2 cells were infected with a retroviral vector expressing a mouse c-myc oncogene and a drug-selection marker. The resulting cells, morphologically indistinguishable from C3H/10T l/1, displayed a greatly enhanced sensitivity to neoplastic transformation by ionizing radiation or by a chemical carcinogen. Constitutive expression of myc therefore appears to synergize with an initial carcinogenic event, providing a function analogous to a subsequent event that apparently is required for the neoplastic transformation of these cells. This cell system should prove useful in exploring early stages in radiation-induced transformation

  9. The use and misuse of V(c,max) in Earth System Models.

    Science.gov (United States)

    Rogers, Alistair

    2014-02-01

    Earth System Models (ESMs) aim to project global change. Central to this aim is the need to accurately model global carbon fluxes. Photosynthetic carbon dioxide assimilation by the terrestrial biosphere is the largest of these fluxes, and in many ESMs is represented by the Farquhar, von Caemmerer and Berry (FvCB) model of photosynthesis. The maximum rate of carboxylation by the enzyme Rubisco, commonly termed V c,max, is a key parameter in the FvCB model. This study investigated the derivation of the values of V c,max used to represent different plant functional types (PFTs) in ESMs. Four methods for estimating V c,max were identified; (1) an empirical or (2) mechanistic relationship was used to relate V c,max to leaf N content, (3) V c,max was estimated using an approach based on the optimization of photosynthesis and respiration or (4) calibration of a user-defined V c,max to obtain a target model output. Despite representing the same PFTs, the land model components of ESMs were parameterized with a wide range of values for V c,max (-46 to +77% of the PFT mean). In many cases, parameterization was based on limited data sets and poorly defined coefficients that were used to adjust model parameters and set PFT-specific values for V c,max. Examination of the models that linked leaf N mechanistically to V c,max identified potential changes to fixed parameters that collectively would decrease V c,max by 31% in C3 plants and 11% in C4 plants. Plant trait data bases are now available that offer an excellent opportunity for models to update PFT-specific parameters used to estimate V c,max. However, data for parameterizing some PFTs, particularly those in the Tropics and the Arctic are either highly variable or largely absent.

  10. Lipopolysaccharide stimulates endogenous β-glucuronidase via PKC/NF-κB/c-myc signaling cascade: a possible factor in hepatolithiasis formation.

    Science.gov (United States)

    Yao, Dianbo; Dong, Qianze; Tian, Yu; Dai, Chaoliu; Wu, Shuodong

    2017-11-29

    Hepatolithiasis is commonly encountered in Southeastern and Eastern Asian countries, but the pathogenesis mechanism of stone formation is still not well understood. Now, the role of endogenous β-glucuronidase in pigment stones formation is being gradually recognized. In this study, the mechanism of increased expression and secretion of endogenous β-glucuronidase during hepatolithiasis formation was investigated. We assessed the endogenous β-glucuronidase, c-myc, p-p65, and p-PKC expression in liver specimens with hepatolithiasis by immunohistochemical staining, and found that compared with that in normal liver samples, the expression of endogenous β-glucuronidase, c-myc, p-p65, and p-PKC in liver specimens with hepatolithiasis significantly increased, and their expressions were positively correlated with each other. Lipopolysaccharide (LPS) induced increased expression of endogenous β-glucuronidase and c-myc in hepatocytes and intrahepatic biliary epithelial cells in a dose- and time-dependent manner, and endogenous β-glucuronidase secretion increased, correspondingly. C-myc siRNA transfection effectively inhibited the LPS-induced expression of endogenous β-glucuronidase. Furthermore, NF-κB inhibitor pyrrolidine dithiocarbamate or PKC inhibitor chelerythrine could effectively inhibit the LPS-induced expression of c-myc and endogenous β-glucuronidase, and the expression of p-p65 was also partly inhibited by chelerythrine. Our clinical observations and experimental data indicate that LPS could induce the increased expression and secretion of endogenous β-glucuronidase via a signaling cascade of PKC/NF-κB/c-myc in hepatocytes and intrahepatic biliary epithelial cells, and endogenous β-glucuronidase might play a possible role in the formation of hepatolithiasis.

  11. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-01-01

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  12. Profil Ekspresi mRNA Gen Murine Double Minute2, Kruppel-Like Factor4, dan c-Myc pada Fibrosarkoma

    Directory of Open Access Journals (Sweden)

    - Humaryanto

    2017-02-01

    Full Text Available Abstrak Fibrosarkoma hanya terjadi 1–3% dari seluruh keganasan jaringan lunak. Hingga saat ini etiologi fibrosarkoma belum diketahui dengan pasti. Beberapa faktor dapat menjadi penyebab patogenesis fibrosarkoma antara lain radiasi, terpapar zat kimia tertentu, serta infeksi human herpes virus 8 (HHV8 dan Epstein-Barr virus (EBV. Penelitian terkini menunjukkan bahwa banyak sarkoma terkait dengan mutasi genetik. Penelitian ini bertujuan melihat profil ekspresi mRNA gen Krüppel-like Factor4, Murine Double Minute2, dan c-Myc pada fibrosarkoma menggunakan teknik real time PCR kuantitatif (quantitative real time PCR, qRT-PCR. Analisis data menggunakan metode kuantititatif relatif 2-ΔΔCt. Penelitian ini menggunakan 10 sampel kasus fibrosarkoma yang ditemukan di Kota Jambi dari tahun 2011–2015. Hasil ΔCt (+SD MDM2, KLF-4, dan c-Myc disusun dari nilai yang terkecil hingga tertinggi adalah 1,85±2,14; 2,06±3,86; 2,9±2,66 secara berurutan. Dibanding dengan level ekspresi dengan GAPDH sebagai housekeeping gene, gen MDM2 dan KLF-4 relatif menurun dua kali lipat, sedangkan gen c-Myc relatif menurun lebih dari tiga kali lipat. Simpulan, penelitian ini menunjukkan bahwa pada kasus fibrosarkoma, gen c-Myc disupresi lebih kuat dibanding dengan gen MDM2 dan KLF-4. Abstract Fibrosarcoma is a rare soft tissue sarcoma, reported only 1–3% of all soft tissue sarcomas. Like any other soft-tissue sarcomas the definitive caused has not yet understood. Recognized causes include exposure to ionizing radiation, various physical and chemical factors, infection with human herpes virus (HHV8 and Epstein-Barr virus (EBV. Current research indicates many sarcomas are associated with genetic mutations. In this study, we investigated profile of mRNA gene expression KLF4, MDM2, and c-Myc of RNA in fibrosarcoma cases. The genes expression was examined using quantitative real time PCR (qRT-PCR and we analyzed the relative gene expression using the 2-ΔΔCt method. Ten

  13. Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies.

    Science.gov (United States)

    Deng, Changchun; Lipstein, Mark R; Scotto, Luigi; Jirau Serrano, Xavier O; Mangone, Michael A; Li, Shirong; Vendome, Jeremie; Hao, Yun; Xu, Xiaoming; Deng, Shi-Xian; Realubit, Ronald B; Tatonetti, Nicholas P; Karan, Charles; Lentzsch, Suzanne; Fruman, David A; Honig, Barry; Landry, Donald W; O'Connor, Owen A

    2017-01-05

    Phosphoinositide 3-kinase (PI3K) and the proteasome pathway are both involved in activating the mechanistic target of rapamycin (mTOR). Because mTOR signaling is required for initiation of messenger RNA translation, we hypothesized that cotargeting the PI3K and proteasome pathways might synergistically inhibit translation of c-Myc. We found that a novel PI3K δ isoform inhibitor TGR-1202, but not the approved PI3Kδ inhibitor idelalisib, was highly synergistic with the proteasome inhibitor carfilzomib in lymphoma, leukemia, and myeloma cell lines and primary lymphoma and leukemia cells. TGR-1202 and carfilzomib (TC) synergistically inhibited phosphorylation of the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), leading to suppression of c-Myc translation and silencing of c-Myc-dependent transcription. The synergistic cytotoxicity of TC was rescued by overexpression of eIF4E or c-Myc. TGR-1202, but not other PI3Kδ inhibitors, inhibited casein kinase-1 ε (CK1ε). Targeting CK1ε using a selective chemical inhibitor or short hairpin RNA complements the effects of idelalisib, as a single agent or in combination with carfilzomib, in repressing phosphorylation of 4E-BP1 and the protein level of c-Myc. These results suggest that TGR-1202 is a dual PI3Kδ/CK1ε inhibitor, which may in part explain the clinical activity of TGR-1202 in aggressive lymphoma not found with idelalisib. Targeting CK1ε should become an integral part of therapeutic strategies targeting translation of oncogenes such as c-Myc. © 2017 by The American Society of Hematology.

  14. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  15. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    Science.gov (United States)

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  16. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-01-01

    Full Text Available Introduction. Xeroderma pigmentosum group C (XPC, essential component of multisubunit stem cell coactivator complex (SCC, functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  17. XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc.

    Science.gov (United States)

    Liu, Lu; Peng, Zhengjun; Xu, Zhezhen; Wei, Xi

    2016-01-01

    Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.

  18. Detecção imunoistoquímica das oncoproteínas p21ras, c-myc E p53 no carcinoma hepatocelular e no tecido hepático não-neoplásico Immunohistochemical detection of p21ras, c-myc and p53 oncoproteins in hepatocellular carcinoma and in non-neoplastic liver tissue

    Directory of Open Access Journals (Sweden)

    Vera Lucia Nunes Pannain

    2004-12-01

    Full Text Available RACIONAL: A hepatocarcinogênese é um processo no qual as alterações genéticas e epigenéticas são bem conhecidas em modelos animais, mas carece de estudos no homem. OBJETIVOS: Analisar a freqüência das oncoproteínas p21ras, c-myc e p53 no carcinoma hepatocelular e no fígado não-neoplásico. Verificar ainda a associação destas oncoproteínas com os padrões e graus histológicos, assim como com as infecções pelos vírus das hepatites B e C. MÉTODOS: Foi analisada por método imunoistoquímico a detecção das oncoproteínas p21ras, c-myc e p53 em 47 casos de carcinoma hepatocelular e no tecido não-neoplásico circunjacente ao tumor (40 casos. RESULTADOS: As oncoproteínas p21ras, c-myc e p53 foram detectadas, respectivamente, em 44,7%, 53,2% e 36,2% dos casos de carcinoma hepatocelular. A imunorreatividade do p21ras e c-myc mostrou uma associação significativa. Contudo, não houve associação significativa entre a detecção do p21ras, c-myc e p53 com os diferentes graus e padrões histológicos, nem tampouco com as infecções pelos vírus das hepatites B e C. A mesma associação significativa entre o p21ras e c-myc foi encontrada no tecido não-neoplásico dos casos de cirrose em relação aos que não apresentaram cirrose, enquanto que o p53 foi negativo em todos os casos. CONCLUSÕES: A imunorreatividade das oncoproteínas p21ras, c-myc e p53 corrobora evidências prévias de sua detecção no carcinoma hepatocelular, o que sugere poder haver participação destas proteínas na hepatocarcinogênese humana. A significativa associação entre as proteínas p21ras, c-myc e p53 no carcinoma hepatocelular e na cirrose pode apontar uma interação entre as mesmas, sobretudo na hepatocarcinogênese pela via da cirrose.BACKGROUND: Genetic and epigenetic alterations have been described in animal hepatocarcinogenesis models but need to be studied in human being. AIMS: To assess the immunoreactivity of p21ras, c-myc and p53

  19. Mxi1 and Mxi1-0 Antagonize N-Myc Function and Independently Mediate Apoptosis in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    David A. Erichsen

    2015-02-01

    Full Text Available Neuroblastoma (NB is the third most common malignancy of childhood, and outcomes for children with advanced disease remain poor; amplification of the MYCN gene portends a particularly poor prognosis. Mxi1 antagonizes N-Myc by competing for binding to Max and E-boxes. Unlike N-Myc, Mxi1 mediates transcriptional repression and suppresses cell proliferation. Mxi1 and Mxi1-0 (an alternatively transcribed Mxi1 isoform share identical Max and DNA binding domains but differ in amino-terminal sequences. Because of the conservation of these critical binding domains, we hypothesized that Mxi1-0 antagonizes N-Myc activity similar to Mxi1. SHEP NB cells and SHEP cells stably transfected with MYCN (SHEP/MYCN were transiently transfected with vectors containing full-length Mxi1, full-length Mxi1-0, or the common Mxi domain encoded by exons 2 to 6 (ex2-6. After incubation in low serum, parental SHEP/MYCN cell numbers were reduced compared with SHEP cells. Activated caspase-3 staining and DNA fragmentation ELISA confirmed that SHEP/MYCN cells undergo apoptosis in low serum, while SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 do not. However, SHEP/MYCN cells transfected with Mxi1 or Mxi1-0 and grown in normal serum showed proliferation rates similar to SHEP cells. Mxi ex2-6 did not affect cell number in low or normal serum, suggesting that amino terminal domains of Mxi1 and Mxi1-0 are critical for antagonism. In the absence of N-Myc, Mxi1 and Mxi1-0 induce apoptosis independently through the caspase-8–dependent extrinsic pathway, while N-Myc activates the caspase-9–dependent intrinsic pathway. Together, these data indicate that Mxi1 and Mxi1-0 antagonize N-Myc but also independently impact NB cell survival.

  20. c-MYC G-quadruplex binding by the RNA polymerase I inhibitor BMH-21 and analogues revealed by a combined NMR and biochemical Approach.

    Science.gov (United States)

    Musso, Loana; Mazzini, Stefania; Rossini, Anna; Castagnoli, Lorenzo; Scaglioni, Leonardo; Artali, Roberto; Di Nicola, Massimo; Zunino, Franco; Dallavalle, Sabrina

    2018-03-01

    Pyridoquinazolinecarboxamides have been reported as RNA polymerase I inhibitors and represent a novel class of potential antitumor agents. BMH-21, was reported to intercalate with GC-rich rDNA, resulting in nucleolar stress as a primary mechanism of cytotoxicity. The interaction of BMH-21 and analogues with DNA G-quadruplex structures was studied by NMR and molecular modelling. The cellular response was investigated in a panel of human tumor cell lines and protein expression was examined by Western Blot analysis. We explored the ability of BMH-21 and its analogue 2 to bind to G-quadruplex present in the c-MYC promoter, by NMR and molecular modelling studies. We provide evidence that both compounds are not typical DNA intercalators but are effective binders of the tested G-quadruplex. The interaction with c-MYC G-quadruplex was reflected in down-regulation of c-Myc expression in human tumor cells. The inhibitory effect was almost complete in lymphoma cells SUDHL4 characterized by overexpression of c-Myc protein. This downregulation reflected an early and persistent modulation of cMyc mRNA. Given the relevance of c-MYC in regulation of ribosome biogenesis, it is conceivable that the inhibition of c-MYC contributes to the perturbation of nuclear functions and RNA polymerase I activity. Similar experiments with CX-5461, another RNA polymerase I transcription inhibitor, indicate the same behaviour in G-quadruplex stabilization. Our results support the hypothesis that BMH-21 and analogue compounds share the same mechanism, i.e. G-quadruplex binding as a primary event of a cascade leading to inhibition of RNA polymerase I and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. SirT1 confers hypoxia-induced radioresistance via the modulation of c-Myc stabilization on hepatoma cells

    International Nuclear Information System (INIS)

    Xie Yuexia; Zhang Jianghong; Shao Chunlin; Xu Yanwu

    2012-01-01

    Intratumoral hypoxia is an important contributory factor to tumor cell resistance to radiotherapy. SirT1, a nicotinamide adenine dinucleotide (NAD + )-dependent histone/protein deacetylase, has been linked to the decrease of radiation-induced DNA damage and seems to be critical for cancer therapy. The purpose of this study was to investigate the role of SirT1 in hypoxia-induced radiation response on hepatoma cells. It was found that the administration with resveratrol, a putative SirT1 activator, enhanced the resistance of HepG2 cells against radiation-induced DNA damage of MN formation under hypoxia condition; while nicotinamide, a well-known SirT1 inhibitor, sensitized this radiation damage. Nevertheless, pretreatment of cells with 10058-F4, a specific inhibitor of c-Myc, almost eliminated the nicotinamide-induced radiosensitive effect. Further studies revealed that resveratrol inhibited c-Myc protein accumulation via up-regulation of SirT1 expression and deacetylase activity, and this loss of c-Myc protein was abolished by inhibiting its degradation in the presence of MG132, a potent inhibitor of proteasome. In contrast, nicotinamide attenuated c-Myc protein degradation induced by radiation under hypoxia through inhibition of SirT1 deacetylase activity. Our findings suggest that SirT1 could serve as a novel potent target of radiation-induced DNA damage and thus as a potential strategy to advance the efficiency of radiation therapy in hepatoma entities. (author)

  2. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Hikosaka, Keisuke; Sultana, Nishat; Sharkar, Mohammad Tofael Kabir [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Noritake, Hidenao [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kimura, Wataru; Wu, Yi-Xin [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Kobayashi, Yoshimasa [Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Uezato, Tadayoshi [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan); Miura, Naoyuki, E-mail: nmiura@hama-med.ac.jp [Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handa-yama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fifty percent of the mutant Rb transgenic mice produced liver tumors. Black-Right-Pointing-Pointer In the tumor, Foxm1, Skp2, Bmi1 and AP-1 mRNAs were up-regulated. Black-Right-Pointing-Pointer No increase in expression of the Myc-target genes was observed in the non-tumorous liver. Black-Right-Pointing-Pointer Tumor formation depends on up-regulation of the Myc-target genes. -- Abstract: The retinoblastoma (Rb) tumor suppressor encodes a nuclear phosphoprotein that regulates cellular proliferation, apoptosis and differentiation. In order to adapt itself to these biological functions, Rb is subjected to modification cycle, phosphorylation and dephosphorylation. To directly determine the effect of phosphorylation-resistant Rb on liver development and function, we generated transgenic mice expressing phosphorylation-resistant human mutant Rb (mt-Rb) under the control of the rat hepatocyte nuclear factor-1 gene promoter/enhancer. Expression of mt-Rb in the liver resulted in macroscopic neoplastic nodules (adenomas) with {approx}50% incidence within 15 months old. Interestingly, quantitative reverse transcriptase-PCR analysis showed that c-Myc was up-regulated in the liver of mt-Rb transgenic mice irrespective of having tumor tissues or no tumor. In tumor tissues, several c-Myc target genes, Foxm1, c-Jun, c-Fos, Bmi1 and Skp2, were also up-regulated dramatically. We determined whether mt-Rb activated the Myc promoter in the HTP9 cells and demonstrated that mt-Rb acted as an inhibitor of wild-type Rb-induced repression on the Myc promoter. Our results suggest that continued upregulation of c-Myc target genes promotes the liver tumor formation after about 1 year of age.

  3. MYC Immunohistochemistry to Identify MYC-Driven B-Cell Lymphomas in Clinical Practice.

    Science.gov (United States)

    Kluk, Michael J; Ho, Caleb; Yu, Hongbo; Chen, Benjamin J; Neuberg, Donna S; Dal Cin, Paola; Woda, Bruce A; Pinkus, Geraldine S; Rodig, Scott J

    2016-02-01

    Immunohistochemistry with anti-MYC antibody (MYC IHC) detects MYC protein in fixed samples of aggressive B-cell lymphomas and, according to the number of positive staining tumor nuclei, facilitates tumor subclassification, predicts underlying MYC rearrangements, and stratifies patient outcome. We aimed to determine the performance of MYC IHC in clinical practice. We reviewed MYC IHC performed on control specimens and 256 aggressive B-cell lymphomas and compared clinically reported IHC scores with experts' review. Control tissues showed less than 5% variation in daily IHC staining. Reported and expert IHC scores were well correlated (r = 0.86) with an SD of 14.2%. Reported IHC scores 30% or less and 70% or more were accurate (94.5%) compared with experts in categorizing tumors as "MYC IHC-Low" and "MYC IHC-High," respectively, but scores 40% to 60% were not (60.3%). The mean IHC score among lymphomas with MYC rearrangements was 80%, but with a large range of scores (20%-100%). There was no statistically significant association between IHC score and MYC copy number. Under optimal conditions, clinically reported MYC IHC scores are concordant with expert scores within 15%. MYC IHC does not capture all B-cell lymphomas with MYC rearrangements, however. MYC IHC and MYC fluorescence in situ hybridization are both recommended to identify MYC-driven B-cell lymphomas. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Melatonin disturbs SUMOylation mediated crosstalk between c-Myc and Nestin via MT1 activation and promotes the sensitivity of Paclitaxel in brain cancer stem cells.

    Science.gov (United States)

    Lee, Hyemin; Lee, Hyo-Jung; Jung, Ji Hoon; Shin, Eun Ah; Kim, Sung-Hoon

    2018-04-14

    Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of Paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing Nestin, CD133, CXCR4 and SOX-2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c-Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c-Myc related mRNAs were differentially expressed in melatonin treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c-Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c-Myc increased the expression of Nestin, while overexpression of Nestin enhanced c-Myc through crosstalk despite different locations, nucleus and cytoplasm. Interestingly, melatonin attenuated small ubiquitin-related modifier-1 (SUMO-1) more than SUMO-2 or SUMO-3 and disturbed nuclear translocation of Nestin for direct binding to c-Myc by SUMOylation of SUMO-1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and Chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor Luzindole blocked the ability of melatonin to decrease the expression of Nestin, p-c-Myc(S62) and c-Myc. Furthermore, melatonin promoted cytotoxicity, sub G1 accumulation and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c-Myc, Nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Conserved features of cancer cells define their sensitivity to HAMLET-induced death; c-Myc and glycolysis.

    Science.gov (United States)

    Storm, P; Aits, S; Puthia, M K; Urbano, A; Northen, T; Powers, S; Bowen, B; Chao, Y; Reindl, W; Lee, D Y; Sullivan, N L; Zhang, J; Trulsson, M; Yang, H; Watson, J D; Svanborg, C

    2011-12-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here, we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small-hairpin RNA (shRNA) inhibition, proteomic and metabolomic technology, we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, HAMLET sensitivity was modified by the glycolytic state of tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen, hexokinase 1 (HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 and hypoxia-inducible factor 1α modified HAMLET sensitivity. HK1 was shown to bind HAMLET in a protein array containing ∼8000 targets, and HK activity decreased within 15 min of HAMLET treatment, before morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 min. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene addiction or the Warburg effect.

  6. Conserved features of cancer cells define their sensitivity of HAMLET-induced death; c-Myc and glycolysis

    Science.gov (United States)

    Storm, Petter; Puthia, Manoj Kumar; Aits, Sonja; Urbano, Alexander; Northen, Trent; Powers, Scott; Bowen, Ben; Chao, Yinxia; Reindl, Wolfgang; Lee, Do Yup; Sullivan, Nancy Liu; Zhang, Jianping; Trulsson, Maria; Yang, Henry; Watson, James; Svanborg, Catharina

    2014-01-01

    HAMLET is the first member of a new family of tumoricidal protein-lipid complexes that kill cancer cells broadly, while sparing healthy, differentiated cells. Many and diverse tumor cell types are sensitive to the lethal effect, suggesting that HAMLET identifies and activates conserved death pathways in cancer cells. Here we investigated the molecular basis for the difference in sensitivity between cancer cells and healthy cells. Using a combination of small hairpin RNA inhibition, proteomic and metabolomic technology we identified the c-Myc oncogene as one essential determinant of HAMLET sensitivity. Increased c-Myc expression levels promoted the sensitivity to HAMLET and shRNA knockdown of c-Myc suppressed the lethal response, suggesting that oncogenic transformation with c-Myc creates a HAMLET-sensitive phenotype. Furthermore, the HAMLET sensitivity was modified by the glycolytic state of the tumor cells. Glucose deprivation sensitized tumor cells to HAMLET-induced cell death and in the shRNA screen Hexokinase 1, PFKFB1 and HIF1α modified HAMLET sensitivity. Hexokinase 1 was shown to bind HAMLET in a protein array containing approximately 8000 targets and Hexokinase activity decreased within 15 minutes of HAMLET treatment, prior to morphological signs of tumor cell death. In parallel, HAMLET triggered rapid metabolic paralysis in carcinoma cells. The glycolytic machinery was modified and glycolysis was shifted towards the pentose phosphate pathway. Tumor cells were also shown to contain large amounts of oleic acid and its derivatives already after 15 minutes. The results identify HAMLET as a novel anti-cancer agent that kills tumor cells by exploiting unifying features of cancer cells such as oncogene-addiction or the Warburg effect. PMID:21643007

  7. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein

    NARCIS (Netherlands)

    Hateboer, G.; Timmers, H.T.M.; Rustgi, A.K.; Billaud, Marc; Veer, L.J. Van 't; Bernards, R.A.

    1993-01-01

    Using a protein binding assay, we show that the amino-teminal 204 amino acids of the c-Myc protein interact di y with a key component of the basal p tdon factor TFID, the TATA box-binding protein (TBP). Essentialy the same region of the c-Myc protein alo binds the product of the retinoblatoma

  8. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc......-myc. In general, the level of expression of c-myc and N-myc was similar at the mRNA and the protein level. Expression of c-myc was positively correlated with the proliferative index (sum of S and G2+M phases) of cell lines, but not with the population doubling time. In general, L-myc-expressing cell lines had...

  9. Course of c-myc mRNA expression in the regenerating mouse testis determined by competitive reverse transcriptase polymerase chain reaction.

    Science.gov (United States)

    Amendola, R

    1994-11-01

    The c-myc proto-oncogene is a reliable marker of the "G0-early G1" transition, and its down-regulation is believed to be necessary to obtain cellular differentiation. In murine spermatogenesis, the level of c-myc transcripts does not correlate with the rate of cellular division. Proliferation of supposed staminal spermatogonia to reproduce themselves is induced with a local 5 Gy X-ray dose in 90-day-old C57Bl/6 mice. c-myc quantification by a newly developed competitive reverse transcriptase polymerase chain reaction (RT-PCR) was carried out to follow the expression course of this proto-oncogene. Damage and restoration of spermatogenesis were analyzed at days 3, 6, 9, 10, 13, 30, and 60 after injury by relative testes/body weight determination and histological examination. Proliferative status was determined by histone H3 Northern blot analysis. c-myc mRNA level was 10 times higher after 3 days in the irradiated animals compared to the controls. An increasing number of copies were noted up to 10 days, but promptly decreased to the base level found for irradiated mice from 13 to 60 days. Interestingly, the expression of histone H3 detected S phase only in testes at 60 days from damage.

  10. Colocalization of somatic and meiotic double strand breaks near the Myc oncogene on mouse chromosome 15.

    Science.gov (United States)

    Ng, Siemon H; Maas, Sarah A; Petkov, Petko M; Mills, Kevin D; Paigen, Kenneth

    2009-10-01

    Both somatic and meiotic recombinations involve the repair of DNA double strand breaks (DSBs) that occur at preferred locations in the genome. Improper repair of DSBs during either mitosis or meiosis can lead to mutations, chromosomal aberration such as translocations, cancer, and/or cell death. Currently, no model exists that explains the locations of either spontaneous somatic DSBs or programmed meiotic DSBs or relates them to each other. One common class of tumorigenic translocations arising from DSBs is chromosomal rearrangements near the Myc oncogene. Myc translocations have been associated with Burkitt lymphoma in humans, plasmacytoma in mice, and immunocytoma in rats. Comparing the locations of somatic and meiotic DSBs near the mouse Myc oncogene, we demonstrated that the placement of these DSBs is not random and that both events clustered in the same short discrete region of the genome. Our work shows that both somatic and meiotic DSBs tend to occur in proximity to each other within the Myc region, suggesting that they share common originating features. It is likely that some regions of the genome are more susceptible to both somatic and meiotic DSBs, and the locations of meiotic hotspots may be an indicator of genomic regions more susceptible to DNA damage. (c) 2009 Wiley-Liss, Inc.

  11. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    Science.gov (United States)

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  12. Cdx1 and c-Myc foster the initiation of transdifferentiation of the normal esophageal squamous epithelium toward Barrett's esophagus.

    Directory of Open Access Journals (Sweden)

    Douglas B Stairs

    Full Text Available Barrett's esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal reflux disease (GERD. Despite this well-defined epidemiologic association between acid reflux and Barrett's esophagus, the genetic changes that induce this transdifferentiation process in esophageal keratinocytes have remained undefined.To begin to identify the genetic changes responsible for transdifferentiaiton in Barrett's esophagus, we performed a microarray analysis of normal esophageal, Barrett's esophagus and small intestinal biopsy specimens to identify candidate signaling pathways and transcription factors that may be involved. Through this screen we identified the Cdx1 homeodomain transcription factor and the c-myc pathway as possible candidates. Cdx1 and c-myc were then tested for their ability to induce transdifferentiation in immortalized human esophageal keratinocytes using organotypic culturing methods. Analyses of these cultures reveal that c-myc and cdx1 cooperate to induce mucin production and changes in keratin expression that are observed in the epithelium of Barrett's esophagus.These data demonstrate the ability of Cdx1 and c-myc to initiate the earliest stages of transdifferentiation of esophageal keratinocytes toward a cell fate characteristic of Barrett's esophagus.

  13. MYCT1-TV, A Novel MYCT1 Transcript, Is Regulated by c-Myc and May Participate in Laryngeal Carcinogenesis

    Science.gov (United States)

    Fu, Shuang; Guo, Yan; Chen, Hong; Xu, Zhen-Ming; Qiu, Guang-Bin; Zhong, Ming; Sun, Kai-Lai; Fu, Wei-Neng

    2011-01-01

    Background MYCT1, a putative target of c-Myc, is a novel candidate tumor suppressor gene cloned from laryngeal squamous cell carcinoma (LSCC). Its transcriptional regulation and biological effects on LSCC have not been clarified. Methodology/Principal Findings Using RACE assay, we cloned a 1106 bp transcript named Myc target 1 transcript variant 1 (MYCT1-TV) and confirmed its transcriptional start site was located at 140 bp upstream of the ATG start codon of MYCT1-TV. Luciferase, electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed c-Myc could regulate the promoter activity of MYCT1-TV by specifically binding to the E-box elements within −886 to −655 bp region. These results were further verified by site-directed mutagenesis and RNA interference (RNAi) assays. MYCT1-TV and MYCT1 expressed lower in LSCC than those in paired adjacent normal laryngeal tissues, and overexpression of MYCT1-TV and MYCT1 could inhibit cell proliferation and invasion and promote apoptosis in LSCC cells. Conclusions/Significance Our data indicate that MYCT1-TV, a novel MYCT1 transcript, is regulated by c-Myc and down-regulation of MYCT1-TV/MYCT1 could contribute to LSCC development and function. PMID:21998677

  14. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    International Nuclear Information System (INIS)

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F.; Poumay, Yves

    2007-01-01

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity

  15. Anti-apoptotic A1 is not essential for lymphoma development in Eµ-Myc mice but helps sustain transplanted Eµ-Myc tumour cells.

    Science.gov (United States)

    Mensink, Mark; Anstee, Natasha S; Robati, Mikara; Schenk, Robyn L; Herold, Marco J; Cory, Suzanne; Vandenberg, Cassandra J

    2018-03-01

    The transcription factor c-MYC regulates a multiplicity of genes involved in cellular growth, proliferation, metabolism and DNA damage response and its overexpression is a hallmark of many tumours. Since MYC promotes apoptosis under conditions of stress, such as limited availability of nutrients or cytokines, MYC-driven cells are very much dependent on signals that inhibit cell death. Stress signals trigger apoptosis via the pathway regulated by opposing fractions of the BCL-2 protein family and previous genetic studies have shown that the development of B lymphoid tumours in Eµ-Myc mice is critically dependent on expression of pro-survival BCL-2 relatives MCL-1, BCL-W and, to a lesser extent, BCL-X L , but not BCL-2 itself, and that sustained growth of these lymphomas is dependent on MCL-1. Using recently developed mice that lack expression of all three functional pro-survival A1 genes, we show here that the kinetics of lymphoma development in Eµ-Myc mice and the competitive repopulation capacity of Eµ-Myc haemopoietic stem and progenitor cells is unaffected by the absence of A1. However, conditional loss of a single remaining functional A1 gene from transplanted A1-a -/- A1-b fl/fl A1-c -/- Eµ-Myc lymphomas slowed their expansion, significantly extending the life of the transplant recipients. Thus, A1 contributes to the survival of malignant Eµ-Myc-driven B lymphoid cells. These results strengthen the case for BFL-1, the human homologue of A1, being a valid target for drug development for MYC-driven tumours.

  16. Functional and in silico assessment of MAX variants of unknown significance

    DEFF Research Database (Denmark)

    Comino-Méndez, Iñaki; Leandro-García, Luis J; Montoya, Guillermo

    2015-01-01

    UNLABELLED: The presence of germline mutations affecting the MYC-associated protein X (MAX) gene has recently been identified as one of the now 11 major genetic predisposition factors for the development of hereditary pheochromocytoma and/or paraganglioma. Little is known regarding how missense v...

  17. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III1

    International Nuclear Information System (INIS)

    Dexheimer, Thomas S.; Carey, Steven S.; Zuohe, Song; Gokhale, Vijay M.; Hu, Xiaohui; Murata, Lauren B.; Maes, Estelle M.; Weichsel, Andrzej; Sun, Daekyu; Meuillet, Emmanuelle J.; Montfort, William R.; Hurley, Laurence H.

    2009-01-01

    The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III 1 region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III 1 region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III 1 and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III 1 in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg 88 to Ala 88 (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III 1 region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.

  18. Analysis of Myc-induced histone modifications on target chromatin.

    Directory of Open Access Journals (Sweden)

    Francesca Martinato

    Full Text Available The c-myc proto-oncogene is induced by mitogens and is a central regulator of cell growth and differentiation. The c-myc product, Myc, is a transcription factor that binds a multitude of genomic sites, estimated to be over 10-15% of all promoter regions. Target promoters generally pre-exist in an active or poised chromatin state that is further modified by Myc, contributing to fine transcriptional regulation (activation or repression of the afferent gene. Among other mechanisms, Myc recruits histone acetyl-transferases to target chromatin and locally promotes hyper-acetylation of multiple lysines on histones H3 and H4, although the identity and combination of the modified lysines is unknown. Whether Myc dynamically regulates other histone modifications (or marks at its binding sites also remains to be addressed. Here, we used quantitative chromatin immunoprecipitation (qChIP to profile a total of 24 lysine-acetylation and -methylation marks modulated by Myc at target promoters in a human B-cell line with a regulatable c-myc transgene. Myc binding promoted acetylation of multiple lysines, primarily of H3K9, H3K14, H3K18, H4K5 and H4K12, but significantly also of H4K8, H4K91 and H2AK5. Dimethylation of H3K79 was also selectively induced at target promoters. A majority of target promoters showed co-induction of multiple marks - in various combinations - correlating with recruitment of the two HATs tested (Tip60 and HBO1, incorporation of the histone variant H2A.Z and transcriptional activation. Based on this and previous findings, we surmise that Myc recruits the Tip60/p400 complex to achieve a coordinated histone acetylation/exchange reaction at activated promoters. Our data are also consistent with the additive and redundant role of multiple acetylation events in transcriptional activation.

  19. cAMP-Dependent Protein Kinase A (PKA)-Mediated c-Myc Degradation Is Dependent on the Relative Proportion of PKA-I and PKA-II Isozymes.

    Science.gov (United States)

    Liu, Qingyuan; Nguyen, Eric; Døskeland, Stein; Ségal-Bendirdjian, Évelyne

    2015-09-01

    The transcription factor c-Myc regulates numerous target genes that are important for multiple cellular processes such as cell growth and differentiation. It is commonly deregulated in leukemia. Acute promyelocytic leukemia (APL) is characterized by a blockade of granulocytic differentiation at the promyelocyte stage. Despite the great success of all-trans retinoic acid (ATRA)-based therapy, which results in a clinical remission by inducing promyelocyte maturation, a significant number of patients relapse due to the development of ATRA resistance. A significant role has been ascribed to the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway in retinoid treatment since PKA activation is able to restore differentiation in some ATRA-resistant cells and eradicate leukemia-initiating cells in vivo. In this study, using NB4 APL cell variants resistant to ATRA-induced differentiation, we reveal distinct functional roles of the two PKA isozymes, PKA type I (PKA-I) and PKA-type II (PKA-II), on the steady-state level of c-Myc protein, providing a likely mechanism by which cAMP-elevating agents can restore differentiation in ATRA maturation-resistant APL cells. Therefore, both the inhibition of c-Myc activity and the PKA-I/PKA-II ratio should be taken into account if cAMP-based therapy is considered in the clinical management of APL. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Immunodetection of rasP21 and c-myc oncogenes in oral mucosal swab preparation from clove cigarette smokers

    Directory of Open Access Journals (Sweden)

    Silvi Kintawati

    2008-12-01

    Full Text Available Background: Smoking is the biggest factor for oral cavity malignancy. Some carcinogens found in cigar will stimulate epithel cell in oral cavity and cause mechanism disturbance on tissue resistance and produce abnormal genes (oncogenes. Oncogenes ras and myc are found on malignant tumor in oral cavity which are associated with smoking. Purpose: This research is to find the expression of oncogenes rasP21 and c-myc in oral mucosa epithelial of smoker with immunocytochemistry reaction. Methods: An oral mucosal swab was performed to 30 smokers categorized as light, moderate, and chain, and 10 non smokers which was followed by immunocytochemistry reaction using antibody towards oncogene rasP21 and c-myc is reacted to identify the influence of smoking towards malignant tumor in oral cavity. The result is statistically analyzed using Kruskal-Wallis test. Result: Based on the observation result of oncogene rasP21reaction, it shows that there is significant difference between non smoker group and light smoker, compared to moderate and chain smoker group (p < 0.01. On the other side, the observation result of oncogene c-myc indicates that there is no significant difference between the group of non smokers and the group of light, moderate, and chain smokers (p > 0.05. Conclusion: The higher the possibility of oral cavity malignancy and that the antibody for rasP21 oncogene can be used as a marker for early detection of oral cavity malignancy caused by smoking.

  1. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation

    International Nuclear Information System (INIS)

    Xie, Yuexia; Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen; Shao, Chunlin

    2015-01-01

    Highlights: • γ-Irradiation induced bystander effects between hepatoma cells and hepatocyte cells. • SirT1 played a protective role in regulating this bystander effect. • SirT1 contributed to the protective effects via elimination the accumulation of ROS. • The activity of c-Myc is critical for maintaining the protective role of SirT1. - Abstract: Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved

  2. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuexia [Institute of Radiation Medicine, Fudan University, Shanghai (China); Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Tu, Wenzhi; Zhang, Jianghong; He, Mingyuan; Ye, Shuang; Dong, Chen [Institute of Radiation Medicine, Fudan University, Shanghai (China); Shao, Chunlin, E-mail: clshao@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2015-02-15

    Highlights: • γ-Irradiation induced bystander effects between hepatoma cells and hepatocyte cells. • SirT1 played a protective role in regulating this bystander effect. • SirT1 contributed to the protective effects via elimination the accumulation of ROS. • The activity of c-Myc is critical for maintaining the protective role of SirT1. - Abstract: Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the bystander signaling processes, especially under hypoxic condition, are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 and SK-Hep-1 cells under either normoxia or hypoxia. This bystander response was dramatically diminished or enhanced when the SirT1 gene of irradiated hepatoma cells was overexpressed or knocked down, respectively, especially under hypoxia. Meanwhile, SirT1 knockdown promoted transcriptional activity for c-Myc and facilitated ROS accumulation. But both of the increased bystander responses and ROS generation due to SirT1-knockdown were almost completely suppressed by c-Myc interference. Moreover, ROS scavenger effectively abolished the RIBE triggered by irradiated hepatoma cells even with SirT1 depletion. These findings provide new insights that SirT1 has a profound role in regulating RIBE where a c-Myc-dependent release of ROS may be involved.

  3. Characterization of the recombinant copper chaperone (CCS) from the plant Glycine (G.) max.

    Science.gov (United States)

    Sagasti, Sara; Yruela, Inmaculada; Bernal, Maria; Lujan, Maria A; Frago, Susana; Medina, Milagros; Picorel, Rafael

    2011-02-01

    The goal of the present work was to characterize the recombinant copper chaperone (CCS) from soybean. Very little is known about plant copper chaperones, which makes this study of current interest, and allows for a comparison with the better known homologues from yeast and humans. To obtain sizeable amounts of pure protein suitable for spectroscopic characterization, we cloned and overexpressed the G. max CCS chaperone in E. coli in the presence of 0.5 mM CuSO(4) and 0.5 mM ZnSO(4) in the broth. A pure protein preparation was obtained by using two IMAC steps and pH gradient chromatography. Most of the proteins were obtained as apo-form, devoid of copper atoms. The chaperone showed a high content (i.e., over 40%) of loops, turns and random coil as determined both by circular dichroism and homology modelling. The homology 3-D structural model suggests the protein might fold in three structural protein domains. The 3-D model along with the primary structure and spectroscopic data may suggest that copper atoms occupy the two metal binding sites, MKCEGC and CTC, within the N-terminal domain I and C-terminal domain III, respectively. But only one Zn-binding site was obtained spectroscopically.

  4. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway

    Directory of Open Access Journals (Sweden)

    Jinhui Wu

    2017-05-01

    Full Text Available Chondrosarcomas (CS is the second most frequent tumors of cartilage origin. A small compound extracted from Thunder God Vine (Tripterygium wilfordii Hook. F. called celastrol can directly bound CIP2A protein and effectively inhibit cell proliferation and induce apoptosis in several cancer cells. However, little knowledge is concern about the important role of CIP2A in CS patients and the therapeutic value of celastrol on CS. Our results showed that CIP2A and c-MYC were verified to be oncoproteins by detecting their mRNA and protein expression in 10 human CS tissues by qRT-PCR and Western blots. After treatment of celastrol, the proliferation, migration and invasion were significantly inhibited; whereas the apoptosis was largely induced in human CS cell lines. In addition, celastrol inhibited the expression of CIP2A, c-MYC, and suppressed apoptotic proteins BAX and caspase-8 in human CS cells, on the other hand, it induced the expression of antiapoptotic protein Bcl-2. Finally, knockdown of CIP2A also inhibited the migration and invasion and induced apoptosis of human CS cells. To sum up, we found that celastrol had effects on inhibiting proliferation, migration, invasion and inducing apoptosis through suppression CIP2A/c-MYC signaling pathway in vitro, which may provide a new therapeutic regimen for CS.

  5. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPβ rather than Enterotoxigenic Bacteroides fragilis Infection

    Directory of Open Access Journals (Sweden)

    Anastasiya V. Snezhkina

    2016-01-01

    Full Text Available Colorectal cancer is one of the most common cancers in the world. It is well known that the chronic inflammation can promote the progression of colorectal cancer (CRC. Recently, a number of studies revealed a potential association between colorectal inflammation, cancer progression, and infection caused by enterotoxigenic Bacteroides fragilis (ETBF. Bacterial enterotoxin activates spermine oxidase (SMO, which produces spermidine and H2O2 as byproducts of polyamine catabolism, which, in turn, enhances inflammation and tissue injury. Using qPCR analysis, we estimated the expression of SMOX gene and ETBF colonization in CRC patients. We found no statistically significant associations between them. Then we selected genes involved in polyamine metabolism, metabolic reprogramming, and inflammation regulation and estimated their expression in CRC. We observed overexpression of SMOX, ODC1, SRM, SMS, MTAP, c-Myc, C/EBPβ (CREBP, and other genes. We found that two mediators of metabolic reprogramming, inflammation, and cell proliferation c-Myc and C/EBPβ may serve as regulators of polyamine metabolism genes (SMOX, AZIN1, MTAP, SRM, ODC1, AMD1, and AGMAT as they are overexpressed in tumors, have binding site according to ENCODE ChIP-Seq data, and demonstrate strong coexpression with their targets. Thus, increased polyamine metabolism in CRC could be driven by c-Myc and C/EBPβ rather than ETBF infection.

  6. c-Myc Represses Transcription of Epstein-Barr Virus Latent Membrane Protein 1 Early after Primary B Cell Infection.

    Science.gov (United States)

    Price, Alexander M; Messinger, Joshua E; Luftig, Micah A

    2018-01-15

    Recent evidence has shown that the Epstein-Barr virus (EBV) oncogene LMP1 is not expressed at high levels early after EBV infection of primary B cells, despite its being essential for the long-term outgrowth of immortalized lymphoblastoid cell lines (LCLs). In this study, we found that expression of LMP1 increased 50-fold between 7 days postinfection and the LCL state. Metabolic labeling of nascent transcribed mRNA indicated that this was primarily a transcription-mediated event. EBNA2, the key viral transcription factor regulating LMP1, and CTCF, an important chromatin insulator, were recruited to the LMP1 locus similarly early and late after infection. However, the activating histone H3K9Ac mark was enriched at the LMP1 promoter in LCLs relative to that in infected B cells early after infection. We found that high c-Myc activity in EBV-infected lymphoma cells as well as overexpression of c-Myc in an LCL model system repressed LMP1 transcription. Finally, we found that chemical inhibition of c-Myc both in LCLs and early after primary B cell infection increased LMP1 expression. These data support a model in which high levels of endogenous c-Myc activity induced early after primary B cell infection directly repress LMP1 transcription. IMPORTANCE EBV is a highly successful pathogen that latently infects more than 90% of adults worldwide and is also causally associated with a number of B cell malignancies. During the latent life cycle, EBV expresses a set of viral oncoproteins and noncoding RNAs with the potential to promote cancer. Critical among these is the viral latent membrane protein LMP1. Prior work suggests that LMP1 is essential for EBV to immortalize B cells, but our recent work indicates that LMP1 is not produced at high levels during the first few weeks after infection. Here we show that transcription of the LMP1 gene can be negatively regulated by a host transcription factor, c-Myc. Ultimately, understanding the regulation of EBV oncogenes will allow us

  7. Human amniotic epithelial cell feeder layers maintain mouse embryonic stem cell pluripotency via epigenetic regulation of the c-Myc promoter.

    Science.gov (United States)

    Liu, Te; Cheng, Weiwei; Liu, Tianjin; Guo, Lihe; Huang, Qin; Jiang, Lizhen; Du, Xiling; Xu, Fuhui; Liu, Zhixue; Lai, Dongmei

    2010-02-01

    Mouse embryonic stem cells (ESCs) are typically cultured on a feeder layer of mouse embryonic fibroblasts (MEFs), with leukemia inhibitory factor (LIF) added to maintain them in an undifferentiated state. We have previously shown that human amniotic epithelial cells (hAECs) can be used as feeder cells to maintain mouse ESC pluripotency, but the mechanism for this is unknown. In the present study, we found that CpG islands 5' of the c-Myc gene remain hypomethylated in mouse ESCs cultured on hAECs. In addition, levels of acetylation of histone H3 and trimethylation of histone H3K4 in the c-Myc gene promoter were higher in ES cells cultured on hAECs than those in ES cells cultured on MEFs. These data suggested that hAECs can alter mouse ESC gene expression via epigenetic modification of c-Myc, providing a possible mechanism for the hAEC-induced maintenance of ESCs in an undifferentiated state.

  8. Effects on micronuclei formation of 60-Hz electromagnetic field exposure with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    Science.gov (United States)

    Jin, Yeung Bae; Kang, Ga-Young; Lee, Jae Seon; Choi, Jong-Il; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2012-04-01

    Epidemiological studies have demonstrated a possible correlation between exposure to extremely low-frequency magnetic fields (ELF-MF) and cancer. However, this correlation has yet to be definitively confirmed by epidemiological studies. The principal objective of this study was to assess the effects of 60 Hz magnetic fields in a normal cell line system, and particularly in combination with various external factors, via micronucleus (MN) assays. Mouse embryonic fibroblast NIH3T3 cells and human lung fibroblast WI-38 cells were exposed for 4 h to a 60 Hz, 1 mT uniform magnetic field with or without ionizing radiation (IR, 2 Gy), H(2)O(2) (100 μM) and cellular myelocytomatosis oncogene (c-Myc) activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic effects were observed when ELF-MF was combined with IR, H(2)O(2), and c-Myc activation. Our results demonstrate that ELF-MF did not enhance MN frequency by IR, H(2)O(2) and c-Myc activation.

  9. [Relationship between the expression of beta-cat, cyclin D1 and c-myc and the occurance and biological behavior of pancreatic cancer].

    Science.gov (United States)

    Li, Yu-jun; Ji, Xiang-rui

    2003-06-01

    To study the relationship between the abnormal expression of beta-catenin (beta-cat) and the high expressions of cyclin D1 and c-myc and the occurance, proliferation, infiltration, metastasis and prognosis of pancreatic cancer, and to provide rational basis for the clinical diagnosis and treatment. Immunohistochemical PicTure trade mark was used to examine the expressions of beta-cat, cyclin D1 and c-myc in 47 cases of the cancerous tissue of pancreas, 12 cases of the pancreatic intraepithelial neoplasia and 10 cases of normal tissue of pancreas, respectively. Pancreatic cancer proliferation cell nuclear antigen (PCNA) was also tested as the index of the extent of proliferation of the pancreatic cancer. beta-cat was expressed normally in the 10 cases of the normal pancreatic tissue, while cyclin D1 and c-myc were negative. The expression rates of beta-cat, cyclin D1 and c-myc in the tissues of the pancreatic intraepithelial neoplasia and the pancreatic cancer had no significant difference [6/12 and 68.1% (32/47), 6/12 and 74.5% (35/47), 5/12 and 70.2% (33/47) respectively;P values were all more than 0.05]. The abnormal expression rate of beta-cat was significantly correlated to the metastasis of the pancreatic cancer and the one-year survival rate (both P 0.05). The expression rate of cyclin D1 was correlated with the proliferation of the pancreatic cancer and the extent of differentiation (both P 0.05). The expression rate of c-myc was not correlated with the size, the extent of proliferation, infiltration, metastasis, or one-year survival rate (both P > 0.05), but closely with the proliferation activity of the cancerous tissue of pancreas (P < 0.05). The abnormal expression of beta-cat and the high expressions of cyclin D1 and c-myc had a parallel relationship with the pancreatic intraepithelial neoplasia and pancreatic cancer (both P < 0.05, gamma = 1.000, 0.845, 0.437, 0.452). The abnormal expression of beta-cat activates cyclin D1 and c-myc, and results in the

  10. Polymerase chain reaction-based detection of myc transduction in feline leukemia virus-infected cats.

    Science.gov (United States)

    Sumi, Ryosuke; Miyake, Ariko; Endo, Taiji; Ohsato, Yoshiharu; Ngo, Minh Ha; Nishigaki, Kazuo

    2018-04-01

    Feline lymphomas are associated with the transduction and activation of cellular proto-oncogenes, such as c-myc, by feline leukemia virus (FeLV). We describe a polymerase chain reaction assay for detection of myc transduction usable in clinical diagnosis. The assay targets c-myc exons 2 and 3, which together result in a FeLV-specific fusion gene following c-myc transduction. When this assay was conducted on FeLV-infected feline tissues submitted for clinical diagnosis of tumors, myc transduction was detected in 14% of T-cell lymphoma/leukemias. This newly established system could become a useful diagnostic tool in veterinary medicine.

  11. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-01-01

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 μM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 μM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (≥ 5 μM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  12. The c-myc oncoprotein forms a specific complex with the product of the retinoblastoma gene

    NARCIS (Netherlands)

    Bernards, R.A.; Rustgi, A.K.; Dyson, N.; Hill, D.

    1991-01-01

    Myc proteins are involved in the regulation of cell proliferation and differentiation. Deregulated expression of myc family genes has been implicated in the genesis of a variety of cancers. Myc proteins share significant sequence homology in the carboxyl terminus with a number of

  13. Study of C-MYC amplification and expression in Iranian gastric cancer samples using CISH and IHC methods.

    Science.gov (United States)

    Khaleghian, Malihea; Jahanzad, Issa; Shakoori, Abbas; Ardalan, Farid Azmoudeh; Azimi, Cyrus

    2015-01-01

    Gastric cancer is the fourth most frequent malignancy and the second cause of cancer-related mortality worldwide. It has been suggested that in gastric carcinogenesis, the C-MYC gene has an important function. The objective of this study is to establish the preference of Chromogenic in situ hybridization (CISH) and Immunohistochemistry (IHC) in the diagnosis and prognosis of gastric cancer. Samples comprised of 50 randomly selected patients of whom 40 were male and 10 female. To evaluate the MYC copy number and its protein expression, CISH and IHC analyses were performed for 50 gastric adenocarcinomas, in Iran. The location of the tumor in 64% of the patients was the fundus, and in 72% of patients, the tumors were of a diffuse type; 22 samples showed no amplification, and 28 samples were with amplification. MYC immunoreactivity was observed in 13 samples. Twelve samples showed both MYC amplification and MYC immunoreactivity. In addition, among the 28 CISH+ samples, 12 samples had positive signals for IHC and 16 samples had negative signals for IHC. A majority of the IHC-negative patients had no amplification, but only one patient with IHC positive had no amplification. Our conclusion was that for the management and treatment of gastric cancer, and for special attention of clinicians, for prognosis and tumor progression, the CISH was a better and more feasible test than IHC, in regard to the sensitivity and specificity.

  14. Study of C-MYC amplification and expression in Iranian gastric cancer samples using CISH and IHC methods

    Directory of Open Access Journals (Sweden)

    Malihea Khaleghian

    2015-01-01

    Full Text Available Background: Gastric cancer is the fourth most frequent malignancy and the second cause of cancer-related mortality worldwide. It has been suggested that in gastric carcinogenesis, the C-MYC gene has an important function. The objective of this study is to establish the preference of Chromogenic in situ hybridization (CISH and Immunohistochemistry (IHC in the diagnosis and prognosis of gastric cancer. Materials and Methods: Samples comprised of 50 randomly selected patients of whom 40 were male and 10 female. To evaluate the MYC copy number and its protein expression, CISH and IHC analyses were performed for 50 gastric adenocarcinomas, in Iran. Results: The location of the tumor in 64% of the patients was the fundus, and in 72% of patients, the tumors were of a diffuse type; 22 samples showed no amplification, and 28 samples were with amplification. MYC immunoreactivity was observed in 13 samples. Twelve samples showed both MYC amplification and MYC immunoreactivity. In addition, among the 28 CISH+ samples, 12 samples had positive signals for IHC and 16 samples had negative signals for IHC. A majority of the IHC-negative patients had no amplification, but only one patient with IHC positive had no amplification. Conclusion: Our conclusion was that for the management and treatment of gastric cancer, and for special attention of clinicians, for prognosis and tumor progression, the CISH was a better and more feasible test than IHC, in regard to the sensitivity and specificity.

  15. High levels of stable p53 protein and the expression of c-myc in cultured human epithelial tissue after cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Mothersill, C.; Seymour, C.B.; Harney, J.; Hennessy, T.P.

    1994-01-01

    When explants of human uroepithelium or esophageal epithelium are exposed to acute doses of radiation (cobalt-60), the cells which grow out to form the primary cultures show a number of abnormal features. These include the development of characteristic nonsenescent foci. These foci have previously been shown to be c-myc positive and to have an abnormal, tumor-like ultrastructure. Expression of c-myc and the level of stable p53 proteins have now been examined in these cultures 2 weeks after irradiation. Both proteins occurred in dividing cells at the growing edge of the explant and in the foci. The expression of c-myc appeared to be correlated with growth. As expected, variation between individual cultures of normal human cells was noted in the expression of stable p53 protein. Most control uroepithelial cell cultures were negative, but a small cohort showed a wide range of values. The control cultures from the esophageal tissues had high expression of p53, and this decreased marginally after irradiation. Cells positive for p53 were always in cycle and were usually positive for c-myc as well. It would appear from these results that the expression of c-myc and the stable form of the p53 protein occur in irradiated primary cultures of normal human cells both in foci which also express a number of abnormalities and in open-quotes edgeclose quotes cells which are dividing. Cultures of unirradiated cells from esophagus and a small number of uroepithelial samples had high levels of p53. Possible reasons for this are discussed. 33 refs., 2 figs., 3 tabs

  16. Cyclin E/Cdk2, P/CAF, and E1A regulate the transactivation of the c-myc promoter by FOXM1

    International Nuclear Information System (INIS)

    Wierstra, Inken; Alves, Juergen

    2008-01-01

    FOXM1c transactivates the c-myc promoter by binding directly to its TATA-boxes. The present study demonstrates that the transactivation of the c-myc promoter by FOXM1c is enhanced by the key proliferation signal cyclin E/Cdk2, but repressed by P/CAF and the adenoviral oncoprotein E1A. Furthermore, FOXM1c interacts with the coactivator and histone acetyltransferase P/CAF. This study shows that, on the c-myc-P1 TATA-box, FOXM1c does not function simply as normal transcription factor just binding to an unusual site. Moreover, the inhibitory N-terminus of FOXM1c does not inhibit its transrepression domain or its EDA. Others reported that a cyclin/Cdk-binding LXL-motif of the splice variant FoxM1b is required for its interaction with Cdk2, Cdk1, and p27, its phosphorylation by Cdk1 and its activation by Cdc25B. In contrast, we now demonstrate that this LXL-motif is not required for the activation of FOXM1c by cyclin D1/Cdk4, cyclin E/Cdk and cyclin A/Cdk2 or for the repression of FOXM1c by p27

  17. MYC association with cancer risk and a new model of MYC-mediated repression.

    Science.gov (United States)

    Cole, Michael D

    2014-07-01

    MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  18. Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line.

    Science.gov (United States)

    Leonetti, C; Biroccio, A; Benassi, B; Stringaro, A; Stoppacciaro, A; Semple, S C; Zupi, G

    2001-06-01

    Phosphorothioate c-myc antisense oligodeoxynucleotides [S]ODNs (free INX-6295) were encapsulated in a new liposome formulation and the antitumor activity was compared to the unencapsulated antisense in a human melanoma xenograft. The systemic administration of INX-6295 encapsulated in stabilized antisense lipid particles (SALP INX-6295) improved plasma AUC (area under the plasma concentration-time curve) and initial half-life of free INX-6295, resulting in a significant enhancement in tumor accumulation and improvement in tumor distribution of antisense oligodeoxynucleotides. Animals treated with SALP INX-6295 exhibited a prolonged reduction of c-myc expression, reduced tumor growth and increased mice survival. When administered in combination with cisplatin (DDP), SALP INX-6295 produced a complete tumor regression in approximately 30% of treated mice, which persisted for at least 60 days following the first cycle of treatment. Finally, the median survival of mice treated with DDP/SALP INX-6295 increased by 105% compared to 84% for animals treated with the combination DDP/free INX-6295. These data indicate that the biological activity and the therapeutic efficacy of c-myc antisense therapy may be improved when these agents are administered in lipid-based delivery systems.

  19. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf–Mdm2–p53 and RP–Mdm2–p53 pathways

    OpenAIRE

    Meng, X; Carlson, NR; Dong, J; Zhang, Y

    2015-01-01

    The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf–Mdm2–p53 and the ribosomal protein (RP)–Mdm2–p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2C305F mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly s...

  20. Somatostatin reduces 3H-thymidine incorporation and c-myc, but not thyroglobulin ribonucleic acid levels in human thyroid follicular cells in vitro

    International Nuclear Information System (INIS)

    degli Uberti, E.C.; Hanau, S.; Rossi, R.; Piva, R.; Margutti, A.; Trasforini, G.; Pansini, G.; del Senno, L.

    1991-01-01

    The action of somatostatin (SRIH) on 3 H-thymidine (thy) incorporation and on c-myc and thyroglobulin RNA levels in a suspension of follicles from normal and goitrous human thyroid was examined. SRIH, at 10 - 7 M concentration, inhibited basal thy incorporation (maximally by 4 h lasting for up 24 h), which effect was greater in goiter than in normal thyroid and was also detected in growing adherent epithelial cells. Moreover, in a follicle suspension SRIH prevented TSH-stimulated thy incorporation, both in normal and in goitrous thyroid. Basal expression of c-myc RNA was not affected by SRIH in either tissue, whereas the TSH-stimulated c-myc RNA level was significantly reduced in goiter. No effect of SRIH was observed on basal or TSH-stimulated thyroglobulin RNA levels. SRIH did not alter basal cAMP concentrations in normal or goitrous follicles, but it significantly reduced TSH-stimulated cAMP accumulation both in normal thyroid and in goiter. Overall, our data indicate a direct inhibitory action of SRIH on growth, but not on differentiation, of human thyroid, probably by a mechanism not entirely cAMP dependent

  1. Nuclear AXIN2 represses MYC gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-01-03

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling.

  2. Nuclear AXIN2 represses MYC gene expression

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Konsavage, Wesley M.; Yochum, Gregory S.

    2014-01-01

    Highlights: •AXIN2 localizes to cytoplasmic and nuclear compartments in colorectal cancer cells. •Nuclear AXIN2 represses the activity of Wnt-responsive luciferase reporters. •β-Catenin bridges AXIN2 to TCF transcription factors. •AXIN2 binds the MYC promoter and represses MYC gene expression. -- Abstract: The β-catenin transcriptional coactivator is the key mediator of the canonical Wnt signaling pathway. In the absence of Wnt, β-catenin associates with a cytosolic and multi-protein destruction complex where it is phosphorylated and targeted for proteasomal degradation. In the presence of Wnt, the destruction complex is inactivated and β-catenin translocates into the nucleus. In the nucleus, β-catenin binds T-cell factor (TCF) transcription factors to activate expression of c-MYC (MYC) and Axis inhibition protein 2 (AXIN2). AXIN2 is a member of the destruction complex and, thus, serves in a negative feedback loop to control Wnt/β-catenin signaling. AXIN2 is also present in the nucleus, but its function within this compartment is unknown. Here, we demonstrate that AXIN2 localizes to the nuclei of epithelial cells within normal and colonic tumor tissues as well as colorectal cancer cell lines. In the nucleus, AXIN2 represses expression of Wnt/β-catenin-responsive luciferase reporters and forms a complex with β-catenin and TCF. We demonstrate that AXIN2 co-occupies β-catenin/TCF complexes at the MYC promoter region. When constitutively localized to the nucleus, AXIN2 alters the chromatin structure at the MYC promoter and directly represses MYC gene expression. These findings suggest that nuclear AXIN2 functions as a rheostat to control MYC expression in response to Wnt/β-catenin signaling

  3. The 5T mouse multiple myeloma model: Absence of c-myc oncogene rearrangement in early transplant generations

    NARCIS (Netherlands)

    Radl, J.; Punt, Y.A.; Enden-Vieveen, M.H.M. van den; Bentvelzen, P.A.J.; Bakkus, M.H.C.; Akker T., W. van den; Benner, R.

    1990-01-01

    Consistent chromosomal translocations involving the c-myc cellular oncogene and one of the three immunoglobulin loci are typical for human Burkitt's lymphoma, induced mouse plasmacytoma (MPC) and spontaneously arising rat immunocytoma (RIC). Another plasma cell malignancy, multiple myeloma (MM),

  4. Loss of MYC confers resistance to doxorubicin-induced apoptosis by preventing the activation of multiple serine protease- and caspase-mediated pathways

    DEFF Research Database (Denmark)

    Grassilli, Emanuela; Ballabeni, Andrea; Maellaro, Emilia

    2004-01-01

    c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis. By using c-MYC ...... support a model in which doxorubicin simultaneously triggers multiple c-Myc-dependent apoptosis pathways....

  5. Focal Adhesion Kinase Is Required for Intestinal Regeneration and Tumorigenesis Downstream of Wnt/c-Myc Signaling

    Science.gov (United States)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2012-01-01

    SUMMARY The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration following DNA damage. Given Wnt/c-Myc signaling is activated following intestinal regeneration, we investigated the functional importance of FAK following deletion of the Apc tumor suppressor protein within the intestinal epithelium. Following Apc loss, FAK expression increased in a c-Myc-dependent manner. Codeletion of Apc and Fak strongly reduced proliferation normally induced following Apc loss, and this was associated with reduced levels of phospho-Akt and suppression of intestinal tumorigenesis in Apc heterozygous mice. Thus, FAK is required downstream of Wnt Signaling, for Akt/mTOR activation, intestinal regeneration, and tumorigenesis. Importantly, this work suggests that FAK inhibitors may suppress tumorigenesis in patients at high risk of developing colorectal cancer. PMID:20708588

  6. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis.

    Science.gov (United States)

    Annibali, Daniela; Whitfield, Jonathan R; Favuzzi, Emilia; Jauset, Toni; Serrano, Erika; Cuartas, Isabel; Redondo-Campos, Sara; Folch, Gerard; Gonzàlez-Juncà, Alba; Sodir, Nicole M; Massó-Vallés, Daniel; Beaulieu, Marie-Eve; Swigart, Lamorna B; Mc Gee, Margaret M; Somma, Maria Patrizia; Nasi, Sergio; Seoane, Joan; Evan, Gerard I; Soucek, Laura

    2014-08-18

    Gliomas are the most common primary tumours affecting the adult central nervous system and respond poorly to standard therapy. Myc is causally implicated in most human tumours and the majority of glioblastomas have elevated Myc levels. Using the Myc dominant negative Omomyc, we previously showed that Myc inhibition is a promising strategy for cancer therapy. Here, we preclinically validate Myc inhibition as a therapeutic strategy in mouse and human glioma, using a mouse model of spontaneous multifocal invasive astrocytoma and its derived neuroprogenitors, human glioblastoma cell lines, and patient-derived tumours both in vitro and in orthotopic xenografts. Across all these experimental models we find that Myc inhibition reduces proliferation, increases apoptosis and remarkably, elicits the formation of multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in the proficient division of glioma cells.

  7. c-Myc Represses Tumor-Suppressive microRNAs, let-7a, miR-16 and miR-29b, and Induces Cyclin D2-Mediated Cell Proliferation in Ewing's Sarcoma Cell Line.

    Directory of Open Access Journals (Sweden)

    Masanori Kawano

    Full Text Available Myc oncogenic transcription factor is known to inhibit tumor suppressive microRNAs (miRNAs, resulting in greater expression of their target protein related to cell cycle, invasion or anti-apoptotic factors in human cancer cells. To explore possible oncogenic factors in Ewing's sarcoma (ES, we conducted microarray-based approach to profile the changes in the expression of miRNAs and its downstream mRNAs in five ES cell lines and human mesenchymal stem cells (hMSCs. Three miRNAs, let-7a, miR-16 and miR-29b were significantly down-regulated, whereas c-Myc and cyclin D2 (CCND2 were significantly up-regulated in all tested ES cells compared with hMSCs. To verify that let-7a, miR-16 and miR-29b were the targets of c-Myc in ES cell lines, we transfected siRNA against c-Myc and confirmed the coordinate up-regulation of let-7a, miR-16 and miR-29b through the repression of c-Myc. The ES cells transfected with c-Myc-siRNA and let-7a, miR-16 and miR-29b exhibited the inhibition of the cell cycle progression. The increased expression of let-7a, miR-16 and miR-29b resulted in the reduction of CCND2 protein expression. We also demonstrated that c-Myc-siRNA treatment of ES cells was associated with the decreased expression of CCND2 as a down-stream of three miRNAs. Furthermore, the introduction of let-7a, miR-16 and miR-29b in ES cells could inhibit the c-Myc-mediated up-regulation of CCND2 resulted in the prevention of cell cycle progression. In addition, the transfection of let-7a, miR-16 and miR-29b in ES cells suppressed tumor growth ex vivo treatment. These findings suggests that the up-regulation of c-Myc inhibited the expression of let-7a, miR-16 and miR-29b subsequently induced CCND2 expression in ES cells. The present study might identify a novel oncogenic axis that c-Myc regulates the expression of CCND2 via let-7a, miR-16 and miR-29b, leading to the development new therapeutic targets for ES.

  8. High levels of nuclear MYC protein predict the presence of MYC rearrangement in diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Green, Tina Marie; Nielsen, Ole; de Stricker, Karin

    2012-01-01

    , and quantitative real-time polymerase chain reaction (QRT-PCR). Overall, 15% of the cases had an MYC break. QRT-PCR analysis of MYC expression showed that 72% of DLBCLs with an MYC break had aberrantly high or low levels of MYC transcript. Excluding the cases with aberrantly low MYC expression, we found...... a significant positive correlation between levels of MYC transcripts and MYC tumor cells; however, QRT-PCR is not readily applicable as a screening tool. Immunohistochemically, all tumors showed a nuclear staining pattern that was simple to evaluate. The percentage of MYC lymphoma cells correlated closely...

  9. Nm23-M2/NDP kinase B induces endogenous c-myc and nm23-M1/NDP kinase A overexpression in BAF3 cells. Both NDP kinases protect the cells from oxidative stress-induced death

    International Nuclear Information System (INIS)

    Arnaud-Dabernat, Sandrine; Masse, Karine; Smani, Moneim; Peuchant, Evelyne; Landry, Marc; Bourbon, Pierre-Marie; Le Floch, Renaud; Daniel, Jean-Yves; Larou, Monique

    2004-01-01

    The nm23 gene family encodes nucleoside diphosphate kinases (NDPKs) which supply the cell with (d)NTPs. The human NDPKB, also known as the PuF protein, binds the c-myc promoter and transactivates the c-myc protooncogene. We have now studied the effects of mouse NDPKA and NDPKB overexpression on endogenous c-myc transactivation in the mouse BAF3 and the rat PC12 cell lines. c-myc transcripts were found to be up-regulated by NDPKB only in the BAF3 line. This suggests that c-myc transcriptional control via NDPKB depends on the presence of cell-specific co-factors. Unexpectedly, NDPKB also induced NDPKA expression. This new effect was found in both cell lines, suggesting that NDPKB-dependent nm23-M1 gene transactivation requires cis and/or trans elements different from those involved in c-myc transactivation. Moreover, the BAF3 cell proliferation capacities were found to be independent of NDPKA or B cell contents. Interestingly, cell death induced by c-myc overexpression or H 2 O 2 exposure was decreased in nm23-transfected compared to control BAF3 cells. These data collectively suggest that NDPKs might improve cell survival by a mechanism coupling DNA repair and transcriptional regulation of genes involved in DNA damage response

  10. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification.

    Science.gov (United States)

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2013-10-15

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.

  11. Overexpression of c-myc is associated with adverse clinical features and worse overall survival in multiple myeloma

    DEFF Research Database (Denmark)

    Szabo, Agoston Gyula; Gang, Anne Ortved; Pedersen, Mette Ølgod

    2016-01-01

    The role of c-myc in multiple myeloma (MM) is controversial. We conducted a retrospective study of 117 patients with MM diagnosed between 2004 and 2010 at Herlev Hospital. Immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) were performed on tissue microarrays (TMAs) made from...

  12. Ku70 acetylation and modulation of c-Myc/ATF4/CHOP signaling axis by SIRT1 inhibition lead to sensitization of HepG2 cells to TRAIL through induction of DR5 and down-regulation of c-FLIP

    DEFF Research Database (Denmark)

    Kim, Mi-Ju; Hong, Kyung-Soo; Kim, Hak-Bong

    2013-01-01

    In this study, we investigated the role of c-Myc/ATF4/CHOP signaling pathway in sensitization of human hepatoma HepG2 cells to TRAIL. Knockdown of SIRT1 or treatment with SIRT1 inhibitor caused the up-regulation of DR5 and down-regulation of c-FLIP through modulation of c-Myc/ATF4/CHOP pathway, a...

  13. Characterization of pancreatic lesions from MT-tgf alpha, Ela-myc and MT-tgf alpha/Ela-myc single and double transgenic mice.

    Science.gov (United States)

    Liao, Dezhong Joshua; Wang, Yong; Wu, Jiusheng; Adsay, Nazmi Volkan; Grignon, David; Khanani, Fayyaz; Sarkar, Fazlul H

    2006-07-05

    In order to identify good animal models for investigating therapeutic and preventive strategies for pancreatic cancer, we analyzed pancreatic lesions from several transgenic models and made a series of novel findings. Female MT-tgf alpha mice of the MT100 line developed pancreatic proliferation, acinar-ductal metaplasia, multilocular cystic neoplasms, ductal adenocarcinomas and prominent fibrosis, while the lesions in males were less severe. MT-tgf alpha-ES transgenic lines of both sexes developed slowly progressing lesions that were similar to what was seen in MT100 males. In both MT100 and MT-tgf alpha-ES lines, TGF alpha transgene was expressed mainly in proliferating ductal cells. Ela-myc transgenic mice with a mixed C57BL/6, SJL and FVB genetic background developed pancreatic tumors at 2-7 months of age, and half of the tumors were ductal adenocarcinomas, similar to what was reported originally by Sandgren et al 1. However, in 20% of the mice, the tumors metastasized to the liver. MT100/Ela-myc and MT-tgf alpha-ES/Ela-myc double transgenic mice developed not only acinar carcinomas and mixed carcinomas as previously reported but also various ductal-originated lesions, including multilocular cystic neoplasms and ductal adenocarcinomas. The double transgenic tumors were more malignant and metastasized to the liver at a higher frequency (33%) compared with the Ela-myc tumors. Sequencing of the coding region of p16ink4, k-ras and Rb cDNA in small numbers of pancreatic tumors did not identify mutations. The short latency for tumor development, the variety of tumor morphology and the liver metastases seen in Ela-myc and MT-tgf alpha/Ela-myc mice make these animals good models for investigating new therapeutic and preventive strategies for pancreatic cancer.

  14. Rice MYC2 (OsMYC2) modulates light-dependent seedling ...

    Indian Academy of Sciences (India)

    Mrunmay Kumar Giri

    2017-08-03

    Aug 3, 2017 ... 1School of life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India. 2Department of ... MYC2 orthologues from several crop plants have been characterized. The rice .... AtMYC2 over-expression and mutants were described by us ... The seeds were screened on MS media plates supplemented.

  15. Overexpression of c-myc and loss of heterozigosity on 2p, 3p, 5q, 17p and 18q in sporadic colorectal carcinoma Sobreexpresión de c-myc y pérdida de heterozigosidad en 2p, 3p, 5q, 17p y 18q en carcinoma colorrectal esporádico

    Directory of Open Access Journals (Sweden)

    A. Sánchez-Pernaute

    2005-03-01

    Full Text Available Aim: the aim of the present study is to evaluate the prognostic influence of loss of heterozygosity on 2p, 3p, 5q, 17p and 18q, and c-myc overexpression on surgically treated sporadic colorectal carcinoma. Methods: tumor and non-tumor tissue samples from 153 patients were analyzed. Fifty-one percent of patients were male, and mean age in the series was 67 years. Tumors were located in the proximal colon in 37 cases, in the distal bowel in 37, and in the rectum in 79 patients. c-myc overexpression was studied by means of Northern blot analysis, and loss of heterozigosity through microsatellite analysis. Results: c-myc overexpression was detected in 25% of cases, and loss of heterozygosity in at least one of the studied regions in 48%. There was no association between clinical and pathologic features, and genetic alterations. The disease-free interval was significantly shorter for patients with both genetic alterations; the presence of both events was an independent prognostic factor for poor outcome in the multivariate analysis (RR: 4.34, p Objetivo: el objetivo del presente trabajo es evaluar la importancia pronóstica de la pérdida de heterozigosidad en las regiones 2p, 3p, 5q, 17p y 18q y de la sobreexpresión del gen c-myc en el carcinoma colorrectal esporádico, mediante el estudio de la supervivencia libre de enfermedad tras cirugía potencialmente curativa. Métodos: se han analizado muestras tumorales y no tumorales de mucosa colónica de 153 pacientes. El 51% de los pacientes eran varones y la edad media de la serie fue 67 años. Los tumores fueron proximales en 37 casos, distales en 37 y localizados en recto en 79. Se analizó la sobreexpresión del RNA de c-myc por Northern blot, y la presencia de pérdida de heterozigosidad en las diferentes regiones consideradas por análisis de microsatélites. Resultados: se detectó sobreexpresión de c-myc en el 25% de los casos, y pérdida de heterozigosidad en alguna de las regiones estudiadas

  16. Angiotensin II reduces cardiac AdipoR1 expression through AT1 receptor/ROS/ERK1/2/c-Myc pathway.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Adiponectin, an abundant adipose tissue-derived protein, exerts protective effect against cardiovascular disease. Adiponectin receptors (AdipoR1 and AdipoR2 mediate the beneficial effects of adiponectin on the cardiovascular system. However, the alteration of AdipoRs in cardiac remodeling is not fully elucidated. Here, we investigated the effect of angiotensin II (AngII on cardiac AdipoRs expression and explored the possible molecular mechanism. AngII infusion into rats induced cardiac hypertrophy, reduced AdipoR1 but not AdipoR2 expression, and attenuated the phosphorylations of adenosine monophosphate-activated protein kinase and acetyl coenzyme A carboxylase, and those effects were all reversed by losartan, an AngII type 1 (AT1 receptor blocker. AngII reduced expression of AdipoR1 mRNA and protein in cultured neonatal rat cardiomyocytes, which was abolished by losartan, but not by PD123319, an AT2 receptor antagonist. The antioxidants including reactive oxygen species (ROS scavenger NAC, NADPH oxidase inhibitor apocynin, Nox2 inhibitor peptide gp91 ds-tat, and mitochondrial electron transport chain complex I inhibitor rotenone attenuated AngII-induced production of ROS and phosphorylation of extracellular signal-regulated kinase (ERK 1/2. AngII-reduced AdipoR1 expression was reversed by pretreatment with NAC, apocynin, gp91 ds-tat, rotenone, and an ERK1/2 inhibitor PD98059. Chromatin immunoprecipitation assay demonstrated that AngII provoked the recruitment of c-Myc onto the promoter region of AdipoR1, which was attenuated by PD98059. Moreover, AngII-induced DNA binding activity of c-Myc was inhibited by losartan, NAC, apocynin, gp91 ds-tat, rotenone, and PD98059. c-Myc small interfering RNA abolished the inhibitory effect of AngII on AdipoR1 expression. Our results suggest that AngII inhibits cardiac AdipoR1 expression in vivo and in vitro and AT1 receptor/ROS/ERK1/2/c-Myc pathway is required for the downregulation of AdipoR1 induced by AngII.

  17. Genomic amplification patterns of human telomerase RNA gene and C-MYC in liquid-based cytological specimens used for the detection of high-grade cervical intraepithelial neoplasia

    Directory of Open Access Journals (Sweden)

    Chen Shaomin

    2012-04-01

    Full Text Available Abstract Background The amplification of oncogenes initiated by high-risk human papillomavirus (HPV infection is an early event in cervical carcinogenesis and can be used for cervical lesion diagnosis. We measured the genomic amplification rates and the patterns of human telomerase RNA gene (TERC and C-MYC in the liquid-based cytological specimens to evaluate the diagnostic characteristics for the detection of high-grade cervical lesions. Methods Two hundred and forty-three residual cytological specimens were obtained from outpatients aged 25 to 64 years at Qilu Hospital, Shandong University. The specimens were evaluated by fluorescence in situ hybridization (FISH using chromosome probes to TERC (3q26 and C-MYC (8q24. All of the patients underwent colposcopic examination and histological evaluation. A Chi-square test was used for categorical data analysis. Results In the normal, cervical intraepithelial neoplasia grade 1 (CIN1, grade 2 (CIN2, grade 3 (CIN3 and squamous cervical cancer (SCC cases, the TERC positive rates were 9.2%, 17.2%, 76.2%, 100.0% and 100.0%, respectively; the C-MYC positive rates were 20.7%, 31.0%, 71.4%, 81.8% and 100.0%, respectively. The TERC and C-MYC positive rates were higher in the CIN2+ (CIN2, CIN3 and SCC cases than in the normal and CIN1 cases (p p p > 0.05. Conclusions The TERC test is highly sensitive and is therefore suitable for cervical cancer screening. The C-MYC test is not suitable for cancer screening because of its lower sensitivity. The amplification patterns of TERC become more diverse and complex as the severity of cervical diseases increases, whereas for C-MYC, the amplification patterns are similar between the normal/CIN1 and CIN2+ groups. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1308004512669913.

  18. BET bromodomain inhibition of MYC-amplified medulloblastoma.

    Science.gov (United States)

    Bandopadhayay, Pratiti; Bergthold, Guillaume; Nguyen, Brian; Schubert, Simone; Gholamin, Sharareh; Tang, Yujie; Bolin, Sara; Schumacher, Steven E; Zeid, Rhamy; Masoud, Sabran; Yu, Furong; Vue, Nujsaubnusi; Gibson, William J; Paolella, Brenton R; Mitra, Siddhartha S; Cheshier, Samuel H; Qi, Jun; Liu, Kun-Wei; Wechsler-Reya, Robert; Weiss, William A; Swartling, Fredrik J; Kieran, Mark W; Bradner, James E; Beroukhim, Rameen; Cho, Yoon-Jae

    2014-02-15

    MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma. We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice. Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index. JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma. ©2013 AACR

  19. Blocking c-myc and stat3 by E. coli expressed and enzyme digested siRNA in mouse melanoma

    International Nuclear Information System (INIS)

    Hong Jie; Zhao Yingchun; Huang Weida

    2006-01-01

    Tumour cells often show alteration in the signal-transduction pathways, leading to proliferation in response to external signals. Oncogene overexpression and constitutive expression is a common phenomenon in the development and progression of many human cancers. Therefore oncogenes provide potential targets for cancer therapy. RNA interference (RNAi), mediated by small interfering RNA (siRNA), silences genes with a high degree of specificity and potentially represents a general approach for molecularly targeted anti-cancer therapy. The data presented in this report evaluated the method of systemically administering combined esiRNAs to multiple targets as compared with the method of using a single kind of esiRNA to a single target. Our experimental data revealed that the mixed treatment of esiC-MYC and esiSTAT3 had a better inhibition effect than the single treatment of esiC-MYC or esiSTAT3 on mouse B16 melanoma

  20. Nanostructured plasma etched, magnetron sputtered nanolaminar Cr2AlC MAX phase thin films

    International Nuclear Information System (INIS)

    Grieseler, Rolf; Hähnlein, Bernd; Stubenrauch, Mike; Kups, Thomas; Wilke, Marcus; Hopfeld, Marcus; Pezoldt, Jörg; Schaaf, Peter

    2014-01-01

    The knowledge of the mechanical properties of new materials determines essentially their usability and functionality when used in micro- and nanostructures. MAX phases are new and highly interesting materials due to their unique combination of materials properties. In this article a new method for producing the Cr 2 AlC MAX phase is presented. Thin film elemental multilayer deposition and subsequent rapid thermal annealing forms the MAX phase within seconds. Additionally, free standing microstructures (beams and cantilevers) based on this MAX phase films are prepared by plasma etching. The mechanical properties of these MAX phase microstructures are investigated

  1. Cytotoxic effect of γ-sitosterol from Kejibeling (Strobilanthes crispus and its mechanism of action towards c-myc gene expression and apoptotic pathway

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-01-01

    Full Text Available Background: This study aimed to analyze the cytotoxicity effect of γ-sitosterol isolated from “Kejibeling” (Strobilanthes crispus, a medicinal plant, on several cancer cell lines. The mechanisms of the effects were studied through the expression of cancer-caused gene, c-myc and apoptotic pathways.Methods: This in vitro study was done using human colon cancer cell lines (Caco-2, liver cancer cell lines (HepG2, hormone-dependent breast cancer cell lines (MCF-7 and the normal liver cell lines (Chang Liver. The cytotoxic effect was measured through MTT assay and the potential cytotoxic value was calculated by determining the toxic concentration which may kill up to 50% of the total cell used (IC50. Meanwhile, the cytotoxic mechanism was studied by determining the effect of adding γ-sitosterol to the c-myc gene expression by reverse transciptase-polymerase chain reaction (RT-PCR. The effect of γ-sitosterol through apoptotic pathway was studied by using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay.Results: γ-sitosterol was cytotoxic against Caco-2, HepG2, and MCF-7 with IC50-values of 8.3, 21.8, and 28.8 μg/mL, respectively. There were no IC50-values obtained from this compound against Chang Liver cell line. This compound induced apotosis on Caco-2 and HepG2 cell lines and suppressed the c-myc genes expression in both cells.Conclusion: γ-sitosterol was cytotoxic against colon and liver cancer cell lines and the effect was mediated by down-regulation of c-myc expression and induction of the apoptotic pathways.

  2. MYC is a metastasis gene for non-small-cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Ulf R Rapp

    Full Text Available BACKGROUND: Metastasis is a process by which cancer cells learn to form satellite tumors in distant organs and represents the principle cause of death of patients with solid tumors. NSCLC is the most lethal human cancer due to its high rate of metastasis. METHODOLOGY/PRINCIPAL FINDINGS: Lack of a suitable animal model has so far hampered analysis of metastatic progression. We have examined c-MYC for its ability to induce metastasis in a C-RAF-driven mouse model for non-small-cell lung cancer. c-MYC alone induced frank tumor growth only after long latency at which time secondary mutations in K-Ras or LKB1 were detected reminiscent of human NSCLC. Combination with C-RAF led to immediate acceleration of tumor growth, conversion to papillary epithelial cells and angiogenic switch induction. Moreover, addition of c-MYC was sufficient to induce macrometastasis in liver and lymph nodes with short latency associated with lineage switch events. Thus we have generated the first conditional model for metastasis of NSCLC and identified a gene, c-MYC that is able to orchestrate all steps of this process. CONCLUSIONS/SIGNIFICANCE: Potential markers for detection of metastasis were identified and validated for diagnosis of human biopsies. These markers may represent targets for future therapeutic intervention as they include genes such as Gata4 that are exclusively expressed during lung development.

  3. Apoptosis and cell proliferation in the development of gastric carcinomas: associations with c-myc and p53 protein expression.

    Science.gov (United States)

    Ishii, Hideaki H; Gobé, Glenda C; Pan, Wenshen; Yoneyama, Juichi; Ebihara, Yoshiro

    2002-09-01

    Patients with gastric carcinomas have a poor prognosis and low survival rates. The aim of the present paper was to characterize cellular and molecular properties to provide insight into aspects of tumor progression in early compared with advanced gastric cancers. One hundred and nine graded gastric carcinomas (early or advanced stage, undifferentiated or differentiated type) with paired non-cancer tissue were studied to define the correlation between apoptosis (morphology, terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling), cell proliferation (Ki-67 expression, morphology) and expression and localization of two proteins frequently having altered expression in cancers, namely p53 and c-myc. Overall, apoptosis was lower in early stage, differentiated and undifferentiated gastric carcinomas compared with advanced-stage cancers. Cell proliferation was comparatively high in all stages. There was a high level of p53 positivity in all stages. Only the early- and advanced-stage undifferentiated cancers that were p53 positive had a significantly higher level of apoptosis (P cancers that had either c-myc or p53-positivity. The results indicate that low apoptosis and high cell proliferation combine to drive gastric cancer development. The molecular controls for high cell proliferation of the early stage undifferentiated gastric cancers involve overexpression of both p53 and c-myc. Overexpression of p53 may also control cancer development in that its expression is associated with higher levels of apoptosis in early and late-stage undifferentiated, cancers. Copyright 2002 Blackwell Publishing Asia Pty Ltd

  4. PIAS1 Promotes Lymphomagenesis through MYC Upregulation

    Directory of Open Access Journals (Sweden)

    Andrea Rabellino

    2016-06-01

    Full Text Available The MYC proto-oncogene is a transcription factor implicated in a broad range of cancers. MYC is regulated by several post-translational modifications including SUMOylation, but the functional impact of this post-translational modification is still unclear. Here, we report that the SUMO E3 ligase PIAS1 SUMOylates MYC. We demonstrate that PIAS1 promotes, in a SUMOylation-dependent manner, MYC phosphorylation at serine 62 and dephosphorylation at threonine 58. These events reduce the MYC turnover, leading to increased transcriptional activity. Furthermore, we find that MYC is SUMOylated in primary B cell lymphomas and that PIAS1 is required for the viability of MYC-dependent B cell lymphoma cells as well as several cancer cell lines of epithelial origin. Finally, Pias1-null mice display endothelial defects reminiscent of Myc-null mice. Taken together, these results indicate that PIAS1 is a positive regulator of MYC.

  5. MYC activates stem-like cell potential in hepatocarcinoma by a p53-dependent mechanism

    DEFF Research Database (Denmark)

    Akita, Hirofumi; Marquardt, Jens U; Durkin, Marian E

    2014-01-01

    Activation of c-MYC is an oncogenic hallmark of many cancers including liver cancer, and is associated with a variety of adverse prognostic characteristics. Despite a causative role during malignant transformation and progression in hepatocarcinogenesis, consequences of c-MYC activation for the b...

  6. Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: Implications for the oncoprotein c-MYC

    Science.gov (United States)

    Sylman, Joanna L.; Ngo, Anh T. P.; Pang, Jiaqing; Sears, Rosalie C.; Williams, Craig D.; McCarty, Owen J. T.

    2017-01-01

    Aspirin, an anti-inflammatory and antithrombotic drug, has become the focus of intense research as a potential anticancer agent owing to its ability to reduce tumor proliferation in vitro and to prevent tumorigenesis in patients. Studies have found an anticancer effect of aspirin when used in low, antiplatelet doses. However, the mechanisms through which low-dose aspirin works are poorly understood. In this study, we aimed to determine the effect of aspirin on the cross talk between platelets and cancer cells. For our study, we used two colon cancer cell lines isolated from the same donor but characterized by different metastatic potential, SW480 (nonmetastatic) and SW620 (metastatic) cancer cells, and a pancreatic cancer cell line, PANC-1 (nonmetastatic). We found that SW480 and PANC-1 cancer cell proliferation was potentiated by human platelets in a manner dependent on the upregulation and activation of the oncoprotein c-MYC. The ability of platelets to upregulate c-MYC and cancer cell proliferation was reversed by an antiplatelet concentration of aspirin. In conclusion, we show for the first time that inhibition of platelets by aspirin can affect their ability to induce cancer cell proliferation through the modulation of the c-MYC oncoprotein. PMID:27903583

  7. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif.

    Science.gov (United States)

    Thomas, L R; Foshage, A M; Weissmiller, A M; Popay, T M; Grieb, B C; Qualls, S J; Ng, V; Carboneau, B; Lorey, S; Eischen, C M; Tansey, W P

    2016-07-07

    The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC.

  8. [Survival of patients with primary central nervous system diffuse large B-cell lymphoma: impact of gene aberrations and protein overexpression of bcl-2 and C-MYC, and selection of chemotherapy regimens].

    Science.gov (United States)

    Yin, W J; Zhu, X; Yang, H Y; Sun, W Y; Wu, M J

    2018-01-08

    Objective: To investigate the impact of clinicopathological features, gene rearrangements and protein expression of bcl-6, bcl-2, C-MYC and chemotherapy regime on the prognosis of patients with primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL). Methods: Thirty-three cases of PCNS-DLBCL diagnosed from January 2006 to December 2016 at Zhejiang Cancer Hospital were collected. The expression of CD10, bcl-6, bcl-2, MUM1 and MYC were detected by immunohistochemical staining (IHC). The presence of EB virus was detected by in situ hybridization(EBER). Copy number variation (ICN) and translocation status of bcl-6, bcl-2 and C-MYC genes were detected by fluorescence in situ hybridization (FISH). The relationship between the above indexes and the prognosis was analyzed by univariate, bivariate survival analysis and multiple Cox hazard regression analysis. Results: The study included 33 patients of PCNS-DLBCL, without evidence of primary or secondary immunodeficient disease. Male to female ratio was 1.36∶1.00, and the average age was 56 years. Twenty cases had single lesion while 13 had multiple lesions. Deep brain involvement was seen in 12 cases. All patients underwent partial or total tumor resection. Five patients received whole brain post-surgery radiotherapy, nine patients received high-dose methotrexate (HD-MTX) based chemotherapy, and 12 patients received whole-brain radiotherapy combined with HD-MTX based chemotherapy. Severn patients received no further treatment and rituximab was used in 8 patients. According to the Hans model, 27 cases were classified as non-GCB subtypes (81.8%). Bcl-2 was positive in 25 cases (75.8%, 25/33) and highly expressed in 8 (24.2%). MYC was positive in 12 cases (36.4%) and double expression of bcl-2 and MYC was seen in 6 cases. EBER positive rate was 10.0%(3/30), all of which had multiple lesions. Two bcl-6 gene translocations and 3 amplifications were found in 28 patients. Two translocations, 3 ICN or with both

  9. Detecting and Targeting Oncogenic Myc in Breast Cancer

    Science.gov (United States)

    2007-06-01

    JPO2, with transforming activity in medulloblastoma cells. Cancer Res 2005, 65(13), 5607–5619. 58. Osthus RC, Karim B, Prescott JE, et al. The Myc...59. Prescott JE, Osthus RC, Lee LA, et al. A novel c-Myc- responsive gene, JPO1, participates in neoplastic transformation. J Biol Chem 2001, 276(51...Department of Medical Genetics and Microbiology , University of Toronto, 112 College Street, Toronto ON M5G 1L6, Canada 3 The Wistar Institute, 3601 Spruce

  10. Human small-cell lung cancers show amplification and expression of the N-myc gene

    International Nuclear Information System (INIS)

    Nau, M.M.; Brooks, B.J. Jr.; Carney, D.N.; Gazdar, A.F.; Battey, J.F.; Sausville, E.A.; Minna, J.D.

    1986-01-01

    The authors have found that 6 of 31 independently derived human small-cell lung cancer (SCLC) cell lines have 5- to 170-fold amplified N-myc gene sequences. The amplification is seen with probes from two separate exons of N-myc, which are homologous to either the second or the third exon of the c-myc gene. Amplified N-myc sequences were found in a tumor cell line started prior to chemotherapy, in SCLC tumor samples harvested directly from tumor metastases at autopsy, and from a resected primary lung cancer. Several N-myc-amplified tumor cell lines also exhibited N-myc hybridizing fragments not in the germ-line position. In one patient's tumor, an additional amplitifed N-myc DNA fragment was observed and this fragment was heterogeneously distributed in liver metastases. In contrast to SCLC with neuroendocrine properties, no non-small-cell lung cancer lines examined were found to have N-myc amplification. Fragments encoding two N-myc exons also detect increased amounts of a 3.1-kilobase N-myc mRNA in N-myc-amplified SCLC lines and in one cell line that does not show N-myc gene amplification. Both DNA and RNA hybridization experiments, using a 32 P-labelled restriction probe, show that in any one SCLC cell line, only one myc-related gene is amplified and expressed. They conclude that N-myc amplification is both common and potentially significant in the tumorigenesis or tumor progression of SCLC

  11. THE MYC FAMILY OF ONCOGENES AND THEIR PRESENCE AND IMPORTANCE IN SMALL-CELL LUNG-CARCINOMA AND OTHER TUMOR TYPES

    NARCIS (Netherlands)

    DEVRIES, EGE; MULDER, NH

    1993-01-01

    The myc family of cellular oncogenes, c - myr, N - myc, encodes three highly related, cell cycle specific, nuclear phosphoproteins. All are able to transform primary rat embryo fibroblasts when cotransfected with the c - ras oncogene. Myc family genes am differentially expressed with respect to

  12. Biophysical properties of regions flanking the bHLH-Zip motif in the p22 Max protein

    International Nuclear Information System (INIS)

    Pursglove, Sharon E.; Fladvad, Malin; Bellanda, Massimo; Moshref, Ahmad; Henriksson, Marie; Carey, Jannette; Sunnerhagen, Maria

    2004-01-01

    The Max protein is the central dimerization partner in the Myc-Max-Mad network of transcriptional regulators, and a founding structural member of the family of basic-helix-loop-helix (bHLH)-leucine zipper (Zip) proteins. Biologically important regions flanking its bHLH-Zip motif have been disordered or absent in crystal structures. The present study shows that these regions are resistant to proteolysis in both the presence and absence of DNA, and that Max dimers containing both flanking regions have significantly higher helix content as measured by circular dichroism than that predicted from the crystal structures. Nuclear magnetic resonance measurements in the absence of DNA also support the inferred structural order. Deletion of both flanking regions is required to achieve maximal DNA affinity as measured by EMSA. Thus, the previously observed functionalities of these Max regions in DNA binding, phosphorylation, and apoptosis are suggested to be linked to structural properties

  13. Impact of hydrodynamic injection and phiC31 integrase on tumor latency in a mouse model of MYC-induced hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Lauren E Woodard

    2010-06-01

    Full Text Available Hydrodynamic injection is an effective method for DNA delivery in mouse liver and is being translated to larger animals for possible clinical use. Similarly, phiC31 integrase has proven effective in mediating long-term gene therapy in mice when delivered by hydrodynamic injection and is being considered for clinical gene therapy applications. However, chromosomal aberrations have been associated with phiC31 integrase expression in tissue culture, leading to questions about safety.To study whether hydrodynamic delivery alone, or in conjunction with delivery of phiC31 integrase for long-term transgene expression, could facilitate tumor formation, we used a transgenic mouse model in which sustained induction of the human C-MYC oncogene in the liver was followed by hydrodynamic injection. Without injection, mice had a median tumor latency of 154 days. With hydrodynamic injection of saline alone, the median tumor latency was significantly reduced, to 105 days. The median tumor latency was similar, 106 days, when a luciferase donor plasmid and backbone plasmid without integrase were administered. In contrast, when active or inactive phiC31 integrase and donor plasmid were supplied to the mouse liver, the median tumor latency was 153 days, similar to mice receiving no injection.Our data suggest that phiC31 integrase does not facilitate tumor formation in this C-MYC transgenic mouse model. However, in groups lacking phiC31 integrase, hydrodynamic injection appeared to contribute to C-MYC-induced hepatocellular carcinoma in adult mice. Although it remains to be seen to what extent these findings may be extrapolated to catheter-mediated hydrodynamic delivery in larger species, they suggest that caution should be used during translation of hydrodynamic injection to clinical applications.

  14. Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Cheng, Ran; Liu, Ya-Jing; Cui, Jun-Wei; Yang, Man; Liu, Xiao-Ling; Li, Peng; Wang, Zhan; Zhu, Li-Zhang; Lu, Si-Yi; Zou, Li; Wu, Xiao-Qin; Li, Yu-Xia; Zhou, You; Fang, Zheng-Yu; Wei, Wei

    2017-05-02

    Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.

  15. Plan estratégico Limpi Max S.A.C. 2015-2019

    OpenAIRE

    Aniceto Prado, Fabiola Virginia; Barcelona Zakimi, Antoane Andre; Tokashiki Zakimi, Javier Elias; Yutaka Yino Oshiro, Daniel Alberto

    2015-01-01

    El presente plan estratégico ha sido elaborado para la empresa Limpi Max S.A.C. para el periodo comprendido entre los años 2015 a 2019, cuya actividad económica está especializada en el cristalizado de superficies y suelos calcáreos. El mercado del cristalizado se enfoca en centros comerciales, tiendas por departamento y hoteles que cuenten con las superficies mencionadas líneas arriba. El mayor problema que enfrenta Limpi Max es la reducida o nula cultura empresarial en nuestro país de reali...

  16. Relationship of Amplification and Expression of the C-MYC Gene with Survival among Gastric Cancer Patients.

    Science.gov (United States)

    Khaleghian, Malihea; Shakoori, Abbas; Razavi, Amirnader Emami; Azimi, Cyrus

    2015-01-01

    During the past decades, the incidence and mortality rate of stomach cancer has demonstrated a great decrease in the world, but it is still one of the most common and fatal cancers especially among men worldwide, including Iran. The MYC proto-oncogene, which is located at 8q24.1, regulates 15% of genes and is activated in 20% of all human tumors. MYC amplification and overexpression of its protein product has been reported in 15-30% of gastric neoplasias. The aim of this investigation was to find the relative efficacy of CISH (chromogenic in situ hybridization) or IHC (immunohistochemistry) in diagnosis and prognosis of gastric cancer, as well as the relationship of amplification and expression of C-MYC gene with patient survival. In this cross-sectional study, 102 samples of gastric cancer were collected from patients who had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences, from July 2009 to March 2014. All samples were randomly selected from those who were diagnosed with gastric adenocarcinomas. CISH and IHC methods were performed on all of them. Patients were classified into two groups. The first consisted of stage I and II cases, and the second of stage III and IV. Survival tests for both groups was carried out with referrnce to CISH test reults. Group II (stage III and IV) with CISH+ featured lower survival than those with CISH- (p=0.233), but group I (stage I and II) patients demonstrated no significant variation with CISH+ or CISH- (p=0.630). Kaplan-Meier for both groups was carried out with IHC test findings and showed similar results. This data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in men than women. Our data also showed that CISH+ patients (43%) were more frequent in comparison with IHC+ patients (14.7%). For planning treatment of gastric cancer patients, by focusing on expanding tumors, which is the greatest concern of the surgeons and

  17. Bcl-2 and N-Myc Coexpression Increases IGF-IR and Features of Malignant Growth in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Rama Jasty

    2001-01-01

    Full Text Available The bcl-2 and c-myc oncogenes cooperate to transform multiple cell types. In the pediatric malignancy NB2, Bcl2 is highly expressed. In tumors with a poor prognosis, N-Myc, a protein homologous to c-Myc, is overexpressed as a result of gene amplification. The present study was designed to determine whether Bcl-2 cooperates with N-Myc to bestow a tumorigenic phenotype to neuroblastoma (NB cells. NB cell lines that at baseline express neither Bcl-2 nor N-Myc were stably transfected to express these gene products. In this model, we found Bcl-2 rescues N-Myc-expressing cells from apoptosis induced by serum withdrawal. Coexpression of Bcl-2 and N-Myc supports growth in low serum conditions and anchorage-independent growth in soft agar. Similarly, in vivo tumorigenic and angiogenic activity was dependent on coexpression. Our data further suggests that the mechanism underlying these changes involves the receptor for insulin growth factor type I (IGF-IR.

  18. Enhanced defects recombination in ion irradiated SiC

    International Nuclear Information System (INIS)

    Izzo, G.; Litrico, G.; Grassia, F.; Calcagno, L.; Foti, G.

    2010-01-01

    Point defects induced in SiC by ion irradiation show a recombination at temperatures as low as 320 K and this process is enhanced after running current density ranging from 80 to 120 A/cm 2 . Ion irradiation induces in SiC the formation of different defect levels and low-temperature annealing changes their concentration. Some levels (S 0 , S x and S 2 ) show a recombination and simultaneously a new level (S 1 ) is formed. An enhanced recombination of defects is besides observed after running current in the diode at room temperature. The carriers introduction reduces the S 2 trap concentration, while the remaining levels are not modified. The recombination is negligible up to a current density of 50 A/cm 2 and increases at higher current density. The enhanced recombination of the S 2 trap occurs at 300 K, which otherwise requires a 400 K annealing temperature. The process can be related to the electron-hole recombination at the associated defect.

  19. Shikonin regulates C-MYC and GLUT1 expression through the MST1-YAP1-TEAD1 axis

    Czech Academy of Sciences Publication Activity Database

    Vališ, Karel; Talacko, Pavel; Grobárová, Valeria; Černý, J.; Novák, Petr

    2016-01-01

    Roč. 349, č. 2 (2016), s. 273-281 ISSN 0014-4827 R&D Projects: GA ČR(CZ) GP14-21095P; GA ČR GA13-16565S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Hippo * Glycolysis * C-MYC Subject RIV: EE - Microbiology, Virology Impact factor: 3.546, year: 2016

  20. Mechanisms for c-myc Induced Mouse Mammary Gland Carcinogenesis and for the Synergistic Role of TGF(alpha) in the Process

    Science.gov (United States)

    2001-07-01

    1242 11-28. anti-tumor effects with microencapsulated c-myc antisense Panico L, D’Antonio A, Salvatore G, Mezza E, Tortora G, De oligonucleotide... enzymatic conversion of androgens to estrogens, since an estrogen receptor antagonist cannot block the lobular- alveolar induction by T, DHT

  1. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    OpenAIRE

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the G? subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the presen...

  2. Differential Requirements for c-Myc in Chronic Hematopoietic Hyperplasia and Acute Hematopoietic Malignancies in Pten-null Mice

    Science.gov (United States)

    Zhang, Jun; Xiao, Yechen; Guo, Yinshi; Breslin, Peter; Zhang, Shubin; Wei, Wei; Zhang, Zhou; Zhang, Jiwang

    2011-01-01

    Myeloproliferative disorders (MPDs), lymphoproliferative disorders (LPDs), acute T-lymphocytic or myeloid leukemia and T-lymphocytic lymphoma were developed in inducible Pten-knockout (Pten−/−) mice. The appearance of these multiple diseases in one animal model provides an opportunity to study the pathogenesis of multiple diseases simultaneously. To study whether Myc function is required for the development of these hematopoietic disorders in Pten−/− mice, we generated inducible Pten/Myc double-knockout mice (Pten−/−/Myc−/−). By comparing the hematopoietic phenotypes of these double-knockout mice with those of Pten−/− mice, we found that both sets of animals developed MPDs and LPDs. However, none of the compound-mutant mice developed acute leukemia or lymphoma. Interestingly, in contrast to the MPDs which developed in Pten−/− mice which are dominated by granulocytes, megakaryocytes predominate in the MPDs of Pten−/−/Myc−/− mice. Our study suggests that the deregulation of PI3K/Akt signaling in Pten−/− hematopoietic cells protects these cells from apoptotic cell death, resulting in chronic proliferative disorders. But due to the differential requirement for Myc in granulocyte as compared to megakaryocyte proliferation, Myc deletion converts Pten−/− MPDs from granulocyte-dominated to megakaryocyte-dominated conditions. Myc is absolutely required for the development of acute hematopoietic malignancies. PMID:21926961

  3. Regulation of c-Myc mRNA by L11 in Response to UV and Gamma Irradiation

    Science.gov (United States)

    2014-12-01

    the nucleolus fol- lowed by their transport into the cytoplasm (50). This process requires coordinated transcription catalyzed by all three RNA...these RPs, including L11, are released from the nucleolus or from intact ribosomes to suppress MDM2 (68). However, whether L11 suppresses c-Myc in...centrifugation. For isolation of the nucleolus fraction, the nuclear pellets were resuspended in buffer S1 containing 0.25 M sucrose and 10 mM MgCl2, layered over

  4. Myc contribution to γ-ray induced thymic lymphomas in mice of different genetic predispositions

    International Nuclear Information System (INIS)

    Sato, Toshihiro

    2008-01-01

    Myc gene has been suggested to be one of radiation targets in early genesis of γ ray-induced thymic lymphoma where Myc trisomy often occurs, and Myc activation results in p53 activation and apoptosis. The purpose of this study is to see the effects of radiation and mutation on Myc activation in the mouse. The lymphoma was induced by a single exposure of 3 Gy γ ray in BALB/c Bcl11b/Rit+/- and MSM p53-/- mice at 4 weeks after birth and by 4 weekly exposures of 2.5 Gy in p53+/- mouse. Genetic allele analysis for trisomy identification in the lymphoma was done by quantitative PCR using brain DNA as a control. Myc trisomy was found in the lymphoma of p53+/- mouse in 62% (23/37 animals) and of p53+/+, 66% (23/25), a similar frequency, suggesting that the target of radiation was not only the Myc activation. In addition, Myc trisomy frequency was 15% (4/27) in the lymphoma of Bcl11b+/+p53+/- and 36% (9/25), in heterozygote Bcl11b+/-. This finding suggested that the functional failure of Bcl11b reduced the contribution of Myc trisomy to the genesis. It was concluded that contribution of Myc trisomy to genesis of the lymphoma was dependent on genetic predisposition, and Myc-activated-, Bcl11b/Rit1-signal pathways played a parallel role in the genesis. (R.T.)

  5. Promoter trans-activation of protooncogenes c-fos and c-myc, but not c-Ha-ras, by products of adenovirus early region 1A

    International Nuclear Information System (INIS)

    Sassone-Corsi, P.; Borrelli, E.

    1987-01-01

    The E1A (early region 1A) oncogene products of adenovirus type 2 trans-activate the other early viral transcription units, as well as some cellular promoters. Using a short-term cotransfection assay in murine NIH 3T3 fibroblasts, we show that c-fos and c-myc promoter activities are stimulated by the E1A proteins, whereas c-Ha-ras transcription is not affected. The product of E1A 13S mRNA is responsible for the trans-activation, whereas the 12S mRNA product has no effect. Analysis of the c-fos promoter sequences required for the E1A stimulation shows that responsive sequences are located between positions -402 and -240 upstream of the transcription initiation site. This same region also contains the c-fos serum-responsive element. Furthermore, transcription of the endogenous c-fos gene in HeLa cells is increased after E1A transfection

  6. N-Myc and GCN5 regulate significantly overlapping transcriptional programs in neural stem cells.

    Directory of Open Access Journals (Sweden)

    Verónica Martínez-Cerdeño

    Full Text Available Here we examine the functions of the Myc cofactor and histone acetyltransferase, GCN5/KAT2A, in neural stem and precursor cells (NSC using a conditional knockout approach driven by nestin-cre. Mice with GCN5-deficient NSC exhibit a 25% reduction in brain mass with a microcephaly phenotype similar to that observed in nestin-cre driven knockouts of c- or N-myc. In addition, the loss of GCN5 inhibits precursor cell proliferation and reduces their populations in vivo, as does loss of N-myc. Gene expression analysis indicates that about one-sixth of genes whose expression is affected by loss of GCN5 are also affected in the same manner by loss of N-myc. These findings strongly support the notion that GCN5 protein is a key N-Myc transcriptional cofactor in NSC, but are also consistent with recruitment of GCN5 by other transcription factors and the use by N-Myc of other histone acetyltransferases. Putative N-Myc/GCN5 coregulated transcriptional pathways include cell metabolism, cell cycle, chromatin, and neuron projection morphogenesis genes. GCN5 is also required for maintenance of histone acetylation both at its putative specific target genes and at Myc targets. Thus, we have defined an important role for GCN5 in NSC and provided evidence that GCN5 is an important Myc transcriptional cofactor in vivo.

  7. Myeloblastic leukemia cells conditionally blocked by myc-estrogen receptor chimeric transgenes for terminal differentiation coupled to growth arrest and apoptosis.

    Science.gov (United States)

    Selvakumaran, M; Liebermann, D; Hoffman-Liebermann, B

    1993-05-01

    Conditional mutants of the myeloblastic leukemic M1 cell line, expressing the chimeric mycer transgene, have been established. It is shown that M1 mycer cells, like M1, undergo terminal differentiation coupled to growth arrest and programmed cell death (apoptosis) after treatment with the physiologic differentiation inducer interleukin-6. However, when beta-estradiol is included in the culture medium, M1 mycer cells respond to differentiation inducers like M1 myc cell lines, where the differentiation program is blocked at an intermediate stage. By manipulating the function of the mycer transgene product, it is shown that there is a 10-hour window during myeloid differentiation, from 30 to 40 hours after the addition of the differentiation inducer, when the terminal differentiation program switches from being dependent on c-myc suppression to becoming c-myc suppression independent, where activation of c-myc has no apparent effect on mature macrophages. M1 mycer cell lines provide a powerful tool to increase our understanding of the role of c-myc in normal myelopoiesis and in leukemogenesis, also providing a strategy to clone c-myc target genes.

  8. Suppression of c-Myc is involved in multi-walled carbon nanotubes' down-regulation of ATP-binding cassette transporters in human colon adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaojing [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Xu, Yonghong [Institute of Ophthalmological Research, Department of Ophthalmology, Renmin Hospital of Wuhan University, 430060 Wuhan (China); Meng, Xiangning [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Watari, Fumio [Department of Biomedical, Dental Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586 (Japan); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China); Chen, Xiao, E-mail: mornsmile@yahoo.com [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan (China)

    2015-01-01

    Over-expression of ATP-binding cassette (ABC) transporters, a large family of integral membrane proteins that decrease cellular drug uptake and accumulation by active extrusion, is one of the major causes of cancer multi-drug resistance (MDR) that frequently leads to failure of chemotherapy. Carbon nanotubes (CNTs)-based drug delivery devices hold great promise in enhancing the efficacy of cancer chemotherapy. However, CNTs' effects on the ABC transporters remain under-investigated. In this study, we found that multiwalled carbon nanotubes (MWCNTs) reduced transport activity and expression of ABC transporters including ABCB1/Pgp and ABCC4/MRP4 in human colon adenocarcinoma Caco-2 cells. Proto-oncogene c-Myc, which directly regulates ABC gene expression, was concurrently decreased in MWCNT-treated cells and forced over-expression of c-Myc reversed MWCNTs' inhibitory effects on ABCB1 and ABCC4 expression. MWCNT-cell membrane interaction and cell membrane oxidative damage were observed. However, antioxidants such as vitamin C, β-mecaptoethanol and dimethylthiourea failed to antagonize MWCNTs' down-regulation of ABC transporters. These data suggest that MWCNTs may act on c-Myc, but not through oxidative stress, to down-regulate ABC transporter expression. Our findings thus shed light on CNTs' novel cellular effects that may be utilized to develop CNTs-based drug delivery devices to overcome ABC transporter-mediated cancer chemoresistance.

  9. The c-Myc target glycoprotein1balpha links cytokinesis failure to oncogenic signal transduction pathways in cultured human cells.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    2010-05-01

    Full Text Available An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbalpha, a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbalpha in a p53-deficient background. GpIbalpha was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbalpha.

  10. Down-regulation of 5S rRNA by miR-150 and miR-383 enhances c-Myc-rpL11 interaction and inhibits proliferation of esophageal squamous carcinoma cells.

    Science.gov (United States)

    Wang, Xinyu; Ren, Yanli; Wang, Zhiqiong; Xiong, Xiangyu; Han, Sichong; Pan, Wenting; Chen, Hongwei; Zhou, Liqing; Zhou, Changchun; Yuan, Qipeng; Yang, Ming

    2015-12-21

    5S rRNA plays an important part in ribosome biology and is over-expression in multiple cancers. In this study, we found that 5S rRNA is a direct target of miR-150 and miR-383 in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-150 and miR-383 inhibited ESCC cell proliferation in vitro and in vivo. Moreover, 5S rRNA silencing by miR-150 and miR-383 might intensify rpL11-c-Myc interaction, which attenuated role of c-Myc as an oncogenic transcriptional factor and dysregulation of multiple c-Myc target genes. Taken together, our results highlight the involvement of miRNAs in ribosomal regulation during tumorigenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. New Aspects of an Old Drug – Diclofenac Targets MYC and Glucose Metabolism in Tumor Cells

    Science.gov (United States)

    Gottfried, Eva; Lang, Sven A.; Renner, Kathrin; Bosserhoff, Anja; Gronwald, Wolfram; Rehli, Michael; Einhell, Sabine; Gedig, Isabel; Singer, Katrin; Seilbeck, Anton; Mackensen, Andreas; Grauer, Oliver; Hau, Peter; Dettmer, Katja; Andreesen, Reinhard; Oefner, Peter J.; Kreutz, Marina

    2013-01-01

    Non-steroidal anti-inflammatory drugs such as diclofenac exhibit potent anticancer effects. Up to now these effects were mainly attributed to its classical role as COX-inhibitor. Here we show novel COX-independent effects of diclofenac. Diclofenac significantly diminished MYC expression and modulated glucose metabolism resulting in impaired melanoma, leukemia, and carcinoma cell line proliferation in vitro and reduced melanoma growth in vivo. In contrast, the non-selective COX inhibitor aspirin and the COX-2 specific inhibitor NS-398 had no effect on MYC expression and glucose metabolism. Diclofenac significantly decreased glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 1 (MCT1) gene expression in line with a decrease in glucose uptake and lactate secretion. A significant intracellular accumulation of lactate by diclofenac preceded the observed effect on gene expression, suggesting a direct inhibitory effect of diclofenac on lactate efflux. While intracellular lactate accumulation impairs cellular proliferation and gene expression, it does not inhibit MYC expression as evidenced by the lack of MYC regulation by the MCT inhibitor α-cyano-4-hydroxycinnamic acid. Finally, in a cell line with a tetracycline-regulated c-MYC gene, diclofenac decreased proliferation both in the presence and absence of c-MYC. Thus, diclofenac targets tumor cell proliferation via two mechanisms, that is inhibition of MYC and lactate transport. Based on these results, diclofenac holds potential as a clinically applicable MYC and glycolysis inhibitor supporting established tumor therapies. PMID:23874405

  12. MS-analysis of SILAC-labeled MYC-driven B lymphoma cells overexpressing miR-17-19b

    Directory of Open Access Journals (Sweden)

    Marija Mihailovich

    2016-06-01

    Full Text Available Micro RNAs (miRNAs are small non-coding RNAs, which dampen gene expression by repressing translation and/or inducing degradation of target-mRNAs. Although the role of miR-17-19b (a truncated version of miR-17-92 cluster is well documented in MYC-driven B cell lymphomagenesis, little is known about the function of the cluster in the maintenance of full-blown lymphomas. We employed SILAC-based quantitative proteomics to identify miR-17-19b targets upon a mild overexpression of the cluster in B cell lymphomas, established from λ-MYC transgenic mice. The proteomics data described in detail in this study, whose follow up analysis with MaxQuant algorithm is part of the recent publication (Mihailovich et al., 2015 [1], are deposited to the ProteomeXchange Consortium via the PRIDE partner repository, with the accession code PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002810.

  13. The use of computerized video time lapse to study cell death in rat embryo cells transfected with c-ha-ras or c-myc

    International Nuclear Information System (INIS)

    Forrester, H.B.; Vidair, C.A.; Dewey, W.C.; Ling, C.C.

    1998-01-01

    Full text: Individual rat embryo fibroblasts that had been transfected with the c-myc (REC:myc) or c-Ha ras (REC:ras) oncogene were followed after irradiation using a computer video time lapse (CVTL) system in order to quantify the lethal events that resulted in loss of clonogenic survival after irradiation. By followed the cells for 2 to 3 generations before irradiation we were able to determine where they were in the cell cycle at the time of irradiation for cell cycle analysis. After irradiation, the individual cells and their progeny were followed in multiple fields for 5-6 days Then, pedigrees for individual irradiated cells were determined by noting the times of divisions fusions, and cell death. After X-irradiation, the clonogenic survival values for these two cell lines are similar. However, by using computerized video time lapse (CVTL) to follow individual cells we found that the loss of clonogenic survival was due to two different processes, cell death and a senescent-like process. The loss of clonogenic survival of x-irradiated (9.5 and 4 Gy) REC:myc cells was attributed almost entirely to the cells dying by apoptosis (∼99 and 90%). In contrast, approximately 60% of the x-irradiated (9.5 Gy) non-clonogenic REC:ras cells died by apoptosis (with a very small amount of necrosis), and the other 40% underwent a senescent-type process in which some of the cells and their progeny stopped dividing but remained as viable cells throughout 140 hours of observation. Both processes usually occurred after the cells had divided and continued to occur in the cells' progeny for up to five divisions after irradiation. The mode of cell death in the progeny of a non-clonogenic cell can be determined only by using CVTL and can not be determined by conventional clonogenic survival experiments. Also, only by following the individual cells and their progeny can the true amount of apoptosis be determined. The cumulative percentage of apoptosis scored in whole populations

  14. Myc-dependent genome instability and lifespan in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christina Greer

    Full Text Available The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs. In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.

  15. Drosophila insulin and target of rapamycin (TOR pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo

    Directory of Open Access Journals (Sweden)

    Parisi Federica

    2011-09-01

    Full Text Available Abstract Background Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Results Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Conclusions Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At

  16. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    Science.gov (United States)

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways

  17. Recombination in hepatitis C virus.

    Science.gov (United States)

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  18. The quest for targets executing MYC-dependent cell transformation

    Directory of Open Access Journals (Sweden)

    Markus eHartl

    2016-06-01

    Full Text Available MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than forty upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, for determination which of the known, or yet unidentified targets are responsible for processing the oncogenic MYC program, further systematic and selective approaches are required. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets.Knowledge about essential MYC regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated

  19. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma.

    Science.gov (United States)

    Yu, X; Zhen, Y; Yang, H; Wang, H; Zhou, Y; Wang, E; Marincola, F M; Mai, C; Chen, Y; Wei, H; Song, Y; Lyu, X; Ye, Y; Cai, L; Wu, Q; Zhao, M; Hua, S; Fu, Q; Zhang, Y; Yao, K; Liu, Z; Li, X; Fang, W

    2013-05-16

    Connective tissue growth factor (CTGF) has different roles in different types of cancer. However, the involvement and molecular basis of CTGF in tumor progression and prognosis of human nasopharyngeal carcinoma (NPC) have almost never been reported. In this study, we observed that downregulated CTGF expression was significantly associated with NPC progression and poor prognosis. Knockdown of CTGF markedly elevated the ability of cell proliferation in vivo and in vitro. Subsequently, we discovered that the reduction of CTGF increased the expression of miR-18b, an oncomir-promoting cell proliferation. Further, we discovered that attenuated CTGF-mediated upregulation of miR-18b was dependent on the increased binding of transcription factors Jun proto-oncogene (C-Jun) and v-Myc myelocytomatosis viral oncogene homolog (C-Myc) to miR-18b promoter region via phosphoinositide 3-kinase (PI3K)/AKT pathway. Finally, we further found that miR-18b directly suppressed the expression of CTGF in NPC. In clinical fresh specimens, miR-18b was widely overexpressed and inversely correlated with CTGF expression in NPC. Our studies are the first to demonstrate that reduced CTGF as an unfavorable prognosis factor mediates the activation of miR-18b, an oncomir directly suppresses CTGF expression, by PI3K/AKT/C-Jun and C-Myc and promotes cell growth of NPC.

  20. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability.

    Directory of Open Access Journals (Sweden)

    Glenn M Marshall

    2011-06-01

    Full Text Available The N-Myc oncoprotein is a critical factor in neuroblastoma tumorigenesis which requires additional mechanisms converting a low-level to a high-level N-Myc expression. N-Myc protein is stabilized when phosphorylated at Serine 62 by phosphorylated ERK protein. Here we describe a novel positive feedback loop whereby N-Myc directly induced the transcription of the class III histone deacetylase SIRT1, which in turn increased N-Myc protein stability. SIRT1 binds to Myc Box I domain of N-Myc protein to form a novel transcriptional repressor complex at gene promoter of mitogen-activated protein kinase phosphatase 3 (MKP3, leading to transcriptional repression of MKP3, ERK protein phosphorylation, N-Myc protein phosphorylation at Serine 62, and N-Myc protein stabilization. Importantly, SIRT1 was up-regulated, MKP3 down-regulated, in pre-cancerous cells, and preventative treatment with the SIRT1 inhibitor Cambinol reduced tumorigenesis in TH-MYCN transgenic mice. Our data demonstrate the important roles of SIRT1 in N-Myc oncogenesis and SIRT1 inhibitors in the prevention and therapy of N-Myc-induced neuroblastoma.

  1. MYC/BCL2/BCL6 triple hit lymphoma: a study of 40 patients with a comparison to MYC/BCL2 and MYC/BCL6 double hit lymphomas.

    Science.gov (United States)

    Huang, Wenting; Medeiros, L Jeffrey; Lin, Pei; Wang, Wei; Tang, Guilin; Khoury, Joseph; Konoplev, Sergej; Yin, C Cameron; Xu, Jie; Oki, Yasuhiro; Li, Shaoying

    2018-05-21

    High-grade B-cell lymphomas with MYC, BCL2, and BCL6 rearrangements (triple hit lymphoma) are uncommon. We studied the clinicopathologic features of 40 patients with triple hit lymphoma and compared them to 157 patients with MYC/BCL2 double hit lymphoma and 13 patients with MYC/BCL6 double hit lymphoma. The triple hit lymphoma group included 25 men and 15 women with a median age of 61 years (range, 34-85). Nine patients had a history of B-cell lymphoma. Histologically, 23 (58%) cases were diffuse large B-cell lymphoma and 17 cases had features of B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma. Most cases of triple hit lymphoma were positive for CD10 (100%), BCL2 (95%), BCL6 (82%), MYC (74%), and 71% with MYC and BCL2 coexpression. P53 was overexpressed in 29% of triple hit lymphoma cases. The clinicopathological features of triple hit lymphoma patients were similar to patients with MYC/BCL2 and MYC/BCL6 double hit lymphoma, except that triple hit lymphoma cases were more often CD10 positive compared with MYC/BCL6 double hit lymphoma (p hit lymphoma and double hit lymphoma and overall survival in triple hit lymphoma patients was 17.6 months, similar to the overall survival of patients with double hit lymphoma (p = 0.67). Patients with triple hit lymphoma showing P53 overexpression had significantly worse overall survival compared with those without P53 overexpression (p = 0.04). On the other hand, double expressor status and prior history of B-cell lymphoma did not correlate with overall survival. In conclusion, most patients with triple hit lymphoma have an aggressive clinical course and poor prognosis and these tumors have a germinal center B-cell immunophenotype, similar to patients with double hit lymphomas. P53 expression is a poor prognostic factor in patients with triple hit lymphoma.

  2. MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro.

    Science.gov (United States)

    Burns, Joseph C; Yoo, James J; Atala, Anthony; Jackson, John D

    2012-01-01

    The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A) triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5-7 days after infection, and then decreased ~60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore regenerative

  3. MYC gene delivery to adult mouse utricles stimulates proliferation of postmitotic supporting cells in vitro.

    Directory of Open Access Journals (Sweden)

    Joseph C Burns

    Full Text Available The inner ears of adult humans and other mammals possess a limited capacity for regenerating sensory hair cells, which can lead to permanent auditory and vestibular deficits. During development and regeneration, undifferentiated supporting cells within inner ear sensory epithelia can self-renew and give rise to new hair cells; however, these otic progenitors become depleted postnatally. Therefore, reprogramming differentiated supporting cells into otic progenitors is a potential strategy for restoring regenerative potential to the ear. Transient expression of the induced pluripotency transcription factors, Oct3/4, Klf4, Sox2, and c-Myc reprograms fibroblasts into neural progenitors under neural-promoting culture conditions, so as a first step, we explored whether ectopic expression of these factors can reverse supporting cell quiescence in whole organ cultures of adult mouse utricles. Co-infection of utricles with adenoviral vectors separately encoding Oct3/4, Klf4, Sox2, and the degradation-resistant T58A mutant of c-Myc (c-MycT58A triggered significant levels of supporting cell S-phase entry as assessed by continuous BrdU labeling. Of the four factors, c-MycT58A alone was both necessary and sufficient for the proliferative response. The number of BrdU-labeled cells plateaued between 5-7 days after infection, and then decreased ~60% by 3 weeks, as many cycling cells appeared to enter apoptosis. Switching to differentiation-promoting culture medium at 5 days after ectopic expression of c-MycT58A temporarily attenuated the loss of BrdU-labeled cells and accompanied a very modest but significant expansion of the sensory epithelium. A small number of the proliferating cells in these cultures labeled for the hair cell marker, myosin VIIA, suggesting they had begun differentiating towards a hair cell fate. The results indicate that ectopic expression of c-MycT58A in combination with methods for promoting cell survival and differentiation may restore

  4. Absence of DNA damage after 60-Hz electromagnetic field exposure combined with ionizing radiation, hydrogen peroxide, or c-Myc overexpression.

    Science.gov (United States)

    Jin, Yeung Bae; Choi, Seo-Hyun; Lee, Jae Seon; Kim, Jae-Kyung; Lee, Ju-Woon; Hong, Seung-Cheol; Myung, Sung Ho; Lee, Yun-Sil

    2014-03-01

    The principal objective of this study was to assess the DNA damage in a normal cell line system after exposure to 60 Hz of extremely low frequency magnetic field (ELF-MF) and particularly in combination with various external factors, via comet assays. NIH3T3 mouse fibroblast cells, WI-38 human lung fibroblast cells, L132 human lung epithelial cells, and MCF10A human mammary gland epithelial cells were exposed for 4 or 16 h to a 60-Hz, 1 mT uniform magnetic field in the presence or absence of ionizing radiation (IR, 1 Gy), H(2)O(2) (50 μM), or c-Myc oncogenic activation. The results obtained showed no significant differences between the cells exposed to ELF-MF alone and the unexposed cells. Moreover, no synergistic or additive effects were observed after 4 or 16 h of pre-exposure to 1 mT ELF-MF or simultaneous exposure to ELF-MF combined with IR, H(2)O(2), or c-Myc activation.

  5. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice

    Directory of Open Access Journals (Sweden)

    Liao Dezhong J

    2008-01-01

    Full Text Available Abstract Background Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Results Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT and liver metastatic lesions (LM compared to normal pancreas (NP. In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1 and Serine proteinase inhibitor A1 (Serpina1, and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. Conclusion We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  6. Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice.

    Science.gov (United States)

    Thakur, Archana; Bollig, Aliccia; Wu, Jiusheng; Liao, Dezhong J

    2008-01-24

    Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.

  7. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    International Nuclear Information System (INIS)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S.

    2014-01-01

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin S45F -dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer

  8. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  9. Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhang, Meng; Fan, Hai-Yan; Li, Sheng-Chao

    2015-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a formidable medical challenge due to its malignancies and the absence of effective treatment. c-Myc, as an important transcription factor, plays crucial roles in cell cycle progression, apoptosis and cellular transformation. The c-Myc inhibitor, 10058-F4, has been reported act as a tumor suppressor in several different tumors. In current study, the tumor-suppressive roles of 10058-F4 was observed in human pancreatic cancer cells in vitro as demonstrated by decreased cell viability, cell cycle arrest at the G1/S transition and increased caspase3/7 activity. And tumor responses to gemcitabine were also significantly enhanced by 10058-F4 in PANC-1 and SW1990 cells. In a subcutaneous xenograft model, however, 10058-F4 showed no significant influence on pancreatic tumorigenesis. When combined with gemcitabine, tumorigenesis was drastically attenuated compared with gemcitabine group or 10058-F4 group; this synergistic effect was accompanied with decreased PCNA-positive cells and reduced TUNEL-positive cells in the combined treated group. Subsequent studies revealed that decreased glycolysis may be involved in the inhibitory effect of 10058-F4 on PDAC. Taken together, this study demonstrates the roles of 10058-F4 in PDAC and provides evidence that 10058-F4 in combination with gemcitabine showed significant clinical benefit over the usage of gemcitabine alone. Copyright © 2015. Published by Elsevier Masson SAS.

  10. Genetic recombination of the hepatitis C virus: clinical implications.

    Science.gov (United States)

    Morel, V; Fournier, C; François, C; Brochot, E; Helle, F; Duverlie, G; Castelain, S

    2011-02-01

    Genetic recombination is a well-known feature of RNA viruses that plays a significant role in their evolution. Although recombination is well documented for Flaviviridae family viruses, the first natural recombinant strain of hepatitis C virus (HCV) was identified as recently as 2002. Since then, a few other natural inter-genotypic, intra-genotypic and intra-subtype recombinant HCV strains have been described. However, the frequency of recombination may have been underestimated because not all known HCV recombinants are screened for in routine practice. Furthermore, the choice of treatment regimen and its predictive outcome remain problematic as the therapeutic strategy for HCV infection is genotype dependent. HCV recombination also raises many questions concerning its mechanisms and effects on the epidemiological and physiopathological features of the virus. This review provides an update on recombinant HCV strains, the process that gives rise to recombinants and clinical implications of recombination. © 2010 Blackwell Publishing Ltd.

  11. Recombination in the evolution of enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99.

    Directory of Open Access Journals (Sweden)

    Teemu Smura

    Full Text Available Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus. However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A-C. In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5'UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses.

  12. Loss of PRDM11 promotes MYC-driven lymphomagenesis

    DEFF Research Database (Denmark)

    Fog-Tonnesen, Cathrine Kolster; Asmar, Fazila; Côme, Christophe Roger Michel

    2015-01-01

    of the previously uncharacterized PR-domain family member Prdm11 and overexpression of MYC. Overexpression of PRDM11 inhibits proliferation and induces apoptosis. Prdm11 knockout mice are viable, and loss of Prdm11 accelerates MYC-driven lymphomagenesis in the Eµ-Myc mouse model. Moreover, we show that patients...

  13. AKT1, LKB1, and YAP1 revealed as MYC interactors with NanoLuc-based protein-fragment complementation assay. | Office of Cancer Genomics

    Science.gov (United States)

    The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. Here we report the development of a NanoLuc®-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells.

  14. Localisation of lung cancer by a radiolabelled monoclonal antibody against the c-myc oncogene product

    Energy Technology Data Exchange (ETDEWEB)

    Chan, S Y.T.; Evan, G I; Ritson, A; Watson, J; Wraight, P; Sikora, K

    1986-11-01

    A set of mouse monoclonal antibodies against the c-myc oncogene product, a 62,000 dalton nuclear binding protein involved in cell cycle control, has been constructed by immunisation with synthetic peptide fragments. One such antibody, CT14, was radiolabelled with /sup 131/I and administered to 20 patients with different malignant diseases. Good tumour localisation was observed in 12 out of 14 patients with primary bronchial carcinoma but not in patients with pulmonary metastases from primary tumours elsewhere. Successfully localised tumours were all 3 cm or more in diameter. Monoclonal antibodies against oncogene products may provide novel selective tools for the diagnosis and therapy of cancer.

  15. Targeting human c-Myc promoter duplex DNA with actinomycin D by use of multi-way analysis of quantum-dot-mediated fluorescence resonance energy transfer

    DEFF Research Database (Denmark)

    Gholami, Somayeh; Kompany Zare, Mohsen

    2013-01-01

    Actinomycin D (Act D), an oncogenic c-Myc promoter binder, interferes with the action of RNA polymerase. There is great demand for high-throughput technology able to monitor the activity of DNA-binding drugs. To this end, binding of 7-aminoactinomycin D (7AAD) to the duplex c-Myc promoter...... pairs resulted in efficient energy transfer from drug to QD via fluorescence resonance energy transfer (FRET). Multi-way analysis of the three-way data array obtained from titration experiments was performed by use of restricted Tucker3 and hard trilinear decomposition (HTD). These techniques enable...... the important advantage over univariate classical methods of enabling us to investigate the source of variance in the fluorescence signal of the DNA-drug complex. It was established that hard trilinear decomposition analysis of FRET-measured data overcomes the problem of rank deficiency, enabling calculation...

  16. Primary central nervous system diffuse large B-cell lymphoma shows an activated B-cell-like phenotype with co-expression of C-MYC, BCL-2, and BCL-6.

    Science.gov (United States)

    Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan

    2017-06-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC

    Directory of Open Access Journals (Sweden)

    Khodadad Khodadadi

    2012-01-01

    Full Text Available Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES cells, to date there are few reports about successful isolation of ESCs and no report of in vivo differentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors using OCT4, SOX2, and KLF4 in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months and characterized. The equine iPS (EiPS cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression of OCT4, SOX2 NANOG, and STAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers both in vitro by embryoid bodies (EBs formation and in vivo by teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.

  18. Premarket evaluations of the IMDx C. difficile for Abbott m2000 Assay and the BD Max Cdiff Assay.

    Science.gov (United States)

    Stellrecht, K A; Espino, A A; Maceira, V P; Nattanmai, S M; Butt, S A; Wroblewski, D; Hannett, G E; Musser, K A

    2014-05-01

    Clostridium difficile-associated diarrhea is a well-recognized complication of antibiotic use. Historically, diagnosing C. difficile has been difficult, as antigen assays are insensitive and culture-based methods require several days to yield results. Nucleic acid amplification tests (NAATs) are quickly becoming the standard of care. We compared the performance of two automated investigational/research use only (IUO/RUO) NAATs for the detection of C. difficile toxin genes, the IMDx C. difficile for Abbott m2000 Assay (IMDx) and the BD Max Cdiff Assay (Max). A prospective analysis of 111 stool specimens received in the laboratory for C. difficile testing by the laboratory's test of record (TOR), the BD GeneOhm Cdiff Assay, and a retrospective analysis of 88 specimens previously determined to be positive for C. difficile were included in the study. One prospective specimen was excluded due to loss to follow-up discrepancy analysis. Of the remaining 198 specimens, 90 were positive by all three methods, 9 were positive by TOR and Max, and 3 were positive by TOR only. One negative specimen was initially inhibitory by Max. The remaining 95 specimens were negative by all methods. Toxigenic C. difficile culture was performed on the 12 discrepant samples. True C. difficile-positive status was defined as either positive by all three amplification assays or positive by toxigenic culture. Based on this definition, the sensitivity and specificity were 96.9% and 95% for Max and 92.8% and 100% for IMDx. In summary, both highly automated systems demonstrated excellent performance, and each has individual benefits, which will ensure that they will both have a niche in clinical laboratories.

  19. Serendipitous identification of natural intergenotypic recombinants of hepatitis C in Ireland.

    LENUS (Irish Health Repository)

    Moreau, Isabelle

    2006-01-01

    BACKGROUND: Recombination between hepatitis C single stranded RNA viruses is a rare event. Natural viable intragenotypic and intergenotypic recombinants between 1b-1a, 1a-1c and 2k-1b, 2i-6p, respectively, have been reported. Diagnostically recombinants represent an intriguing challenge. Hepatitis C genotype is defined by interrogation of the sequence composition of the 5\\' untranslated region [5\\'UTR]. Occasionally, ambiguous specimens require further investigation of the genome, usually by interrogation of the NS5B region. The original purpose of this study was to confirm the existence of a suspected mixed genotype infection of genotypes 2 and 4 by clonal analysis at the NS5B region of the genome in two specimens from two separate individuals. This initial identification of genotype was based on analysis of the 5\\'UTR of the genome by reverse line probe hybridisation [RLPH]. RESULTS: The original diagnosis of a mixed genotype infection was not confirmed by clonal analysis of the NS5B region of the genome. The phylogenetic analysis indicated that both specimens were natural intergenotypic recombinant forms of HCV. The recombination was between genotypes 2k and 1b for both specimens. The recombination break point was identified as occurring within the NS2 region of the genome. CONCLUSION: The viral recombinants identified here resemble the recombinant form originally identified in Russia. The RLPH pattern observed in this study may be a signature indicative of this particular type of intergenotype recombinant of hepatitis C meriting clonal analysis of NS2.

  20. Resetting cancer stem cell regulatory nodes upon MYC inhibition.

    Science.gov (United States)

    Galardi, Silvia; Savino, Mauro; Scagnoli, Fiorella; Pellegatta, Serena; Pisati, Federica; Zambelli, Federico; Illi, Barbara; Annibali, Daniela; Beji, Sara; Orecchini, Elisa; Alberelli, Maria Adele; Apicella, Clara; Fontanella, Rosaria Anna; Michienzi, Alessandro; Finocchiaro, Gaetano; Farace, Maria Giulia; Pavesi, Giulio; Ciafrè, Silvia Anna; Nasi, Sergio

    2016-12-01

    MYC deregulation is common in human cancer and has a role in sustaining the aggressive cancer stem cell populations. MYC mediates a broad transcriptional response controlling normal biological programmes, but its activity is not clearly understood. We address MYC function in cancer stem cells through the inducible expression of Omomyc-a MYC-derived polypeptide interfering with MYC activity-taking as model the most lethal brain tumour, glioblastoma. Omomyc bridles the key cancer stemlike cell features and affects the tumour microenvironment, inhibiting angiogenesis. This occurs because Omomyc interferes with proper MYC localization and itself associates with the genome, with a preference for sites occupied by MYC This is accompanied by selective repression of master transcription factors for glioblastoma stemlike cell identity such as OLIG2, POU3F2, SOX2, upregulation of effectors of tumour suppression and differentiation such as ID4, MIAT, PTEN, and modulation of the expression of microRNAs that target molecules implicated in glioblastoma growth and invasion such as EGFR and ZEB1. Data support a novel view of MYC as a network stabilizer that strengthens the regulatory nodes of gene expression networks controlling cell phenotype and highlight Omomyc as model molecule for targeting cancer stem cells. © 2016 The Authors.

  1. Long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele‐specific MYC expression in HeLa cells

    Science.gov (United States)

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Lu, Fengmin

    2017-01-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis‐activate the expression of proto‐oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV‐integrated haplotype, and a long‐range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long‐range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence‐associated acidic β‐gal activity in HeLa cells. These data indicate a long‐distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. PMID:28470669

  2. Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation

    Directory of Open Access Journals (Sweden)

    Kevin Myant

    2015-08-01

    Full Text Available An understanding of the mechanisms determining MYC’s transcriptional and proliferation-promoting activities in vivo could facilitate approaches for MYC targeting. However, post-translational mechanisms that control MYC function in vivo are poorly understood. Here, we demonstrate that MYC phosphorylation at serine 62 enhances MYC accumulation on Lamin A/C-associated nuclear structures and that the protein phosphatase 2A (PP2A inhibitor protein CIP2A is required for this process. CIP2A is also critical for serum-induced MYC phosphorylation and for MYC-elicited proliferation induction in vitro. Complementary transgenic approaches and an intestinal regeneration model further demonstrated the in vivo importance of CIP2A and serine 62 phosphorylation for MYC activity upon DNA damage. However, targeting of CIP2A did not influence the normal function of intestinal crypt cells. These data underline the importance of nuclear organization in the regulation of MYC phosphorylation, leading to an in vivo demonstration of a strategy for inhibiting MYC activity without detrimental physiological effects.

  3. Epithelial-to-mesenchymal transition and c-myc expression are the determinants of cetuximab-induced enhancement of squamous cell carcinoma radioresponse

    International Nuclear Information System (INIS)

    Skvortsova, Ira; Skvortsov, Sergej; Raju, Uma; Stasyk, Taras; Riesterer, Oliver; Schottdorf, Eva-Maria; Popper, Bela-Andre; Schiestl, Bernhard; Eichberger, Paul; Debbage, Paul; Neher, Andreas; Bonn, Guenther K.; Huber, Lukas A.; Milas, Luka; Lukas, Peter

    2010-01-01

    Purpose: Radiation therapy cures malignant tumors of the head and neck region more effectively when it is combined with application of the anti-EGFR monoclonal antibody cetuximab. Despite the successes achieved, we still do not know how to select patients who will respond to this combination of anti-EGFR monoclonal antibody and radiation. This study was conducted to elucidate possible mechanisms which cause the combined treatment with cetuximab and irradiation to fail in some cases of squamous cell carcinomas. Methods and materials: Mice bearing FaDu and A431 squamous cell carcinoma xenograft tumors were treated with cetuximab (total dose 3 mg, intraperitoneally), irradiation (10 Gy) or their combination at the same doses. Treatment was applied when tumors reached 8 mm in size. To collect samples for further protein analysis (two-dimensional differential gel electrophoresis (2-D DIGE), mass spectrometry MALDI-TOF/TOF, Western blot analysis, and ELISA), mice from each group were sacrificed on the 8th day after the first injection of cetuximab. Other mice were subjected to tumor growth delay assay. Results: In FaDu xenografts, treatment with cetuximab alone was nearly as effective as cetuximab combined with ionizing radiation, whereas A431 tumors responded to the combined treatment with significantly enhanced delay in tumor growth. Tumors extracted from the untreated FaDu and A431 xenografts were analysed for protein expression, and 34 proteins that were differently expressed in the two tumor types were identified. The majority of these proteins are closely related to intratumoral angiogenesis, cell adhesion, motility, differentiation, epithelial-to-mesenchymal transition (EMT), c-myc signaling and DNA repair. Conclusions: The failure of cetuximab to enhance radiation response in FaDu xenografts was associated with the initiation of the program of EMT and with c-myc up-regulation in the carcinoma cells. For this reason, c-myc and EMT-related proteins (E

  4. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A

    2008-01-01

    at the standardization of FISH procedures in lymphoma diagnosis, we found that five cases out of 35 classic endemic BLs were negative for MYC translocations by using a split-signal as well as a dual-fusion probe. Here we investigated the expression pattern of miRNAs predicted to target c-Myc, in BL cases, to clarify...... whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...

  5. Clinical features, tumor biology, and prognosis associated with MYC rearrangement and Myc overexpression in diffuse large B-cell lymphoma patients treated with rituximab-CHOP

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Dabaja, Bouthaina S; Wang, Xiaoxiao

    2015-01-01

    MYC dysregulation, including MYC gene rearrangement and Myc protein overexpression, is of increasing clinical importance in diffuse large B-cell lymphoma (DLBCL). However, the roles of MYC and the relative importance of rearrangement vs overexpression remain to be refined. Gaining knowledge about...

  6. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    Science.gov (United States)

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  7. Transformation of follicular lymphoma to plasmablastic lymphoma with c-myc gene rearrangement.

    Science.gov (United States)

    Ouansafi, Ihsane; He, Bing; Fraser, Cory; Nie, Kui; Mathew, Susan; Bhanji, Rumina; Hoda, Rana; Arabadjief, Melissa; Knowles, Daniel; Cerutti, Andrea; Orazi, Attilio; Tam, Wayne

    2010-12-01

    Follicular lymphoma (FL) is an indolent lymphoma that transforms to high-grade lymphoma, mostly diffuse large B-cell lymphoma, in about a third of patients. We present the first report of a case of FL that transformed to plasmablastic lymphoma (PBL). Clonal transformation of the FL to PBL was evidenced by identical IGH/BCL2 gene rearrangements and VDJ gene usage in rearranged IGH genes. IGH/ BCL2 translocation was retained in the PBL, which also acquired c-myc gene rearrangement. Genealogic analysis based on somatic hypermutation of the rearranged IGH genes of both FL and PBL suggests that transformation of the FL to PBL occurred most likely by divergent evolution from a common progenitor cell rather than direct evolution from the FL clone. Our study of this unusual case expands the histologic spectrum of FL transformation and increases our understanding of the pathogenetic mechanisms of transformation of indolent lymphomas to aggressive lymphomas.

  8. MYC and the Control of DNA Replication

    Science.gov (United States)

    Dominguez-Sola, David; Gautier, Jean

    2014-01-01

    The MYC oncogene is a multifunctional protein that is aberrantly expressed in a significant fraction of tumors from diverse tissue origins. Because of its multifunctional nature, it has been difficult to delineate the exact contributions of MYC’s diverse roles to tumorigenesis. Here, we review the normal role of MYC in regulating DNA replication as well as its ability to generate DNA replication stress when overexpressed. Finally, we discuss the possible mechanisms by which replication stress induced by aberrant MYC expression could contribute to genomic instability and cancer. PMID:24890833

  9. Purification of recombinant C-terminus polyhistidine tagged human ...

    African Journals Online (AJOL)

    Dell

    2012-05-03

    May 3, 2012 ... this research, C-terminus polyhistidine tagged human recombinant calcitonin which was ... range protein molecular weight marker was from SIGMA. PCR- ... supernatant was stored at -80°C until needed for further assays.

  10. Long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region upregulating the allele-specific MYC expression in HeLa cells.

    Science.gov (United States)

    Shen, Congle; Liu, Yongzhen; Shi, Shu; Zhang, Ruiyang; Zhang, Ting; Xu, Qiang; Zhu, Pengfei; Chen, Xiangmei; Lu, Fengmin

    2017-08-01

    Human papillomavirus (HPV) infection is the most important risk factor for cervical cancer development. In HeLa cell line, the HPV viral genome is integrated at 8q24 in one allele of chromosome 8. It has been reported that the HPV fragment integrated in HeLa genome can cis-activate the expression of proto-oncogene MYC, which is located at 500 kb downstream of the integrated site. However, the underlying molecular mechanism of this regulation is unknown. A recent study reported that MYC was highly expressed exclusively from the HPV-integrated haplotype, and a long-range chromatin interaction between the integrated HPV fragment and MYC gene has been hypothesized. In this study, we provided the experimental evidences supporting this long-range chromatin interaction in HeLa cells by using Chromosome Conformation Capture (3C) method. We found that the integrated HPV fragment, MYC and 8q24.22 was close to each other and might form a trimer in spatial location. When knocking out the integrated HPV fragment or 8q24.22 region from chromosome 8 by CRISPR/Cas9 system, the expression of MYC reduced dramatically in HeLa cells. Interestingly, decreased expression was only observed in three from eight cell clones, when only one 8q24.22 allele was knocked out. Functionally, HPV knockout caused senescence-associated acidic β-gal activity in HeLa cells. These data indicate a long-distance interaction of the integrated HPV fragment with MYC gene and 8q24.22 region, providing an alternative mechanism relevant to the carcinogenicity of HPV integration. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  11. MYC activation is a hallmark of cancer initiation and maintenance.

    Science.gov (United States)

    Gabay, Meital; Li, Yulin; Felsher, Dean W

    2014-06-02

    The MYC proto-oncogene has been implicated in the pathogenesis of most types of human tumors. MYC activation alone in many normal cells is restrained from causing tumorigenesis through multiple genetic and epigenetically controlled checkpoint mechanisms, including proliferative arrest, apoptosis, and cellular senescence. When pathologically activated in a permissive epigenetic and/or genetic context, MYC bypasses these mechanisms, enforcing many of the "hallmark" features of cancer, including relentless tumor growth associated with DNA replication and transcription, cellular proliferation and growth, protein synthesis, and altered cellular metabolism. MYC mandates tumor cell fate, by inducing stemness and blocking cellular senescence and differentiation. Additionally, MYC orchestrates changes in the tumor microenvironment, including the activation of angiogenesis and suppression of the host immune response. Provocatively, brief or even partial suppression of MYC back to its physiological levels of activation can result in the restoration of intrinsic checkpoint mechanisms, resulting in acute and sustained tumor regression, associated with tumor cells undergoing proliferative arrest, differentiation, senescence, and apoptosis, as well as remodeling of the tumor microenvironment, recruitment of an immune response, and shutdown of angiogenesis. Hence, tumors appear to be "addicted" to MYC because of both tumor cell-intrinsic, cell-autonomous and host-dependent, immune cell-dependent mechanisms. Both the trajectory and persistence of many human cancers require sustained MYC activation. Multiscale mathematical modeling may be useful to predict when tumors will be addicted to MYC. MYC is a hallmark molecular feature of both the initiation and maintenance of tumorigenesis. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  12. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties.

    Science.gov (United States)

    Soleimanpour, Saman; Hassannia, Tahereh; Motiee, Mahdieh; Amini, Abbas Ali; Rezaee, S A R

    2017-05-01

    Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.

  13. Myc Decoy Oligodeoxynucleotide Inhibits Growth and Modulates Differentiation of Mouse Embryonic Stem Cells as a Model of Cancer Stem Cells.

    Science.gov (United States)

    Johari, Behrooz; Ebrahimi-Rad, Mina; Maghsood, Faezeh; Lotfinia, Majid; Saltanatpouri, Zohreh; Teimoori-Toolabi, Ladan; Sharifzadeh, Zahra; Karimipoor, Morteza; Kadivar, Mehdi

    2017-01-01

    Myc (c-Myc) alone activates the embryonic stem cell-like transcriptional module in both normal and transformed cells. Its dysregulation might lead to increased cancer stem cells (CSCs) population in some tumor cells. In order to investigate the potential of Myc decoy oligodeoxynucleotides for differentiation therapy, mouse embryonic stem cells (mESCs) were used in this study as a model of CSCs. To our best of knowledge this is the first report outlining the application of Myc decoy in transcription factor decoy "TFD" strategy for inducing differentiation in mESCs. A 20-mer double-stranded Myc transcription factor decoy and scrambled oligodeoxynucleotides (ODNs) were designed, analyzed by electrophoretic mobility shift (EMSA) assay and transfected into the mESCs under 2 inhibitors (2i) condition. Further investigations were carried out using fluorescence and confocal microscopy, cell proliferation and apoptosis analysis, alkaline phosphatase and embryoid body formation assay, real-time PCR and western blotting. EMSA data showed that Myc decoy ODNs bound specifically to c-Myc protein. They were found to be localized in both cytoplasm and nucleus of mESCs. Our results revealed the potential capability of Myc decoy ODNs to decrease cell viability by (16.1±2%), to increase the number of cells arrested in G0/G1 phases and apoptosis by (14.2±3.1%) and (12.1±3.2%), respectively regarding the controls. Myc decoy could also modulate differentiation in mESCs despite the presence of 2i/LIF in our medium the presence of 2i/LIF in our medium. The optimized Myc decoy ODNs approach might be considered as a promising alternative strategy for differentiation therapy investigations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. cMyc/miR-125b-5p signalling determines sensitivity to bortezomib in preclinical model of cutaneous T-cell lymphomas

    DEFF Research Database (Denmark)

    Manfè, Valentina; Biskup, Edyta; Willumsgaard, Ayalah

    2013-01-01

    Successful/effective cancer therapy in low grade lymphoma is often hampered by cell resistance to anti-neoplastic agents. The crucial mechanisms responsible for this phenomenon are poorly understood. Overcoming resistance of tumor cells to anticancer agents, such as proteasome inhibitors, could...... improve their clinical efficacy. Using cutaneous T-cell lymphoma (CTCL) as a model of the chemotherapy-resistant peripheral lymphoid malignancy, we demonstrated that resistance to proteasome inhibition involved a signaling between the oncogene cMyc and miR-125b-5p. Bortezomib repressed c...

  15. Targeting of the MYCN Protein with Small Molecule c-MYC Inhibitors

    OpenAIRE

    Müller, Inga; Larsson, Karin; Frenzel, Anna; Oliynyk, Ganna; Zirath, Hanna; Prochownik, Edward V.; Westwood, Nicholas J.; Henriksson, Marie Arsenian

    2014-01-01

    This study was funded by grants from the Swedish Research Council and the Swedish Cancer Society. IM and HZ were recipients of graduate student grants from KI (KID), MAH was recipient of a Senior Investigator Award from the Swedish Cancer Society, and NJW was a Royal Society University Research Fellow when this work began. Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tum...

  16. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b.

    Directory of Open Access Journals (Sweden)

    Rebecca Cotterman

    2009-06-01

    Full Text Available myc genes are best known for causing tumors when overexpressed, but recent studies suggest endogenous myc regulates pluripotency and self-renewal of stem cells. For example, N-myc is associated with a number of tumors including neuroblastoma, but also plays a central role in the function of normal neural stem and precursor cells (NSC. Both c- and N-myc also enhance the production of induced pluripotent stem cells (iPSC and are linked to neural tumor stem cells. The mechanisms by which myc regulates normal and neoplastic stem-related functions remain largely open questions. Here from a global, unbiased search for N-Myc bound genes using ChIP-chip assays in neuroblastoma, we found lif as a putative N-Myc bound gene with a number of strong N-Myc binding peaks in the promoter region enriched for E-boxes. Amongst putative N-Myc target genes in expression microarray studies in neuroblastoma we also found lif and three additional important embryonic stem cell (ESC-related factors that are linked to production of iPSC: klf2, klf4, and lin28b. To examine the regulation of these genes by N-Myc, we measured their expression using neuroblastoma cells that contain a Tet-regulatable N-myc transgene (TET21N as well as NSC with a nestin-cre driven N-myc knockout. N-myc levels closely correlated with the expression of all of these genes in neuroblastoma and all but lif in NSC. Direct ChIP assays also indicate that N-Myc directly binds the lif promoter. N-Myc regulates trimethylation of lysine 4 of histone H3 in the promoter of lif and possibly in the promoters of several other stem-related genes. Together these findings indicate that N-Myc regulates overlapping stem-related gene expression programs in neuroblastoma and NSC, supporting a novel model by which amplification of the N-myc gene may drive formation of neuroblastoma. They also suggest mechanisms by which Myc proteins more generally contribute to maintenance of pluripotency and self-renewal of ESC as

  17. Protein kinase A antagonist inhibits β-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in ApcMin/+ mice

    Directory of Open Access Journals (Sweden)

    Brudvik Kristoffer W

    2011-12-01

    Full Text Available Abstract Background The adenomatous polyposis coli (APC protein is part of the destruction complex controlling proteosomal degradation of β-catenin and limiting its nuclear translocation, which is thought to play a gate-keeping role in colorectal cancer. The destruction complex is inhibited by Wnt-Frz and prostaglandin E2 (PGE2 - PI-3 kinase pathways. Recent reports show that PGE2-induced phosphorylation of β-catenin by protein kinase A (PKA increases nuclear translocation indicating two mechanisms of action of PGE2 on β-catenin homeostasis. Findings Treatment of ApcMin/+ mice that spontaneously develop intestinal adenomas with a PKA antagonist (Rp-8-Br-cAMPS selectively targeting only the latter pathway reduced tumor load, but not the number of adenomas. Immunohistochemical characterization of intestines from treated and control animals revealed that expression of β-catenin, β-catenin nuclear translocation and expression of the β-catenin target genes c-Myc and COX-2 were significantly down-regulated upon Rp-8-Br-cAMPS treatment. Parallel experiments in a human colon cancer cell line (HCT116 revealed that Rp-8-Br-cAMPS blocked PGE2-induced β-catenin phosphorylation and c-Myc upregulation. Conclusion Based on our findings we suggest that PGE2 act through PKA to promote β-catenin nuclear translocation and tumor development in ApcMin/+ mice in vivo, indicating that the direct regulatory effect of PKA on β-catenin nuclear translocation is operative in intestinal cancer.

  18. A credit-card library approach for disrupting protein-protein interactions.

    Science.gov (United States)

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  19. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Blue aleurone is a useful and interesting trait in common wheat that was derived from related species. Here, transcriptomes of blue and white aleurone were compared for isolating Blue aleurone 1 (Ba1 transferred from Thinopyrum ponticum. In the genes involved in anthocyanin biosynthesis, only a basic helix-loop-helix (bHLH transcription factor, ThMYC4E, had a higher transcript level in blue aleurone phenotype, and was homologous to the genes on chromosome 4 of Triticum aestivum. ThMYC4E carried the characteristic domains (bHLH-MYC_N, HLH and ACT-like of a bHLH transcription factor, and clustered with genes regulating anthocyanin biosynthesis upon phylogenetic analysis. The over-expression of ThMYC4E regulated anthocyanin biosynthesis with the coexpression of the MYB transcription factor ZmC1 from maize. ThMYC4E existed in the genomes of the addition, substitution and near isogenic lines with the blue aleurone trait derived from Th. ponticum, and could not be detected in any germplasm of T. urartu, T. monococcum, T. turgidum, Aegilops tauschii or T. aestivum, with white aleurone. These results suggested that ThMYC4E was candidate Ba1 gene controlling the blue aleurone trait in T. aestivum genotypes carrying Th. ponticum introgression. The ThMYC4E isolation aids in better understanding the genetic mechanisms of the blue aleurone trait and in its more effective use during wheat breeding.

  20. PAF-Myc-Controlled Cell Stemness Is Required for Intestinal Regeneration and Tumorigenesis.

    Science.gov (United States)

    Kim, Moon Jong; Xia, Bo; Suh, Han Na; Lee, Sung Ho; Jun, Sohee; Lien, Esther M; Zhang, Jie; Chen, Kaifu; Park, Jae-Il

    2018-03-12

    The underlying mechanisms of how self-renewing cells are controlled in regenerating tissues and cancer remain ambiguous. PCNA-associated factor (PAF) modulates DNA repair via PCNA. Also, PAF hyperactivates Wnt/β-catenin signaling independently of PCNA interaction. We found that PAF is expressed in intestinal stem and progenitor cells (ISCs and IPCs) and markedly upregulated during intestinal regeneration and tumorigenesis. Whereas PAF is dispensable for intestinal homeostasis, upon radiation injury, genetic ablation of PAF impairs intestinal regeneration along with the severe loss of ISCs and Myc expression. Mechanistically, PAF conditionally occupies and transactivates the c-Myc promoter, which induces the expansion of ISCs/IPCs during intestinal regeneration. In mouse models, PAF knockout inhibits Apc inactivation-driven intestinal tumorigenesis with reduced tumor cell stemness and suppressed Wnt/β-catenin signaling activity, supported by transcriptome profiling. Collectively, our results unveil that the PAF-Myc signaling axis is indispensable for intestinal regeneration and tumorigenesis by positively regulating self-renewing cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. WiMax taking wireless to the max

    CERN Document Server

    Pareek, Deepak

    2006-01-01

    With market value expected to reach 5 billion by 2007 and the endorsement of some of the biggest names in telecommunications, World Interoperability for Microwave Access (WiMAX) is poised to change the broadband wireless landscape. But how much of WiMAX's touted potential is merely hype? Now that several pre-WiMAX networks have been deployed, what are the operators saying about QoS and ROI? How and when will device manufacturers integrate WiMAX into their products? What is the business case for using WiMAX rather than any number of other established wireless alternatives?WiMAX: Taking Wireless

  2. Distinct Histopathologic and Molecular Alterations in Inflammatory Bowel Disease-Associated Intestinal Adenocarcinoma: c-MYC Amplification is Common and Associated with Mucinous/Signet Ring Cell Differentiation.

    Science.gov (United States)

    Hartman, Douglas J; Binion, David G; Regueiro, Miguel D; Miller, Caitlyn; Herbst, Cameron; Pai, Reetesh K

    2018-05-17

    Chronic idiopathic inflammatory bowel disease (IBD) is a significant risk factor for the development of intestinal adenocarcinoma. The underlying molecular alterations in IBD-associated intestinal adenocarcinoma remain largely unknown. We compared the clinicopathologic and molecular features of 35 patients with 47 IBD-associated intestinal adenocarcinomas with a consecutive series of 451 patients with sporadic colorectal carcinoma identified at our institution and published data on sporadic colorectal carcinoma. c-MYC amplification was the most frequent molecular alteration identified in 33% of IBD-associated intestinal adenocarcinoma that is a significantly higher frequency than in sporadic colorectal carcinoma (8%) (P = 0.0001). Compared to sporadic colorectal carcinoma, IBD-associated intestinal adenocarcinomas more frequently demonstrated mucinous differentiation (60% vs 25%, P < 0.001) and signet ring cell differentiation (28% vs 4%, P < 0.001). Mucinous and signet ring cell differentiation were significantly associated with the presence of c-MYC amplification (both with P < 0.05). HER2 positivity (11%), KRAS exon 2 or 3 mutation (10%), and IDH1 mutation (7%) were less commonly observed in IBD-associated intestinal adenocarcinoma. There was an association between poor survival and HER2 status with 3 of 4 patients having HER2-positive adenocarcinoma dead of disease at last clinical follow-up; however, no statistically significant survival effect was identified for any of the molecular alterations identified. We demonstrate that IBD-associated intestinal adenocarcinomas have a high frequency of c-MYC amplification that is associated with mucinous and signet ring cell differentiation. Many of the identified molecular alterations have potential therapeutic relevance, including HER2 amplification, IDH1 mutation, and low frequency KRAS mutation.

  3. Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

    International Nuclear Information System (INIS)

    Dydensborg, Anders Bondo; Teller, Inga C; Groulx, Jean-François; Basora, Nuria; Paré, Fréderic; Herring, Elizabeth; Gauthier, Rémy; Jean, Dominique; Beaulieu, Jean-François

    2009-01-01

    Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin β4 subunit is up-regulated in primary colon cancer. Its partner, the integrin α6 subunit, exists as two different mRNA splice variants, α6A and α6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these α6 splice variants is still lacking. In this work, we first analyzed the expression of integrin α6A and α6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of α6A and α6B on the regulation of cell proliferation in a colon cancer cell line. Using variant-specific antibodies, we observed that α6A and α6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express α6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed α6B. A relative decrease of α6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the α6A/α6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the α6A/α6B balance in favor of α6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc. The findings that the α6Bβ4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its α6Aβ4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this α6Bβ4 integrin. Taken together, these findings point out the importance of integrin

  4. [Recombinant OspC identification and antigenicity detection from Borrelia burgdorferi PD91 in China].

    Science.gov (United States)

    Chen, Jian; Wan, Kang-Lin

    2003-10-01

    To recombine OspC gene from Borrelia burgdorferi PD91 of China and expressed it in E. coli for early diagnosis of Lyme disease. The OspC gene was amplified from the genome of Borrelia burgdorferi PD91 strain by polymerase chain reaction and recombined with plasmid PET-11D. The recombinant plasmid PET-11D-OspC was identified with PCR, restriction endonuclease analysis and sequencing. The antigenicity was verified with Western Blot. OspC gene was cloned correctly into vector PET-11D. The resultant sequence was definitely different from the published sequence. The recombinant OspC seemed to have had strong antigenicity. The findings laid basis for the studies on early diagnosis of Lyme disease.

  5. File list: Oth.PSC.05.Myc.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.Myc.AllCell mm9 TFs and others Myc Pluripotent stem cell SRX266823,SRX21...3819,SRX213807,SRX213828,SRX266824 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.Myc.AllCell.bed ...

  6. File list: Oth.PSC.10.Myc.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.Myc.AllCell mm9 TFs and others Myc Pluripotent stem cell SRX266823,SRX21...3819,SRX213807,SRX213828,SRX266824 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.Myc.AllCell.bed ...

  7. File list: Oth.PSC.50.Myc.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.Myc.AllCell mm9 TFs and others Myc Pluripotent stem cell SRX266823,SRX21...3819,SRX213828,SRX213807,SRX266824 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.Myc.AllCell.bed ...

  8. File list: Oth.PSC.20.Myc.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.Myc.AllCell mm9 TFs and others Myc Pluripotent stem cell SRX266823,SRX21...3807,SRX213828,SRX213819,SRX266824 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.Myc.AllCell.bed ...

  9. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism

    Directory of Open Access Journals (Sweden)

    Jurian Schuijers

    2018-04-01

    Full Text Available Summary: Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. : Schuijers et al. show that a conserved CTCF site at the promoter of the MYC oncogene plays an important role in enhancer-promoter looping with tumor-specific super-enhancers. Perturbation of this site provides a potential therapeutic vulnerability. Keywords: gene regulation, super-enhancers, chromosome structure, enhancer docking

  10. Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately.

    Science.gov (United States)

    Shi, Yan; Shu, Bin; Yang, Ronghua; Xu, Yingbin; Xing, Bangrong; Liu, Jian; Chen, Lei; Qi, Shaohai; Liu, Xusheng; Wang, Peng; Tang, Jinming; Xie, Julin

    2015-06-16

    Wnt and Notch signaling pathways are critically involved in relative cell fate decisions within the development of cutaneous tissues. Moreover, several studies identified the above two pathways as having a significant role during wound healing. However, their biological effects during cutaneous tissues repair are unclear. We employed a self-controlled model (Sprague-Dawley rats with full-thickness skin wounds) to observe the action and effect of Wnt/β-catenin and Notch signalings in vivo. The quality of wound repair relevant to the gain/loss-of-function Wnt/β-catenin and Notch activation was estimated by hematoxylin-and-eosin and Masson staining. Immunofluorescence analysis and Western blot analysis were used to elucidate the underlying mechanism of the regulation of Wnt and Notch signaling pathways in wound healing. Meanwhile, epidermal stem cells (ESCs) were cultured in keratinocyte serum-free medium with Jaggedl or in DAPT (N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl) to investigate whether the interruption of Notch signaling contributes to the expression of Wnt/β-catenin signaling. The results showed that in vivo the gain-of-function Wnt/β-catenin and Notch activation extended the ability to promote wound closure. We further determined that activation or inhibition of Wnt signaling and Notch signaling can affect the proliferation of ESCs, the differentiation and migration of keratinocytes, and follicle regeneration by targeting c-Myc and Hes1, which ultimately lead to enhanced or delayed wound healing. Furthermore, Western blot analysis suggested that the two pathways might interact in vivo and in vitro. These results suggest that Wnt and Notch signalings play important roles in cutaneous repair by targeting c-Myc and Hes1 separately. What's more, interaction between the above two pathways might act as a vital role in regulation of wound healing.

  11. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Wataru [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Suenaga, Yusuke, E-mail: ysuenaga@chiba-cc.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Yokoi, Sana [Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Nio, Masaki [Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Nakagawara, Akira, E-mail: nakagawara-a@koseikan.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan)

    2015-06-05

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase.

  12. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    International Nuclear Information System (INIS)

    Shoji, Wataru; Suenaga, Yusuke; Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer; Yokoi, Sana; Nio, Masaki; Nakagawara, Akira

    2015-01-01

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase

  13. Radiative and three-body recombination in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Lumma, D.; Terry, J.L.; Lipschultz, B.

    1997-01-01

    Significant recombination of the majority ion species has been observed in the divertor region of Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under detached conditions. This determination is made by analysis of the visible spectrum from the divertor, in particular the Balmer series line emission and the observed recombination continuum, including an apparent recombination edge at ∼375 nm. The analysis shows that the electron temperature in the recombining plasma is 0.8 endash 1.5 eV. The measured volume recombination rate is comparable to the rate of ion collection at the divertor plates. The dominant recombination mechanism is three-body recombination into excited states (e+e+D + Right-arrow D 0 +e), although radiative recombination (e+D + Right-arrow D 0 +hν) contributes ∼5% to the total rate. Analysis of the Balmer series line intensities (from n upper =3 through 10) shows that the upper levels of these transitions are populated primarily by recombination. Thus the brightnesses of the Balmer series (and Lyman series) are directly related to the recombination rate. copyright 1997 American Institute of Physics

  14. Transcriptional Dysregulation of MYC Reveals Common Enhancer-Docking Mechanism.

    Science.gov (United States)

    Schuijers, Jurian; Manteiga, John Colonnese; Weintraub, Abraham Selby; Day, Daniel Sindt; Zamudio, Alicia Viridiana; Hnisz, Denes; Lee, Tong Ihn; Young, Richard Allen

    2018-04-10

    Transcriptional dysregulation of the MYC oncogene is among the most frequent events in aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific super-enhancers, differing in size and location, interact with the MYC gene through a common and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites occur at other genes, including genes with prominent roles in multiple cancers, suggesting a mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide insights into mechanisms that allow a single target gene to be regulated by diverse enhancer elements in different cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. MicroRNA miR-308 regulates dMyc through a negative feedback loop in Drosophila

    Directory of Open Access Journals (Sweden)

    Kaveh Daneshvar

    2012-10-01

    The abundance of Myc protein must be exquisitely controlled to avoid growth abnormalities caused by too much or too little Myc. An intriguing mode of regulation exists in which Myc protein itself leads to reduction in its abundance. We show here that dMyc binds to the miR-308 locus and increases its expression. Using our gain-of-function approach, we show that an increase in miR-308 causes a destabilization of dMyc mRNA and reduced dMyc protein levels. In vivo knockdown of miR-308 confirmed the regulation of dMyc levels in embryos. This regulatory loop is crucial for maintaining appropriate dMyc levels and normal development. Perturbation of the loop, either by elevated miR-308 or elevated dMyc, caused lethality. Combining elevated levels of both, therefore restoring balance between miR-308 and dMyc levels, resulted in lower apoptotic activity and suppression of lethality. These results reveal a sensitive feedback mechanism that is crucial to prevent the pathologies caused by abnormal levels of dMyc.

  16. Peranan Teknologi dalam Mendukung Proses Berpikir Level C3 Siswa pada Materi Operasi Himpunan melalui Penggunaan Swish Max4

    Directory of Open Access Journals (Sweden)

    Arinaldi Arinaldi

    2018-03-01

    Full Text Available Perkembangan teknologi pada abad ke-21 ini sudah sangat pesat, membuat guru menjadi lebih kreatif dalam hal membuat media pembelajaran yang inovatif, menarik, serta tidak ketinggalan zaman. Dengan menggunakan media visual guru dapat memberikan visual tertentu pada siswa dalam proses pembelajaran, yang nantinya diharapkan dapat membantu siswa dalam berpikir C3. Lalu dilatar belakangi oleh kemampuan siswa yang rendah dalam mengerjakan soal applikasi operasi pada himpunan dikehidupan sehari-hari sekaligus memvisualisasikan operasi himpunan, berdasarkan survei peneliti melalui wawancara dengan guru SMP Negeri 11 Tanjungpinang. Sehingga pada penelitian ini peneliti menggunakan media visual berbasis multimedia berbantuan software swish max4, untuk membantu siswa berpikir hingga level C3 atau pada ranah mengaplikasikan khususnya pada materi operasi himpunan dan juga dapat memvisualisasikan operasi himpunan dikehidupan sehari-hari. Telah dilakukan eksperimen di kelas VII.1 dan kelas VII.2 pada SMP Negeri 11 Tanjungpinang, memperoleh hasil posttest kelas eksperimen lebih tinggi 76,24 dibangdingkan dengan kelas kontrol 66,92, terbukti bahwa kelas yang diberikan treatment media swish max4  dapat membantu siswa dalam berpikir hingga level C3 atau mengapplikasikan. Kata kunci : Swish max4, berpikir level C3, Soal applikasi operasi himpunan

  17. Multistage modeling of protein dynamics with monomeric Myc oncoprotein as an example.

    Science.gov (United States)

    Liu, Jiaojiao; Dai, Jin; He, Jianfeng; Niemi, Antti J; Ilieva, Nevena

    2017-03-01

    We propose to combine a mean-field approach with all-atom molecular dynamics (MD) into a multistage algorithm that can model protein folding and dynamics over very long time periods yet with atomic-level precision. As an example, we investigate an isolated monomeric Myc oncoprotein that has been implicated in carcinomas including those in colon, breast, and lungs. Under physiological conditions a monomeric Myc is presumed to be an example of intrinsically disordered proteins that pose a serious challenge to existing modeling techniques. We argue that a room-temperature monomeric Myc is in a dynamical state, it oscillates between different conformations that we identify. For this we adopt the Cα backbone of Myc in a crystallographic heteromer as an initial ansatz for the monomeric structure. We construct a multisoliton of the pertinent Landau free energy to describe the Cα profile with ultrahigh precision. We use Glauber dynamics to resolve how the multisoliton responds to repeated increases and decreases in ambient temperature. We confirm that the initial structure is unstable in isolation. We reveal a highly degenerate ground-state landscape, an attractive set towards which Glauber dynamics converges in the limit of vanishing ambient temperature. We analyze the thermal stability of this Glauber attractor using room-temperature molecular dynamics. We identify and scrutinize a particularly stable subset in which the two helical segments of the original multisoliton align in parallel next to each other. During the MD time evolution of a representative structure from this subset, we observe intermittent quasiparticle oscillations along the C-terminal α helix, some of which resemble a translating Davydov's Amide-I soliton. We propose that the presence of oscillatory motion is in line with the expected intrinsically disordered character of Myc.

  18. The interplay of long non-coding RNAs and MYC in cancer

    Directory of Open Access Journals (Sweden)

    Michael J. Hamilton

    2015-12-01

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules that are changing how researchers view eukaryotic gene regulation. Once considered to be non-functional products of low-level aberrant transcription from non-coding regions of the genome, lncRNAs are now viewed as important epigenetic regulators and several lncRNAs have now been demonstrated to be critical players in the development and/or maintenance of cancer. Similarly, the emerging variety of interactions between lncRNAs and MYC, a well-known oncogenic transcription factor linked to most types of cancer, have caught the attention of many biomedical researchers. Investigations exploring the dynamic interactions between lncRNAs and MYC, referred to as the lncRNA-MYC network, have proven to be especially complex. Genome-wide studies have shown that MYC transcriptionally regulates many lncRNA genes. Conversely, recent reports identified lncRNAs that regulate MYC expression both at the transcriptional and post-transcriptional levels. These findings are of particular interest because they suggest roles of lncRNAs as regulators of MYC oncogenic functions and the possibility that targeting lncRNAs could represent a novel avenue to cancer treatment. Here, we briefly review the current understanding of how lncRNAs regulate chromatin structure and gene transcription, and then focus on the new developments in the emerging field exploring the lncRNA-MYC network in cancer.

  19. Key Roles for MYC, KIT and RET signaling in secondary angiosarcomas

    DEFF Research Database (Denmark)

    Styring, E; Seinen, J; Dominguez-Valentin, M

    2014-01-01

    of the gene signature to an external data set. RESULTS: In total, 103 genes were significantly deregulated between primary and secondary angiosarcomas. Secondary angiosarcomas showed upregulation of MYC, KIT and RET and downregulation of CDKN2C. Functional annotation analysis identified multiple target genes...... in the receptor protein tyrosine kinase pathway. The results were validated using RT-qPCR and immunohistochemistry. Further, the gene signature was applied to an external data set and, herein, distinguished primary from secondary angiosarcomas. CONCLUSIONS: Upregulation of MYC, KIT and RET and downregulation......BACKGROUND: Angiosarcomas may develop as primary tumours of unknown cause or as secondary tumours, most commonly following radiotherapy to the involved field. The different causative agents may be linked to alternate tumorigenesis, which led us to investigate the genetic profiles of morphologically...

  20. USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

    Directory of Open Access Journals (Sweden)

    Zhenghong Lin

    2013-12-01

    Full Text Available The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

  1. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik

    2013-01-01

    Background Infectious cDNA clones are a prerequisite for directed genetic manipulation of RNA viruses. Here, a strategy to facilitate manipulation and rescue of classical swine fever viruses (CSFVs) from full-length cDNAs present within bacterial artificial chromosomes (BACs) is described....... This strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable...

  2. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation.

    Directory of Open Access Journals (Sweden)

    Hongkai Ji

    Full Text Available The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP, global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs. We further document that a Myc core signature (MCS set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.

  3. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  4. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells

    Science.gov (United States)

    Lee, John K.; Phillips, John W.; Smith, Bryan A.; Park, Jung Wook; Stoyanova, Tanya; McCaffrey, Erin F.; Baertsch, Robert; Sokolov, Artem; Meyerowitz, Justin G.; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Shokat, Kevan M.; Gustafson, W. Clay; Huang, Jiaoti; Witte, Owen N.

    2016-01-01

    SUMMARY MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention. PMID:27050099

  5. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  6. Augmentative Device Helps Max Speak. PACER Center ACTion Information Sheets. PHP-c75

    Science.gov (United States)

    PACER Center, 2014

    2014-01-01

    This Action Information Sheet follows a family's process of selecting and using augmentative and alternative communication to help their young son, Max, speak. Max is affected by global dyspraxia, which makes learning new motor skills--especially speech--quite difficult. For the first years of his life, Max could not say words. Before he and his…

  7. FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function

    OpenAIRE

    Jensen, Kim Steen; Binderup, Tina; Jensen, Klaus Thorleif; Therkelsen, Ib; Borup, Rehannah; Nilsson, Elise; Multhaupt, Hinke; Bouchard, Caroline; Quistorff, Bjørn; Kjær, Andreas; Landberg, Göran; Staller, Peter

    2011-01-01

    This paper characterizes FoxO3A as required for hypoxic suppression of mitochondrial mass, oxygen consumption, and ROS production. Mechanistically, FoxO3A is shown to promote hypoxic cell survival by directly antagonizing c-Myc at nuclear encoded mitochondrial genes.

  8. Nucleolus disassembly in mitosis and apoptosis: dynamic redistribution of phosphorylated-c-Myc, fibrillarin and Ki-67

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available The nucleolus may undergo disassembly either reversibly during mitosis, or irreversibly in apoptosis, thus allowing the redistribution of the nucleolar proteins.We investigated here by immunocytochemistry the fate of three representative proteins, namely phosphorylated c-Myc, fibrillarin and Ki-67, and found that they behave independently in both processes: they relocate in distinct compartments during mitosis, whereas during apoptosis they may either be cleaved (Ki-67 or be extruded into the cytoplasm with a different kinetics and following an ordered, non chaotic program. The separation of these nucleolar proteins which occurs in early apoptotic nuclei continues also in the cytoplasm, and culminates in the final formation of apoptotic blebs containing different nucleolar proteins: this evidence confirms that the apoptotic bodies may be variable in size, content and surface reactivity, and include heterogeneous aggregates of nuclear proteins and/or nucleic acids.

  9. BIM is the primary mediator of MYC-induced apoptosis in multiple solid tissues.

    Science.gov (United States)

    Muthalagu, Nathiya; Junttila, Melissa R; Wiese, Katrin E; Wolf, Elmar; Morton, Jennifer; Bauer, Barbara; Evan, Gerard I; Eilers, Martin; Murphy, Daniel J

    2014-09-11

    MYC is one of the most frequently overexpressed oncogenes in human cancer, and even modestly deregulated MYC can initiate ectopic proliferation in many postmitotic cell types in vivo. Sensitization of cells to apoptosis limits MYC's oncogenic potential. However, the mechanism through which MYC induces apoptosis is controversial. Some studies implicate p19ARF-mediated stabilization of p53, followed by induction of proapoptotic BH3 proteins NOXA and PUMA, whereas others argue for direct regulation of BH3 proteins, especially BIM. Here, we use a single experimental system to systematically evaluate the roles of p19ARF and BIM during MYC-induced apoptosis, in vitro, in vivo, and in combination with a widely used chemotherapeutic, doxorubicin. We find a common specific requirement for BIM during MYC-induced apoptosis in multiple settings, which does not extend to the p53-responsive BH3 family member PUMA, and find no evidence of a role for p19ARF during MYC-induced apoptosis in the tissues examined. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Understanding Selective Downregulation of c-Myc Expression through Inhibition of General Transcription Regulators in Multiple Myeloma

    Science.gov (United States)

    2015-06-01

    We next tested whether BET bromodomain inhibition mitigated the acti- vation of proadhesion pathways in aortic endothelium, which oc- curs during the...tinuum of activity as Myc flickers on and off of weakly bound, weakly expressed promoters, but stays longer or more frequently at high output promoters

  11. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus

    DEFF Research Database (Denmark)

    Galli, Andrea; Bukh, Jens

    2014-01-01

    Genetic recombination is an important evolutionary mechanism for RNA viruses. The significance of this phenomenon for hepatitis C virus (HCV) has recently become evident, with the identification of circulating recombinant forms in HCV-infected individuals and by novel data from studies permitted...... by advances in HCV cell culture systems and genotyping protocols. HCV is readily able to produce viable recombinants, using replicative and non-replicative molecular mechanisms. However, our knowledge of the required molecular mechanisms remains limited. Understanding how HCV recombines might be instrumental...... for a better monitoring of global epidemiology, to clarify the virus evolution, and evaluate the impact of recombinant forms on the efficacy of oncoming combination drug therapies. For the latter, frequency and location of recombination events could affect the efficacy of multidrug regimens. This review...

  12. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients

    International Nuclear Information System (INIS)

    Walker, B A; Wardell, C P; Brioli, A; Boyle, E; Kaiser, M F; Begum, D B; Dahir, N B; Johnson, D C; Ross, F M; Davies, F E; Morgan, G J

    2014-01-01

    Secondary MYC translocations in myeloma have been shown to be important in the pathogenesis and progression of disease. Here, we have used a DNA capture and massively parallel sequencing approach to identify the partner chromosomes in 104 presentation myeloma samples. 8q24 breakpoints were identified in 21 (20%) samples with partner loci including IGH, IGK and IGL, which juxtapose the immunoglobulin (Ig) enhancers next to MYC in 8/23 samples. The remaining samples had partner loci including XBP1, FAM46C, CCND1 and KRAS, which are important in B-cell maturation or myeloma pathogenesis. Analysis of the region surrounding the breakpoints indicated the presence of superenhancers on the partner chromosomes and gene expression analysis showed increased expression of MYC in these samples. Patients with MYC translocations had a decreased progression-free and overall survival. We postulate that translocation breakpoints near MYC result in colocalization of the gene with superenhancers from loci, which are important in the development of the cell type in which they occur. In the case of myeloma these are the Ig loci and those important for plasma cell development and myeloma pathogenesis, resulting in increased expression of MYC and an aggressive disease phenotype

  13. Expression analysis of MYC genes from Tamarix hispida in response to different abiotic stresses.

    Science.gov (United States)

    Ji, Xiaoyu; Wang, Yucheng; Liu, Guifeng

    2012-01-01

    The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA)-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT)-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.

  14. MYC expression and translocation analyses in low-grade and transformed follicular lymphoma

    NARCIS (Netherlands)

    Aukema, Sietse M.; van Pel, Roel; Nagel, Inga; Bens, Susanne; Siebert, Reiner; Rosati, Stefano; van den Berg, Eva; Bosga-Bouwer, Anneke G.; Kibbelaar, Robby E.; Hoogendoorn, Mels; van Imhoff, Gustaaf W.; Kluin-Nelemans, Hanneke C.; Kluin, Philip M.; Nijland, Marcel

    2017-01-01

    AimsLow-grade follicular lymphoma (FL) (grade 1/2, FL1/2) has an annual risk of transformation of approximate to 3%, which is associated with aberrations in CDKN2A/B, TP53, and MYC. As in diffuse large B-cell lymphoma, high MYC expression in transformed FL (tFL) might predict a MYC breakpoint.

  15. A novel complex A/C/G intergenotypic recombinant of hepatitis B virus isolated in southern China.

    Directory of Open Access Journals (Sweden)

    Heling Su

    Full Text Available Hepatitis B virus (HBV genotypes and subgenotypes may vary in geographical distribution and virological features. Previous investigations, including ours, showed that HBV genotypes B and C were respectively predominant in South and North China, while genotypes A and D were infrequently detected and genotype G was not found. In this study, a novel A/C/G intergenotype was identified in patients with chronic HBV infection in Guilin, a city in southern China. Initial phylogenetic analysis based on the S gene suggested the HBV recombinant to be genotype G. However, extended genotyping based on the entire HBV genome indicated it to be an A/C/G intergenotype with a closer relation to genotype C. Breakpoint analysis using the SIMPLOT program revealed that the recombinant had a recombination with a arrangement of genotypes A, G, A and C fragments. Compared with the HBV recombinants harboring one or two genotype G fragments found in Asian countries, this Guilin recombinant was highly similar to the Vietnam (98-99% and Long An recombinants (96-99%, but had a relatively low similarity to the Thailand one (89%. Unlike those with the typical genotype G of HBV, the patients with the Guilin recombinant were seropositive for HBeAg. Moreover, a relatively high HBV DNA viral load (>2 × 10(6 IU/ml was detected in the patients, and the analysis of viral replication capacity showed that the Guilin recombinant strains had a competent replication capacity similar to genotypes B and C strains. These findings can aid in not only the clarification of the phylogenetic origin of the HBV recombinants with the genotype G fragment found in Asian countries, but also the understanding of the virological properties of these complicated HBV recombinants.

  16. Striking similarity in the gene expression levels of individual Myc module members among ESCs, EpiSCs, and partial iPSCs.

    Directory of Open Access Journals (Sweden)

    Masataka Hirasaki

    Full Text Available Predominant transcriptional subnetworks called Core, Myc, and PRC modules have been shown to participate in preservation of the pluripotency and self-renewality of embryonic stem cells (ESCs. Epiblast stem cells (EpiSCs are another cell type that possesses pluripotency and self-renewality. However, the roles of these modules in EpiSCs have not been systematically examined to date. Here, we compared the average expression levels of Core, Myc, and PRC module genes between ESCs and EpiSCs. EpiSCs showed substantially higher and lower expression levels of PRC and Core module genes, respectively, compared with those in ESCs, while Myc module members showed almost equivalent levels of average gene expression. Subsequent analyses revealed that the similarity in gene expression levels of the Myc module between these two cell types was not just overall, but striking similarities were evident even when comparing the expression of individual genes. We also observed equivalent levels of similarity in the expression of individual Myc module genes between induced pluripotent stem cells (iPSCs and partial iPSCs that are an unwanted byproduct generated during iPSC induction. Moreover, our data demonstrate that partial iPSCs depend on a high level of c-Myc expression for their self-renewal properties.

  17. Introducing Autodesk 3ds Max 2011

    CERN Document Server

    Derakhshani, Dariush

    2010-01-01

    An Autodesk Official Training Guide to 3ds Max 2011. 3ds Max is a popular 3D animation-and-effects software used in movies, visual effects, games, cartoons, short films, commercials, and other animation. However, it also presents a number of challenges to newcomers. This introduction to the latest version breaks down the complexities of learning 3D software and walks you through the basics of modeling, texturing, animating, and using visual effects. Real-world examples from talented beginning 3ds max users motivate you to learn the software and helpful tutorials offer realistic, professional c

  18. Transcriptional integration of mitogenic and mechanical signals by Myc and YAP.

    Science.gov (United States)

    Croci, Ottavio; De Fazio, Serena; Biagioni, Francesca; Donato, Elisa; Caganova, Marieta; Curti, Laura; Doni, Mirko; Sberna, Silvia; Aldeghi, Deborah; Biancotto, Chiara; Verrecchia, Alessandro; Olivero, Daniela; Amati, Bruno; Campaner, Stefano

    2017-10-15

    Mammalian cells must integrate environmental cues to determine coherent physiological responses. The transcription factors Myc and YAP-TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, we show that these factors coordinately regulate genes required for cell proliferation. Activation of Myc led to extensive association with its genomic targets, most of which were prebound by TEAD. At these loci, recruitment of YAP was Myc-dependent and led to full transcriptional activation. This cooperation was critical for cell cycle entry, organ growth, and tumorigenesis. Thus, Myc and YAP-TEAD integrate mitogenic and mechanical cues at the transcriptional level to provide multifactorial control of cell proliferation. © 2017 Croci et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Study of volume recombination and radiation opacity effects in Alcator C-Mod

    International Nuclear Information System (INIS)

    Terry, J.L.; Lipschultz, B.; Pigarov, A.Y.; Boswell, C.; Krasheninnikov, S.I.; LaBombard, B.; Pappas, D.A.

    1998-01-01

    Observations of significant volume recombination within the Alcator C-Mod divertor plasma and in the edge plasma (MARFE) are described. The recombination occurs in regions where T e approx-lt 1 eV and n e approx-gt 1x10 21 m -3 . The determinations of the recombination rates are made by measuring the D 0 Lyman and/or Balmer spectra and by using a collisional radiative model describing the level populations, ionization and recombination of D 0 . In regions of strong recombination the upper levels (n approx-gt 4) populations are close to those determined by Saha-Boltzmann distribution and are independent of the ground state density. Thus the intensities of lines from these levels are related to the recombination rate, and curves determining the number of open-quote recombinations per photon close-quote are calculated. Ly β line emission is shown to be trapped in some cases, meaning that Ly α can be strongly trapped. Since opacity affects the recombination rates, the effects of the trapping of Ly α,β photons on the open-quote recombinations per photon close-quote curves are calculated and considered in the recombination rate determinations. Total recombination rates in the detached divertor plasma and in MARFEs located at the periphery of the main plasma are determined. Recombination can be a significant sink for ions. copyright 1998 American Institute of Physics

  20. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    Science.gov (United States)

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  1. Expression Analysis of MYC Genes from Tamarix hispida in Response to Different Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Guifeng Liu

    2012-01-01

    Full Text Available The MYC genes are a group of transcription factors containing both bHLH and ZIP motifs that play important roles in the regulation of abscisic acid (ABA-responsive genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time reverse-transcriptase (RT-PCR showed that all nine MYC genes were expressed in root, stem and leaf tissues, but that the levels of the transcripts of these genes in the various tissues differed notably. The MYC genes were highly induced in the roots in response to ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC genes were highly induced only when exposed to these stresses for 6 h. In addition, most of these MYC genes were highly expressed in roots in comparison with stems and leaves. Furthermore, the MYC genes were more highly induced in roots than in stem and leaf tissues, indicating that these genes may play roles in stress responses mainly in the roots rather than the stems and leaves. The results of this present study suggest that MYCs are involved in salt and osmotic stress tolerances and are controlled by the ABA signal transduction pathway.

  2. Evidence of recombination in intrapatient populations of hepatitis C virus.

    Science.gov (United States)

    Sentandreu, Vicente; Jiménez-Hernández, Nuria; Torres-Puente, Manuela; Bracho, María Alma; Valero, Ana; Gosalbes, María José; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2008-09-18

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and a potential cause of substantial morbidity and mortality in the future. HCV is characterized by a high level of genetic heterogeneity. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there are only a few studies reporting recombination on natural populations of HCV, suggesting that these events are rare in vivo. Furthermore, these few studies have focused on recombination between different HCV genotypes/subtypes but there are no reports on the extent of intra-genotype or intra-subtype recombination between viral strains infecting the same patient. Given the important implications of recombination for RNA virus evolution, our aim in this study has been to assess the existence and eventually the frequency of intragenic recombination on HCV. For this, we retrospectively have analyzed two regions of the HCV genome (NS5A and E1-E2) in samples from two different groups: (i) patients infected only with HCV (either treated with interferon plus ribavirin or treatment naïve), and (ii) HCV-HIV co-infected patients (with and without treatment against HIV). The complete data set comprised 17712 sequences from 136 serum samples derived from 111 patients. Recombination analyses were performed using 6 different methods implemented in the program RDP3. Recombination events were considered when detected by at least 3 of the 6 methods used and were identified in 10.7% of the amplified samples, distributed throughout all the groups described and the two genomic regions studied. The resulting recombination events were further verified by detailed phylogenetic analyses. The complete experimental procedure was applied to an artificial mixture of relatively closely viral populations and the ensuing analyses failed to reveal artifactual recombination. From these results we conclude that recombination should be considered as a potentially

  3. The TLR3/TICAM-1 signal constitutively controls spontaneous polyposis through suppression of c-Myc in Apc Min/+ mice.

    Science.gov (United States)

    Ono, Junya; Shime, Hiroaki; Takaki, Hiromi; Takashima, Ken; Funami, Kenji; Yoshida, Sumito; Takeda, Yohei; Matsumoto, Misako; Kasahara, Masanori; Seya, Tsukasa

    2017-10-17

    Intestinal tumorigenesis is promoted by myeloid differentiation primary response gene 88 (MyD88) activation in response to the components of microbiota in Apc Min/+ mice. Microbiota also contains double-stranded RNA (dsRNA), a ligand for TLR3, which activates the toll-like receptor adaptor molecule 1 (TICAM-1, also known as TRIF) pathway. We established Apc Min/+ Ticam1 -/- mice and their survival was compared to survival of Apc Min/+ Myd88 -/- and wild-type (WT) mice. The properties of polyps were investigated using immunofluorescence staining and RT-PCR analysis. We demonstrate that TICAM-1 is essential for suppression of polyp formation in Apc Min/+ mice. TICAM-1 knockout resulted in shorter survival of mice compared to WT mice or mice with knockout of MyD88 in the Apc Min/+ background. Polyps were more frequently formed in the distal intestine of Apc Min/+ Ticam1 -/- mice than in Apc Min/+ mice. Infiltration of immune cells such as CD11b + and CD8α + cells into the polyps was detected histologically. CD11b and CD8α mRNAs were increased in polyps of Apc Min/+ Ticam1 -/- mice compared to Apc Min/+ mice. Gene expression of inducible nitric oxide synthase (iNOS), interferon (IFN)-γ, CXCL9 and IL-12p40 was increased in polyps of Apc Min/+ Ticam1 -/- mice. mRNA and protein expression of c-Myc, a critical transcription factor for inflammation-associated polyposis, were increased in polyps of Apc Min/+ Ticam1 -/- mice. A Lactobacillus strain producing dsRNA was detected in feces of Apc Min/+ mice. These results imply that the TLR3/TICAM-1 pathway inhibits polyposis through suppression of c-Myc expression and supports long survival in Apc Min/+ mice.

  4. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    Science.gov (United States)

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  5. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence.

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-08-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  6. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Directory of Open Access Journals (Sweden)

    Francis Delpeyroux

    2011-08-01

    Full Text Available Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV, an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs, which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C, in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  7. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case

    International Nuclear Information System (INIS)

    Belinsky, Martin G.; Rink, Lori; Cai, Kathy Q.; Capuzzi, Stephen J.; Hoang, Yen; Chien, Jeremy; Godwin, Andrew K.; Mehren, Margaret von

    2015-01-01

    Approximately 10–15 % of gastrointestinal stromal tumors (GISTs) lack gain of function mutations in the KIT and platelet-derived growth factor receptor alpha (PDGFRA) genes. An alternate mechanism of oncogenesis through loss of function of the succinate-dehydrogenase (SDH) enzyme complex has been identified for a subset of these “wild type” GISTs. Paired tumor and normal DNA from an SDH-intact wild-type GIST case was subjected to whole exome sequencing to identify the pathogenic mechanism(s) in this tumor. Selected findings were further investigated in panels of GIST tumors through Sanger DNA sequencing, quantitative real-time PCR, and immunohistochemical approaches. A hemizygous frameshift mutation (p.His2261Leufs*4), in the neurofibromin 1 (NF1) gene was identified in the patient’s GIST; however, no germline NF1 mutation was found. A somatic frameshift mutation (p.Lys54Argfs*31) in the MYC associated factor X (MAX) gene was also identified. Immunohistochemical analysis for MAX on a large panel of GISTs identified loss of MAX expression in the MAX-mutated GIST and in a subset of mainly KIT-mutated tumors. This study suggests that inactivating NF1 mutations outside the context of neurofibromatosis may be the oncogenic mechanism for a subset of sporadic GIST. In addition, loss of function mutation of the MAX gene was identified for the first time in GIST, and a broader role for MAX in GIST progression was suggested. The online version of this article (doi:10.1186/s12885-015-1872-y) contains supplementary material, which is available to authorized users

  8. Construction of C35 gene bait recombinants and T47D cell cDNA library.

    Science.gov (United States)

    Yin, Kun; Xu, Chao; Zhao, Gui-Hua; Liu, Ye; Xiao, Ting; Zhu, Song; Yan, Ge

    2017-11-20

    C35 is a novel tumor biomarker associated with metastasis progression. To investigate the interaction factors of C35 in its high expressed breast cancer cell lines, we constructed bait recombinant plasmids of C35 gene and T47D cell cDNA library for yeast two-hybrid screening. Full length C35 sequences were subcloned using RT-PCR from cDNA template extracted from T47D cells. Based on functional domain analysis, the full-length C35 1-348bp was also truncated into two fragments C351-153bp and C35154-348bp to avoid auto-activation. The three kinds of C35 genes were successfully amplified and inserted into pGBKT7 to construct bait recombinant plasmids pGBKT7-C351-348bp, pGBKT7-C351-153bp and pGBKT7-C35154-348bp, then transformed into Y187 yeast cells by the lithium acetate method. Auto-activation and toxicity of C35 baits were detected using nutritional deficient medium and X-α-Gal assays. The T47D cell ds cDNA was generated by SMART TM technology and the library was constructed using in vivo recombination-mediated cloning in the AH109 yeast strain using a pGADT7-Rec plasmid. The transformed Y187/pGBKT7-C351-348bp line was intensively inhibited while the truncated Y187/pGBKT7-C35 lines had no auto-activation and toxicity in yeast cells. The titer of established cDNA library was 2 × 10 7 pfu/mL with high transformation efficiency of 1.4 × 10 6 , and the insert size of ds cDNA was distributed homogeneously between 0.5-2.0 kb. Our research generated a T47D cell cDNA library with high titer, and the constructed two C35 "baits" contained a respective functional immunoreceptor tyrosine based activation motif (ITAM) and the conserved last four amino acids Cys-Ile-Leu-Val (CILV) motif, and therefore laid a foundation for screening the C35 interaction factors in a BC cell line.

  9. A Novel Recombinant DNA System for High Efficiency Affinity Purification of Proteins in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Brian H. Carrick

    2016-03-01

    Full Text Available Isolation of endogenous proteins from Saccharomyces cerevisiae has been facilitated by inserting encoding polypeptide affinity tags at the C-termini of chromosomal open reading frames (ORFs using homologous recombination of DNA fragments. Tagged protein isolation is limited by a number of factors, including high cost of affinity resins for bulk isolation and low concentration of ligands on the resin surface, leading to low isolation efficiencies and trapping of contaminants. To address this, we have created a recombinant “CelTag” DNA construct from which PCR fragments can be created to easily tag C-termini of S. cerevisiae ORFs using selection for a nat1 marker. The tag has a C-terminal cellulose binding module to be used in the first affinity step. Microgranular cellulose is very inexpensive and has an effectively continuous ligand on its surface, allowing rapid, highly efficient purification with minimal background. Cellulose-bound proteins are released by specific cleavage of an included site for TEV protease, giving nearly pure product. The tag can be lifted from the recombinant DNA construct either with or without a 13x myc epitope tag between the target ORF and the TEV protease site. Binding of CelTag protein fusions to cellulose is stable to high salt, nonionic detergents, and 1 M urea, allowing stringent washing conditions to remove loosely associated components, as needed, before specific elution. It is anticipated that this reagent could allow isolation of protein complexes from large quantities of yeast extract, including soluble, membrane-bound, or nucleic acid-associated assemblies.

  10. A Proteogenomic Approach to Understanding MYC Function in Metastatic Medulloblastoma Tumors

    Directory of Open Access Journals (Sweden)

    Jerome A. Staal

    2016-10-01

    Full Text Available Brain tumors are the leading cause of cancer-related deaths in children, and medulloblastoma is the most prevalent malignant childhood/pediatric brain tumor. Providing effective treatment for these cancers, with minimal damage to the still-developing brain, remains one of the greatest challenges faced by clinicians. Understanding the diverse events driving tumor formation, maintenance, progression, and recurrence is necessary for identifying novel targeted therapeutics and improving survival of patients with this disease. Genomic copy number alteration data, together with clinical studies, identifies c-MYC amplification as an important risk factor associated with the most aggressive forms of medulloblastoma with marked metastatic potential. Yet despite this, very little is known regarding the impact of such genomic abnormalities upon the functional biology of the tumor cell. We discuss here how recent advances in quantitative proteomic techniques are now providing new insights into the functional biology of these aggressive tumors, as illustrated by the use of proteomics to bridge the gap between the genotype and phenotype in the case of c-MYC-amplified/associated medulloblastoma. These integrated proteogenomic approaches now provide a new platform for understanding cancer biology by providing a functional context to frame genomic abnormalities.

  11. Double-hit lymphoma demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-hit translocations, MYC/BCL-2 and IRF4/BCL-2.

    Science.gov (United States)

    Tabata, Rie; Yasumizu, Ryoji; Tabata, Chiharu; Kojima, Masaru

    2013-01-01

    Here, we report a rare case of double-hit lymphoma, demonstrating t(6;14;18)(p25;q32;q21), suggesting two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2. The present case had a rare abnormal chromosome, t(6;14;18)(p25;q32;q21), independently, in addition to known dual-hit chromosomal abnormalities, t(14;18)(q32;q21) and t(8;22)(q24;q11.2). Lymph node was characterized by a follicular and diffuse growth pattern with variously sized neoplastic follicles. The intrafollicular area was composed of centrocytes with a few centroblasts and the interfollicular area was occupied by uniformly spread medium- to large-sized lymphocytes. CD23 immunostaining demonstrated a disrupted follicular dendritic cell meshwork. The intrafollicular tumor cells had a germinal center phenotype with the expression of surface IgM, CD10, Bcl-2, Bcl-6, and MUM1/IRF4. However, the interfollicular larger cells showed plasmacytic differentiation with diminished CD20, Bcl-2, Bcl-6, and positive intracytoplasmic IgM, and co-expression of MUM1/IRF4 and CD138 with increased Ki-67-positive cells (> 90%). MUM1/IRF4 has been found to induce c-MYC expression, and in turn, MYC transactivates MUM1/IRF4, creating a positive autoregulatory feedback loop. On the other hand, MUM1/IRF4 functions as a tumor suppressor in c-MYC-induced B-cell leukemia. The present rare case arouses interest in view of the possible "dual" activation of both c-MYC and MUM1/IRF4 through two independent dual-translocations, c-MYC/BCL-2 and IRF4/BCL-2.

  12. Evaluation of Myc Gene Amplification in Prostate Cancer Using a Dual Color Chromogenic in-Situ Hybridization (Dual CISH) Assay

    OpenAIRE

    Daniel Lerda; Marta Cabrera; Jorge Flores; Luis Gutierrez; Armando Chierichetti; Martin Revol; Hernan Garcia Onto

    2013-01-01

    Objetive: The overall purpose of the study was to demonstrate applicability of the Dako dual-color chromogenic in situ hybridization (CISH) assay (DAKO Denmark, Glostrup) with respect to fluorescence in situ hybridization (FISH) probes MYC-C. Methods: MYC gene amplification by FISH and Dako dual-color CISH Results: The study showed that the dual-color CISH assay can convert Texas red and fluorescein isothiocyanate (FITC) signals into chromogenic signals. The dual –color CISH assay was p...

  13. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit.

    Science.gov (United States)

    Clipson, Alexandra; Barrans, Sharon; Zeng, Naiyan; Crouch, Simon; Grigoropoulos, Nicholas F; Liu, Hongxiang; Kocialkowski, Sylvia; Wang, Ming; Huang, Yuanxue; Worrillow, Lisa; Goodlad, John; Buxton, Jenny; Neat, Michael; Fields, Paul; Wilkins, Bridget; Grant, John W; Wright, Penny; Ei-Daly, Hesham; Follows, George A; Roman, Eve; Watkins, A James; Johnson, Peter W M; Jack, Andrew; Du, Ming-Qing

    2015-07-01

    A proportion of MYC translocation positive diffuse large B-cell lymphomas (DLBCL) harbour a BCL2 and/or BCL6 translocation, known as double-hit DLBCL, and are clinically aggressive. It is unknown whether there are other genetic abnormalities that cooperate with MYC translocation and form double-hit DLBCL, and whether there is a difference in clinical outcome between the double-hit DLBCL and those with an isolated MYC translocation. We investigated TP53 gene mutations along with BCL2 and BCL6 translocations in a total of 234 cases of DLBCL, including 81 with MYC translocation. TP53 mutations were investigated by PCR and sequencing, while BCL2 and BCL6 translocation was studied by interphase fluorescence in situ hybridization. The majority of MYC translocation positive DLBCLs (60/81 = 74%) had at least one additional genetic hit. In MYC translocation positive DLBCL treated by R-CHOP ( n  = 67), TP53 mutation and BCL2, but not BCL6 translocation had an adverse effect on patient overall survival. In comparison with DLBCL with an isolated MYC translocation, cases with MYC/TP53 double-hits had the worst overall survival, followed by those with MYC/BCL2 double-hits. In MYC translocation negative DLBCL treated by R-CHOP ( n  = 101), TP53 mutation, BCL2 and BCL6 translocation had no impact on patient survival. The prognosis of MYC translocation positive DLBCL critically depends on the second hit, with TP53 mutations and BCL2 translocation contributing to an adverse prognosis. It is pivotal to investigate both TP53 mutations and BCL2 translocations in MYC translocation positive DLBCL, and to distinguish double-hit DLBCLs from those with an isolated MYC translocation.

  14. Cooperative interplay of let-7 mimic and HuR with MYC RNA.

    Science.gov (United States)

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of single-stranded (ss)DNA complementary to the let-7 binding site, enhanced the affinity of HuR for a 122-nt MYC RNA encompassing both binding sites. This finding supports the biophysical principle of cooperative binding by an RBP and miRNA purely through interactions at distal mRNA binding sites.

  15. Annotating MYC status with 89Zr-transferrin imaging.

    Science.gov (United States)

    Holland, Jason P; Evans, Michael J; Rice, Samuel L; Wongvipat, John; Sawyers, Charles L; Lewis, Jason S

    2012-10-01

    A noninvasive technology that quantitatively measures the activity of oncogenic signaling pathways could have a broad impact on cancer diagnosis and treatment with targeted therapies. Here we describe the development of (89)Zr-desferrioxamine-labeled transferrin ((89)Zr-transferrin), a new positron emission tomography (PET) radiotracer that binds the transferrin receptor 1 (TFRC, CD71) with high avidity. The use of (89)Zr-transferrin produces high-contrast PET images that quantitatively reflect treatment-induced changes in MYC-regulated TFRC expression in a MYC-driven prostate cancer xenograft model. Moreover, (89)Zr-transferrin imaging can detect the in situ development of prostate cancer in a transgenic MYC prostate cancer model, as well as in prostatic intraepithelial neoplasia (PIN) before histological or anatomic evidence of invasive cancer. These preclinical data establish (89)Zr-transferrin as a sensitive tool for noninvasive measurement of oncogene-driven TFRC expression in prostate and potentially other cancers, with prospective near-term clinical application.

  16. MYC-rearranged lymphomas other than Burkitt: Comparison between R-CHOP and Burkitt-type immunochemotherapy.

    Science.gov (United States)

    Baptista, Maria Joao; Tapia, Gustavo; Hernández-Rivas, José-Ángel; Martínez-Trillos, Alejandra; Mate, José-Luis; Navarro, José-Tomás

    2017-10-23

    MYC-rearranged (MYC-R) lymphomas other than Burkitt lymphoma (BL) are very aggressive, with poor prognosis when treated with standard regimens. We aimed to study the characteristics and outcome of a series of MYC-R lymphomas comparing the treatment results between R-CHOP based and a specific intensive regimen for BL (BURKIMAB). Retrospective study of patients diagnosed with MYC-R. Translocations of MYC, BCL2 and BCL6 were evaluated by fluorescent in situ hybridization. Patients were treated with either, R-CHOP based immunochemotherapy or the Burkitt type regimen, BURKIMAB. Thirty-four MYC-R lymphoma cases were studied: 21 treated with R-CHOP and 13 treated with BURKIMAB. There were no differences in CR rate; 45% (9/20) for R-CHOP and 42% (5/12) for BURKIMAB (P=.99). Although overall survival (OS) and progression free survival (PFS) of BURKIMAB-treated patients were better than those of R-CHOP-treated (3y-OS: 46 vs. 24%; 3y-PFS: 46 vs. 10%), the differences were not statistically significant. MYC-R lymphomas show poor outcomes even when treated with intensive immunochemotherapy for BL. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  17. Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis.

    Science.gov (United States)

    Yue, Ming; Jiang, Jue; Gao, Peng; Liu, Hudan; Qing, Guoliang

    2017-12-26

    Most tumor cells exhibit obligatory demands for essential amino acids (EAAs), but the regulatory mechanisms whereby tumor cells take up EAAs and EAAs promote malignant transformation remain to be determined. Here, we show that oncogenic MYC, solute carrier family (SLC) 7 member 5 (SLC7A5), and SLC43A1 constitute a feedforward activation loop to promote EAA transport and tumorigenesis. MYC selectively activates Slc7a5 and Slc43a1 transcription through direct binding to specific E box elements within both genes, enabling effective EAA import. Elevated EAAs, in turn, stimulate Myc mRNA translation, in part through attenuation of the GCN2-eIF2α-ATF4 amino acid stress response pathway, leading to MYC-dependent transcriptional amplification. SLC7A5/SLC43A1 depletion inhibits MYC expression, metabolic reprogramming, and tumor cell growth in vitro and in vivo. These findings thus reveal a MYC-SLC7A5/SLC43A1 signaling circuit that underlies EAA metabolism, MYC deregulation, and tumorigenesis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Min-Max Spaces and Complexity Reduction in Min-Max Expansions

    Energy Technology Data Exchange (ETDEWEB)

    Gaubert, Stephane, E-mail: Stephane.Gaubert@inria.fr [Ecole Polytechnique, INRIA and CMAP (France); McEneaney, William M., E-mail: wmceneaney@ucsd.edu [University of California San Diego, Dept. of Mech. and Aero. Eng. (United States)

    2012-06-15

    Idempotent methods have been found to be extremely helpful in the numerical solution of certain classes of nonlinear control problems. In those methods, one uses the fact that the value function lies in the space of semiconvex functions (in the case of maximizing controllers), and approximates this value using a truncated max-plus basis expansion. In some classes, the value function is actually convex, and then one specifically approximates with suprema (i.e., max-plus sums) of affine functions. Note that the space of convex functions is a max-plus linear space, or moduloid. In extending those concepts to game problems, one finds a different function space, and different algebra, to be appropriate. Here we consider functions which may be represented using infima (i.e., min-max sums) of max-plus affine functions. It is natural to refer to the class of functions so represented as the min-max linear space (or moduloid) of max-plus hypo-convex functions. We examine this space, the associated notion of duality and min-max basis expansions. In using these methods for solution of control problems, and now games, a critical step is complexity-reduction. In particular, one needs to find reduced-complexity expansions which approximate the function as well as possible. We obtain a solution to this complexity-reduction problem in the case of min-max expansions.

  19. Investigation of miRNA Biology by Bioinformatic Tools and Impact of miRNAs in Colorectal Cancer: Regulatory Relationship of c-Myc and p53 with miRNAs

    Directory of Open Access Journals (Sweden)

    Yaguang Xi

    2007-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that mediate gene expression at the posttranscriptional and translational levels and have been demonstrated to be involved in diverse biological functions. Mounting evidence in recent years has shown that miRNAs play key roles in tumorigenesis due to abnormal expression of and mutations in miRNAs. High throughput miRNA expression profiling of several major tumor types has identified miRNAs associated with clinical diagnosis and prognosis of cancer treatment. Previously our group has discovered a novel regulatory relationship between tumor suppressor gene p53 with miRNAs expression and a number of miRNA promoters contain putative p53 binding sites. In addition, others have reported that c-myc can mediate a large number of miRNAs expression. In this review, we will emphasize algorithms to identify mRNA targets of miRNAs and the roles of miRNAs in colorectal cancer. In particular, we will discuss a novel regulatory relationship of miRNAs with tumor suppressor p53 and c-myc. miRNAs are becoming promising novel targets and biomarkers for future cancer therapeutic development and clinical molecular diagnosis.

  20. MAX phase formation by intercalation upon annealing of TiC{sub x}/Al (0.4 {<=} x {<=} 1) bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abdulkadhim, Ahmed; Takahashi, Tetsuya [Materials Chemistry, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen (Germany); Music, Denis, E-mail: music@mch.rwth-aachen.de [Materials Chemistry, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen (Germany); Munnik, Frans [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen (Germany)

    2011-09-15

    TiC{sub x}/Al bilayer thin films were synthesized using combinatorial magnetron sputtering to study the influence of C content on the reaction products at different annealing temperatures. Based on energy-dispersive X-ray analysis calibrated by elastic recoil detection analysis data, x in TiC{sub x} was varied from 0.4 to 1.0. Film constitution was studied by X-ray diffraction before and after annealing at temperatures from 500 to 1000 deg. C. The formation of TiC{sub x} and Al in the as-deposited samples over the whole C/Ti range was identified. Upon annealing, TiC{sub x} reacts with Al to form Ti-Al-based intermetallics. At temperatures as low as 700 deg. C, the formation of MAX phases (space group P6{sub 3}/mmc) is observed at x {<=} 0.7. Based on the comparison between the C content induced changes in the lattice spacing of TiC{sub x} and Ti{sub 2}AlC as well as Ti{sub 3}AlC{sub 2}, we infer the direct formation of MAX phases by Al intercalation into TiC{sub x} for x {<=} 0.7.

  1. MYC protein expression and genetic alterations have prognostic impact in patients with diffuse large B-cell lymphoma treated with immunochemotherapy.

    Science.gov (United States)

    Valera, Alexandra; López-Guillermo, Armando; Cardesa-Salzmann, Teresa; Climent, Fina; González-Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L; Salamero, Olga; Sancho, Juan M; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina; Martínez, Daniel; Castillo, Paola; Rovira, Jordina; Martínez, Antonio; Campo, Elias; Colomo, Luis

    2013-10-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rearrangements (MYC double/triple-hit) in 4%, MYC amplifications in 2% and MYC gains in 19%. MYC single-hit, MYC double/triple-hit and MYC amplifications, but not MYC gains or other gene rearrangements, were associated with unfavorable progression-free survival and overall survival. MYC protein expression, evaluated using computerized image analysis, captured the unfavorable prognosis of MYC translocations/amplifications and identified an additional subset of patients without gene alterations but with similar poor prognosis. Patients with tumors expressing both MYC/BCL2 had the worst prognosis, whereas those with double-negative tumors had the best outcome. High MYC expression was associated with shorter overall survival irrespectively of the International Prognostic Index and BCL2 expression. In conclusion, MYC protein expression identifies a subset of diffuse large B-cell lymphoma with very poor prognosis independently of gene alterations and other prognostic parameters.

  2. Evaluation of Myc Gene Amplification in Prostate Cancer Using a Dual Color Chromogenic in-Situ Hybridization (Dual CISH Assay

    Directory of Open Access Journals (Sweden)

    Daniel Lerda

    2013-04-01

    Full Text Available Objetive: The overall purpose of the study was to demonstrate applicability of the Dako dual-color chromogenic in situ hybridization (CISH assay (DAKO Denmark, Glostrup with respect to fluorescence in situ hybridization (FISH probes MYC-C. Methods: MYC gene amplification by FISH and Dako dual-color CISH Results: The study showed that the dual-color CISH assay can convert Texas red and fluorescein isothiocyanate (FITC signals into chromogenic signals. The dual –color CISH assay was performed on 40 cases of prostate cancer. Amplification was identified in 12 of 40 (30% tumors. No amplification was seen in 28 of 40 (70% tumors. FISH data were available in total of 40 tumors. All tumors showed concordant results between dual-color CISH and FISH for classifying a tumor as MYC amplified or not amplified. Conclusions: We conclude that dual-color Dako CISH assay is an accurate method for determining MYC gene amplification with added advantages that make it a more practically useful method. [J Interdiscipl Histopathol 2013; 1(2.000: 81-84

  3. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  4. Resolving RAD51C function in late stages of homologous recombination

    Directory of Open Access Journals (Sweden)

    Kuznetsov Sergey G

    2007-06-01

    Full Text Available Abstract DNA double strand breaks are efficiently repaired by homologous recombination. One of the last steps of this process is resolution of Holliday junctions that are formed at the sites of genetic exchange between homologous DNA. Although various resolvases with Holliday junctions processing activity have been identified in bacteriophages, bacteria and archaebacteria, eukaryotic resolvases have been elusive. Recent biochemical evidence has revealed that RAD51C and XRCC3, members of the RAD51-like protein family, are involved in Holliday junction resolution in mammalian cells. However, purified recombinant RAD51C and XRCC3 proteins have not shown any Holliday junction resolution activity. In addition, these proteins did not reveal the presence of a nuclease domain, which raises doubts about their ability to function as a resolvase. Furthermore, oocytes from infertile Rad51C mutant mice exhibit precocious separation of sister chromatids at metaphase II, a phenotype that reflects a defect in sister chromatid cohesion, not a lack of Holliday junction resolution. Here we discuss a model to explain how a Holliday junction resolution defect can lead to sister chromatid separation in mouse oocytes. We also describe other recent in vitro and in vivo evidence supporting a late role for RAD51C in homologous recombination in mammalian cells, which is likely to be resolution of the Holliday junction.

  5. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma.

    Science.gov (United States)

    Porcu, Cristiana; Antonucci, Laura; Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-02-06

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies.

  6. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma

    Science.gov (United States)

    Barbaro, Barbara; Illi, Barbara; Nasi, Sergio; Martini, Maurizio; Licata, Anna; Miele, Luca; Grieco, Antonio; Balsano, Clara

    2018-01-01

    Free serum copper correlates with tumor incidence and progression of human cancers, including hepatocellular carcinoma (HCC). Copper extracellular uptake is provided by the transporter CTR1, whose expression is regulated to avoid excessive intracellular copper entry. Inadequate copper serum concentration is involved in the pathogenesis of Non Alcoholic Fatty Liver Disease (NAFLD), which is becoming a major cause of liver damage progression and HCC incidence. Finally, MYC is over-expressed in most of HCCs and is a critical regulator of cellular growth, tumor invasion and metastasis. The purpose of our study was to understand if higher serum copper concentrations might be involved in the progression of NAFLD-cirrhosis toward-HCC. We investigated whether high exogenous copper levels sensitize liver cells to transformation and if it exists an interplay between copper-related proteins and MYC oncogene. NAFLD-cirrhotic patients were characterized by a statistical significant enhancement of serum copper levels, even more evident in HCC patients. We demonstrated that high extracellular copper concentrations increase cell growth, migration, and invasion of liver cancer cells by modulating MYC/CTR1 axis. We highlighted that MYC binds a specific region of the CTR1 promoter, regulating its transcription. Accordingly, CTR1 and MYC proteins expression were progressively up-regulated in liver tissues from NAFLD-cirrhotic to HCC patients. This work provides novel insights on the molecular mechanisms by which copper may favor the progression from cirrhosis to cancer. The Cu/MYC/CTR1 interplay opens a window to refine HCC diagnosis and design new combined therapies. PMID:29507693

  7. Induction of apoptosis by 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline via modulation of MAPKs (p38 and c-Jun N-terminal kinase) and c-Myc in HL-60 human leukemia cells.

    Science.gov (United States)

    Park, Eun-Jung; Kiselev, Evgeny; Conda-Sheridan, Martin; Cushman, Mark; Pezzuto, John M

    2012-03-23

    Recently, we reported that 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (AM6-36), sharing structural similarity with naturally occurring isoquinolines, induced activities mediated by retinoid X receptor (RXR) response element accompanied by antiproliferative effects on breast cancer cells. To further characterize the biologic potential of AM6-36, we currently report studies conducted with HL-60 human leukemia cells. AM6-36 significantly inhibited cellular proliferation in a dose- and time-dependent manner with an IC(50) value of 86 nM. When evaluated at low test concentrations (≤0.25 μM), AM6-36 induced arrest in the G2/M phase of the cell cycle. At higher concentrations (1 and 2 μM), the response shifted to apoptosis, which was consistent with the effect of AM6-36 on other apoptotic signatures including an increase of apoptotic annexin V(+) 7-AAD(-) cells, loss of mitochondrial membrane potential, induction of poly(ADP-ribose) polymerase cleavage, and activation of several caspases. These apoptotic effects are potentially due to up-regulation of p38 MAPK and JNK phosphorylation and down-regulation of c-Myc oncogene expression. Taken together, AM6-36 might serve as an effective anticancer agent by inducing G2/M cell cycle arrest and apoptosis through the activation of MAPKs and inhibition of c-Myc.

  8. BRD4-targeted therapy induces Myc-independent cytotoxicity in Gnaq/11-mutatant uveal melanoma cells.

    Science.gov (United States)

    Ambrosini, Grazia; Sawle, Ashley D; Musi, Elgilda; Schwartz, Gary K

    2015-10-20

    Uveal melanoma (UM) is an aggressive intraocular malignancy with limited therapeutic options. Both primary and metastatic UM are characterized by oncogenic mutations in the G-protein alpha subunit q and 11. Furthermore, nearly 40% of UM has amplification of the chromosomal arm 8q and monosomy of chromosome 3, with consequent anomalies of MYC copy number. Chromatin regulators have become attractive targets for cancer therapy. In particular, the bromodomain and extra-terminal (BET) inhibitor JQ1 has shown selective inhibition of c-Myc expression with antiproliferative activity in hematopoietic and solid tumors. Here we provide evidence that JQ1 had cytotoxic activity in UM cell lines carrying Gnaq/11 mutations, while in cells without the mutations had little effects. Using microarray analysis, we identified a large subset of genes modulated by JQ1 involved in the regulation of cell cycle, apoptosis and DNA repair. Further analysis of selected genes determined that the concomitant silencing of Bcl-xL and Rad51 represented the minimal requirement to mimic the apoptotic effects of JQ1 in the mutant cells, independently of c-Myc. In addition, administration of JQ1 to mouse xenograft models of Gnaq-mutant UM resulted in significant inhibition of tumor growth.Collectively, our results define BRD4 targeting as a novel therapeutic intervention against UM with Gnaq/Gna11 mutations.

  9. Max Jakobson : Kommunismisse tuleb suhtuda objektiivselt / Max Jakobson

    Index Scriptorium Estoniae

    Jakobson, Max, 1923-2013

    2002-01-01

    President Rüütel andis Soome tuntud diplomaadile ja Inimsusevastaste Kuritegude Uurimise Rahvusvahelise Komisjoni (IKURK) esimehele Max Jakobsonile Maarjamaa Risti I klassi teenetemärgi. Tseremooniajärgne intervjuu Max Jakobsoniga

  10. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  11. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer.

    Science.gov (United States)

    Chen, H; Liu, W; Roberts, W; Hooker, S; Fedor, H; DeMarzo, A; Isaacs, W; Kittles, R A

    2010-09-01

    Four independent regions within 8q24 near the MYC gene are associated with risk for prostate cancer (Pca). Here, we investigated allelic imbalance (AI) at 8q24 risk variants and MYC gene DNA copy number (CN) in 27 primary Pcas. Heterozygotes were observed in 24 of 27 patients at one or more 8q24 markers and 27% of the loci exhibited AI in tumor DNA. The 8q24 risk alleles were preferentially favored in the tumors. Increased MYC gene CN was observed in 33% of tumors, and the co-existence of increased MYC gene CN with AI at risk loci was observed in 86% (P<0.004 exact binomial test) of the informative tumors. No AI was observed in tumors, which did not reveal increased MYC gene CN. Higher Gleason score was associated with tumors exhibiting AI (P=0.04) and also with increased MYC gene CN (P=0.02). Our results suggest that AI at 8q24 and increased MYC gene CN may both be related to high Gleason score in Pca. Our findings also suggest that these two somatic alterations may be due to the same preferential chromosomal duplication event during prostate tumorigenesis.

  12. Identification and genetic characterization of unique HIV-1 A1/C recombinant strain in South Africa.

    Science.gov (United States)

    Musyoki, Andrew M; Rakgole, Johnny N; Selabe, Gloria; Mphahlele, Jeffrey

    2015-03-01

    HIV isolates from South Africa are predominantly subtype C. Sporadic isolation of non-C strains has been reported mainly in cosmopolitan cities. HIV isolate j51 was recovered from a rural South African heterosexual female aged 51 years. Near full length amplification of the genome was attempted using PCR with primers targeting overlapping segments of the HIV genome. Analysis of 5593 bp (gag to vpu) at a bootstrap value greater than 70% found that all but the vpu gene was HIV-1 subtype A1. The vpu gene was assigned HIV-1 subtype C. The recombination breaking point was estimated at position 6035+/- 15 bp with reference to the beginning of the HXB2 reference strain. Isolate j51 revealed a unique genome constellation to previously reported recombinant strains with parental A/C backbones from South Africa though a common recombination with subtype C within the vpu gene. Identification of recombinant strains supports continued surveillance of HIV genetic diversity.

  13. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.

    Science.gov (United States)

    Felsenstein, Kenneth M; Saunders, Lindsey B; Simmons, John K; Leon, Elena; Calabrese, David R; Zhang, Shuling; Michalowski, Aleksandra; Gareiss, Peter; Mock, Beverly A; Schneekloth, John S

    2016-01-15

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  14. Regulation of c–myc expression by IFN–γ through Stat1-dependent and -independent pathways

    Science.gov (United States)

    Ramana, Chilakamarti V.; Grammatikakis, Nicholas; Chernov, Mikhail; Nguyen, Hannah; Goh, Kee Chuan; Williams, Bryan R.G.; Stark, George R.

    2000-01-01

    Interferons (IFNs) inhibit cell growth in a Stat1-dependent fashion that involves regulation of c–myc expression. IFN–γ suppresses c–myc in wild-type mouse embryo fibroblasts, but not in Stat1-null cells, where IFNs induce c–myc mRNA rapidly and transiently, thus revealing a novel signaling pathway. Both tyrosine and serine phosphorylation of Stat1 are required for suppression. Induced expression of c–myc is likely to contribute to the proliferation of Stat1-null cells in response to IFNs. IFNs also suppress platelet-derived growth factor (PDGF)-induced c–myc expression in wild-type but not in Stat1-null cells. A gamma-activated sequence element in the promoter is necessary but not sufficient to suppress c–myc expression in wild-type cells. In PKR-null cells, the phosphorylation of Stat1 on Ser727 and transactivation are both defective, and c–myc mRNA is induced, not suppressed, in response to IFN–γ. A role for Raf–1 in the Stat1-independent pathway is revealed by studies with geldanamycin, an HSP90-specific inhibitor, and by expression of a mutant of p50cdc37 that is unable to recruit HSP90 to the Raf–1 complex. Both agents abrogated the IFN–γ-dependent induction of c–myc expression in Stat1-null cells. PMID:10637230

  15. Germline Mutations in Mtap Cooperate with Myc to Accelerate Tumorigenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Yuwaraj Kadariya

    Full Text Available The gene encoding the methionine salvage pathway methylthioadenosine phosphorylase (MTAP is a tumor suppressor gene that is frequently inactivated in a wide variety of human cancers. In this study, we have examined if heterozygosity for a null mutation in Mtap (Mtap(lacZ could accelerate tumorigenesis development in two different mouse cancer models, Eμ-myc transgenic and Pten(+/- .Mtap Eμ-myc and Mtap Pten mice were generated and tumor-free survival was monitored over time. Tumors were also examined for a variety of histological and protein markers. In addition, microarray analysis was performed on the livers of Mtap(lacZ/+ and Mtap (+/+ mice.Survival in both models was significantly decreased in Mtap(lacZ/+ compared to Mtap(+/+ mice. In Eµ-myc mice, Mtap mutations accelerated the formation of lymphomas from cells in the early pre-B stage, and these tumors tended to be of higher grade and have higher expression levels of ornithine decarboxylase compared to those observed in control Eµ-myc Mtap(+/+ mice. Surprisingly, examination of Mtap status in lymphomas in Eµ-myc Mtap(lacZ/+ and Eµ-myc Mtap(+/+ animals did not reveal significant differences in the frequency of loss of Mtap protein expression, despite having shorter latency times, suggesting that haploinsufficiency of Mtap may be playing a direct role in accelerating tumorigenesis. Consistent with this idea, microarray analysis on liver tissue from age and sex matched Mtap(+/+ and Mtap(lacZ/+ animals found 363 transcripts whose expression changed at least 1.5-fold (P<0.01. Functional categorization of these genes reveals enrichments in several pathways involved in growth control and cancer.Our findings show that germline inactivation of a single Mtap allele alters gene expression and enhances lymphomagenesis in Eµ-myc mice.

  16. Remembering Max Boisot

    DEFF Research Database (Denmark)

    Sanchez, Ron

    2013-01-01

    This chapter offers some reflections on Max Boisot and his extraordinary intellect drawn from our 15 years of exchanging and crafting ideas together. I first comment on the process of working with Max, and then suggest some of the remarkable qualities of thought that I believe distinguished Max's...... these qualities of thought are also reflected in Max's individual work and especially in his crowning achievement, the Information-Space Model....

  17. Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP

    DEFF Research Database (Denmark)

    Tzankov, Alexandar; Xu-Monette, Zijun Y; Gerhard, Marc

    2014-01-01

    In order to address the debatable prognostic role of MYC rearrangements in diffuse large B-cell lymphoma patients treated with rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisone, we evaluated MYC rearrangements by fluorescence in situ hybridization in 563 cases using...... with the dual-fusion probes, 15 detectable only with the break-apart probes and 20 detectable with both dual-fusion probes and break-apart probes. MYC rearrangements correlated with germinal center B-cell origin (P=0.02), MYC protein expression (P=0.032), and larger tumor mass size (P=0.0003). Patients with MYC...... was prognostically additive. Radiotherapy seemed to diminish the prognostic effects of MYC rearrangements in diffuse large B-cell lymphoma patients since only 2/10 irradiated patients with MYC rearrangements died of/with disease, compared with 16/28 non-irradiated patients with MYC rearrangements. We conclude...

  18. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  19. MYC RNAi-Pt Combination Nanotherapy for Metastatic Prostate Cancer Treatment

    Science.gov (United States)

    2017-10-01

    are the accomplishments for each subtask. 15. SUBJECT TERMS Nanotechnology , nanoparticle, siRNA delivery, platinum, MYC, prostate cancer, drug...determination of the efficacy of select NPs in the B13MYC/Cre|Ptenfl/fl engineered PCa mouse model. This project is directed by an interdisciplinary...JHU), and two co-investigators (Dr. Srinivasan Yegnasubramanian from JHU and Dr. Jinjun Shi from BWH/HMS). 3 2. KEYWORDS Nanotechnology

  20. An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma.

    Science.gov (United States)

    Lollies, A; Hartmann, S; Schneider, M; Bracht, T; Weiß, A L; Arnolds, J; Klein-Hitpass, L; Sitek, B; Hansmann, M-L; Küppers, R; Weniger, M A

    2018-01-01

    Classical Hodgkin lymphoma (cHL) and anaplastic large cell lymphoma (ALCL) feature high expression of activator protein-1 (AP-1) transcription factors, which regulate various physiological processes but also promote lymphomagenesis. The AP-1 factor basic leucine zipper transcription factor, ATF-like 3 (BATF3), is highly transcribed in cHL and ALCL; however, its functional importance in lymphomagenesis is unknown. Here we show that proto-typical CD30 + lymphomas, namely cHL (21/30) and primary mediastinal B-cell lymphoma (8/9), but also CD30 + diffuse large B-cell lymphoma (15/20) frequently express BATF3 protein. Mass spectrometry and co-immunoprecipitation established interactions of BATF3 with JUN and JUNB in cHL and ALCL lines. BATF3 knockdown using short hairpin RNAs was toxic for cHL and ALCL lines, reducing their proliferation and survival. We identified MYC as a critical BATF3 target and confirmed binding of BATF3 to the MYC promoter. JAK/STAT signaling regulated BATF3 expression, as chemical JAK2 inhibition reduced and interleukin 13 stimulation induced BATF3 expression in cHL lines. Chromatin immunoprecipitation substantiated a direct regulation of BATF3 by STAT proteins in cHL and ALCL lines. In conclusion, we identified STAT-mediated BATF3 expression that is essential for lymphoma cell survival and promoted MYC activity in cHL and ALCL, hence we recognized a new oncogenic axis in these lymphomas.

  1. Evidence of recombination in Hepatitis C Virus populations infecting a hemophiliac patient

    Directory of Open Access Journals (Sweden)

    Cristina Juan

    2009-11-01

    Full Text Available Abstract Background/Aim Hepatitis C virus (HCV infection is an important cause of morbidity and mortality in patients affected by hereditary bleeding disorders. HCV, as others RNA virus, exploit all possible mechanisms of genetic variation to ensure their survival, such as recombination and mutation. In order to gain insight into the genetic variability of HCV virus strains circulating in hemophiliac patients, we have performed a phylogenetic analysis of HCV strains isolated from 10 patients with this kind of pathology. Methods Putative recombinant sequence was identified with the use of GARD program. Statistical support for the presence of a recombination event was done by the use of LARD program. Results A new intragenotypic recombinant strain (1b/1a was detected in 1 out of the 10 hemophiliac patient studied. The recombination event was located at position 387 of the HCV genome (relative to strain AF009606, sub-type 1a corresponding to the core gene region. Conclusion Although recombination may not appear to be common among natural populations of HCV it should be considered as a possible mechanism for generating genetic diversity in hemophiliacs patients.

  2. AuroraMAX!

    Science.gov (United States)

    Donovan, E.; Spanswick, E. L.; Chicoine, R.; Pugsley, J.; Langlois, P.

    2011-12-01

    AuroraMAX is a public outreach and education initiative that brings auroral images to the public in real time. AuroraMAX utilizes an observing station located just outside Yellowknife, Canada. The station houses a digital All-Sky Imager (ASI) that collects full-colour images of the night sky every six seconds. These images are then transmitted via satellite internet to our web server, where they are made instantly available to the public. Over the last two years this program has rapidly become one of the most successful outreach programs in the history of Space Science in Canada, with hundreds of thousands of distinct visitors to the CSA AuroraMAX website, thousands of followers on social media, and hundreds of newspaper, magazine, radio, and television spots. Over the next few years, the project will expand to include a high-resolution SLR delivering real-time auroral images (also from Yellowknife), as well as a program where astronauts on the ISS will take pictures of the aurora with a handheld SLR. The objectives of AuroraMAX are public outreach and education. The ASI design, operation, and software were based on infrastructure that was developed for the highly successful ASI component of the NASA THEMIS mission as well as the Canadian Space Agency (CSA) Canadian GeoSpace Monitoring (CGSM) program. So from an education and public outreach perspective, AuroraMAX is a single camera operating in the Canadian north. On the other hand, AuroraMAX is one of nearly 40 All-Sky Imagers that are operating across North America. The AuroraMAX camera produces data that is seamlessly integrated with the CGSM ASI data, and made widely available to the Space Science community through open-access web and FTP sites. One of our objectives in the next few years is to incorporate some of the data from the THEMIS and CGSM imagers into the AuroraMAX system, to maximize viewing opportunities and generate more real-time data for public outreach. This is an exemplar of a program that

  3. Productive Homologous and Non-homologous Recombination of Hepatitis C Virus in Cell Culture

    Science.gov (United States)

    Li, Yi-Ping; Mikkelsen, Lotte S.; Gottwein, Judith M.; Bukh, Jens

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported. In addition, recombination is an important regulatory mechanism of cytopathogenicity for the related pestiviruses. Here we describe recombination of HCV RNA in cell culture leading to production of infectious virus. Initially, hepatoma cells were co-transfected with a replicating JFH1ΔE1E2 genome (genotype 2a) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13–36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6 sequence from the 5′ end to the NS2–NS3 region followed by JFH1 sequence from Core to the 3′ end. These recombinants carried duplicated sequence of up to 2400 nucleotides. HCV replication was not required for recombination, as recombinants were observed in most experiments even when two replication incompetent genomes were co-transfected. Reverse genetic studies verified the viability of representative recombinants. After serial passage, subsequent recombination events reducing or eliminating the duplicated region were observed for some but not all recombinants. Furthermore, we found that inter-genotypic recombination could occur, but at a lower frequency than intra-genotypic recombination. Productive recombination of attenuated HCV genomes depended on expression of all HCV proteins and tolerated duplicated sequence. In general, no strong site specificity was observed. Non-homologous recombination was observed in most cases, while few homologous events were identified. A better understanding of HCV recombination could help identification of natural recombinants

  4. Genetic dissimilarity between primary colorectal carcinomas and their lymph node metastases: ploidy, p53, bcl-2, and c-myc expression--a pilot study.

    Science.gov (United States)

    Zalata, Khaled Refaat; Elshal, Mohamed Farouk; Foda, Abd AlRahman Mohammad; Shoma, Ashraf

    2015-08-01

    The current paradigm of metastasis proposes that rare cells within primary tumors acquire metastatic capability via sequential mutations, suggesting that metastases are genetically dissimilar from their primary tumors. This study investigated the changes in the level of expression of a well-defined panel of cell proliferation, differentiation, and apoptosis markers between the primary colorectal cancer (CRC) and the corresponding synchronous lymph node (LN) metastasis from the same patients. DNA flow cytometry and immunostaining of p53, bcl-2, and c-myc were carried out on 36 cases of CRC radical resection specimens with their corresponding LN metastases. There was very low probability that the histological patterns of primary tumors and LN metastases are independent (p < 0.001). Metastatic tumors were significantly more diffusely positive for p53 than the primary tumors (p < 0.001). Conversely, primary tumors were significantly more diffusely positive for c-myc than metastatic tumors (p = 0.011). No significant difference was found between the LNs and the primary tumors in bcl-2 positivity (p = 0.538) and DNA aneuploidy (p = 0.35), with a tendency towards negative bcl-2 and less aneuploidy in LN metastases than primary tumors. In conclusion, LN metastatic colorectal carcinomas have a tendency of being less differentiated, with a higher incidence of diffuse p53 staining, lower incidence of bcl-2 staining, and less aneuploidy in comparison to their primary counterparts suggesting a more aggressive biological behavior, which could indicate the necessity for more aggressive adjuvant therapy.

  5. PET/CT imaging of c-Myc transgenic mice identifies the genotoxic N-nitroso-diethylamine as carcinogen in a short-term cancer bioassay.

    Directory of Open Access Journals (Sweden)

    Katja Hueper

    Full Text Available BACKGROUND: More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay. METHODOLOGY/PRINCIPAL FINDINGS: μCT and ¹⁸F-FDG μPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced μCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis. CONCLUSIONS/SIGNIFICANCE: The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgenic animal models may possibly enable short-term cancer bioassays to significantly improve hazard identification and follow-up examinations of different organs by non-invasive methods.

  6. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China.

    Directory of Open Access Journals (Sweden)

    Tiezhu Liu

    Full Text Available Tibet is a highly hepatitis B virus (HBV endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet.

  7. MYC Amplification in Angiosarcoma Arising from an Arteriovenous Graft Site

    Directory of Open Access Journals (Sweden)

    Kristen M. Paral

    2015-01-01

    Full Text Available Angiosarcoma arising in association with an arteriovenous graft (AVG or fistula is a unique clinicopathologic scenario that appears to be gaining recognition in the literature. Among reported cases, none has described high-level MYC gene amplification, a genetic aberration that is increasingly unifying the various clinicopathologic subdivisions of angiosarcoma. We therefore report the MYC gene status in a case of angiosarcoma arising at an AVG site.

  8. Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    NARCIS (Netherlands)

    Schaub, Franz X.; Dhankani, Varsha; Berger, Ashton C.; Trivedi, Mihir; Richardson, Anne B.; Shaw, Reid; Zhao, Wei; Zhang, Xiaoyang; Ventura, Andrea; Liu, Yuexin; Ayer, Donald E.; Hurlin, Peter J.; Cherniack, Andrew D.; Eisenman, Robert N.; Bernard, Brady; Grandori, Carla; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz

    2018-01-01

    Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic

  9. Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells

    International Nuclear Information System (INIS)

    Han, Seong-Su; Tompkins, Van S.; Son, Dong-Ju; Kamberos, Natalie L.; Stunz, Laura L.; Halwani, Ahmad; Bishop, Gail A.; Janz, Siegfried

    2013-01-01

    Highlights: •Mouse model of human Burkitt lymphoma revealed cancer inhibition by PL. •Treatment with PL led to apoptosis of malignant but not normal B cells. •PL inhibited LMP1–NF-κB–Myc-dependent target genes including p21-encoding Cdkn1a. •PL holds promise for new interventions approaches to hematologic malignancies. -- Abstract: Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMyc Eμ . PL inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplastic but not normal B cells. Treatment with PL resulted in downregulation of EBV-encoded LMP1, cellular Myc, constitutive NF-κB activity, and a host of LMP1-Myc-NF-κB-regulated target genes including Aurka, Bcat1, Bub1b, Ccnb1, Chek1, Fancd2, Tfrc and Xrcc6. Of note, p21 Cip1 -encoding Cdkn1a was suppressed independent of changes in Trp53 mRNA levels and p53 DNA-binding activity. Considering the central role of the LMP1–NF-κB–Myc axis in B-lineage neoplasia, these findings further our understanding of the mechanisms by which PL inhibits B-lymphoma and provide a preclinical rationale for the inclusion of PL in new interventions in blood cancers

  10. Piperlongumine inhibits LMP1/MYC-dependent mouse B-lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su; Tompkins, Van S. [Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Son, Dong-Ju [Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA (United States); Kamberos, Natalie L. [Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Stunz, Laura L. [Deparment of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Iowa City VAMC, Iowa City, IA (United States); Halwani, Ahmad [Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Bishop, Gail A. [Deparment of Microbiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Iowa City VAMC, Iowa City, IA (United States); Janz, Siegfried, E-mail: siegfried-janz@uiowa.edu [Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2013-07-12

    Highlights: •Mouse model of human Burkitt lymphoma revealed cancer inhibition by PL. •Treatment with PL led to apoptosis of malignant but not normal B cells. •PL inhibited LMP1–NF-κB–Myc-dependent target genes including p21-encoding Cdkn1a. •PL holds promise for new interventions approaches to hematologic malignancies. -- Abstract: Piperlongumine (PL), isolated from the fruit of Long pepper, Piper longum, is a cancer-inhibiting compound that selectively kills tumor cells while sparing their normal counterparts. Here we evaluated the efficacy with which PL suppresses malignant B cells derived from a newly developed, double-transgenic mouse model of human endemic Burkitt lymphoma (BL), designated mCD40-LMP1/iMyc{sup Eμ}. PL inhibited tumor cell proliferation in a concentration-dependent manner and induced apoptosis of neoplastic but not normal B cells. Treatment with PL resulted in downregulation of EBV-encoded LMP1, cellular Myc, constitutive NF-κB activity, and a host of LMP1-Myc-NF-κB-regulated target genes including Aurka, Bcat1, Bub1b, Ccnb1, Chek1, Fancd2, Tfrc and Xrcc6. Of note, p21{sup Cip1}-encoding Cdkn1a was suppressed independent of changes in Trp53 mRNA levels and p53 DNA-binding activity. Considering the central role of the LMP1–NF-κB–Myc axis in B-lineage neoplasia, these findings further our understanding of the mechanisms by which PL inhibits B-lymphoma and provide a preclinical rationale for the inclusion of PL in new interventions in blood cancers.

  11. Acute myeloid leukaemia: expression of MYC protein and its association with cytogenetic risk profile and overall survival.

    Science.gov (United States)

    Mughal, Muhammad Kashif; Akhter, Ariz; Street, Lesley; Pournazari, Payam; Shabani-Rad, Meer-Taher; Mansoor, Adnan

    2017-09-01

    Acute myeloid leukaemia (AML) is a clinically aggressive disease with marked genetic heterogeneity. Cytogenetic abnormalities provide the basis for risk stratification into clinically favourable, intermediate, and unfavourable groups. There are additional genetic mutations, which further influence the prognosis of patients with AML. Most of these result in molecular aberrations whose downstream target is MYC. It is therefore logical to study the relationship between MYC protein expression and cytogenetic risk groups. We studied MYC expression by immunohistochemistry in a large cohort (n = 199) of AML patients and correlated these results with cytogenetic risk profile and overall survival (OS). We illustrated differential expression of MYC protein across various cytogenetic risk groups (p = 0.03). Highest expression of MYC was noted in AML patients with favourable cytogenetic risk group. In univariate analysis, MYC expression showed significant negative influence of OS in favourable and intermediate cytogenetic risk group (p = 0.001). Interestingly, MYC expression had a protective effect in the unfavourable cytogenetic risk group. In multivariate analysis, while age and cytogenetic risk group were significant factors influencing survival, MYC expression by immunohistochemistry methods also showed some marginal impact (p = 0.069). In conclusion, we have identified differential expression of MYC protein in relation to cytogenetic risk groups in AML patients and documented its possible impact on OS in favourable and intermediate cytogenetic risk groups. These preliminary observations mandate additional studies to further investigate the routine clinical use of MYC protein expression in AML risk stratification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Microstructure and Oxidation of a MAX Phase/Superalloy Hybrid Interface

    Science.gov (United States)

    Smialek, James L.; Garg, Anita

    2014-01-01

    Corrosion resistant, strain tolerant MAX phase coatings are of interest for turbine applications. Thin Cr2AlC MAX phase wafers were vacuum diffusion bonded to an advanced turbine disk alloy, LSHR, at 1100 C. The interface, examined by optical and scanning electron microscopy, revealed a primary diffusion zone consisting of 10 micrometers of beta-Ni(Co)Al, decorated with various NiCoCrAl, MC and M3B2 precipitates. On the Cr2AlC side, an additional 40 micrometers Al-depletion zone of Cr7C3 formed in an interconnected network with the beta-Ni(Co)Al. Oxidation of an exposed edge at 800 C for 100 h produced a fine-grained lenticular alumina scale over Cr2AlC and beta-Ni(Co)Al, with coarser chromia granules over the Cr7C3 regions. Subsequent growth of the diffusion layers was only 5 micrometers in total. A residual stress of 500 MPa was estimated for the MAX phase layer, but no interfacial damage was observed. Subsequent tests for 1000 h reveal similar results.

  13. MYC RNAi-Pt Combination Nanotherapy for Metastatic Prostate Cancer Treatment

    Science.gov (United States)

    2017-10-01

    encouraged and supported to attend local seminars, workshops, national conferences, and advanced education courses to present their research work...cytotoxicity studies with Pt-naïve and Pt-resistant PCa cells; and (ii) evaluate the therapeutic efficacy of MYC-Pt NPs in PC3 cell line- based xenograft and... therapeutic NPs. We have also carried out RNAseq experiments on the BMPC and GEM models that will lay the groundwork for deriving our MYC signature that

  14. Expression Analysis of p16, c-Myc, and mSin3A in Non-small Cell Lung Cancer by Computer Aided Scoring and Analysis (CASA).

    Science.gov (United States)

    Salmaninejad, Arash; Estiar, Mehrdad Asghari; Gill, Rajbir K; Shih, Joanna H; Hewitt, Stephen; Jeon, Hyo-Sung; Fukuoka, Junya; Shilo, Konstantin; Shakoori, Abbas; Jen, Jin

    2015-01-01

    Immunohistochemical analysis (IHC) of tissue microarray (TMA) slides enables large sets of tissue samples to be analyzed simultaneously on a single slide. However, manual evaluation of small cores on a TMA slide is time consuming and error prone. We describe a computer aided scoring and analysis (CASA) method to allow facile and reliable scoring of IHC staining using TMA containing 300 non-small cell lung cancer (NSCLC) cases. In the two previous published papers utilizing our TMA slides of lung cancer we examined 18 proteins involved in the chromatin machinery. We developed our study using more proteins of the chromatin complex and several transcription factors that facilitate the chromatin machinery. Then, a total of 78 antibodies were evaluated by CASA to derive a normalized intensity value that correlated with the overall staining status of the targeting protein. The intensity values for TMA cores were then examined for association to clinical variables and predictive significance individually and with other factors. RESULTs: Using our TMA, the intensity of several protein pairs were significantly correlated with an increased risk of death in NSCLC. These included c-Myc with p16, mSin3A with p16 and c-Myc with mSinA. Predictive values of these pairs remained significant when evaluated based on standard IHC scores. Our results demonstrate the usefulness of CASA as a valuable tool for systematic assessment of TMA slides to identify potential predictive biomarkers using a large set of primary human tissues.

  15. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    International Nuclear Information System (INIS)

    Gao, Feng-Hou; Liu, Feng; Zhao, Ying-Zheng; Fang, Yong; Chen, Fang-Yuan; Wu, Ying-Li; Hu, Xiao-Hui; Li, Wei; Liu, Hua; Zhang, Yan-Jie; Guo, Zhu-Ying; Xu, Mang-Hua; Wang, Shi-Ting; Jiang, Bin

    2010-01-01

    Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg) for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4) hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment

  16. Oridonin induces apoptosis and senescence in colorectal cancer cells by increasing histone hyperacetylation and regulation of p16, p21, p27 and c-myc

    Directory of Open Access Journals (Sweden)

    Zhao Ying-Zheng

    2010-11-01

    Full Text Available Abstract Background Oridonin, a tetracycline diterpenoid compound, has the potential antitumor activities. Here, we evaluate the antitumor activity and action mechanisms of oridonin in colorectal cancer. Methods Effects of oridonin on cell proliferation were determined by using a CCK-8 Kit. Cell cycle distribution was determined by flow cytometry. Apoptosis was examined by analyzing subdiploid population and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Senescent cells were determined by senescence-associated β-galactosidase activity analysis. Semi-quantitative RT-PCR was used to examine the changes of mRNA of p16, p21, p27 and c-myc. The concomitant changes of protein expression were analyzed with Western blot. Expression of AcH3 and AcH4 were examined by immunofluorescence staining and Western blots. Effects of oridonin on colony formation of SW1116 were examined by Soft Agar assay. The in vivo efficacy of oridonin was detected using a xenograft colorectal cancer model in nude mice. Results Oridonin induced potent growth inhibition, cell cycle arrest, apoptosis, senescence and colony-forming inhibition in three colorectal cancer cell lines in a dose-dependent manner in vitro. Daily i.p. injection of oridonin (6.25, 12.5 or 25 mg/kg for 28 days significantly inhibited the growth of SW1116 s.c. xenografts in BABL/C nude mice. With western blot and reverse transcription-PCR, we further showed that the antitumor activities of oridonin correlated with induction of histone (H3 and H4 hyperacetylation, activation of p21, p27 and p16, and suppression of c-myc expression. Conclusion Oridonin possesses potent in vitro and in vivo anti-colorectal cancer activities that correlated with induction of histone hyperacetylation and regulation of pathways critical for maintaining growth inhibition and cell cycle arrest. Therefore, oridonin may represent a novel therapeutic option in colorectal cancer treatment.

  17. The FDA approved PI3K inhibitor GDC-0941 enhances in vitro the anti-neoplastic efficacy of Axitinib against c-myc-amplified high-risk medulloblastoma.

    Science.gov (United States)

    Ehrhardt, Michael; Craveiro, Rogerio B; Velz, Julia; Olschewski, Martin; Casati, Anna; Schönberger, Stefan; Pietsch, Torsten; Dilloo, Dagmar

    2018-04-01

    Aberrant receptor kinase signalling and tumour neovascularization are hallmarks of medulloblastoma development and are both considered valuable therapeutic targets. In addition to VEGFR1/2, expression of PDGFR α/β in particular has been documented as characteristic of metastatic disease correlating with poor prognosis. Therefore, we have been suggested that the clinically approved multi-kinase angiogenesis inhibitor Axitinib, which specifically targets these kinases, might constitute a promising option for medulloblastoma treatment. Indeed, our results delineate anti-neoplastic activity of Axitinib in medulloblastoma cell lines modelling the most aggressive c-myc-amplified Non-WNT/Non-SHH and SHH-TP53-mutated tumours. Exposure of medulloblastoma cell lines to Axitinib results in marked inhibition of proliferation and profound induction of cell death. The differential efficacy of Axitinib is in line with target expression of medulloblastoma cells identifying VEGFR 1/2, PDGFR α/β and c-kit as potential markers for drug application. The high specificity of Axitinib and the consequential low impact on the haematopoietic and immune system render this drug ideal multi-modal treatment approaches. In this context, we demonstrate that the clinically available PI3K inhibitor GDC-0941 enhances the anti-neoplastic efficacy of Axitinib against c-myc-amplified medulloblastoma. Our findings provide a rational to further evaluate Axitinib alone and in combination with other therapeutic agents for the treatment of most aggressive medulloblastoma subtypes. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer.

    Science.gov (United States)

    Yeung, S J; Pan, J; Lee, M-H

    2008-12-01

    Despite diversity in genetic events in oncogenesis, cancer cells exhibit a common set of functional characteristics. Otto Warburg discovered that cancer cells have consistently higher rates of glycolysis than normal cells. The underlying mechanisms leading to the Warburg phenomenon include mitochondrial changes, upregulation of rate-limiting enzymes/proteins in glycolysis and intracellular pH regulation, hypoxia-induced switch to anaerobic metabolism, and metabolic reprogramming after loss of p53 function. The regulation of energy metabolism can be traced to a "triad" of transcription factors: c-MYC, HIF-1 and p53. Oncogenetic changes involve a nonrandom set of gene deletions, amplifications and mutations, and many oncogenes and tumor suppressor genes cluster along the signaling pathways that regulate c-MYC, HIF-1 and p53. Glycolysis in cancer cells has clinical implications in cancer diagnosis, treatment and interaction with diabetes mellitus. Many drugs targeting energy metabolism are in development. Future advances in technology may bring about transcriptome and metabolome-guided chemotherapy.

  19. Prognostic impact of concurrent MYC and BCL6 rearrangements and expression in de novo diffuse large B-cell lymphoma

    DEFF Research Database (Denmark)

    Ye, Qing; Xu-Monette, Zijun Y; Tzankov, Alexandar

    2016-01-01

    Double-hit B-cell lymphoma is a common designation for a group of tumors characterized by concurrent translocations of MYC and BCL2, BCL6, or other genes. The prognosis of concurrent MYC and BCL6 translocations is not well known. In this study, we assessed rearrangements and expression of MYC, BCL2...... frequent in activated B-cell like diffuse large B-cell lymphoma). In summary, diffuse large B-cell lymphoma patients with either MYC/BCL6 rearrangements or MYC/BCL6 co-expression did not always have poorer prognosis; MYC expression levels should be evaluated simultaneously; and double-hit B-cell lymphoma...

  20. Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, Craig; Loizou, George D; Cocker, John; Lennard, Martin S

    2004-03-07

    The enzyme kinetics of the initial hydroxylation of ethylbenzene to form 1-phenylethanol were determined in human liver microsomes. The individual cytochrome P450 (CYP) forms catalysing this reaction were identified using selective inhibitors and recombinant preparations of hepatic CYPs. Production of 1-phenylethanol in hepatic microsomes exhibited biphasic kinetics with a high affinity, low Km, component (mean Km = 8 microM; V(max) = 689 pmol/min/mg protein; n = 6 livers) and a low affinity, high Km, component (Km = 391 microM; V(max) = 3039 pmol/min/mg protein; n = 6). The high-affinity component was inhibited 79%-95% (mean 86%) by diethyldithiocarbamate, and recombinant CYP2E1 was shown to metabolise ethylbenzene with low Km (35 microM), but also low (max) (7 pmol/min/pmol P450), indicating that this isoform catalysed the high-affinity component. Recombinant CYP1A2 and CYP2B6 exhibited high V(max) (88 and 71 pmol/min/pmol P450, respectively) and high Km (502 and 219 microM, respectively), suggesting their involvement in catalysing the low-affinity component. This study has demonstrated that CYP2E1 is the major enzyme responsible for high-affinity side chain hydroxylation of ethylbenzene in human liver microsomes. Activity of this enzyme in the population is highly variable due to induction or inhibition by physiological factors, chemicals in the diet or some pharmaceuticals. This variability can be incorporated into the risk assessment process to improve the setting of occupational exposure limits and guidance values for biological monitoring.

  1. First report of an HIV-1 triple recombinant of subtypes B, C and F in Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Weissenbacher Mercedes

    2006-09-01

    Full Text Available Abstract We describe the genetic diversity of currently transmitted strains of HIV-1 in men who have sex with men (MSM in Buenos Aires, Argentina between 2000 and 2004. Nearly full-length sequence analysis of 10 samples showed that 6 were subtype B, 3 were BF recombinant and 1 was a triple recombinant of subtypes B, C and F. The 3 BF recombinants were 3 different unique recombinant forms. Full genome analysis of one strain that was subtype F when sequenced in pol was found to be a triple recombinant. Gag and pol were predominantly subtype F, while gp120 was subtype B; there were regions of subtype C interspersed throughout. The young man infected with this strain reported multiple sexual partners and sero-converted between May and November of 2004. This study reported for the first time the full genome analysis of a triple recombinant between subtypes B, C and F, that combines in one virus the three most common subtypes in South America.

  2. On the Potential of MAX phases for Nuclear Applications

    Science.gov (United States)

    Tallman, Darin Joseph

    Materials within nuclear reactors experience some of the harshest environments currently known to man, including long term operation in extreme temperatures, corrosive media, and fast neutron fluences with up to 100 displacements per atom, dpa. In order to improve the efficiency and safety of current and future reactors, new materials are required to meet these harsh demands. The M n+1AXn phases, a growing family of ternary nano-layered ceramics, possess a desirable combination of metallic and ceramic properties. They are composed of an early transition metal (M), a group 13--16 element (A), and carbon and/or nitrogen (X). The MAX phases are being proposed for use in such extreme environments because of their unique combination of high fracture toughness values and thermal conductivities, machinability, oxidation resistance, and ion irradiation damage tolerance. Previous ion irradiation studies have shown that Ti3SiC2 and Ti3AlC2 resist irradiation damage, maintaining crystallinity up to 50 dpa. The aim of this work was to explore the effect of neutron irradiation, up to 9 dpa and at temperatures of 100 to 1000 °C, on select MAX phases for the first time. The MAX phases Ti3SiC2, Ti 3AlC2, Ti2AlC, and Ti2AlN were synthesized, and irradiated in test reactors that simulate in-pile conditions of nuclear reactors. X-ray diffraction, XRD, pattern refinements of samples revealed a distortion of the crystal lattice after low temperature irradiation, which was not observed after high temperature irradiations. Additionally, the XRD results indicated that Ti3AlC2 and Ti2AlN dissociated after relatively low neutron doses. This led us to focus on Ti 3SiC2 and Ti2AlC. For the first time, dislocation loops were observed in Ti3SiC 2 and Ti2AlC as a result of neutron irradiation. At 1 x 1023 loops/m3, the loop density in Ti2 AlC after irradiation to 0.1 dpa at 700°C was 1.5 orders of magnitude greater than that observed in Ti3SiC2, at 3 x 1021 loops/m3. The Ti2AlC composition

  3. Monkey liver cytochrome P450 2C19 is involved in R- and S-warfarin 7-hydroxylation.

    Science.gov (United States)

    Hosoi, Yoshio; Uno, Yasuhiro; Murayama, Norie; Fujino, Hideki; Shukuya, Mitsunori; Iwasaki, Kazuhide; Shimizu, Makiko; Utoh, Masahiro; Yamazaki, Hiroshi

    2012-12-15

    Cynomolgus monkeys are widely used as primate models in preclinical studies. However, some differences are occasionally seen between monkeys and humans in the activities of cytochrome P450 enzymes. R- and S-warfarin are model substrates for stereoselective oxidation in humans. In this current research, the activities of monkey liver microsomes and 14 recombinantly expressed monkey cytochrome P450 enzymes were analyzed with respect to R- and S-warfarin 6- and 7-hydroxylation. Monkey liver microsomes efficiently mediated both R- and S-warfarin 7-hydroxylation, in contrast to human liver microsomes, which preferentially catalyzed S-warfarin 7-hydroxylation. R-Warfarin 7-hydroxylation activities in monkey liver microsomes were not inhibited by α-naphthoflavone or ketoconazole, and were roughly correlated with P450 2C19 levels and flurbiprofen 4-hydroxylation activities in microsomes from 20 monkey livers. In contrast, S-warfarin 7-hydroxylation activities were not correlated with the four marker drug oxidation activities used. Among the 14 recombinantly expressed monkey P450 enzymes tested, P450 2C19 had the highest activities for R- and S-warfarin 7-hydroxylations. Monkey P450 3A4 and 3A5 slowly mediated R- and S-warfarin 6-hydroxylations. Kinetic analysis revealed that monkey P450 2C19 had high V(max) and low K(m) values for R-warfarin 7-hydroxylation, comparable to those for monkey liver microsomes. Monkey P450 2C19 also mediated S-warfarin 7-hydroxylation with V(max) and V(max)/K(m) values comparable to those for recombinant human P450 2C9. R-warfarin could dock favorably into monkey P450 2C19 modeled. These results collectively suggest high activities for monkey liver P450 2C19 toward R- and S-warfarin 6- and 7-hydroxylation in contrast to the saturation kinetics of human P450 2C9-mediated S-warfarin 7-hydroxylation. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Gabriele Büchel

    2017-12-01

    Full Text Available MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II. To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.

  5. Effect of stent absorbed c-myc antisense oligodeoxynucleotide on smooth muscle cells apoptosis in rabbit carotid artery%反义c-myc涂层支架对兔颈动脉细胞凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    张新霞; 崔长琮; 李江; 孟猛; 徐仓宝; 赵一岭

    2001-01-01

    目的:探讨铂-铱合金明胶蛋白涂层支架局部导入c-myc反义寡核苷酸(ASODN)对兔颈动脉细胞凋亡的影响,寻求防治支架内再狭窄的途径.方法:将携带c-myc ASODN的国产铂铱合金明胶蛋白涂层支架置入兔颈动脉(给药组,n=16),在术后7、14、30、90 d处死动物行苏木精-伊红和Weigert染色,图像分析测量新生内膜厚度和面积,c-myc蛋白免疫组化染色,采用末端脱氧核苷酸酶介导的dUTP缺口末端标记法检测细胞凋亡,并与对照组(n=16)进行对比分析.结果:两组支架术后7、1 4 d均未观察到平滑肌细胞凋亡,术后30 d在新生内膜中观察到明显的细胞凋亡,90 d时显著高于30 d;同时给药组平滑肌细胞的凋亡显著高于对照组.结论:c myc ASODN可诱导支架置入后平滑肌细胞凋亡,可用于防治再狭窄.

  6. Toughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    2017-03-01

    Full Text Available Advanced engineering and functional ceramics are sensitive to damage cracks, which delay the wide applications of these materials in various fields. Ceramic composites with enhanced fracture toughness may trigger a paradigm for design and application of the brittle components. This paper reviews the toughening mechanisms for the nanolayered MAX phase ceramics. The main toughening mechanisms for these ternary compounds were controlled by particle toughening, phase-transformation toughening and fiber-reinforced toughening, as well as texture toughening. Based on the various toughening mechanisms in MAX phase, models of SiC particles and fibers toughening Ti3SiC2 are established to predict and explain the toughening mechanisms. The modeling work provides insights and guidance to fabricate MAX phase-related composites with optimized microstructures in order to achieve the desired mechanical properties required for harsh application environments.

  7. PENGEMBANGAN PERSAMAAN VO2 MAX DAN EVALUASI HR MAX (STUDI AWAL PADA PEKERJA PRIA

    Directory of Open Access Journals (Sweden)

    Purnawan Adi Wicaksono

    2012-10-01

    Full Text Available Kapasitas fisik maksimum seseorang direpresentasikan dengan nilai konsumsi oksigen maksimum (VO2 Max dan denyut nadi maksimum (HR Max yang memberikan suatu informasi batasan kemampuan fisik maksimum seseorang dalam melakukan pekerjaan. Penelitian kali ini mempunyai tujuan untuk mencari nilai VO2 Max pekerja pria Indonesia untuk nantinya akan dikembangkan suatu persamaan prediksi VO2 Max yang didekati dengan hubungan linier antara denyut nadi (Heart Rate seperti yang dilakukan Astrand (2003, tinggi badan (Chatterjee et al, 2006, berat badan (Akalan et al, 2008, usia (Magrani et al, 2009 dan mengevaluasi persamaan HR Max manakah yang dapat diaplikasikan untuk mendekati nilai denyut nadi maksimum pekerja Indonesia. Responden dalam penelitian kali ini adalah 12  pekerja industri pria yang diambil dari beberapa industri di Depok dan sekitarnya. Kriteria responden yang berpartisipasi dalam penelitian kali ini adalah: berusia 20-40 tahun, bukan perokok baik aktif maupun pasif, sehat , tidak mengkonsumsi makanan, kafein, alkohol minimal 2 jam sebelum eksperimen (Balderrama et. al, 2007.Eksperimen yang dilakukan menggunakan metode maximal test dengan protokol treadmill. Adapun peralatan yang digunakan adalah seperangkat alat pengukur kondisi fisiologi Fitmate MED (COSMED srl-Italy terdiri dari Heart Rate Transmitter, Heart Rate Receiver, V mask (Hans Rudolph Inc,dan treadmill SportArt@60.  Eksperimen dilakukan menjadi dua bagian, yaitu istirahat dan tahap bekerja.Aktivitas istirahat terdiri dari tidur selama 20 menit, duduk selama 20 menit dan berdiri selama 10 menit. Eksperimen tahap kedua yaitu tahap kerja yang terdiri dari latihan selama 5 menit. Responden dipersilakan beristirahat selama 15 menit, setelah itu responden melaksanakan maximal test detik hingga responden merasa tidak sanggup lagi melanjutkan eksperimen. Hasil penelitian model prediksi VO2 max untuk pekerja industri pria mempunyai nilai 2,78 ± 0,5 liter/menit dan dengan regresi linier

  8. MYC Amplification as a Predictive Factor of Complete Pathologic Response to Docetaxel-based Neoadjuvant Chemotherapy for Breast Cancer.

    Science.gov (United States)

    Pereira, Cynthia Brito Lins; Leal, Mariana Ferreira; Abdelhay, Eliana Saul Furquim Werneck; Demachki, Sâmia; Assumpção, Paulo Pimentel; de Souza, Mirian Carvalho; Moreira-Nunes, Caroline Aquino; Tanaka, Adriana Michiko da Silva; Smith, Marília Cardoso; Burbano, Rommel Rodríguez

    2017-06-01

    Neoadjuvant chemotherapy is a standard treatment for stage II and III breast cancer. The identification of biomarkers that may help in the prediction of response to neoadjuvant therapies is necessary for a more precise definition of the best drug or drug combination to induce a better response. We assessed the role of Ki67, hormone receptors expression, HER2, MYC genes and their protein status, and KRAS codon 12 mutations as predictor factors of pathologic response to anthracycline-cyclophosphamide (AC) followed by taxane docetaxel (T) neoadjuvant chemotherapy (AC+T regimen) in 51 patients with invasive ductal breast cancer. After neoadjuvant chemotherapy, 82.4% of patients showed pathologic partial response, with only 9.8% showing pathologic complete response. In multivariate analysis, MYC immunoreactivity and high MYC gain defined as MYC/nucleus ≥ 5 were significant predictor factors for pathologic partial response. Using the receiver operating characteristic curve analysis, the ratio of 2.5 MYC/CEP8 (sensitivity of 80% and specificity of 89.1%) or 7 MYC/nuclei copies (sensitivity of 80% and specificity of 73.9%) as the best cutoff in predicting a pathologic complete response was identified. Thus, MYC may have a role in chemosensitivity to AC and/or docetaxel drugs. Additionally, MYC amplification may be a predictor factor of pathologic response to the AC+T regimen in patients with breast cancer. Moreover, patients with an increased number of MYC copies showed pathologic complete response to this neoadjuvant treatment more frequently. The analysis of MYC amplification may help in the identification of patients that may have a better response to AC+T treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies.

    Science.gov (United States)

    Ortega, M; Bhatnagar, H; Lin, A-P; Wang, L; Aster, J C; Sill, H; Aguiar, R C T

    2015-04-01

    Growing evidence suggests that microRNAs (miRNAs) facilitate the cross-talk between transcriptional modules and signal transduction pathways. MYC and NOTCH1 contribute to the pathogenesis of lymphoid malignancies. NOTCH induces MYC, connecting two signaling programs that enhance oncogenicity. Here we show that this relationship is bidirectional and that MYC, via a miRNA intermediary, modulates NOTCH. MicroRNA-30a (miR-30a), a member of a family of miRNAs that are transcriptionally suppressed by MYC, directly binds to and inhibits NOTCH1 and NOTCH2 expression. Using a murine model and genetically modified human cell lines, we confirmed that miR-30a influences NOTCH expression in a MYC-dependent fashion. In turn, through genetic modulation, we demonstrated that intracellular NOTCH1 and NOTCH2, by inducing MYC, suppressed miR-30a. Conversely, pharmacological inhibition of NOTCH decreased MYC expression and ultimately de-repressed miR-30a. Examination of genetic models of gain and loss of miR-30a in diffuse large B-cell lymphoma (DLBCL) and T-acute lymphoblastic leukemia (T-ALL) cells suggested a tumor-suppressive role for this miRNA. Finally, the activity of the miR-30a-NOTCH-MYC loop was validated in primary DLBCL and T-ALL samples. These data define the presence of a miRNA-mediated regulatory circuitry that may modulate the oncogenic signals originating from NOTCH and MYC.

  10. Effect of recombinant human erythropoietin expressions of apoptosis ...

    African Journals Online (AJOL)

    apoptosis genes in rats following traumatic brain injury. Xuesong Yuan1* ... ĸB)-, c-myc-, and Fas/Fasl-positive cells were identified in brain tissues by ... stem cells present in the bone marrow. ... neuronal regeneration [12], lowering toxicity of.

  11. Cosmic microwave background bispectrum from recombination.

    Science.gov (United States)

    Huang, Zhiqi; Vernizzi, Filippo

    2013-03-08

    We compute the cosmic microwave background temperature bispectrum generated by nonlinearities at recombination on all scales. We use CosmoLib2nd, a numerical Boltzmann code at second order to compute cosmic microwave background bispectra on the full sky. We consistently include all effects except gravitational lensing, which can be added to our result using standard methods. The bispectrum is peaked on squeezed triangles and agrees with the analytic approximation in the squeezed limit at the few percent level for all the scales where this is applicable. On smaller scales, we recover previous results on perturbed recombination. For cosmic-variance limited data to l(max)=2000, its signal-to-noise ratio is S/N=0.47, corresponding to f(NL)(eff)=-2.79, and will bias a local signal by f(NL)(loc) ~/= 0.82.

  12. LeMYC2 acts as a negative regulator of blue light mediated photomorphogenic growth, and promotes the growth of adult tomato plants

    Science.gov (United States)

    2014-01-01

    Background Arabidopsis ZBF1/MYC2bHLH transcription factor is a repressor of photomorphogenesis, and acts as a point of cross talk in light, abscisic acid (ABA) and jasmonic acid (JA) signaling pathways. MYC2 also functions as a positive regulator of lateral root development and flowering time under long day conditions. However, the function of MYC2 in growth and development remains unknown in crop plants. Results Here, we report the functional analyses of LeMYC2 in tomato (Lycopersicon esculentum). The amino acid sequence of LeMYC2 showed extensive homology with Arabidopsis MYC2, containing the conserved bHLH domain. To study the function of LeMYC2 in tomato, overexpression and RNA interference (RNAi) LeMYC2 tomato transgenic plants were generated. Examination of seedling morphology, physiological responses and light regulated gene expression has revealed that LeMYC2 works as a negative regulator of blue light mediated photomorphogenesis. Furthermore, LeMYC2 specifically binds to the G-box of LeRBCS-3A promoter. Overexpression of LeMYC2 has led to increased root length with more number of lateral roots. The tomato plants overexpressing LeMYC2 have reduced internode distance with more branches, and display the opposite morphology to RNAi transgenic lines. Furthermore, this study shows that LeMYC2 promotes ABA and JA responsiveness. Conclusions Collectively, this study highlights that working in light, ABA and JA signaling pathways LeMYC2 works as an important regulator for growth and development in tomato plants. PMID:24483714

  13. Near Full-Length Identification of a Novel HIV-1 CRF01_AE/B/C Recombinant in Northern Myanmar.

    Science.gov (United States)

    Zhou, Yan-Heng; Chen, Xin; Liang, Yue-Bo; Pang, Wei; Qin, Wei-Hong; Zhang, Chiyu; Zheng, Yong-Tang

    2015-08-01

    The Myanmar-China border appears to be the "hot spot" region for the occurrence of HIV-1 recombination. The majority of the previous analyses of HIV-1 recombination were based on partial genomic sequences, which obviously cannot reflect the reality of the genetic diversity of HIV-1 in this area well. Here, we present a near full-length characterization of a novel HIV-1 CRF01_AE/B/C recombinant isolated from a long-distance truck driver in Northern Myanmar. It is the first description of a near full-length genomic sequence in Myanmar since 2003, and might be one of the most complicated HIV-1 chimeras ever detected in Myanmar, containing four CRF01_AE, six B segments, and five C segments separated by 14 breakpoints throughout its genome. The discovery and characterization of this new CRF01_AE/B/C recombinant indicate that intersubtype recombination is ongoing in Myanmar, continuously generating new forms of HIV-1. More work based on near full-length sequence analyses is urgently needed to better understand the genetic diversity of HIV-1 in these regions.

  14. A New Structural Form in the SAM/Metal-Dependent O;#8209;Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Akey, David L.; Li, Shengying; Konwerski, Jamie R.; Confer, Laura A.; Bernard, Steffen M.; Anzai, Yojiro; Kato, Fumio; Sherman, David H.; Smith, Janet L. (Michigan); (Toho)

    2012-08-01

    O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.

  15. Bandwidth enhancement of monopole antenna with DGS for SHF and reconfigurable structure for WiMAX, WLAN and C-band applications

    Science.gov (United States)

    Beigi, P.; Mohammadi, P.

    2017-11-01

    In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.

  16. The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis.

    Science.gov (United States)

    Anderson, N M; Li, D; Peng, H L; Laroche, F J F; Mansour, M R; Gjini, E; Aioub, M; Helman, D J; Roderick, J E; Cheng, T; Harrold, I; Samaha, Y; Meng, L; Amsterdam, A; Neuberg, D S; Denton, T T; Sanda, T; Kelliher, M A; Singh, A; Look, A T; Feng, H

    2016-06-01

    Despite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significantly delayed tumor onset in zebrafish without detectable effects on fish development. DLST is the E2 transferase of the α-ketoglutarate (α-KG) dehydrogenase complex (KGDHC), which converts α-KG to succinyl-CoA in the TCA cycle. RNAi knockdown of DLST led to decreased cell viability and induction of apoptosis in human T-ALL cell lines. Polar metabolomics profiling revealed that the TCA cycle was disrupted by DLST knockdown in human T-ALL cells, as demonstrated by an accumulation of α-KG and a decrease of succinyl-CoA. Addition of succinate, the downstream TCA cycle intermediate, to human T-ALL cells was sufficient to rescue defects in cell viability caused by DLST inactivation. Together, our studies uncovered an important role for DLST in MYC-mediated leukemogenesis and demonstrated the metabolic dependence of T-lymphoblasts on the TCA cycle, thus providing implications for targeted therapy.

  17. Registration of Wyandot × PI 567301B soybean recombinant inbred line population

    Science.gov (United States)

    A soybean [Glycine max (L.) Merr] mapping population (Reg. No., SNL MAP) consisting of 357 F7-derived recombinant inbred lines (RILs) was jointly developed by the USDA-Agricultural Research Service and the Ohio Agricultural Research and Development Center (OARDC) in Wooster, OH. The population was ...

  18. Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics.

    Science.gov (United States)

    Udager, Aaron M; DeMarzo, Angelo M; Shi, Yang; Hicks, Jessica L; Cao, Xuhong; Siddiqui, Javed; Jiang, Hui; Chinnaiyan, Arul M; Mehra, Rohit

    2016-06-01

    Recurrent ERG gene fusions, the most common genetic alterations in prostate cancer, drive overexpression of the nuclear transcription factor ERG, and are early clonal events in prostate cancer progression. The nuclear transcription factor MYC is also frequently overexpressed in prostate cancer and may play a role in tumor initiation and/or progression. The relationship between nuclear ERG and MYC protein overexpression in prostate cancer, as well as the clinicopathologic characteristics and prognosis of ERG-positive/MYC high tumors, is not well understood. Immunohistochemistry (IHC) for ERG and MYC was performed on formalin-fixed, paraffin-embedded tissue from prostate cancer tissue microarrays (TMAs), and nuclear staining was scored semi-quantitatively (IHC product score range = 0-300). Correlation between nuclear ERG and MYC protein expression and association with clinicopathologic parameters and biochemical recurrence after radical prostatectomy was assessed. 29.1% of all tumor nodules showed concurrent nuclear ERG and MYC protein overexpression (i.e., ERG-positive/MYC high), including 35.0% of secondary nodules. Overall, there was weak positive correlation between ERG and MYC expression across all tumor nodules (rpb  = 0.149, P = 0.045), although this correlation was strongest in secondary nodules (rpb  = 0.520, P = 0.019). In radical prostatectomy specimens, ERG-positive/MYC high tumors were positively associated with the presence of extraprostatic extension (EPE), relative to all other ERG/MYC expression subgroups, however, there was no significant association between concurrent nuclear ERG and MYC protein overexpression and time to biochemical recurrence. Concurrent nuclear ERG and MYC protein overexpression is common in prostate cancer and defines a subset of locally advanced tumors. Recent data indicates that BET bromodomain proteins regulate ERG gene fusion and MYC gene expression in prostate cancer, suggesting possible synergistic

  19. Phylogenetic evidence for intratypic recombinant events in a novel human adenovirus C that causes severe acute respiratory infection in children.

    Science.gov (United States)

    Wang, Yanqun; Li, Yamin; Lu, Roujian; Zhao, Yanjie; Xie, Zhengde; Shen, Jun; Tan, Wenjie

    2016-03-10

    Human adenoviruses (HAdVs) are prevalent in hospitalized children with severe acute respiratory infection (SARI). Here, we report a unique recombinant HAdV strain (CBJ113) isolated from a HAdV-positive child with SARI. The whole-genome sequence was determined using Sanger sequencing and high-throughput sequencing. A phylogenetic analysis of the complete genome indicated that the CBJ113 strain shares a common origin with HAdV-C2, HAdV-C6, HAdV-C1, HAdV-C5, and HAdV-C57 and formed a novel subclade on the same branch as other HAdV-C subtypes. BootScan and single nucleotide polymorphism analyses showed that the CBJ113 genome has an intra-subtype recombinant structure and comprises gene regions mainly originating from two circulating viral strains: HAdV-1 and HAdV-2. The parental penton base, pVI, and DBP genes of the recombinant strain clustered with the HAdV-1 prototype strain, and the E1B, hexon, fiber, and 100 K genes of the recombinant clustered within the HAdV-2 subtype, meanwhile the E4orf1 and DNA polymerase genes of the recombinant shared the greatest similarity with those of HAdV-5 and HAdV-6, respectively. All of these findings provide insight into our understanding of the dynamics of the complexity of the HAdV-C epidemic. More extensive studies should address the pathogenicity and clinical characteristics of the novel recombinant.

  20. The ergogenic effect of recombinant human erythropoietin on VO2max depends on the severity of arterial hypoxemia

    DEFF Research Database (Denmark)

    Robach, Paul; Calbet, Jose A L; Thomsen, Jonas J

    2008-01-01

    degrees of acute hypoxia in eight rhEpo-treated subjects. Following prolonged rhEpo treatment, the gain in systemic VO(2)max observed in normoxia (6-7%) persisted during mild hypoxia (8% at inspired O(2) fraction (F(I)O(2)) of 0.173) and was even larger during moderate hypoxia (14-17% at F(I)O(2) = 0...... redistribution of cardiac output toward the exercising legs, whereas this advantageous effect disappeared during severe hypoxia, leaving augmented CaO(2) alone insufficient for improving peak leg O(2) delivery and VO(2). Finally, that VO(2)max was largely dependent on CaO(2) during moderate hypoxia but became...

  1. Targeting Synthetic Lethal Interactions between Myc and the eIF4F Complex Impedes Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Chen-Ju Lin

    2012-04-01

    Full Text Available The energetically demanding process of translation is linked to multiple signaling events through mTOR-mediated regulation of eukaryotic initiation factor (eIF4F complex assembly. Disrupting mTOR constraints on eIF4F activity can be oncogenic and alter chemotherapy response, making eIF4F an attractive antineoplastic target. Here, we combine a newly developed inducible RNAi platform and pharmacological targeting of eIF4F activity to define a critical role for endogenous eIF4F in Myc-dependent tumor initiation. We find elevated Myc levels are associated with deregulated eIF4F activity in the prelymphomatous stage of the Eμ-Myc lymphoma model. Inhibition of eIF4F is synthetic lethal with elevated Myc in premalignant pre-B/B cells resulting in reduced numbers of cycling pre-B/B cells and delayed tumor onset. At the organismal level, eIF4F suppression affected a subset of normal regenerating cells, but this was well tolerated and rapidly and completely reversible. Therefore, eIF4F is a key Myc client that represents a tumor-specific vulnerability.

  2. Cooperative interplay of let-7 mimic and HuR with MYC RNA

    OpenAIRE

    Gunzburg, Menachem J; Sivakumaran, Andrew; Pendini, Nicole R; Yoon, Je-Hyun; Gorospe, Myriam; Wilce, Matthew Cj; Wilce, Jacqueline A

    2015-01-01

    Both RNA-binding proteins (RBP) and miRNA play important roles in the regulation of mRNA expression, often acting together to regulate a target mRNA. In some cases the RBP and miRNA have been reported to act competitively, but in other instances they function cooperatively. Here, we investigated HuR function as an enhancer of let-7-mediated translational repression of c-Myc despite the separation of their binding sites. Using an in vitro system, we determined that a let-7 mimic, consisting of...

  3. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue.

    Science.gov (United States)

    Liu, Zhenjiang; Gan, Lu; Luo, Dan; Sun, Chao

    2017-05-01

    Melatonin is synthesized in the pineal gland and controls circadian rhythm of peripheral adipose tissue, resulting in changes in body weight. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms of circadian rhythm-mediated proliferation in adipose tissue is still limited. Here, we showed that melatonin (20 mg/kg/d) promoted circadian and proliferation processes in white adipose tissue. The circadian amplitudes of brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (Bmal1, Pcircadian locomotor output cycles kaput (Clock, Pcircadian disruption and promoted adipocyte proliferation in chronic jet-lagged mice and obese mice. Thus, our study found that melatonin promoted adipocyte proliferation by forming a Clock/HDAC3/c-Myc complex and subsequently driving the circadian amplitudes of proliferation genes. Our data reveal a novel mechanism that links circadian rhythm to cell proliferation in adipose tissue. These findings also identify a new potential means for melatonin to prevent and treat sleep deprivation-caused obesity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    Science.gov (United States)

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  5. Analysis list: Max [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Max Blood,Muscle,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyus...hu-u/mm9/target/Max.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Max.5.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/target/Max.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Max.Blood....tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Max.Muscle.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Max.Pluripotent_stem_cell.tsv http://dbarchive.biosciencedbc.jp/k

  6. An ab initio investigation of vibrational, thermodynamic, and optical properties of Sc2AlC MAX compound

    International Nuclear Information System (INIS)

    Ali, M A; Nasir, M T; Khatun, M R; Naqib, S H; Islam, A K M A

    2016-01-01

    The structural vibrational, thermodynamical, and optical properties of potentially technologically important, weakly coupled MAX compound, Sc 2 AlC are calculated using density functional theory (DFT). The structural properties of Sc 2 AlC are compared with the results reported earlier. The vibrational, thermodynamical, and optical properties are theoretically estimated for the first time. The phonon dispersion curve is calculated and the dynamical stability of this compound is investigated. The optical and acoustic modes are observed clearly. We calculate the Helmholtz free energy ( F ), internal energy ( E ), entropy ( S ), and specific heat capacity ( C v ) from the phonon density of states. Various optical parameters are also calculated. The reflectance spectrum shows that this compound has the potential to be used as an efficient solar reflector. (paper)

  7. Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc expression in acute and subchronic exposure to benzo(a)pyrene in cervix.

    Science.gov (United States)

    Gao, Meili; Li, Yongfei; Ji, Xiaoying; Xue, Xiaochang; Chen, Lan; Feng, Guodong; Zhang, Huqin; Wang, Huichun; Shah, Walayat; Hou, Zhanwu; Kong, Yu

    2016-03-01

    Epidemiological studies have demonstrated that cigarette smoking is an important cofactor or an independent risk factor for the development of cervical cancer. Benzo(a)pyrene (BaP) is one of the most potent tobacco smoke carcinogens in tobacco smoke. BaP induced DNA damage and over expression in p53 cervical tissue of mice as demonstrated in our previous study. Here we present the findings of exposure to BaP on the expression of Bcl-2, C-myc, Ki-67, Caspase-3 and Bax genes in mouse cervix. Acute intraperitoneal administration of BaP (12.5, 25, 50, 100mg/kg body weight) to ICR female mice induced a significant increase in Bcl-2, C-myc, Ki-67 mRNA and protein level till 72h except in Bcl-2 at 24h with 12.5, 25, 50mg/kg as well as at 48h with 12.5mg/kg body weight post treatment. A significant increase was also seen in Caspase-3 and Bax mRNA and protein level with peak level at 24h and gradual decrease till 72h, however, the expression of caspase-3 increased while that of Bax decreased with increasing dose of Bap after 24h. In sub chronic intraperitoneal and oral gavage administration of BaP (2.5, 5, 10mg/kg body weight), similar significant increase was observed for all the examined genes as compared to the control and vehicle groups, however the expression of Bax decreased in a dose dependent manner. The findings of this study will help in further understanding the molecular mechanism of BaP induced carcinogenesis of cervical cancer. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Association Between Amplification and Expression of C-MYC Gene and Clinicopathological Characteristics of Stomach Cancer.

    Science.gov (United States)

    Khaleghian, Malihea; Jahanzad, Issa; Shakoori, Abbas; Emami Razavi, Amirnader; Azimi, Cyrus

    2016-02-01

    The incidence rate of gastric cancer in western countries has shown a remarkable decline in the recent years while it is still the most common cancer among males in Iran. The proto-oncogene MYC, located at 8q24.1, regulates almost 15% of human genes and is activated in 20% of all tumors. The amplification of MYC and overexpression of its protein product are observed in 15 - 30% of gastric neoplasias. The objective of this study was to find the preferences of Chromogenic In Situ Hybridization (CISH) and Immunohistochemistry (IHC) in diagnosis and prognosis of gastric cancer. We studied 102 samples of gastric cancer in Iran and all the patients had undergone primary surgical resection at the Cancer Institute Hospital, Tehran University of Medical Sciences. The CISH and IHC techniques were applied for all our samples. All of the samples had adenocarcinoma gastric cancer and were selected randomly. Also, the type of study was cross sectional. The sample size was 100 patients. Our data revealed that both diffuse and intestinal types of gastric cancer occurred significantly more in males than females. Our results showed that there was an indication of some correlation between grades and CISH, although the difference was not significant. Our data also showed that CISH positive patients (43%) were more frequent compared to IHC positive patients (14.7%). There was a correlation between CISH and IHC. These results revealed that there was a significant difference between grades and IHC. There was also no statistical difference between CISH amplification in diffuse and intestinal types. From the results, it could be concluded that for administration of the treatment of stomach cancer, and progress and prognosis of tumor, which is important for patients and clinicians, the CISH is a better and more feasible test than IHC, in regards to sensitivity and specificity.

  9. Max Planck et les quanta

    CERN Document Server

    Boudenot, Jean-Claude

    2016-01-01

    « Les atomes, dit Jean Perrin en 1913, ne sont pas ces éléments éternels et insécables dont l'irréductible simplicité donnait au possible une borne, et, dans leur inimaginable petitesse, nous commençons à pressentir un fourmillement prodigieux de mondes nouveaux ». C'est bien dans un monde totalement nouveau, le monde quantique, que nous a fait pénétrer la découverte des quanta par Max Planck. Son article de 1900 est le déclencheur de l'une des plus grandes révolutions scientifiques de tous les temps. Les trente années qui suivent sont les plus riches de la physique ; Planck, Einstein, Bohr, Sommerfeld, de Broglie, Schrödinger, Heisenberg, Dirac, Born, Pauli… reconstruisent la physique sur de nouvelles bases sur fond de conflit des générations. Le monde est par ailleurs secoué par la guerre, Max Planck est tourmenté et vit des épreuves personnelles dramatiques. C'est l'homme, aussi bien que l'oeuvre, que les auteurs ont tenté de dépeindre dans cet ouvrage. Ils ont également souhait�...

  10. Johnson-Cook Strength Model Constants for VascoMax 300 and 1080 Steels

    International Nuclear Information System (INIS)

    Cinnamon, J. D.; Palazotto, A. N.; Kennan, Z.; Brar, N. S.; Bajaj, D.

    2006-01-01

    High strength steels, VascoMax 300 and 1080, are characterized under tension at strain rates of ∼1/s, ∼500/s, ∼1000/s, and ∼1500/s and at high temperatures using the quasi-static and split Hopkinson bar techniques. The data on 1080 steel exhibited a typical strain hardening response, whereas Vasco-Max 300 steel showed diminishing flow stress beyond yielding because of localized necking in gauge section of the tested specimens. The tension data are analyzed to determine the Johnson-Cook (J-C) strength model constants for the two steels. The flow stress values for VascoMax are adjusted to account for necking, and the corrected J-C model is developed

  11. Max Algebraic Complementary Basic Matrices

    Czech Academy of Sciences Publication Activity Database

    Fiedler, Miroslav; Hall, F.J.

    2014-01-01

    Roč. 457, 15 September (2014), s. 287-292 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : CB-matrix * Max algebra * Max permanent * Max eigenvalues Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  12. Synergistic Induction of Potential Warburg Effect in Zebrafish Hepatocellular Carcinoma by Co-Transgenic Expression of Myc and xmrk Oncogenes.

    Directory of Open Access Journals (Sweden)

    Zhen Li

    Full Text Available Previously we have generated inducible liver tumor models by transgenic expression of Myc or xmrk (activated EGFR homolog oncogenes in zebrafish. To investigate the interaction of the two oncogenes, we crossed the two transgenic lines and observed more severe and faster hepatocarcinogenesis in Myc/xmrk double transgenic zebrafish than either single transgenic fish. RNA-Seq analyses revealed distinct changes in many molecular pathways among the three types of liver tumors. In particular, we found dramatic alteration of cancer metabolism based on the uniquely enriched pathways in the Myc/xmrk tumors. Critical glycolytic genes including hk2, pkm and ldha were significantly up-regulated in Myc/xmrk tumors but not in either single oncogene-induced tumors, suggesting a potential Warburg effect. In RT-qPCR analyses, the specific pkm2 isoformin Warburg effect was found to be highly enriched in the Myc/xmrk tumors but not in Myc or xmrk tumors, consistent with the observations in many human cancers with Warburg effect. Moreover, the splicing factor genes (hnrnpa1, ptbp1a, ptbp1b and sfrs3b responsible for generating the pkm isoform were also greatly up-regulated in the Myc/xmrk tumors. As Pkm2 isoform is generally inactive and causes incomplete glycolysis to favor anabolism and tumor growth, by treatment with a Pkm2-specific activator, TEPP-46, we further demonstrated that activation of Pkm2 suppressed the growth of oncogenic liver as well as proliferation of liver cells. Collectively, our Myc/xmrk zebrafish model suggests synergetic effect of EGFR and MYC in triggering Warburg effect in the HCC formation and may provide a promising in vivo model for Warburg effect.

  13. Hepatitis C virus core protein targets 4E-BP1 expression and phosphorylation and potentiates Myc-induced liver carcinogenesis in transgenic mice.

    Science.gov (United States)

    Abdallah, Cosette; Lejamtel, Charlène; Benzoubir, Nassima; Battaglia, Serena; Sidahmed-Adrar, Nazha; Desterke, Christophe; Lemasson, Matthieu; Rosenberg, Arielle R; Samuel, Didier; Bréchot, Christian; Pflieger, Delphine; Le Naour, François; Bourgeade, Marie-Françoise

    2017-08-22

    Hepatitis C virus (HCV) is a leading cause of liver diseases including the development of hepatocellular carcinoma (HCC). Particularly, core protein has been involved in HCV-related liver pathologies. However, the impact of HCV core on signaling pathways supporting the genesis of HCC remains largely elusive. To decipher the host cell signaling pathways involved in the oncogenic potential of HCV core, a global quantitative phosphoproteomic approach was carried out. This study shed light on novel differentially phosphorylated proteins, in particular several components involved in translation. Among the eukaryotic initiation factors that govern the translational machinery, 4E-BP1 represents a master regulator of protein synthesis that is associated with the development and progression of cancers due to its ability to increase protein expression of oncogenic pathways. Enhanced levels of 4E-BP1 in non-modified and phosphorylated forms were validated in human hepatoma cells and in mouse primary hepatocytes expressing HCV core, in the livers of HCV core transgenic mice as well as in HCV-infected human primary hepatocytes. The contribution of HCV core in carcinogenesis and the status of 4E-BP1 expression and phosphorylation were studied in HCV core/Myc double transgenic mice. HCV core increased the levels of 4E-BP1 expression and phosphorylation and significantly accelerated the onset of Myc-induced tumorigenesis in these double transgenic mice. These results reveal a novel function of HCV core in liver carcinogenesis potentiation. They position 4E-BP1 as a tumor-specific target of HCV core and support the involvement of the 4E-BP1/eIF4E axis in hepatocarcinogenesis.

  14. MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels.

    Science.gov (United States)

    Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S; Stine, Zachary E; Hu, Xiaowen; Jiang, Dahai; Xiang, Yan; Zhang, Youyou; Pradeep, Sunila; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; DeMarzo, Angelo M; Sood, Anil K; Zhang, Lin; Dang, Chi V

    2018-01-01

    The MYC oncogene broadly promotes transcription mediated by all nuclear RNA polymerases, thereby acting as a positive modifier of global gene expression. Here, we report that MYC stimulates the transcription of DANCR, a long noncoding RNA (lncRNA) that is widely overexpressed in human cancer. We identified DANCR through its overexpression in a transgenic model of MYC-induced lymphoma, but found that it was broadly upregulated in many human cancer cell lines and cancers, including most notably in prostate and ovarian cancers. Mechanistic investigations indicated that DANCR limited the expression of cell-cycle inhibitor p21 (CDKN1A) and that the inhibitory effects of DANCR loss on cell proliferation could be partially rescued by p21 silencing. In a xenograft model of human ovarian cancer, a nanoparticle-mediated siRNA strategy to target DANCR in vivo was sufficient to strongly inhibit tumor growth. Our observations expand knowledge of how MYC drives cancer cell proliferation by identifying DANCR as a critical lncRNA widely overexpressed in human cancers. Significance: These findings expand knowledge of how MYC drives cancer cell proliferation by identifying an oncogenic long noncoding RNA that is widely overexpressed in human cancers. Cancer Res; 78(1); 64-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-12-01

    Full Text Available The development of human induced pluripotent stem cells (iPSCs holds great promise for regenerative medicine. However the iPSC induction efficiency is still very low and with lengthy reprogramming process. We utilized the highly potent transactivation domain (TAD of MYC protein to engineer the human OCT4 fusion proteins. Applying the MYC-TAD-OCT4 fusion proteins in mouse iPSC generation leads to shorter reprogramming dynamics, with earlier activation of pluripotent markers in reprogrammed cells than wild type OCT4 (wt-OCT4. Dramatic enhancement of iPSC colony induction efficiency and shortened reprogramming dynamics were observed when these MYC-TAD-OCT4 fusion proteins were used to reprogram primary human cells. The OCT4 fusion proteins induced human iPSCs are pluripotent. We further show that the MYC Box I (MBI is dispensable while both MBII and the linking region between MBI/II are essential for the enhanced reprogramming activity of MYC-TAD-OCT4 fusion protein. Consistent with an enhanced transcription activity, the engineered OCT4 significantly stimulated the expression of genes specifically targeted by OCT4-alone, OCT4/SOX2, and OCT4/SOX2/KLF4 during human iPSC induction, compared with the wt-OCT4. The MYC-TAD-OCT4 fusion proteins we generated will be valuable tools for studying the reprogramming mechanisms and for efficient iPSC generation for humans as well as for other species.

  16. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    International Nuclear Information System (INIS)

    Mizoshiri, N.; Kishida, T.; Yamamoto, K.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mori, Y.; Ejima, A.; Sato, Y.; Arai, Y.; Fujiwara, H.; Yamamoto, T.; Kanamura, N.; Mazda, O.; Kubo, T.

    2015-01-01

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  17. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  18. Genotype X/C recombinant (putative genotype I) of hepatitis B virus is rare in Hanoi, Vietnam--genotypes B4 and C1 predominate.

    Science.gov (United States)

    Phung, Thi Bich Thuy; Alestig, Erik; Nguyen, Thanh Liem; Hannoun, Charles; Lindh, Magnus

    2010-08-01

    There are eight known genotypes of hepatitis B virus, A-H, and several subgenotypes, with rather well-defined geographic distributions. HBV genotypes were evaluated in 153 serum samples from Hanoi, Vietnam. Of the 87 samples that could be genotyped, genotype B was found in 67 (77%) and genotype C in 19 (22%). All genotype C strains were of subgenotype C1, and the majority of genotype B strains were B4, while a few were B2. The genotype X/C recombinant strain, identified previously in Swedish patients of indigenous Vietnamese origin, was found in one sample. This variant, proposed to be classified as genotype I, has been found recently also by others in Vietnam and Laos. The current study indicates that the genotype X/C recombinant may represent approximately 1% of the HBV strains circulating in Vietnam. (c) 2010 Wiley-Liss, Inc.

  19. CDK-mediated activation of the SCFFBXO28 ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer

    Science.gov (United States)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza; Mahmoudi, Salah; Cerrato, Vanessa Soto; Fredlund, Erik; Magnusson, Kristina; Nilsson, Helén; Malyukova, Alena; Rantala, Juha; Klevebring, Daniel; Viñals, Francesc; Bhaskaran, Nimesh; Zakaria, Siti Mariam; Rahmanto, Aldwin Suryo; Grotegut, Stefan; Nielsen, Michael Lund; Szigyarto, Cristina Al-Khalili; Sun, Dahui; Lerner, Mikael; Navani, Sanjay; Widschwendter, Martin; Uhlén, Mathias; Jirström, Karin; Pontén, Fredrik; Wohlschlegel, James; Grandér, Dan; Spruck, Charles; Larsson, Lars-Gunnar; Sangfelt, Olle

    2013-01-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCFFBXO28 activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCFFBXO28 plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer. PMID:23776131

  20. 3ds Max 2012 Bible

    CERN Document Server

    Murdock, Kelly L

    2011-01-01

    Updated version of the bestselling 3ds Max book on the market 3ds Max 2012 Bible is one of the most popular 3ds Max how-tos on the market. If you're a beginner just itching to create something right away, the Quick Start project in Part 1 is for you. If you're an experienced user checking out 3ds Max 2012's latest and greatest features, you'll love the fact that the 3ds Max 2012 Bible continues to be the most comprehensive reference on this highly complex application.Find out what's new, what's tried and true, and how creative you can get using the tips, tricks, and techniques in this must-hav

  1. Thermo-Responsive Complexes of c-Myc Antisense Oligonucleotide with Block Copolymer of Poly(OEGMA) and Quaternized Poly(4-Vinylpyridine).

    Science.gov (United States)

    Topuzogullari, Murat; Elalmis, Yeliz Basaran; Isoglu, Sevil Dincer

    2017-04-01

    Solution behavior of thermo-responsive polymers and their complexes with biological macromolecules may be affected by environmental conditions, such as the concentration of macromolecular components, pH, ion concentration, etc. Therefore, a thermo-responsive polymer and its complexes should be characterized in detail to observe their responses against possible environments under physiological conditions before biological applications. To briefly indicate this important issue, thermo-responsive block copolymer of quaternized poly(4-vinylpyridine) and poly(oligoethyleneglycol methyl ether methacrylate) as a potential nonviral vector has been synthesized. Polyelectrolyte complexes of this copolymer with the antisense oligonucleotide of c-Myc oncogene are also thermo-responsive but, have lower LCST (lower critical solution temperature) values compared to individual copolymer. LCST values of complexes decrease with molar ratio of macromolecular components and presence of salt. Dilution of solutions also affects solution behavior of complexes and causes a significant decrease in size and an increase in LCST, which indicates possible effects of severe dilutions in the blood stream. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cooperative action of multiple cis-acting elements is required for N-myc expression in branchial arches: specific contribution of GATA3.

    Science.gov (United States)

    Potvin, Eric; Beuret, Laurent; Cadrin-Girard, Jean-François; Carter, Marcelle; Roy, Sophie; Tremblay, Michel; Charron, Jean

    2010-11-01

    The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.

  3. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin; Choi, Peter  S.; Casey, Stephanie  C.; Dill, David  L.; Felsher, Dean  W.

    2014-01-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  4. MYC through miR-17-92 Suppresses Specific Target Genes to Maintain Survival, Autonomous Proliferation, and a Neoplastic State

    KAUST Repository

    Li, Yulin

    2014-08-01

    The MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.

  5. Parp-1 genetic ablation in Ela-myc mice unveils novel roles for Parp-1 in pancreatic cancer.

    Science.gov (United States)

    Martínez-Bosch, Neus; Iglesias, Mar; Munné-Collado, Jessica; Martínez-Cáceres, Carlos; Moreno, Mireia; Guerra, Carmen; Yélamos, Jose; Navarro, Pilar

    2014-10-01

    Pancreatic cancer has a dismal prognosis and is currently the fourth leading cause of cancer-related death in developed countries. The inhibition of poly(ADP-ribose) polymerase-1 (Parp-1), the major protein responsible for poly(ADP-ribosy)lation in response to DNA damage, has emerged as a promising treatment for several tumour types. Here we aimed to elucidate the involvement of Parp-1 in pancreatic tumour progression. We assessed Parp-1 protein expression in normal, preneoplastic and pancreatic tumour samples from humans and from K-Ras- and c-myc-driven mouse models of pancreatic cancer. Parp-1 was highly expressed in acinar cells in normal and cancer tissues. In contrast, ductal cells expressed very low or undetectable levels of this protein, both in a normal and in a tumour context. The Parp-1 expression pattern was similar in human and mouse samples, thereby validating the use of animal models for further studies. To determine the in vivo effects of Parp-1 depletion on pancreatic cancer progression, Ela-myc-driven pancreatic tumour development was analysed in a Parp-1 knock-out background. Loss of Parp-1 resulted in increased tumour necrosis and decreased proliferation, apoptosis and angiogenesis. Interestingly, Ela-myc:Parp-1(-/-) mice displayed fewer ductal tumours than their Ela-myc:Parp-1(+/+) counterparts, suggesting that Parp-1 participates in promoting acinar-to-ductal metaplasia, a key event in pancreatic cancer initiation. Moreover, impaired macrophage recruitment can be responsible for the ADM blockade found in the Ela-myc:Parp-1(-/-) mice. Finally, molecular analysis revealed that Parp-1 modulates ADM downstream of the Stat3-MMP7 axis and is also involved in transcriptional up-regulation of the MDM2, VEGFR1 and MMP28 cancer-related genes. In conclusion, the expression pattern of Parp-1 in normal and cancer tissue and the in vivo functional effects of Parp-1 depletion point to a novel role for this protein in pancreatic carcinogenesis and shed light

  6. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  7. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    Science.gov (United States)

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection.

  8. Diffusion of Ag, Au and Cs implants in MAX phase Ti3SiC2

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R.; Zhang, Chonghong; Gou, Jie

    2015-05-16

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti3SiC2/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including x-ray diffraction, electron backscatter diffraction, energy dispersive x-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti3SiC2 within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti3SiC2 was also observed. Cs out-diffusion and release from Ti3SiC2 occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  9. A min-max variational principle

    International Nuclear Information System (INIS)

    Georgiev, P.G.

    1995-11-01

    In this paper a variational principle for min-max problems is proved that is of the same spirit as Deville-Godefroy-Zizler's variational principle for minimization problems. A localization theorem in which the mini-max points for the perturbed function with respect top a given ε-min-max point are localized is presented. 3 refs

  10. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle

    DEFF Research Database (Denmark)

    Büchel, Gabriele; Carstensen, Anne; Mak, Ka-Yan

    2017-01-01

    MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes...

  11. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma

    NARCIS (Netherlands)

    Xu-Monette, Z.Y.; Deng, Q.; Manyam, G.C.; Tzankov, A.; Li, L; Xia, Y.; Wang, X.X.; Zou, D.; Visco, C.; Dybkaer, K.; Li, J.; Zhang, L.; Liang, H.; Montes-Moreno, S.; Chiu, A.; Orazi, A.; Zu, Y.; Bhagat, G.; Richards, K.L.; Hsi, E.D.; Choi, W.W.; Krieken, J.H.J.M. van; Huh, J.; Ponzoni, M.; Ferreri, A.J.; Parsons, B.M.; Moller, M.B.; Wang, S.A.; Miranda, R.N.; Piris, M.A.; Winter, J.N.; Medeiros, L.J.; Li, Y.; Young, K.H.

    2016-01-01

    PURPOSE: MYC is a critical driver oncogene in many cancers, and its deregulation in the forms of translocation and overexpression has been implicated in lymphomagenesis and progression of diffuse large B-cell lymphoma (DLBCL). The MYC mutational profile and its roles in DLBCL are unknown. This study

  12. HemaMax™, a recombinant human interleukin-12, is a potent mitigator of acute radiation injury in mice and non-human primates.

    Directory of Open Access Journals (Sweden)

    Lena A Basile

    Full Text Available HemaMax, a recombinant human interleukin-12 (IL-12, is under development to address an unmet medical need for effective treatments against acute radiation syndrome due to radiological terrorism or accident when administered at least 24 hours after radiation exposure. This study investigated pharmacokinetics, pharmacodynamics, and efficacy of m-HemaMax (recombinant murine IL-12, and HemaMax to increase survival after total body irradiation (TBI in mice and rhesus monkeys, respectively, with no supportive care. In mice, m-HemaMax at an optimal 20 ng/mouse dose significantly increased percent survival and survival time when administered 24 hours after TBI between 8-9 Gy (p<0.05 Pearson's chi-square test. This survival benefit was accompanied by increases in plasma interferon-γ (IFN-γ and erythropoietin levels, recovery of femoral bone hematopoiesis characterized with the presence of IL-12 receptor β2 subunit-expressing myeloid progenitors, megakaryocytes, and osteoblasts. Mitigation of jejunal radiation damage was also examined. At allometrically equivalent doses, HemaMax showed similar pharmacokinetics in rhesus monkeys compared to m-HemaMax in mice, but more robustly increased plasma IFN-γ levels. HemaMax also increased plasma erythropoietin, IL-15, IL-18, and neopterin levels. At non-human primate doses pharmacologically equivalent to murine doses, HemaMax (100 ng/Kg and 250 ng/Kg administered at 24 hours after TBI (6.7 Gy/LD(50/30 significantly increased percent survival of HemaMax groups compared to vehicle (p<0.05 Pearson's chi-square test. This survival benefit was accompanied by a significantly higher leukocyte (neutrophils and lymphocytes, thrombocyte, and reticulocyte counts during nadir (days 12-14 and significantly less weight loss at day 12 compared to vehicle. These findings indicate successful interspecies dose conversion and provide proof of concept that HemaMax increases survival in irradiated rhesus monkeys by promoting

  13. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer.

    Science.gov (United States)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza; Mahmoudi, Salah; Cerrato, Vanessa Soto; Fredlund, Erik; Magnusson, Kristina; Nilsson, Helén; Malyukova, Alena; Rantala, Juha; Klevebring, Daniel; Viñals, Francesc; Bhaskaran, Nimesh; Zakaria, Siti Mariam; Rahmanto, Aldwin Suryo; Grotegut, Stefan; Nielsen, Michael Lund; Szigyarto, Cristina Al-Khalili; Sun, Dahui; Lerner, Mikael; Navani, Sanjay; Widschwendter, Martin; Uhlén, Mathias; Jirström, Karin; Pontén, Fredrik; Wohlschlegel, James; Grandér, Dan; Spruck, Charles; Larsson, Lars-Gunnar; Sangfelt, Olle

    2013-07-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28) activity and stability are regulated during the cell cycle by CDK1/2-mediated phosphorylation of FBXO28, which is required for its efficient ubiquitylation of MYC and downsteam enhancement of the MYC pathway. Depletion of FBXO28 or overexpression of an F-box mutant unable to support MYC ubiquitylation results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  14. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  15. Overexpression of SmMYC2 Increases the Production of Phenolic Acids in Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-10-01

    Full Text Available MYC2 is a core transcription factor in the plant response to jasmonates. It also functions in secondary metabolism and various processes for growth and development. However, the knowledge about its role in Salvia miltiorrhiza is still very limited. We determined that the biosynthesis of salvianolic acid B (Sal B was strongly induced in 2-month-old transgenic plants that over-expressed SmMYC2. In the roots of transgenic line 12 that over-expressed SmMYC2 (OEM-12, the Sal B concentration was as high as 5.95 ± 0.07 mg g-1, a level that was 1.88-fold higher than that in control plants that had been transformed with an empty vector. Neither tanshinone IIA nor cryptotanshinone was detected by high-performance liquid chromatography in any of the genotypes. Global transcriptomic analysis using RNA sequencing revealed that most enzyme-encoding genes for the phenylpropanoid biosynthesis pathway were up-regulated in the overexpression lines. Furthermore, both the phenylalanine and tyrosine biosynthesis pathways were activated in those transgenics. Our data demonstrate that overexpression of SmMYC2 promotes the production of phenolic acids by simultaneously activating both primary and secondary pathways for metabolism in S. miltiorrhiza.

  16. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    Science.gov (United States)

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  17. The Biotechnological Applications of Recombinant Single-Domain Antibodies are Optimized by the C-Terminal Fusion to the EPEA Sequence (C Tag

    Directory of Open Access Journals (Sweden)

    Selma Djender

    2014-04-01

    Full Text Available We designed a vector for the bacterial expression of recombinant antibodies fused to a double tag composed of 6xHis and the EPEA amino acid sequence. EPEA sequence (C tag is tightly bound by a commercial antibody when expressed at the C-term end of a polypeptide. The antigen is released in the presence of 2 M MgCl2. Consequently, constructs fused to the 6xHis-C tags can be purified by two successive and orthogonal affinity steps. Single-domain antibodies were produced either in the periplasmic or in the cytoplasmic space of E. coli. Surprisingly, the first affinity purification step performed using the EPEA-binding resin already yielded homogeneous proteins. The presence of the C tag did not interfere with the binding activity of the antibodies, as assessed by FACS and SPR analyses, and the C tag was extremely effective for immunoprecipitating HER2 receptor. Finally, the Alexa488-coupled anti-C tag allowed for simplification of FACS and IF analyses. These results show that a tag of minimal dimensions can be effectively used to improve the applicability of recombinant antibodies as reagents. In our hands, C tag was superior to His-tag in affinity purification and pull-down experiments, and practical in any other standard immune technique.

  18. Controlled and localized delivery of c-myc AS-ODN to cells by 3-aminopropyl-trimethoxylsilane modified SBA-15 mesoporous silica

    Science.gov (United States)

    Zhang, Juan; Chen, Minmin; Zhao, Xiqiu; Zhang, Min; Mao, Jinxiang; Cao, Xichuan; Zhang, Zhuoqi

    2018-01-01

    SBA-15 mesoporous silicate was synthesized and functionalized with 3-aminopropyl organic groups through a post-synthesis method. The materials were characterized consecutively by powder X-ray diffraction (XRD), N2 adsorption/desorption analysis and solid-state magic-angle spinning 29Si nuclear magnetic resonance (MAS NMR). Human c-myc anti-sense oligodeoxyneucleotide (AS-ODN) was selected as a model molecule to be loaded onto the surface of bare and functionalized SBA-15 via different loading conditions. It has been found that the amount of AS-ODN incorporated into the porous matrix is strongly dependent on the surface properties, pH of the loading solvent and AS-ODN concentration. The release behaviour of AS-ODN from modified SBA-15 materials was also investigated and depended on conditions chosen. Cellular uptake of the eluted AS-ODN into Hela cells was observed by fluorescent microscopy. The materials showed excellent cytocompatibility. The AS-ODN keeps full transfection and expression activities indicating its structural integrity. The functionalized SBA-15 is an excellent prospect as a biomedical material candidate for the future.

  19. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration

    International Nuclear Information System (INIS)

    Lenz, F; Krenkel, W

    2011-01-01

    Due to the inherent brittleness of ceramics it is very desirable to increase the damage tolerance of ceramics. The ternary MAX phases are a promising group of materials with high fracture toughness. The topic of this study is the development of ceramic matrix composites (CMCs) with a matrix containing MAX phases, to achieve a damage tolerant structural composite material. For this purpose carbon fiber reinforced preforms with a carbon-titanium carbide matrix (C/C-TiC) were developed and infiltrated with silicon by a pressureless reactive melt infiltration. Finally liquid silicon caused the formation of SiC, TiSi 2 and Ti 3 SiC 2 in the matrix of the composite.

  20. Pseudogap and cuprate superconductivity: MaxEnt-μSR studies

    International Nuclear Information System (INIS)

    Boekema, C.; Schwartz, R.; Love, A.; Browne, M.C.

    2013-01-01

    Highlights: • A magnetic origin of cuprate superconductivity is plausible. • Cuprate loop currents are observed, close to predictions. • Pseudogap effects are seen above and below T c . -- Abstract: The basic physics of cuprate superconductivity is still much deliberated after 27 years of research. In contrast to phononic or polaronic roots, Varma’s theory promotes a magnetic origin. To probe cuprate magnetism, we examine zero field (ZF) muon-spin-rotation (μSR) data of RBa 2 Cu 3 O 7−δ (RBCO; R = Gd, Eu) especially near T c . Possible weak effects are analyzed using Maximum Entropy (MaxEnt, ME) to transform our μSR time series. Concerning predicted pseudogap loop currents, we have observed μSR signals in zero field for GdBCO above and now also below T c . These are near predicted fields of about 100 Oe. Using MaxEnt, we analyze transverse field (TF) μSR data of optimal doped EuBCO. Our focus is also on a temperature interval above T c to comprehend precursor effects. Our results point toward magnetic roots of cuprate superconductivity

  1. Construction, expression, purification and biotin labeling of a single recombinant multi-epitope antigen for double-antigen sandwich ELISA to detect hepatitis C virus antibody.

    Science.gov (United States)

    He, Jing; Xiu, Bingshui; Wang, Guohua; Chen, Kun; Feng, Xiaoyan; Song, Xiaoguo; Zhu, Cuixia; Yang, Xiqin; Bai, Guanzhong; Ling, Shigan; Zhang, Heqiu

    2011-08-01

    Based on B cell epitope predictions, a recombinant antigen with multiple epitopes from four Hepatitis C Virus fragments (C, NS3, NS4 and NS5) were engineered. The recombinant gene was then highly expressed in E. coli. The non-modified and C-terminal-modified recombinant proteins were used for coating and biotin labeling, respectively, to establish the double-antigen sandwich ELISA. Ten positive reference samples confirmed by the CHIRON RIBA HCV 3.0 SIA kit were detected positive, Forty one plasma samples were positive among samples from 441 volunteers, which indicated that the recombinant antigen could readily react well with plasma HCV antibody. As critical reagents of double-antigen sandwich ELISA, the recombinant multi-epitope antigen and the C-terminal-modified and biotin-conjugated antigen show good antigenicity. In this study, we provide a simple approach to produce multiple epitopes within one recombinant protein in order to avoid the costly expression of less-effective pools of multiple proteins, which is the conventional strategy of diagnostic antigen production for HCV antibody detection.

  2. Genome-wide recombination rate variation in a recombination map of cotton.

    Science.gov (United States)

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  3. Analysis of antigenic cross-reactivity between subgroup C avian pneumovirus and human metapneumovirus by using recombinant fusion proteins.

    Science.gov (United States)

    Luo, L; Sabara, M I; Li, Y

    2009-10-01

    Avian pneumovirus subgroup C (APV/C) has recently been reported to be more closely related to human metapneumovirus (hMPV) as determined by sequence analysis. To examine the antigenic relationship between APV/C and hMPV, the APV/C fusion (F) gene was cloned and expressed as an uncleaved glycoprotein in a baculovirus system. The reactivity of the APV/C F protein with antibodies against APV subgroups A, B, C, and hMPV was examined by Western blot analysis. The results showed that the expressed APV/C F protein was not only recognized by APV/C-specific antibodies but also by antibodies raised against hMPV. Previously expressed recombinant hMPV F protein also reacted with APV/C-specific antibodies, suggesting that there was significant antigenic cross-reactivity and a potential evolutionary relationship between hMPV and APV/C. Interestingly, the recombinant F proteins from APV/C and hMPV were not recognized by polyclonal antibodies specific to APV subgroups A and B.

  4. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  5. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  6. Role of trace metals in cell proliferation in the human neuroblastoma: relations with the oncogene N-myc

    International Nuclear Information System (INIS)

    Moretto, Ph.; Michelet, C.; Gouget, B.; Ortega, R.; Sergiant, C.; Llabador, Y.; Simonoff, M.; Benard, J.

    1997-01-01

    Neuroblastoma is one of the most common tumors in young children. Iron is known to be necessary for cellular proliferation. Several studies have suggested that neuroblastoma cells appear to be relatively sensitive to growth inhibition by specific Fe chelators, in vitro. In addition, it appeared that an increased serum ferritin level at diagnosis was associated with a poorer outcome than a normal level. On the other hand it was reported that untreated primary neuroblastoma had multiple copies of the N-myc oncogene. A significant association between genomic amplification and rapid tumor progression after diagnosis has been demonstrated. In order to study the relationship between iron N-myc amplification, we propose to determine the trace metal content of neuroblastoma cells. Preliminary results obtained with two distinct cell lines: SK-N-SH, a neuroblastoma cell line with a single copy of N-myc and IGR-N-91, a metastatic cell line exhibiting 60 copies of N-myc are presented. (authors)

  7. Annotating MYC Status in Treatment-Resistant Metastatic Castration-Resistant Prostate Cancer With Gallium-68 Citrate PET

    Science.gov (United States)

    2017-09-01

    which avidly binds to circulating transferrin) labeled transferrin (Tf) can detect MYC-positive prostate cancer tumors, since the transferrin receptor ...Castration-Resistant Prostate Cancer with Androgen Receptor - Axis Imaging. Journal of nuclear medicine : official publication, Society of Nuclear...AWARD NUMBER: W81XWH-16-1-0469 TITLE: Annotating MYC Status in Treatment-Resistant Metastatic Castration- Resistant Prostate Cancer With

  8. Oxidation of Alumina-Forming MAX Phases in Turbine Environments

    Science.gov (United States)

    Smialek, James; Garg, Anita; Harder, Bryan; Nesbitt, James; Gabb, Timothy; Gray, SImon

    2017-01-01

    Protective coatings for high temperature turbine components are based on YSZ thermal barriers and oxidation resistant, alumina-forming NiAl or NiCoCrAlY bond coats. Ti2AlC and Cr2AlC MAX phases are thus of special interest because of good oxidation resistance and CTE that can match Al2O3 and YSZ. Their alumina scales grow according to cubic kinetics due to grain growth in the scale, with initial heating dominated by fast TiO2 growth. Protective cubic kinetics are also found in high pressure burner rig tests of MAXthal 211 Ti2AlC, but with reduced rates due to volatile TiO(OH)2 formation in water vapor. YSZ-coatings on bulk Ti2AlC exhibit remarkable durability up to 1300C in furnace tests and at least a 25x life advantage compared to superalloys. At another extreme, Cr2AlC is resistant to low temperature Na2SO4 hot corrosion and exhibits thermal cycling stability bonded to a superalloy disk material. Accordingly, sputtered Cr2AlC coatings on disk specimens prevented hot corrosion detriments on LCF. Breakaway oxidation (Ti2AlC), scale spallation (Cr2AlC), interdiffusion, and processing as coatings still present serious challenges. However the basic properties of MAX phases provide some unusual opportunities for use in high temperature turbines.

  9. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer

    DEFF Research Database (Denmark)

    Cepeda, Diana; Ng, Hwee-Fang; Sharifi, Hamid Reza

    2013-01-01

    SCF (Skp1/Cul1/F-box) ubiquitin ligases act as master regulators of cellular homeostasis by targeting key proteins for ubiquitylation. Here, we identified a hitherto uncharacterized F-box protein, FBXO28 that controls MYC-dependent transcription by non-proteolytic ubiquitylation. SCF(FBXO28...... results in an impairment of MYC-driven transcription, transformation and tumourigenesis. Finally, in human breast cancer, high FBXO28 expression and phosphorylation are strong and independent predictors of poor outcome. In conclusion, our data suggest that SCF(FBXO28) plays an important role...... in transmitting CDK activity to MYC function during the cell cycle, emphasizing the CDK-FBXO28-MYC axis as a potential molecular drug target in MYC-driven cancers, including breast cancer....

  10. Restoration of X-ray resistance and V(D)J recombination in mutant cells by Ku cDNA

    International Nuclear Information System (INIS)

    Smider, V.; Rathmell, W.K.; Chu, G.; Lieber, M.R.

    1994-01-01

    Three genetic complementation groups of rodent cells are defective for both repair of x-ray-induced double-strand breaks and V(D)J recombination. Cells from one group lack a DNA end-binding activity that is biochemically and antigenically similar to the Ku autoantigen. Transfection of complementary DNA (cDNA) that encoded the 86-kilodalton subunit of Ku rescued these mutant cells for DNA end-binding activity, x-ray resistance, and V(D)J recombination activity. These results establish a role for Ku in DNA repair and recombination. Furthermore, as a component of a DNA-dependent protein kinase, Ku may initiate a signaling pathway induced by DNA damage

  11. Mastering Autodesk 3ds Max 2013

    CERN Document Server

    Harper, Jeffrey

    2012-01-01

    Get professional training in 3ds Max from this Autodesk Official Training Guide Extremely popular with video game designers as well as architects, 3ds Max offers integrated 3D modeling, animation, rendering, and compositing tools designed to streamline production. If you already have a working knowledge of 3ds Max basics, this official guide will take your skills to the next level. Detailed tutorials cover all the latest features of 3ds Max. From modeling, texturing, animation, and architectural visualization to high-level techniques for film, television, games, and more, this book provides

  12. Biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from Bifidobacterium breve.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; Xie, Tao; Li, Gu-Cai; Tuo, Yi; Xiang, Yu-Ting

    2015-06-01

    To biotransform rutin into isoquercitrin. A α-L-rhamnosidase from Bifidobacterium breve was produced by using Escherichia coli BL21 for biotransformation of rutin to isoquercitrin. The enzyme was purified by Ni(2+)-NTA chromatography to yield a soluble protein with a specific activity of 56 U protein mg(-1). The maximum enzyme activities were at pH 6.5, 55 °C, 20 mM rutin, and 1.2 U enzyme ml(-1). Under optimal conditions, the half-life of the enzyme was 96 h. The K m and V max values were 2.2 mM, 56.4 μmol mg(-1) min(-1) and 2.1 mM, 57.5 μmol mg(-1) min(-1) using pNP-Rha and rutin as substrates, respectively. The kinetic behavior indicated that the recombinant α-L-rhamnosidase has good catalytic performance for producing isoquercitrin. 20 mM rutin was biotransformed into 18.25 and 19.87 mM isoquercitrin after 60 and 240 min. The specific biotransformation of rutin to isoquercitrin using recombinant α-L-rhamnosidase from B. breve is a feasible method for use in industrial processes.

  13. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    Full Text Available Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3. The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  14. Expression of Myc, but not pSTAT3, is an adverse prognostic factor for diffuse large B-cell lymphoma treated with epratuzumab/R-CHOP.

    Science.gov (United States)

    Gupta, Mamta; Maurer, Matthew J; Wellik, Linda E; Law, Mark E; Han, Jing Jing; Ozsan, Nazan; Micallef, Ivana N; Dogan, Ahmet; Witzig, Thomas E

    2012-11-22

    STAT3 regulates cell growth by up-regulating downstream targets, such as Myc. The frequency of phosphorylated STAT3 (pSTAT3) and Myc expression and their prognostic relevance is unknown within diffuse large B-cell lymphoma (DLBCL) germinal center B-cell (GCB) and non-GCB subtypes. pSTAT3 and Myc were studied by immunohistochemistry (IHC) on tumors from 40 DLBCL patients uniformly treated on a clinical trial of epratuzumab/rituximab-CHOP. A total of 35% of cases were pSTAT3-positive, and pSTAT3 positivity was more frequent in the non-GCB (P = .06) type but did not correlate with event-free survival (EFS). Myc expression was observed in 50% of cases and was more frequent in non-GCB type (P = .07). Myc-positive cases had inferior EFS in all patients, including the GCB and pSTAT3-positive cases, were more likely to express Myc (P = .06). Myc translocations involving the major breakpoint regions were found in 10% (3 of 29) of cases, and all 3 cases were GCB and had an inferior EFS (P = .09). pSTAT3, but not Myc expression, was correlated with elevated pretreatment serum cytokines, such as IL-10 (P = .05), G-CSF (P = .03), and TNF-α (P = .04). pSTAT3 IHC in DLBCL tumors has the potential to identify patients for STAT3 pathway-directed therapy; Myc IHC is a potential marker for inferior EFS in GCB patients.

  15. Evaluation of the BD Max Cdiff assay for the detection of toxigenic Clostridium difficile in human stool specimens.

    Science.gov (United States)

    Putsathit, Papanin; Morgan, Justin; Bradford, Damien; Engelhardt, Nelly; Riley, Thomas V

    2015-02-01

    The Becton Dickinson (BD) PCR-based GeneOhm Cdiff assay has demonstrated a high sensitivity and specificity for detecting Clostridium difficile. Recently, the BD Max platform, using the same principles as BD GeneOhm, has become available in Australia. This study aimed to investigate the sensitivity and specificity of BD Max Cdiff assay for the detection of toxigenic C. difficile in an Australian setting. Between December 2013 and January 2014, 406 stool specimens from 349 patients were analysed with the BD Max Cdiff assay. Direct and enrichment toxigenic culture were performed on bioMérieux ChromID C. difficile agar as a reference method. isolates from specimens with discrepant results were further analysed with an in-house PCR to detect the presence of toxin genes. The overall prevalence of toxigenic C. difficile was 7.2%. Concordance between the BD Max assay and enrichment culture was 98.5%. The sensitivity, specificity, positive predictive value and negative predictive value for the BD Max Cdiff assay were 95.5%, 99.0%, 87.5% and 99.7%, respectively, when compared to direct culture, and 91.7%, 99.0%, 88.0% and 99.4%, respectively, when compared to enrichment culture. The new BD Max Cdiff assay appeared to be an excellent platform for rapid and accurate detection of toxigenic C. difficile.

  16. Recombination in hepatitis C virus genotype 1 evaluated by phylogenetic and population-genetic methods

    NARCIS (Netherlands)

    Mes, Ted H. M.; van Doornum, Gerard J. J.

    Although hepatitis C virus (HCV) is a major cause of viral hepatitis and hepatocellular carcinoma, many aspects of its evolution remain poorly understood. Relevant to its evolution and the development of antiviral drug resistance is the role of recombination in HCV, which has not been resolved using

  17. Recombinant production of peptide C-terminal α-amides using an engineered intein

    DEFF Research Database (Denmark)

    Albertsen, Louise; Shaw, Allan C; Norrild, Jens Chr.

    2013-01-01

    is that they contain a C-terminal that is α-amidated, and this amidation is crucial for biological function. A challenge is to generate such peptides by recombinant means and particularly in a production scale. Here, we have examined an intein-mediated approach to generate a PYY derivative in a larger scale. Initially......, we experienced challenges with hydrolysis of the intein fusion protein, which was reduced by a T3C mutation in the intein. Subsequently, we further engineered the intein to decrease the absolute size and improve the relative yield of the PYY derivative, which was achieved by substituting 54 residues...

  18. SIRT7 Represses Myc Activity to Suppress ER Stress and Prevent Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jiyung Shin

    2013-11-01

    Full Text Available Nonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD+-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease. SIRT7 is induced upon ER stress and is stabilized at the promoters of ribosomal proteins through its interaction with the transcription factor Myc to silence gene expression and to relieve ER stress. SIRT7-deficient mice develop chronic hepatosteatosis resembling human fatty liver disease. Myc inactivation or pharmacological suppression of ER stress alleviates fatty liver caused by SIRT7 deficiency. Importantly, SIRT7 suppresses ER stress and reverts the fatty liver disease in diet-induced obese mice. Our study identifies SIRT7 as a cofactor of Myc for transcriptional repression and delineates a druggable regulatory branch of the ER stress response that prevents and reverts fatty liver disease.

  19. Nanocrystalline MAX/Mg Composites with Exceptional Properties

    Science.gov (United States)

    2017-01-04

    hardness was 3.4±0.3 GPa, and the ultimate compressive strengths was 1028±5 MPa. The enhancements in elastic and mechanical properties are attributed to...Barsoum. Enthalpy of Formation and Thermodynamic Parameters of the MAX Phase, V2AlC., J. Alloy Compds., ( ): 218. doi: Babak Anasori, El’ad N. Caspi...Paper TOTAL: 08/28/2012 08/28/2012 Received Book 1.00 4.00 Babak Anasori, Michel W. Barsoum. ON THE EFFECT OF Ti2AlC ON THE FORMATION OF THERMALLY

  20. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells.

    Science.gov (United States)

    Maniwa, Yasuhisa; Kasukabe, Takashi; Kumakura, Shunichi

    2015-08-01

    Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.

  1. Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry.

    Science.gov (United States)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C(60) heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C(60) complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C(60)-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C(60) interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C(60) bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices.

  2. Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C 60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry

    KAUST Repository

    Yi, Yuanping

    2009-11-04

    The exciton-dissociation and charge-recombination processes in organic solar cells based on pentacene/C60 heterojunctions are investigated by means of quantum-mechanical calculations. The electronic couplings and the rates of exciton dissociation and charge recombination have been evaluated for several geometrical configurations of the pentacene/C60 complex, which are relevant to bilayer and bulk heterojunctions. The results suggest that, irrespective of the actual pentacene-fullerene orientation, both pentacene-based and C60-based excitons are able to dissociate efficiently. Also, in the case of parallel configurations of the molecules at the pentacene/C60 interface, the decay of the lowest charge-transfer state to the ground state is calculated to be very fast; as a result, it can compete with the dissociation process into mobile charge carriers. Since parallel configurations are expected to be found more frequently in bulk heterojunctions than in bilayer heterojunctions, the performance of pentacene/C60 bulk-heterojunction solar cells is likely to be more affected by charge recombination than that of bilayer devices. © 2009 American Chemical Society.

  3. Structural, elastic, and electronic properties of new 211 MAX phase Nb{sub 2}GeC from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation)

    2013-02-01

    Very recently (2012, Phys. Rev Lett., 109, 035502) a new hexagonal (s.g. P63/mmc, Music-Sharp-Sign 194) ternary phase Nb{sub 2}GeC, which belongs to so-called 211-like MAX phases, was discovered. In order to get a systematic insight into the structural, elastic, and electronic properties of Nb{sub 2}GeC, we used two complementary DFT-based first-principles approaches (as implemented in the VASP and Wien2k packages) to calculate the optimized structural parameters, band structure, densities of state, Fermi surface, and a set of elastic parameters: elastic constants (C{sub ij}), bulk modulus (B), compressibility ({beta}), shear modulus (G), Young's modulus (Y), and elastic anisotropy indexes, which were discussed in comparison with available data. Besides, the inter-atomic bonding picture for Nb{sub 2}GeC was discussed using electron density maps and Bader's charge analysis.

  4. Near-Full Genome Characterisation of Two Natural Intergenotypic 2k/1b Recombinant Hepatitis C Virus Isolates

    Directory of Open Access Journals (Sweden)

    Victoria L. Demetriou

    2011-01-01

    Full Text Available Few natural intergenotypic hepatitis C virus (HCV recombinants have been characterised, and only RF1_2k/1b has demonstrated widespread transmission. The near-full length genome sequences for two cases of 2k/1b recombinants (CYHCV037 and CYHCV093 sampled in Cyprus were obtained using strain-specific RT-PCR amplification and sequencing protocols. Sequence analysis confirmed their similarity with the original RF1_2k/1b strain from St. Petersburg, N687. These two isolates significantly contribute to the sequence data available on this recombinant and confirm its increasing spread among individuals from Eastern Europe, and its association with transmission through intravenous drug use. Phylogenetic analyses reveal clustering of the sequence 3′ to the recombination point, not seen in the topology of the 5′ sequences, implying a more complicated evolutionary history than that held to date. The increasing cases of HCV recombinant strains underline the requirement of their contribution to the standardised rules of HCV classification and nomenclature, molecular epidemiology, diagnosis, and treatment.

  5. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    Science.gov (United States)

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts.

    Science.gov (United States)

    Mizoshiri, N; Kishida, T; Yamamoto, K; Shirai, T; Terauchi, R; Tsuchida, S; Mori, Y; Ejima, A; Sato, Y; Arai, Y; Fujiwara, H; Yamamoto, T; Kanamura, N; Mazda, O; Kubo, T

    2015-11-27

    Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Recombination-induced formation of hydrogen-defect complexes in 4H and 6H-SiC: electrical and optical characterization

    International Nuclear Information System (INIS)

    Koshka, Y.; Los, A.; Mazzola, M.S.; Sankin, I.

    2003-01-01

    The phenomenon of recombination-induced passivation of defects with hydrogen was investigated in SiC polytypes. Excitation of the hydrogenated samples with above-band gap light at low temperatures resulted in formation of different non-metastable hydrogen-related luminescence centres. Electrical measurements revealed strong recombination-induced passivation of electrical activity of aluminium and boron acceptors in p-type SiC epilayers, which in some cases resulted in inversion of the conductivity type. Athermal migration of hydrogen is considered as a possible mechanism for the observed phenomena

  9. Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis.

    Science.gov (United States)

    Proestling, Katharina; Birner, Peter; Gamperl, Susanne; Nirtl, Nadine; Marton, Erika; Yerlikaya, Gülen; Wenzl, Rene; Streubel, Berthold; Husslein, Heinrich

    2015-07-22

    Epithelial to mesenchymal transition (EMT) is a process in which epithelial cells lose polarity and cell-to-cell contacts and acquire the migratory and invasive abilities of mesenchymal cells. These abilities are thought to be prerequisites for the establishment of endometriotic lesions. A hallmark of EMT is the functional loss of E-cadherin (CDH1) expression in epithelial cells. TWIST1, a transcription factor that represses E-cadherin transcription, is among the EMT inducers. SNAIL, a zinc-finger transcription factor, and its close relative SLUG have similar properties to TWIST1 and are thus also EMT inducers. MYC, which is upregulated by estrogens in the uterus by an estrogen response cis-acting element (ERE) in its promoter, is associated with proliferation in endometriosis. The role of EMT and proliferation in the pathogenesis of endometriosis was evaluated by analyzing TWIST1, CDH1 and MYC expression. CDH1, TWIST1, SNAIL and SLUG mRNA expression was analyzed by qRT-PCR from 47 controls and 74 patients with endometriosis. Approximately 42 ectopic and 62 eutopic endometrial tissues, of which 30 were matched samples, were collected during the same surgical procedure. We evaluated TWIST1 and MYC protein expression by immunohistochemistry (IHC) in the epithelial and stromal tissue of 69 eutopic and 90 ectopic endometrium samples, of which 49 matched samples were analyzed from the same patient. Concordant expression of TWIST1/SNAIL/SLUG and CDH1 but also of TWIST1 and MYC was analyzed. We found that TWIST1, SNAIL and SLUG are overexpressed (p < 0.001, p = 0.016 and p < 0.001) in endometriosis, while CDH1 expression was concordantly reduced in these samples (p < 0.001). Similar to TWIST1, the epithelial expression of MYC was also significantly enhanced in ectopic endometrium compared to eutopic tissues (p = 0.008). We found exclusive expression of either TWIST1 or MYC in the same samples (p = 0.003). Epithelial TWIST1 is overexpressed in

  10. A Fast Numerical Method for Max-Convolution and the Application to Efficient Max-Product Inference in Bayesian Networks.

    Science.gov (United States)

    Serang, Oliver

    2015-08-01

    Observations depending on sums of random variables are common throughout many fields; however, no efficient solution is currently known for performing max-product inference on these sums of general discrete distributions (max-product inference can be used to obtain maximum a posteriori estimates). The limiting step to max-product inference is the max-convolution problem (sometimes presented in log-transformed form and denoted as "infimal convolution," "min-convolution," or "convolution on the tropical semiring"), for which no O(k log(k)) method is currently known. Presented here is an O(k log(k)) numerical method for estimating the max-convolution of two nonnegative vectors (e.g., two probability mass functions), where k is the length of the larger vector. This numerical max-convolution method is then demonstrated by performing fast max-product inference on a convolution tree, a data structure for performing fast inference given information on the sum of n discrete random variables in O(nk log(nk)log(n)) steps (where each random variable has an arbitrary prior distribution on k contiguous possible states). The numerical max-convolution method can be applied to specialized classes of hidden Markov models to reduce the runtime of computing the Viterbi path from nk(2) to nk log(k), and has potential application to the all-pairs shortest paths problem.

  11. Elastic and Mechanical Properties of the MAX Phases

    Science.gov (United States)

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  12. In vivo efficacy of the Bcl-2 antagonist ABT-737 against aggressive Myc-driven lymphomas

    OpenAIRE

    Mason, Kylie D.; Vandenberg, Cassandra J.; Scott, Clare L.; Wei, Andrew H.; Cory, Suzanne; Huang, David C. S.; Roberts, Andrew W.

    2008-01-01

    Deregulated Myc expression drives many human cancers, including Burkitt's lymphoma and a highly aggressive subset of diffuse large cell lymphomas. Myc-driven tumors often display resistance to chemotherapeutics because of acquisition of mutations that impair the apoptosis pathway regulated by the Bcl-2 protein family. Given the need to identify new therapies for such lymphomas, we have evaluated the efficacy of ABT-737, a small molecule that mimics the action of the BH3-only proteins, natural...

  13. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma.

    Science.gov (United States)

    Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan; Hiraki, Masayuki; Alam, Maroof; Bouillez, Audrey; Avigan, David; Anderson, Kenneth; Kufe, Donald

    2017-09-19

    The polycomb repressive complex 1 (PRC1) includes the BMI1, RING1 and RING2 proteins. BMI1 is required for survival of multiple myeloma (MM) cells. The MUC1-C oncoprotein is aberrantly expressed by MM cells, activates MYC and is also necessary for MM cell survival. The present studies show that targeting MUC1-C with (i) stable and inducible silencing and CRISPR/Cas9 editing and (ii) the pharmacologic inhibitor GO-203, which blocks MUC1-C function, downregulates BMI1, RING1 and RING2 expression. The results demonstrate that MUC1-C drives BMI1 transcription by a MYC-dependent mechanism. MUC1-C thus promotes MYC occupancy on the BMI1 promoter and thereby activates BMI1 expression. We also show that the MUC1-C→MYC pathway induces RING2 expression. Moreover, in contrast to BMI1 and RING2, we found that MUC1-C drives RING1 by an NF-κB p65-dependent mechanism. Targeting MUC1-C and thereby the suppression of these key PRC1 proteins was associated with downregulation of the PRC1 E3 ligase activity as evidenced by decreases in ubiquitylation of histone H2A. Targeting MUC1-C also resulted in activation of the PRC1-repressed tumor suppressor genes, PTEN, CDNK2A and BIM . These findings identify a heretofore unrecognized role for MUC1-C in the epigenetic regulation of MM cells.

  14. Tukey max-stable processes for spatial extremes

    KAUST Repository

    Xu, Ganggang; Genton, Marc G.

    2016-01-01

    We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max

  15. Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    OpenAIRE

    Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.

    2002-01-01

    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...

  16. Quantum Max-flow/Min-cut

    Science.gov (United States)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  17. Quantum Max-flow/Min-cut

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu [Department of Mathematics, University of California, Santa Barbara, California 93106 (United States); Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052 (United States); Freedman, Michael H., E-mail: michaelf@microsoft.com [Department of Mathematics, University of California, Santa Barbara, California 93106 (United States); Microsoft Research, Station Q, University of California, Santa Barbara, California 93106 (United States); Sattath, Or, E-mail: sattath@gmail.com [Computer Science Division, University of California, Berkeley, California 94720 (United States); Stong, Richard, E-mail: stong@ccrwest.org; Minton, Greg, E-mail: gtminto@ccrwest.org [Center for Communications Research, La Jolla, California 92121 (United States)

    2016-06-15

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  18. [Use of the recombinant baculovirus BacVP6C for the construction of an internal positive control of rotavirus C].

    Science.gov (United States)

    Abid-Ayadi, I; Guix, S; Pintó, R M; Bosch, A

    2011-06-01

    Unlike group A, a few studies have interested other groups of the rotavirus, especially in Tunisia. The role of rotavirus C (RVC) infection is underestimated because of its sporadic nature. The aim of our study was to develop rapid diagnostic procedures of RVC by using an internal positive control of reverse transcription PCR (RT-PCR). The internal positive control (386pb) was designed from the recombinant baculovirus BacVP6C containing the full length cDNA of the Cowden strain gene 5 (1353pb). A fragment of 596pb was amplified by PCR using the BacVP6C DNA ds as template. Then, a central part of 210pb was deleted and the remaining fragment (386pb) was cloned into pGEM-3Zf(+) plasmid between SP6 and T7 RNA polymerase promoters. The obtained recombinant plasmid "pIAM1" was then used for the generation of the internal positive control by in vitro transcription. The sensibility of the RT-PCR was about 3.66×10(5) molecules of RNA/μl. The use of a shorter positive control, as compared to the wild type, allows increased specificity of the RT-PCR reaction, and could be used for efficient diagnostic and surveillance of RVC-caused diseases. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  19. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis.

    Science.gov (United States)

    Muhar, Matthias; Ebert, Anja; Neumann, Tobias; Umkehrer, Christian; Jude, Julian; Wieshofer, Corinna; Rescheneder, Philipp; Lipp, Jesse J; Herzog, Veronika A; Reichholf, Brian; Cisneros, David A; Hoffmann, Thomas; Schlapansky, Moritz F; Bhat, Pooja; von Haeseler, Arndt; Köcher, Thomas; Obenauf, Anna C; Popow, Johannes; Ameres, Stefan L; Zuber, Johannes

    2018-05-18

    Defining direct targets of transcription factors and regulatory pathways is key to understanding their roles in physiology and disease. We combined SLAM-seq [thiol(SH)-linked alkylation for the metabolic sequencing of RNA], a method for direct quantification of newly synthesized messenger RNAs (mRNAs), with pharmacological and chemical-genetic perturbation in order to define regulatory functions of two transcriptional hubs in cancer, BRD4 and MYC, and to interrogate direct responses to BET bromodomain inhibitors (BETis). We found that BRD4 acts as general coactivator of RNA polymerase II-dependent transcription, which is broadly repressed upon high-dose BETi treatment. At doses triggering selective effects in leukemia, BETis deregulate a small set of hypersensitive targets including MYC. In contrast to BRD4, MYC primarily acts as a selective transcriptional activator controlling metabolic processes such as ribosome biogenesis and de novo purine synthesis. Our study establishes a simple and scalable strategy to identify direct transcriptional targets of any gene or pathway. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling.

    Science.gov (United States)

    Su, Rui; Dong, Lei; Li, Chenying; Nachtergaele, Sigrid; Wunderlich, Mark; Qing, Ying; Deng, Xiaolan; Wang, Yungui; Weng, Xiaocheng; Hu, Chao; Yu, Mengxia; Skibbe, Jennifer; Dai, Qing; Zou, Dongling; Wu, Tong; Yu, Kangkang; Weng, Hengyou; Huang, Huilin; Ferchen, Kyle; Qin, Xi; Zhang, Bin; Qi, Jun; Sasaki, Atsuo T; Plas, David R; Bradner, James E; Wei, Minjie; Marcucci, Guido; Jiang, Xi; Mulloy, James C; Jin, Jie; He, Chuan; Chen, Jianjun

    2018-01-11

    R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N 6 -methyladenosine (m 6 A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m 6 A/MYC/CEBPA signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients

    DEFF Research Database (Denmark)

    Martí-Carvajal, Arturo J; Solà, Ivan; Gluud, Christian

    2012-01-01

    Sepsis is a common and frequently fatal condition. Human recombinant activated protein C (APC) has been introduced to reduce the high risk of death associated with severe sepsis or septic shock. This systematic review is an update of a Cochrane review originally published in 2007....

  2. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  3. Construction of recombinant adenovirus with Egr-1 promoter and Smad7 cDNA and study of the Egr-1 promoter's biological activity

    International Nuclear Information System (INIS)

    Cai Xuwei; Fu Xiaolong; Yang Jian; Song Houyan

    2005-01-01

    Objective: To construct a recombinant replication-defective adenovirus containing Egr-1 promoter and Smad7 cDNA, then to evaluate the biological activity of Egr-1 promoter. Methods: Based on Adeno- X TM expression system, CMV promoter of the pShuttle vector was replaced by Egr-1 promoter, and the Smad7 cDNA was subcloned into the MCS(multiple cloning site) of pShuttle. The recombinant pShuttle was then sub-cloned into the Adeno-X TM genome, which was transformed into E. coli to get recombinant Adeno-X TM plasmid DNA. The recombinant adenovirus was packaged and amplified in the transfected HEK293 cells before it was purified and tested for viral titer. The fibroblasts (3T6 cells) infected by the recombinant adenovirus were irradiated , and the activity of Egr-1 promoter was quantitively determined by the amount of Smad7 protein expressed in the 3T6 cells using Western blot. Results: Identified by restriction endonuclease analysis and PCR, the recombinant adenovirus containing Egr-1 promoter and Smad7 cDNA was constructed successfully, with a viral titer of 1.0 x 10 11 TCID 50 /ml. The expressed amount of Smad7 protein varied at different dose levels and different time points post-irradiation in the 3T6 cells infected with the recombinant adenovirus. The amount of Smad7 protein increased along with the rising of the irradiation dose, and remained at a high expression level from 8 Gy to 15 Gy. The amount of Smad7 protein started to increase at 2 hours post-irradiation, and maintained a relatively high level for the next 5 hours before it descended, which was not observed in the control 3T6 cells. Conclusions: With the aid of Adeno-X TM expression system and molecular cloning techniques, construction of recombinant adenovirus could be quick and efficient. The recombined Egr-1 promoter has the activity of regulating the expression of downstream Smad7 cDNA. The increase in Smad7 expression under control of Egr-1 promoter induced by ionizing radiation is time- and dose

  4. Rho kinase inhibition drives megakaryocyte polyploidization and proplatelet formation through MYC and NFE2 downregulation.

    Science.gov (United States)

    Avanzi, Mauro P; Goldberg, Francine; Davila, Jennifer; Langhi, Dante; Chiattone, Carlos; Mitchell, William Beau

    2014-03-01

    The processes of megakaryocyte polyploidization and demarcation membrane system (DMS) formation are crucial for platelet production, but the mechanisms controlling these processes are not fully determined. Inhibition of Rho kinase (ROCK) signalling leads to increased polyploidization in umbilical cord blood-derived megakaryocytes. To extend these findings we determined the effect of ROCK inhibition on development of the DMS and on proplatelet formation. The underlying mechanisms were explored by analysing the effect of ROCK inhibition on the expression of MYC and NFE2, which encode two transcription factors critical for megakaryocyte development. ROCK inhibition promoted DMS formation, and increased proplatelet formation and platelet release. Rho kinase inhibition also downregulated MYC and NFE2 expression in mature megakaryocytes, and this down-regulation correlated with increased proplatelet formation. Our findings suggest a model whereby ROCK inhibition drives polyploidization, DMS growth and proplatelet formation late in megakaryocyte maturation through downregulation of MYC and NFE2 expression. © 2014 John Wiley & Sons Ltd.

  5. Max dD/Dt: A Novel Parameter to Assess Fetal Cardiac Contractility and a Substitute for Max dP/Dt.

    Science.gov (United States)

    Fujita, Yasuyuki; Kiyokoba, Ryo; Yumoto, Yasuo; Kato, Kiyoko

    2018-07-01

    Aortic pulse waveforms are composed of a forward wave from the heart and a reflection wave from the periphery. We focused on this forward wave and suggested a new parameter, the maximum slope of aortic pulse waveforms (max dD/dt), for fetal cardiac contractility. Max dD/dt was calculated from fetal aortic pulse waveforms recorded with an echo-tracking system. A normal range of max dD/dt was constructed in 105 healthy fetuses using linear regression analysis. Twenty-two fetuses with suspected fetal cardiac dysfunction were divided into normal and decreased max dD/dt groups, and their clinical parameters were compared. Max dD/dt of aortic pulse waveforms increased linearly with advancing gestational age (r = 0.93). The decreased max dD/dt was associated with abnormal cardiotocography findings and short- and long-term prognosis. In conclusion, max dD/dt calculated from the aortic pulse waveforms in fetuses can substitute for max dP/dt, an index of cardiac contractility in adults. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. MAX phase – Alumina composites via exchange reaction in the M{sub n+1}AlC{sub n} systems (M=Ti, V, Cr, Nb, or Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Cuskelly, Dylan T., E-mail: Dylan.cuskelly@uon.edu.au; Kisi, Erich H.; Sugo, Heber O.

    2016-01-15

    MAX phases have been produced for the first time via an exchange reaction between the M-element oxide and Al leading to an M–Al–C–Al{sub 2}O{sub 3} composite in the V–Al–C, Cr–Al–C, Nb–Al–C and Ta–Al–C systems in addition to the previously known Ti–Al–C system. The reduction reaction was first investigated by forming the binary M–X carbide and then proven to be generic across all M–Al–C systems with the production of the M{sub 2}AlC phase in each case. The work was extended to the other M{sub 3}AlC{sub 2} and M{sub 4}AlC{sub 3} phases in the respective systems, and was successful in 4 of the 5 cases with moderate yield. - Graphical abstract: A range of M{sub n+1}AX{sub n} phases (M-octahedra with X centres and A layers) were synthesised directly from the M oxide via exchange reactions for the 5 M-elements shown. - Highlights: • Ten M{sub n+1}AlC{sub n} phases were produced from M-oxides via a single step exchange reaction. • Eight of these MAX phases had not been produced via this method before. • Al was found to be a suitable reducing agent in all cases. • The process was also discovered to work under SHS and MASHS conditions.

  7. MXD1 localizes in the nucleolus, binds UBF and impairs rRNA synthesis.

    Science.gov (United States)

    Lafita-Navarro, Maria Del Carmen; Blanco, Rosa; Mata-Garrido, Jorge; Liaño-Pons, Judit; Tapia, Olga; García-Gutiérrez, Lucía; García-Alegría, Eva; Berciano, María T; Lafarga, Miguel; León, Javier

    2016-10-25

    MXD1 is a protein that interacts with MAX, to form a repressive transcription factor. MXD1-MAX binds E-boxes. MXD1-MAX antagonizes the transcriptional activity of the MYC oncoprotein in most models. It has been reported that MYC overexpression leads to augmented RNA synthesis and ribosome biogenesis, which is a relevant activity in MYC-mediated tumorigenesis. Here we describe that MXD1, but not MYC or MNT, localizes to the nucleolus in a wide array of cell lines derived from different tissues (carcinoma, leukemia) as well as in embryonic stem cells. MXD1 also localizes in the nucleolus of primary tissue cells as neurons and Sertoli cells. The nucleolar localization of MXD1 was confirmed by co-localization with UBF. Co-immunoprecipitation experiments showed that MXD1 interacted with UBF and proximity ligase assays revealed that this interaction takes place in the nucleolus. Furthermore, chromatin immunoprecipitation assays showed that MXD1 was bound in the transcribed rDNA chromatin, where it co-localizes with UBF, but also in the ribosomal intergenic regions. The MXD1 involvement in rRNA synthesis was also suggested by the nucleolar segregation upon rRNA synthesis inhibition by actinomycin D. Silencing of MXD1 with siRNAs resulted in increased synthesis of pre-rRNA while enforced MXD1 expression reduces it. The results suggest a new role for MXD1, which is the control of ribosome biogenesis. This new MXD1 function would be important to curb MYC activity in tumor cells.

  8. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay.

    Science.gov (United States)

    Abruzzese, Maria Pia; Bilotta, Maria Teresa; Fionda, Cinzia; Zingoni, Alessandra; Soriani, Alessandra; Vulpis, Elisabetta; Borrelli, Cristiana; Zitti, Beatrice; Petrucci, Maria Teresa; Ricciardi, Maria Rosaria; Molfetta, Rosa; Paolini, Rossella; Santoni, Angela; Cippitelli, Marco

    2016-12-01

    Anti-cancer immune responses may contribute to the control of tumors after conventional chemotherapy, and different observations have indicated that chemotherapeutic agents can induce immune responses resulting in cancer cell death and immune-stimulatory side effects. Increasing experimental and clinical evidence highlight the importance of natural killer (NK) cells in immune responses toward multiple myeloma (MM), and combination therapies able to enhance the activity of NK cells against MM are showing promise in treating this hematologic cancer. The epigenetic readers of acetylated histones bromodomain and extra-terminal (BET) proteins are critical regulators of gene expression. In cancer, they can upregulate transcription of key oncogenes such as cMYC, IRF4, and BCL-2. In addition, the activity of these proteins can regulate the expression of osteoclastogenic cytokines during cancer progression. Here, we investigated the effect of BET bromodomain protein inhibition, on the expression of NK cell-activating ligands in MM cells. Five MM cell lines [SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and CD138 + MM cells isolated from MM patients were used to investigate the activity of BET bromodomain inhibitors (BETi) (JQ1 and I-BET151) and of the selective BRD4-degrader proteolysis targeting chimera (PROTAC) (ARV-825), on the expression and function of several NK cell-activating ligands (NKG2DLs and DNAM-1Ls), using flow cytometry, real-time PCR, transient transfections, and degranulation assays. Our results indicate that inhibition of BET proteins via small molecule inhibitors or their degradation via a hetero-bifunctional PROTAC probe can enhance the expression of MICA, a ligand of the NKG2D receptor, in human MM cell lines and primary malignant plasma cells, rendering myeloma cells more efficient to activate NK cell degranulation. Noteworthy, similar results were obtained using selective CBP/EP300 bromodomain inhibition. Mechanistically, we found that BETi

  9. Molecular cloning, heterologous expression and functional characterization of gamma tocopherol methyl transferase (γ-TMT) from Glycine max.

    Science.gov (United States)

    Tewari, Kalpana; Dahuja, Anil; Sachdev, Archana; Kumar, Vaibhav; Ali, Kishwar; Kumar, Amresh; Kumari, Sweta

    2017-12-01

    γ-Tocopherol methyltransferase (γ-TMT) (EC 2.1.1.95) is the last enzyme in the tocopherol biosynthetic pathway and it catalyzes the conversion of γ-tocopherol into α-tocopherol, the nutritionally significant and most bioactive form of vitamin E. Although the γ-TMT gene has been successfully overexpressed in many crops to enhance their α-tocopherol content but still only few attempts have been made to uncover its structural, functional and regulation aspects at protein level. In this study, we have cloned the complete 909bp coding sequence of Glycine max γ-TMT (Gm γ-TMT) gene that encodes the corresponding protein comprising of 302 amino acid residues. The deduced Gm γ-TMT protein showed 74-87% sequence identity with other characterized plant γ-TMTs. Gm γ-TMT belongs to Class I Methyl Transferases that have a Rossmann-like fold which consists of a seven-stranded β sheet joined by α helices. Heterologous expression of Gm γ-TMT in pET29a expression vector under the control of bacteriophage T7 promoter produced a 37.9 kDa recombinant Gm γ-TMT protein with histidine hexamer tag at its C-terminus. The expression of recombinant Gm γ-TMT protein was confirmed by western blotting using anti-His antibody. The recombinant protein was purified by Ni 2+ -NTA column chromatography. The purified protein showed SAM dependent methyltransferase activity. The α-tocopherol produced in the in-vitro reaction catalyzed by the purified enzyme was detected using reverse phase HPLC. This study has laid the foundation to unveil the biochemical understanding of Gm γ-TMT enzyme which can be further explored by studying its kinetic behaviour, substrate specificity and its interaction with other biomolecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

    Science.gov (United States)

    Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G

    2017-08-08

    This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo , we generated a NanogP8 transgenic mouse model, in which the ARR 2 PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR 2 PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR 2 PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR 2 PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR 2 PB-NanogP8 transgenic mice with ARR 2 PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR 2 PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

  11. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    Science.gov (United States)

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  12. Synthesis and Characterization of MAX Ceramics (MAXCERs)

    Science.gov (United States)

    Nelson, Johnny Carl

    This research has focused on the design and development of novel multifunctional MAX reinforced ceramics (MAXCERs). These MAXCERs were manufactured with 1-50 vol% ratios of ceramics to MAX phases. Chapter II reports on the synthesis and tribological behavior of Ti3SiC2 matrix composites by incorporating (1 and 6 vol%) Al2O3, (1 and 5 vol%) BN, and (1 and 5 vol%) B4C ceramic particulate additives in the matrix. All the composites were fabricated by pressureless sintering by using 1 wt% Ni as a sintering agent at 1550 °C for 2 hours. SEM and XRD studies showed that Al2O3 is relatively inert in the Ti3SiC 2 matrix whereas BN and B4C reacted significantly with the Ti3 SiC2 matrix to form TiB2. Detailed tribological studies showed that Ti3SiC2-1wt%Ni (baseline) samples showed dual type tribological behavior where the friction coefficient (micro) was low ( 0.2) during stage 1, thereafter micro increased sharply and transitioned into stage 2 ( 0.8). The addition of Al2O3 as an additive had little effect on the tribological behavior, but the addition of B4C and BN was able to enhance the tribological behavior by increasing the transition distance (TD). Chapter III reports on the synthesis and tribological behavior of TiB2 matrix composites by incorporating (10, 30, and 50 vol%) Ti3SiC2 ceramic particulate additives in the matrix. The fabrication parameters were similar to the Ti3SiC2 samples from Chapter II. There was minimal reaction between the TiB2 and the Ti3SiC2. Detailed tribological studies showed that TiB2 (baseline) and TiB2-10%Ti 3SiC2 samples showed an average micro of 0.29 and 0.28, respectively. TiB2-30%Ti3SiC2 and TiB 2-50%Ti3SiC2 showed dual-type tribological behavior where micro was low ( 0.25) during stage 1, thereafter micro increased gradually and transitioned into stage 2 ( 0.6). Low wear rates were seen for all samples.

  13. C5a binding to human polymorphonuclear leukocyte plasma membrane (PMNLM) receptors

    International Nuclear Information System (INIS)

    Conway, R.G.; Mollison, K.W.; Carter, G.W.; Lane, B.

    1986-01-01

    Previous investigations of the C5a receptor have been performed using intact human PMNL. To circumvent some of the potential problems with such whole cell assays (e.g. internalization or metabolism of radioligand) the authors have developed a PMNLM binding assay. Human PMNLM were prepared by nitrogen cavitation and Percoll gradient centrifugation. Specific binding of [ 125 I]C5a to PMNLM was: high affinity, K/sub D/ = 0.6 nM; saturable, B/sub max/ = 8.7 pmol/mg protein; and reversible. Kinetic measurements agree with the K/sub D/ value obtained by Scatchard analysis. Furthermore, the binding activity of C5a correlates with biological activity as measured by myeloperoxidase release from human PMNL. Human serum C5a and recombinant C5a bind with similar affinities when measured by competition or direct binding and label the same number of sites in human PMNLM. The nonhydrolyzable GTP analog, GppNHp, induces a low affinity state of the C5a receptor (4-6 fold shift in K/sub D/) with little effect on B/sub max/. In summary, the criteria have been satisfied for identification of a biologically relevant C5a binding site in human PMNLM. Regulation of the C5a receptor and its membrane transduction mechanism(s) appears to involve guanyl nucleotides, as has been found for other chemoattractant receptors

  14. Diffusion of Ag, Au and Cs implants in MAX phase Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Henager, Charles H.; Varga, Tamas; Jung, Hee Joon; Overman, Nicole R. [Pacific Northwest National Laboratory, Richland, WA (United States); Zhang, Chonghong; Gou, Jie [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

    2015-07-15

    MAX phases (M: early transition metal; A: elements in group 13 or 14; X: C or N), such as titanium silicon carbide (Ti{sub 3}SiC{sub 2}), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti{sub 3}SiC{sub 2} has been considered as a possible fuel cladding material. This study reports on the diffusivities of fission product surrogates (Ag and Cs) and a noble metal Au (with diffusion behavior similar to Ag) in this ternary compound at elevated temperatures, as well as in dual-phase nanocomposite of Ti{sub 3}SiC{sub 2}/3C-SiC and polycrystalline CVD 3C-SiC for behavior comparisons. Samples were implanted with Ag, Au or Cs ions and characterized with various methods, including X-ray diffraction, electron backscatter diffraction, energy dispersive X-ray spectroscopy, Rutherford backscattering spectrometry, helium ion microscopy, and transmission electron microscopy. The results show that in contrast to immobile Ag in 3C-SiC, there is a significant outward diffusion of Ag in Ti{sub 3}SiC{sub 2} within the dual-phase nanocomposite during Ag ion implantation at 873 K. Similar behavior of Au in polycrystalline Ti{sub 3}SiC{sub 2} was also observed. Cs out-diffusion and release from Ti{sub 3}SiC{sub 2} occurred during post-implantation thermal annealing at 973 K. This study suggests caution and further studies in consideration of Ti{sub 3}SiC{sub 2} as a fuel cladding material for advanced nuclear reactors operating at very high temperatures.

  15. Molecular cloning and analysis of Myc modulator 1 (Mm-1 from Bufo gargarizans (Amphibia: Anura

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2010-02-01

    Full Text Available The protein of Myc modulator 1 (Mm-1 has been reported to repress the transcriptional activity of the proto-oncogene c-Myc in humans. Moreover, it was shown to be the subunit 5 of human prefoldin (PFD. So far, this gene and its homologs have been isolated and sequenced in many organisms, such as mammals and fish, but has not been sequenced for any amphibian or reptile. In order to better understand the function and evolution of Mm-1, we isolated a full-length Mm-1 cDNA (BgMm-1, GenBank accession no. EF211947 from Bufo gargarizans (Cantor, 1842 using RACE (rapid amplification of cDNA ends methods. Mm-1 in B. gargarizans is 755 bp long, comprising an open reading frame (ORF of 459 bp encoding 152 amino acids. The amino acid sequence had a prefoldin α-like domain, partially including a typical putative leucine zipper motif. BgMm-1 showed high similarity to its homolog of Mus musculus Linnaeus, 1758 (82% and Homo sapiens Linnaeus, 1758 MM-1 isoform a (81% at the amino acid level. The protein secondary structure modeled with the SWISS MODEL server revealed that there were two α-helices and four b-strands in BgMm-1 as its human orthologue, and both proteins belonged to the a class of PFD family. The phylogenetic relationships of Mm-1s from lower archaea to high mammals was consistent with the evolution of species, meanwhile the cluster result was consistent with the multiple alignment and the sequence identity analysis. RT-PCR (reverse transcriptase-polymerase chain reaction analysis demonstrated that BgMm-1 expressed widely in ten tissues of adult toad. These results can be helpful for the further investigation on the evolution of Mm-1.

  16. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Science.gov (United States)

    Stelzl, Evelyn; Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H; Hillman, Grantland; Hamilton, Aaron T; Mehta, Rochak; Heil, Marintha L; Marins, Ed G; Santner, Brigitte I; Kessler, Harald H

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  17. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Evelyn Stelzl

    Full Text Available Hepatitis C virus (HCV intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2 and Azerbaijan (n = 1, the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  18. A PHF8 homolog in C. elegans promotes DNA repair via homologous recombination.

    Directory of Open Access Journals (Sweden)

    Changrim Lee

    Full Text Available PHF8 is a JmjC domain-containing histone demethylase, defects in which are associated with X-linked mental retardation. In this study, we examined the roles of two PHF8 homologs, JMJD-1.1 and JMJD-1.2, in the model organism C. elegans in response to DNA damage. A deletion mutation in either of the genes led to hypersensitivity to interstrand DNA crosslinks (ICLs, while only mutation of jmjd-1.1 resulted in hypersensitivity to double-strand DNA breaks (DSBs. In response to ICLs, JMJD-1.1 did not affect the focus formation of FCD-2, a homolog of FANCD2, a key protein in the Fanconi anemia pathway. However, the dynamic behavior of RPA-1 and RAD-51 was affected by the mutation: the accumulations of both proteins at ICLs appeared normal, but their subsequent disappearance was retarded, suggesting that later steps of homologous recombination were defective. Similar changes in the dynamic behavior of RPA-1 and RAD-51 were seen in response to DSBs, supporting a role of JMJD-1.1 in homologous recombination. Such a role was also supported by our finding that the hypersensitivity of jmjd-1.1 worms to ICLs was rescued by knockdown of lig-4, a homolog of Ligase 4 active in nonhomologous end-joining. The hypersensitivity of jmjd-1.1 worms to ICLs was increased by rad-54 knockdown, suggesting that JMJD-1.1 acts in parallel with RAD-54 in modulating chromatin structure. Indeed, the level of histone H3 Lys9 tri-methylation, a marker of heterochromatin, was higher in jmjd-1.1 cells than in wild-type cells. We conclude that the histone demethylase JMJD-1.1 influences homologous recombination either by relaxing heterochromatin structure or by indirectly regulating the expression of multiple genes affecting DNA repair.

  19. MYC and MYCN amplification can be reliably assessed by aCGH in medulloblastoma.

    Science.gov (United States)

    Bourdeaut, Franck; Grison, Camille; Maurage, Claude-Alain; Laquerriere, Annie; Vasiljevic, Alexandre; Delisle, Marie-Bernadette; Michalak, Sophie; Figarella-Branger, Dominique; Doz, François; Richer, Wilfrid; Pierron, Gaelle; Miquel, Catherine; Delattre, Olivier; Couturier, Jérôme

    2013-04-01

    As prognostic factors, MYC and MYCN amplifications are routinely assessed in medulloblastomas. Fluorescence in situ hybridization (FISH) is currently considered as the technique of reference. Recently, array comparative genomic hybridization (aCGH) has been developed as an alternative technique to evaluate genomic abnormalities in other tumor types; however, this technique has not been widely adopted as a replacement for FISH in medulloblastoma. In this study, 34 tumors were screened by both FISH and aCGH. In all cases showing amplification by FISH, aCGH also unambiguously revealed the abnormality. The aCGH technique was also performed on tumors showing no amplification by FISH, and the absence of amplification was confirmed in all cases. Interestingly, one tumor showed a subclonal MYC amplification by FISH. This subclonal amplification was observed in approximately 20% of tumor cells and was clearly evident on aCGH. In conclusion, our analysis confirms that aCGH is as safe as FISH for the detection of MYC/MYCN gene amplification. Given its cost efficiency in comparison to two FISH tests and the global genomic information additionally provided by an aCGH experiment, this reproducible technique can be safely retained as an alternative to FISH for routine investigation of medulloblastoma. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Directory of Open Access Journals (Sweden)

    Daruka Mahadevan

    Full Text Available Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL, while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932 mouse model showed tumor growth inhibition (TGI of ∼ 10-20% (p = 0.001 for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001. M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  1. Alisertib added to rituximab and vincristine is synthetic lethal and potentially curative in mice with aggressive DLBCL co-overexpressing MYC and BCL2.

    Science.gov (United States)

    Mahadevan, Daruka; Morales, Carla; Cooke, Laurence S; Manziello, Ann; Mount, David W; Persky, Daniel O; Fisher, Richard I; Miller, Thomas P; Qi, Wenqing

    2014-01-01

    Pearson correlation coefficient for expression analysis of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) demonstrated Aurora A and B are highly correlated with MYC in DLBCL and mantle cell lymphoma (MCL), while both Auroras correlate with BCL2 only in DLBCL. Auroras are up-regulated by MYC dysregulation with associated aneuploidy and resistance to microtubule targeted agents such as vincristine. Myc and Bcl2 are differentially expressed in U-2932, TMD-8, OCI-Ly10 and Granta-519, but only U-2932 cells over-express mutated p53. Alisertib [MLN8237 or M], a highly selective small molecule inhibitor of Aurora A kinase, was synergistic with vincristine [VCR] and rituximab [R] for inhibition of cell proliferation, abrogation of cell cycle checkpoints and enhanced apoptosis versus single agent or doublet therapy. A DLBCL (U-2932) mouse model showed tumor growth inhibition (TGI) of ∼ 10-20% (p = 0.001) for M, VCR and M-VCR respectively, while R alone showed ∼ 50% TGI (p = 0.001). M-R and VCR-R led to tumor regression [TR], but relapsed 10 days after discontinuing therapy. In contrast, M-VCR-R demonstrated TR with no relapse >40 days after stopping therapy with a Kaplan-Meier survival of 100%. Genes that are modulated by M-VCR-R (CENP-C, Auroras) play a role in centromere-kinetochore function in an attempt to maintain mitosis in the presence of synthetic lethality. Together, our data suggest that the interaction between alisertib plus VCR plus rituximab is synergistic and synthetic lethal in Myc and Bcl-2 co-expressing DLBCL. Alisertib plus vincristine plus rituximab [M-VCR-R] may represent a new strategy for DLBCL therapy.

  2. WiMax network planning and optimization

    CERN Document Server

    Zhang, Yan

    2009-01-01

    This book offers a comprehensive explanation on how to dimension, plan, and optimize WiMAX networks. The first part of the text introduces WiMAX networks architecture, physical layer, standard, protocols, security mechanisms, and highly related radio access technologies. It covers system framework, topology, capacity, mobility management, handoff management, congestion control, medium access control (MAC), scheduling, Quality of Service (QoS), and WiMAX mesh networks and security. Enabling easy understanding of key concepts and technologies, the second part presents practical examples and illu

  3. Effect of JTV1 gene on the proliferation and apoptosis of K562 cells and its mechanism

    Directory of Open Access Journals (Sweden)

    Yan WU

    2011-05-01

    Full Text Available Objective To investigate the effect of tumor-suppressing gene JTV1 on proliferation and apoptosis of leukemic K562 cells,and the changes in apoptosis factors Bcl-2,C-myc and Bax genes.Methods The recombinate vector pcDNA3.1-JTV1,and the empty vector pcDNA3.1 were transfected into K562 cells as control.The cell proliferation of K562 cells was evaluated by colony formation assay;the cell cycle and apoptosis rate were assessed by flow cytometry(FCM;the mRNA levels of apoptosis related genes Bax,Bcl-2 and C-myc were determined by RT-PCR;the protein levels of Bax,Bcl-2 and C-myc were assayed by Western Blotting.Results The colony formation assay showed that the proliferation of K562 cells decreased when the expression of JTV1 gene was up-regulated.FCM assay showed that the G phase cells in pcDNA3.1-JTV1 positive transfection group increased compared with that of the control group and the pcDNA3.1 empty vector transfected group,and the differences were statistically significant(P < 0.05.Compared with the control group and the empty vector group,the mRNA transcription level and the protein translation level of Bax gene increased significantly,and the mRNA transcription level and the protein translation level of Bcl-2 and C-myc gene were reduced significantly(P < 0.05.Conclusions The expressions of Bcl-2 and C-myc gene are inhibited when the gene JTV1 is up-regulated,leading to an increase in Bax gene expression,inhibition of K562 cell proliferation,and promotion of tumor cells apoptosis.Over expression of JTV1 gene can inhibit the proliferation of K562 cells and promote cell apoptosis by inhibiting Bcl-2 and C-myc expression and up-regulating that of Bax.

  4. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    Science.gov (United States)

    2014-11-01

    increased by hydroxyurea, ATR inhibition, deregulated c-Myc expression and by PARPi treatment of BRCA1 deficient cells. This work was recently published...Genome Stability." 6: May 27, 2013-Collaborative Research Center 655 from Cells to Tissues seminar series at the Max-Planck-Institute in Dresden, Germany ...Eisenach, Germany -“Genome Stability during DNA Replication” 8: May 3, 2013- Chemical and Systems Biology Department Seminar Series at Stanford

  5. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease.

    Science.gov (United States)

    Hill, Rebecca M; Kuijper, Sanne; Lindsey, Janet C; Petrie, Kevin; Schwalbe, Ed C; Barker, Karen; Boult, Jessica K R; Williamson, Daniel; Ahmad, Zai; Hallsworth, Albert; Ryan, Sarra L; Poon, Evon; Robinson, Simon P; Ruddle, Ruth; Raynaud, Florence I; Howell, Louise; Kwok, Colin; Joshi, Abhijit; Nicholson, Sarah Leigh; Crosier, Stephen; Ellison, David W; Wharton, Stephen B; Robson, Keith; Michalski, Antony; Hargrave, Darren; Jacques, Thomas S; Pizer, Barry; Bailey, Simon; Swartling, Fredrik J; Weiss, William A; Chesler, Louis; Clifford, Steven C

    2015-01-12

    We undertook a comprehensive clinical and biological investigation of serial medulloblastoma biopsies obtained at diagnosis and relapse. Combined MYC family amplifications and P53 pathway defects commonly emerged at relapse, and all patients in this group died of rapidly progressive disease postrelapse. To study this interaction, we investigated a transgenic model of MYCN-driven medulloblastoma and found spontaneous development of Trp53 inactivating mutations. Abrogation of p53 function in this model produced aggressive tumors that mimicked characteristics of relapsed human tumors with combined P53-MYC dysfunction. Restoration of p53 activity and genetic and therapeutic suppression of MYCN all reduced tumor growth and prolonged survival. Our findings identify P53-MYC interactions at medulloblastoma relapse as biomarkers of clinically aggressive disease that may be targeted therapeutically. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells.

    Science.gov (United States)

    Tammam, Salma; Malak, Peter; Correa, Daphne; Rothfuss, Oliver; Azzazy, Hassan M E; Lamprecht, Alf; Schulze-Osthoff, Klaus

    2016-06-21

    Protein-based reprogramming of somatic cells is a non-genetic approach for the generation of induced pluripotent stem cells (iPSCs), whereby reprogramming factors, such as OCT4, SOX2, KLF4 and c-MYC, are delivered as functional proteins. The technique is considered safer than transgenic methods, but, unfortunately, most protein-based protocols provide very low reprogramming efficiencies. In this study, we developed exemplarily a nanoparticle (NP)-based delivery system for the reprogramming factor OCT4. To this end, we expressed human OCT4 in Sf9 insect cells using a baculoviral expression system. Recombinant OCT4 showed nuclear localization in Sf9 cells indicating proper protein folding. In comparison to soluble OCT4 protein, encapsulation of OCT4 in nuclear-targeted chitosan NPs strongly stabilized its DNA-binding activity even under cell culture conditions. OCT4-loaded NPs enabled cell treatment with high micromolar concentrations of OCT4 and successfully delivered active OCT4 into human fibroblasts. Chitosan NPs therefore provide a promising tool for the generation of transgene-free iPSCs.

  7. White shrimp Litopenaeus vannamei recombinant lactate dehydrogenase: Biochemical and kinetic characterization.

    Science.gov (United States)

    Fregoso-Peñuñuri, Ambar A; Valenzuela-Soto, Elisa M; Figueroa-Soto, Ciria G; Peregrino-Uriarte, Alma B; Ochoa-Valdez, Manuel; Leyva-Carrillo, Lilia; Yepiz-Plascencia, Gloria

    2017-09-01

    Shrimp lactate dehydrogenase (LDH) is induced in response to environmental hypoxia. Two protein subunits deduced from different transcripts of the LDH gene from the shrimp Litopenaeus vannamei (LDHvan-1 and LDHvan-2) were identified. These subunits are expressed by alternative splicing. Since both subunits are expressed in most tissues, the purification of the enzyme from the shrimp will likely produce hetero LDH containing both subunits. Therefore, the aim of this study was to overexpress, purify and characterize only one subunit as a recombinant protein, the LDHvan-2. For this, the cDNA from muscle was cloned and overexpressed in E. coli as a fusion protein containing an intein and a chitin binding protein domain (CBD). The recombinant protein was purified by chitin affinity chromatography column that retained the CBD and released solely the full and active LDH. The active protein appears to be a tetramer with molecular mass of approximately 140 kDa and can use pyruvate or lactate as substrates, but has higher specific activity with pyruvate. The enzyme is stable between pH 7.0 to 8.5, and between 20 and 50 °C with an optimal temperature of 50 °C. Two pK a of 9.3 and 6.6, and activation energy of 44.8 kJ/mol°K were found. The kinetic constants K m for NADH was 23.4 ± 1.8 μM, and for pyruvate was 203 ± 25 μM, while V max was 7.45 μmol/min/mg protein. The shrimp LDH that is mainly expressed in shrimp muscle preferentially converts pyruvate to lactate and is an important enzyme for the response to hypoxia. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Induced mutation in soybean (Glycine max L.) breeding

    International Nuclear Information System (INIS)

    Tulmann Neto, A.; Menten, J.O.M.; Ando, A.

    1984-01-01

    The induced mutation in soybean (Glycine max, L.) breeding is studied. Seed treatment with gamma-rays or methanesulfonic acid ethyl ester (EMs) is used in the following varieties: Parana, Santa Rosa, UFV-1, Foscarin 31 and IAC-8. The study to obtain resistance to the soybean bud blight virus and mutants resistant to rust was done. Early mutants are also researched. (M.A.C.) [pt

  9. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth

    Science.gov (United States)

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K.; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C.; Tran, Phuoc; Reimer, Richard J.; Cook, James M.; Lim, Michael; Jensen, Frances E.; Pomeroy, Scott L.; Cho, Yoon-Jae

    2013-01-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors, and importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABR5, which encodes the α-subunit of the GABAA receptor complex, in aggressive MYC-driven, “Group 3” medulloblastomas. We hypothesized that modulation of α-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABR5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABR5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOX5 target gene expression. siRNA-mediated knockdown of HOX5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABR5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOX5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor. PMID:24196163

  10. α5-GABAA receptors negatively regulate MYC-amplified medulloblastoma growth.

    Science.gov (United States)

    Sengupta, Soma; Weeraratne, Shyamal Dilhan; Sun, Hongyu; Phallen, Jillian; Rallapalli, Sundari K; Teider, Natalia; Kosaras, Bela; Amani, Vladimir; Pierre-Francois, Jessica; Tang, Yujie; Nguyen, Brian; Yu, Furong; Schubert, Simone; Balansay, Brianna; Mathios, Dimitris; Lechpammer, Mirna; Archer, Tenley C; Tran, Phuoc; Reimer, Richard J; Cook, James M; Lim, Michael; Jensen, Frances E; Pomeroy, Scott L; Cho, Yoon-Jae

    2014-04-01

    Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors and, importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABRA5, which encodes the α5-subunit of the GABAA receptor complex, in aggressive MYC-driven, "Group 3" medulloblastomas. We hypothesized that modulation of α5-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABRA5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABRA5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOXA5 target gene expression. siRNA-mediated knockdown of HOXA5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABRA5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOXA5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor.

  11. Clinicopathological and genomic analysis of double-hit follicular lymphoma: comparison with high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements.

    Science.gov (United States)

    Miyaoka, Masashi; Kikuti, Yara Y; Carreras, Joaquim; Ikoma, Haruka; Hiraiwa, Shinichiro; Ichiki, Akifumi; Kojima, Minoru; Ando, Kiyoshi; Yokose, Tomoyuki; Sakai, Rika; Hoshikawa, Masahiro; Tomita, Naoto; Miura, Ikuo; Takata, Katsuyoshi; Yoshino, Tadashi; Takizawa, Jun; Bea, Silvia; Campo, Elias; Nakamura, Naoya

    2018-02-01

    Most high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements are aggressive B-cell lymphomas. Occasional double-hit follicular lymphomas have been described but the clinicopathological features of these tumors are not well known. To clarify the characteristics of double-hit follicular lymphomas, we analyzed 10 cases of double-hit follicular lymphomas and 15 cases of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements for clinicopathological and genome-wide copy-number alterations and copy-neutral loss-of-heterozygosity profiles. For double-hit follicular lymphomas, the median age was 67.5 years (range: 48-82 years). The female/male ratio was 2.3. Eight patients presented with advanced clinical stage. The median follow-up time was 20 months (range: 1-132 months). At the end of the follow-up, 8 patients were alive, 2 patients were dead including 1 patient with diffuse large B-cell lymphoma transformation. Rearrangements of MYC/BCL2, MYC/BCL6, and MYC/BCL2/BCL6 were seen in 8, 1, and 1 cases, respectively. The partner of MYC was IGH in 6 cases. There were no cases of histological grade 1, 4 cases of grade 2, 5 cases of grade 3a, and 1 case of grade 3b. Two cases of grade 3a exhibited immunoblast-like morphology. Immunohistochemistry demonstrated 9 cases with ≥50% MYC-positive cells. There was significant difference in MYC intensity (P=0.00004) and MIB-1 positivity (P=0.001) between double-hit follicular lymphomas and high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. The genome profile of double-hit follicular lymphomas was comparable with conventional follicular lymphomas (GSE67385, n=198) with characteristic gains of 2p25.3-p11.1, 7p22.3-q36.3, 12q11-q24.33, and loss of 18q21.32-q23 (Phit follicular lymphomas had fewer copy-number alterations and minimal common region of gain at 2p16.1 (70%), locus also significant against conventional follicular lymphomas (P=0.0001). In summary, double-hit follicular

  12. A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages.

    Directory of Open Access Journals (Sweden)

    Lydia Dmochewitz

    Full Text Available BACKGROUND: The C3bot1 protein (~23 kDa from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.

  13. Combination of Bcl-2 and MYC protein expression improves high-risk stratification in diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Wang J

    2015-09-01

    Full Text Available Jing Wang,* Min Zhou,* Jing-Yan Xu,* Bing Chen, Jian OuyangDepartment of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China*These authors contributed equally to this work and should be considered as cofirst authorsPurpose: To evaluate whether the addition of two biological markers (MYC and BCL-2 protein overexpression improves the stratification of high-risk patients with diffuse large B-cell lymphoma (DLBCL.Method: Seven risk factors were identified at diagnosis, and a maximum of 7 points were assigned to each patient. The patients were classified according to four risk groups: low (0–1, low-intermediate (2–3, high-intermediate (4, and high (5–7. Only high-risk patients with DLBCL were included in this analysis. We retrospectively examined 20 cases from 2008 to 2013 at the Nanjing Drum Tower Hospital.Results: The median expression of MYC protein was 60%, and 17 of 20 (65% evaluable cases overexpressed MYC. The median expression of BCL-2 protein was also 60%. Eighteen of 20 (90% evaluable cases showed BCL-2 overexpression. Additionally, 12 out of 20 cases (60% demonstrated coexpression of MYC and BCL-2 proteins. The percentages of overall survival and progression-free survival at the median follow-up time (36 months were 33.3%±16.1% and 16.9%±13.5%, respectively. By comparison, nine, four, and 20 patients were classified as high risk based on the International Prognostic Index (IPI, National Comprehensive Cancer Network(NCCN-IPI, and revised IPI criteria, respectively. According to the IPI and NCCN-IPI stratification, the risk groups demonstrated closely overlapping survival curves. In addition, four out of 20 cases were identified as low-intermediate risk according to the NCCN-IPI criteria.Conclusion: The addition of MYC and BCL-2 protein expression to the IPI could identify a subset of DLBCL patients with high-risk clinicopathological characteristics and

  14. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    International Nuclear Information System (INIS)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-01-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor α locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor α locus to a germ-line MYC oncogene results in MYC deregulation

  15. Tukey max-stable processes for spatial extremes

    KAUST Repository

    Xu, Ganggang

    2016-09-21

    We propose a new type of max-stable process that we call the Tukey max-stable process for spatial extremes. It brings additional flexibility to modeling dependence structures among spatial extremes. The statistical properties of the Tukey max-stable process are demonstrated theoretically and numerically. Simulation studies and an application to Swiss rainfall data indicate the effectiveness of the proposed process. © 2016 Elsevier B.V.

  16. Generation and evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus subgroup C (aMPV-C) as a bivalent vaccine

    Science.gov (United States)

    To develop a bivalent vaccine, a recombinant Newcastle disease virus was generated by using the NDV LaSota strain with insertion of the G gene of aMPV-C. The biological assessments of the recombinant virus, rLS/aMPV-CG, by conducting the mean death time, intracerebral pathogenicity index, and growth...

  17. Approximation by max-product type operators

    CERN Document Server

    Bede, Barnabás; Gal, Sorin G

    2016-01-01

    This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly,...

  18. OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses.

    Science.gov (United States)

    Li, Weiqiang; Nguyen, Kien Huu; Watanabe, Yasuko; Yamaguchi, Shinjiro; Tran, Lam-Son Phan

    2016-09-16

    Previous studies in Arabidopsis reported that the MAX2 (more axillary growth 2) gene is a component of the strigolactone (SL) signaling pathway, which regulates a wide range of biological processes, from plant growth and development to environmental stress responses. Orobanche aegyptiaca is a harmful parasitic plant for many economically important crops. Seed germination of O. aegyptiaca is very sensitive to SLs, suggesting that O. aegyptiaca may contain components of the SL signaling pathway. To investigate this hypothesis, we identified and cloned a MAX2 ortholog from O. aegyptiaca for complementation analyses using the Arabidopsis Atmax2 mutant. The so-called OaMAX2 gene could rescue phenotypes of the Atmax2 mutant in various tested developmental aspects, including seed germination, shoot branching, leaf senescence and growth and development of hypocotyl, root hair, primary root and lateral root. More importantly, OaMAX2 could enhance the drought tolerance of Atmax2 mutant, suggesting its ability to restore the drought-tolerant phenotype of mutant plants defected in AtMAX2 function. Thus, this study provides genetic evidence that the functions of the MAX2 orthologs, and perhaps the MAX2 signaling pathways, are conserved in parasitic and non-parasitic plants. Furthermore, the results of our study enable us to develop a strategy to fight against parasitic plants by suppressing the MAX signaling, which ultimately leads to enhanced productivity of crop plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. MAX Provider Characteristics

    Data.gov (United States)

    U.S. Department of Health & Human Services — The MAX Provider Characteristics (PC) File Implementation Report describes the design, implementation, and results of the MAXPC prototype, which was based on three...

  20. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    Science.gov (United States)

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.