WorldWideScience

Sample records for recombinant anti-mesothelin immunotoxin

  1. Anti-Human Endoglin (hCD105) Immunotoxin-Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1.

    Science.gov (United States)

    Barriuso, Begoña; Antolín, Pilar; Arias, F Javier; Girotti, Alessandra; Jiménez, Pilar; Cordoba-Diaz, Manuel; Cordoba-Diaz, Damián; Girbés, Tomás

    2016-06-10

    Endoglin (CD105) is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT)-containing recombinant musarmin 1 (single chain ribosome-inactivating proteins) linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP). The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10(-10) to 10(-9) M.

  2. Effect of antigen shedding on targeted delivery of immunotoxins in solid tumors from a mathematical model.

    Directory of Open Access Journals (Sweden)

    Youngshang Pak

    Full Text Available Most cancer-specific antigens used as targets of antibody-drug conjugates and immunotoxins are shed from the cell surface (Zhang & Pastan (2008 Clin. Cancer Res. 14: 7981-7986, although at widely varying rates and by different mechanisms (Dello Sbarba & Rovida (2002 Biol. Chem. 383: 69-83. Why many cancer-specific antigens are shed and how the shedding affects delivery efficiency of antibody-based protein drugs are poorly understood questions at present. Before a detailed numerical study, it was assumed that antigen shedding would reduce the efficacy of antibody-drug conjugates and immunotoxins. However, our previous study using a comprehensive mathematical model showed that antigen shedding can significantly improve the efficacy of the mesothelin-binding immunotoxin, SS1P (anti-mesothelin-Fv-PE38, and suggested that receptor shedding can be a general mechanism for enhancing the effect of inter-cellular signaling molecules. Here, we improved this model and applied it to both SS1P and another recombinant immunotoxin, LMB-2, which targets CD25. We show that the effect of antigen shedding is influenced by a number of factors including the number of antigen molecules on the cell surface and the endocytosis rate. The high shedding rate of mesothelin is beneficial for SS1P, for which the antigen is large in number and endocytosed rapidly. On the other hand, the slow shedding of CD25 is beneficial for LMB-2, for which the antigen is small in number and endocytosed slowly.

  3. Recombinant Immunotoxin Therapy of Solid Tumors: Challenges and Strategies.

    Science.gov (United States)

    Shan, Liang; Liu, Yuanyi; Wang, Paul

    2013-01-01

    Immunotoxins are a group of protein-based therapeutics, basically comprising two functional moieties: one is the antibody or antibody Fv fragment that allows the immunotoxin to bind specifically to target cells; another is the plant or bacterial toxin that kills the cells upon internalization. Immunotoxins have several unique features which are superior to conventional chemotherapeutics, including high specificity, extraordinary potency, and no known drug resistance. Development of immunotoxins evolves with time and technology, but significant progress has been achieved in the past 20 years after introduction of recombinant DNA technique and generation of the first single-chain variable fragment of monoclonal antibodies. Since then, more than 1,000 recombinant immunotoxins have been generated against cancer. However, most success in immunotoxin therapy has been achieved against hematological malignancies, several issues persist to be significant barriers for effective therapy of human solid tumors. Further development of immunotoxins will largely focus on the improvement of penetration capability to solid tumor mass and elimination of immunogenicity occurred when given repeatedly to patients. Promising strategies may include construction of recombinant antibody fragments with higher binding affinity and stability, elimination of immunodominant T- and B-cell epitopes of toxins, modification of immunotoxins with macromolecules like poly(ethylene glycol) and liposomes, and generation of immunotoxins with humanized antibody fragments and human endogenous cytotoxic enzymes. In this paper, we briefly reviewed the evolution of immunotoxin development and then discussed the challenges of immunotoxin therapy for human solid tumors and the potential strategies we may seek to overcome the challenges.

  4. Sensitization of B-cell chronic lymphocytic leukemia cells to recombinant immunotoxin by immunostimulatory phosphorothioate oligodeoxynucleotides.

    Science.gov (United States)

    Decker, Thomas; Hipp, Susanne; Kreitman, Robert J; Pastan, Ira; Peschel, Christian; Licht, Thomas

    2002-02-15

    A recombinant anti-CD25 immunotoxin, LMB-2, has shown clinical efficacy in hairy cell leukemia and T-cell neoplasms. Its activity in B-cell chronic lymphocytic leukemia (B-CLL) is inferior but might be improved if B-CLL cells expressed higher numbers of CD25 binding sites. It was recently reported that DSP30, a phosphorothioate CpG-oligodeoxynucleotide (CpG-ODN) induces immunogenicity of B-CLL cells by up-regulation of CD25 and other antigens. The present study investigated the antitumor activity of LMB-2 in the presence of DSP30. To this end, B-CLL cells from peripheral blood of patients were isolated immunomagnetically to more than 98% purity. Incubation with DSP30 for 48 hours augmented CD25 expression in 14 of 15 B-CLL samples, as assessed by flow cytometry. DSP30 increased LMB-2 cytotoxicity dose dependently whereas a control ODN with no CpG motif did not. LMB-2 displayed no antitumor cell activity in the absence of CpG-ODN as determined colorimetrically with an (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. In contrast, B-CLL growth was inhibited in 12 of 13 samples with 50% inhibition concentrations (IC(50)) in the range of LMB-2 plasma levels achieved in clinical studies. Two samples were not evaluable because of spontaneous B-CLL cell death in the presence of DSP30. Control experiments with an immunotoxin that does not recognize hematopoietic cells, and an anti-CD22 immunotoxin, confirmed that sensitization to LMB-2 was specifically due to up-regulation of CD25. LMB-2 was much less toxic to normal B and T lymphocytes compared with B-CLL cells. In summary, immunostimulatory CpG-ODNs efficiently sensitize B-CLL cells to a recombinant immunotoxin by modulation of its target. This new treatment strategy deserves further attention.

  5. Noradrenergic lesioning with an anti-dopamine beta-hydroxylase immunotoxin

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lappi, D. A.; Robertson, D.

    1994-01-01

    Sympathectomy has been achieved by a variety of methods but each has its limitations. These include lack of tissue specificity, incomplete lesioning, and the age range of susceptibility to the lesioning. To circumvent these drawbacks, an immunotoxin was constructed using a monoclonal antibody against the noradrenergic specific enzyme dopamine beta-hydroxylase (D beta H) coupled via a disulfide bond to saporin, a ribosomal inactivating protein. Three days after intravenous injection of the anti-D beta H immunotoxin (50 micrograms) into adult Sprague-Dawley rats, 66% of neurons in the superior cervical ganglia were chromatolytic. Superior cervical ganglia neurons were poisoned in 1 day old and 1 week old (86% of neurons) neonatal rats following subcutaneous injection of 3.75 and 15 micrograms, respectively. The anti-D beta H immunotoxin will be a useful tool in the study of the peripheral noradrenergic system in adult and neonatal animals.

  6. Clinical targeting recombinant immunotoxins for cancer therapy

    Directory of Open Access Journals (Sweden)

    Li M

    2017-07-01

    Full Text Available Meng Li,1,* Zeng-Shan Liu,1,* Xi-Lin Liu,1,* Qi Hui,2,* Shi-Ying Lu,1 Lin-Lin Qu,1 Yan-Song Li,1 Yu Zhou,1 Hong-Lin Ren,1 Pan Hu1 1Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, China-Japan Union Hospital, The First Hospital, Jilin University, Changchun, 2School of Pharmacy, Wenzhou Medical University, Wenzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Recombinant immunotoxins (RITs are proteins that contain a toxin fused to an antibody or small molecules and are constructed by the genetic engineering technique. RITs can bind to and be internalized by cells and kill cancerous or non-cancerous cells by inhibiting protein synthesis. A wide variety of RITs have been tested against different cancers in cell culture, xenograft models, and human patients during the past several decades. RITs have shown activity in therapy of several kinds of cancers, but different levels of side effects, mainly related to vascular leak syndrome, were also observed in the treated patients. High immunogenicity of RITs limited their long-term or repeat applications in clinical cases. Recent advances in the design of immunotoxins, such as humanization of antibody fragment, PEGylation, and modification of human B- and T-cell epitopes, are overcoming the above mentioned problems, which predict the use of these immunotoxins as a potential therapeutic method to treat cancer patients. Keywords: targeted therapy, hematologic malignancies, solid tumors, vascular leak syndrome, immunogenicity 

  7. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes

    OpenAIRE

    Mazor, Ronit; Eberle, Jaime A.; Hu, Xiaobo; Vassall, Aaron N.; Onda, Masanori; Beers, Richard; Lee, Elizabeth C.; Kreitman, Robert J.; Lee, Byungkook; Baker, David; King, Chris; Hassan, Raffit; Benhar, Itai; Pastan, Ira

    2014-01-01

    Recombinant immunotoxins have produced complete remissions in leukemia patients where many doses can be given but are less active in patients with solid tumors because their immune system makes antidrug antibodies, which inactivate the immunotoxin. To suppress the immune response, we have identified and largely silenced the T-cell epitopes responsible for the immune response. A redesigned immunotoxin with T-cell epitope mutations is highly cytotoxic to cell lines and to cells isolated from ca...

  8. Expression of VGRNb-PE immunotoxin in transplastomic lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Mirzaee, Malihe; Jalali-Javaran, Mokhtar; Moieni, Ahmad; Zeinali, Sirous; Behdani, Mahdi

    2018-05-01

    This research has shown, for the first time, that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins and the transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. Angiogenesis refers to the formation of new blood vessels, which resulted in the growth, invasion and metastasis of cancer. The vascular endothelial growth factor receptor 2 (VEGFR2) plays a major role in angiogenesis and blocking of its signaling inhibits neovascularization and tumor metastasis. Immunotoxins are promising therapeutics for targeted cancer therapy. They consist of an antibody linked to a protein toxin and are designed to specifically kill the tumor cells. In our previous study, VGRNb-PE immunotoxin protein containing anti-VEGFR2 nanobody fused to the truncated form of Pseudomonas exotoxin A has been established. Here, we expressed this immunotoxin in lettuce chloroplasts. Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, multigene engineering in a single transformation event and maternal inheritance of the transgenes. Site specific integration of transgene into chloroplast genomes, and homoplasmy were confirmed. Immunotoxin levels reached up to 1.1% of total soluble protein or 33.7 µg per 100 mg of leaf tissue (fresh weight). We demonstrated that transgenic immunotoxin efficiently causes the inhibition of VEGFR2 overexpression, cell growth and proliferation. These results indicate that plant chloroplasts are a suitable compartment for synthesizing recombinant immunotoxins.

  9. Secretion of N-ERC/mesothelin and expression of C-ERC/mesothelin in human pancreatic ductal carcinoma.

    Science.gov (United States)

    Inami, Koichi; Kajino, Kazunori; Abe, Masaaki; Hagiwara, Yoshiaki; Maeda, Masahiro; Suyama, Masafumi; Watanabe, Sumio; Hino, Okio

    2008-12-01

    ERC/mesothelin gene (MSLN) encodes a precursor protein, which is cleaved by proteases to generate N-ERC/mesothelin and C-ERC/mesothelin. N-ERC/mesothelin is a soluble protein, also known as megakaryocyte-potentiating factor, which is released into extracellular space. N-ERC/mesothelin is known to be a serum marker of mesothelioma. We have previously developed an enzyme-linked immunosorbent assay system for N-ERC/mesothelin, which can detect mesothelioma. C-ERC/mesothelin is expressed in normal mesothelial cell, pancreatic cancers, ovarian cancers, mesotheliomas and some other cancers. Pancreatic ductal carcinoma remains a fatal disease because its diagnosis often occurs very late. In this study, we examined ERC/mesothelin expression in human pancreatic cancer cell lines (MIA-PaCa2, PK-1, KP-3, TCC-PAN2, PK-59 and PK-45H) by reverse transcription-polymerase chain reaction and immunoblotting and N-ERC/mesothelin concentration in the supernatant of cultured cancer cells by the ELISA system. We also investigated C-ERC/mesothlein expression in human pancreatic ductal carcinoma tissues by immunostaining using 5B2 anti-mesothelin monoclonal antibody and N-ERC/mesothelin concentration in sera obtained from patients with pancreatic ductal carcinoma via ELISA. In vitro, N-ERC/mesothelin concentration in cell culture medium nearly correlated with the expression level of C-ERC/mesothelin. Although C-ERC/mesothelin was frequently expressed in human pancreatic ductal carcinoma, serum N-ERC/mesothelin concentration of cancer patients was equivalent to healthy controls. N-ERC/mesothelin was not useful as a serum marker of pancreatic ductal carcinoma, but because of frequent expression, C-ERC/mesothelin might be useful as a target of molecular imaging and immunotherapy.

  10. Anti-Human Endoglin (hCD105 Immunotoxin—Containing Recombinant Single Chain Ribosome-Inactivating Protein Musarmin 1

    Directory of Open Access Journals (Sweden)

    Begoña Barriuso

    2016-06-01

    Full Text Available Endoglin (CD105 is an accessory component of the TGF-β receptor complex, which is expressed in a number of tissues and over-expressed in the endothelial cells of tumor neovasculature. Targeting endoglin with immunotoxins containing type 2 ribosome-inactivating proteins has proved an effective tool to reduce blood supply to B16 mice tumor xenografts. We prepared anti-endoglin immunotoxin (IT—containing recombinant musarmin 1 (single chain ribosome-inactivating proteins linked to the mouse anti-human CD105 44G4 mouse monoclonal antibody via N-succinimidyl 3-(2-pyridyldithio propionate (SPDP. The immunotoxin specifically killed L929 fibroblast mouse cells transfected with the short form of human endoglin with IC50 values in the range of 5 × 10−10 to 10−9 M.

  11. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  12. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential

    Directory of Open Access Journals (Sweden)

    Yu Y

    2017-03-01

    Full Text Available Yuan Yu,1–3 Jialu Li,1–3 Xuejun Zhu,4 Xiaowen Tang,2,5 Yangyi Bao,6 Xiang Sun,6 Yuhui Huang,1,2 Fang Tian,4 Xiaomei Liu,1,2 Lin Yang1–3 1The Cyrus Tang Hematology Center, 2Collaborative Innovation Center of Hematology, Soochow University, 3Suzhou Cancer Immunotherapy and Diagnosis Engineering Center, Suzhou, 4Central Laboratory, Department of Hematology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, 5Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 6Department of Hematology-Oncology, The First People’s Hospital of Hefei, Hefei, People’s Republic of China Background: Nanobodies, named as VHHs (variable domain of heavy chain of HCAb [heavy-chain antibodies], are derived from heavy-chain-only antibodies that circulate in sera of camelids. Their exceptional physicochemical properties, possibility of humanization, and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components, including immunotoxins. In our previous efforts, we have successfully generated the monovalent and bivalent CD7 nanobody-based immunotoxins, which can effectively trigger the apoptosis of CD7-positive malignant cells. To pursue the possibility of translating those immunotoxins into clinics, we humanized the nanobody sequences (designated as dhuVHH6 as well as further truncated the Pseudomonas exotoxin A (PE-derived PE38 toxin to produce a more protease-resistant form, which is named as PE-LR, by deleting majority of PE domain II. Methods and results: Three new types of immunotoxins, dhuVHH6-PE38, dVHH6-PE-LR, and dhuVHH6-PE-LR, were successfully constructed. These recombinant immunotoxins were expressed in Escherichia coli and showed that nanobody immunotoxins have the benefits of easy soluble expression in a prokaryotic expression system. Flow cytometry results revealed that

  13. Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential.

    Science.gov (United States)

    Yu, Yuan; Li, Jialu; Zhu, Xuejun; Tang, Xiaowen; Bao, Yangyi; Sun, Xiang; Huang, Yuhui; Tian, Fang; Liu, Xiaomei; Yang, Lin

    2017-01-01

    Nanobodies, named as VHHs (variable domain of heavy chain of HCAb [heavy-chain antibodies]), are derived from heavy-chain-only antibodies that circulate in sera of camelids. Their exceptional physicochemical properties, possibility of humanization, and unique antigen recognition properties make them excellent candidates for targeted delivery of biologically active components, including immunotoxins. In our previous efforts, we have successfully generated the monovalent and bivalent CD7 nanobody-based immunotoxins, which can effectively trigger the apoptosis of CD7-positive malignant cells. To pursue the possibility of translating those immunotoxins into clinics, we humanized the nanobody sequences (designated as dhuVHH6) as well as further truncated the Pseudomonas exotoxin A (PE)-derived PE38 toxin to produce a more protease-resistant form, which is named as PE-LR, by deleting majority of PE domain II. Three new types of immunotoxins, dhuVHH6-PE38, dVHH6-PE-LR, and dhuVHH6-PE-LR, were successfully constructed. These recombinant immunotoxins were expressed in Escherichia coli and showed that nanobody immunotoxins have the benefits of easy soluble expression in a prokaryotic expression system. Flow cytometry results revealed that all immunotoxins still maintained the ability to bind specifically to CD7-positive T lymphocyte strains without binding to CD7-negative control cells. Laser scanning confocal microscopy revealed that these proteins can be endocytosed into the cytoplasm after binding with CD7-positive cells and that this phenomenon was not observed in CD7-negative cells. WST-8 experiments showed that all immunotoxins retained the highly effective and specific growth inhibition activity in CD7-positive cell lines and primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Further in vivo animal model experiments showed that humanized dhuVHH6-PE38 immunotoxin can tolerate higher doses and extend the survival of NOD-Prkdc em26 Il2rg em26 Nju (NCG) mice

  14. Use of Anti-HIV Immunotoxins as Probes of the Biology of HIV-Infected Cells

    Directory of Open Access Journals (Sweden)

    SETH H Pincus

    1994-01-01

    Full Text Available OBJECTIVE: Anti-human immunodeficiency virus (HIV immunotoxins are potential treatments for HIV infection. but they may also be used as probes to study the relationship between HIV and the cell it infects. Data from the present study indicate the complexity of this relationship.

  15. Antitumor activity of anti-C-ERC/mesothelin monoclonal antibody in vivo.

    Science.gov (United States)

    Inami, Koichi; Abe, Masaaki; Takeda, Kazuyoshi; Hagiwara, Yoshiaki; Maeda, Masahiro; Segawa, Tatsuya; Suyama, Masafumi; Watanabe, Sumio; Hino, Okio

    2010-04-01

    Mesothelioma is an aggressive cancer often caused by chronic asbestos exposure, and its prognosis is very poor despite the therapies currently used. Due to the long latency period between asbestos exposure and tumor development, the worldwide incidence will increase substantially in the next decades. Thus, novel effective therapies are warranted to improve the prognosis. The ERC/mesothelin gene (MSLN) is expressed in wide variety of human cancers, including mesotheliomas, and encodes a precursor protein cleaved by proteases to generate C-ERC/mesothelin and N-ERC/mesothelin. In this study, we investigated the antitumor activity of C-ERC/mesothelin-specific mouse monoclonal antibody, 22A31, against tumors derived from a human mesothelioma cell line, ACC-MESO-4, in a xenograft experimental model using female BALB/c athymic nude mice. Treatment with 22A31 did not inhibit cell proliferation of ACC-MESO-4 in vitro; however, therapeutic treatment with 22A31 drastically inhibited tumor growth in vivo. 22A31 induced antibody-dependent cell-mediated cytotoxicity by natural killer (NK) cells, but not macrophages, in vitro. Consistently, the F(ab')(2) fragment of 22A31 did not inhibit tumor growth in vivo, nor did it induce antibody-dependent cell mediated cytotoxicity (ADCC) in vitro. Moreover, NK cell depletion diminished the antitumor effect of 22A31. Thus, 22A31 induced NK cell-mediated ADCC and exerted antitumor activity in vivo. 22A31 could have potential as a therapeutic tool to treat C-ERC/mesothelin-expressing cancers including mesothelioma.

  16. Antibody-Based Immunotoxins for the Treatment of Cancer

    OpenAIRE

    Nurit Becker; Itai Benhar

    2012-01-01

    Antibody-based immunotoxins comprise an important group in targeted cancer therapeutics. These chimeric proteins are a form of biological guided missiles that combine a targeting moiety with a potent effector molecule. The targeting moiety is mostly a monoclonal antibody (MAb) or a recombinant antibody-based fragment that confers target specificity to the immunotoxin. The effector domain is a potent protein toxin of bacterial or plant origin, which, following binding to the target cells, unde...

  17. Antibody-Based Immunotoxins for the Treatment of Cancer

    Directory of Open Access Journals (Sweden)

    Nurit Becker

    2012-05-01

    Full Text Available Antibody-based immunotoxins comprise an important group in targeted cancer therapeutics. These chimeric proteins are a form of biological guided missiles that combine a targeting moiety with a potent effector molecule. The targeting moiety is mostly a monoclonal antibody (MAb or a recombinant antibody-based fragment that confers target specificity to the immunotoxin. The effector domain is a potent protein toxin of bacterial or plant origin, which, following binding to the target cells, undergoes internalization and causes cell death. Over time and following research progression, immunotoxins become better fitted to their purpose, losing immunogenic fragments and non-specific targeting moieties. Many immunotoxins have gone through clinical evaluation. Some of these have been shown to be active and work is progressing with them in the form of further clinical trials. Others, mostly developed in the previous century, failed to generate a response in patients, or even caused undesired side effects. This article reviews the antibody and protein-toxin based immunotoxins that were clinically evaluated up to the present day.

  18. Mesothelin as a novel biomarker and immunotherapeutic target in human glioblastoma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Rao, Martin; Poiret, Thomas

    2017-01-01

    Glioblastoma multiforme (GBM) presents the most malignant form of glioma, with a 5-year survival rate below 3% despite standard therapy. Novel immune-based therapies in improving treatment outcomes in GBM are therefore warranted. Several molecularly defined targets have been identified mediating...... anti-GBM cellular immune responses. Mesothelin is a tumor-associated antigen (TAA) which is expressed in several solid tumors with different histology. Here, we report the immunological significance of mesothelin in human malignant glioma. Expression of mature, surface-bound mesothelin protein...... was found to bein human GBM defined by immunofluorescence microscopy, and on freshly isolated, single cell suspension of GBM tumor cells and GBM tumor cell lines, determined by based on flow cytometric analysis. Peripheral blood (PB) from patients with GBM, stimulated with mesothelin peptides and IL-2, IL...

  19. Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A

    OpenAIRE

    Mazor, Ronit; Vassall, Aaron N.; Eberle, Jaime A.; Beers, Richard; Weldon, John E.; Venzon, David J.; Tsang, Kwong Y.; Benhar, Itai; Pastan, Ira

    2012-01-01

    Recombinant immunotoxins (RITs) are chimeric proteins that are being developed for cancer treatment. We have produced RITs that contain PE38, a portion of the bacterial protein Pseudomonas exotoxin A. Because the toxin is bacterial, it often induces neutralizing antibodies, which limit the number of treatment cycles and the effectiveness of the therapy. Because T cells are essential for antibody responses to proteins, we adopted an assay to map the CD4+ T-cell epitopes in PE38. We incubated p...

  20. Inhibition of mesothelin as a novel strategy for targeting cancer cells.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA decreased viability of cancer cells from different origins such as mesothelioma (H2373, ovarian cancer (Skov3 and Ovcar-5 and pancreatic cancer (Miapaca2 and Panc-1. Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition. Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429 with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies.

  1. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes

    Science.gov (United States)

    Mazor, Ronit; Eberle, Jaime A.; Hu, Xiaobo; Vassall, Aaron N.; Onda, Masanori; Beers, Richard; Lee, Elizabeth C.; Kreitman, Robert J.; Lee, Byungkook; Baker, David; King, Chris; Hassan, Raffit; Benhar, Itai; Pastan, Ira

    2014-01-01

    Nonhuman proteins have valuable therapeutic properties, but their efficacy is limited by neutralizing antibodies. Recombinant immunotoxins (RITs) are potent anticancer agents that have produced many complete remissions in leukemia, but immunogenicity limits the number of doses that can be given to patients with normal immune systems. Using human cells, we identified eight helper T-cell epitopes in PE38, a portion of the bacterial protein Pseudomonas exotoxin A which consists of the toxin moiety of the RIT, and used this information to make LMB-T18 in which three epitopes were deleted and five others diminished by point mutations in key residues. LMB-T18 has high cytotoxic and antitumor activity and is very resistant to thermal denaturation. The new immunotoxin has a 93% decrease in T-cell epitopes and should have improved efficacy in patients because more treatment cycles can be given. Furthermore, the deimmunized toxin can be used to make RITs targeting other antigens, and the approach we describe can be used to deimmunize other therapeutically useful nonhuman proteins. PMID:24799704

  2. The development and characterization of a human mesothelioma in vitro 3D model to investigate immunotoxin therapy.

    Directory of Open Access Journals (Sweden)

    Xinran Xiang

    2011-01-01

    Full Text Available Tumor microenvironments present significant barriers to penetration by antibodies and immunoconjugates. Tumor microenvironments, however, are difficult to study in vitro. Cells cultured as monolayers exhibit less resistance to therapy than those grown in vivo and an alternative research model more representative of the in vivo tumor is more desirable. SS1P is an immunotoxin composed of the Fv portion of a mesothelin-specific antibody fused to a bacterial toxin that is presently undergoing clinical trials in mesothelioma.Here, we examined how the tumor microenvironment affects the penetration and killing activity of SS1P in a new three-dimensional (3D spheroid model cultured in vitro using the human mesothelioma cell line (NCI-H226 and two primary cell lines isolated from the ascites of malignant mesothelioma patients. Mesothelioma cells grown as monolayers or as spheroids expressed comparable levels of mesothelin; however, spheroids were at least 100 times less affected by SS1P. To understand this disparity in cytotoxicity, we made fluorescence-labeled SS1P molecules and used confocal microscopy to examine the time course of SS1P penetration within spheroids. The penetration was limited after 4 hours. Interestingly, we found a significant increase in the number of tight junctions in the core area of spheroids by electron microscopy. Expression of E-Cadherin, a protein involved in the assembly and sealing of tight junctions and highly expressed in malignant mesothelioma, was found significantly increased in spheroids as compared to monolayers. Moreover, we found that siRNA silencing and antibody inhibition targeting E-Cadherin could enhance SS1P immunotoxin therapy in vitro.This work is one of the first to investigate immunotoxins in 3D tumor spheroids in vitro. This initial description of an in vitro tumor model may offer a simple and more representative model of in vivo tumors and will allow for further investigations of the microenvironmental

  3. C-ERC/mesothelin provokes lymphatic invasion of colorectal adenocarcinoma.

    Science.gov (United States)

    Kawamata, Futoshi; Homma, Shigenori; Kamachi, Hirofumi; Einama, Takahiro; Kato, Yasutaka; Tsuda, Masumi; Tanaka, Shinya; Maeda, Masahiro; Kajino, Kazunori; Hino, Okio; Takahashi, Norihiko; Kamiyama, Toshiya; Nishihara, Hiroshi; Taketomi, Akinobu; Todo, Satoru

    2014-01-01

    Lymph node metastasis is a key event of colorectal cancer (CRC) progression. Mesothelin is expressed in various types of malignant tumor and associated with an unfavorable prognosis. The full-length mesothelin (Full-ERC) is cleaved by protease into membrane-bound C-ERC/mesothelin and N-ERC/mesothelin which is secreted into the blood. The aim of this study was to examine the biological role of mesothelin in CRC by clinicopathological analysis and in vitro lymphatic invasion assay. Ninety-one cases of CRC specimens were immunohistochemically examined and the localization of mesothelin in luminal membrane and/or cytoplasm was also evaluated. Lymphatic invasion assay was also performed using the human CRC cell line, WiDr, which was transfected with Full-, N- and C-ERC/mesothelin expression plasmids (Full-WiDr, N-WiDr and C-WiDr). Immunohistochemically, "luminal membrane positive" of mesothelin was identified in 37.4 %, and correlated with lymphatic permeation and lymph node metastasis, but not with patients' prognosis. Interestingly, among the patients with lymph node metastasis (N = 38), "luminal membrane positive" of mesothelin significantly correlated with unfavorable patients' outcome. In addition, lymphatic invasion assay revealed that Full-WiDr and C-WiDr more significantly invaded human lymphatic endothelial cells than the Mock-WiDr (P ERC/mesothelin associated with lymphatic invasion of cancer in vitro.

  4. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy.

    Science.gov (United States)

    Hung, Chien-Fu; Xu, Xuequn; Li, Linhong; Ma, Ying; Jin, Qiu; Viley, Angelia; Allen, Cornell; Natarajan, Pachai; Shivakumar, Rama; Peshwa, Madhusudan V; Emens, Leisha A

    2018-04-02

    CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 9 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival

  5. Establishment of novel mAb to human ERC/mesothelin useful for study and diagnosis of ERC/mesothelin-expressing cancers.

    Science.gov (United States)

    Ishikawa, Kiyoshi; Segawa, Tatsuya; Hagiwara, Yoshiaki; Maeda, Masahiro; Abe, Masaaki; Hino, Okio

    2009-03-01

    Malignant mesothelioma is a highly aggressive tumor of the serosal cavity that arises from the mesothelial cells of the pleura, peritoneum, or pericardium. The immunohistochemical diagnosis of epithelioid mesothelioma from biopsy or surgically resected specimens has been actively pursued, using markers such as mesothelin. Several markers have indeed been helpful for confirming the diagnosis of mesothelioma and distinguishing between mesothelioma and adenocarcinoma. The authors have developed a novel mAb to human C-ERC/mesothelin, which performed well when used in western blotting, fluorescence-activated cell sorting, immunocytochemistry and immunohistochemistry, and which therefore will be useful in studying the molecular biology of mesothelin, in addition to improving the diagnosis and therapy of mesothelin-expressing cancers.

  6. Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells.

    Science.gov (United States)

    Tang, Jinle; Li, Jialu; Zhu, Xuejun; Yu, Yuan; Chen, Dan; Yuan, Lei; Gu, Zhenyang; Zhang, Xingding; Qi, Lin; Gong, Zhishu; Jiang, Pengjun; Yu, Juhua; Meng, Huimin; An, Gangli; Zheng, Huyong; Yang, Lin

    2016-06-07

    Various CD7-targeting immunotoxins have been tested for its potential in treating CD7+ malignant patients but none of those immunotoxins was approved clinically because of lacking enough efficacy and safety. Here we successfully constructed the monovalent and bivalent CD7 nanobody-based immunotoxins PG001 and PG002, both conjugated with a truncated derivative of Pseudomonas exotoxin A respectively. The prokaryotic system expressed immunotoxins not only maintained their binding specificity for CD7-positive cells with a Kd of 16.74 nM and 3.6 nM for PG001 and PG002 respectively, but also efficiently promoted antigen-restricted apoptosis of the CD7-positive leukemia cell lines Jurkat and CEM, and primary T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML) cells with an in vitro cytotoxic activity (EC50) in the range of 23-30 pM for PG002. In NOD/SCID mice transplanted with CEM cells, PG001 and PG002 prevented engraftment of the cells and markedly prolonged mouse survival. Owing to the efficient antigen-restricted anti-leukemic activity of PG002, this CD7 nanobody-based immunotoxin exhibited a superior anti-CD7 positive malignancies activity than previously reported immunotoxins, and may represent a promising therapeutic strategy in treating CD7-positive leukemia and lymphoma, which still remain a significant clinical challenge.

  7. Characterization of human mesothelin transcripts in ovarian and pancreatic cancer

    International Nuclear Information System (INIS)

    Muminova, Zhanat E; Strong, Theresa V; Shaw, Denise R

    2004-01-01

    Mesothelin is an attractive target for cancer immunotherapy due to its restricted expression in normal tissues and high level expression in several tumor types including ovarian and pancreatic adenocarcinomas. Three mesothelin transcript variants have been reported, but their relative expression in normal tissues and tumors has been poorly characterized. The goal of the present study was to clarify which mesothelin transcript variants are commonly expressed in human tumors. Human genomic and EST nucleotide sequences in the public databases were used to evaluate sequences reported for the three mesothelin transcript variants in silico. Subsequently, RNA samples from normal ovary, ovarian and pancreatic carcinoma cell lines, and primary ovarian tumors were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and nucleotide sequencing to directly identify expressed transcripts. In silico comparisons of genomic DNA sequences with available EST sequences supported expression of mesothelin transcript variants 1 and 3, but there were no sequence matches for transcript variant 2. Newly-derived nucleotide sequences of RT-PCR products from tissues and cell lines corresponded to mesothelin transcript variant 1. Mesothelin transcript variant 2 was not detected. Transcript variant 3 was observed as a small percentage of total mesothelin amplification products from all studied cell lines and tissues. Fractionation of nuclear and cytoplasmic RNA indicated that variant 3 was present primarily in the nuclear fraction. Thus, mesothelin transcript variant 3 may represent incompletely processed hnRNA. Mesothelin transcript variant 1 represents the predominant mature mRNA species expressed by both normal and tumor cells. This conclusion should be important for future development of cancer immunotherapies, diagnostic tests, and gene microarray studies targeting mesothelin

  8. Evaluation of monoclonal antibodies for the development of breast cancer immunotoxins

    International Nuclear Information System (INIS)

    Bjorn, M.J.; Ring, D.; Frankel, A.

    1985-01-01

    Eighty-five antibodies recognizing breast cancer-selective antigens were conjugated to ricin toxin A-chain using a disulfide linkage. The cytotoxicities of the resulting immunotoxins were determined on breast cancer cells and normal human fibroblasts. Twenty-four antibodies formed immunotoxins that were toxic to at least one breast cancer cell line at concentrations of 10 nM or less but were nontoxic to human fibroblast lines used as negative controls. Some of the breast tumor-selective immunotoxins were as toxic as a conjugate between monoclonal anti-transferrin receptor and ricin toxin A-chain (50% inhibition of cellular protein synthesis at approximately 0.1 nM). Another set of four immunotoxins were indiscriminately toxic to human breast tumor cell lines, two human fibroblast cell lines, and a human lymphoblastoid line. Several of the antibodies the toxin conjugates of which specifically killed breast cancer cell lines may be useful in cancer therapy, since they show a wide range of binding to individual breast tumors and cell lines and a limited range of binding to normal tissue types

  9. ERC/mesothelin is expressed in human gastric cancer tissues and cell lines

    OpenAIRE

    ITO, TOMOAKI; KAJINO, KAZUNORI; ABE, MASAAKI; SATO, KOICHI; MAEKAWA, HIROSHI; SAKURADA, MUTSUMI; ORITA, HAJIME; WADA, RYO; KAJIYAMA, YOSHIAKI; HINO, OKIO

    2013-01-01

    ERC/mesothelin is expressed in mesothelioma and other malignancies. The ERC/mesothelin gene (MSLN) encodes a 71-kDa precursor protein, which is cleaved to yield 31-kDa N-terminal (N-ERC/mesothelin) and 40-kDa C-terminal (C-ERC/mesothelin) proteins. N-ERC/mesothelin is a soluble protein and has been reported to be a diagnostic serum marker of mesothelioma and ovarian cancer. Gastric cancer tissue also expresses C-ERC/mesothelin, but the significance of serum N-ERC levels for diagnosing gastric...

  10. ERC/mesothelin is expressed in human gastric cancer tissues and cell lines.

    Science.gov (United States)

    Ito, Tomoaki; Kajino, Kazunori; Abe, Masaaki; Sato, Koichi; Maekawa, Hiroshi; Sakurada, Mutsumi; Orita, Hajime; Wada, Ryo; Kajiyama, Yoshiaki; Hino, Okio

    2014-01-01

    ERC/mesothelin is expressed in mesothelioma and other malignancies. The ERC/mesothelin gene (MSLN) encodes a 71-kDa precursor protein, which is cleaved to yield 31-kDa N-terminal (N-ERC/mesothelin) and 40-kDa C-terminal (C-ERC/mesothelin) proteins. N-ERC/mesothelin is a soluble protein and has been reported to be a diagnostic serum marker of mesothelioma and ovarian cancer. Gastric cancer tissue also expresses C-ERC/mesothelin, but the significance of serum N-ERC levels for diagnosing gastric cancer has not yet been studied. We examined the latter issue in the present study as well as C-ERC/mesothelin expression in human gastric cancer tissues and cell lines. We immunohistochemically examined C-ERC/mesothelin expression in tissue samples from 50 cases of gastric cancer, and we also assessed the C-ERC/mesothelin expression in 6 gastric cancer cell lines (MKN-1, MKN-7, MKN-74, NUGC-3, NUGC-4 and TMK-1) using reverse transcription-polymerase chain reaction, flow cytometry, immunohistochemistry and immunoblotting. We also examined the N-ERC/mesothelin concentrations in the supernatants of cultured cells and in the sera of gastric cancer patients using an enzyme-linked immunosorbent assay (ELISA). N-ERC/mesothelin was detected in the supernatants of 3 gastric cancer cell lines (MKN-1, NUGC-4 and TMK-1) by ELISA, but its concentration in the sera of gastric cancer patients was almost same as that observed in the sera of the normal controls. In the gastric cancer tissues, C-ERC/mesothelin expression was associated with lymphatic invasion. N-ERC/mesothelin was secreted into the supernatants of gastric cancer cell lines, but does not appear to be a useful serum marker of gastric cancer.

  11. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding.

    Directory of Open Access Journals (Sweden)

    Allison R Sirois

    Full Text Available Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3 non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics.

  12. The utility of serum N-ERC/mesothelin as a biomarker of ovarian carcinoma.

    Science.gov (United States)

    Saeki, Harumi; Hashizume, Akane; Izumi, Hiroshi; Suzuki, Fujihiko; Ishi, Kazuhisa; Nojima, Michio; Maeda, Masahiro; Hino, Okio

    2012-10-01

    Ovarian carcinoma has been difficult to diagnose at an early stage. Recently, it has been recognized that the measurement of blood N-ERC/mesothelin levels aids early detection in and postoperative therapeutic monitoring of patients with mesothelioma, who have been exposed to asbestos. ERC/mesothelin has also been reported to be expressed in ovarian carcinoma. We determined serum N-ERC/mesothelin levels in patients with ovarian carcinoma using an enzyme-linked immunosorbent assay (ELISA). In addition, we immunohistochemically evaluated surgically resected specimens for C-ERC/mesothelin expression. As a result, of the 32 patients with ovarian tumors (18 carcinoma, 2 borderline tumors), one patient with serous adenocarcinoma showed increased N-ERC/ mesothelin levels. Immunohistochemically, of the 20 ovarian tumor (carcinoma and borderline tumor) specimens evaluated for serum N-ERC/mesothelin, 9 (45.0%) were positive for C-ERC/mesothelin. The C-ERC/mesothelin-positive specimens were found to be serous and clear cell adenocarcinomas. If serum N-ERC/mesothelin, which is considered useful for early detection in and therapeutic monitoring of patients with mesothelioma, may also be used for ovarian carcinoma monitoring, it may be a valuable serum tumor marker for the early detection of ovarian carcinoma.

  13. The future of antiviral immunotoxins

    DEFF Research Database (Denmark)

    Spiess, K.; Høy Jakobsen, Mette; Kledal, Thomas N

    2016-01-01

    There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval in ...

  14. ERC/mesothelin as a marker for chemotherapeutic response in patients with mesothelioma.

    Science.gov (United States)

    Tajima, Ken; Hirama, Michihiro; Shiomi, Kazu; Ishiwata, Toshiji; Yoshioka, Masataka; Iwase, Akihiko; Iwakami, Shinichiro; Yamazaki, Mariko; Toba, Michie; Tobino, Kazunori; Sugano, Koji; Ichikawa, Masako; Hagiwara, Yoshiaki; Takahashi, Kazuhisa; Hino, Okio

    2008-01-01

    It has been recently reported that soluble mesothelin-related protein (SMRP), serum mesothelin, and osteopontin (OPN) are considered as relevant biomarkers for the diagnosis of mesothelioma. The aim of this study was to investigate whether serum N-ERC/mesothelin, an NH3-terminal fragment of mesothelin, and plasma OPN reflect chemotherapeutic effect in patients with mesothelioma. Serum N-ERC/mesothelin and plasma osteopontin were determined with a sandwich enzyme-linked immunosorbent assay (ELISA) system. The average N-ERC ratio, determined by dividing the N-ERC levels following chemotherapy by those prior to chemotherapy, in the partial response (PR) group was significantly lower than that of the stable disease (SD)/progressive disease (PD) group. In contrast, the average OPN ratio, determined by dividing the OPN levels following chemotherapy by those prior to chemotherapy, in the PR group was not statistically different from that of the SD/PD group. N-ERC/mesothelin is considered as relevant in monitoring chemotherapeutic response in patients with mesothelioma.

  15. The current status of immunotoxins: an overview of experimental and clinical studies as presented at the Third International Symposium on Immunotoxins.

    Science.gov (United States)

    Uckun, F M; Frankel, A

    1993-02-01

    The Third International Symposium on Immunotoxins was held on June 19-21, 1992 in Orlando, Florida. This symposium was sponsored by NATO, NIH, Pierce Chemical Company, Walt Disney Cancer Institute at Florida Hospital, Duke Comprehensive Cancer Center, Xoma, Immunogen, Seragen, Bristol-Myers Squibb, Chiron, Ortho Biotech, Upjohn, Merck Sharp & Dohme Research Laboratories, Abbot Laboratories, Lilly Research Laboratories, and Evans & Sutherland. The Pierce Immunotoxin Award which recognizes outstanding contributions to immunotoxin research and development, was presented to Drs David FitzGerald, Fatih Uckun, David Eisenberg, and Ira Wool, for their contributions to the immunotoxin field.

  16. MESOMARK kit detects C-ERC/mesothelin, but not SMRP with C-terminus.

    Science.gov (United States)

    Segawa, Tatsuya; Hagiwara, Yoshiaki; Ishikawa, Kiyoshi; Aoki, Naoko; Maeda, Masahiro; Shiomi, Kazu; Hino, Okio

    2008-05-09

    ERC/mesothelin is expressed on the normal mesothelium and some cancers such as mesothelioma or ovarian carcinoma. A splicing isoform of ERC/mesothelin (known as SMRP), which has an 82-bp insertion and codes for a C-terminus with a hydrophilic, presumably soluble, tail instead of a GPI-anchoring signal, has been reported as a useful marker for the diagnosis of mesothelioma. However, the existence of SMRP has not yet been demonstrated in the serum of mesothelioma patients. To elucidate the existence of SMRP, we have established a new enzyme-linked immunosorbent assay (ELISA) system for SMRP. The ELISA study revealed that N- and C-ERC/mesothelin were detected in sera from mesothelioma patients, but not SMRP, even in these samples. This result showed that the SMRP detected with MESOMARK kit should be lack of soluble C-terminus and indistinguishable from C-ERC/mesothelin. Further study might be necessary to demonstrate the relationship between SMRP and mesothelin.

  17. Immunotoxins: The Role of the Toxin

    Directory of Open Access Journals (Sweden)

    David FitzGerald

    2013-08-01

    Full Text Available Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.

  18. Abrin immunotoxin: targeted cytotoxicity and intracellular trafficking pathway.

    Directory of Open Access Journals (Sweden)

    Sudarshan Gadadhar

    Full Text Available BACKGROUND: Immunotherapy is fast emerging as one of the leading modes of treatment of cancer, in combination with chemotherapy and radiation. Use of immunotoxins, proteins bearing a cell-surface receptor-specific antibody conjugated to a toxin, enhances the efficacy of cancer treatment. The toxin Abrin, isolated from the Abrus precatorius plant, is a type II ribosome inactivating protein, has a catalytic efficiency higher than any other toxin belonging to this class of proteins but has not been exploited much for use in targeted therapy. METHODS: Protein synthesis assay using (3[H] L-leucine incorporation; construction and purification of immunotoxin; study of cell death using flow cytometry; confocal scanning microscopy and sub-cellular fractionation with immunoblot analysis of localization of proteins. RESULTS: We used the recombinant A chain of abrin to conjugate to antibodies raised against the human gonadotropin releasing hormone receptor. The conjugate inhibited protein synthesis and also induced cell death specifically in cells expressing the receptor. The conjugate exhibited differences in the kinetics of inhibition of protein synthesis, in comparison to abrin, and this was attributed to differences in internalization and trafficking of the conjugate within the cells. Moreover, observations of sequestration of the A chain into the nucleus of cells treated with abrin but not in cells treated with the conjugate reveal a novel pathway for the movement of the conjugate in the cells. CONCLUSIONS: This is one of the first reports on nuclear localization of abrin, a type II RIP. The immunotoxin mAb F1G4-rABRa-A, generated in our laboratory, inhibits protein synthesis specifically on cells expressing the gonadotropin releasing hormone receptor and the pathway of internalization of the protein is distinct from that seen for abrin.

  19. Rat N-ERC/mesothelin as a marker for in vivo screening of drugs against pancreas cancer.

    Science.gov (United States)

    Fukamachi, Katsumi; Iigo, Masaaki; Hagiwara, Yoshiaki; Shibata, Koji; Futakuchi, Mitsuru; Alexander, David B; Hino, Okio; Suzui, Masumi; Tsuda, Hiroyuki

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease, which is usually diagnosed in an advanced stage. We have established transgenic rats carrying a mutated K-ras gene controlled by Cre/loxP activation. The animals develop PDA which is histopathologically similar to that in humans. Previously, we reported that serum levels of N-ERC/mesothelin were significantly higher in rats bearing PDA than in controls. In the present study, to determine whether serum levels of N-ERC/mesothelin correlated with tumor size, we measured N-ERC/mesothelin levels in rats bearing PDA. Increased serum levels of N-ERC/mesothelin correlated with increased tumor size. This result indicates an interrelationship between the serum level of N-ERC/mesothelin and tumor size. We next investigated the effect of chemotherapy on serum N-ERC/mesothelin levels. Rat pancreatic cancer cells were implanted subcutaneously into the flank of NOD-SCID mice. In the mice treated with 200 mg/kg gemcitabine, tumor weight and the serum level of N-ERC/mesothelin were significantly decreased compared to controls. These results suggest that serum N-ERC/mesothelin measurements might be useful for monitoring response to therapy.

  20. A prospective study to investigate the role of serial serum mesothelin in monitoring mesothelioma.

    Science.gov (United States)

    de Fonseka, Duneesha; Arnold, David T; Stadon, Louise; Morley, Anna; Keenan, Emma; Darby, Michael; Armstrong, Lynne; Virgo, Paul; Maskell, Nick A

    2018-02-17

    Radiological monitoring of malignant pleural mesothelioma (MPM) using modified RECIST criteria is limited by low sensitivity and inter-observer variability. Serial serum mesothelin measurement has shown utility in the assessment of treatment response during chemotherapy but has never been assessed in the longer term follow up of patients. This is a single centre study of consecutive patients diagnosed with MPM who received chemotherapy or best supportive care (BSC). Serum mesothelin measurements with paired 6 monthly CT scans were performed following the completion of chemotherapy, or from baseline in the BSC group. Changes in mesothelin were correlated with radiological progression and overall survival. Forty-one patients with MPM were recruited and followed up for a minimum of 12 months (range 12-21 months). The majority of patients (n = 23) received chemotherapy with pemetrexed and cisplatin. Across the cohort a 10% rise in serum mesothelin could predict radiological progression with a sensitivity of 96% (IQR; 79-100) and specificity of 74% (IQR; 50-91). Sensitivity fell to 80% in sarcomatoid only disease. Patients with a rising mesothelin at 6 months had significantly worse overall survival (175 days) compared to stable/falling levels (448 days) (p = 0.003). This is the first study to assess serum mesothelin's ability to detect progression of MPM following chemotherapy or during BSC. A 10% rise in serum mesothelin level showed excellent sensitivity at predicting progressive disease. Mesothelin measurement has several advantages over serial CT imaging including reducing hospital visits and cost.

  1. In vivo therapy of a murine B cell tumor (BCL1) using antibody-ricin A chain immunotoxins

    International Nuclear Information System (INIS)

    Krolick, K.A.; Uhr, J.W.; Slavin, S.; Vitetta, E.S.

    1982-01-01

    Prolonged remissions were induced in mice bearing advanced BCL1 tumors by the combined approach of nonspecific cytoreductive therapy and administration of a tumor-reactive immunotoxin. Thus, the vast majority of the tumor cells (approximately 95%) were first killed by nonspecific cytoreductive therapy using total lymphoid irradiation (TLI) and splenectomy. The residual tumor cells were then eliminated by intravenous administration of an anti-delta immunotoxin. In three of four experiments, all animals treated in the above fashion appeared tumor free 12-16 wk later. In one experiment, blood cells from the mice in remission were transferred to normal BALB/c recipients, and the latter animals have not developed detectable tumor for the 6 mo of observation. Because 1-10 adoptively transferred BCL1 cells will cause tumor in normal BALB/c mice by 12 wk, the inability to transfer tumor to recipients might indicate that the donor animals were tumor free. In the remainder of the animals treated with the tumor-reactive immunotoxin there was a substantial remission in all animals, but the disease eventually reappeared. In contrast, all mice treated with the control immunotoxin or antibody alone relapsed significantly earlier

  2. Mesothelin promoter variants are associated with increased soluble mesothelin-related peptide levels in asbestos-exposed individuals

    Czech Academy of Sciences Publication Activity Database

    De Santi, Ch.; Pucci, P.; Bonotti, A.; Melaiu, O.; Cipollini, M.; Silvestri, R.; Vymetálková, Veronika; Barone, E.; Paolicchi, E.; Corrado, A.; Lepori, I.; Dell'Anno, I.; Pelle, L.; Vodička, Pavel; Mutti, L.; Foddis, R.; Cristaudo, A.; Gemignani, F.; Landi, S.

    2017-01-01

    Roč. 74, č. 6 (2017), s. 457-464 ISSN 1351-0711 Institutional support: RVO:68378041 Keywords : serum mesothelin * pleural mesothelioma * cancer Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 3.912, year: 2016

  3. Novel recombinant immunotoxin of EGFR specific nanobody fused with cucurmosin, construction and antitumor efficiency in vitro.

    Science.gov (United States)

    Deng, Cuimin; Xiong, Jiani; Gu, Xiaofan; Chen, Xiaoying; Wu, Shuifa; Wang, Zhe; Wang, Duanduan; Tu, Jinjin; Xie, Jieming

    2017-06-13

    Epidermal growth factor receptor (EGFR) overexpression is related to the increased aggressiveness, metastases, and poor prognosis in various cancers. In this study, we successfully constructed a new EGFR nanobody-based immunotoxin rE/CUS containing cucurmosin (CUS), The immunotoxin was expressed by prokaryotic system and we obtained a yield of 5 mg protein per liter expression medium. The percentage of it's binding ability totumor cell lines A549, HepG2, SW116, which highly expressed EGFR was 55.6%, 79.6% and 97.1%, respectively, but SW620 was only 4.45%. rE/CUS has the ability to bind A549, HepG2, SW116 cells specifically, and the antigen binding capability was not affected because of extra part of CUS component. The rE/CUS significantly inhibited the cell viability against EGFR over expression tumor cell lines in a dose-and time-dependent manner. Moreover, rE/CUS also induced apoptosis of HepG2 and A549 mightily. Our results demonstrate that rE/CUS is a potential therapeutic strategy for treating EGFR-positive solid tumors.

  4. Expression of nestin, mesothelin and epithelial membrane antigen (EMA) in developing and adult human meninges and meningiomas.

    Science.gov (United States)

    Petricevic, Josko; Forempoher, Gea; Ostojic, Ljerka; Mardesic-Brakus, Snjezana; Andjelinovic, Simun; Vukojevic, Katarina; Saraga-Babic, Mirna

    2011-11-01

    The spatial and temporal pattern of appearance of nestin, epithelial membrane antigen (EMA) and mesothelin proteins was immunohistochemically determined in the cells of normal developing and adult human meninges and meningiomas. Human meninges developed as two mesenchymal condensations in the head region. The simple squamous epithelium on the surface of leptomeninges developed during mesenchymal to epithelial transformation. Nestin appeared for the first time in week 7, EMA in week 8, while mesothelin appeared in week 22 of development. In the late fetal period and after birth, nestin expression decreased, whereas expression of EMA and mesothelin increased. EMA appeared in all surface epithelial cells and nodules, while mesothelin was found only in some of them. In adult meninges, all three proteins were predominantly localized in the surface epithelium and meningeal nodules. In meningothelial meningiomas (WHO grade I), EMA was detected in all tumor cells except in the endothelial cells, mesothelin characterized nests of tumor cells, while nestin was found predominantly in the walls of blood vessels. The distribution pattern of those proteins in normal meningeal and tumor cells indicates that nestin might characterize immature cells, while EMA and mesothelin appeared in maturing epithelial cells. Neoplastic transformation of these specific cell lineages contributes to the cell population in meningiomas. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Mesothelin as a biomarker for ovarian carcinoma: a meta-analysis

    Directory of Open Access Journals (Sweden)

    KRISTIAN MADEIRA

    2016-06-01

    Full Text Available The objective of this work was to estimate the accuracy of mesothelin as a biomarker for ovarian cancer. A quantitative systematic review was performed. A comprehensive search of the Medline, LILACS, SCOPUS, Embase, Cochrane Central Register of Controlled Trials, Biomed Central, and ISI Web of Science databases was conducted from January 1990 to June 2015. For inclusion in this systematic review, the papers must have measured mesothelin levels in at least two histological diagnoses; ovarian cancer (borderline or ovarian tumor vs. benign or normal ovarian tissue. For each study, 2 x 2 contingency tables were constructed. We calculated the sensitivity, specificity and diagnostic odds ratio. The verification bias was performed according to QUADAS-2. Statistical analysis was performed with the software Stata 11, Meta-DiSc(r and RevMan 5.2. Twelve studies were analyzed, which included 1,561 women. The pooled sensitivity was 0.62 (CI 95% 0.58 - 0.66 and specificity was 0.94 (CI 95% 0.92 - 0.95. The DOR was 38.92 (CI 95% 17.82 - 84.99. Our systematic review shows that mesothelin cannot serve alone as a biomarker for the detection of ovarian cancer.

  6. Effect of Chelator Conjugation Level and Injection Dose on Tumor and Organ Uptake of 111In Labeled MORAb-009, an Anti-mesothelin Antibody

    Science.gov (United States)

    Shin, I. S.; Lee, S.-M.; Kim, H. S.; Yao, Z.; Regino, C.; Sato, N.; Cheng, K. T.; Hassan, R.; Campo, M. F.; Albone, E. F.; Choyke, P. L.; Pastan, I.; Paik, C. H.

    2012-01-01

    Introduction Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin and the effect of MORAb dose on the biodistribution of 111In labeled MORAb-009. Methods We used nude mice bearing A431/K5 tumor as a mesothelin-positive tumor model and A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5, and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed-mesothelin in the circulation, the biodistribution studies were performed after the i.v. co-injection of the 111In labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses, 0.2, 2, and 30 μg of MORAb-009. Results The tumor uptake in A431/K5 tumor was 4 times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin-mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in biodistribution of the 111In label. The 111In labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake, and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30 μg dose produced higher tumor uptake than the 0.2 and 2 μg doses whereas the 30 μg dose produced lower liver and spleen uptakes than the 0.2 μg dose. Conclusion This study

  7. A review on the types of immunotoxins and their use in cancer treatment: review article

    Directory of Open Access Journals (Sweden)

    Saber Soltani

    2018-04-01

    Full Text Available Immunotoxins such as pseudomonas exotoxin are Molecules with a unique structure like toxin-antibody part. These immunotoxins are two functional which crossing the cell membrane and enters the target cell and destroy the cell. Toxin-based treatments are a widespread research field and can have broad applications in the biology and public health. Immunotoxins act selectively against cancer cells and have a good potential for detecting and targeting cancer cells. Specific immunotoxins to target immune cells due to the selection type antibody and antibodies are responsible for the identification of the target cells. Cancer is becoming a major cause of death in most developed countries. In order to have a strong factor in cancer repression, that agent must target the cancer cells directly and specifically. Often, but not always, immunotoxins are produced for disabling and killing cancer cells, that this issue is one of new therapeutic approaches in recently. Clinical aims to designing and create new cancer therapies focused with this approach, a lot of information about the toxin and intracellular pathways have been obtained. So, toxins in medicine are useful for the treatment of human disease and study of professional cellular functions. So, immunotoxins have a high potential for cancer treatment. Other applications of immunotoxins, including immune system regulation and treatment of viral diseases and parasites diseases. More research is needed to improve the immunotoxin effects and to reduce their side effects. On the whole, with design creative, clever and experienced programs, many human diseases, particularly cancers can be in a short period of time and faster than other methods of treatment that the treatment of long, to be treated. Following the design and implementation of clinical trials, the effects of immunotoxins on animal tumorigenic models were performed. In fact, in this study, we focus on the use of protein-bound toxins with

  8. Cloning and Expression of Ontak Immunotoxin Using Intein Tag

    Directory of Open Access Journals (Sweden)

    SA Moosavizadeh

    2016-06-01

    Full Text Available Introduction: Inteins (INT are internal parts of a number of proteins in yeast and some other unicellular eukaryotes, which can be separated from the immature protein during protein splicing process. After identifying the mechanism of intein action, applications of these sequences are be considered in the single- step purification of recombinant proteins and different intein tags were developed. The most important advantage of using intein tags in purification of recombinant proteins than other affinity tags is no requirement of expensive protease enzymes and following additional steps to remove protease that make intein tags economically are considered more important. In the present study, denileukin diftitox immunotoxin (brand name Ontak, be fused with an intein tag and it was inserted in pTXB1 plasmid. Methods: In this study, with respect to multiple cloning sites (MCS of pTXB1, specific primers were designed. Polymerase Chain Reaction (PCR was performed and encoding sequence of ONTAK was cloned using restriction sites of NdeI and SapI. Recombinant vector (PTX-IDZ was transformed into E. coli strain ER2566 and expression of gene was studied. Results: The accuracy of recombinant construct was confirmed by PCR and enzymatic digestion. The produced recombinant proteins were confirmed by SDS-PAGE and Western blotting. Conclusion: Restriction site of SapI guarantees no additional residues incorporate in primary protein sequence. Also, the expression of this construct was analyzed in compare with fused protein to poly-His tag. According to the appropriate expression of fused protein in both constructs it was expected that one step- purification of considered drug protein will be success in the following steps.

  9. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  10. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two-step model to predict pleural malignant mesothelioma.

    Science.gov (United States)

    Mundt, Filip; Nilsonne, Gustav; Arslan, Sertaç; Csürös, Karola; Hillerdal, Gunnar; Yildirim, Huseyin; Metintas, Muzaffer; Dobra, Katalin; Hjerpe, Anders

    2013-01-01

    Diagnosis of malignant mesothelioma is challenging. The first available diagnostic material is often an effusion and biochemical analysis of soluble markers may provide additional diagnostic information. This study aimed to establish a predictive model using biomarkers from pleural effusions, to allow early and accurate diagnosis. Effusions were collected prospectively from 190 consecutive patients at a regional referral centre. Hyaluronan, N-ERC/mesothelin, C-ERC/mesothelin, osteopontin, syndecan-1, syndecan-2, and thioredoxin were measured using ELISA and HPLC. A predictive model was generated and validated using a second prospective set of 375 effusions collected consecutively at a different referral centre. Biochemical markers significantly associated with mesothelioma were hyaluronan (odds ratio, 95% CI: 8.82, 4.82-20.39), N-ERC/mesothelin (4.81, 3.19-7.93), CERC/mesothelin (3.58, 2.43-5.59) and syndecan-1 (1.34, 1.03-1.77). A two-step model using hyaluronan and N-ERC/mesothelin, and combining a threshold decision rule with logistic regression, yielded good discrimination with an area under the ROC curve of 0.99 (95% CI: 0.97-1.00) in the model generation dataset and 0.83 (0.74-0.91) in the validation dataset, respectively. A two-step model using hyaluronan and N-ERC/mesothelin predicts mesothelioma with high specificity. This method can be performed on the first available effusion and could be a useful adjunct to the morphological diagnosis of mesothelioma.

  11. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two-step model to predict pleural malignant mesothelioma.

    Directory of Open Access Journals (Sweden)

    Filip Mundt

    Full Text Available PURPOSE: Diagnosis of malignant mesothelioma is challenging. The first available diagnostic material is often an effusion and biochemical analysis of soluble markers may provide additional diagnostic information. This study aimed to establish a predictive model using biomarkers from pleural effusions, to allow early and accurate diagnosis. PATIENTS AND METHODS: Effusions were collected prospectively from 190 consecutive patients at a regional referral centre. Hyaluronan, N-ERC/mesothelin, C-ERC/mesothelin, osteopontin, syndecan-1, syndecan-2, and thioredoxin were measured using ELISA and HPLC. A predictive model was generated and validated using a second prospective set of 375 effusions collected consecutively at a different referral centre. RESULTS: Biochemical markers significantly associated with mesothelioma were hyaluronan (odds ratio, 95% CI: 8.82, 4.82-20.39, N-ERC/mesothelin (4.81, 3.19-7.93, CERC/mesothelin (3.58, 2.43-5.59 and syndecan-1 (1.34, 1.03-1.77. A two-step model using hyaluronan and N-ERC/mesothelin, and combining a threshold decision rule with logistic regression, yielded good discrimination with an area under the ROC curve of 0.99 (95% CI: 0.97-1.00 in the model generation dataset and 0.83 (0.74-0.91 in the validation dataset, respectively. CONCLUSIONS: A two-step model using hyaluronan and N-ERC/mesothelin predicts mesothelioma with high specificity. This method can be performed on the first available effusion and could be a useful adjunct to the morphological diagnosis of mesothelioma.

  12. Serum level of expressed in renal carcinoma (ERC)/ mesothelin in rats with mesothelial proliferative lesions induced by multi-wall carbon nanotube (MWCNT).

    Science.gov (United States)

    Sakamoto, Yoshimitsu; Dai, Nakae; Hagiwara, Yoshiaki; Satoh, Kanako; Ohashi, Norio; Fukamachi, Katsumi; Tsuda, Hiroyuki; Hirose, Akihiko; Nishimura, Tetsuji; Hino, Okio; Ogata, Akio

    2010-04-01

    Expressed in renal carcinoma (ERC)/mesothelin is a good biomarker for human mesothelioma and has been investigated for its mechanistic rationale during the mesothelioma development. Studies are thus ongoing in our laboratories to assess expression of ERC/mesothelin in sera and normal/proliferative/neoplastic mesothelial tissues of animals untreated or given potentially mesothelioma-inducible xenobiotics, by an enzyme-linked immunosorbent assay (ELISA) for N- and C-(terminal fragments of) ERC/mesothelin and immunohistochemistry for C-ERC/mesothelin. In the present paper, we intend to communicate our preliminary data, because this is the first report to show how and from what stage the ERC/mesothelin expression changes during the chemical induction of mesothelial proliferative/neoplatic lesions. Serum N-ERC/mesothelin levels were 51.4 +/- 5.6 ng/ml in control male Fischer 344 rats, increased to 83.6 +/- 11.2 ng/ml in rats given a single intrascrotal administration of 1 mg/kg body weight of multi-wall carbon nanotube (MWCNT) and bearing mesothelial hyperplasia 52 weeks thereafter, and further elevated to 180 +/- 77 ng/ml in rats similarly treated and becoming moribund 40 weeks thereafter, or killed as scheduled at the end of week 52, bearing mesothelioma. While C-ERC/mesothelin was expressed in normal and hyperplastic mesothelia, the protein was detected only in epithelioid mesothelioma cells at the most superficial layer. It is thus suggested that ERC/mesothelin can be used as a biomarker of mesothelial proliferative lesions also in animals, and that the increase of levels may start from the early stage and be enhanced by the progression of the mesothelioma development.

  13. Characterization of crystals of an antibody-recognition fragment of the cancer differentiation antigen mesothelin in complex with the therapeutic antibody MORAb-009

    International Nuclear Information System (INIS)

    Ma, Jichun; Tang, Wai Kwan; Esser, Lothar; Pastan, Ira; Xia, Di

    2012-01-01

    The therapeutic antibody MORAb-009 disrupts the interaction of mesothelin and the ovarian cancer antigen CA-125. Crystals have been grown of the Fab fragment derived from MORAb-009 and of its complex with an N-terminal fragment of mesothelin. The mesothelin-specific monoclonal antibody MORAb-009 is capable of blocking the binding of mesothelin to CA-125 and displays promising anticancer potential. It is currently undergoing clinical trials. In order to understand the basis of the interaction between MORAb-009 and mesothelin at atomic resolution, both the Fab fragment of MORAb-009 and the complex between the Fab and an N-terminal fragment of mesothelin (residues 7–64) were crystallized. The crystals of the Fab diffracted X-rays to 1.75 Å resolution and had the symmetry of space group P4 1 2 1 2, with unit-cell parameters a = b = 140.6, c = 282.0 Å. The crystals of the mesothelin–Fab complex diffracted to 2.6 Å resolution and belonged to the hexagonal space group P6 4 , with unit-cell parameters a = b = 146.2, c = 80.9 Å. Structural analyses of these molecules are in progress

  14. Efficiency of immunotoxin cytotoxicity is modulated by the intracellular itinerary.

    Directory of Open Access Journals (Sweden)

    Lori L Tortorella

    Full Text Available Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(F(v-PE38, are proposed to traffic to the trans-Golgi network (TGN and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity - presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.

  15. Comparison of the Diagnostic Accuracy of the MSLN Gene Products, Mesothelin and Megakaryocyte Potentiating Factor, as Biomarkers for Mesothelioma in Pleural Effusions and Serum

    Directory of Open Access Journals (Sweden)

    Jenette Creaney

    2013-01-01

    Full Text Available The MSLN gene products, soluble mesothelin and megakaryocyte potentiating factor (MPF, are being investigated as biomarkers for the asbestos-related cancer malignant mesothelioma (MM. Pleural fluid biomarkers of MM can be elevated when serum levels remain normal. The aim of this study was to determine if this was true for MPF and to compare levels of mesothelin. Biomarker concentrations were compared in 66 MM patients, 39 patients with other malignancies, 37 with benign disease, 18 asbestos-exposed healthy individuals, and 53 patients with chronic kidney disease. In pleural effusions, MPF and soluble mesothelin concentrations were both significantly elevated in MM patients relative to controls. No significant difference between the area under the receiver operator curve (AUC for MPF (0.945±0.02 and mesothelin (0.928±0.03 when distinguishing MM from all other causes of effusion was observed. MPF and mesothelin serum concentrations were highly correlated and of equivalent diagnostic accuracy with AUCs of 0.813±0.04 and 0.829±0.03, respectively. Serum levels of both markers increased with decreasing kidney function. In conclusion, MPF is elevated in the pleural effusions of MM patients similar to that of mesothelin. Mesothelin and MPF convey equivalent diagnostic information for distinguishing MM from other diseases in pleural effusions as well as serum.

  16. Aberrant Expression of Calretinin, D2-40 and Mesothelin in Mucinous and Non-Mucinous Colorectal Carcinomas and Relation to Clinicopathological Features and Prognosis.

    Science.gov (United States)

    Foda, Abd AlRahman Mohammad; El-Hawary, Amira Kamal; Hamed, Hazem

    2016-10-01

    CRC is a heterogeneous disease in terms of morphology, invasive behavior, metastatic capacity, and clinical outcome. Recently, many so-called mesothelial markers, including calretinin, D2-40, WT1, thrombomodulin, mesothelin, and others, have been certified. The aim of this study was to assess the immunohistochemical expression of calretinin and other mesothelial markers (D2-40 and mesothelin) in colorectal mucinous adenocarcinoma (MA) and non mucinous adenocarcinoma (NMA) specimens and relation to clinicopathological features and prognosis using manual tissue microarray technique. We studied tumor tissue specimens from 150 patients with colorectal MA and NMA who underwent radical surgery from January 2007 to January 2012. High-density manual tissue microarrays were constructed using a modified mechanical pencil tip technique, and paraffin sections were submitted for immunohistochemistry using Calretinin, D2-40 and mesothelin expressions. We found that NMA showed significantly more calretinin and D2-40 expression than MA In contrast, no statistically significant difference between NMA and MA was detected in mesothelin expression. There were no statistically significant relations between any of the clinicopathological or histological parameters and any of the three markers. In a univariate analysis, neither calretinin nor D2-40 expressions showed any significant relations to DFS or OS. However, mesothelin luminal expression was significantly associated with worse DFS. Multivariate Cox regression analysis proved that luminal mesothelin expression was an independent negative prognostic factor in NMA. In conclusion, Calretinin, D2-40 and mesothelin are aberrantly expressed in a proportion of CRC cases with more expression in NMA than MA. Aberrant expression of these mesothelial markers was not associated with clinicopathological or histological features of CRCs. Only mesothelin expression appears to be a strong predictor of adverse prognosis.

  17. Newly established ELISA for N-ERC/mesothelin improves diagnostic accuracy in patients with suspected pleural mesothelioma.

    Science.gov (United States)

    Sato, Tadashi; Suzuki, Yohei; Mori, Takanori; Maeda, Masahiro; Abe, Masaaki; Hino, Okio; Takahashi, Kazuhisa

    2014-10-01

    Pleural mesothelioma is an aggressive tumor, commonly caused by exposure to asbestos. The prognosis of mesothelioma remains disappointing despite multimodal treatment. We reported previously that N-ERC/mesothelin could be a useful biomarker for the early diagnosis of pleural mesothelioma and developed an enzyme-linked immunosorbent assay (ELISA) system for its detection. However, the reproducibility of our previous 7-16 ELISA system has been revealed to be unsatisfactory. To measure N-ERC/mesothelin more precisely, we developed a new 7-20 ELISA system. The subjects of this study were patients who were referred to our department with suspected pleural mesothelioma. The current study demonstrated that the newly established 7-20 ELISA system improved the sensitivity and specificity for diagnosing pleural mesothelioma compared with the previous system. Moreover, the 7-20 ELISA system showed better reproducibility and displayed the tendency of both higher sensitivity and higher specificity in plasma than in serum. Particularly for the epithelioid type, the area under the curve (AUC) and the diagnostic accuracy of N-ERC/mesothelin were excellent; the AUC was 0.91, the sensitivity was 0.95, and the specificity was 0.76 in plasma. In conclusion, assessment of N-ERC/mesothelin with our newly established 7-20 ELISA system is clinically useful for the precise diagnosis of pleural mesothelioma. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  18. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2006-01-01

    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

  19. Complete suppression of in vivo growth of human leukemia cells by specific immunotoxins: nude mouse models

    International Nuclear Information System (INIS)

    Hara, H.; Seon, B.K.

    1987-01-01

    In this study, immunotoxins containing monoclonal anti-human T-cell leukemia antibodies are shown to be capable of completely suppressing the tumor growth of human T-cell leukemia cells in vivo without any overt undersirable toxicity. These immunotoxins were prepared by conjugating ricin A chain (RA) with our monoclonal antibodies, SN1 and SN2, directed specifically to the human T-cell leukemia cell surface antigens TALLA and GP37, respectively. The authors have shown that these monoclonal antibodies are highly specific for human T-cell leukemia cells and do not react with various normal cells including normal T and B cells, thymocytes, and bone marrow cells. Ascitic and solid human T-cell leukemia cell tumors were generated in nude mice. The ascitic tumor was generated by transplanting Ichikawa cells (a human T-cell leukemia cell) i.p. into nude mice, whereas the solid tumor was generated by transplanting s.c. MOLT-4 cells (a human T-cell leukemia cell line) and x-irradiated human fibrosarcoma cells into x-irradiated nude mice. To investigate the efficacy of specific immunotoxins in suppression the in vivo growth of the ascitic tumor, they divided 40 nude mice that were injected with Ichikawa cells into four groups. None of the mice in group 4 that were treated with SN1-RA and SN2-RA showed any signs of a tumor or undesirable toxic effects for the 20 weeks that they were followed after the transplantation. Treatment with SN1-RA plus SN2-RA completely suppressed solid tumor growth in 4 of 10 nude mice carrying solid tumors and partially suppressed the tumor growth in the remaining 6 nude mice. These results strongly suggest that SN1-RA and SN2-RA may be useful for clinical treatment

  20. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice.

    Science.gov (United States)

    Zhang, Danqing; Kobayashi, Toshiyuki; Kojima, Tetsuo; Kanenishi, Kenji; Hagiwara, Yoshiaki; Abe, Masaaki; Okura, Hidehiro; Hamano, Yoshitomo; Sun, Guodong; Maeda, Masahiro; Jishage, Kou-ichi; Noda, Tetsuo; Hino, Okio

    2011-04-01

    Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway. © 2011 Japanese Cancer Association.

  1. [Study on the anti-NTHi infection of Hap recombinant protein in vivo].

    Science.gov (United States)

    Li, Wan-yi; Wang, Bao-ning; Zuo, Feng-qiong; Zeng, Wei; Feng, Feng; Kuang, Yu; Jiang, Zhong-hua; Li, Ming-yuan

    2010-07-01

    To observe the immune effect of Hap recombinant protein on murine model of bronchopneumonia infected with NTHi, and explore the mechanism about the anti-NTHi infection. The C57BL/6 mice intranasally immunized with purified Hap recombinant protein and CT-B were challenged by NTHi encased in agar beads. The immunifaction of anti-infection was observed through encocyte counting of BALF, bacteria detection of lung and the pathologyical change of lung tissue. In the challenge with NTHi experiment, the inflammatory exudation of the infected murine and pathological change of lung tissue was relieved by combined immunization of Hap recombinant protein and CT-B, and quantity of NTHi in lung of the infected murine was reduced obviously. The Hap recombinant protein also had good ability of anti-NTHi infection in the murine model of NTHi bronchopneumonia. This study could offer the oretical and experimental basis for development of new vaccine against NTHi.

  2. Suppression of cell death by the secretory form of N-terminal ERC/mesothelin.

    Science.gov (United States)

    Wang, Tegexibaiyin; Kajino, Kazunori; Abe, Masaaki; Tan, Ke; Maruo, Masumi; Sun, Guodong; Hagiwara, Yoshiaki; Maeda, Masahiro; Hino, Okio

    2010-08-01

    ERC/mesothelin is highly expressed in malignant mesothelioma, pancreatic cancer, and ovarian cancer. It is cleaved to a 30 kDa N-terminal secretory form (N-ERC) and a 40 kDa C-terminal membranous form (C-ERC). Several functions have been reported for full-length ERC (full-ERC) and C-ERC/mesothelin, such as in cell adhesion and invasion, stimulation of cell proliferation, and the suppression of cell death. However, there have been no studies to date on the function of secretory N-ERC, despite the fact that it is abundantly secreted into the sera of mesothelioma patients. In this study, we investigated whether N-ERC could function as a secretory factor to stimulate tumor progression. Full-, N, or C-ERC was overexpressed in the human hepatocellular carcinoma cell line Huh7 that lacks endogenous expression of ERC/mesothelin. Changes in the rates of cell proliferation and cell death were determined, and the state of signal transducers was examined using various endpoints: total cell counts, trypan blue exclusion rate, BrdU incorporation rate, TUNEL assay, and the phosphorylation of ERK1/2 and Stat3. In cells overexpressing N-ERC, phosphorylation of ERK1/2 was enhanced and the rate of cell death decreased, leading to the increase of cell number. The culture medium containing the secretory N-ERC also had the activity to increase the number of cells. Our data suggested that one of the full-ERC functions reported previously was mediated by the secretory N-ERC.

  3. Anti-tumor effect of a recombinant plasmid expressing human interleukin-12: an initial research

    International Nuclear Information System (INIS)

    Zheng Chuansheng; Xia Xiangwen; Feng Gansheng; Li Xin; Liang Huimin; Liang Bin

    2010-01-01

    Objective: To study the anti-tumor effect of a recombinant plasmid expressing human interleukin-12 (pEGFP-CI I L- 12) in vivo and in vitro. Methods: We transduct the recombinant gene (pEGFP-CI I L-12) to liver cancer cell HepG 2 in vitro, and detect reproductive activity of the cell using MTT and the activity of expressing vascular endothelial growth factor(VEGF) using semiquantitative PCR. And then, we deliver the gene to rabbit liver tumor tissue intraarterial and combine with chemoembolization to observe the anti- tumor effect to VX 2 tumor in vivo. Results: There are no statistical difference compared With control group in activity of reproductive and expressing VEGF in vitro. In vivo, tumor growth rate significantly reduce in gene therapy combined with chemoembolization group. Conclusion: Recombinant gene (pEGFP-Cl I L-12) exhibit significant anti-tumor effect in vivo but not in vitro, perhaps the anti-tumor effect is associated with an indirect pathway instead of a direct pathway. (authors)

  4. Feasibility of large-scale screening using N-ERC/mesothelin levels in the blood for the early diagnosis of malignant mesothelioma.

    Science.gov (United States)

    Imashimizu, Kohta; Shiomi, Kazu; Maeda, Masahiro; Aoki, Naoko; Igarashi, Kiyoko; Suzuki, Fumio; Koizumi, Mitsuru; Suzuki, Kenji; Hino, Okio

    2011-05-01

    A large-scale screening involving the measurement of N-ERC/mesothelin levels in blood using an ELISA system for the early diagnosis of malignant mesothelioma (MM) was carried out in individuals with a history of employment at construction sites. Approximately 30,000 subjects were screened. Of the 80 subjects with high-risk values, one male patient was diagnosed as having MM based on a PET study and histopathology. This is the first report of the pre-clinical diagnosis of MM based on blood test screening. In addition, plasma levels of N-ERC/mesothelin may be effectively used for monitoring relapse after surgery.

  5. Combined blood and pleural levels of mesothelin and osteopontin for the diagnosis of malignant pleural mesothelioma

    Directory of Open Access Journals (Sweden)

    Wafaa M. Ashour

    2012-07-01

    Conclusion: The performance of serum and pleural mesothelin in diagnosing MPM was improved when combined with plasma and pleural osteopontin (respectively through logistic regression analysis model. This will be a great advance in screening and management of MPM.

  6. Combined circulating epigenetic markers to improve mesothelin performance in the diagnosis of malignant mesothelioma

    Czech Academy of Sciences Publication Activity Database

    Santarelli, L.; Staffolani, S.; Strafella, E.; Nocchi, L.; Manzella, N.; Grossi, P.; Bracci, M.; Pignotti, E.; Alleva, R.; Borghi, B.; Pompili, C.; Sabbatini, A.; Rubini, C.; Zuccatosta, L.; Bichisecchi, E.; Valentino, M.; Horwood, K.; Comar, M.; Bovenzi, M.; Dong, L. F.; Neužil, Jiří; Amati, M.; Tomasetti, M.

    2015-01-01

    Roč. 90, č. 3 (2015), s. 457-464 ISSN 0169-5002 R&D Projects: GA ČR(CZ) GAP301/10/1937; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Mesothelioma * Lung cancer * Mesothelin * BREAST-CANCER METASTASIS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.767, year: 2015

  7. Association of MiR-126 with Soluble Mesothelin-Related Peptides, a Marker for Malignant Mesothelioma

    Czech Academy of Sciences Publication Activity Database

    Santarelli, L.; Strafella, E.; Staffolani, S.; Amati, M.; Emanuelli, M.; Sartini, D.; Pozzi, V.; Carbonari, D.; Bracci, M.; Pignotti, E.; Mazzanti, P.; Sabbatini, A.; Ranaldi, R.; Gasparini, S.; Neužil, Jiří; Tomasetti, M.

    2011-01-01

    Roč. 6, č. 4 (2011), e18232 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA204/08/0811 Institutional research plan: CEZ:AV0Z50520701 Keywords : Malignant pleural mesothelioma * microRNAs * soluble mesothelin-related peptides Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  8. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment ...

  9. Targeted delivery of immunotoxin by antibody to ganglioside GD3: a novel drug delivery route for tumor cells.

    Directory of Open Access Journals (Sweden)

    Vanina Torres Demichelis

    Full Text Available Gangliosides are sialic acid-containing glycolipids expressed on plasma membranes from nearly all vertebrate cells. The expression of ganglioside GD3, which plays essential roles in normal brain development, decreases in adults but is up regulated in neuroectodermal and epithelial derived cancers. R24 antibody, directed against ganglioside GD3, is a validated tumor target which is specifically endocytosed and accumulated in endosomes. Here, we exploit the internalization feature of the R24 antibody for the selective delivery of saporin, a ribosome-inactivating protein, to GD3-expressing cells [human (SK-Mel-28 and mouse (B16 melanoma cells and Chinese hamster ovary (CHO-K1 cells]. This immunotoxin showed a specific cytotoxicity on tumor cells grew on 2D monolayers, which was further evident by the lack of any effect on GD3-negative cells. To estimate the potential antitumor activity of R24-saporin complex, we also evaluated the effect of the immunotoxin on the clonogenic growth of SK-Mel-28 and CHO-K1(GD3+ cells cultured in attachment-free conditions. A drastic growth inhibition (>80-90% of the cell colonies was reached after 3 days of immunotoxin treatment. By the contrary, colonies continue to growth at the same concentration of the immuntoxin, but in the absence of R24 antibody, or in the absence of both immunotoxin and R24, undoubtedly indicating the specificity of the effect observed. Thus, the ganglioside GD3 emerge as a novel and attractive class of cell surface molecule for targeted delivery of cytotoxic agents and, therefore, provides a rationale for future therapeutic intervention in cancer.

  10. Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin.

    Science.gov (United States)

    Cizeau, Jeannick; Grenkow, Danielle M; Brown, Jennifer G; Entwistle, Joycelyn; MacDonald, Glen C

    2009-01-01

    The clinical development of immunotoxins in the treatment of solid tumors has been impeded in part, by the induction of an immune response directed primarily against the toxin moiety. Bouganin, a type I ribosome inactivating protein isolated from the leaf of Bougainvillea spectabilis Willd, was mutated to remove the T-cell epitopes while preserving the biological activity of the wild-type molecule. The T-cell epitope-depleted variant of bouganin (de-bouganin) was genetically linked to an anti-epithelial cell adhesion molecule (EpCAM) Fab moiety via a peptidic linker containing a furin proteolytic site to create the fusion construct VB6-845. To determine the optimal construct design for VB6-845, several dicistronic units where de-bouganin was genetically linked to either the N-terminal or C-terminal of either the heavy or light chain were engineered. Only the C-terminal variants expressed the full-length molecule. An in vitro assessment of the biological activity of VB6-845 showed that it bound and selectively killed EpCAM-positive cell lines with a greater potency than many commonly used chemotherapeutic agents. In vivo efficacy was demonstrated using an EpCAM-positive human tumor xenograft model in SCID mice with the majority of the mice treated being tumor free at the end of the study.

  11. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    Science.gov (United States)

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  12. Enhanced opsonisation of Rhesus D-positive human red blood cells by recombinant polymeric immunoglobulin G anti-G antibodies.

    Science.gov (United States)

    Díaz-Solano, Dylana; Fuenmayor, Jaheli; Montaño, Ramon F

    2018-02-01

    Anti-RhD antibodies (anti-D) are important in the prophylaxis of haemolytic disease of the foetus and newborn (HDFN) due to RhD incompatibility. Current preparations of anti-D are sourced from hyperimmune human plasma, so its production carries a risk of disease and is dependent on donor availability. Despite the efforts to develop a monoclonal preparation with similar prophylactic properties to the plasma-derived anti-D, no such antibody is yet available. Here we studied the agglutinating, opsonic and haemolytic activities of two recombinant polymeric immunoglobulins (Ig) against the G antigen of the Rh complex. Recombinant polymeric anti-G IgG1 (IgG1μtp) and IgG3 (IgG3μtp) were produced in vitro, purified by protein G-affinity chromatography, and analysed by gel electrophoresis. Their agglutinating, opsonic and haemolytic activities were evaluated using haemagglutination, erythrophagocytosis, and complement activation assays. The recombinant IgG1μtp and IgG3μtp anti-G antibodies ranged from 150,000 to 1,000,000 Da in molecular weight, indicating the formation of polymeric IgG. No complement activation or haemolytic activity was detected upon incubation of RhD-positive red-blood cells with the polymeric anti-G IgG. Both polymers were better opsonins than a prophylactic preparation of plasma-derived anti-D. The enhanced opsonic properties of the polymeric anti-G IgG1μtp and IgG3μtp could allow them to mediate the clearance of RhD-positive red blood cells from circulation more efficiently than natural or other synthetic prophylactic anti-D options. Their inability to induce complement-mediated haemolysis would be prophylactically convenient and is comparable in vitro to that of the available plasma-derived polyclonal anti-D preparations. The described properties suggest that polymeric antibodies like these (but with anti-D specificity) may be testable candidates for prophylaxis of HDFN caused by anti-D.

  13. Histone modification enhances the effectiveness of IL-13 receptor targeted immunotoxin in murine models of human pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Puri Raj K

    2011-04-01

    Full Text Available Abstract Background Interleukin-13 Receptor α2 (IL-13Rα2 is a tumor-associated antigen and target for cancer therapy. Since IL-13Rα2 is heterogeneously overexpressed in a variety of human cancers, it would be highly desirable to uniformly upregulate IL-13Rα2 expression in tumors for optimal targeting. Methods We examined epigenetic regulation of IL-13Rα2 in a murine model of human pancreatic cancer by Bisulfite-PCR, sequencing for DNA methylation and chromatin immunoprecipitation for histone modification. Reverse transcription-PCR was performed for examining changes in IL-13Rα2 mRNA expression after treatment with histone deacetylase (HDAC and c-jun inhibitors. In vitro cytotoxicity assays and in vivo testing in animal tumor models were performed to determine whether HDAC inhibitors could enhance anti-tumor effects of IL-13-PE in pancreatic cancer. Mice harboring subcutaneous tumors were treated with HDAC inhibitors systemically and IL-13-PE intratumorally. Results We found that CpG sites in IL-13Rα2 promoter region were not methylated in all pancreatic cancer cell lines studied including IL-13Rα2-positive and IL-13Rα2-negative cell lines and normal cells. On the other hand, histones at IL-13Rα2 promoter region were highly-acetylated in IL-13Rα2-positive but much less in receptor-negative pancreatic cancer cell lines. When cells were treated with HDAC inhibitors, not only histone acetylation but also IL-13Rα2 expression was dramatically enhanced in receptor-negative pancreatic cancer cells. In contrast, HDAC inhibition did not increase IL-13Rα2 in normal cell lines. In addition, c-jun in IL-13Rα2-positive cells was expressed at higher level than in negative cells. Two types of c-jun inhibitors prevented increase of IL-13Rα2 by HDAC inhibitors. HDAC inhibitors dramatically sensitized cancer cells to immunotoxin in the cytotoxicity assay in vitro and increased IL-13Rα2 in the tumors subcutaneously implanted in the immunodeficient

  14. Assay of anti-HBs antibodies using a recombinant antigen and latex particle counting: comparison with five commercial tests.

    Science.gov (United States)

    Galanti, L M; Cornu, C; Masson, P L; Robert, A R; Becheanu, D; Lamy, M E; Cambiaso, C L

    1991-05-01

    An assay of anti-HBs antibodies based on agglutination of latex particles coated with recombinant HBs-antigen was compared with Abbott radioimmunoassay (Abbott-RIA), which uses a human plasma-derived antigen. The population examined consisted of 76 Abbott-RIA anti-HBs-negative prevaccinated subjects and 1044 serum samples anti-HBs found positive by Abbott-RIA, including 283 samples of subjects vaccinated either with a human plasma-derived vaccine (group A; n = 180) or with a recombinant vaccine (group B; n = 103). Correlation coefficients between the two techniques were respectively r = 0.89 for the whole population (n = 1044), r = 0.98 in group A and r = 0.74 in group B. Anti-HBs titres were higher with latex than with RIA in group B as shown by the regression slopes: latex = 508 + 1.11 RIA in group A and latex = -1138 + 3.97 RIA in group B, suggesting that some vaccinated subjects from group B produced antibodies against epitopes proper to the recombinant antigen. In the prevaccinated population and in group A, the latex results were compared with those of radioimmunoassays (Abbott, Sorin) and enzyme immunoassays (Behring, Roche, Pasteur). Only the Roche-EIA detected anti-HBs in the prevaccinated subjects. The correlation between the various immunoassays was r greater than 0.96 only for values higher than 100 IU/l.

  15. Targeting mesothelin receptors with drug-loaded bacterial nanocells suppresses human mesothelioma tumour growth in mouse xenograft models.

    Directory of Open Access Journals (Sweden)

    Mohamed A Alfaleh

    Full Text Available Human malignant mesothelioma is a chemoresistant tumour that develops from mesothelial cells, commonly associated with asbestos exposure. Malignant mesothelioma incidence rates in European countries are still rising and Australia has one of the highest burdens of malignant mesothelioma on a population basis in the world. Therapy using systemic delivery of free cytotoxic agents is associated with many undesirable side effects due to non-selectivity, and is thus dose-limited which limits its therapeutic potential. Therefore, increasing the selectivity of anti-cancer agents has the potential to dramatically enhance drug efficacy and reduce toxicity. EnGeneIC Dream Vectors (EDV are antibody-targeted nanocells which can be loaded with cytotoxic drugs and delivered to specific cancer cells via bispecific antibodies (BsAbs which target the EDV and a cancer cell-specific receptor, simultaneously. BsAbs were designed to target doxorubicin-loaded EDVs to cancer cells via cell surface mesothelin (MSLN. Flow cytometry was used to investigate cell binding and induction of apoptosis, and confocal microscopy to visualize internalization. Mouse xenograft models were used to assess anti-tumour effects in vivo, followed by immunohistochemistry for ex vivo evaluation of proliferation and necrosis. BsAb-targeted, doxorubicin-loaded EDVs were able to bind to and internalize within mesothelioma cells in vitro via MSLN receptors and induce apoptosis. In mice xenografts, the BsAb-targeted, doxorubicin-loaded EDVs suppressed the tumour growth and also decreased cell proliferation. Thus, the use of MSLN-specific antibodies to deliver encapsulated doxorubicin can provide a novel and alternative modality for treatment of mesothelioma.

  16. Establishment of the enzyme-linked immunosorbent assay system to detect the amino terminal secretory form of rat Erc/Mesothelin.

    Science.gov (United States)

    Nakaishi, Masayuki; Kajino, Kazunori; Ikesue, Masahiro; Hagiwara, Yoshiaki; Kuwahara, Maki; Mitani, Hiroaki; Horikoshi-Sakuraba, Yuko; Segawa, Tatsuya; Kon, Shigeyuki; Maeda, Masahiro; Wang, Tegexibaiyin; Abe, Masaaki; Yokoyama, Masayoshi; Hino, Okio

    2007-05-01

    By representational difference analysis, we previously identified the rat Erc (Expressed in renal carcinoma) gene that was more abundantly expressed in the renal carcinoma tissues of Eker rats than in the rat normal kidney. In this study, we raised antibodies against the amino-terminal portion of the rat Erc, and demonstrated the existence of a approximately 30-kDa secretory form in the supernatant of cultured cells derived from rat renal carcinoma. The enzyme-linked immunosorbent assay (ELISA) system using these antibodies detected high concentrations of this form in the sera of Eker rats bearing renal carcinomas, and in the sera of rats transplanted with mesothelioma cells. Mesothelin, a human homolog of the rat Erc, was recently reported to be a serum marker of malignant mesothelioma. The prognosis of mesothelioma is poor and there is no effective treatment at present. There are several rat model systems of mesothelioma that may be promising tools in the development of an antimesothelioma treatment. We hope our ELISA to detect the soluble form of rat Erc/Mesothelin is useful in the rat model system to exploit the antimesothelioma therapy to be used in human cases.

  17. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.

    Science.gov (United States)

    Telli, M L; Stover, D G; Loi, S; Aparicio, S; Carey, L A; Domchek, S M; Newman, L; Sledge, G W; Winer, E P

    2018-05-07

    Triple-negative breast cancer (TNBC) is associated with worse outcomes relative to other breast cancer subtypes. Chemotherapy remains the standard-of-care systemic therapy for patients with localized or metastatic disease, with few biomarkers to guide benefit. We will discuss recent advances in our understanding of two key biological processes in TNBC, homologous recombination (HR) DNA repair deficiency and host anti-tumor immunity, and their intersection. Recent advances in our understanding of homologous recombination (HR) deficiency, including FDA approval of PARP inhibitor olaparib for BRCA1 or BRCA2 mutation carriers, and host anti-tumor immunity in TNBC offer potential for new and biomarker-driven approaches to treat TNBC. Assays interrogating HR DNA repair capacity may guide treatment with agents inducing or targeting DNA damage repair. Tumor infiltrating lymphocytes (TILs) are associated with improved prognosis in TNBC and recent efforts to characterize infiltrating immune cell subsets and activate host anti-tumor immunity offer promise, yet challenges remain particularly in tumors lacking pre-existing immune infiltrates. Advances in these fields provide potential biomarkers to stratify patients with TNBC and guide therapy: induction of DNA damage in HR-deficient tumors and activation of existing or recruitment of host anti-tumor immune cells. Importantly, these advances provide an opportunity to guide use of existing therapies and development of novel therapies for TNBC. Efforts to combine therapies that exploit HR deficiency to enhance the activity of immune-directed therapies offer promise. HR deficiency remains an important biomarker target and potentially effective adjunct to enhance immunogenicity of 'immune cold' TNBCs.

  18. Anti-Neuroblastoma Properties of a Recombinant Sunflower Lectin

    Directory of Open Access Journals (Sweden)

    Marcela Pinedo

    2017-01-01

    Full Text Available According to their sugar recognition specificity, plant lectins are proposed as bioactive proteins with potential in cancer treatment and diagnosis. Helja is a mannose-specific jacalin-like lectin from sunflower which was shown to inhibit the growth of certain fungi. Here, we report its recombinant expression in a prokaryotic system and its activity in neurobalstoma cells. Helja coding sequence was fused to the pET-32 EK/LIC, the enterokinase/Ligation-independent cloning vector and a 35 kDa protein was obtained in Escherichia coli representing Helja coupled to thioredoxin (Trx. The identity of this protein was verified using anti-Helja antibodies. This chimera, named Trx-rHelja, was enriched in the soluble bacterial extracts and was purified using Ni+2-Sepharose and d-mannose-agarose chromatography. Trx-rHelja and the enterokinase-released recombinant Helja (rHelja both displayed toxicity on human SH-SY5Y neuroblastomas. rHelja decreased the viability of these tumor cells by 75% according to the tetrazolium reduction assay, and microscopic analyses revealed that the cell morphology was disturbed. Thus, the stellate cells of the monolayer became spheroids and were isolated. Our results indicate that rHelja is a promising tool for the development of diagnostic or therapeutic methods for neuroblastoma cells, the most common solid tumors in childhood.

  19. The novel immunotoxin HM1.24-ETA′ induces apoptosis in multiple myeloma cells

    International Nuclear Information System (INIS)

    Staudinger, M; Glorius, P; Burger, R; Kellner, C; Klausz, K; Günther, A; Repp, R; Klapper, W; Gramatzki, M; Peipp, M

    2014-01-01

    Despite new treatment modalities, the clinical outcome in a substantial number of patients with multiple myeloma (MM) has yet to be improved. Antibody-based targeted therapies for myeloma patients could make use of the HM1.24 antigen (CD317), a surface molecule overexpressed on malignant plasma cells and efficiently internalized. Here, a novel immunotoxin, HM1.24-ETA′, is described. HM1.24-ETA′ was generated by genetic fusion of a CD317-specific single-chain Fv (scFv) antibody and a truncated variant of Pseudomonas aeruginosa exotoxin A (ETA′). HM1.24-ETA′ inhibited growth of interleukin 6 (IL-6)-dependent and -independent myeloma cell lines. Half-maximal growth inhibition was observed at concentrations as low as 0.3 nM. Target cell killing occurred via induction of apoptosis and was unaffected in co-culture experiments with bone marrow stromal cells. HM1.24-ETA′ efficiently triggered apoptosis of freshly isolated/cryopreserved cells of patients with plasma cell leukemia and MM and was active in a preclinical severe combined immunodeficiency (SCID) mouse xenograft model. Importantly, HM1.24-ETA′ was not cytotoxic against CD317-positive cells from healthy tissue (monocytes, human umbilical vein endothelial cells). These results indicate that CD317 may represent a promising target structure for specific and efficient immunotoxin therapy for patients with plasma cell tumors

  20. A novel immunotoxin reveals a new role for CD321 in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Takeshi Fukuhara

    Full Text Available There are currently several antibody therapies that directly target tumors, and antibody-drug conjugates represent a novel moiety as next generation therapeutics. Here, we used a unique screening probe, DT3C, to identify functional antibodies that recognized surface molecules and functional epitopes, and which provided toxin delivery capability. Accordingly, we generated the 90G4 antibody, which induced DT3C-dependent cytotoxicity in endothelial cells. Molecular analysis revealed that 90G4 recognized CD321, a protein localized at tight junctions. Although CD321 plays a pivotal role in inflammation and lymphocyte trans-endothelial migration, little is known about its mechanism of action in endothelial cells. Targeting of CD321 by the 90G4 immunotoxin induced cell death. Moreover, 90G4 immunotoxin caused cytotoxicity primarily in migratory endothelial cells, but not in those forming sheets, suggesting a critical role for CD321 in tumor angiogenesis. We also found that hypoxia triggered redistribution of CD321 to a punctate localization on the basal side of cells, resulting in functional impairment of tight junctions and increased motility. Thus, our findings raise the intriguing possibility that endothelial CD321 presented cellular localization in tight junction as well as multifunctional dynamics in several conditions, leading to illuminate the importance of widely-expressed CD321 as a potential target for antitumor therapy.

  1. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    Science.gov (United States)

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  2. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    Science.gov (United States)

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion

  3. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo

    DEFF Research Database (Denmark)

    Burgess, Rebecca C; Lisby, Michael; Altmannova, Veronika

    2009-01-01

    , and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2......Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 "anti-recombinase" restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we...... removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR....

  4. A protein in neuroblastoma could be a target of immunotoxins or immunotherapy | Center for Cancer Research

    Science.gov (United States)

    A cell surface protein, glycoprotein glypican-2 (GPC2), has been found to be an effective therapeutic target in cell cultures and mouse models that mimic childhood neuroblastoma.  The CCR scientists who made this discovery, reported July 24, 2017, in PNAS, have also produced immunotoxins and chimeric antigen receptor (CAR) T cells, a type of immunotherapy, that have shown

  5. Specific Depletion of Myelin-Reactive B Cells via BCR-Targeting.

    Science.gov (United States)

    Stepanov, A V; Belogurov, A A; Kothapalli, P; Shamborant, O G; Knorre, V D; Telegin, G B; Ovsepyan, A A; Ponomarenko, N A; Deyev, S M; Kaveri, S V; Gabibov, A G

    2015-01-01

    B cells play a crucial role in the development and pathogenesis of systemic and organ-specific autoimmune diseases. Autoreactive B cells not only produce antibodies, but also secrete pro-inflammatory cytokines and present specific autoantigens to T cells. The treatment of autoimmune diseases via the elimination of the majority of B cells using the monoclonal anti-CD19/20 antibody (Rituximab) causes systemic side effects and, thus, requires a major revision. Therapeutic intervention directed towards selective elimination of pathogenic autoreactive B cells has the potential to become a universal approach to the treatment of various autoimmune abnormalities. Here, we developed a recombinant immunotoxin based on the immunodominant peptide of the myelin basic protein (MBP), fused to the antibody Fc domain. We showed that the obtained immunotoxin provides selective in vivo elimination of autoreactive B cells in mice with experimental autoimmune encephalomyelitis. The proposed conception may be further used for the development of new therapeutics for a targeted treatment of multiple sclerosis and other autoimmune disorders.

  6. Soluble multimer of recombinant endostatin expressed in E. coli has anti-angiogenesis activity

    International Nuclear Information System (INIS)

    Wei Dongmei; Gao Yan; Cao Xiangrong; Zhu Nianchun; Liang Jianfu; Xie Weiping; Zhen Mingying; Zhu Minsheng

    2006-01-01

    The bioactivity, refolding, and multimer formation of endostatin, particularly of recombinant endostatin produced from bacteria, are proved challenging for clinical application. In order to determine the biological activity of recombinant endostatin multimer, first, we expressed endostatin in Escherichia coli and purified it with ion-exchange chromatography. The purified active protein could elicit multimer formation spontaneously, but still has comparable activity. Aim to determine the anti-angiogenic activity of multimer endostatin, by use of RP-HPLC, we then successfully separated endostatin monomer and multimer for subjecting to anti-angiogenesis assay. The results from CAM (chorioallantoic membrane) inhibition assay showed that both monomer and multimer suppressed CAM vascularization significantly. At the dosage of 0.8 μg, inhibition rates of multimeric and monomeric proteins were about 58% and 38%, respectively. Multimeric endostatin exerted a higher activity than monomeric endostatin (p 0.05), although both of them show a high inhibition effect in contrast to control. The results from HUVEC proliferation assay also showed similar effects at dosages of 0.6 and 1.6 μg/ml, multimer exerted a higher activity on inhibition of HUVEC proliferation comparing with monomer (p < 0.05). In conclusion, our results suggest that endostatin multimer has a comparable or higher bioactivity and multimerization will not affect its bioactivity, implying that endostatin activity is insensitive to structure conformation contributed by disulfide bonds

  7. 5-FU resistant EMT-like pancreatic cancer cells are hypersensitive to photochemical internalization of the novel endoglin-targeting immunotoxin CD105-saporin.

    Science.gov (United States)

    Lund, Kaja; Olsen, Cathrine Elisabeth; Wong, Judith Jing Wen; Olsen, Petter Angell; Solberg, Nina Therese; Høgset, Anders; Krauss, Stefan; Selbo, Pål Kristian

    2017-12-19

    Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma. 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.27 were previously generated in our lab. We investigated the cytotoxic effect of the endosomal/lysosomal-localizing photosensitizer TPCS 2a (fimaporfin) combined with light (photochemical treatment, PCT) using MTS viability assay, and used fluorescence microscopy to show localization of TPCS 2a and to investigate the effect of photodamage of lysosomes. Flow cytometric analysis was performed to investigate uptake of photosensitizer and to assess intracellular ROS levels. Expression and localization of LAMP1 was assessed using RT-qPCR, western blotting, and structured illumination microscopy. MTS viability assay was used to assess the effect of combinations of 5-FU, chloroquine (CQ), and photochemical treatment. Expression of CD105 was investigated using RT-qPCR, western blotting, flow cytometry, and fluorescence microscopy, and co-localization of TPCS 2a and anti-CD105-saporin was assessed using microscopy. Lastly, the MTS assay was used to investigate cytotoxic effects of photochemical internalization (PCI) of the anti-CD105-immunotoxin. The 5-FUR cell lines display hypersensitivity to PCT, which was linked to increased uptake of TPCS 2a , altered lysosomal distribution, lysosomal photodamage and increased expression of the lysosomal marker LAMP-1 in the 5-FUR cells. We show that inhibition of autophagy induced by either chloroquine or lysosomal photodamage increases the sensitivity to 5-FU in the resistant cells. The three 5-FUR sub-clones overexpress Endoglin (CD105). Treatment with the immunotoxin anti-CD105-saporin alone significantly reduced the viability of the CD105

  8. Anti-EGFR-iRGD recombinant protein conjugated silk fibroin nanoparticles for enhanced tumor targeting and antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Bian X

    2016-05-01

    Full Text Available Xinyu Bian,* Puyuan Wu,* Huizi Sha, Hanqing Qian, Qing Wang, Lei Cheng, Yang Yang, Mi Yang, Baorui LiuComprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: In this study, we report a novel kind of targeting with paclitaxel (PTX-loaded silk fibroin nanoparticles conjugated with iRGD–EGFR nanobody recombinant protein (anti-EGFR-iRGD. The new nanoparticles (called A-PTX-SF-NPs were prepared using the carbodiimide-mediated coupling procedure and their characteristics were evaluated. The cellular cytotoxicity and cellular uptake of A-PTX-SF-NPs were also investigated. The results in vivo suggested that NPs conjugated with the recombinant protein exhibited more targeting and anti-neoplastic property in cells with high EGFR expression. In the in vivo antitumor efficacy assay, the A-PTX-SF-NPs group showed slower tumor growth and smaller tumor volumes than PTX-SF-NPs in a HeLa xenograft mouse model. A real-time near-infrared fluorescence imaging study showed that A-PTX-SF-NPs could target the tumor more effectively. These results suggest that the anticancer activity and tumor targeting of A-PTX-SF-NPs were superior to those of PTX-SF-NPs and may have the potential to be used for targeted delivery for tumor therapies. Keywords: EGFR, nanobody, iRGD, recombinant protein, targeting drug carriers, antitumor efficiency

  9. Increasing the ex vivo antigen-specific IFN-γ production in subpopulations of T cells and NKp46+ cells by anti-CD28, anti-CD49d and recombinant IL-12 costimulation in cattle vaccinated with recombinant proteins from Mycobacterium avium subspecies paratuberculosis

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Riber, Ulla; Davis, William C.

    2013-01-01

    -γ secretion by CD4, CD8, γδ T cells and NK cells. Age matched male jersey calves, experimentally infected with Mycobacterium avium subsp. paratuberculosis (MAP), were vaccinated with a cocktail of recombinant MAP proteins or left unvaccinated. Vaccine induced ex vivo recall responses were measured through Ag......T cells, which encounter specific antigen (Ag), require additional signals to mount a functional immune response. Here, we demonstrate activation of signal 2, by anti-CD28 mAb (aCD28) and other costimulatory molecules (aCD49d, aCD5), and signal 3, by recombinant IL-12, enhance Ag-specific IFN...

  10. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV.

    Science.gov (United States)

    Zhang, C; Wu, S; Xue, X; Li, M; Qin, X; Li, W; Han, W; Zhang, Y

    2008-01-01

    Blockade of the programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway can delay tumor growth and prolong the survival of tumor-bearing mice. The extracellular immunoglobulin (Ig) V domain of PD-1 is important for the interaction between PD-1 and PD-L1, suggesting that PD-1-IgV may be a potential target for anti-tumor immunotherapy. The extracellular sequence of human PD-1-IgV (hPD-1-IgV) was expressed in Escherichia coli and purified. The anti-tumor effect of hPD-1-IgV on tumor-bearing mice was tested. hPD-1-IgV recombinant protein could bind PD-L1 at molecular and cellular levels and enhance Cytotoxic T Lymphocyte (CTL) activity and anti-tumor effect on tumor-bearing mice in vivo. The percentage of CD4(+)CD25(+) T cells in tumor-bearing mice was decreased compared with control mice after administration of the recombinant protein. Our results suggest that inhibition of the interaction between PD-1 and PD-L1 by hPD-1-IgV may be a promising strategy for specific tumor immunotherapy.

  11. Analysis of chickens for recombination within the MHC (B-complex)

    DEFF Research Database (Denmark)

    Skjødt, K; Koch, C; Crone, M

    1985-01-01

    In an attempt to further map the chicken MHC (the B complex), a systematic search for genetic recombinants within the B complex was performed by serotyping the progeny from F2 crosses of chickens by means of specific anti-class I, anti-class II, and anti-class IV alloantisera. Two recombinant B......-haplotypes (B21r and B15r) were found by analysing 2,656 F2 chickens representing 5,312 informative typings. In either case, the B-G (class IV) allele was recombined with both the B-F and B-L alleles of the opposite haplotype. MLC typings, tests for direct compatibility by GVH reactions, and absorption analyses...... confirmed the original serological typing of the two recombinant B haplotypes. No recombination between B-F (class I) and B-L (class II) loci was found. This very low frequency of recombination within the B complex as compared with recombination frequencies found in mammalian MHC's is discussed...

  12. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma.

    Science.gov (United States)

    Li, Nan; Fu, Haiying; Hewitt, Stephen M; Dimitrov, Dimiter S; Ho, Mitchell

    2017-08-08

    Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma.

  13. Impact of renal failure on the tumor markers of mesothelioma, N-ERC/mesothelin and osteopontin.

    Science.gov (United States)

    Shiomi, Kazu; Shiomi, Satoko; Ishinaga, Yuji; Sakuraba, Motoki; Hagiwara, Yoshiaki; Miyashita, Kazuya; Maeda, Masahiro; Suzuki, Kenji; Takahashi, Kazuhisa; Hino, Okio

    2011-04-01

    Knowledge of the characteristics and effective use of tumour markers for mesothelioma is essential for early-stage diagnosis of mesothelioma. We examined whether renal dysfunction influences blood concentrations of promising new tumour markers, N-ERC/mesothelin (N-ERC) and osteopontin (OPN), to an important degree. Levels of serum N-ERC and plasma OPN in 32 patients with chronic renal dysfunction, 22 of whom were on hemodialysis (CKD group), and 102 healthy volunteers were measured. Serum concentrations of N-ERC and plasma concentrations of OPN in the CKD group were significantly higher than those in volunteers, regardless of diabetes status and age. Blood concentrations of these markers increased as renal function decreased. N-ERC and OPN concentrations are significantly influenced by renal function. Therefore, the extent of renal failure must be considered when inferring the existence of tumours and chemotherapeutic response from the values of these markers in routine practice.

  14. Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties

    Directory of Open Access Journals (Sweden)

    Koji Kawakami

    2006-01-01

    Full Text Available Despite the progress of the bioinformatics approach to characterize cell-surface antigens and receptors on tumor cells, it remains difficult to generate novel cancer vaccines or neutralizing monoclonal antibody therapeutics. Among targeted cancer therapeutics, biologicals with targetable antibodies or ligands conjugated or fused to toxins or chemicals for direct cell-killing ability have been developed over the last 2 decades. These conjugated or fused chimeric proteins are termed immunotoxins or cytotoxic agents. Two agents, DAB389IL-2 (ONTAKTM targeting the interleukin-2 receptor and CD33-calicheamicin (Mylotarg®, have been approved by the FDA for cutaneous T-cell lymphoma (CTCL and relapsed acute myeloid leukemia (AML, respectively. Such targetable agents, including RFB4(dsFv-PE38 (BL22, IL13-PE38QQR, and Tf-CRM107, are being tested in clinical trials. Several agents using unique technology such as a cleavable adapter or immunoliposomes with antibodies are also in the preclinical stage. This review summarizes the generation, mechanism, and development of these agents. In addition, possible future directions of this therapeutic approach are discussed.

  15. Development of the Brazilian anti Schistosomiasis vaccine based on the recombinant FABP Sm14 +GLA-SE

    Directory of Open Access Journals (Sweden)

    Miriam eTendler

    2015-05-01

    Full Text Available Data herein reported and discussed refer to vaccination with the recombinant Fatty Acid Binding protein family member of the Schistosomes, called Sm14, discovered and developed under a Brazilian platform leaded by the Oswaldo Cruz Foundation, from the Health Ministry in Brazil, undertaken to assess safety and immunogenicity in healthy volunteers. This paper reviews past and recent outcomes of developmental phases of the Sm14 based anti Schistosomiasis vaccine addressed to, ultimately, impact transmission of the second most prevalent parasitic endemic disease worldwide.

  16. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2018-01-01

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  17. Biotechnical paving of recombinant enterocin A as the candidate of anti-Listeria agent.

    Science.gov (United States)

    Hu, Xiaoyuan; Mao, Ruoyu; Zhang, Yong; Teng, Da; Wang, Xiumin; Xi, Di; Huang, Jianzhong; Wang, Jianhua

    2014-08-28

    Enterocin A is a classic IIa bacteriocin isolated firstly from Enterococcus faecium CTC492 with selective antimicrobial activity against Listeria strains. However, the application of enterocin A as an anti-Listeria agent has been limited due to its very low native yield. The present work describes high production of enterocin A through codon optimization strategy and its character study. The gene sequence of enterocin A was optimized based on preferential codon usage in Pichia pastoris to increase its expression efficiency. The highest anti-Listeria activity reached 51,200 AU/ml from 180 mg/l of total protein after 24 h of induction in a 5-L fermenter. Recombinant enterocin A (rEntA), purified by gel filtration chromatography, showed very strong activity against Listeria ivanovii ATCC 19119 with a low MIC of 20 ng/ml. In addition, the rEntA killed over 99% of tested L. ivanovii ATCC19119 within 4 h when exposed to 4 × MIC (80 ng/ml). Moreover, it showed high stability under a wide pH range (2-10) and maintained full activity after 1 h of treatment at 80°C within a pH range of 2-8. Its antimicrobial activity was enhanced at 25 and 50 mM NaCl, while 100-400 mM NaCl had little effect on the bactericidal ability of rEntA. The EntA was successfully expressed in P. pastoris, and this feasible system could pave the pre-industrial technological path of rEntA as a competent candidate as an anti-Listeria agent. Furthermore, it showed high stability under wide ranges of conditions, which could be potential as the new candidate of anti-Listeria agent.

  18. RECOMBINATION OF ANTIBODY POLYPEPTIDE CHAINS IN THE PRESENCE OF ANTIGEN

    Science.gov (United States)

    Metzger, Henry; Mannik, Mart

    1964-01-01

    Conditions were developed by which the separated H and L chains of gamma2 globulins recombined to form four-chained molecules in good yields. In the absence of antigen, anti-2,4-dinitrophenyl (anti-DNP) H chains randomly reassociated with a mixture of antibody and non-specific gamma2 globulin L chains. In the presence of a specific hapten, however, the antibody H chains preferentially interacted with the anti-DNP L chains. Antibody H chain-antibody L chain recombinants formed in the presence of hapten were more active than the corresponding recombinants formed in the absence of hapten. Speculations are made regarding the possible mechanisms and biological significance of these effects. PMID:14247718

  19. Anti-coagulation effect of Fc fragment against anti-β2-GP1 antibodies in mouse models with APS.

    Science.gov (United States)

    Xie, Weidong; Zhang, Yaou; Bu, Cunya; Sun, Shijing; Hu, Shaoliang; Cai, Guoping

    2011-01-01

    Anti-beta (2)-glycoprotein I (anti-β2-GP1) is one of the important pathogenesis factors responsible for thrombosis formation in patients with antiphospholipid syndrome (APS). Administration of intravenous immunoglobulin (IVIg) is a common method used to inhibit the abnormal antibody levels and decrease the mortality of APS in emergency situations. We hypothesize that the Fc fragment of IgG is the molecular structure responsible for these effects. The present study investigates the beneficial effects of both recombinant and natural human Fc fragments of heterogeneous IgG against human anti-β2-GP1 antibodies in mouse models with APS. Results showed that both recombinant and natural human Fc fragments moderately but significantly decreased the levels of serum anti-β2-GP1 antibodies and had anti-coagulation effects in human β2-GP1-immunized mice. Furthermore, both recombinant and natural human Fc fragments inhibited thrombosis formation and decreased mortality in mouse models infused intravenously with human anti-β2GP1 antibodies from patients with APS. Findings suggest that the Fc fragment might be one of the active structural units of heterogeneous IgG. Thus, recombinant human Fc fragment administration may be a useful treatment for individuals with APS. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Follicular and endocrine dose responses according to anti-Müllerian hormone levels in IVF patients treated with a novel human recombinant FSH (FE 999049)

    DEFF Research Database (Denmark)

    Bosch, Ernesto; Nyboe Andersen, Anders; Barri, Pedro

    2015-01-01

    OBJECTIVE: To study the association between serum anti-Müllerian hormone (AMH) levels and follicular development and endocrine responses induced by increasing doses (5·2-12·1 μg/day) of a novel recombinant human FSH (rhFSH, FE 999049) in patients undergoing in vitro fertilization (IVF)/intracytop......OBJECTIVE: To study the association between serum anti-Müllerian hormone (AMH) levels and follicular development and endocrine responses induced by increasing doses (5·2-12·1 μg/day) of a novel recombinant human FSH (rhFSH, FE 999049) in patients undergoing in vitro fertilization (IVF...... for these hormones, and no clear dose-related increase was observed for the number of follicles in these patients. CONCLUSIONS: Dose-response relationships between rhFSH and follicular development and endocrine parameters are significantly different for IVF/ICSI patients with lower and higher serum AMH levels...

  1. [A preliminary study of anti-aging and wound healing of recombination cytoglobin].

    Science.gov (United States)

    Li, Zhao-Fa; Zhao, Xiao-Fang; Zhang, Ting-Ting

    2012-01-01

    In this paper, the preliminary study on antioxidant, enhancement of antioxidant enzymes activity, reducing the content of oxygen free radicals, delaying skin aging of the recombination cytoglobin (rCygb) purified by our lab were investigated through human keratinocyte cell line (HaCAT) H2O2 oxidative stress model, mouse skin aging model caused by continuous subcutaneous injection D-gal, rat acute liver injury model induced by CCl4 and rat skin wound healing model. The results showed that rCygb improved the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), reduced the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT) as well as decreased the content of malondialdehyde (MDA). Skin biopsy showed that rCygb promoted angiogenesis, increased expression of collagen and improved the anti-inflammatory ability. All results displayed that rCygb improved the oxygen free radical scavenging ability, delayed skin aging and promoted wound healing.

  2. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    OpenAIRE

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called ?human cytotoxic fusion protein...

  3. Enhanced targeting of triple-negative breast carcinoma and malignant melanoma by photochemical internalization of CSPG4-targeting immunotoxins.

    Science.gov (United States)

    Eng, M S; Kaur, J; Prasmickaite, L; Engesæter, B Ø; Weyergang, A; Skarpen, E; Berg, K; Rosenblum, M G; Mælandsmo, G M; Høgset, A; Ferrone, S; Selbo, P K

    2018-05-16

    Triple-negative breast cancer (TNBC) and malignant melanoma are highly aggressive cancers that widely express the cell surface chondroitin sulfate proteoglycan 4 (CSPG4/NG2). CSPG4 plays an important role in tumor cell growth and survival and promotes chemo- and radiotherapy resistance, suggesting that CSPG4 is an attractive target in cancer therapy. In the present work, we applied the drug delivery technology photochemical internalization (PCI) in combination with the novel CSPG4-targeting immunotoxin 225.28-saporin as an efficient and specific strategy to kill aggressive TNBC and amelanotic melanoma cells. Light-activation of the clinically relevant photosensitizer TPCS2a (fimaporfin) and 225.28-saporin was found to act in a synergistic manner, and was superior to both PCI of saporin and PCI-no-drug (TPCS2a + light only) in three TNBC cell lines (MDA-MB-231, MDA-MB-435 and SUM149) and two BRAFV600E mutated malignant melanoma cell lines (Melmet 1 and Melmet 5). The cytotoxic effect was highly dependent on the light dose and expression of CSPG4 since no enhanced cytotoxicity of PCI of 225.28-saporin compared to PCI of saporin was observed in the CSPG4-negative MCF-7 cells. The PCI of a smaller, and clinically relevant CSPG4-targeting toxin (scFvMEL-rGel) validated the CSPG4-targeting concept in vitro and induced a strong inhibition of tumor growth in the amelanotic melanoma xenograft A-375 model. In conclusion, the combination of the drug delivery technology PCI and CSPG4-targeting immunotoxins is an efficient, specific and light-controlled strategy for the elimination of aggressive cells of TNBC and malignant melanoma origin. This study lays the foundation for further preclinical evaluation of PCI in combination with CSPG4-targeting.

  4. The association of the vitamin D status with the persistence of anti-HBs antibody at 20years after primary vaccination with recombinant hepatitis B vaccine in infancy.

    Science.gov (United States)

    Jafarzadeh, A; Keshavarz, J; Bagheri-Jamebozorgi, M; Nemati, M; Frootan, R; Shokri, F

    2017-02-01

    Vitamin D has potent immunoregulatory effects due to the expression of its receptor on the majority of immune cells. The aim was to evaluate the association of the vitamin D status with the persistence of anti-HBs antibody and immune response to booster immunization at 20years after primary vaccination with hepatitis B (HB) vaccine. Blood samples were collected from 300 adults 20years after completion of the primary HB vaccination in infancy. The serum levels of vitamin D and anti-HBs antibody were measured by ELISA. A single booster dose of a recombinant HB vaccine was administered to a total of 138 subjects, whose anti-HBs titer wasanti-HBs antibody, 4weeks after booster vaccination. At 20years after primary vaccination, the mean vitamin D concentrations were significantly higher in seroprotective subjects as compared to non-seroprotective individuals (Panti-HBs were significantly increased with advanced concentrations of vitamin D (PD were significantly higher in subjects with an anamnestic response to booster vaccination as compared with subjects without this response (PD status may influence the persistence of anti-HBs antibody and durability of protection after primary vaccination with a recombinant HB vaccine in infancy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Cloning and expression of recombinant, functional ricin B chain

    International Nuclear Information System (INIS)

    Chang, M.S.; Russell, D.W.; Uhr, J.W.; Vitetta, E.S.

    1987-01-01

    The cDNA encoding the B chain of the plant toxin ricin has been cloned and expressed in monkey kidney COS-M6 cells. The recombinant B chain was detected by labeling the transfected cells with [ 35 S]methionine and [ 35 S]-cysteine and demonstrating the secretion of a protein with a M/sub r/ of 30,000-32,000 that was not present in the medium of mock-transfected COS-M6 cells. This protein was specifically immunoprecipitated by an anti-ricin or anti-B-chain antibody and the amount of recombinant B chain secreted by the COS-M6 cells was determined by a radioimmunoassay. Virtually all of the recombinant B chain formed active ricin when mixed with native A chain; it could also bind to the galactose-containing glycoprotein asialofetuin as effectively as native B chain.These results indicate that the vast majority of recombinant B chains secreted into the medium of the COS-M6 cells retain biological function

  6. 76 FR 71048 - Sixth Annual Philip S. Chen, Jr. Distinguished Lecture on Innovation and Technology Transfer

    Science.gov (United States)

    2011-11-16

    ... present ``Treatment of Cancer with Recombinant Immunotoxins: From Technology Transfer to the Patient.'' Dr. Pastan is an NIH Distinguished Investigator and Chief, Laboratory of Molecular Biology, National Cancer Institute Center for Cancer Research. This annual series honors Dr. Philip S. Chen, Jr. for his almost 50...

  7. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    kesiena

    2012-02-09

    Feb 9, 2012 ... 44 amino acid residues mediated by dipeptidylpeptidase. IV (Vlasak et al., 1983). It has been reported that the melittin exhibits antimicrobial activity and pro- ... Construction of recombinant expression vector. A pair of complementary oligonucleotides named Mel-1 (5′-GAT. CCG GAA TTG GAG CAG TTC ...

  8. Asthma and Therapeutics: Recombinant Therapies in Asthma

    Directory of Open Access Journals (Sweden)

    Cockcroft Donald W

    2005-03-01

    Full Text Available Abstract Numerous recombinant therapies are being investigated for the treatment of asthma. This report reviews the current status of several of these novel agents. Anti-immunoglobulin (IgE (omalizumab, Xolair markedly inhibits all aspects of the allergen challenge in subjects who have reduction of free serum IgE to undetectable levels. Several clinical studies in atopic asthma have demonstrated benefit by improved symptoms and lung function and a reduction in corticosteroid requirements. Early use in atopic asthmatics may be even more effective. Several approaches target interleukin (IL-4. Soluble IL-4 receptor has been shown to effectively replace inhaled corticosteroid; further studies are under way. Recombinant anti-IL-5 and recombinant IL-12 inhibit blood and sputum eosinophils and allergen-induced eosinophilia without any effect on airway responsiveness, allergen-induced airway responses, or allergen-induced airway hyperresponsiveness. Efalizumab, a recombinant antibody that inhibits lymphocyte trafficking, is effective in psoriasis. A bronchoprovocation study showed a reduction in allergen-induced late asthmatic response and allergen-induced eosinophilia, which suggests that it should be effective in clinical asthma. These exciting novel therapies provide not only promise of new therapies for asthma but also valuable tools for investigation of asthma mechanisms.

  9. Recombinant cold-adapted attenuated influenza A vaccines for use in children: reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccinees.

    OpenAIRE

    Alexandrova, G I; Polezhaev, F I; Budilovsky, G N; Garmashova, L M; Topuria, N A; Egorov, A Y; Romejko-Gurko, Y R; Koval, T A; Lisovskaya, K V; Klimov, A I

    1984-01-01

    Reactogenicity and antigenic activity of recombinants obtained by crossing cold-adapted donor of attenuation A/Leningrad/134/47/57 with wild-type influenza virus strains A/Leningrad/322/79(H1N1) and A/Bangkok/1/79(H3N2) were studied. The recombinants were areactogenic when administered as an intranasal spray to children aged 3 to 15, including those who lacked or had only low titers of pre-existing anti-hemagglutinin and anti-neuraminidase antibody in their blood. After two administrations of...

  10. Anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo

    International Nuclear Information System (INIS)

    Mule, J.J.; Shu, S.; Rosenberg, S.A.

    1985-01-01

    The authors showed previously that adoptive immunotherapy with the combination of LAK cells and recombinant IL 2 (RIL 2) can markedly reduce pulmonary micrometastases from multiple sarcomas established 3 days after the i.v. injection of syngeneic tumor cells in C57BL/6 mice. In this report, they analyzed the factors required for successful therapy. Titration analysis in vivo revealed an inverse relationship between the number of pulmonary metastases remaining after treatment and both the number of LAK cells and the amount of RIL 2 administered. Fresh or unstimulated splenocytes had no anti-tumor effect; a 2- to 3-day incubation of splenocytes in RIL 2 was required. LAK cells generated from allogeneic DBA (H-2d) splenocytes were as effective in vivo as syngeneic, C57BL/6 (H-2b) LAK cells. The anti-metastatic capacity of LAK cells was significantly reduced or eliminated when irradiated with 3000 rad before adoptive transfer. The combined therapy of LAK cells plus RIL 2 was shown to be highly effective in mice immunosuppressed by 500 rad total body irradiation and in treating macrometastases established in the lung 10 days after the i.v. injection of sarcoma cells. Further, reduction of both micrometastases and macrometastases could also be achieved by RIL 2 alone when administered at higher levels than were required with LAK cells. The value of LAK cell transfer and of IL 2 administration for the treatment of tumors established at other sites is currently under investigation

  11. Recombinant Listeria monocytogenes as a Live Vaccine Vehicle for the Induction of Protective Anti-Viral Cell-Mediated Immunity

    Science.gov (United States)

    Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.

    1995-04-01

    Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.

  12. In vivo characterization of fusion protein comprising of A1 subunit of Shiga toxin and human GM-CSF: Assessment of its immunogenicity and toxicity.

    Science.gov (United States)

    Oloomi, Mana; Bouzari, Saeid; Shariati, Elaheh

    2010-10-01

    Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF), previously produced in E. coli, was further characterized. The recombinant protein could cause 50% cytotoxicity and induced apoptosis in cells bearing GM-CSF receptors. The non-specific toxicity of the fusion protein was assessed in C57BL/6 and BALB/c mice. No mortality was observed in either group of mice, with different concentration of fusion protein. The lymphocyte proliferation assay, induction of specific IgG response and a mixed (Th1/Th2) response were observed only in BALB/c mice. The mixed response in BALB/c mice (Th1/Th2) could be explained on the basis of the two components of the fusion protein i.e. A1 and GM-CSF.

  13. Autoantibodies from primary biliary cirrhosis patients with anti-p95c antibodies bind to recombinant p97/VCP and inhibit in vitro nuclear envelope assembly

    Science.gov (United States)

    MIYACHI, K; HIRANO, Y; HORIGOME, T; MIMORI, T; MIYAKAWA, H; ONOZUKA, Y; SHIBATA, M; HIRAKATA, M; SUWA, A; HOSAKA, H; MATSUSHIMA, S; KOMATSU, T; MATSUSHIMA, H; HANKINS, R W; FRITZLER, M J

    2004-01-01

    We have reported previously that p95c, a novel 95-kDa cytosolic protein, was the target of autoantibodies in sera of patients with autoimmune hepatic diseases. We studied 30 sera that were shown previously to immunoprecipitate a 95 kDa protein from [35S]-methionine-labelled HeLa lysates and had a specific precipitin band in immunodiffusion. Thirteen sera were available to test the ability of p95c antibodies to inhibit nuclear envelope assembly in an in vitro assay in which confocal fluorescence microscopy was also used to identify the stages at which nuclear assembly was inhibited. The percentage inhibition of nuclear envelope assembly of the 13 sera ranged from 7% to 99% and nuclear envelope assembly and the swelling of nucleus was inhibited at several stages. The percentage inhibition of nuclear assembly was correlated with the titre of anti-p95c as determined by immunodiffusion. To confirm the identity of this autoantigen, we used a full-length cDNA of the p97/valosin-containing protein (VCP) to produce a radiolabelled recombinant protein that was then used in an immunoprecipitation (IP) assay. Our study demonstrated that 12 of the 13 (93%) human sera with antibodies to p95c immunoprecipitated recombinant p97/VCP. Because p95c and p97 have similar molecular masses and cell localization, and because the majority of sera bind recombinant p97/VCP and anti-p95c antibodies inhibit nuclear assembly, this is compelling evidence that p95c and p97/VCP are identical. PMID:15147362

  14. Pro-recombination role of Srs2 protein requires SUMO (small ubiquitin-like modifier) but is independent of PCNA (proliferating cell nuclear antigen) interaction

    DEFF Research Database (Denmark)

    Kolesar, Peter; Altmannova, Veronika; Pinela da Silva, Sonia Cristina

    2016-01-01

    of SIM in asrs2ΔPIMstrain leads to a decrease in recombination, indicating a pro-recombination role of SUMO. Thus SIM has an ambivalent function in Srs2 regulation; it not only mediates interaction with SUMO-PCNA to promote the anti-recombination function but it also plays a PCNA-independent pro......-recombination role, probably by stimulating the formation of recombination complexes. The fact that deletion of PIM suppresses the phenotypes of Srs2 lacking SIM suggests that proper balance between the anti-recombination PCNA-bound and pro-recombination pools of Srs2 is crucial. Notably, sumoylation of Srs2 itself...

  15. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    Science.gov (United States)

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of anti-tick vaccines, recombinant serine protease inhibitors ...

    African Journals Online (AJOL)

    A preliminary trial of a cocktail of recombinant RAS-1-2 and RIM 36 antigens was conducted in Uganda to assess the effects of ant-tick vaccines against Rhipicephalus appendiculatus tick feeding on Zebu cattle under both experimental and natural conditions. Under experimental conditions, over a period of 28 days, the ...

  17. Anti-influenza M2e antibody

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  18. Autoantibody detection in type 2 autoimmune hepatitis using a chimera recombinant protein.

    Science.gov (United States)

    Vitozzi, Susana; Lapierre, Pascal; Djilali-Saiah, Idriss; Alvarez, Fernando

    2002-04-01

    Autoantibodies against cytochrome P450 2D6 (CYP2D6), known as anti-liver/kidney microsome type 1 (LKM1) and/or anti-human formiminotransferase cyclodeaminase, formally known as anti-liver cytosol type 1 (LC1) define type 2 autoimmune hepatitis (AIH). The aims of this work are to develop a sensitive and specific test to detect anti-LKM1 and/or anti-LC1 autoantibodies and to establish the prevalence of anti-LC1. Sera from children with type 2 AIH (n=48) and those from a control group (n=100) were evaluated for anti-LKM1 and anti-LC1 by Enzyme-Linked Immunosorbent Assay (ELISA) and Western blotting. Each serum sample was assayed for reactivity against formiminotransferase cyclodeaminase and CYP2D6 alone or as part of a recombinant chimera protein. By ELISA with recombinant chimera protein, 50 serum samples were positive, 48 from patients with type 2 AIH and 2 from patients with chronic hepatitis C. Twenty-five of 48 (52%) patients studied were positive for both CYP2D6 and LC1 autoantibodies. Anti-LC1, either as the only marker or associated with anti-LKM1, was positive in 34/48 (71%). By Western blotting, anti-LC1 was found in 27/48 (56%) patients. This ELISA technique has proven to be antigen-specific and more sensitive than Western blot for the detection of anti-LC1 and anti-LKM1 autoantibodies. The prevalence of anti-LC1 (71%) confirms it as an important immunomarker in type 2 AIH.

  19. Membrane-proximal TRAIL species are incapable of inducing short circuit apoptosis signaling: Implications for drug development and basic cytokine biology.

    Science.gov (United States)

    Tatzel, Katharina; Kuroki, Lindsay; Dmitriev, Igor; Kashentseva, Elena; Curiel, David T; Goedegebuure, S Peter; Powell, Matthew A; Mutch, David G; Hawkins, William G; Spitzer, Dirk

    2016-03-03

    TRAIL continues to garner substantial interest as a recombinant cancer therapeutic while the native cytokine itself serves important tumor surveillance functions when expressed in membrane-anchored form on activated immune effector cells. We have recently developed the genetically stabilized TRAIL platform TR3 in efforts to improve the limitations associated with currently available drug variants. While in the process of characterizing mesothelin-targeted TR3 variants using a single chain antibody (scFv) delivery format (SS-TR3), we discovered that the membrane-tethered cytokine had a substantially increased activity profile compared to non-targeted TR3. However, cell death proceeded exclusively via a bystander mechanism and protected the mesothelin-positive targets from apoptosis rather than leading to their elimination. Incorporation of a spacer-into the mesothelin surface antigen or the cancer drug itself-converted SS-TR3 into a cis-acting phenotype. Further experiments with membrane-anchored TR3 variants and the native cytokine confirmed our hypothesis that membrane-proximal TRAIL species lack the capacity to physically engage their cognate receptors coexpressed on the same cell membrane. Our findings not only provide an explanation for the "peaceful" coexistence of ligand and receptor of a representative member of the TNF superfamily but give us vital clues for the design of activity-enhanced TR3-based cancer therapeutics.

  20. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hitoshi; Akazawa, Daisuke [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Kato, Takanobu; Date, Tomoko [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Shirakura, Masayuki [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Toray Industries, Inc., Kanagawa (Japan); Nakamura, Noriko; Mochizuki, Hidenori [Toray Industries, Inc., Kanagawa (Japan); Tanaka-Kaneko, Keiko; Sata, Tetsutaro [Department of Pathology, National Institute of Infectious Diseases, Tokyo (Japan); Tanaka, Yasuhito [Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medicine, Nagoya (Japan); Mizokami, Masashi [Research Center for Hepatitis and Immunology, Kohnodai Hospital, International Medical Center of Japan, Chiba (Japan); Suzuki, Tetsuro [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan); Wakita, Takaji, E-mail: wakita@nih.go.jp [Department of Virology II, National Institute of Infectious Diseases, Tokyo (Japan)

    2010-05-14

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  1. Biological properties of purified recombinant HCV particles with an epitope-tagged envelope

    International Nuclear Information System (INIS)

    Takahashi, Hitoshi; Akazawa, Daisuke; Kato, Takanobu; Date, Tomoko; Shirakura, Masayuki; Nakamura, Noriko; Mochizuki, Hidenori; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi; Suzuki, Tetsuro; Wakita, Takaji

    2010-01-01

    To establish a simple system for purification of recombinant infectious hepatitis C virus (HCV) particles, we designed a chimeric J6/JFH-1 virus with a FLAG (FL)-epitope-tagged sequence at the N-terminal region of the E2 hypervariable region-1 (HVR1) gene (J6/JFH-1/1FL). We found that introduction of an adaptive mutation at the potential N-glycosylation site (E2N151K) leads to efficient production of the chimeric virus. This finding suggests the involvement of glycosylation at Asn within the envelope protein(s) in HCV morphogenesis. To further analyze the biological properties of the purified recombinant HCV particles, we developed a strategy for large-scale production and purification of recombinant J6/JFH-1/1FL/E2N151K. Infectious particles were purified from the culture medium of J6/JFH-1/1FL/E2N151K-infected Huh-7 cells using anti-FLAG affinity chromatography in combination with ultrafiltration. Electron microscopy of the purified particles using negative staining showed spherical particle structures with a diameter of 40-60 nm and spike-like projections. Purified HCV particle-immunization induced both an anti-E2 and an anti-FLAG antibody response in immunized mice. This strategy may contribute to future detailed analysis of HCV particle structure and to HCV vaccine development.

  2. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    Science.gov (United States)

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. RECOMBINANT ANTI-TENASCIN ANTIBODY CONTRUCTS

    International Nuclear Information System (INIS)

    ZALUTSKY, MICHAEL R.

    2006-01-01

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr ?-particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  4. Recombinant anti-tenascin antibody constructs

    Energy Technology Data Exchange (ETDEWEB)

    ZALUTSKY, MICHAEL R

    2006-08-29

    The general objective of this research is to combine genetically derived molecular constructs reactive with tenascin, with appropriate radionuclides and labeling methods in order to generate more effective diagnostic and therapeutic reagents for oncologic nuclear medicine. Tenascin, a polymorphic extracellular matrix glycoprotein, is of interest because of its high expression on glioma, melanoma, as well as prostate and breast carcinoma. Recently, we have also documented high levels of tenascin in lymphomas, particularly those of higher grade, making the potential clinical impact of tenascin-specific radiodiagnostics and therapeutics even greater. An essential feature of our work plan is the ability to exploit our extensive clinical experience in order to design second-generation constructs with properties which could improve clinical efficacy. To date, we have treated over 150 brain tumor patients with 131I-labeled murine 81C6, an antibody which binds specifically to the alternatively spliced fibronectin type III repeats CD of the tenascin molecule. During the current grant period, we have made several observations which form the basis for our proposed specific aims. First, tissue distribution and catabolism experiments in animal models have demonstrated enhanced stability for a chimeric construct composed of murine variable regions and human IgG2 constant domains. Furthermore, pharmacokinetic studies in patients with 131I-labeled chimeric 81C6 have shown significantly longer retention in glioma tumor resection cavities compared with its murine parent. Second, we have initiated the first clinical trial of an endoradiotherapeutic labeled with the 7.2-hr -particle emitter 211At. Twelve glioma patients have received 211At-labeled chimeric 81C6 directly into their brain tumor resection cavity, and very encouraging results have been obtained. Now that the feasibility of human studies with 211At, has been demonstrated, the development and evaluation of anti

  5. When No Response Is a Good Thing | Center for Cancer Research

    Science.gov (United States)

    Custom-designed therapies that target cell-surface antigens or receptors represent a promising immunological approach in cancer therapy. Antibodies that bind these targets are the starting point.  Potent toxins can then be added to them by fusing antibody fragments to powerful bacterial toxins such as Pseudomonas exotoxin (PE). This recombinant immunotoxin combines antibody selectivity with toxin cell-killing potency.

  6. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...... between the anti-GLURP489-1271 and anti-(EENV)6 antibody responses. The data provide indirect evidence for a protective role of antibodies reacting with recombinant GLURP489-1271 as well as with the synthetic peptide (EENV)6 from the Pf155/RESA....

  7. Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more : results of a multicenter phase 3 study

    NARCIS (Netherlands)

    Lowenberg, Bob; Beck, Joachim; Graux, Carlos; van Putten, Wim; Schouten, Harry C.; Verdonck, Leo F.; Ferrant, Augustin; Sonneveld, Pieter; Jongen-Lavrencic, Mojca; von Lilienfeld-Toal, Marie; Biemond, Bart J.; Vellenga, Edo; Breems, Dimitri; de Muijnck, Hilde; Schaafsma, Ron; Verhoef, Gregor; Doehner, Hartmut; Gratwohl, Alois; Pabst, Thomas; Ossenkoppele, Gert J.; Maertens, Johan

    2010-01-01

    In older patients with acute myeloid leukemia (AML), the prevention of relapse has remained one of the major therapeutic challenges, with more than 75% relapses after complete remission. The anti-CD33 immunotoxin conjugate gemtuzumab ozogamicin (GO) has shown antileukemic remission induction

  8. Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming

    2016-12-15

    We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.

  9. X-ray studies of recombinant anti-testosterone Fab fragments: the use of PEG 3350 in crystallization.

    Science.gov (United States)

    Valjakka, J; Hemminki, A; Teerinen, T; Takkinen, K; Rouvinen, J

    2000-02-01

    Recombinant anti-testosterone wild-type Fab fragment and mutant Fab fragments with high binding selectivity developed by protein engineering have been crystallized with and without ligands. Crystals of these Fab fragments were obtained by the vapour-diffusion technique at room temperature using solutions of PEG 3350 with various biological buffers and with a wide pH range. So far, five data sets have been collected from crystals of three Fab-antigen complexes and from two uncomplexed Fab fragments, with resolutions ranging from 2.10 to 3.1 A. Crystallization conditions for Fab fragments were found by using modifications of the low ionic strength PEG 3350 series. Suitable concentrations of PEG 400, MPD and glycerol solutions for use as cryoprotectants in PEG 3350 solutions have been determined. One useful observation was that PEG 3350 is able to work alone as a cryoprotectant. The screening protocol used requires a smaller amount of protein material to achieve auspicious pre-crystals than previously. Results support the claim that PEG 3350 is more suitable for the crystallization of Fab fragments than higher molecular weight PEGs.

  10. Synergistic anticancer effects of the 9.2.27PE immunotoxin and ABT-737 in melanoma.

    Directory of Open Access Journals (Sweden)

    Karianne Risberg

    Full Text Available In cancer, combinations of drugs targeting different cellular functions is well accepted to improve tumor control. We studied the effects of a Pseudomonas exotoxin A (PE-based immunotoxin, the 9.2.27PE, and the BH-3 mimetic compound ABT-737 in a panel of melanoma cell lines. The drug combination resulted in synergistic cytotoxicity, and the cell death observed was associated with apoptosis, as activation of caspase-3, inactivation of Poly (ADP-ribose polymerase (PARP and increased DNA fragmentation could be prevented by pre-treatment with caspase and cathepsin inhibitors. We further show that ABT-737 caused endoplasmic reticulum (ER stress with increased GRP78 and phosphorylated eIF2α protein levels. Moreover, treatment with ABT-737 increased the intracellular calcium levels, an effect which was enhanced by 9.2.27PE, which as a single entity drug had minimal effect on calcium release from the ER. In addition, silencing of Mcl-1 by short hairpin RNA (shRNA enhanced the intracellular calcium levels and cytotoxicity caused by ABT-737. Notably, the combination of 9.2.27PE and ABT-737 caused growth delay in a human melanoma xenograft mice model, supporting further investigations of this particular drug combination.

  11. Immunotoxin – a new treatment option in patients with relapsed and refractory Hodgkin lymphoma

    Science.gov (United States)

    Novakovic, Barbara Jezersek

    2015-01-01

    Background Even though Hodgkin lymphoma is a highly curable disease, some of the patients have either a refractory disease or experience a relapse following a successful primary therapy. Durable responses and remissions in patients with relapsed or refractory disease may be achieved in approximately one-half with salvage chemotherapy followed by high dose chemotherapy (HDT) and autologous hematopoietic cell rescue (SCT). On the other hand, patients who relapse after HDT and autologous SCT or those who have failed at least two prior multi-agent chemotherapy regimens and are not candidates for HDT have limited treatment options. Conclusions A new treatment option in this population is an immunotoxin Brentuximab vedotin composed of a CD30 directed antibody linked to the antitubulin agent monomethyl auristatin E. It has demonstrated a substantial effectiveness and an acceptable toxicity. In the pivotal study, the overall response rate was 75% with 34% of complete remissions. The median durations of response were 20.5 and 6.7 months for those with complete remission and all responding patients, respectively. The median overall survival was 40.5 months (3-years overall survival 54%) and the median progression-free survival 9.3 months. The most common non-hematologic toxicities were peripheral sensory neuropathy, nausea, and fatigue while the most common severe side effects were neutropenia, thrombocytopenia, anemia, and peripheral sensory neuropathy. PMID:26834516

  12. [Recombinant human gapM1 expressed in Pichia pastoris and its anti-diabetic effect].

    Science.gov (United States)

    Mei, Xiang; Du, Renqian; Li, Xi; Huang, Haiyan; Yu, Min; Tang, Qiqun

    2009-08-01

    Adiponectin is an adipokine predominantly synthesized and secreted by adipocytes in the white adipose tissue, and it can lower the blood glucose level and increase free fatty acid oxidation. In the current study, we developed the globular domain of adiponectin (gapM1) to treat type II diabetes. In both flask and fermentor, we cultivated Pichia pastoris expressing recombinant gapM1 and established the purification procedure by using gel filtration and anion exchange chromatography. To evaluate the biological activity of recombinant gapM1, we used rat type II diabetes model fed high-fat diet in combination with low-dose STZ (Streptozocin) induction. We purified 200 mg gapM1 with purity of 96% from 10 liters of supernatant. The recombinant gapM1 significantly lowered blood glucose (34.2%), serum triglyceride (79.6%) and total cholesterol (62.1%) in type II diabetes induced rat. Therefore, the recombinant human gapM1 is successfully expressed in Pichia pastoris and effectively treated type II diabetes in rat models.

  13. [Prokaryotic expression of Nanog gene and preparation of anti-Nanog antibody].

    Science.gov (United States)

    Li, Jun; Wang, Xiao-min; Dou, Zhong-ying; Li, Yong

    2012-07-01

    To express Nanog fusion protein in Escherichia coli ( E.coli), and to prepare rabbit anti-mouse polyclonal antibodies to the Nanog fusion protein. Mouse Nanog gene was amplified from the pNA992 recombinant plasmid and inserted into pET-32a vector to construct a recombinant expression vector pET-32a-Nanog. The recombinant vector was transfected into E.coli BL21 and induced by IPTG to express in them. The acquired Nanog fusion protein was purified with HisTrap affinity column and injected as an antigen into rabbits for preparing polyclonal antibodies. At last, the titer and specificity of the polyclonal antibodies were analyzed with indirect ELISA, Western blotting and immunocytochemical staining, respectively. The recombinant expression vector pET-32a-Nanog was successfully prepared, transfected and induced to obtain the high expression of the Nanog fusion protein in a form of inclusion bodies in E.coli. After purification, its purity was up to 97%. The titer of anti-Nanog antibodies was 1:32 000 in the immunized rabbit serum, and exhibited a high specificity to Nanog protein. The rabbit anti-mouse polyclonal antibodies have been prepared successfully with a high titer and specificity to the Nanog fusion protein.

  14. Characterization of a recombinant humanized anti-cocaine monoclonal antibody produced from multiple clones for the selection of a master cell bank candidate.

    Science.gov (United States)

    Wetzel, Hanna N; Webster, Rose P; Saeed, Fatima O; Kirley, Terence L; Ball, William J; Norman, Andrew B

    2017-06-03

    We have generated a humanized anti-cocaine monoclonal antibody (mAb), which is at an advanced stage of pre-clinical development. We report here in vitro binding affinity studies, and in vivo pharmacokinetic and efficacy studies of the recombinant mAb. The overall aim was to characterize the recombinant antibody from each of the three highest producing transfected clones and to select one to establish a master cell bank. In mAb pharmacokinetic studies, after injection with h2E2 (120 mg/kg iv) blood was collected from the tail tip of mice over 28 days. Antibody concentrations were quantified using ELISA. The h2E2 concentration as a function of time was fit using a two-compartment pharmacokinetic model. To test in vivo efficacy, mice were injected with h2E2 (120 mg/kg iv), then one hour later injected with an equimolar dose of cocaine. Blood and brain were collected 5 min after cocaine administration. Cocaine concentrations were quantified using LC/MS. The affinity of the antibody for cocaine was determined using a [ 3 H] cocaine binding assay. All three antibodies had long elimination half-lives, 2-5 nM Kd for cocaine, and prevented cocaine's entry into the brain by sequestering it in the plasma. Pharmacokinetic and radioligand binding assays supported designation of the highest producing clone 85 as the master cell bank candidate. Overall, the recombinant h2E2 showed favorable binding properties, pharmacokinetics, and in vivo efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Successful ovulation induction, conception, and normal delivery after chronic therapy with etanercept: a recombinant fusion anti-cytokine treatment for rheumatoid arthritis.

    Science.gov (United States)

    Sills, E S; Perloe, M; Tucker, M J; Kaplan, C R; Palermo, G D

    2001-11-01

    Etanercept (Enbrel; Wyeth-Ayerst/Immunex Inc, Seattle, WA, USA) is a subcutaneously administered novel fusion protein consisting of the extracellular ligand-binding domain of the 75 kD receptor for tumor necrosis factor-alpha (anti-TNFalpha) and the Fc portion of human IgG1. The agent is synthesized by plasmid transfection of a Chinese hamster ovary cell line, utilizing recombinant DNA technology. Etanercept was approved by the US FDA for treatment of multi-drug resistant rheumatoid arthritis in 1998, but no human data exist regarding the impact of anti-TNFalpha therapy on human reproductive function or its use before ovulation induction. As TNFalpha potentiates collagenolysis via matrix metalloproteinase gene expression (thereby facilitating ovulation), there exists a theoretical risk that TNFalpha-inhibition could exert an undesirable effect on ovulation and pregnancy. In this report, we describe the first case of ovulation induction, intrauterine insemination, normal pregnancy and singleton delivery of a healthy infant following chronic ( > 1 year) pre-ovulatory TNFalpha-inhibitor therapy for rheumatoid arthritis. Reproductive endocrinologists and obstetrician-gynecologists should be familiar with etanercept therapy in the context of severe rheumatic disease, and offer appropriate reassurance regarding its safe use for infertility patients planning ovulation induction.

  16. Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3

    International Nuclear Information System (INIS)

    Garg, Gunjal; Spitzer, Dirk; Gibbs, Jesse; Belt, Brian; Powell, Matthew A; Mutch, David G; Goedegebuure, Peter; Collins, Lynne; Piwnica-Worms, David; Hawkins, William G

    2014-01-01

    The targeted delivery of cancer therapeutics represents an ongoing challenge in the field of drug development. TRAIL is a promising cancer drug but its activity profile could benefit from a cancer-selective delivery mechanism, which would reduce potential side effects and increase treatment efficiencies. We recently developed the novel TRAIL-based drug platform TR3, a genetically fused trimer with the capacity for further molecular modifications such as the addition of tumor-directed targeting moieties. MUC16 (CA125) is a well characterized biomarker in several human malignancies including ovarian, pancreatic and breast cancer. Mesothelin is known to interact with MUC16 with high affinity. In order to deliver TR3 selectively to MUC16-expressing cancers, we investigated the possibility of targeted TR3 delivery employing the high affinity mesothelin/MUC16 ligand/receptor interaction. Using genetic engineering, we designed the novel cancer drug Meso-TR3, a fusion protein between native mesothelin and TR3. The recombinant proteins were produced with mammalian HEK293T cells. Meso-TR3 was characterized for binding selectivity and killing efficacy against MUC16-positive cancer cells and controls that lack MUC16 expression. Drug efficacy experiments were performed in vitro and in vivo employing an intraperitoneal xenograft mouse model of ovarian cancer. Similar to soluble mesothelin itself, the strong MUC16 binding property was retained in the Meso-TR3 fusion protein. The high affinity ligand/receptor interaction was associated with a selective accumulation of the cancer drug on MUC16-expressing cancer targets and directly correlated with increased killing activity in vitro and in a xenograft mouse model of ovarian cancer. The relevance of the mesothelin/MUC16 interaction for attaching Meso-TR3 to the cancer cells was verified by competitive blocking experiments using soluble mesothelin. Mechanistic studies using soluble DR5-Fc and caspase blocking assays confirmed

  17. Current and emerging treatment options for hairy cell leukemia

    Directory of Open Access Journals (Sweden)

    López-Rubio M

    2015-08-01

    Full Text Available Montserrat López-Rubio,1 Jose Antonio Garcia-Marco2 1Department of Hematology, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 2Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain Abstract: Hairy cell leukemia (HCL is a lymphoproliferative B-cell disorder characterized by pancytopenia, splenomegaly, and characteristic cytoplasmic hairy projections. Precise diagnosis is essential in order to differentiate classic forms from HCL variants, such as the HCL-variant and VH4-34 molecular variant, which are more resistant to available treatments. The current standard of care is treatment with purine analogs (PAs, such as cladribine or pentostatin, which provide a high rate of long-lasting clinical remissions. Nevertheless, ~30%–40% of the patients relapse, and moreover, some of these are difficult-to-treat refractory cases. The use of the monoclonal antibody rituximab in combination with PA appears to produce even higher responses, and it is often employed to minimize or eliminate residual disease. Currently, research in the field of HCL is focused on identifying novel therapeutic targets and potential agents that are safe and can universally cure the disease. The discovery of the BRAF mutation and progress in understanding the biology of the disease has enabled the scientific community to explore new therapeutic targets. Ongoing clinical trials are assessing various treatment strategies such as the combination of PA and anti-CD20 monoclonal antibodies, recombinant immunotoxins targeting CD22, BRAF inhibitors, and B-cell receptor signal inhibitors. Keywords: hairy cell leukemia, purine analogs, rituximab, immunotoxins, vemurafenib, ibrutinib

  18. Diagnostic and prognostic significance of measuring antibodies to alpha-fodrin compared to anti-Ro-52, anti-Ro-60, and anti-La in primary Sjogren's syndrome

    DEFF Research Database (Denmark)

    Pelck, R.; Manthorpe, R.; Locht, Henning

    2008-01-01

    OBJECTIVE: To compare sensitivity and specificity of autoantibodies to alpha-fodrin with conventional anti-Ro and anti-La antibodies in patients with primary Sjogren's syndrome (pSS). Data on internal organ manifestations were correlated with presence of autoantibodies. METHODS: We collected...... clinical and laboratory data from 321 patients with pSS (Copenhagen criteria), of which 205 fulfilled the new American-European 2002 consensus criteria. Sera were tested for autoantibodies against alpha-fodrin and recombinant Ro-52, Ro-60, and La proteins. RESULTS: Antibodies to alpha-fodrin were...

  19. [Immune Response of Recombinant Pseudorabies Virus rPRV-VP2 Expressing VP2 Gene of Porcine Parvovirus in Mice].

    Science.gov (United States)

    Fu, Pengfei; Pan, Xinlong; Han, Qiao; Yang, Xingwu; Zhu, Qianlei; Guo, Xiaoqing; Zhang, Yu; Chen, Hongying

    2016-03-01

    In order to develop a combined live vaccine that will be used to prevent against porcine parvovirus (PPV) and Pseudorabies virus (PRV) infection, the VP2 gene of PPV was inserted into the transfer vector plasmid pG to produce the recombinant plasmid pGVP2. The plasmid pGVP2 and the genome of PRV HB98 attenuated vaccine were transfected by using lipofectamine into swine testis cells for the homologous recombination. The recombinant virus rPRV-VP2 was purified by selection of green fluorescence plaques for five cycles. 6-week-old female Kunming mice were immunized intramuscularly with attenuated PRV parent HB98 strain, commercial inactivated vaccine against PPV, recombinant virus, DMEM culture solution. The injections were repeated with an equivalent dose after 2 weeks in all of the groups, and then challenged with the virulent PRV NY strain at 7 weeks after the first immunization. The recombinant virus rPRV-VP2 was successfully generated, and the recombinant virus could effectively elicite anti-PPV and PRV antibody and significant cellular immune response as indicated by anti-PPV ELISA and HI, PRV-neutralizing assay and flow cytometry. The challenge assay indicated that recombinant virus could protect the mice against the virulent PRV challenge. These results demonstrated that the recombinant virus can be a candidate recombinant vaccine strain for the prevention of PRV and PPV.

  20. (Anti)hydrogen recombination studies in a nested Penning trap

    International Nuclear Information System (INIS)

    Quint, W.; Kaiser, R.; Hall, D.; Gabrielse, G.

    1993-01-01

    Extremely cold antiprotons, stored in Penning trap at 4 K, open the way toward the production and study of cold antihydrogen. We have begun experimentally investigating the possibility to recombine cold positrons and antiprotons within nested Penning traps. Trap potentials are adjusted to allow cold trapped protons (and positive helium ions) to pass through cold trapped electrons. Electrons, protons and ions are counted by ejecting them to a cold channel plate and by nondestructive radiofrequency techniques. The effect of the space charge of one trapped species upon another trapped species passing through is clearly observed. (orig.)

  1. Note on s anti s-production in anti p-nucleus reactions at 607 MeV/c incident momentum

    International Nuclear Information System (INIS)

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-01-01

    The measured cross sections for K o s and Λ o (Σ o ) production in anti pA reactions at 607 MeV/c incident momentum, and the number of quark recombinations, give the cross section σ(s anti s) for strange particle production for target nuclei with A= 2, 4 and 20 nucleons, respectively. The result favours the relation σ(s anti s) ∝ A 1/3 . Scattering of an antiquark off a virtual s anti s-pair, or gluon Bremsstrahlung emitted by scattering of an incident antiquark passing through nuclear matter, are possible processes consistent with this relation. Models inconsistent with the relation may be wrong. 4 refs.; 2 tabs

  2. Expression and purification of soluble recombinant Hexastatin in E. coli

    International Nuclear Information System (INIS)

    He Xin; Wen Lei; Song Naling; Wang Dezhi; Zhao Qiren

    2012-01-01

    Purpose: To construct the expression vector of Hexastatin gene, to express and to purify the recombinant protein for further activity research. Methods: The human Hexastatin gene was isolated by RTPCR from EC9706 cells total RNA and cloned into pMD18-T for sequencing. Then the Hexastatin gene was subcloned into pMAL-c4x expression vector and induced to express by IPTG. The recombinant fusion protein was purified with Amylose Resin Heads. Results: RT-PCR product was about 687 bp and its sequence was the same as that of Hexastatin reported. The recombinant protein was expressed in E. coli BL21 with high level and the soluble protein accounted for 24.8% of the total bacterial protein. The purification of recombinant protein purified with Amylose Resin Heads reached more than 90%. Conclusion: The cloning, expression and purification of human Hexastatin have laid a foundation for its anti-angiogenesis therapy for tumor. (authors)

  3. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  4. Addressing the Immunogenicity of the Cargo and of the Targeting Antibodies with a Focus on Deimmunized Bacterial Toxins and on Antibody-Targeted Human Effector Proteins

    Science.gov (United States)

    Grinberg, Yehudit; Benhar, Itai

    2017-01-01

    Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434

  5. Binding properties of beetal recombinant caprine growth hormone to ...

    African Journals Online (AJOL)

    The aim of the study was to illustrate the radio-receptor assay of beetal recombinant caprine growth hormone (rcGH). Tracer (125I-rcGH) was prepared by iodinating beetal rcGH with iodine-125 and its biological activity was analyzed by rabbit anti-rcGH antibodies. Liver microsomal membranes of the Bovidae species ...

  6. Potential use of recombinant human interleukin-6 in clinical oncology

    NARCIS (Netherlands)

    Veldhuis, GJ; Willemse, PHB; Mulder, NH; Limburg, PC; deVries, EGE

    Recombinant human IL-6 (rhIL-6) is a pleiotropic cytokine with stimulatory actions on the hematopoietic system, the immune system and hepatocytes. Clinical interest in the use of this cytokine was raised because of its thrombopoietic properties and also because of its anti-tumor activity, which was

  7. Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin

    Science.gov (United States)

    Kornberger, Petra; Skerra, Arne

    2014-01-01

    We report on the preparation of a new type of immunotoxin via in vitro ligation of the αHer2 antigen binding fragment (Fab) of the clinically-validated antibody trastuzumab to the plant toxin gelonin, employing catalysis by the bacterial enzyme sortase A (SrtA). The αHer2 Fab was fused with the extended SrtA recognition motif LPET↓GLEH6 at the C-terminus of its heavy chain, thereby preventing interference with antigen binding, while the toxin was equipped with a Gly2 sequence at its N-terminus, distant to the catalytically active site in the C-terminal region. Site-specific in vitro transpeptidation led to a novel antibody-toxin conjugate wherein gelonin had effectively replaced the Fc region of a conventional (monomerized) immunoglobulin. After optimization of reaction conditions and incubation time, the resulting Fab-Gelonin ligation product was purified to homogeneity in a two-step procedure by means of Strep-Tactin affinity chromatography—utilizing the Strep-tag II appended to gelonin—and size exclusion chromatography. Binding activity of the immunotoxin for the Her2 ectodomain was indistinguishable from the unligated Fab as measured by real-time surface plasmon resonance spectroscopy. Specific cytotoxic potency of Fab-Gelonin was demonstrated against two Her2-positive cell lines, resulting in EC50 values of ~1 nM or lower, indicating a 1000-fold enhanced cell-killing activity compared with gelonin itself. Thus, our strategy provides a convenient route to the modular construction of functional immunotoxins from Fabs of established tumor-specific antibodies with gelonin or related proteotoxins, also avoiding the elevated biosafety levels that would be mandatory for the direct biotechnological preparation of corresponding fusion proteins. PMID:24492291

  8. Expression, Purification and Characterization of Recombinant Canine FGF21 in Escherichia coli.

    Science.gov (United States)

    Zheng, Zhong; Yang, Chengjun; Yin, Ruofeng; Jiang, Jinxi; He, Haiting; Wang, Xinxin; Kan, Mujie; Xiao, Yechen

    2016-01-01

    The canine metabolic diseases, such as obesity and diabetes, have become a worldwide problem. Fibroblast growth factor 21 (FGF21) is a potent regulator which has many biological functions relative to metabolism regulation. It suggests that FGF21 plays important roles in regulating canine metabolic diseases. To acquire the recombinant canine FGF21 (rcFGF21) in Escherichia coli, the recombinant bacteria were induced by 0.5 mM IPTG for 16 hours at 16 °C, and the rcFGF21 protein was purified by Ni-NTA. 8 mg rcFGF21 was acquired from one liter bacteria. The rcFGF21 protein has specific immunoblot reactivity against anti-FGF21 and anti-His antibody. The in vivo experimental result showed that rcFGF21 can significantly reduce plasma glucose of STZ-induced diabetic mice.

  9. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate.

    Science.gov (United States)

    Kaiser, Gitte S; Germann, Susanne M; Westergaard, Tine; Lisby, Michael

    2011-08-01

    Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted. 2011 Elsevier B.V. All rights reserved.

  10. Recombinant Plants Provide a New Approach to the Production of Bacterial Polysaccharide for Vaccines

    Science.gov (United States)

    Smith, Claire M.; Fry, Stephen C.; Gough, Kevin C.; Patel, Alexandra J. F.; Glenn, Sarah; Goldrick, Marie; Roberts, Ian S.; Andrew, Peter W.

    2014-01-01

    Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as vaccines to protect against life-threatening infections. PMID:24498433

  11. HIV-1 CRF_BC recombinants infection in China: molecular epidemic and characterizations.

    Science.gov (United States)

    Ouyang, Yabo; Shao, Yiming; Ma, Liying

    2012-03-01

    CRF_BC recombinant strains were first identified in China and are one of the most prevalent and characteristically unique HIV-1 subtypes across China. Here we aim to review the published data about HIV-1 CRF_BC recombinant strains epidemic in China and to characterize the genetics, biology and drug resistance of this virus. This study may help to better understand the current situation of HIV-1 CRF_BC prevalence and facilitate the development of vaccines and more efficient anti-HIV-1 regimens in China.

  12. 78 FR 21131 - Prospective Grant of An Exclusive Evaluation Option License: Pre-clinical Evaluation of Anti...

    Science.gov (United States)

    2013-04-09

    ... technology family, to SPEED BioSystems, LLC. The patent rights in these inventions have been assigned to the... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Prospective Grant of An... Immunotoxins for the Treatment of Human Cancers AGENCY: National Institutes of Health, HHS. ACTION: Notice...

  13. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G

    1993-01-01

    to support the immunological data also by biochemical and biophysical experiments the availability of a recombinant CK-2 alpha from maize was a prerequisite. A maize cDNA clone of maize CK-2 alpha was expressed in the bacterial strain BL21 (DE3). The recombinant protein was purified to homogeneity; its......CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In order...... molecular mass on one-dimensional SDS PAGE was estimated to be 36.5 kDa. The calculated molecular mass according to the amino acid composition is 39,228 Da (332 amino acids). The recombinant maize CK-2 alpha (rmCK-2 alpha) exhibited mostly the same properties as the recombinant human CK-2 alpha (rhCK-2...

  14. Characterization of a recombinant humanized anti-cocaine monoclonal antibody and its Fab fragment.

    Science.gov (United States)

    Kirley, Terence L; Norman, Andrew B

    2015-01-01

    Variations of post-translational modifications are important for stability and in vivo behavior of therapeutic antibodies. A recombinant humanized anti-cocaine monoclonal antibody (h2E2) was characterized for heterogeneity of N-linked glycosylation and disulfide bonds. In addition, charge heterogeneity, which is partially due to the presence or absence of C-terminal lysine on the heavy chains, was examined. For cocaine overdose therapy, Fab fragments may be therapeutic, and thus, a simplified method of generation, purification, and characterization of the Fab fragment generated by Endoproteinase Lys-C digestion was devised. Both the intact h2E2 antibody and purified Fab fragments were analyzed for their affinities for cocaine and 2 of its metabolites, benzoylecgonine and cocaethylene, by fluorescence quenching of intrinsic antibody tyrosine and tryptophan fluorescence resulting from binding of these drugs. Binding constants obtained from fluorescence quenching measurements are in agreement with recently published radioligand and ELISA binding assays. The dissociation constants determined for the h2E2 monoclonal and its Fab fragment are approximately 1, 5, and 20 nM for cocaethylene, cocaine, and benzoylecgonine, respectively. Tryptophan fluorescence quenching (emission at 330 nm) was measured after either excitation of tyrosine and tryptophan (280 nm) or selective excitation of tryptophan alone (295 nm). More accurate binding constants are obtained using tryptophan selective excitation at 295 nm, likely due to interfering absorption of cocaine and metabolites at 280 nm. These quenching results are consistent with multiple tryptophan and tyrosine residues in or near the predicted binding location of cocaine in a previously published 3-D model of this antibody's variable region.

  15. Anchoring tick salivary anti-complement proteins IRAC I and IRAC II to membrane increases their immunogenicity.

    Science.gov (United States)

    Gillet, Laurent; Schroeder, Hélène; Mast, Jan; Thirion, Muriel; Renauld, Jean-Christophe; Dewals, Benjamin; Vanderplasschen, Alain

    2009-01-01

    Tick salivary proteins are promising targets for the development of anti-tick vaccines. Recently, we described two paralogous anti-complement proteins, called Ixodes ricinus anti-complement (IRAC) proteins I and II, that are co-expressed in tick I. ricinus salivary glands. However, our previous attempts to immunize rabbits against IRAC via infection with recombinant Bovine herpesvirus 4 (BoHV-4) vectors invariably failed although both recombinants expressed high levels of functional IRAC proteins in vitro. As IRAC are soluble monovalent antigens, one of the possible explanations is that monovalent ligation of the B-cell receptor induces receptor activation but fails to promote antigen presentation, a phenomenon that is thought to induce a state of B-cell tolerance. In the present study, we tried to increase IRAC immunogenicity by expressing them as oligovalent antigens. To this end, IRAC were fused to membrane anchors and BoHV-4 vectors expressing these recombinant forms were produced. The immunization potentials of recombinant viruses expressing either secreted or transmembrane IRAC proteins were then compared. While the former did not induce a detectable immune response against IRAC, the latter led to high titres of anti-IRAC antibodies that only marginally affected tick blood feeding. All together, the data presented in this study demonstrate that the immunogenicity of a soluble antigen can be greatly improved by anchoring it in membrane.

  16. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21 modified with polyethylene glycol.

    Directory of Open Access Journals (Sweden)

    Zhifeng Huang

    Full Text Available As one of fibroblast growth factor (FGF family members, FGF21 has been extensively investigated for its potential as a drug candidate to combat metabolic diseases. In the present study, recombinant human FGF21 (rhFGF21 was modified with polyethylene glycol (PEGylation in order to increase its in vivo biostabilities and therapeutic potency. At N-terminal residue rhFGF21 was site-selectively PEGylated with mPEG20 kDa-butyraldehyde. The PEGylated rhFGF21 was purified to near homogeneity by Q Sepharose anion-exchange chromatography. The general structural and biochemical features as well as anti-diabetic effects of PEGylated rhFGF21 in a type 2 diabetic rat model were evaluated. By N-terminal sequencing and MALDI-TOF mass spectrometry, we confirmed that PEG molecule was conjugated only to the N-terminus of rhFGF21. The mono-PEGylated rhFGF21 retained the secondary structure, consistent with the native rhFGF21, but its biostabilities, including the resistance to physiological temperature and trypsinization, were significantly enhanced. The in vivo immunogenicity of PEGylated rhFGF21 was significantly decreased, and in vivo half-life time was significantly elongated. Compared to the native form, the PEGylated rhFGF21 had a similar capacity of stimulating glucose uptake in 3T3-L1 cells in vitro, but afforded a significantly long effect on reducing blood glucose and triglyceride levels in the type 2 diabetic animals. These results suggest that the PEGylated rhFGF21 is a better and more effective anti-diabetic drug candidate than the native rhFGF21 currently available. Therefore, the PEGylated rhFGF21 may be potentially applied in clinics to improve the metabolic syndrome for type 2 diabetic patients.

  17. A mathematical model of a recombinant humanized anti-cocaine monoclonal antibody's effects on cocaine pharmacokinetics in mice.

    Science.gov (United States)

    Wetzel, Hanna N; Zhang, Tongli; Norman, Andrew B

    2017-09-01

    A recombinant humanized anti-cocaine monoclonal antibody (mAb), h2E2, is at an advanced stage of pre-clinical development as an immunotherapy for cocaine abuse. It is hypothesized that h2E2 binds to and sequesters cocaine in the blood. A three-compartment model of the effects of h2E2 on cocaine's distribution was constructed. The model assumes that h2E2 binds to cocaine and that the h2E2-cocaine complex does not enter the brain but distributes between the central and peripheral compartments. Free cocaine is eliminated from both the central and peripheral compartments, and h2E2 and the h2E2-cocaine complex are eliminated from the central compartment only. This model was tested against a new dataset measuring cocaine concentrations in the brain and plasma over 1h in the presence and absence of h2E2. The mAb significantly increased plasma cocaine concentrations with a concomitant significant decrease in brain concentration. Plasma concentrations declined over the 1-hour sampling period in both groups. With a set of parameters within reasonable physiological ranges, the three-compartment model was able to qualitatively and quantitatively simulate the increased plasma concentration in the presence of the antibody and the decreased peak brain concentration in the presence of antibody. Importantly, the model explained the decline in plasma concentrations over time as distribution of the cocaine-h2E2 complex into a peripheral compartment. This model will facilitate the targeting of ideal mAb PK/PD properties thus accelerating the identification of lead candidate anti-drug mAbs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Development of positron emission tomography imaging by 64Cu-labeled Fab for detecting ERC/mesothelin in a mesothelioma mouse model.

    Science.gov (United States)

    Yoshida, Chisato; Sogawa, Chizuru; Tsuji, Atsushi B; Sudo, Hitomi; Sugyo, Aya; Uehara, Tomoya; Hino, Okio; Yoshii, Yukie; Fujibayashi, Yasuhisa; Fukumura, Toshimitsu; Koizumi, Mitsuru; Arano, Yasushi; Saga, Tsuneo

    2010-05-01

    Malignant mesothelioma is a highly aggressive form of cancer. Curative surgery is the only effective therapy for mesothelioma, and therefore early diagnosis is important. However, early diagnosis is difficult using current diagnostic imaging techniques, and a new imaging method for early diagnosis is urgently required. We evaluated the affinity of radiolabeled monoclonal antibodies to the C-terminal fragment of ERC/mesothelin for this purpose. In-labeled or I-labeled IgG against C-terminal fragment of ERC and its Fab fragment were evaluated in vitro by cell binding, competitive inhibition, and cellular internalization assays, and in vivo by biodistribution in mice bearing ERC-expressing tumors. Next, the Fab fragment was labeled with the positron emitter Cu and evaluated by positron emission tomography (PET). Radiolabeled IgG and Fab showed specific binding to ERC-expressing mesothelioma cells with high affinity. Both radiolabeled IgG and Fab internalized into cells after binding to ERC on the cell surface. In-labeled IgG accumulated in ERC-expressing tumors and resulted in a moderate tumor-to-blood ratio at 4 days after injection. Furthermore, PET using Cu-labeled Fab visualized the tumor at 6 h after injection. Cu-labeled Fab can be useful for ERC-specific PET imaging, and can thus facilitate improved diagnosis of patients with early-stage mesothelioma.

  19. NOSOTROPIC SUBSTANTIATION OF ANTI IgE ANIBODY THERAPY

    Directory of Open Access Journals (Sweden)

    Yu.G. Levina

    2008-01-01

    Full Text Available This article studies the specifics of allergic diseases pathogenesis. Such common allergic diseases as bronchial asthma, allergic rhinitis and atopic dermatitis are conditioned by processes based on increase of immunoglobulin e synthesis. Omalizunab, which is a recombinant humanized monoclone anti-Ige antibody, prevents Ige fixing to membrane receptors of mast cells and significantly reduces the level of immunoglobulin e circulating in blood.Key words: anti-Ige antibody, omalizumab, allergic diseases, Bronchial asthma, children.

  20. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  1. Recombination model and baryon production by pp and πp collisions

    International Nuclear Information System (INIS)

    Takasugi, E.; Tata, X.

    1979-12-01

    The recombination model predictions for baryon production, using modified Kuti-Weisskopf structure functions, are in good agreement with the pp and πp collision data. The indistinguishability of sea quarks naturally accounts for the difference in the p and anti p spectra in the pion fragmentation region. 4 figures, 2 tables

  2. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  3. Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs

    International Nuclear Information System (INIS)

    Singh, Deepti; Rawat, Surender; Waseem, Mohd; Gupta, Sunita; Lynn, Andrew; Nitin, Mukesh; Ramchiary, Nirala; Sharma, Krishna Kant

    2016-01-01

    The YacK gene from Yersinia enterocolitica strain 7, cloned in pET28a vector and expressed in Escherichia coli BL21 (DE3), showed laccase activity when oxidized with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and guaiacol. The recombinant laccase protein was purified and characterized biochemically with a molecular mass of ≈58 KDa on SDS-PAGE and showed positive zymogram with ABTS. The protein was highly robust with optimum pH 9.0 and stable at 70 °C upto 12 h with residual activity of 70%. Kinetic constants, K m values, for ABTS and guaiacol were 675 μM and 2070 μM, respectively, with corresponding Vmax values of 0.125 μmol/ml/min and 6500 μmol/ml/min. It also possess antioxidative property against BSA and Cu 2+ /H 2 O 2 model system. Constant pH MD simulation studies at different protonation states of the system showed ABTS to be most stable at acidic pH, whereas, diclofenac at neutral pH. Interestingly, aspirin drifted out of the binding pocket at acidic and neutral pH, but showed stable binding at alkaline pH. The biotransformation of diclofenac and aspirin by laccase also corroborated the in silico results. This is the first report on biotransformation of non-steroidal anti-inflammatory drugs (NSAIDs) using recombinant laccase from gut bacteria, supported by in silico simulation studies. - Highlights: • Laccase from Yersinia enterocolitica strain 7 was expressed in Escherichia coli BL21 (DE3). • Recombinant laccase was found to be thermostable and alkali tolerant. • The in silico and experimental studied proves the biotransformation of NSAIDs. • Laccase binds to ligands differentially under different protonation state. • Laccase also possesses free radical scavenging property.

  4. Molecular modeling and simulation studies of recombinant laccase from Yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Deepti; Rawat, Surender [Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana (India); Waseem, Mohd; Gupta, Sunita; Lynn, Andrew [School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Nitin, Mukesh; Ramchiary, Nirala [School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Sharma, Krishna Kant, E-mail: kekulsharma@gmail.com [Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana (India)

    2016-01-08

    The YacK gene from Yersinia enterocolitica strain 7, cloned in pET28a vector and expressed in Escherichia coli BL21 (DE3), showed laccase activity when oxidized with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and guaiacol. The recombinant laccase protein was purified and characterized biochemically with a molecular mass of ≈58 KDa on SDS-PAGE and showed positive zymogram with ABTS. The protein was highly robust with optimum pH 9.0 and stable at 70 °C upto 12 h with residual activity of 70%. Kinetic constants, K{sub m} values, for ABTS and guaiacol were 675 μM and 2070 μM, respectively, with corresponding Vmax values of 0.125 μmol/ml/min and 6500 μmol/ml/min. It also possess antioxidative property against BSA and Cu{sup 2+}/H{sub 2}O{sub 2} model system. Constant pH MD simulation studies at different protonation states of the system showed ABTS to be most stable at acidic pH, whereas, diclofenac at neutral pH. Interestingly, aspirin drifted out of the binding pocket at acidic and neutral pH, but showed stable binding at alkaline pH. The biotransformation of diclofenac and aspirin by laccase also corroborated the in silico results. This is the first report on biotransformation of non-steroidal anti-inflammatory drugs (NSAIDs) using recombinant laccase from gut bacteria, supported by in silico simulation studies. - Highlights: • Laccase from Yersinia enterocolitica strain 7 was expressed in Escherichia coli BL21 (DE3). • Recombinant laccase was found to be thermostable and alkali tolerant. • The in silico and experimental studied proves the biotransformation of NSAIDs. • Laccase binds to ligands differentially under different protonation state. • Laccase also possesses free radical scavenging property.

  5. Selection of LNA-containing DNA aptamers against recombinant human CD73

    DEFF Research Database (Denmark)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G

    2015-01-01

    tested by surface plasmon resonance. Truncated variants of these aptamers and variants where the LNA nucleotides were substituted for the DNA equivalent also exhibited affinity for the recombinant CD73 in the low nanomolar range. In enzyme inhibition assays with recombinant CD73 the aptamer sequences......LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX...... with recombinant his-tagged CD73 immobilised on anti-his plates. Enriched pools isolated from rounds one, three and six were subjected to next-generation sequencing and analysed for enrichment using custom bioinformatics software. The software identified aptamer sequences via the primers and then performed several...

  6. Cloning an artificial gene encoding angiostatic anginex: From designed peptide to functional recombinant protein

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Nesmelova, Irina; Dings, Ruud P.M.; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2005-01-01

    Anginex, a designed peptide 33-mer, is a potent angiogenesis inhibitor and anti-tumor agent in vivo. Anginex functions by inhibiting endothelial cell (EC) proliferation and migration leading to detachment and apoptosis of activated EC's. To better understand tumor endothelium targeting properties of anginex and enable its use in gene therapy, we constructed an artificial gene encoding the biologically exogenous peptide and produced the protein recombinantly in Pichia pastoris. Mass spectrometry shows recombinant anginex to be a dimer and circular dichroism shows the recombinant protein folds with β-strand structure like the synthetic peptide. Moreover, like parent anginex, the recombinant protein is active at inhibiting EC growth and migration, as well as inhibiting angiogenesis in vivo in the chorioallantoic membrane of the chick embryo. This study demonstrated that it is possible to produce a functionally active protein version of a rationally designed peptide, using an artificial gene and the recombinant protein approach

  7. SPAR1/RTEL1 maintains genomic stability by suppressing homologous recombination

    Science.gov (United States)

    Barber, Louise J.; Youds, Jillian L.; Ward, Jordan D.; McIlwraith, Michael J.; O’Neil, Nigel J.; Petalcorin, Mark I.R.; Martin, Julie S.; Collis, Spencer J.; Cantor, Sharon B.; Auclair, Melissa; Tissenbaum, Heidi; West, Stephen C.; Rose, Ann M.; Boulton, Simon J.

    2013-01-01

    SUMMARY Inappropriate homologous recombination (HR) can cause gross chromosomal rearrangements that in mammalian cells may lead to tumorigenesis. In yeast, the Srs2 protein is an anti-recombinase that eliminates inappropriate recombination events, but the functional equivalent of Srs2 in higher eukaryotes has proven to be elusive. In this work, we identify C. elegans SPAR-1 as a functional analogue of Srs2 and describe its vertebrate counterpart, SPAR1/RTEL1, which is required for genome stability and tumour avoidance. We find that spar-1 mutant worms and SPAR1 knockdown human cells share characteristic phenotypes with yeast srs2 mutants, including inviability upon deletion of the sgs1/BLM homologue, hyper-recombination, and DNA damage sensitivity. In vitro, purified human SPAR1 antagonises HR by promoting the disassembly of D loop recombination intermediates in a reaction dependent upon ATP hydrolysis. We propose that loss of HR control following deregulation of SPAR1/RTEL1 may be a critical event that drives genome instability and cancer. PMID:18957201

  8. Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells

    Directory of Open Access Journals (Sweden)

    Malika Hale

    2017-03-01

    Full Text Available Gene editing by homology-directed recombination (HDR can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

  9. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  10. Characterization of anti-liver-kidney microsome antibody (anti-LKM1) from hepatitis C virus-positive and -negative sera.

    Science.gov (United States)

    Yamamoto, A M; Cresteil, D; Homberg, J C; Alvarez, F

    1993-06-01

    Hepatitis C virus-related antibodies were found in sera positive for antibodies to liver/kidney microsome antibody, usually considered a marker of autoimmune hepatitis. The aim of this study was to analyze the specificity of this autoantibody in sera from patients with and without hepatitis C virus infection. Fifteen anti-hepatitis C virus- and anti-liver kidney microsome-positive sera were compared with 11 sera from patients with autoimmune hepatitis, for reactivity against rat and human liver microsomal proteins, P450IID6 recombinant proteins, and various synthetic peptides spanning the 241-429 amino acids sequence of the P450IID6. Ten of 11 sera from patients with autoimmune hepatitis bound to recombinant proteins spanning the P450IID6 region between amino acids 72 and 458. These sera bound to the 254-271 peptide, and some also recognized the 321-351, 373-389 and 410-429 peptides. Four of 15 antihepatitis C virus recognized the fusion protein coded by the full-length P450IID6 complementary DNA; 3 of them also reacted with the P450IID6 region between amino acids 72-456. Only 1 sera recognized the 321-351 peptide. P450IID6 antigenic sites recognized by anti-hepatitis C virus-positive sera were different from those recognized by sera from patients with autoimmune hepatitis.

  11. Recombinant Programming

    OpenAIRE

    Pawlak , Renaud; Cuesta , Carlos; Younessi , Houman

    2004-01-01

    This research report presents a promising new approach to computation called Recombinant Programming. The novelty of our approach is that it separates the program into two layers of computation: the recombination and the interpretation layer. The recombination layer takes sequences as inputs and allows the programmer to recombine these sequences through the definition of cohesive code units called extensions. The output of such recombination is a mesh that can be used by the interpretation la...

  12. A comparative study of recombinant and native frutalin binding to human prostate tissues

    Directory of Open Access Journals (Sweden)

    Domingues Lucília

    2009-09-01

    Full Text Available Abstract Background Numerous studies indicate that cancer cells present an aberrant glycosylation pattern that can be detected by lectin histochemistry. Lectins have shown the ability to recognise these modifications in several carcinomas, namely in the prostate carcinoma, one of the most lethal diseases in man. Thus, the aim of this work was to investigate if the α-D-galactose-binding plant lectin frutalin is able to detect such changes in the referred carcinoma. Frutalin was obtained from different sources namely, its natural source (plant origin and a recombinant source (Pichia expression system. Finally, the results obtained with the two lectins were compared and their potential use as prostate tumour biomarkers was discussed. Results The binding of recombinant and native frutalin to specific glycoconjugates expressed in human prostate tissues was assessed by using an immuhistochemical technique. A total of 20 cases of prostate carcinoma and 25 cases of benign prostate hyperplasia were studied. Lectins bound directly to the tissues and anti-frutalin polyclonal antibody was used as the bridge to react with the complex biotinilated anti-rabbit IgG plus streptavidin-conjugated peroxidase. DAB was used as visual indicator to specifically localise the binding of the lectins to the tissues. Both lectins bound to the cells cytoplasm of the prostate carcinoma glands. The binding intensity of native frutalin was stronger in the neoplasic cells than in hyperplasic cells; however no significant statistical correlation could be found (P = 0.051. On the other hand, recombinant frutalin bound exclusively to the neoplasic cells and a significant positive statistical correlation was obtained (P Conclusion Native and recombinant frutalin yielded different binding responses in the prostate tissues due to their differences in carbohydrate-binding affinities. Also, this study shows that both lectins may be used as histochemical biomarkers for the prostate

  13. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  14. Anti-Müllerian Hormone and Ovarian Morphology in Women With Isolated Hypogonadotropic Hypogonadism/Kallmann Syndrome: Effects of Recombinant Human FSH.

    Science.gov (United States)

    Bry-Gauillard, Hélène; Larrat-Ledoux, Florence; Levaillant, Jean-Marc; Massin, Nathalie; Maione, Luigi; Beau, Isabelle; Binart, Nadine; Chanson, Philippe; Brailly-Tabard, Sylvie; Hall, Janet E; Young, Jacques

    2017-04-01

    Isolated hypogonadotropic hypogonadism (IHH), characterized by gonadotropin deficiency and absent puberty, is very rare in women. IHH prevents pubertal ovarian stimulation, but anti-Müllerian hormone (AMH) and antral follicle count (AFC) have not been studied. (1) To compare, in IHH vs controls, AMH, ovarian volume (OV), and AFC. (2) To compare, in IHH, ovarian responses to recombinant human follicle-stimulating hormone (rhFSH) and rhFSH plus recombinant human luteinizing hormone (rhLH). Sixty-eight IHH women; 51 matched healthy women. Serum LH, FSH, sex steroids, inhibin B (InhB), AMH, and OV and AFC (sonography) were compared. Ovarian response during rhFSH administration was assessed in 12 IHH women with low AMH levels and low AFC and compared with hormonal changes observed in six additional IHH women receiving rhFSH plus rhLH. InhB was lower in IHH than in controls. AMH levels were also significantly lower in the patients, but two-thirds had normal values. Mean OV and total, larger, and smaller AFCs were lower in IHH than in controls. Ovarian stimulation by rhFSH led to a significant increase in serum estradiol and InhB levels and in the number of larger antral follicles. AMH and smaller AFC increased early during rhFSH stimulation but then declined despite continued stimulation. rhFSH plus rhLH stimulation led to a significantly higher increase in estradiol levels but to similar changes in circulating InhB and AMH than with rhFSH alone. IHH women have both low AMH levels and low AFC. However, their decrease can be reversed by follicle-stimulating hormone. Serum AMH and AFC should not serve as prognostic markers of fertility in this population. Copyright © 2017 by the Endocrine Society

  15. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  16. Measurement of basophil-activating capacity of grass pollen allergens, allergoids and hypoallergenic recombinant derivatives by flow cytometry using anti-CD203c.

    Science.gov (United States)

    Kahlert, H; Cromwell, O; Fiebig, H

    2003-09-01

    The assessment of the basophil-activating potential is an important aspect in the development of improved preparations for specific immunotherapy. The aim of the study was to evaluate the suitability of CD203c expression as a measure of basophil activation to compare allergoids with original allergen extracts, and recombinant hypoallergenic allergen derivatives with recombinant wild-type and natural allergens. Heparinized whole blood samples from grass pollen allergic subjects were stimulated with grass pollen allergens and allergen derivatives followed by labelling of the basophils with PE-conjugated anti-CD203c. After lysis of the erythrocytes and fixation, the basophils were detected by flow cytometry. In some experiments, histamine release was determined simultaneously. Grass pollen allergoids revealed a 10-10 000-fold reduction of basophil-activating capacity measured by CD203c expression. The deletion mutant DM4 of rPhl p 5b showed stronger hypoallergenic characteristics in a range of 50-10 000-fold reduction, whereas a combination mutant of rPhl p 5b and Phl p 6 revealed less hypoallergenic features. Histamine release experiments led to a similar outcome as CD203c measurement. The measurement of CD203c expression on basophils by flow cytometry provides a rapid and sensitive method for the estimation of the allergic or hypoallergenic features of allergen preparations. The results demonstrated the hypoallergenicity of grass pollen allergoids and of the rPhl p 5b variant DM4, which may be a candidate in future preparations for specific immunotherapy.

  17. False-Positive Results in a Recombinant Severe Acute Respiratory Syndrome-Associated Coronavirus (SARS-CoV) Nucleocapsid Enzyme-Linked Immunosorbent Assay Due to HCoV-OC43 and HCoV-229E Rectified by Western Blotting with Recombinant SARS-CoV Spike Polypeptide

    OpenAIRE

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Wong, Beatrice H. L.; Chan, Kwok-Hung; Hui, Wai-Ting; Kwan, Grace S. W.; Peiris, J. S. Malik; Couch, Robert B.; Yuen, Kwok-Yung

    2004-01-01

    Using paired serum samples obtained from patients with illness associated with increases in anti-human coronavirus OC43 (HCoV-OC43) or anti-HCoV-229E antibodies, we examined the possibility of false-positive results detected in a recombinant severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein immunoglobulin G enzyme-linked immunosorbent assay (ELISA). Three of the 21 and 1 of the 7 convalescent-phase serum samples from persons with increases in anti...

  18. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  19. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    Science.gov (United States)

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  20. Serological response and diagnostic value of recombinant candida cell wall protein enolase, phosphoglycerate kinase and β- glucosidase

    Directory of Open Access Journals (Sweden)

    Zhengxin eHe

    2015-09-01

    Full Text Available There are no specific signs and symtoms for invasive candidiasis (IC, which makes its diagnosis a challenge. Efforts have been made for decades to establish serological assays for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use. Using a systemic candiasis murine model, serological response to recombinant proteins of enolase (rEno1, phosphoglycerate kinase (rPgk1 and β-glucosidase (rBgl2 were evaluated and rEno1 was found to possess the strongest immunoreactivity, followed by rPgk1 and rBgl2. Likewise, IgG antibody titers to rEno1, rPgk1 and rBgl2 in the positive sera of proven IC patients were determined by ELISA. Results show anti-rEno1 antibody possesses the highest titer, followed by rPgk1 and rBgl2. Antibodies against rEno1, rPgk1 and rBgl2 were detected by ELISA tests in a group of 52 proven IC patients or 50 healthy subjects, The sensitivity, specificity, positive and negative predictive values were 88.5%, 90.0%, 90.2%, and 88.2% for anti-rEno1 detection, 86.5%, 92.0%, 91.8% and 86.8% for anti-rPgk1 detection, and 80.8%, 90.0%, 89.4% and 81.8% for anti-rBgl2 detection, respectively. The data clearly demonstrate that the recombinant proteins of Eno1, Pgk1 and Bgl2 are promising candidates for IC serodiagnosis. There’s great possibility that the recombinant Eno1 will be more applicable in serodiagnosis and vaccine research on account of its strong serological response.

  1. High-Mannose Specific Lectin and Its Recombinants from a Carrageenophyta Kappaphycus alvarezii Represent a Potent Anti-HIV Activity Through High-Affinity Binding to the Viral Envelope Glycoprotein gp120.

    Science.gov (United States)

    Hirayama, Makoto; Shibata, Hiromi; Imamura, Koji; Sakaguchi, Takemasa; Hori, Kanji

    2016-02-01

    We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandem-repeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using an Escherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48 - 1.61 × 10(9) M(-1)). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3-12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).

  2. Genetically Engineered Immunotherapy for Advanced Cancer

    Science.gov (United States)

    In this trial, doctors will collect T lymphocytes from patients with advanced mesothelin-expressing cancer and genetically engineer them to recognize mesothelin. The gene-engineered cells will be multiplied and infused into the patient to fight the cancer

  3. Safety and immunogenicity of a combined Tetanus, Diphtheria, recombinant acellular Pertussis vaccine (TdaP) in healthy Thai adults.

    Science.gov (United States)

    Sirivichayakul, Chukiat; Chanthavanich, Pornthep; Limkittikul, Kriengsak; Siegrist, Claire-Anne; Wijagkanalan, Wassana; Chinwangso, Pailinrut; Petre, Jean; Hong Thai, Pham; Chauhan, Mukesh; Viviani, Simonetta

    2017-01-02

    An acellular Pertussis (aP) vaccine containing recombinant genetically detoxified Pertussis Toxin (PTgen), Filamentous Hemagglutinin (FHA) and Pertactin (PRN) has been developed by BioNet-Asia (BioNet). We present here the results of the first clinical study of this recombinant aP vaccine formulated alone or in combination with tetanus and diphtheria toxoids (TdaP). A phase I/II, observer-blind, randomized controlled trial was conducted at Mahidol University in Bangkok, Thailand in healthy adult volunteers aged 18-35 y. The eligible volunteers were randomized to receive one dose of either BioNet's aP or Tetanus toxoid-reduced Diphtheria toxoid-acellular Pertussis (TdaP) vaccine, or the Tdap Adacel® vaccine in a 1:1:1 ratio. Safety follow-up was performed for one month. Immunogenicity was assessed at baseline, at 7 and 28 d after vaccination. Anti-PT, anti-FHA, anti-PRN, anti-tetanus and anti-diphtheria IgG antibodies were assessed by ELISA. Anti-PT neutralizing antibodies were assessed also by CHO cell assay. A total of 60 subjects (20 per each vaccine group) were enrolled and included in the safety analysis. Safety laboratory parameters, incidence of local and systemic post-immunization reactions during 7 d after vaccination and incidence of adverse events during one month after vaccination were similar in the 3 vaccine groups. One month after vaccination, seroresponse rates of anti-PT, anti-FHA and anti-PRN IgG antibodies exceeded 78% in all vaccine groups. The anti-PT IgG, anti-FHA IgG, and anti-PT neutralizing antibody geometric mean titers (GMTs) were significantly higher following immunization with BioNet's aP and BioNet's TdaP than Adacel® (Pdiphtheria GMTs at one month after immunization were comparable in all vaccine groups. All subjects had seroprotective titers of anti-tetanus and anti-diphtheria antibodies at baseline. In this first clinical study, PTgen-based BioNet's aP and TdaP vaccines showed a similar tolerability and safety profile to Adacel

  4. Photoionization and Recombination

    Science.gov (United States)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  5. Recombinant egg drop syndrome subunit vaccine offers an alternative to virus propagation in duck eggs.

    Science.gov (United States)

    Gutter, B; Fingerut, E; Gallili, G; Eliahu, D; Perelman, B; Finger, A; Pitcovski, J

    2008-02-01

    Egg drop syndrome (EDS) virus vaccines are routinely produced in embryonated duck eggs (Solyom et al., 1982). This procedure poses the risk of dissemination of pathogens, such as avian influenza virus, as the eggs used are not from specific pathogen free birds. To address this problem, the knob and part of the shaft domain of the fibre protein of the EDS virus (termed knob-s) were expressed in Escherichia coli and assessed as a subunit vaccine. A single vaccination with the recombinant protein induced the production of anti-EDS virus antibodies, as detected by haemagglutination inhibition, enzyme-linked immunosorbent assay and virus neutralization tests, for at least 20 weeks. A positive correlation was demonstrated between these three assays. A dose-response assessment showed that the vaccine was effective over the range of 2 to 64 microg protein per dose. Two vaccinations with the recombinant protein, administered before the onset of lay, induced high haemagglutination inhibition antibody titres, comparable with those induced by an inactivated whole-virus vaccine. The vaccine did not have any adverse effects on egg production, quality or weight. The present study has shown that two vaccinations with the recombinant knob-s protein elicited high neutralizing antibody titres that persisted for more than 50 weeks of lay.

  6. [Immunogenicity and protective efficacy of pertactin recombinants against Bordetella bronchiseptica challenge].

    Science.gov (United States)

    Zhao, Zhanqin; Wang, Chen; Xue, Yun; Ding, Ke; Zhang, Chunjie; Cheng, Xiangchao; Li, Yinju; Liu, Yichen; Wu, Tingcai

    2010-09-01

    In this study we showed the immunogenicity and protective efficacy of five pertactin recombinants against Bordetella bronchiseptica (Bb) challenge. The complete coding sequence (2040 bp) of the prn gene (PRN) and its fragments,5'-terminal 1173 bp fragment (PN),3'-terminal 867 bp fragment (PC), two copies of region I (654 bp; PR I) in PN, and 2 copies of region II (678 bp; PR II) in PC, were separately cloned into the prokaryotic expression vector pGEX-KG, and expressed in the Eschierichia coli BL21 (DE3) using induction by isopropyl-beta-D-thiogalactopyranoside. The recombinant proteins were named GST-PRN, GST-PN, GST-PC, GST-2PR I and GST-2PR II. All five recombinant proteins showed immunological reactivity in the Western-blot analysis. Mice, immunized subcutaneously with two doses of the purified proteins mixed with an equal volume of Freund's adjuvant,produced robust PRN-specific IgG antibody levels. When challenged, 6 of 9 mice in GST-2PR I group and all 9 mice in the other groups survived intranasal challenge with three times the 50% lethal dose (LD50) of virulent Bb HH0809. After challenge with 10 LD50 7/9,3/9,6/9,1/10 and 6/10 of the mice survived. Furthermore, complete protection against intraperitoneal (i.p.) challenge with 10 LD50 of HH0809 was observed in mice that were injected i.p. with 0.5 ml rabbit anti-GST-PRN, GST-PN,GST-PC or GST-2PR II serum. Only 1 of 10 mice survived in the group of mice that received anti-GST-2PR I, and no survivors were noted in the group of mice that received PRN-absorbed rabbit antiserum (0/5). In this study,we showed that all of five pertactin recombinants had differential immunogenicity and protective efficacy against Bb challenge. Mice immunized with GST-PC had better survival against fatal Bb challenge than did those immunized with GST-PN. In addition, GST-2PR II and GST-2PR I provided the similar results These data may have implications for the development of safe and efficacious subunit vaccines for the prevention of

  7. Recombinant human immunoglobulin (Ig)A1 and IgA2 anti-D used for detection of IgA deficiency and anti-IgA

    DEFF Research Database (Denmark)

    Nielsen, Leif K; Dziegiel, Morten Hanefeld

    2008-01-01

    To avoid anaphylactic reactions, immunoglobulin (Ig)A-deficient patients with anti-IgA should be transfused with IgA-deficient blood components. There is a need for fast and robust assays for demonstration of IgA deficiency and for detection of anti-IgA.......To avoid anaphylactic reactions, immunoglobulin (Ig)A-deficient patients with anti-IgA should be transfused with IgA-deficient blood components. There is a need for fast and robust assays for demonstration of IgA deficiency and for detection of anti-IgA....

  8. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Science.gov (United States)

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  9. Development of an EGFRvIII specific recombinant antibody

    Directory of Open Access Journals (Sweden)

    Li Gordon

    2010-10-01

    Full Text Available Abstract Background EGF receptor variant III (EGFRvIII is the most common variant of the EGF receptor observed in human tumors. It results from the in frame deletion of exons 2-7 and the generation of a novel glycine residue at the junction of exons 1 and 8. This novel juxtaposition of amino acids within the extra-cellular domain of the EGF receptor creates a tumor specific and immunogenic epitope. EGFRvIII expression has been seen in many tumor types including glioblastoma multiforme (GBM, breast adenocarcinoma, non-small cell lung carcinoma, ovarian adenocarcinoma and prostate cancer, but has been rarely observed in normal tissue. Because this variant is tumor specific and highly immunogenic, it can be used for both a diagnostic marker as well as a target for immunotherapy. Unfortunately many of the monoclonal and polyclonal antibodies directed against EGFRvIII have cross reactivity to wild type EGFR or other non-specific proteins. Furthermore, a monoclonal antibody to EGFRvIII is not readily available to the scientific community. Results In this study, we have developed a recombinant antibody that is specific for EGFRvIII, has little cross reactivity for the wild type receptor, and which can be easily produced. We initially designed a recombinant antibody with two anti-EGFRvIII single chain Fv's linked together and a human IgG1 Fc component. To enhance the specificity of this antibody for EGFRvIII, we mutated tyrosine H59 of the CDRH2 domain and tyrosine H105 of the CDRH3 domain to phenylalanine for both the anti-EGFRvIII sequence inserts. This mutated recombinant antibody, called RAbDMvIII, specifically detects EGFRvIII expression in EGFRvIII expressing cell lines as well as in EGFRvIII expressing GBM primary tissue by western blot, immunohistochemistry (IHC and immunofluorescence (IF and FACS analysis. It does not recognize wild type EGFR in any of these assays. The affinity of this antibody for EGFRvIII peptide is 1.7 × 107 M-1 as

  10. Functional genomic mRNA profiling of a large cancer data base demonstrates mesothelin overexpression in a broad range of tumor types.

    Science.gov (United States)

    Lamberts, Laetitia E; de Groot, Derk Jan A; Bense, Rico D; de Vries, Elisabeth G E; Fehrmann, Rudolf S N

    2015-09-29

    The membrane bound glycoprotein mesothelin (MSLN) is a highly specific tumor marker, which is currently exploited as target for drugs. There are only limited data available on MSLN expression by human tumors. Therefore we determined overexpression of MSLN across different tumor types with Functional Genomic mRNA (FGM) profiling of a large cancer database. Results were compared with data in articles reporting immunohistochemical (IHC) MSLN tumor expression. FGM profiling is a technique that allows prediction of biologically relevant overexpression of proteins from a robust data set of mRNA microarrays. This technique was used in a database comprising 19,746 tumors to identify for 41 tumor types the percentage of samples with an overexpression of MSLN compared to a normal background. A literature search was performed to compare the FGM profiling data with studies reporting IHC MSLN tumor expression. FGM profiling showed MSLN overexpression in gastrointestinal (12-36%) and gynecological tumors (20-66%), non-small cell lung cancer (21%) and synovial sarcomas (30%). The overexpression found in thyroid cancers (5%) and renal cell cancers (10%) was not yet reported with IHC analyses. We observed that MSLN amplification rate within esophageal cancer depends on the histotype (31% for adenocarcinomas versus 3% for squamous-cell carcinomas). Subset analysis in breast cancer showed MSLN amplification rates of 28% in triple-negative breast cancer (TNBC) and 33% in basal-like breast cancer. Further subtype analysis of TNBCs showed the highest amplification rate (42%) in the basal-like 1 subtype and the lowest amplification rate (9%) in the luminal androgen receptor subtype.

  11. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  12. Novel recombinant alphaviral and adenoviral vectors for cancer immunotherapy.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Lyerly, H Kim

    2012-06-01

    Although cellular immunotherapy based on autolgous dendritic cells (DCs) targeting antigens expressed by metastatic cancer has demonstrated clinical efficacy, the logistical challenges in generating an individualized cell product create an imperative to develop alternatives to DC-based cancer vaccines. Particularly attractive alternatives include in situ delivery of antigen and activation signals to resident antigen-presenting cells (APCs), which can be achieved by novel fusion molecules targeting the mannose receptor and by recombinant viral vectors expressing the antigen of interest and capable of infecting DCs. A particular challenge in the use of viral vectors is the well-appreciated clinical obstacles to their efficacy, specifically vector-specific neutralizing immune responses. Because heterologous prime and boost strategies have been demonstrated to be particularly potent, we developed two novel recombinant vectors based on alphaviral replicon particles and a next-generation adenovirus encoding an antigen commonly overexpressed in many human cancers, carcinoembryonic antigen (CEA). The rationale for developing these vectors, their unique characteristics, the preclinical studies and early clinical experience with each, and opportunities to enhance their effectiveness will be reviewed. The potential of each of these potent recombinant vectors to efficiently generate clinically active anti-tumor immune response alone, or in combination, will be discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  14. Effectiveness of serum megakaryocyte potentiating factor in evaluating the effects of chrysotile and its heated products on respiratory organs

    International Nuclear Information System (INIS)

    Takata, Ayako; Yamauchi, Hiroshi; Toya, Tadao; Miyamoto-Kohno, Sayako; Iwatatsu, Yuka; Teranaka, Iroha; Aminaka, Masahito; Yamashita, Kiyotsugu; Kohyama, Norihiko

    2011-01-01

    Chrysotile (CH), the most common form of asbestos, is rendered less toxic by heating it at 1000 o C and converting it to forsterite (FO-1000). However, further safety tests are needed to evaluate human health risk of these materials. It has been reported that serum concentrations of megakaryocyte potentiating factor N-ERC/mesothelin become elevated in patients with mesotheliomas caused by asbestos exposure. In this study, a single 2 mg dose of CH or FO-1000 was intratracheally administered to rats. Within 180 days after the administrations, serum N-ERC/mesothelin concentrations, levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in lung tissues and pathological changes in respiratory organs were determined. In the CH group, a significant increase in serum N-ERC/mesothelin concentrations was observed immediately after intratracheal administration, and the elevation lasted for 30 days. In lung tissues, positive staining for 8-OHdG in bronchioles, alveolar epithelium, inflammatory cells, and granulomas was evidence of a marked DNA oxidative damage. Furthermore, measurements of 8-OHdG in lung tissues based on the HPLC-ECD method suggested that serum N-ERC/mesothelin concentrations tended to increase when there are significant DNA damages in lung tissues. In contrast, in the FO-1000 group, a marked rise in serum N-ERC/mesothelin concentrations occurred only in the early phase (1-7 days) after intratracheal administration. Similarly, FO-1000 induced elevation of 8-OHdG in lung tissues was transient and modest compared with those of the CH-treated animals. In both the CH and FO-1000 groups, we observed significant correlations between serum N-ERC/mesothelin concentrations and lung 8-OHdG concentrations (r = 0.559, p = 0.001 for the CH group; r = 0.516, p = 0.01 for the FO-1000 group). In summary, we demonstrated the possibility of using serum N-ERC/mesothelin concentrations as a useful biomarker for early phase exposure to either CH or FO-1000.

  15. Dynamics of anti-VAR2CSA immunoglobulin G response in a cohort of senegalese pregnant women

    DEFF Research Database (Denmark)

    Tuikue Ndam, N G; Salanti, A; Le-Hesran, J-Y

    2006-01-01

    demonstrated that a single P. falciparum infection was able to trigger a VAR2CSA-specific antibody response. Among women with infected placentas, women with high anti-VAR2CSA IgG levels at enrollment were more likely to present with a past infection than with an acute/chronic infection. CONCLUSIONS: Anti-VAR2...... (VSAPAM). Several studies have shown that 1 var gene, var2csa, is transcribed at high levels and expressed in CSA-binding Plasmodium falciparum parasites. METHODS: Plasma levels of anti-VAR2CSA immunoglobulin G (IgG) in Senegalese women were measured during pregnancy by enzyme-linked immunosorbent assay......, using 3 recombinant proteins representing 3 domains of the var2csa gene product. RESULTS: The 3 recombinant proteins were specifically recognized by plasma from pregnant women but not by control plasma. A parity-dependent recognition pattern was observed with 2 of the 3 VAR2CSA antigens. A kinetic study...

  16. Serial blood donations for intrauterine transfusions of severe hemolytic disease of the newborn with the use of recombinant erythropoietin in a pregnant woman alloimmunized with anti-Ku.

    Science.gov (United States)

    Lydaki, Evaggelia; Nikoloudi, Irene; Kaminopetros, Petros; Bolonaki, Irene; Sifakis, Stavros; Kikidi, Katerina; Koumantakis, Evgenios; Foundouli, Kaliopi

    2005-11-01

    The management of a pregnant woman with the rare Ko phenotype and anti-Ku is a special challenge, because matched blood is extremely rare and the possibility of severe hemolytic disease of the newborn is high. A 30-year-old woman with rare Ko (Knull) phenotype presented at 18 weeks of gestation with positive indirect agglutination test results. She had anti-Ku due to previous blood transfusion, one pregnancy, and two abortions. During this pregnancy, anti-Ku titers ranged from 1024 to 4096. At the 26th week of gestation ultrasound showed a hydropic fetus and urgent intrauterine exchange transfusion was performed with the maternal red blood cells (RBCs). Recombinant human erythropoietin (rHu-EPO) and intravenous (IV) iron were administered to the mother to ensure an adequate supply of matched RBCs for intrauterine transfusions and possible perinatal hemorrhage. Intrauterine transfusions were repeated every 1 to 3 weeks. By 35 weeks 2 days of gestation, the mother had donated 4 units of blood, and four intrauterine transfusions had been performed. Cesarean section was then decided and a healthy male newborn was born. He was treated with phototherapy but without exchange transfusions. By the 15th day of life rHu-EPO was administrated to the newborn because of anemia. The maternal RBCs completely disappeared from the child's blood by Day 100. As shown in this case, treatment with rHu-EPO and IV Fe has effectively increased the mother's capacity to donate RBCs for autologous use and intrauterine transfusions, with no adverse effects to the mother or the child.

  17. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  18. Generation of Recombinant Schmallenberg Virus Nucleocapsid Protein in Yeast and Development of Virus-Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Justas Lazutka

    2014-01-01

    Full Text Available Schmallenberg virus (SBV, discovered in continental Europe in late 2011, causes mild clinical signs in adult ruminants, including diarrhoea and reduced milk yield. However, fetal infection can lead to severe malformation in newborn offspring. To develop improved reagents for SBV serology, a high-level yeast expression system was employed to produce recombinant SBV nucleocapsid (N protein. Recombinant SBV N protein was investigated as an antigen in SBV-specific IgG enzyme immunoassay and used for generation of monoclonal antibodies (MAbs. Yeast-expressed SBV N protein was reactive with anti-SBV IgG-positive cow serum specimens collected from different farms of Lithuania. After immunization of mice with recombinant SBV N protein, four MAbs were generated. The MAbs raised against recombinant SBV N protein reacted with native viral nucleocapsids in SBV-infected BHK cells by immunofluorescence assay. The reactivity of recombinant N protein with SBV-positive cow serum specimens and the ability of the MAbs to recognize virus-infected cells confirm the antigenic similarity between yeast-expressed SBV N protein and native viral nucleocapsids. Our study demonstrates that yeast expression system is suitable for high-level production of recombinant SBV N protein and provides the first evidence on the presence of SBV-specific antibodies in cow serum specimens collected in Lithuania.

  19. Production of Brugia malayi BmSXP Recombinant Protein Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Khoo, T. K.

    2010-01-01

    Full Text Available A rapid antibody detection test is very useful for detection of lymphatic filariasis, especially for certification and surveillance of post-mass drug administration. One such kit, panLF RapidTM (commercialized by Malaysian BioDiagnostic Research Sdn. Bhd. had been developed in our laboratory for the detection of all species of filarial infections. It is based on the detection of anti-filarial IgG4 antibodies that react with recombinant Brugia malayi antigens, BmR1 and BmSXP. In this study, the growth of recombinant bacteria that produce BmSXP was optimized under shake flask fermentation for high yield of the recombinant antigen. The optimizations involved selection of suitable growth medium, IPTG concentration and induction time. The medium that yielded the highest biomass as well as total protein was Terrific Broth (TB medium, which is an undefined medium. Initiation of induction of protein expression was found to be best at mid-log phase (OD600 = 1.5, with IPTG concentration of 1.0 mM, and harvest time at 9 h post-induction. This study showed that under the optimized conditions, the shake flask culture produced 4 g/L biomass (dry cell weight of recombinant Escherichia coli BmSXP/pPROEXHTa/TOP10F’, which yielded 2.42 mg/L of purified BmSXP recombinant antigen. The purified antigen was analyzed by SDS-PAGE and the antigenicity of protein was confirmed by Western blot.

  20. Anti-tumor efficacy of lymphokine-activated killer cells and recombinant interleukin 2 in vivo: direct correlation between reduction of established metastases and cytolytic activity of lymphokine-activated killer cells

    International Nuclear Information System (INIS)

    Mule, J.J.; Yang, J.; Shu, S.; Rosenberg, S.A.

    1986-01-01

    Our previous studies demonstrated that the incubation of human peripheral blood lymphocytes or murine splenocytes in recombinant interleukin 2 (RIL 2) resulted in the generation of lymphokine-activated killer (LAK) cells capable of lysing a broad spectrum of fresh tumors in short-term chromium-release assays. Moreover, injections of LAK cells plus RIL 2 were highly effective in eliminating established 3 day metastases in the lung and liver. We have examined several parameters to define whether or not the cytolytic activity of LAK cells as measured in vitro correlated directly with the in vivo anti-tumor efficacy of adoptively transferred LAK cells. LAK cells plus RIL 2 could mediate marked reductions of established pulmonary metastases in mice rendered T cell deficient by adult thymectomy and lethal, total body irradiation followed by reconstitution with T cell-depleted bone marrow and spleen cells. Thus there was no requirement for additional T lymphocytes of host origin for successful therapy with adoptively transferred LAK cells plus RIL 2. Fresh splenocytes depleted of T cells by anti-Thy-1.2 monoclonal antibody plus complement generated LAK cells that were as highly lytic to fresh tumor in vitro and were as effective in reducing established pulmonary metastases as those generated from untreated or complement-treated splenocytes. Thus, the precursor to LAK cells with anti-tumor activity in vitro and in vivo did not express the Thy-1 antigenic marker. In contrast, treatment of LAK effector cells (those generated from a 3-day incubation of fresh, normal splenocytes in RIL 2) with anti-Thy-1.2 antibody plus complement reduced or abolished their in vitro cytolytic activity

  1. Lambda/kaon relative production in anti p + nucleus reactions in terms of a quark recombination diagram

    International Nuclear Information System (INIS)

    Haatuft, A.; Halsteinslid, A.; Breivik, F.O.

    1989-03-01

    The ratio R=N(Λ o )/N(K o S) between the number N(Λ o ) of Λ o 's and the number N(K o s) of the short-lived neutral kaons produced in the reaction anti p + nucleus reactions at low energy has in previous papers been discussed in terms of the fireball model of Cugnon and Vandermeulen and in terms of the reaction anti KN → Λ o π, where the anti K has been produced in the primary reaction anti pp → anti KK + X. In this note the ratio R is discussed in terms of the quark model. The results indicate that quark effects may be important for the reaction studied, even if the energy is low. The discussion is based on the assumption that diagrams with connected quark-lines from initial to final state are suppressed, and that valence quarks survive to the final state. This assumption is supported by the results of exclusive anti pp-reactions at low energy, which shows that final states with more than two pions or kaons are more likely than final states with two mesons only, even if low multiplicity is favoured by phase space

  2. A new tagging system for production of recombinant proteins in Drosophila S2 cells using the third domain of the urokinase receptor

    DEFF Research Database (Denmark)

    Gårdsvoll, Henrik; Hansen, Line V; Jørgensen, Thomas J D

    2007-01-01

    The use of protein fusion tag technology greatly facilitates detection, expression and purification of recombinant proteins, and the demands for new and more effective systems are therefore expanding. We have used a soluble truncated form of the third domain of the urokinase receptor...... as a convenient C-terminal fusion partner for various recombinant extracellular human proteins used in basic cancer research. The stability of this cystein-rich domain, which structure adopts a three-finger fold, provides an important asset for its applicability as a fusion tag for expression of recombinant...... chromatography procedure using the immobilized anti-uPAR monoclonal antibody R2. An optional enterokinase cleavage site is included between the various recombinant proteins and the linker region of the tag, which enables generation of highly pure preparations of tag-free recombinant proteins. Using this system...

  3. Genome-wide recombination rate variation in a recombination map of cotton.

    Science.gov (United States)

    Shen, Chao; Li, Ximei; Zhang, Ruiting; Lin, Zhongxu

    2017-01-01

    Recombination is crucial for genetic evolution, which not only provides new allele combinations but also influences the biological evolution and efficacy of natural selection. However, recombination variation is not well understood outside of the complex species' genomes, and it is particularly unclear in Gossypium. Cotton is the most important natural fibre crop and the second largest oil-seed crop. Here, we found that the genetic and physical maps distances did not have a simple linear relationship. Recombination rates were unevenly distributed throughout the cotton genome, which showed marked changes along the chromosome lengths and recombination was completely suppressed in the centromeric regions. Recombination rates significantly varied between A-subgenome (At) (range = 1.60 to 3.26 centimorgan/megabase [cM/Mb]) and D-subgenome (Dt) (range = 2.17 to 4.97 cM/Mb), which explained why the genetic maps of At and Dt are similar but the physical map of Dt is only half that of At. The translocation regions between A02 and A03 and between A04 and A05, and the inversion regions on A10, D10, A07 and D07 indicated relatively high recombination rates in the distal regions of the chromosomes. Recombination rates were positively correlated with the densities of genes, markers and the distance from the centromere, and negatively correlated with transposable elements (TEs). The gene ontology (GO) categories showed that genes in high recombination regions may tend to response to environmental stimuli, and genes in low recombination regions are related to mitosis and meiosis, which suggested that they may provide the primary driving force in adaptive evolution and assure the stability of basic cell cycle in a rapidly changing environment. Global knowledge of recombination rates will facilitate genetics and breeding in cotton.

  4. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots.

    Science.gov (United States)

    Stukenbrock, Eva H; Dutheil, Julien Y

    2018-03-01

    Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species. Copyright © 2018 Stukenbrock and Dutheil.

  5. Anti-Bacterial Activity of Recombinant Human β-Defensin-3 Secreted in the Milk of Transgenic Goats Produced by Somatic Cell Nuclear Transfer

    Science.gov (United States)

    Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90–111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5–10.5, 21.8–23.0 and 17.3–18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×103 and 95.4×103 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×105 and 622.2×105 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals. PMID:23799010

  6. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Science.gov (United States)

    Stelzl, Evelyn; Haas, Bernhard; Bauer, Bernd; Zhang, Sherry; Fiss, Ellen H; Hillman, Grantland; Hamilton, Aaron T; Mehta, Rochak; Heil, Marintha L; Marins, Ed G; Santner, Brigitte I; Kessler, Harald H

    2017-01-01

    Hepatitis C virus (HCV) intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA) was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2) and Azerbaijan (n = 1), the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  7. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Evelyn Stelzl

    Full Text Available Hepatitis C virus (HCV intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2 and Azerbaijan (n = 1, the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  8. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  9. Overlapping but distinct specificities of anti-liver-kidney microsome antibodies in autoimmune hepatitis type II and hepatitis C revealed by recombinant native CYP2D6 and novel peptide epitopes

    Science.gov (United States)

    Klein, R; Zanger, U M; Berg, T; Hopf, U; Berg, P A

    1999-01-01

    Anti-liver-kidney microsome antibodies (anti-LKM) occur in autoimmune hepatitis (AIH) type II and in a subset of patients with hepatitis C. Anti-LKM1 in AIH are directed against cytochrome P4502D6 (CYP2D6), but conflicting data exist concerning the specificity of anti-LKM in hepatitis C. The aim of this study was to evaluate binding specificities of anti-LKM antibodies in both diseases using novel test antigens as well as their inhibitory capacity on CYP2D6 enzyme activity. Sera from 22 patients with AIH type II and 17 patients with hepatitis C being anti-LKM-positive in the immunofluorescence test were investigated for binding to native recombinant CYP2D6 and liver microsomes by ELISA and immunoblotting, and to synthetic peptides covering the region 254–339 (254–273, 257–269, 270–294, 291–310, 307–324, 321–339, 373–389) as well as the novel peptide 196–218 by ELISA. Furthermore, all sera were tested for inhibition of CYP2D6-dependent bufuralol 1′-hydroxylase activity. Twenty of the 22 AIH type II sera (91%) and nine of the 17 hepatitis C sera (53%) were positive for CYP2D6 by ELISA and/or immunoblotting. The previously described major peptide epitope comprising CYP2D6 amino acids 257–269 was recognized by 16 of the 22 AIH sera but by only one hepatitis C serum. A further epitope, 196–218, could be defined for the first time as another immunodominant epitope for AIH because it was recognized by 15 of the 22 AIH (68%) but only three of the 17 hepatitis C sera (18%). With the exception of the peptide 254–273, the other peptides showed no significant reactivity. Analysing the inhibitory properties of anti-LKM antibodies it emerged that 95% of AIH sera and 88% of hepatitis C sera inhibited enzyme function. These data indicate that anti-LKM antibodies in AIH and hepatitis C react with CYP2D6, as shown by their inhibitory activity, and that besides the known epitope 257–269 a further immunodominant epitope exists on CYP2D6 which is recognized

  10. Field-enhanced route to generating anti-Frenkel pairs in HfO2

    Science.gov (United States)

    Schie, Marcel; Menzel, Stephan; Robertson, John; Waser, Rainer; De Souza, Roger A.

    2018-03-01

    The generation of anti-Frenkel pairs (oxygen vacancies and oxygen interstitials) in monoclinic and cubic HfO2 under an applied electric field is examined. A thermodynamic model is used to derive an expression for the critical field strength required to generate an anti-Frenkel pair. The critical field strength of EaFcr˜101GVm-1 obtained for HfO2 exceeds substantially the field strengths routinely employed in the forming and switching operations of resistive switching HfO2 devices, suggesting that field-enhanced defect generation is negligible. Atomistic simulations with molecular static (MS) and molecular dynamic (MD) approaches support this finding. The MS calculations indicated a high formation energy of Δ EaF≈8 eV for the infinitely separated anti-Frenkel pair, and only a decrease to Δ EaF≈6 eV for the adjacent anti-Frenkel pair. The MD simulations showed no defect generation in either phase for E <3 GVm-1 , and only sporadic defect generation in the monoclinic phase (at E =3 GVm-1 ) with fast (trec<4 ps ) recombination. At even higher E but below EaFcr both monoclinic and cubic structures became unstable as a result of field-induced deformation of the ionic potential wells. Further MD investigations starting with preexisting anti-Frenkel pairs revealed recombination of all pairs within trec<1 ps , even for the case of neutral vacancies and charged interstitials, for which formally there is no electrostatic attraction between the defects. In conclusion, we find no physically reasonable route to generating point-defects in HfO2 by an applied field.

  11. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Deng L

    2012-09-01

    Full Text Available Li Deng,1,# Xingfa Ke,4,# Zhiying He,3,# Daoqiu Yang,5 Hai Gong,6 Yingying Zhang,1 Xiaolong Jing,4 Jianzhong Yao,2 Jianming Chen11Department of Pharmaceutics, 2Department of Medicinal Chemistry, School of Pharmacy, 3Department of Cell Biology, Second Military Medical University, Shanghai, People's Republic of China; 4Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China; 5Department of Dermatology, 107th Hospital of PLA, Yantai, People's Republic of China; 6Department of Radiation Oncology, General Hospital of Jinan Military Region, Jinan, People’s Republic of China#These authors contributed equally to this workAbstract: Pancreatic cancer is a highly lethal disease with a 5-year survival rate less than 5% due to the lack of an early diagnosis method and effective therapy. To provide a novel early diagnostic method and targeted therapy for pancreatic cancer, a multifunctional nanoimmunoliposome with high loading of ultrasmall superparamagnetic iron oxides (USPIOs and doxorubicin (DOX was prepared by transient binding and reverse-phase evaporation method, and was conjugated with anti-mesothelin monoclonal antibody by post-insertion method to target anti-mesothelin-overexpressed pancreatic cancer cells. The in vitro and in vivo properties of this anti-mesothelin antibody-conjugated PEGlyated liposomal DOX and USPIOs (M-PLDU; and PEGlyated nanoimmunoliposome without antibody conjugation [PLDU] were evaluated both in human pancreatic cancer cell line Panc-1 cell and in a pancreatic cancer xenograft animal model. Results showed that M-PLDUs were spherical and uniform with a diameter about ~180 nm, with a zeta potential of about −28~−30 mV, and had good efficacy encapsulating DOX and USPIOs. The in vitro study demonstrated that M-PLDUs possessed good magnetic resonance imaging (MRI capability with a transverse relaxivity (r2 of about 58.5 mM–1 • s–1. Confocal microscopy showed more

  12. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    Science.gov (United States)

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  13. Recombinant Salivary Proteins of Phlebotomus orientalis are Suitable Antigens to Measure Exposure of Domestic Animals to Sand Fly Bites.

    Science.gov (United States)

    Sima, Michal; Ferencova, Blanka; Warburg, Alon; Rohousova, Iva; Volf, Petr

    2016-03-01

    Certain salivary proteins of phlebotomine sand flies injected into the host skin during blood-feeding are highly antigenic and elicit strong antibody-mediated immune responses in repeatedly-exposed hosts. These antibodies can be measured by enzyme-linked immuno sorbent assays (ELISAs) using salivary gland homogenates (SGHs) as the source of antigens and serve as a markers for exposure to biting sand flies. Large-scale screening for anti-sand fly saliva antibodies requires replacement of SGH with recombinant salivary proteins. In East Africa, Phlebotomus orientalis is the main vector of Leishmania donovani, a trypanosomatid parasite causing visceral leishmaniasis. We tested recombinant salivary proteins derived from Ph. orientalis saliva to study exposure of domestic animals to this sand fly species. Antigenic salivary proteins from Ph. orientalis were identified by immunoblot and mass spectrometry. Recombinant apyrase rPorSP15, yellow-related protein rPorSP24, ParSP25-like protein rPorSP65, D7-related protein rPorSP67, and antigen 5-related protein rPorSP76 were tested using ELISA with sera of domestic animals from L. donovani foci in Ethiopia where Ph. orientalis is present. Our results highlighted recombinant yellow-related protein rPorSP24 as the most promising antigen, displaying a high positive correlation coefficient as well as good sensitivity and specificity when compared to SGH. This recombinant protein was the most suitable one for testing sera of dogs, sheep, and goats. In addition, a different antigen, rPorSP65 was found efficacious for testing canine sera. Recombinant salivary proteins of Ph. orientalis, specifically rPorSP24, were shown to successfully substitute SGH in serological experiments to measure exposure of domestic animals to Ph. orientalis, the vector of L. donovani. The results suggest that rPorSP24 might be a suitable antigen for detecting anti-Ph. orientalis antibody-mediated reactions also in other host species.

  14. Recombinant raccoon pox vaccine protects mice against lethal plague

    Science.gov (United States)

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7×104 LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague.

  15. [Comparison of immune response after oral and intranasal immunization with recombinant Lactobacillus casei expressing ETEC F41].

    Science.gov (United States)

    Liu, Jiankui; Wei, Chunhua; Hou, Xilin; Wang, Guihua; Yu, Liyun

    2009-04-01

    In order to represent a promising strategy for mucosal vaccination, oral or intranasal immunization of Specific Pathogen Free (SPF) BALB/c mice were performed. The mucosal immunity, systemic immune and protective immune responses were compared after immunization with the recombinant Lactobacillus casei (L. casei) harboring enterotoxigenic Escherichia coli (ETEC) F41. The recombinant fusion proteins were detected by Western blot. Surface localization of the fusion protein was verified by immunofluorescence microscopy and flow cytometry. Six-week-old female SPF BALB/c mice (160 heads) were divided into 4 groups for immunization and control. Oral and intranasal immunization of mice was performed with the recombinant strain L. casei harboring pLA-F41 or pLA. For oral immunization, the mice were inoculated daily on days 0 to 4, 7 to 11, 21 to 25, and 49 to 53. A lighter schedule was used for nasal immunization (days 0 to 2, 7 to 9, 21 and 49). Specific anti-F41 IgG antibody in the serum and specific anti-F41 secret immunoglobulin A (sIgA) antibody in the lung, intestines, vagina fluid and feces of mice were detected by indirect ELISA. The mice orally or intranasally immunized with pLA-F41/L. casei and pLA/IL. casei were challenged with standard-type ETEC F41 (C83919) (2 x 10(3) LD50). Mice immunized with pLA-F41/L. casei could produce remarkable anti-F41 antibody level. More than 90% survived in oral immunization group whereas more than 85% survived in intranasal immunization group after challenged with C83919, all dead in the control group. Ninety percent of the pups survived in oral immunization group whereas 80% survived in intranasal immunization group after challenged with C83919, but only a 5% survival rate for pups that were either immunized with a control pLA vector or unimmunized. Oral or intranasal immunization with recombinant L. casei displaying ETEC F41 antigens on the surface induced effective and similar systemic and mucosal immune responses against the

  16. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Recombinant human tissue factor pathway inhibitor exerts anticoagulant, anti-inflammatory and antimicrobial effects in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    van den Boogaard, F. E.; Brands, X.; Schultz, M. J.; Levi, M. [=Marcel M.; Roelofs, J. J. T. H.; van 't Veer, C.; van der Poll, T.

    2011-01-01

    Background: Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia and a major cause of sepsis. Recombinant human tissue factor pathway inhibitor (rh-TFPI) attenuates sepsis-induced coagulation and has been evaluated in clinical trials involving patients

  18. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    Science.gov (United States)

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  19. Assessment of the adjuvant activity of mesoporous silica nanoparticles in recombinant Mycoplasma hyopneumoniae antigen vaccines

    Directory of Open Access Journals (Sweden)

    Veridiana Gomes Virginio

    2017-01-01

    Full Text Available The adjuvant potential of two mesoporous silica nanoparticles (MSNs, SBa-15 and SBa-16, was assessed in combination with a recombinant HSP70 surface polypeptide domain from Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia (PEP. The recombinant antigen (HSP70212-600, previously shown as immunogenic in formulation with classic adjuvants, was used to immunize BALB/c mice in combination with SBa-15 or SBa-16 MSNs, and the effects obtained with these formulations were compared to those obtained with alum, the adjuvant traditionally used in anti-PEP bacterins. The HSP70212-600 + SBa-15 vaccine elicited a strong humoral immune response, with high serum total IgG levels, comparable to those obtained using HSP70212-600 + alum. The HSP70212-600 + SBa-16 vaccine elicited a moderate humoral immune response, with lower levels of total IgG. The cellular immune response was assessed by the detection of IFN-γ, IL-4 and IL-10 in splenocyte culture supernatants. The HSP70212-600 + SBa-15 vaccine increased IFN-γ, IL-4 and IL-10 levels, while no stimulation was detected with the HSP70212-600 + SBa-16 vaccine. The HSP70212-600 + SBa-15 vaccine induced a mixed Th1/Th2-type response, with an additional IL-10 mediated anti-inflammatory effect, both of relevance for an anti-PEP vaccine. Alum adjuvant controls stimulated an unspecific cellular immune response, with similar levels of cytokines detected in mice immunized either with HSP70212-600 + alum or with the adjuvant alone. The better humoral and cellular immune responses elicited in mice indicated that SBa-15 has adjuvant potential, and can be considered as an alternative to the use of alum in veterinary vaccines. The use of SBa-15 with HSP70212-600 is also promising as a potential anti-PEP subunit vaccine formulation.

  20. Oral immunization of BALB/c mice with Giardia duodenalis recombinant cyst wall protein inhibits shedding of cysts.

    Science.gov (United States)

    Larocque, R; Nakagaki, K; Lee, P; Abdul-Wahid, A; Faubert, G M

    2003-10-01

    The process of encystation is a key step in the Giardia duodenalis life cycle that allows this intestinal protozoan to survive between hosts during person-to-person, animal-to-person, waterborne, or food-borne transmission. The release of cysts from infected persons and animals is the main contributing factor to contamination of the environment. Genes coding for cyst wall proteins (CWPs), which could be used for developing a transmission-blocking vaccine, have been cloned. Since the immunogenicity of recombinant Giardia CWP is unknown, we have investigated the immunogenicity of recombinant CWP2 (rCWP2) and its efficacy in interfering with the phenomenon of encystation taking place in the small bowels of BALB/c mice vaccinated with the recombinant protein. Here we report that the immunization of BALB/c mice with rCWP2 stimulated the immune system in a manner comparable to that for a live infection with Giardia muris cysts. Fecal and serum anti-rCWP2 immunoglobulin A (IgA) antibodies were detected in the immunized mice. In addition, anti-rCWP2 IgG1 and IgG2a antibodies were detected in the serum. mRNAs coding for Th1 and Th2 types of cytokines were detected in spleen and Peyer's patch cells from immunized mice. When the vaccinated mice were challenged with live cysts, the animals shed fewer cysts. We conclude that rCWP2 is a possible candidate antigen for the development of a transmission-blocking vaccine.

  1. Laser-induced electron--ion recombination used to study enhanced spontaneous recombination during electron cooling

    International Nuclear Information System (INIS)

    Schramm, U.; Wolf, A.; Schuess ler, T.; Habs, D.; Schwalm, D.; Uwira, O.; Linkemann, J.; Mueller, A.

    1997-01-01

    Spontaneous recombination of highly charged ions with free electrons in merged velocity matched electron and ion beams has been observed in earlier experiments to occur at rates significantly higher than predicted by theoretical estimates. To study this enhanced spontaneous recombination, laser induced recombination spectra were measured both in velocity matched beams and in beams with well defined relative velocities, corresponding to relative electron-ion detuning energies ranging from 1 meV up to 6.5 meV where the spontaneous recombination enhancement was found to be strongly reduced. Based on a comparison with simplified calculations, the development of the recombination spectra for decreasing detuning energies indicates additional contributions at matched velocities which could be related to the energy distribution of electrons causing the spontaneous recombination rate enhancement

  2. Effects of nuclear mutations for recombination and repair functions and of caffeine on mitochondrial recombination

    International Nuclear Information System (INIS)

    Fraenkel, A.H.M.

    1974-01-01

    Studies of both prokaryotic and eukaryotic organisms indicate that pathways governing repair of damage to nuclear DNA caused by x-ray or ultraviolet irradiation overlap with those controlling recombination. Fourteen nuclear mutants of Saccharomyces cerevisiae were tested in order to determine whether these mutant genes affected mitochondrial recombination. None of the mutations studied significantly affected mitochondrial recombination. The nuclear recombination and repair pathways studied do not overlap with the nuclear pathway which controls recombination of mitochondrial DNA. A second set of experiments was designed to test the effect of caffeine on both nuclear and mitochondrial recombination in Saccharomyces cerevisiae. (U.S.)

  3. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    Science.gov (United States)

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  5. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    Science.gov (United States)

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    International Nuclear Information System (INIS)

    Liu Qiong; Zhan Jinbiao; Chen Xinhong; Zheng Shu

    2006-01-01

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum

  7. Isolated lymphoid follicles are not IgA inductive sites for recombinant Salmonella

    International Nuclear Information System (INIS)

    Hashizume, Tomomi; Momoi, Fumiki; Kurita-Ochiai, Tomoko; Kaminogawa, Shuichi; Hosono, Akira; Kataoka, Kosuke; Shinozaki-Kuwahara, Noriko; Kweon, Mi-Na; Yamamoto, Masafumi

    2007-01-01

    In this study, we investigated whether isolated lymphoid follicles (ILF) play a role in the regulation of intestinal IgA antibody (Ab) responses. The transfer of wild type (WT) bone marrow (BM) to lymphotoxin-α-deficient (LTα -/- ) mice resulted in the formation of mature ILF containing T cells, B cells, and FDC clusters in the absence of mesenteric lymph nodes and Peyer's patches. Although the ILF restored total IgA Abs in the intestine, antigen (Ag)-specific IgA responses were not induced after oral immunization with recombinant Salmonella expressing fragment C of tetanus toxin. Moreover, Ag-specific cell proliferation was not detected in the ILF. Interestingly, no IgA anti-LPS Abs were detected in the fecal extracts of LTα -/- mice reconstituted with WT BM. On the basis of these findings, ILF can be presumed to play a role in the production of IgA Abs, but lymphoid nodules are not inductive sites for the regulation of Ag-specific intestinal IgA responses to recombinant Salmonella

  8. Inhibitor specificity of recombinant and endogenous caspase-9.

    Science.gov (United States)

    Ryan, Ciara A; Stennicke, Henning R; Nava, Victor E; Burch, Jennifer B; Hardwick, J Marie; Salvesen, Guy S

    2002-01-01

    Apoptosis triggered through the intrinsic pathway by radiation and anti-neoplastic drugs is initiated by the activation of caspase-9. To elucidate control mechanisms in this pathway we used a range of synthetic and natural reagents. The inhibitory potency of acetyl-Asp-Glu-Val-Asp-aldehyde ('Ac-DEVD-CHO'), benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone ('Z-VAD-FMK') and the endogenous caspase inhibitor X-chromosome-linked inhibitor of apoptosis protein ('XIAP') against recombinant caspase-9 were predictive of the efficacy of these compounds in a cell-free system. However, the viral proteins CrmA and p35, although potent inhibitors of recombinant caspase-9, had almost no ability to block caspase-9 in this system. These findings were also mirrored in cell expression studies. We hypothesize that the viral inhibitors CrmA and p35 are excluded from reacting productively with the natural form of active caspase-9 in vivo, making the potency of inhibitors highly context-dependent. This is supported by survival data from a mouse model of apoptosis driven by Sindbis virus expressing either p35 or a catalytic mutant of caspase-9. These results consolidate previous findings that CrmA is a potent inhibitor of caspase-9 in vitro, yet fails to block caspase-9-mediated cell death. PMID:12067274

  9. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy.

    Directory of Open Access Journals (Sweden)

    Bryan E Hart

    2016-12-01

    Full Text Available Buruli ulcer (BU vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine.

  10. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    International Nuclear Information System (INIS)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-01-01

    Highlights: → All three capsid proteins can be expressed in insect cells in baculovirus expression system. → All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. → The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  11. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Wang, Junwei, E-mail: jwwang@neau.edu.cn [College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China)

    2011-05-27

    Highlights: {yields} All three capsid proteins can be expressed in insect cells in baculovirus expression system. {yields} All three recombinant proteins were spontaneously self-assemble into virus-like particles whose size and appearance were similar to those of native purified GPV virions. {yields} The immunogenicity of GPV-VLPs was better than commercial inactivated vaccine and attenuated vaccine. -- Abstract: Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs.

  12. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  13. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Directory of Open Access Journals (Sweden)

    Remy Froissart

    2005-03-01

    Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.

  14. Recombinant immunoblot assay reaction patterns and hepatitis C virus RNA in blood donors and non-A, non-B hepatitis patients

    NARCIS (Netherlands)

    Bresters, D.; Zaaijer, H. L.; Cuypers, H. T.; Reesink, H. W.; Winkel, I. N.; van Exel-Oehlers, P. J.; van Drimmelen, A. A.; Jansen, P. L.; van der Poel, C. L.; Lelie, P. N.

    1993-01-01

    To establish the value of the second-generation recombinant immunoblot assay (RIBA-2) and cDNA polymerase chain reaction (cDNA PCR) for confirmation of hepatitis C virus (HCV) infection, anti-HCV reaction patterns and the presence of HCV RNA were examined in 610 blood donors and 255 non-A, non-B

  15. Hybridization-based antibody cDNA recovery for the production of recombinant antibodies identified by repertoire sequencing.

    Science.gov (United States)

    Valdés-Alemán, Javier; Téllez-Sosa, Juan; Ovilla-Muñoz, Marbella; Godoy-Lozano, Elizabeth; Velázquez-Ramírez, Daniel; Valdovinos-Torres, Humberto; Gómez-Barreto, Rosa E; Martinez-Barnetche, Jesús

    2014-01-01

    High-throughput sequencing of the antibody repertoire is enabling a thorough analysis of B cell diversity and clonal selection, which may improve the novel antibody discovery process. Theoretically, an adequate bioinformatic analysis could allow identification of candidate antigen-specific antibodies, requiring their recombinant production for experimental validation of their specificity. Gene synthesis is commonly used for the generation of recombinant antibodies identified in silico. Novel strategies that bypass gene synthesis could offer more accessible antibody identification and validation alternatives. We developed a hybridization-based recovery strategy that targets the complementarity-determining region 3 (CDRH3) for the enrichment of cDNA of candidate antigen-specific antibody sequences. Ten clonal groups of interest were identified through bioinformatic analysis of the heavy chain antibody repertoire of mice immunized with hen egg white lysozyme (HEL). cDNA from eight of the targeted clonal groups was recovered efficiently, leading to the generation of recombinant antibodies. One representative heavy chain sequence from each clonal group recovered was paired with previously reported anti-HEL light chains to generate full antibodies, later tested for HEL-binding capacity. The recovery process proposed represents a simple and scalable molecular strategy that could enhance antibody identification and specificity assessment, enabling a more cost-efficient generation of recombinant antibodies.

  16. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  17. Functional characterization of recombinant snake venom rhodocytin: rhodocytin mutant blocks CLEC-2/podoplanin-dependent platelet aggregation and lung metastasis.

    Science.gov (United States)

    Sasaki, T; Shirai, T; Tsukiji, N; Otake, S; Tamura, S; Ichikawa, J; Osada, M; Satoh, K; Ozaki, Y; Suzuki-Inoue, K

    2018-02-28

    Essentials We generated recombinant rhodocytin that could aggregate platelets via CLEC-2. Recombinant wild-type rhodocytin formed heterooctamer with four α- and β-subunits. Asp 4 in α-subunit of rhodocytin was required for binding to CLEC-2. Inhibitory mutant of rhodocytin blocked podoplanin-dependent hematogenous metastasis. Background Rhodocytin, a disulfide-linked heterodimeric C-type lectin from Calloselasma rhodostoma consisting of α-subunits and β-subunits, induces platelet aggregation through C-type lectin-like receptor 2 (CLEC-2). CLEC-2 is a physiological binding partner of podoplanin (PDPN), which is expressed on some tumor cell types, and is involved in tumor cell-induced platelet aggregation and tumor metastasis. Thus, modified rhodocytin may be a possible source of anti-CLEC-2 drugs for both antiplatelet and antimetastasis therapy. However, its molecular function has not been well characterized, because of the lack of recombinant rhodocytin that induces platelet aggregation. Objective To produce recombinant rhodocytin, in order to verify its function with mutagenesis, and to develop an anti-CLEC-2 drug based on the findings. Methods We used Chinese hamster ovary cells to express recombinant rhodocytin (wild-type [WT] and mutant), which was analyzed for induction/inhibition of platelet aggregation with light transmission aggregometry, the formation of multimers with blue native PAGE, and binding to CLEC-2 with flow cytometry. Finally, we investigated whether mutant rhodocytin could suppress PDPN-induced metastasis in an experimental lung metastasis mouse model. Results Functional WT] rhodocytin (αWTβWT) was obtained by coexpression of both subunits. Asp4 in α-subunits of rhodocytin was required for CLEC-2 binding. αWTβWT formed a heterooctamer similarly to native rhodocytin. Moreover, an inhibitory mutant of rhodocytin (αWTβK53A/R56A), forming a heterotetramer, bound to CLEC-2 without inducing platelet aggregation, and blocked CLEC-2-PDPN

  18. Purification of polyclonal IgG specific for Camelid’s antibodies and their recombinant nanobodies

    Directory of Open Access Journals (Sweden)

    Haddad Muhammad

    2016-01-01

    Full Text Available Camelid’ s heavy-chain antibody (HCAb consists of only two heavy chains and lacks the two light chains together with the CH1 domain usually found in conventional immunoglobulins. A recombinant single antigen-binding entity, named VHH (or Nanobody® was generated by reengineering the variable domains from HCAb. This study focuses on the detection of camelid´s immunoglobulins as well as their derivative nanobodies using a universal anti-camel antibody produced in rabbit (rIgG. Starting from a crude rabbit serum, a standard stock of rIgG (1 mg/ml was prepared after purification by affinity chromatography using protein-A column. As expected, rIgG was able to detect camel antibodies in ELISA and immunoblotting, and its reactivity was equal against all different camel IgG subclasses, which were purified from serum by differential affinity chromatography on protein-G and -A. Interestingly, rIgG also recognized nanobodies since they were originally part of camel HCAbs, providing an alternative method to detect the corpus of these recombinant proteins rather than targeting their artificial tags. These data suggest that the anti-camel rIgG described here could be efficiently applied at different stages of nanobody technology, including the quantitation of the issued nanobodies and their detection when bound to target antigens.

  19. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    Science.gov (United States)

    Jo, Dong Hyun; Park, Sung Wook; Cho, Chang Sik; Powner, Michael B; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  20. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    Directory of Open Access Journals (Sweden)

    Dong Hyun Jo

    Full Text Available Anti-vascular endothelial growth factor (VEGF agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants.

  1. Recombination of cluster ions

    Science.gov (United States)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  2. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  3. Updates in the Development of ImmunoRNases for the Selective Killing of Tumor Cells

    Directory of Open Access Journals (Sweden)

    Sandra Jordaan

    2018-03-01

    Full Text Available Targeted cancer therapy includes, amongst others, antibody-based delivery of toxic payloads to selectively eliminate tumor cells. This payload can be either a synthetic small molecule drug composing an antibody-drug conjugate (ADC or a cytotoxic protein composing an immunotoxin (IT. Non-human cytotoxic proteins, while potent, have limited clinical efficacy due to their immunogenicity and potential off-target toxicity. Humanization of the cytotoxic payload is essential and requires harnessing of potent apoptosis-inducing human proteins with conditional activity, which rely on targeted delivery to contact their substrate. Ribonucleases are attractive candidates, due to their ability to induce apoptosis by abrogating protein biosynthesis via tRNA degradation. In fact, several RNases of the pancreatic RNase A superfamily have shown potential as anti-cancer agents. Coupling of a human RNase to a humanized antibody or antibody derivative putatively eliminates the immunogenicity of an IT (now known as a human cytolytic fusion protein, hCFP. However, RNases are tightly regulated in vivo by endogenous inhibitors, controlling the ribonucleolytic balance subject to the cell’s metabolic requirements. Endogenous inhibition limits the efficacy with which RNase-based hCFPs induce apoptosis. However, abrogating the natural interaction with the natural inhibitors by mutation has been shown to significantly enhance RNase activity, paving the way toward achieving cytolytic potency comparable to that of bacterial immunotoxins. Here, we review the immunoRNases that have undergone preclinical studies as anti-cancer therapeutic agents.

  4. Updates in the Development of ImmunoRNases for the Selective Killing of Tumor Cells.

    Science.gov (United States)

    Jordaan, Sandra; Akinrinmade, Olusiji A; Nachreiner, Thomas; Cremer, Christian; Naran, Krupa; Chetty, Shivan; Barth, Stefan

    2018-03-05

    Targeted cancer therapy includes, amongst others, antibody-based delivery of toxic payloads to selectively eliminate tumor cells. This payload can be either a synthetic small molecule drug composing an antibody-drug conjugate (ADC) or a cytotoxic protein composing an immunotoxin (IT). Non-human cytotoxic proteins, while potent, have limited clinical efficacy due to their immunogenicity and potential off-target toxicity. Humanization of the cytotoxic payload is essential and requires harnessing of potent apoptosis-inducing human proteins with conditional activity, which rely on targeted delivery to contact their substrate. Ribonucleases are attractive candidates, due to their ability to induce apoptosis by abrogating protein biosynthesis via tRNA degradation. In fact, several RNases of the pancreatic RNase A superfamily have shown potential as anti-cancer agents. Coupling of a human RNase to a humanized antibody or antibody derivative putatively eliminates the immunogenicity of an IT (now known as a human cytolytic fusion protein, hCFP). However, RNases are tightly regulated in vivo by endogenous inhibitors, controlling the ribonucleolytic balance subject to the cell's metabolic requirements. Endogenous inhibition limits the efficacy with which RNase-based hCFPs induce apoptosis. However, abrogating the natural interaction with the natural inhibitors by mutation has been shown to significantly enhance RNase activity, paving the way toward achieving cytolytic potency comparable to that of bacterial immunotoxins. Here, we review the immunoRNases that have undergone preclinical studies as anti-cancer therapeutic agents.

  5. Immunological and biological properties of recombinant Lol p 1.

    Science.gov (United States)

    Boutin, Y; Lamontagne, P; Boulanger, J; Brunet, C; Hébert, J

    1997-03-01

    Current forms of allergy diagnosis and therapies are based on the use of natural allergenic extracts. Despite strong evidence that higher therapeutic efficacy may be achieved with purified allergens, the purification of multiple allergic components from extracts is a fastidious and sometimes an impossible task. However, the use of recombinant allergens may be an alternative to overcome this problem. In this study, we compared the immunological properties of recombinant (r) Lol p 1 with those of the natural protein. We cloned directly the gene encoding Lol p 1 from genomic DNA of ryegrass pollen. This gene was subcloned into the expression vector pMAL-c and expressed as fusion protein. Subsequently, rLol p 1 was cleaved from maltose-binding protein using factor Xa. Using binding inhibition and proliferative assays, we assessed the immunological properties of the recombinant allergens. The capacity of rLol p 1 to trigger basophil histamine release and to elicit a skin reaction was also assessed and compared to those of its natural counterpart. We found that the Lol p 1 gene has no introns since we amplified this gene directly from genomic DNA. We demonstrated that the binding sites of anti-Lol p 1 monoclonal antibody, specific human IgG and IgE antibody are well conserved on rLol p 1 as no difference in the binding inhibition profile was observed when using either natural or recombinant protein. At the T-cell level, rLol p 1 elicited a T-cell response in mice comparable to that observed with the natural protein. In addition, we demonstrated that the biological characteristics of rLol p 1 were comparable to those of the natural counterpart, in that rLol p 1 elicited a skin wheal reaction and induced basophil histamine release in grass-allergic patients only. The data indicate that natural Lol p 1 and rLol p 1 shared identical immunological and biological properties.

  6. Recombination pattern reanalysis of some HIV-1 circulating recombination forms suggest the necessity and difficulty of revision.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Recombination is one of the major mechanisms underlying the generation of HIV-1 variability. Currently 61 circulating recombinant forms of HIV-1 have been identified. With the development of recombination detection techniques and accumulation of HIV-1 reference stains, more accurate mosaic structures of circulating recombinant forms (CRFs, like CRF04 and CRF06, have undergone repeated analysis and upgrades. Such revisions may also be necessary for other CRFs. Unlike previous studies, whose results are based primarily on a single recombination detection program, the current study was based on multiple recombination analysis, which may have produced more impartial results.Representative references of 3 categories of intersubtype recombinants were selected, including BC recombinants (CRF07 and CRF08, BG recombinants (CRF23 and CRF24, and BF recombinants (CRF38 and CRF44. They were reanalyzed in detail using both the jumping profile hidden Markov model and RDP3.The results indicate that revisions and upgrades are very necessary and the entire re-analysis suggested 2 types of revision: (i length of inserted fragments; and (ii number of inserted fragments. The reanalysis also indicated that determination of small regions of about 200 bases or fewer should be performed with more caution.Results indicated that the involvement of multiple recombination detection programs is very necessary. Additionally, results suggested two major challenges, one involving the difficulty of accurately determining the locations of breakpoints and the second involving identification of small regions of about 200 bases or fewer with greater caution. Both indicate the complexity of HIV-1 recombination. The resolution would depend critically on development of a recombination analysis algorithm, accumulation of HIV-1 stains, and a higher sequencing quality. With the changes in recombination pattern, phylogenetic relationships of some CRFs may also change. All these results may

  7. The multicenter study of a new assay for simultaneous detection of multiple anti-aminoacyl-tRNA synthetases in myositis and interstitial pneumonia.

    Directory of Open Access Journals (Sweden)

    Ran Nakashima

    Full Text Available OBJECTIVE: Autoantibodies to aminoacyl-tRNA synthetases (ARSs are useful in the diagnosis of idiopathic inflammatory myopathy (IIM with interstitial pneumonia (IP. We developed an enzyme-linked immunosorbent assay (ELISA system using a mixture of recombinant ARS antigens and tested its utility in a multicenter study. METHODS: We prepared six recombinant ARSs: GST-Jo-1, His-PL-12, His-EJ and GST-KS expressed in Escherichia coli, and His-PL-7 and His-OJ expressed in Hi-5 cells. After confirming their antigenic activity, with the exception of His-OJ, we developed our ELISA system in which the five recombinant ARSs (without His-OJ were mixed. Efficiency was confirmed using the sera from 526 Japanese patients with connective tissue disease (CTD (IIM n = 250, systemic lupus erythematosus n = 91, systemic sclerosis n = 70, rheumatoid arthritis n = 75, Sjögren's syndrome n = 27 and other diseases n = 13, 168 with idiopathic interstitial pneumonia (IIP and 30 healthy controls collected from eight institutes. IIPs were classified into two groups; idiopathic pulmonary fibrosis (IPF (n = 38 and non-IPF (n = 130. RESULTS were compared with those of RNA immunoprecipitation. RESULTS: Sensitivity and specificity of the ELISA were 97.1% and 99.8%, respectively when compared with the RNA immunoprecipitation assay. Anti-ARS antibodies were detected in 30.8% of IIM, 2.5% of non-myositis CTD, and 10.7% of IIP (5.3% of IPF and 12.3% of non-IPF. Anti-ARS-positive non-IPF patients were younger and more frequently treated with glucocorticoids and/or immunosuppressants than anti-ARS-negative patients. CONCLUSION: A newly established ELISA detected anti-ARS antibodies as efficiently as RNA immunoprecipitation. This system will enable easier and wider use in the detection of anti-ARS antibodies in patients with IIM and IIP.

  8. Electron-ion recombination in merged beams

    International Nuclear Information System (INIS)

    Wolf, A.; Habs, D.; Lampert, A.; Neumann, R.; Schramm, U.; Schuessler, T.; Schwalm, D.

    1993-01-01

    Detailed studies of recombination processes between electrons and highly charged ions have become possible by recent improvements of merged-beams experiments. We discuss in particular measurements with stored cooled ion beams at the Test Storage Ring (TSR) in Heidelberg. The cross section of dielectronic recombination was measured with high energy resolution for few-electron systems up to the nuclear charge of Cu at a relative energy up to 2.6 keV. At low energy (∼0.1 eV) total recombination rates of several ions were measured and compared with calculated radiative recombination rates. Laser-stimulated recombination of protons and of C 6+ ions was investigated as a function of the photon energy using visible radiation. Both the total recombination rates and the stimulated recombination spectra indicate that in spite of the short interaction time in merged beams, also collisional capture of electrons into weakly bound levels (related to three-body recombination) could be important

  9. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay

    DEFF Research Database (Denmark)

    Nikolaitchik, Olga A; Galli, Andrea; Moore, Michael D

    2011-01-01

    Recombination is a major force for generating human immunodeficiency virus type 1 (HIV-1) diversity and produces numerous recombinants circulating in the human population. We previously established a cell-based system using green fluorescent protein gene (gfp) as a reporter to study the mechanisms...... of HIV-1 recombination. We now report an improved system capable of detecting recombination using authentic viral sequences. Frameshift mutations were introduced into the gag gene so that parental viruses do not express full-length Gag; however, recombination can generate a progeny virus that expresses...

  10. Oxygen-hydrogen recombination system

    International Nuclear Information System (INIS)

    Sato, Shuichiro; Takejima, Masaki.

    1981-01-01

    Purpose: To avoid reduction in the performance of catalyst used for an oxygen-hydrogen recombiner in the off gas processing system of a nuclear reactor. Constitution: A thermometer is provided for the detection of temperature in an oxygen-hydrogen recombiner. A cooling pipe is provided in the recombiner and cooling medium is introduced externally. The cooling medium may be water or air. In accordance with the detection value from the thermometer, ON-OFF control is carried out for a valve to control the flow rate of the cooling medium thereby rendering the temperature in the recombiner to a predetermined value. This can prevent the catalyst from being exposed to high temperature and avoid the reduction in the performance of the catalyst. (Ikeda, J.)

  11. Evaluation of soft x-ray average recombination coefficient and average charge for metallic impurities in beam-heated plasmas

    International Nuclear Information System (INIS)

    Sesnic, S.S.; Bitter, M.; Hill, K.W.; Hiroe, S.; Hulse, R.; Shimada, M.; Stratton, B.; von Goeler, S.

    1986-05-01

    The soft x-ray continuum radiation in TFTR low density neutral beam discharges can be much lower than its theoretical value obtained by assuming a corona equilibrium. This reduced continuum radiation is caused by an ionization equilibrium shift toward lower states, which strongly changes the value of the average recombination coefficient of metallic impurities anti γ, even for only slight changes in the average charge, anti Z. The primary agent for this shift is the charge exchange between the highly ionized impurity ions and the neutral hydrogen, rather than impurity transport, because the central density of the neutral hydrogen is strongly enhanced at lower plasma densities with intense beam injection. In the extreme case of low density, high neutral beam power TFTR operation (energetic ion mode) the reduction in anti γ can be as much as one-half to two-thirds. We calculate the parametric dependence of anti γ and anti Z for Ti, Cr, Fe, and Ni impurities on neutral density (equivalent to beam power), electron temperature, and electron density. These values are obtained by using either a one-dimensional impurity transport code (MIST) or a zero-dimensional code with a finite particle confinement time. As an example, we show the variation of anti γ and anti Z in different TFTR discharges

  12. Development of a recombinant toxin fragment vaccine for Clostridium difficile infection.

    Science.gov (United States)

    Karczewski, Jerzy; Zorman, Julie; Wang, Su; Miezeiewski, Matthew; Xie, Jinfu; Soring, Keri; Petrescu, Ioan; Rogers, Irene; Thiriot, David S; Cook, James C; Chamberlin, Mihaela; Xoconostle, Rachel F; Nahas, Debbie D; Joyce, Joseph G; Bodmer, Jean-Luc; Heinrichs, Jon H; Secore, Susan

    2014-05-19

    Clostridium difficile infection (CDI) is the major cause of antibiotic-associated diarrhea and pseudomembranous colitis, a disease associated with significant morbidity and mortality. The disease is mostly of nosocomial origin, with elderly patients undergoing anti-microbial therapy being particularly at risk. C. difficile produces two large toxins: Toxin A (TcdA) and Toxin B (TcdB). The two toxins act synergistically to damage and impair the colonic epithelium, and are primarily responsible for the pathogenesis associated with CDI. The feasibility of toxin-based vaccination against C. difficile is being vigorously investigated. A vaccine based on formaldehyde-inactivated Toxin A and Toxin B (toxoids) was reported to be safe and immunogenic in healthy volunteers and is now undergoing evaluation in clinical efficacy trials. In order to eliminate cytotoxic effects, a chemical inactivation step must be included in the manufacturing process of this toxin-based vaccine. In addition, the large-scale production of highly toxic antigens could be a challenging and costly process. Vaccines based on non-toxic fragments of genetically engineered versions of the toxins alleviate most of these limitations. We have evaluated a vaccine assembled from two recombinant fragments of TcdB and explored their potential as components of a novel experimental vaccine against CDI. Golden Syrian hamsters vaccinated with recombinant fragments of TcdB combined with full length TcdA (Toxoid A) developed high titer IgG responses and potent neutralizing antibody titers. We also show here that the recombinant vaccine protected animals against lethal challenge with C. difficile spores, with efficacy equivalent to the toxoid vaccine. The development of a two-segment recombinant vaccine could provide several advantages over toxoid TcdA/TcdB such as improvements in manufacturability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Routinely used immunoassays do not detect circulating anti-GBM antibodies against native NC1 hexamer and EA epitope of the α3 chain of type IV collagen.

    Science.gov (United States)

    Clavarino, Giovanna; Gauthier, Arnaud; Hellmark, Thomas; Carron, Pierre-Louis; Giovannini, Diane; Colliard, Sophie; Dragon-Durey, Marie-Agnès; Segelmark, Mårten; Cesbron, Jean-Yves; Dumestre-Pérard, Chantal

    2018-04-12

    Detection of circulating anti-GBM antibodies has a key role for the diagnosis of Goodpasture syndrome but immunoassays using purified or recombinant alpha3(IV)NC1 as antigen do not recognize all anti-GBM antibodies. We show that anti-GBM antibodies directed against epitopes in their native conformation or cryptic epitopes are detected by indirect immunofluorescence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Construction and expression of a recombinant antibody-targeted plasminogen activator

    International Nuclear Information System (INIS)

    Schnee, J.M.; Runge, M.S.; Matsueda, G.A.; Hudson, N.W.; Seidman, J.G.; Haber, E.; Quertermous, T.

    1987-01-01

    Covalent linkage of tissue-type plasminogen activator (t-PA) to a monoclonal antibody specific for the fibrin β chain (anti-fibrin 59D8) results in a thrombolytic agent that is more specific and more potent that t-PA alone. To provide a ready source of this hybrid molecule and to allow tailoring of the active moieties for optimal activity, the authors have engineered a recombinant version of the 59D8-t-PA conjugate. The rearranged 59D8 heavy chain gene was cloned and combined in the expression vector pSV2gpt with sequence coding for a portion of the γ2b constant region and the catalytic β chain of t-PA. This construct was transfected into heavy chain loss variant cells derived form the 59D8 hybridoma. Recombinant protein was purified by affinity chromatography and analyzed with electrophoretic transfer blots and radioimmunoassay. These revealed a 65-kDa heavy chain-t-PA fusion protein that is secreted in association with the 59D8 light chain in the form of a 170-kDa disulfide-linked dimer. Chromogenic substrate assays showed the fusion protein to have 70% of the peptidolytic activity of native t-PA and to activate plasminogen as efficiently as t-PA. IN a competitive binding assay, reconstituted antibody was shown to have a binding profile similar to that of native 59D8. Thus, by recombinant techniques, they have produced a hybrid protein capable of high affinity fibrin binding and plasminogen activation

  15. Functional in vitro studies of recombinant human immunoglobulin G and immunoglobulin A anti-D

    DEFF Research Database (Denmark)

    Nielsen, Leif Kofoed; Green, Trine Hefsgaard; Norderhaug, Lars

    2007-01-01

    The use of anti-D purified from human serum to prevent hemolytic disease of the fetus and newborn due to D is well established. Owing to supply and safety reasons, however, an unlimited and non-plasma-derived source of antibodies for Rhesus prophylaxis is needed....

  16. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  17. On the relict recombination lines

    International Nuclear Information System (INIS)

    Bershtejn, I.N.; Bernshtejn, D.N.; Dubrovich, V.K.

    1977-01-01

    Accurate numerical calculation of intensities and profiles of hydrogen recombination lines of cosmological origin is made. Relie radiation distortions stipulated by recombination quantum release at the irrevocable recombination are investigated. Mean number calculation is given for guantums educing for one irrevocably-lost electron. The account is taken of the educed quantums interraction with matter. The main quantum-matter interrraction mechanisms are considered: electronic blow broadening; free-free, free-bound, bound-bound absorptions Recombination dynamics is investigated depending on hydrogen density and total density of all the matter kinds in the Universe

  18. Late replicating domains are highly recombining in females but have low male recombination rates: implications for isochore evolution.

    Directory of Open Access Journals (Sweden)

    Catherine J Pink

    Full Text Available In mammals sequences that are either late replicating or highly recombining have high rates of evolution at putatively neutral sites. As early replicating domains and highly recombining domains both tend to be GC rich we a priori expect these two variables to covary. If so, the relative contribution of either of these variables to the local neutral substitution rate might have been wrongly estimated owing to covariance with the other. Against our expectations, we find that sex-averaged recombination rates show little or no correlation with replication timing, suggesting that they are independent determinants of substitution rates. However, this result masks significant sex-specific complexity: late replicating domains tend to have high recombination rates in females but low recombination rates in males. That these trends are antagonistic explains why sex-averaged recombination is not correlated with replication timing. This unexpected result has several important implications. First, although both male and female recombination rates covary significantly with intronic substitution rates, the magnitude of this correlation is moderately underestimated for male recombination and slightly overestimated for female recombination, owing to covariance with replicating timing. Second, the result could explain why male recombination is strongly correlated with GC content but female recombination is not. If to explain the correlation between GC content and replication timing we suppose that late replication forces reduced GC content, then GC promotion by biased gene conversion during female recombination is partly countered by the antagonistic effect of later replicating sequence tending increase AT content. Indeed, the strength of the correlation between female recombination rate and local GC content is more than doubled by control for replication timing. Our results underpin the need to consider sex-specific recombination rates and potential covariates in

  19. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    Science.gov (United States)

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  20. Serological Analysis of Immunogenic Properties of Recombinant Meningococcus IgA1 Protease-Based Proteins.

    Science.gov (United States)

    Kotelnikova, O V; Zinchenko, A A; Vikhrov, A A; Alliluev, A P; Serova, O V; Gordeeva, E A; Zhigis, L S; Zueva, V S; Razgulyaeva, O A; Melikhova, T D; Nokel, E A; Drozhzhina, E Yu; Rumsh, L D

    2016-07-01

    Using the genome sequence of IgA1 protease of N. meningitidis of serogroup B, four recombinant proteins of different structure and molecular weight were constructed. These proteins were equal in inducing the formation of specific antibodies to IgA1 protease and had protective properties against meningococci. In the sera of immunized mice, anti-IgA1 protease antibodies were detected by whole-cell ELISA, which indicated the presence of IgA1 protease on the surface of these bacteria. We hypothesized that the protective properties of IgA1 protease-based antigens and IgA1 protease analogs could be realized not only via impairment of bacterium adhesion to the mucosa, but also via suppression of this pathogen in the organism. The presented findings seem promising for using these proteins as the basis for anti-meningococcus vaccine.

  1. Epitope analysis of anti-myeloperoxidase antibodies in patients with ANCA-associated vasculitis.

    Directory of Open Access Journals (Sweden)

    Shen-Ju Gou

    Full Text Available OBJECTIVE: Increasing evidences have suggested the pathogenic role of anti-neutrophil cytoplasmic antibodies (ANCA directing myeloperoxidase (MPO in ANCA-associated vasculitis (AAV. The current study aimed to analyze the association between the linear epitopes of MPO-ANCA and clinicopathological features of patients with AAV. METHODS: Six recombinant linear fragments, covering the whole length amino acid sequence of a single chain of MPO, were produced from E.coli. Sera from 77 patients with AAV were collected at presentation. 13 out of the 77 patients had co-existence of serum anti-GBM antibodies. Ten patients also had sequential sera during follow up. The epitope specificities were detected by enzyme-linked immunosorbent assay using the recombinant fragments as solid phase ligands. RESULTS: Sera from 45 of the 77 (58.4% patients with AAV showed a positive reaction to one or more linear fragments of the MPO chain. The Birmingham Vasculitis Activity Scores and the sera creatinine were significantly higher in patients with positive binding to the light chain fragment than that in patients without the binding. The epitopes recognized by MPO-ANCA from patients with co-existence of serum anti-GBM antibodies were mainly located in the N-terminus of the heavy chain. In 5 out of the 6 patients, whose sera in relapse recognize linear fragments, the reactivity to linear fragments in relapse was similar to that of initial onset. CONCLUSION: The epitope specificities of MPO-ANCA were associated with disease activity and some clinicopathological features in patients with ANCA-associated vasculitis.

  2. Protective efficacy of six immunogenic recombinant proteins of Vibrio anguillarum and evaluation them as vaccine candidate for flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-06-01

    Vibrio anguillarum is a severe bacterium that causes terminal haemorrhagic septicaemia in freshwater and marine fish. Virulence-associated proteins play an important role in bacterial pathogenicity and could be applied for immunoprophylaxis. In this study, six antigenic proteins from V. anguillarum were selected and the immune protective efficacy of their recombinant proteins was investigated. VirA, CheR, FlaC, OmpK, OmpR and Hsp33 were recombinantly produced and the reactions of recombinant proteins to flounder-anti-V. anguillarum antibodies (fV-ab) were detected, respectively. Then the recombinant proteins were injected to fish, after immunization, the percentages of surface membrane immunoglobulin-positive (sIg+) cell in lymphocytes, total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were analyzed, respectively. The results showed that all the recombinant proteins could react to fV-ab, proliferate sIg + cells in lymphocytes and induce production of total antibodies, specific antibodies against V. anguillarum or the recombinant proteins; the RPS of rVirA, rCheR, rFlaC, rOmpK, rOmpR and rHsp33 against V. anguillarum was 70.27%, 27.03%, 16.22%, 62.16%, 45.95% and 81.08%, respectively. The results revealed that rHsp33, rVirA and rOmpK have good protections against V. anguillarum and could be vaccine candidates against V. anguillarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Goose parvovirus structural proteins expressed by recombinant baculoviruses self-assemble into virus-like particles with strong immunogenicity in goose.

    Science.gov (United States)

    Ju, Huanyu; Wei, Na; Wang, Qian; Wang, Chunyuan; Jing, Zhiqiang; Guo, Lu; Liu, Dapeng; Gao, Mingchun; Ma, Bo; Wang, Junwei

    2011-05-27

    Goose parvovirus (GPV), a small non-enveloped ssDNA virus, can cause Derzsy's disease, and three capsid proteins of VP1, VP2, and VP3 are encoded by an overlapping nucleotide sequence. However, little is known on whether recombinant viral proteins (VPs) could spontaneously assemble into virus-like particles (VLPs) in insect cells and whether these VLPs could retain their immunoreactivity and immunogenicity in susceptible geese. To address these issues, genes for these GPV VPs were amplified by PCR, and the recombinant VPs proteins were expressed in insect cells using a baculovirus expression system for the characterization of their structures, immunoreactivity, and immunogenicity. The rVP1, rVP2, and rVP3 expressed in Sf9 cells were detected by anti-GPV sera, anti-VP3 sera, and anti-His antibodies, respectively. Electron microscopy revealed that these rVPs spontaneously assembled into VLPs in insect cells, similar to that of the purified wild-type GPV virions. In addition, vaccination with individual types of VLPs, particularly with the rVP2-VLPs, induced higher titers of antibodies and neutralized different strains of GPVs in primary goose and duck embryo fibroblast cells in vitro. These data indicated that these VLPs retained immunoreactivity and had strong immunogenicity in susceptible geese. Therefore, our findings may provide a framework for development of new vaccines for the prevention of Derzsy's disease and vehicles for the delivery of drugs. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Auger recombination in sodium iodide

    Science.gov (United States)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  5. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  6. Regulation of homologous recombination in eukaryotes

    OpenAIRE

    Heyer, Wolf-Dietrich; Ehmsen, Kirk T.; Liu, Jie

    2010-01-01

    Homologous recombination is required for accurate chromosome segregation during the first meiotic division and constitutes a key repair and tolerance pathway for complex DNA damage including DNA double-stranded breaks, interstrand crosslinks, and DNA gaps. In addition, recombination and replication are inextricably linked, as recombination recovers stalled and broken replication forks enabling the evolution of larger genomes/replicons. Defects in recombination lead to genomic instability and ...

  7. Mutation of the Kunitz-type proteinase inhibitor domain in the amyloid β-protein precursor abolishes its anti-thrombotic properties in vivo.

    Science.gov (United States)

    Xu, Feng; Davis, Judianne; Hoos, Michael; Van Nostrand, William E

    2017-07-01

    Kunitz proteinase inhibitor (KPI) domain-containing forms of the amyloid β-protein precursor (AβPP) inhibit cerebral thrombosis. KPI domain-lacking forms of AβPP are abundant in brain. Regions of AβPP other than the KPI domain may also be involved with regulating cerebral thrombosis. To determine the contribution of the KPI domain to the overall function of AβPP in regulating cerebral thrombosis we generated a reactive center mutant that was devoid of anti-thrombotic activity and studied its anti-thrombotic function in vitro and in vivo. To determine the extent of KPI function of AβPP in regulating cerebral thrombosis we generated a recombinant reactive center KPI R13I mutant devoid of anti-thrombotic activity. The anti-proteolytic and anti-coagulant properties of wild-type and R13I mutant KPI were investigated in vitro. Cerebral thrombosis of wild-type, AβPP knock out and AβPP/KPI R13I mutant mice was evaluated in experimental models of carotid artery thrombosis and intracerebral hemorrhage. Recombinant mutant KPI R13I domain was ineffective in the inhibition of pro-thrombotic proteinases and did not inhibit the clotting of plasma in vitro. AβPP/KPI R13I mutant mice were similarly deficient as AβPP knock out mice in regulating cerebral thrombosis in experimental models of carotid artery thrombosis and intracerebral hemorrhage. We demonstrate that the anti-thrombotic function of AβPP primarily resides in the KPI activity of the protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Recombination coefficients in extrinsic n-InSb

    International Nuclear Information System (INIS)

    Schneider, W.; Groh, H.; Huebner, K.

    1976-01-01

    The bulk recombination coefficients for linear recombination via recombination centers as well as for direct recombination have been determined measuring the conductivity decay after two-photon absorption with a CO 2 laser. The Suhl effect was applied to measure the surface recombination velocity. The corresponding literature is discussed and compared with our results. We conclude that two different kinds of recombination centers are possible in n-InSb, with energy levels (0.1-0.12)eV above the valence band, or (0.14-0.2)eV respectively. (orig.) [de

  9. Electron-ion recombination rates for merged-beams experiments

    International Nuclear Information System (INIS)

    Pajek, M.

    1994-01-01

    Energy dependence of the electron-ion recombination rates are studied for different recombination processes (radiative recombination, three-body recombination, dissociative recombination) for Maxwellian relative velocity distribution of arbitrary asymmetry. The results are discussed in context of the electron-ion merged beams experiments in cooling ion storage rings. The question of indication of a possible contribution of the three-body recombination to the measured recombination rates versus relative energy is particularly addressed. Its influence on the electron beam temperature derived from the energy dependence of recombination rate is discussed

  10. Anti-soluble liver antigen (SLA) antibodies in chronic HCV infection.

    Science.gov (United States)

    Vitozzi, Susana; Lapierre, Pascal; Djilali-Saiah, Idriss; Marceau, Gabriel; Beland, Kathie; Alvarez, Fernando

    2004-05-01

    Hepatitis C infection is associated with autoimmune disorders, such as the production of autoantibodies. Anti-LKM1 and anti-LC1, immunomarkers of type 2 autoimmune hepatitis, have been previously associated with a HCV infection. Anti-Soluble-Liver-Antigen autoantibodies (SLA) are specifically associated with type 1 and type 2 autoimmune hepatitis and more closely related to patients who relapse after steroid therapy. The recent molecular cloning of the soluble liver antigen provides the opportunity to develop more specific tests for the detection of antibodies against it. The aim of this work is to characterize anti-soluble-liver autoantibodies in sera from patients chronically infected by HCV. A recombinant cDNA from activated Jurkat cells coding for the full length tRNP(Ser)Sec/SLA antigen was obtained. ELISA, Western Blot and immunoprecipitation tests were developed and used to search for linear and conformational epitopes recognized by anti-SLA antibodies in sera from patients chronically infected by HCV. Anti-soluble liver antigen antibodies were found in sera from 10.4% of HCV-infected patients. The prevalence was significantly increased to 27% when anti-LKM1 was also present. Most anti-SLA reactivity was directed against conformational epitopes on the antigen. The means titers by ELISA were lower than those obtained in type 2 AIH. The result of autoantibody isotyping showed a subclass restriction to IgG1 and also IgG4. This study shows the presence of anti-SLA antibodies in approximately 10% of HCV infected patients. The prevalence of SLA autoantibodies in HCV infected patients increases when LKM1 autoantibodies are also present. The relationship between the prevalence of this characteristic autoimmune hepatitis autoantibody and the implication of an autoimmune phenomenon in the liver injury of patients chronically infected by HCV needs further investigation.

  11. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  12. Recombinant Innovation and Endogenous Transitions

    OpenAIRE

    Koen Frenken; Luis R. Izquierdo; Paolo Zeppini

    2012-01-01

    We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create “short-cuts” which reduce switching costs allowing agents to escape a technological lock-in. As a result, recombinant innovations speed up technological progress allowing transitions that are impossible with only branching ...

  13. Interface recombination influence on carrier transport

    International Nuclear Information System (INIS)

    Konin, A

    2013-01-01

    A theory of interface recombination in the semiconductor–semiconductor junction is developed. The interface recombination rate dependence on the nonequilibrium carrier densities is derived on the basis of a model in which the interface recombination occurs through the mechanism of trapping. The general relation between the interface recombination parameters at small carrier density deviation from the equilibrium ones is obtained. The validity of this relation is proved considering the generation of the Hall electric field in the extrinsic semiconductor sample. The anomalous Hall electromotive force in a weak magnetic field was investigated and interpreted by means of a new interface recombination model. The experimental data corroborate the developed theory. (paper)

  14. Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-κB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model.

    Science.gov (United States)

    Hou, C L; Zhang, J; Liu, X T; Liu, H; Zeng, X F; Qiao, S Y

    2014-06-01

    Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half-life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model. In this study, we expressed the sodA gene in Lact. fermentum I5007 to obtain the SOD recombinant strain. Then, we determined the therapeutic effects of this SOD recombinant strain in a trinitrobenzene sulphonic acid (TNBS)-induced colitis mouse model. We found that SOD activity in the recombinant Lact. fermentum was increased by almost eightfold compared with that in the wild type. Additionally, both the wild type and the recombinant Lact. fermentum increased the numbers of lactobacilli in the colon of mice (P < 0·05). Colitis mice treated with recombinant Lact. fermentum showed a higher survival rate and lower disease activity index (P < 0·05). Recombinant Lact. fermentum significantly decreased colonic mucosa histological scoring for infiltration of inflammatory cells, lipid peroxidation, the expression of pro-inflammatory cytokines and myeloperoxidase (P < 0·05) and inhibited NF-κB activity in colitis mice (P < 0·05). SOD recombinant Lact. fermentum significantly reduced oxidative stress and inflammation through inhibiting NF-κB activation in the TNBS-induced colitis model. This study provides insights into the anti-inflammatory effects of SOD recombinant Lact. fermentum, indicating the potential therapeutic effects in preventing and curing intestinal bowel diseases. © 2014 The Society for Applied Microbiology.

  15. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  16. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  17. Recombinant lambda-phage nanobioparticles for tumor therapy in mice models.

    Science.gov (United States)

    Ghaemi, Amir; Soleimanjahi, Hoorieh; Gill, Pooria; Hassan, Zuhair; Jahromi, Soodeh Razeghi M; Roohvand, Farzin

    2010-05-12

    Lambda phages have considerable potential as gene delivery vehicles due to their genetic tractability, low cost, safety and physical characteristics in comparison to other nanocarriers and gene porters. Little is known concerning lambda phage-mediated gene transfer and expression in mammalian hosts. We therefore performed experiments to evaluate lambda-ZAP bacteriophage-mediated gene transfer and expression in vitro. For this purpose, we constructed recombinant lambda-phage nanobioparticles containing a mammalian expression cassette encoding enhanced green fluorescent protein (EGFP) and E7 gene of human papillomavirus type 16 (lambda-HPV-16 E7) using Lambda ZAP- CMV XR vector. Four cell lines (COS-7, CHO, TC-1 and HEK-239) were transduced with the nanobioparticles. We also characterized the therapeutic anti-tumor effects of the recombinant lambda-HPV-16 E7 phage in C57BL/6 tumor mice model as a cancer vaccine. Obtained results showed that delivery and expression of these genes in fibroblastic cells (COS-7 and CHO) are more efficient than epithelial cells (TC-1 and HEK-239) using these nanobioparticles. Despite the same phage M.O.I entry, the internalizing titers of COS-7 and CHO cells were more than TC-1 and HEK-293 cells, respectively. Mice vaccinated with lambda-HPV-16 E7 are able to generate potent therapeutic antitumor effects against challenge with E7- expressing tumor cell line, TC-1 compared to group treated with the wild phage. The results demonstrated that the recombinant lambda-phages, due to their capabilities in transducing mammalian cells, can also be considered in design and construction of novel and safe phage-based nanomedicines.

  18. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    Science.gov (United States)

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  19. Population inversion in recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.

    1978-11-01

    The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)

  20. Consequences of recombination on traditional phylogenetic analysis

    DEFF Research Database (Denmark)

    Schierup, M H; Hein, J

    2000-01-01

    We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mt......DNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination....... With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may...

  1. Recombinant spider silk genetically functionalized with affinity domains.

    Science.gov (United States)

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  2. Density dependence of dielectronic recombination in selenium

    International Nuclear Information System (INIS)

    Hagelstein, P.L.; Rosen, M.D.; Jacobs, V.L.

    1986-01-01

    Dielectronic recombination has been found to be the dominant recombination process in the determination of the ionization balance of selenium near the Ne-like sequence under conditions relevant to the exploding-foil EUV laser plasmas. The dielectronic recombination process tends to populate excited levels, and these levels in turn are more susceptible to subsequent excitation and ionization than are the ground-state ions. If one defines an effective recombination rate which includes, in addition to the primary recombination, the subsequent excitation and ionization of the additional excited-state population due to the primary recombination, then this effective recombination rate can be density-sensitive at relatively low electron density. We present results for this effective dielectronic recombination rate at an electron density of 3 x 10/sup 20/ electrons/cm 3 for recombination from Ne-like to Na-like selenium and from F-like to Ne-like selenium. In the former case, the effective recombination rate coefficient is found to be 1.8 x 10/sup -11/ cm 3 /sec at 1.0 keV, which is to be compared with the zero-density value of 2.8 x 10/sup -11/ cm 3 /sec. In the latter case (F-like to Ne-like), the effective recombination rate coefficient is found to be 1.3 x 10/sup -11/ cm 3 /sec, which is substantially reduced from the zero-density result of 3.3 x 10/sup -11/ cm 3 /sec. We have examined the effects of dielectronic recombination on the laser gain of the dominant Ne-like 3p-3s transitions and have compared our results with those presented by Whitten et al. [Phys. Rev. A 33, 2171 (1986)

  3. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  4. Recombinant interleukin 6 with M cell-targeting moiety produced in Lactococcus lactis IL1403 as a potent mucosal adjuvant for peroral immunization.

    Science.gov (United States)

    Li, Hui-Shan; Piao, Da-Chuan; Jiang, Tao; Bok, Jin-Duck; Cho, Chong-Su; Lee, Yoon-Seok; Kang, Sang-Kee; Choi, Yun-Jaie

    2015-04-15

    Development and application of safe and effective mucosal adjuvants are important to improve immunization efficiency in oral vaccine. Here, we report a novel mucosal adjuvant, IL-6-CKS9, a recombinant cytokine generated by conjugating an M cell-targeting peptide (CKS9) with c-terminus of the murine interleukin 6 (IL-6), which facilitated enhancement of mucosal immune response. Lactococcus lactis IL1403, a food-grade strain of lactic acid bacteria (LAB) which is widely used in dairy industry, was used as a host cell to express and secrete the IL-6-CKS9 for a mucosal vaccine adjuvant. The recombinant L. lactis IL1403 secreting IL-6-CKS9 was orally administered with a model antigen protein, M-BmpB (Brachyspira membrane protein B conjugated with CKS9), to BALB/c mice for mucosal immunization. ELISA analyses showed consistent enhancement tendencies in induction of anti-M-BmpB antibody levels both with mucosal (IgA) and systemic (IgG) immune responses in IL-6-CKS9-LAB treated group compared with other groups tested by conducting two separated mice immunization assays. In addition, we characterized that the oral administration of model protein antigen with live LAB producing IL-6-CKS9 could induce both Th1 and Th2 type immune responses by analysis of the specific anti-BmpB IgG1 and IgG2a isotypes in the sera and also investigated possible oral tolerance in our vaccine strategy. Collectively, our results showed successful production and secretion of recombinant murine IL-6 with M cell-targeting moiety (IL-6-CKS9) from L. lactis IL1403 and demonstrated the live recombinant LAB producing IL-6-CKS9 could have a potential to be used as an efficient adjuvant for peroral vaccination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Prevalence of IgG antibodies to human parvovirus B19 in haemophilia children treated with recombinant factor (F)VIII only or with at least one plasma-derived FVIII or FIX concentrate: results from the French haemophilia cohort.

    Science.gov (United States)

    Gaboulaud, Valérie; Parquet, Armelle; Tahiri, Cedric; Claeyssens, Ségolène; Potard, Valérie; Faradji, Albert; Peynet, Jocelyne; Costagliola, Dominique

    2002-02-01

    Human parvovirus B19 (B19) has been transmitted by some brands of virally attenuated plasma-derived factor VIII (FVIII) or IX (FIX) concentrates. To quantify the differences of human parvovirus B19 risk transmission between albumin-stabilized recombinant factor and plasma-derived factor, we studied the prevalence of IgG antibodies to B19 (anti-B19) in 193 haemophiliac children between 1 and 6-years of age who had previously been treated with albumin-stabilized recombinant FVIII only (n = 104), and in children previously treated with solvent/detergent high-purity non-immunopurified and non-nanofiltered FVIII or IX concentrates (n = 89). Association between the prevalence of anti-B19 and the treatment group was analysed using multivariate logistic regression. Age, severity and type of haemophilia, number of cumulative days of exposure to factor VIII or IX, previous history of red blood cells or plasma transfusion were considered as potential confounding variables. A higher prevalence of anti-B19 was found in children previously treated with solvent/detergent high-purity non-immunopurified and non-nanofiltered FVIII or IX concentrates than in children treated with albumin- stabilized recombinant FVIII only (OR: 22.3; CI: 7.9-62.8), independently of the other factors studied.

  6. The use of recombinant DNA technology for the development of a bluetongue virus subunit vaccine

    International Nuclear Information System (INIS)

    Huismans, H.

    1985-01-01

    The double-standed RNA gene coding for the surface antigen responsible for inducing neutralising anti-bodies has been isolated, converted to DNA, and cloned in the plasmid pBR322. So far, only plasmids containing inserts smaller than the gene have been obtained. The recombinant plasmids were isolated by screening for specific antibiotic resistance markers and characterized by size, restriction enzymes and hybridization with a 32 P-labelled DNA probe made with BTV-m RNA as template. Possible strategies for the development of a bluetongue virus submit vaccine are discussed

  7. SequenceLDhot: detecting recombination hotspots.

    Science.gov (United States)

    Fearnhead, Paul

    2006-12-15

    There is much local variation in recombination rates across the human genome--with the majority of recombination occurring in recombination hotspots--short regions of around approximately 2 kb in length that have much higher recombination rates than neighbouring regions. Knowledge of this local variation is important, e.g. in the design and analysis of association studies for disease genes. Population genetic data, such as that generated by the HapMap project, can be used to infer the location of these hotspots. We present a new, efficient and powerful method for detecting recombination hotspots from population data. We compare our method with four current methods for detecting hotspots. It is orders of magnitude quicker, and has greater power, than two related approaches. It appears to be more powerful than HotspotFisher, though less accurate at inferring the precise positions of the hotspot. It was also more powerful than LDhot in some situations: particularly for weaker hotspots (10-40 times the background rate) when SNP density is lower (maths.lancs.ac.uk/~fearnhea/Hotspot.

  8. Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behçet's disease.

    Science.gov (United States)

    Lee, Kwang Hoon; Chung, Hae-Shin; Kim, Hyoung Sup; Oh, Sang-Ho; Ha, Moon-Kyung; Baik, Ja-Hyun; Lee, Sungnack; Bang, Dongsik

    2003-07-01

    To identify and recombine a protein of the human dermal microvascular endothelial cell (HDMEC) that specifically reacts with anti-endothelial cell antibody (AECA) in the serum of patients with Behçet's disease (BD), and to evaluate the usefulness of this protein in BD. The proteomics technique, with 2-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry, was used to identify and recombine HDMEC antigen. Western blotting and enzyme-linked immunosorbent assay (ELISA) of recombinant protein isolated by gene cloning were performed on serum from healthy controls, patients with BD, and patients with other rheumatic diseases (rheumatoid arthritis, systemic lupus erythematosus, and Wegener's granulomatosis). Eighteen of 40 BD patients had serum IgM antibody to HDMEC antigen. The purified protein that reacted with AECA in BD patient sera was found to be alpha-enolase by 2-dimensional gel electrophoresis followed by immunoblotting and MALDI-TOF mass spectrometry. Recombinant alpha-enolase protein was isolated and refined by gene cloning. On Western blots, AECA-positive IgM from the sera of patients with active BD reacted strongly with recombinant human alpha-enolase. BD patient sera positive for anti-alpha-enolase did not react with human gamma-enolase. On dot-blotting, reactivity to human alpha-enolase was detected only in the IgM-positive group. Fifteen of the 18 AECA-positive sera that were positive for the HDMEC antigen showed reactivity to recombinant alpha-enolase IgM antibody by ELISA. The alpha-enolase protein is the target protein of serum AECA in BD patients. This is the first report of the presence of IgM antibodies to alpha-enolase in endothelial cells from the serum of BD patients. Although further studies relating this protein to the pathogenesis of BD will be necessary, alpha-enolase and its antibody may prove useful in the development of new diagnostic and treatment modalities in BD.

  9. Oral vaccine of Lactococcus lactis harbouring pandemic H1N1 2009 haemagglutinin1 and nisP anchor fusion protein elevates anti-HA1 sIgA levels in mice.

    Science.gov (United States)

    Joan, Stella Siaw Xiu; Pui-Fong, Jee; Song, Adelene Ai-Lian; Chang, Li-Yen; Yusoff, Khatijah; AbuBakar, Sazaly; Rahim, Raha Abdul

    2016-05-01

    An oral lactococcal-based vaccine which haboured the haemagglutinin1 (HA1) antigen fused to nisP anchor protein for the purpose of surface displaying the HA1 antigen was developed against H1N1 virus. Recombinant L. lactis strains expressed HA1-nisP fusion proteins when induced with nisin, as confirmed through western blotting. However, immunofluorescense did not detect any surface-displayed proteins, suggesting that the protein was either unsuccessfully translocated or improperly displayed. Despite this, oral administration of recombinant L. lactis strains to BALB/c mice revealed that significant levels of anti-HA1 sIgA antibodies were detected in mice fecal suspension samples of mice group NZ9000 (pNZ:HN) when compared to the negative control NZ9000 (pNZ8048) group. Specific anti-HA1 sIgA antibodies were locally produced and live recombinant lactococcal vaccine was able to elicit humoral response of BALB/c mice despite unsuccessful surface display of the HA1 epitope.

  10. [Requirement of standardizing anti-HBs assay methods in Japan for HBV infection-preventing strategy--discrepancy of anti-HBs measurements among three different kits widely used in Japan].

    Science.gov (United States)

    Ogata, Norio

    2006-09-01

    The strategy to eliminate hepatitis B virus (HBV) infection by administrating an HB vaccine is changing worldwide; however, this is not the case in Japan. An important concern about the HBV infection-preventing strategy in Japan may be that the assay methods for the antibody to hepatitis B surface antigen (anti-HBs) are not standardized. The minimum protective anti-HBs titer against HBV infection has been established as 10 mIU/ml by World Health Organization (WHO) -standardized assay methods worldwide, but that is still determined as a "positive" test result by the passive hemagglutination (PHA) method in Japan. We compared anti-HBs measurements in given samples among PHA(Mycell II, Institute of Immunology), chemiluminescent enzyme immunoassay (CLEIA) (Lumipulse, Fujirebio), and chemiluminescent immunoassay (CLIA) (Architect, Abbott), all of which are currently in wide use in Japan. First, anti-HBs measurements in serum from individuals who received a yeast-derived recombinant HB vaccine composed of the major surface protein of either subtype adr or subtype ayw were compared. The results clearly showed that in subtype adr-vaccinees CLIA underestimated the anti-HBs amount compared with CLEIA and PHA, but in ayw-vaccinees, the discordance in the measurements among the three kits was not prominent. Second, anti-HBs measurements in standard or calibration solutions of each assay kit were compared. Surprisingly, CLEIA showed higher measurements in all three kit-associated standard or calibration solutions than CLIA. Thus, the anti-HBs titer of 10 mIU/ml is difficult to introduce in Japan as the minimum protective level against HBV infection. Efforts to standardize anti-HBs assay methods are expected to share international evidence about the HBV infection-preventing strategy.

  11. Experimental evolution across different thermal regimes yields genetic divergence in recombination fraction but no divergence in temperature associated plastic recombination.

    Science.gov (United States)

    Kohl, Kathryn P; Singh, Nadia D

    2018-04-01

    Phenotypic plasticity is pervasive in nature. One mechanism underlying the evolution and maintenance of such plasticity is environmental heterogeneity. Indeed, theory indicates that both spatial and temporal variation in the environment should favor the evolution of phenotypic plasticity under a variety of conditions. Cyclical environmental conditions have also been shown to yield evolved increases in recombination frequency. Here, we use a panel of replicated experimental evolution populations of D. melanogaster to test whether variable environments favor enhanced plasticity in recombination rate and/or increased recombination rate in response to temperature. In contrast to expectation, we find no evidence for either enhanced plasticity in recombination or increased rates of recombination in the variable environment lines. Our data confirm a role of temperature in mediating recombination fraction in D. melanogaster, and indicate that recombination is genetically and plastically depressed under lower temperatures. Our data further suggest that the genetic architectures underlying plastic recombination and population-level variation in recombination rate are likely to be distinct. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  12. Anti-Stokes Luminescence in High Quality Quantum Wells

    Science.gov (United States)

    Vinattieri, A.; Bogani, F.; Miotto, A.; Ceccherini, S.

    1997-11-01

    We present a detailed investigation of the anti-Stokes (AS) luminescence which originates from exciton recombination when below gap excitation is used, in a set of high quality quantum well structures. We observe strong excitonic resonances in the AS signal as measured from photoluminescence and photoluminescence excitation spectra. We demonstrate that neither the electromagnetic coupling between the wells nor the morphological disorder can explain this up-conversion effect. Time-resolved luminescence data after ps excitation and fs correlation spectroscopy results provide clear evidence of the occurrence of a two-step absorption which is assisted by the exciton population resonantly excited by the first photon.

  13. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies.

    Science.gov (United States)

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C; Kalyanaraman, V S; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J; Murthy, Krishna K; Srivastava, Indresh; Barnett, Susan W; Robert-Guroff, Marjorie

    2005-08-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1(MN)env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIV(SF162) gp140deltaV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1(MN)env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1(SF162) gp140deltaV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.

  14. Immunogenicity of Recombinant Proteins Consisting of Plasmodium vivax Circumsporozoite Protein Allelic Variant-Derived Epitopes Fused with Salmonella enterica Serovar Typhimurium Flagellin

    Science.gov (United States)

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida

    2013-01-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax. PMID:23863502

  15. The extent and importance of intragenic recombination

    Directory of Open Access Journals (Sweden)

    de Silva Eric

    2004-11-01

    Full Text Available Abstract We have studied the recombination rate behaviour of a set of 140 genes which were investigated for their potential importance in inflammatory disease. Each gene was extensively sequenced in 24 individuals of African descent and 23 individuals of European descent, and the recombination process was studied separately in the two population samples. The results obtained from the two populations were highly correlated, suggesting that demographic bias does not affect our population genetic estimation procedure. We found evidence that levels of recombination correlate with levels of nucleotide diversity. High marker density allowed us to study recombination rate variation on a very fine spatial scale. We found that about 40 per cent of genes showed evidence of uniform recombination, while approximately 12 per cent of genes carried distinct signatures of recombination hotspots. On studying the locations of these hotspots, we found that they are not always confined to introns but can also stretch across exons. An investigation of the protein products of these genes suggested that recombination hotspots can sometimes separate exons belonging to different protein domains; however, this occurs much less frequently than might be expected based on evolutionary studies into the origins of recombination. This suggests that evolutionary analysis of the recombination process is greatly aided by considering nucleotide sequences and protein products jointly.

  16. Characterization of the Anti-Bovine Podoplanin Monoclonal Antibody PMab-44.

    Science.gov (United States)

    Yamada, Shinji; Honma, Ryusuke; Kaneko, Mika K; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Takagi, Michiaki; Konnai, Satoru; Kato, Yukinari

    2017-06-01

    A type I transmembrane sialoglycoprotein podoplanin (PDPN) is expressed in several normal cells, including podocytes of the kidney, type I alveolar cells of the lung, and lymphatic endothelial cells. We recently produced an anti-bovine PDPN (bovPDPN) monoclonal antibody (mAb), PMab-44, by immunizing mice with recombinant proteins of bovPDPN. In this study, we determined the critical epitope of PMab-44 for the recognition of bovPDPN using many deletion mutants and point mutants of bovPDPN. Flow cytometric analyses revealed that the epitope of PMab-44 was Glu46-Thr50, which corresponds to platelet aggregation-stimulating (PLAG) domain-3. The important amino acids in the PMab-44 epitope were determined to be Glu46, Tyr48, and Thr50. Western blot analysis also confirmed these results, indicating that the PLAG domain of bovPDPN is also important in immunogenicity for producing useful anti-PDPN mAbs.

  17. Recombination epoch revisited

    International Nuclear Information System (INIS)

    Krolik, J.H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons. 18 references

  18. Recombination of Globally Circulating Varicella-Zoster Virus

    Science.gov (United States)

    Depledge, Daniel P.; Kundu, Samit; Atkinson, Claire; Brown, Julianne; Haque, Tanzina; Hussaini, Yusuf; MacMahon, Eithne; Molyneaux, Pamela; Papaevangelou, Vassiliki; Sengupta, Nitu; Koay, Evelyn S. C.; Tang, Julian W.; Underhill, Gillian S.; Grahn, Anna; Studahl, Marie; Breuer, Judith; Bergström, Tomas

    2015-01-01

    ABSTRACT Varicella-zoster virus (VZV) is a human herpesvirus, which during primary infection typically causes varicella (chicken pox) and establishes lifelong latency in sensory and autonomic ganglia. Later in life, the virus may reactivate to cause herpes zoster (HZ; also known as shingles). To prevent these diseases, a live-attenuated heterogeneous vaccine preparation, vOka, is used routinely in many countries worldwide. Recent studies of another alphaherpesvirus, infectious laryngotracheitis virus, demonstrate that live-attenuated vaccine strains can recombine in vivo, creating virulent progeny. These findings raised concerns about using attenuated herpesvirus vaccines under conditions that favor recombination. To investigate whether VZV may undergo recombination, which is a prerequisite for VZV vaccination to create such conditions, we here analyzed 115 complete VZV genomes. Our results demonstrate that recombination occurs frequently for VZV. It thus seems that VZV is fully capable of recombination if given the opportunity, which may have important implications for continued VZV vaccination. Although no interclade vaccine-wild-type recombinant strains were found, intraclade recombinants were frequently detected in clade 2, which harbors the vaccine strains, suggesting that the vaccine strains have already been involved in recombination events, either in vivo or in vitro during passages in cell culture. Finally, previous partial and complete genomic studies have described strains that do not cluster phylogenetically to any of the five established clades. The additional VZV strains sequenced here, in combination with those previously published, have enabled us to formally define a novel sixth VZV clade. IMPORTANCE Although genetic recombination has been demonstrated to frequently occur for other human alphaherpesviruses, herpes simplex viruses 1 and 2, only a few ancient and isolated recent recombination events have hitherto been demonstrated for VZV. In the

  19. Selectable high-yield recombinant protein production in human cells using a GFP/YFP nanobody affinity support.

    Science.gov (United States)

    Schellenberg, Matthew J; Petrovich, Robert M; Malone, Christine C; Williams, R Scott

    2018-03-25

    Recombinant protein expression systems that produce high yields of pure proteins and multi-protein complexes are essential to meet the needs of biologists, biochemists, and structural biologists using X-ray crystallography and cryo-electron microscopy. An ideal expression system for recombinant human proteins is cultured human cells where the correct translation and chaperone machinery are present. However, compared to bacterial expression systems, human cell cultures present several technical challenges to their use as an expression system. We developed a method that utilizes a YFP fusion-tag to generate recombinant proteins using suspension-cultured HEK293F cells. YFP is a dual-function tag that enables direct visualization and fluorescence-based selection of high expressing clones for and rapid purification using a high-stringency, high-affinity anti-GFP/YFP nanobody support. We demonstrate the utility of this system by expressing two large human proteins, TOP2α (340 KDa dimer) and a TOP2β catalytic core (260 KDa dimer). This robustly and reproducibly yields >10 mg/L liter of cell culture using transient expression or 2.5 mg/L using stable expression. Published 2018. This article is a US Government work and is in the public domain in the USA.

  20. The evaluation of Recombinant Immunoblot assay (RIBA and HCV-RNA test results in patients with low titer Anti-HCV positivity

    Directory of Open Access Journals (Sweden)

    Berrin Uzun

    2014-12-01

    Full Text Available Objectives: Laboratory diagnosis of hepatitis C virus (HCV infection is based on the detection of anti-HCV antibodies by enzyme immunoassay (EIA or chemiluminescence immunoassay (CIA techniques. However, a consensus related to the problem of low titer (Serum/Cut-off; S/C= 1.0 anti-HCV antibodies is still lacking. The study attempts to evaluate the clinical status of the patients with low titer anti-HCV antibodies detected by third generation anti-HCV tests during February 2013- May 2014 retrospectively. Methods: Serum samples were studied by Advia Centaur XP autoanalyser (Bayer-Siemens, Germany for anti-HCV, and line immunoassay (Inno-LIATM HCV Score, İnnogenetics, Belgium for anti-HCV confirmatory test, Cobas AmpliPre/Cobas AMPLICOR HCV Test (Roche diagnostics, Switzerland for HCV RNA. Results: A total of 55.631 serum samples were studied, and 55 of them were anti-HCV positive of which with low antibody levels (sample/cutoff [S/CO]. S/CO values ranged from 1.15 to 6.15. Seventeen (31% of patients who have low antibody levels were defined as positive and 2 (4% patients were intermittent and 36 (65% patients were negative with line immunoassay. HCV-RNA was not detected in any of the samples. Conclusions: It is thought that antibody positivity must be verified in cases of recurrent reactivity when considering the cost-effectiveness of molecular tests. In the study was concluded that the use of molecular tests would be appropriate diagnosis, and the effectiveness of treatment if necessary after evaluation of patients with biochemical analysis. J Clin Exp Invest 2014; 5 (4: 553-556

  1. BIOTECHNOLOGY OF RECOMBINANT HORMONES IN DOPING

    Directory of Open Access Journals (Sweden)

    Biljana Vitošević

    2011-09-01

    Full Text Available Recombinant DNA technology has allowed rapid progress in creating biosynthetic gene products for the treatment of many diseases. In this way it can produce large amounts of hormone, which is intended for the treatment of many pathological conditions. Recombinant hormones that are commonly used are insulin, growth hormone and erythropoietin. Precisely because of the availability of these recombinant hormones, it started their abuse by athletes. Experiments in animal models confirmed the potential effects of some of these hormones in increasing physical abilities, which attracted the attention of athletes who push the limits of their competitive capability by such manipulation. The risks of the use of recombinant hormones in doping include serious consequences for the health of athletes. Methods of detection of endogenous hormones from recombined based on the use of a monoclonal antibodies, capillary zone electrophoresis and protein biomarkers

  2. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies.

    Science.gov (United States)

    Charco, Jorge M; Eraña, Hasier; Venegas, Vanessa; García-Martínez, Sandra; López-Moreno, Rafael; González-Miranda, Ezequiel; Pérez-Castro, Miguel Ángel; Castilla, Joaquín

    2017-12-14

    The misfolding of the cellular prion protein (PrP C ) into the disease-associated isoform (PrP Sc ) and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs). Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrP Sc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrP Sc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.

  3. Delayed recombination and cosmic parameters

    International Nuclear Information System (INIS)

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-01-01

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n s , and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z * =1078±11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1σ to R=1.734±0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: ε α i <0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  4. Mesothelin confers pancreatic cancer cell resistance to TNF-α-induced apoptosis through Akt/PI3K/NF-κB activation and IL-6/Mcl-1 overexpression

    Directory of Open Access Journals (Sweden)

    Li Min

    2011-08-01

    Full Text Available Abstract Background Previous studies showed that mesothelin (MSLN plays important roles in survival of pancreatic cancer (PC cells under anchorage dependent/independent conditions as well as resistance to chemotherapy. The recent success of intratumorally-injected adeno-encoded, chemo/radiation-inducible-promoter driven hTNF-α, (TNFerade + gemcitabine in pre-clinical models of PC have renewed interest in use of TNF-α as a therapeutic component. To help find additional factors which might affect the therapy, we examined the resistance of MSLN-overexpressing pancreatic cancer cell lines to TNF-α-induced growth inhibition/apoptosis. Methods Stable MSLN overexpressing MIA PaCa-2 cells (MIA-MSLN, stable MSLN-silenced AsPC-1 cells (AsPC-shMSLN and other pancreatic cells (MIA-PaCa2, Panc 28, Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 were used. NF-κB activation was examined by western blots and luciferase reporter assay. TNF-α induced growth inhibition/apoptosis was measured by MTT, TUNEL assay and caspase activation. IL-6 was measured using luminex based assay. Results Compared to low endogenous MSLN-expressing MIA PaCa-2 and Panc 28 cells, high endogenous MSLN-expressing Capan-1, BxPC3, PL 45, Hs 766T, AsPC-1, Capan-2, Panc 48 cells were resistant to TNF-α induced growth inhibition. Stable MSLN overexpressing MIA-PaCa2 cells (MIA-MSLN were resistant to TNF-α-induced apoptosis while stable MSLN-silenced AsPC1 cells (AsPC-shMSLN were sensitive. Interestingly, TNF-α-treated MIA-MSLN cells showed increased cell cycle progression and cyclin A induction, both of which were reversed by caspase inhibition. We further found that MIA-MSLN cells showed increased expression of anti-apoptotic Bcl-XL and Mcl-1; deactivated (p-Ser75 BAD, and activated (p-Ser70 Bcl-2. Constitutively activated NF-κB and Akt were evident in MIA-MSLN cells that could be suppressed by MSLN siRNA with a resultant increase in sensitivity of TNF-α induced apoptosis

  5. Construction and expression of an anti-VEGFR2 Nanobody-Fc fusionbody in NS0 host cell.

    Science.gov (United States)

    Qasemi, Maryam; Behdani, Mahdi; Shokrgozar, Mohammad Ali; Molla-Kazemiha, Vahid; Mohseni-Kuchesfahani, Homa; Habibi-Anbouhi, Mahdi

    2016-07-01

    Angiogenesis is the formation of new blood vessels which is involved in migration, growth and differentiation of endothelial cells. This process regularly occurs during growth and development in children however, in adults is usually part of a disease process such as cancer. The vascular endothelial growth factor (VEGF) is a vital player in the vascular development and angiogenesis in physiological and pathological processes. Camelid's immune system has unique antibodies which are composed of only a heavy chain homodimer and the variable domain (VHH, Nanobody). Nanobodies are small, around 15 kDa and stable. In this study, we engineered and constructed a new Nanobody-Fc fusion protein (fusionbody) composed of an anti-VEGFR2 Nanobody and an Fc fragment of human IgG1 antibody. The recombinant vector was transfected into NS0 host cells. Stable producer clones were developed and the recombinant fusionbody was expressed and purified. Functional assay showed the anti-VEGFR2 fusionbody could bind to VEGFR2 on cell surface via VHH part and could mediate killing the targeted cells through direct cell death and complement-dependent cytotoxicity (CDC). Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Meiotic recombination in human oocytes.

    Directory of Open Access Journals (Sweden)

    Edith Y Cheng

    2009-09-01

    Full Text Available Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g., MLH1 in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and, more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for the presence of "vulnerable" crossover configurations in the fetal oocyte, consistent with the idea that these are subsequently translated into nondisjunctional events in the adult oocyte.

  7. Electron - ion recombination processes - an overview

    International Nuclear Information System (INIS)

    Hahn, Yukap

    1997-01-01

    Extensive theoretical and experimental studies have been carried out for the past 20 years on electron - ion recombination processes, as they are applied to the analysis of astrophysical and laboratory plasmas. We review the basic understanding gained through these efforts, with emphasis on some of the more recent progress made in recombination theory as the recombining system is affected by time-dependent electric fields and plasma particles at low temperature. Together with collisional ionization and excitation processes, recombination is important in determining ionization balance and excited-state population in non-equilibrium plasmas. The radiation emitted by plasmas is usually the principal medium with which to study the plasma condition, as it is produced mainly during the recombination and decay of excited states of ions inside the plasma. This is especially true when the plasma under study is not readily accessible by direct probes, as in astrophysical plasmas. Moreover, external probes may sometimes cause undesirable disturbances of the plasma. Electron-ion recombination proceeds in several different modes. The direct modes include three-body recombination (TBR) and one-step radiative recombination (RR), all to the ground- and singly-excited states of the target ions. By contrast, the indirect resonant mode is a two-step dielectronic recombination (DR), which proceeds first with the formation of doubly-excited states by radiationless excitation/capture. The resonant states thus formed may relax by autoionization and/or radiative cascades. For more exotic modes of recombination, we consider off-shell dielectronic recombination (radiative DR = RDR), in which an electron capture is accompanied by simultaneous radiative emission and excitation of the target ion. Some discussion on attachment of electrons to neutral atoms, resulting in the formation of negative ions, is also given. When resonance states involve one or more electrons in high Rydberg states

  8. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  9. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  10. First-principles study of Frenkel pair recombination in tungsten

    International Nuclear Information System (INIS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the 〈1 1 1〉 line of self-interstitial atom pair.

  11. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  12. Recombination properties of dislocations in GaN

    Science.gov (United States)

    Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.

    2018-04-01

    The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.

  13. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria

    Science.gov (United States)

    Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligo recombination is one type of recombineering that uses ssDNA olig...

  14. [Serologic response to a DNA recombinant vaccine against hepatitis B in natives of the Peruvian Amazonian jungle].

    Science.gov (United States)

    Colichón, A; Vildósola, H; Sjogren, M; Cantella, R; Rojas, C

    1990-01-01

    Large areas of the Amazon basin in Brazil, Colombia, Ecuador, and in the nonoriental region of the peruvian jungle have been found to be hyperendemic to Hepatitis B with high prevalence of asymptomatic carriers (11 to 25%) and, in more selected areas, Hepatitis Delta has been also reported. In the present report, we have studied 108 volunteers from six different Jivaroes communities living in a hyperendemic Hepatitis B area. They received 2 doses of DNA recombinant yeast derivated HBV vaccine. All the selected persons were HBsAb negatives, but many (80%) had antibodies to HBc. Following immunization schedule, 80% responded with the formation of HBsAb; a better seroconversion was achieved in those negatives to anticore IgG compared with those having HBcAb. We obtained 90% of seroconversion in spite of the fact that our vaccination schedule was prolonged up to 10 months from the one recommended by the manufacturer. The vaccination schedule 0,4, 14 months, and the schedule 0,4 months, had 76 and 29% of seroconversion, respectively. We want to point out three observations: 1) It is quite possible that many of the Anti-core positives, that did not respond to vaccination were carriers of HBsAg undetectable by the conventional EIA test carried out; 2) The seroconversion rate in these natives was low (up to six months after the vaccination schedule); and 3) Many of the HBcAb were false positives and many of them were recently infected. We conclude: A) It is highly important to assess the anti-HBs hyperendemic areas before attempting vaccinations; B) All persons negative to anti-HBs should be vaccinated in spite to anticore antibodies; C) Areas with difficult access could be vaccinated even until 10 months without affecting good results, and D) DNA recombinant vaccine (ENGERIX B) was well tolerated. No side effects were observed.

  15. Anti-signal recognition particle autoantibody ELISA validation and clinical associations.

    Science.gov (United States)

    Aggarwal, Rohit; Oddis, Chester V; Goudeau, Danielle; Fertig, Noreen; Metes, Ilinca; Stephens, Chad; Qi, Zengbiao; Koontz, Diane; Levesque, Marc C

    2015-07-01

    The aim of this study was to develop and validate a quantitative anti-signal recognition particle (SRP) autoantibody serum ELISA in patients with myositis and longitudinal association with myositis disease activity. We developed a serum ELISA using recombinant purified full-length human SRP coated on ELISA plates and a secondary antibody that bound human IgG to detect anti-SRP binding. Protein immunoprecipitation was used as the gold standard for the presence of anti-SRP. Serum samples from three groups were analysed: SRP(+) myositis subjects by immunoprecipitation, SRP(-) myositis subjects by immunoprecipitation and non-myositis controls. The ELISA's sensitivity, specificity, positive predictive value and negative predictive value were evaluated. Percentage agreement and test-retest reliability were assessed. Serial samples from seven SRP immunoprecipitation-positive subjects were also tested, along with serum muscle enzymes and manual muscle testing. Using immunoprecipitation, we identified 26 SRP(+) myositis patients and 77 SRP(-) controls (including 38 patients with necrotizing myopathy). Non-myositis control patients included SLE (n = 4) and SSc (n = 7) patients. Anti-SRP positivity by ELISA showed strong agreement (97.1%) with immunoprecipitation (κ = 0.94). The sensitivity, specificity, positive predictive value, and negative predictive value of the anti-SRP ELISA were 88, 100, 100 and 96, respectively. The area under the curve was 0.94, and test-retest reliability was strong (r = 0.91, P < 0.001). Serial samples showed that anti-SRP levels paralleled changes in muscle enzymes and manual muscle testing. We developed a quantitative ELISA for detecting serum anti-SRP autoantibodies and validated the assay in myositis. Longitudinal assessment of SRP levels by ELISA may be a useful biomarker for disease activity. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions

  16. Recombination: the good, the bad and the variable.

    Science.gov (United States)

    Stapley, Jessica; Feulner, Philine G D; Johnston, Susan E; Santure, Anna W; Smadja, Carole M

    2017-12-19

    Recombination, the process by which DNA strands are broken and repaired, producing new combinations of alleles, occurs in nearly all multicellular organisms and has important implications for many evolutionary processes. The effects of recombination can be good , as it can facilitate adaptation, but also bad when it breaks apart beneficial combinations of alleles, and recombination is highly variable between taxa, species, individuals and across the genome. Understanding how and why recombination rate varies is a major challenge in biology. Most theoretical and empirical work has been devoted to understanding the role of recombination in the evolution of sex-comparing between sexual and asexual species or populations. How recombination rate evolves and what impact this has on evolutionary processes within sexually reproducing organisms has received much less attention. This Theme Issue focusses on how and why recombination rate varies in sexual species, and aims to coalesce knowledge of the molecular mechanisms governing recombination with our understanding of the evolutionary processes driving variation in recombination within and between species. By integrating these fields, we can identify important knowledge gaps and areas for future research, and pave the way for a more comprehensive understanding of how and why recombination rate varies. © 2017 The Authors.

  17. Genetic recombination of the hepatitis C virus: clinical implications.

    Science.gov (United States)

    Morel, V; Fournier, C; François, C; Brochot, E; Helle, F; Duverlie, G; Castelain, S

    2011-02-01

    Genetic recombination is a well-known feature of RNA viruses that plays a significant role in their evolution. Although recombination is well documented for Flaviviridae family viruses, the first natural recombinant strain of hepatitis C virus (HCV) was identified as recently as 2002. Since then, a few other natural inter-genotypic, intra-genotypic and intra-subtype recombinant HCV strains have been described. However, the frequency of recombination may have been underestimated because not all known HCV recombinants are screened for in routine practice. Furthermore, the choice of treatment regimen and its predictive outcome remain problematic as the therapeutic strategy for HCV infection is genotype dependent. HCV recombination also raises many questions concerning its mechanisms and effects on the epidemiological and physiopathological features of the virus. This review provides an update on recombinant HCV strains, the process that gives rise to recombinants and clinical implications of recombination. © 2010 Blackwell Publishing Ltd.

  18. HN125: A Novel Immunoadhesin Targeting MUC16 with Potential for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Xinran Xiang, Mingqian Feng, Mildred Felder, Joseph P. Connor, Yan-gao Man, Manish S. Patankar, Mitchell Ho

    2011-01-01

    Full Text Available Background: The mucin MUC16 expresses the repeating peptide epitope CA125 that has been known for decades to be a well-validated cancer marker that is overexpressed on the cell surface of ovarian cancers and other malignant tumors. In spite of recent efforts to make mouse monoclonal antibodies to MUC16 to treat ovarian cancer, a human monoclonal antibody against this mucin has not been described. MUC16 interacts with mesothelin, a protein that mediates heterotypic cancer cell adhesion, indicating that MUC16 and mesothelin play an important role in the peritoneal implantation and metastasis of ovarian tumors. Therefore, a suitable candidate for therapeutic targeting of MUC16 would functionally block the interaction of MUC16 and mesothelin.Methodology/Principal Findings: Here we report the generation of a novel immunoadhesin, HN125, against MUC16 that consists of a functional MUC16 binding domain of mesothelin (IAB and the Fc portion of a human antibody IgG1. The yield for purified HN125 proteins is over 100 µg/mL of HEK-293 culture supernatant. We show that HN125 has high and specific affinity for MUC16-expressing cancer cells by flow cytometry and immunohistochemistry. HN125 has the ability to disrupt the heterotypic cancer cell adhesion mediated by the MUC16-mesothelin interaction. Moreover, it elicits strong antibody-dependent cell mediated cytotoxicity against MUC16-positive cancer cells in vitro.Conclusion/Significance: This report describes a novel human immunotherapeutic agent highly specific for MUC16 with potential for treating ovarian cancer and other MUC16-expressing tumors. Because of its lower immunogenicity in patients, a fully human protein is the most desirable format for clinical applications. We believe that the methods developed here may apply to the generation of other tumor-targeting immunoadhesins when it is difficult to obtain a human monoclonal antibody to a given antigen for clinical applications. The resultant

  19. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as w...

  20. Test tube systems with cutting/recombination operations

    Energy Technology Data Exchange (ETDEWEB)

    Freund, R. [Technische Universitaet Wien (Austria); Csuhaj-Varju, E. [Computer and Automation Institute, Budapest (Hungary); Wachtler, F. [Universitaet Wien (Austria)

    1996-12-31

    We introduce test tube systems based on operations that are closely related to the splicing operations, i.e. we consider the operations of cutting a string at a specific site into two pieces with marking them at the cut ends and of recombining two strings with specifically marked endings. Whereas in the splicing of two strings these strings are cut at specific sites and the cut pieces are recombined immediately in a crosswise way, in CR(cutting/recombination)-schemes cutting can happen independently from recombining the cut pieces. Test tube systems based on these operations of cutting and recombination turn out to have maximal generative power even if only very restricted types of input filters for the test tubes are used for the redistribution of the contents of the test tubes after a period of cuttings and recombinations in the test tubes. 10 refs.

  1. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  2. Genetic evidence for inducibility of recombination competence in yeast

    International Nuclear Information System (INIS)

    Fabre, F.; Roman, H.

    1977-01-01

    Recombination between unirradiated chromosomes was induced by UV or x-ray irradiation of haploids followed by a mating with heteroallelic diploids of Saccharomyces cerevisiae. The selected event of intragenic recombination did not involve the participation of the irradiated chromosome and apparently was not caused by lesions introduced into the unirradiated chromosomes by some indirect process. The results favor the idea that recombination is repressed in the majority of vegetative cells and that one effect of radiation is the release of some factor(s) necessary for recombination. Consequently, the proportion of competent cells (i.e., cells able to recombine) in the population increases. This competent state seems necessary not only for the recombinational repair of radiation-induced lesions but also, since recombinants are produced in the absence of such lesions, for spontaneous recombination. Photoreactivation of the UV-irradiated haploids led to a decrease in the production of recombinants. Hence, lesions in the DNA appear to be responsible for the induction of the recombinational ability

  3. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  4. Recombination Modulates How Selection Affects Linked Sites in Drosophila

    Science.gov (United States)

    McGaugh, Suzanne E.; Heil, Caiti S. S.; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L.; Noor, Mohamed A. F.

    2012-01-01

    One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. PMID:23152720

  5. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  6. Function-blocking antibodies to human vascular adhesion protein-1: a potential anti-inflammatory therapy.

    Science.gov (United States)

    Kirton, Christopher M; Laukkanen, Marja-Leena; Nieminen, Antti; Merinen, Marika; Stolen, Craig M; Armour, Kathryn; Smith, David J; Salmi, Marko; Jalkanen, Sirpa; Clark, Michael R

    2005-11-01

    Human vascular adhesion protein-1 (VAP-1) is a homodimeric 170-kDa sialoglycoprotein that is expressed on the surface of endothelial cells and functions as a semicarbazide-sensitive amine oxidase and as an adhesion molecule. Blockade of VAP-1 has been shown to reduce leukocyte adhesion and transmigration in in vivo and in vitro models, suggesting that VAP-1 is a potential target for anti-inflammatory therapy. In this study we have constructed mouse-human chimeric antibodies by genetic engineering in order to circumvent the potential problems involved in using murine antibodies in man. Our chimeric anti-VAP-1 antibodies, which were designed to lack Fc-dependent effector functions, bound specifically to cell surface-expressed recombinant human VAP-1 and recognized VAP-1 in different cell types in tonsil. Furthermore, the chimeric antibodies prevented leukocyte adhesion and transmigration in vitro and in vivo. Hence, these chimeric antibodies have the potential to be used as a new anti-inflammatory therapy.

  7. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    Science.gov (United States)

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  8. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  9. [AntiEGFRnano inhibites proliferation and migration of estrogen-dependent Ishikawa cells of human endometrial cancer cell line].

    Science.gov (United States)

    Diao, Zhen-yu; Lu, Wu-guang; Cao, Peng; Hu, Yun-long; Zhou, Xing; Xue, Ping-ping; Shen, Li; Sun, Hai-xiang

    2012-10-01

    Nanobody is a kind of antibody from camel, which misses light chain. Nanobody has the same antigen binding specificity and affinity as mAb. Moreover, because of its small molecular weight, high stability and easy preparation, nanobody has great value of biomedical applications. In this study, we successfully prepared highly pure antiEGFR nanobody in E.coli using genetic engineering techniques. Cell proliferation assay (CCK-8 assay) and migration experiments (cell scratch test and Transwell assay) indicated that the recombinant antiEGFRnano can significantly inhibit the proliferation and migration of endometrial cancer cells. These results provide a new way of thinking and methods for EGFR-targeted therapy of endometrial cancer.

  10. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  11. Mitigating Mitochondrial Genome Erosion Without Recombination.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Kokko, Hanna; Christie, Joshua R

    2017-11-01

    Mitochondria are ATP-producing organelles of bacterial ancestry that played a key role in the origin and early evolution of complex eukaryotic cells. Most modern eukaryotes transmit mitochondrial genes uniparentally, often without recombination among genetically divergent organelles. While this asymmetric inheritance maintains the efficacy of purifying selection at the level of the cell, the absence of recombination could also make the genome susceptible to Muller's ratchet. How mitochondria escape this irreversible defect accumulation is a fundamental unsolved question. Occasional paternal leakage could in principle promote recombination, but it would also compromise the purifying selection benefits of uniparental inheritance. We assess this tradeoff using a stochastic population-genetic model. In the absence of recombination, uniparental inheritance of freely-segregating genomes mitigates mutational erosion, while paternal leakage exacerbates the ratchet effect. Mitochondrial fusion-fission cycles ensure independent genome segregation, improving purifying selection. Paternal leakage provides opportunity for recombination to slow down the mutation accumulation, but always at a cost of increased steady-state mutation load. Our findings indicate that random segregation of mitochondrial genomes under uniparental inheritance can effectively combat the mutational meltdown, and that homologous recombination under paternal leakage might not be needed. Copyright © 2017 by the Genetics Society of America.

  12. Anti-α-galactosidase A antibody response to agalsidase beta treatment

    DEFF Research Database (Denmark)

    Wilcox, William R; Linthorst, Gabor E; Germain, Dominique P

    2012-01-01

    Agalsidase beta, a form of recombinant human α-galactosidase A (αGAL), is approved for use as enzyme replacement therapy (ERT) for Fabry disease. An immunogenic response against a therapeutic protein could potentially impact its efficacy or safety. The development of anti-αGAL IgG antibodies...... was evaluated in 571 men and 251 women from the Fabry Registry who were treated with agalsidase beta. Most men developed antibodies (416 of 571, 73%), whereas most women did not (31 of 251, 12%). Women were also significantly more likely to tolerize than men; whereas 18 of 31 women tolerized (58%, 95%CI: 52......%-64%), only 47 of 416 men tolerized during the observation period (11%, 95% CI: 8%-15%). Patients who eventually tolerized had lower median peak anti-αGAL IgG antibody titers than patients who remained seropositive at their most recent assessment (400 versus 3200 in men, 200 versus 400 in women, respectively...

  13. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  14. Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody.

    Science.gov (United States)

    Piperno, G M; López-Requena, A; Predonzani, A; Dorvignit, D; Labrada, M; Zentilin, L; Burrone, O R; Cesco-Gaspere, M

    2015-12-01

    The ganglioside GM3(Neu5Gc) has gained increasing attention as therapeutic target because of its selective expression in various human tumours, such as melanoma, breast and lung cancer. 14F7 is a mouse IgG1 with specific reactivity to GM3(Neu5Gc)-positive tumours. The therapeutic activity of 14F7 has also been demonstrated in vivo, through its repetitive passive administration in tumour-bearing animals. In this work we used an alternative strategy to deliver recombinant 14F7 in vivo and analysed the therapeutic efficacy of this approach. We engineered a recombinant adeno-associated vector to direct the expression of secretable recombinant 14F7 in BALB/c animals. A single administration of the rAAV induced efficient production and secretion of the antibody in the bloodstream, with an expression level reaching plateau at ∼3 weeks after injection and persisting for almost a year. Strikingly, upon challenge with GM3(Neu5Gc)-positive X63-AG8.653 myeloma cells, tumour development was significantly delayed in animals treated with rAAV-14F7 with respect to animals treated with a control rAAV codifying for an irrelevant antibody. Finally, no significant differences in survival proportion were detected in animals injected with rAAV-14F7 or treated by standard administration of repetitive doses of purified monoclonal antibody 14F7.

  15. Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors.

    Science.gov (United States)

    Burtoloso, Antonio C B; de Albuquerque, Sérgio; Furber, Mark; Gomes, Juliana C; Gonçalez, Cristiana; Kenny, Peter W; Leitão, Andrei; Montanari, Carlos A; Quilles, José Carlos; Ribeiro, Jean F R; Rocha, Josmar R

    2017-02-01

    The cysteine protease cruzipain is considered to be a validated target for therapeutic intervention in the treatment of Chagas disease. Anti-trypanosomal activity against the CL Brener strain of T. cruzi was observed in the 0.1 μM to 1 μM range for three nitrile-based cysteine protease inhibitors based on two scaffolds known to be associated with cathepsin K inhibition. The two compounds showing the greatest potency against the trypanosome were characterized by EC50 values (0.12 μM and 0.25 μM) that were an order of magnitude lower than the corresponding Ki values measured against cruzain, a recombinant form of cruzipain, in an enzyme inhibition assay. This implies that the anti-trypanosomal activity of these two compounds may not be explained only by the inhibition of the cruzain enzyme, thereby triggering a putative polypharmacological profile towards cysteine proteases.

  16. The effect of a single recombination event

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Jensen, Thomas Mailund; Wiuf, Carsten

    We investigate the variance in how visible a single recombination event is in a SNP data set as a function of the type of recombination event and its age. Data is simulated under the coalescent with recombination and inference is by the popular composite likelihood methods. The major determinant...

  17. Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen.

    Science.gov (United States)

    Alves, Rúbens Prince Dos Santos; Pereira, Lennon Ramos; Fabris, Denicar Lina Nascimento; Salvador, Felipe Scassi; Santos, Robert Andreata; Zanotto, Paolo Marinho de Andrade; Romano, Camila Malta; Amorim, Jaime Henrique; Ferreira, Luís Carlos de Souza

    2016-06-01

    Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Response of booster dose of cuban recombinant hepatitis-B vaccine in nonresponder and hyporesponder children

    International Nuclear Information System (INIS)

    Dahifar, H.; Mousavi, F.; Ghorbani, A.

    2007-01-01

    Acute hepatitis B infection can debilitate a patient for weeks and occasionally has a fatal outcome, while chronic infection is a major threat to the individual. To assess response of nonresponder and hyporesponder children to booster dose of Cuban recombinant hepatitis B vaccine. An interventional, descriptive study has been conducted on children who had been immunized with Cuban recombinant Hepatitis B vaccine and their antibody titers were <10mIU/ml (nonresponder) and 10-100mIU/ml (hyporesponder) administered booster dose of the same vaccine in their Deltoid muscles. The response of 141 children with the mean age of 1.9 years to booster dose of vaccine were 94.3% and 100% vaccines with the first and second booster dose of vaccination respectively. The anti-HBs titer in nonresponders and hyporesponders were 468+-346 and 783+-346mIU/ml respectively with significant differences between two groups (P=0.001). This study demonstrate moderately increase antibody production in the majority of vaccines with single supplementary vaccine. (author)

  19. Anti-high mobility group box-1 antibody therapy for traumatic brain injury.

    Science.gov (United States)

    Okuma, Yu; Liu, Keyue; Wake, Hidenori; Zhang, Jiyong; Maruo, Tomoko; Date, Isao; Yoshino, Tadashi; Ohtsuka, Aiji; Otani, Naoki; Tomura, Satoshi; Shima, Katsuji; Yamamoto, Yasuhiko; Yamamoto, Hiroshi; Takahashi, Hideo K; Mori, Shuji; Nishibori, Masahiro

    2012-09-01

    High mobility group box-1 (HMGB1) plays an important role in triggering inflammatory responses in many types of diseases. In this study, we examined the involvement of HMGB1 in traumatic brain injury (TBI) and evaluated the ability of intravenously administered neutralizing anti-HMGB1 monoclonal antibody (mAb) to attenuate brain injury. Traumatic brain injury was induced in rats or mice by fluid percussion. Anti-HMGB1 mAb or control mAb was administered intravenously after TBI. Anti-HMGB1 mAb remarkably inhibited fluid percussion-induced brain edema in rats, as detected by T2-weighted magnetic resonance imaging; this was associated with inhibition of HMGB1 translocation, protection of blood-brain barrier (BBB) integrity, suppression of inflammatory molecule expression, and improvement of motor function. In contrast, intravenous injection of recombinant HMGB1 dose-dependently produced the opposite effects. Experiments using receptor for advanced glycation end product (RAGE)(-/-) , toll-like receptor-4 (TLR4)(-/-) , and TLR2(-/-) mice suggested the involvement of RAGE as the predominant receptor for HMGB1. Anti-HMGB1 mAb may provide a novel and effective therapy for TBI by protecting against BBB disruption and reducing the inflammatory responses induced by HMGB1. Copyright © 2012 American Neurological Association.

  20. Recombination rate plasticity: revealing mechanisms by design

    Science.gov (United States)

    Sefick, Stephen; Rushton, Chase

    2017-01-01

    For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222

  1. A prime/boost strategy by DNA/fowlpox recombinants expressing a mutant E7 protein for the immunotherapy of HPV-associated cancers.

    Science.gov (United States)

    Radaelli, Antonia; De Giuli Morghen, Carlo; Zanotto, Carlo; Pacchioni, Sole; Bissa, Massimiliano; Franconi, Rosella; Massa, Silvia; Paolini, Francesca; Muller, Antonio; Venuti, Aldo

    2012-12-01

    Development of effective therapeutic vaccines against human papilloma virus (HPV) infections remains a priority, considering the high number of new cases of cervical cancer each year by high-risk HPVs, in particular by HPV-16. Vaccines expressing the E7 oncoprotein, which is detectable in all HPV-positive pre-cancerous and cancer cells, might clear already established tumors and support the treatment of HPV-related lesions. In this study, DNA or fowlpox virus recombinants expressing the harmless variant E7GGG of the HPV-16 E7 oncoprotein (DNA(E7GGG) and FP(E7GGG)) were generated. Two immunization regimens were tested in a pre-clinical mouse model by homologous (FP/FP) or heterologous (DNA/FP) prime-boost protocols to evaluate the immune response and therapeutic efficacy of the proposed HPV-16 vaccine. Low levels of anti-E7-specific antibodies were elicited after immunization, and in vivo experiments resulted in a higher number of tumor-free mice after the heterologous immunization. These results establish a preliminary indication for therapy of HPV-related tumors by the combined use of DNA and avipox recombinants, which might represent safer immunogens than vaccinia-based vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Recombination analysis based on the complete genome of bocavirus

    Directory of Open Access Journals (Sweden)

    Chen Shengxia

    2011-04-01

    Full Text Available Abstract Bocavirus include bovine parvovirus, minute virus of canine, porcine bocavirus, gorilla bocavirus, and Human bocaviruses 1-4 (HBoVs. Although recent reports showed that recombination happened in bocavirus, no systematical study investigated the recombination of bocavirus. The present study performed the phylogenetic and recombination analysis of bocavirus over the complete genomes available in GenBank. Results confirmed that recombination existed among bocavirus, including the likely inter-genotype recombination between HBoV1 and HBoV4, and intra-genotype recombination among HBoV2 variants. Moreover, it is the first report revealing the recombination that occurred between minute viruses of canine.

  3. Designing Trojan Horses | Center for Cancer Research

    Science.gov (United States)

    Waging battle against cancer cells without inflicting damage on normal tissue has long been a goal for cancer treatment. A new type of drug called immunotoxins may help make this goal a reality. Much like the Greeks used a wooden horse to get soldiers inside the gates of Troy, immunotoxins use clever genetic engineering to get a lethal toxin inside cancer cells. Each

  4. Optimization of an anti-HER2 nanobody expression using the Taguchi method.

    Science.gov (United States)

    Farasat, Alireza; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud; Yazdian, Fatemeh

    2017-09-14

    Despite being widely used in immunotherapy of cancer, whole antibodies are limited by several disadvantages. This has led to the advent of novel biomolecules such as nanobodies. Taguchi method is a statistical experimental design to study the effect of multiple variables in biological processes. In an effort to overexpress a recombinant anti-human epidermal growth factor receptor type 2 (HER2) nanobody, we performed a detailed study to find optimal condition of temperature, induction, culture media, vector, and host strain, using Taguchi methodology. A total of 16 various experiments were designed. Total protein of the formulated cultures were assessed by Bradford test and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by size exclusion high performance liquid chromatography to quantify the relative concentration of the nanobody in different expression settings. Western blotting was performed to confirm the expression of the anti-HER2 nanobody. When, individually, optimum parameters determined by Taguchi were applied, including SHuffle strain cultured in LB medium, induced with 0.4 mM isopropyl-β-D-thio-galactoside for 18 h at 24°C, production yield further increased by about 9% (25.4 mg/L), compared to the highest expression setting. Flow cytometry and enzyme-linked immunosorbent assay result indicated improved protein binding in optimized conditions. Overall, our findings provide a basis for further investigations on economical production of recombinant nanobodies to improve production yield and activity.

  5. FASEB Summer Research Conference. Genetic Recombination and Chromosome Rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Jinks-Robertson, Sue

    2002-02-01

    The 2001 meeting entitled ''Genetic Recombination and Genome Rearrangements'' was held July 21-26 in Snowmass, Colorado. The goal of the meeting was to bring together scientists using diverse approaches to study all aspects of genetic recombination. This goal was achieved by integrating talks covering the genetics, biochemistry and structural biology of homologous recombination, site-specific recombination, and nonhomologous recombination. The format of the meeting consisted of a keynote address on the opening evening, two formal plenary sessions on each of the four full meeting days, a single afternoon workshop consisting of short talks chosen from among submitted abstracts, and afternoon poster sessions on each of the four full meeting days. The eight plenary session were entitled: (1) Recombination Mechanisms, (2) Prokaryotic Recombination, (3) Repair and Recombination, (4) Site-specific Recombination and Transposition, (5) Eukaryotic Recombination I, (6) Genome Rearrangements, (7) Meiosis, and (8) Eukaryotic Recombination II. Each session included a mix of genetic, biochemical and structural talks; talks were limited to 20 minutes, followed by 10 minutes of very lively, general discussion. Much of the data presented in the plenary sessions was unpublished, thus providing attendees with the most up-to-date knowledge of this rapidly-moving field.

  6. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  7. Recombinant antigens from Phlebotomus perniciosus saliva as markers of canine exposure to visceral leishmaniases vector.

    Directory of Open Access Journals (Sweden)

    Jan Drahota

    Full Text Available BACKGROUND: Phlebotomus perniciosus is the main vector in the western Mediterranean area of the protozoan parasite Leishmania infantum, the causative agent of canine and human visceral leishmaniases. Infected dogs serve as a reservoir of the disease, and therefore measuring the exposure of dogs to sand fly bites is important for estimating the risk of L. infantum transmission. In bitten hosts, sand fly saliva elicits a specific antibody response that reflects the intensity of sand fly exposure. As screening of specific anti-saliva antibodies is limited by the availability of salivary gland homogenates, utilization of recombinant salivary proteins is a promising alternative. In this manuscript we show for the first time the use of recombinant salivary proteins as a functional tool for detecting P. perniciosus bites in dogs. METHODOLOGY/PRINCIPAL FINDINGS: The reactivity of six bacterially-expressed recombinant salivary proteins of P. perniciosus, yellow-related protein rSP03B, apyrases rSP01B and rSP01, antigen 5-related rSP07, ParSP25-like protein rSP08 and D7-related protein rSP04, were tested with sera of mice and dogs experimentally bitten by this sand fly using immunoblots and ELISA. In the immunoblots, both mice and canine sera gave positive reactions with yellow-related protein, both apyrases and ParSP25-like protein. A similar reaction for recombinant salivary proteins was observed by ELISA, with the reactivity of yellow-related protein and apyrases significantly correlated with the antibody response of mice and dogs against the whole salivary gland homogenate. CONCLUSIONS/SIGNIFICANCE: Three recombinant salivary antigens of P. perniciosus, yellow-related protein rSP03B and the apyrases rSP01B and rSP01, were identified as the best candidates for evaluating the exposure of mice and dogs to P. perniciosus bites. Utilization of these proteins, or their combination, would be beneficial for screening canine sera in endemic areas of visceral

  8. Exceptionally high levels of recombination across the honey bee genome.

    Science.gov (United States)

    Beye, Martin; Gattermeier, Irene; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Baines, John F; Schlipalius, David; Mougel, Florence; Emore, Christine; Rueppell, Olav; Sirviö, Anu; Guzmán-Novoa, Ernesto; Hunt, Greg; Solignac, Michel; Page, Robert E

    2006-11-01

    The first draft of the honey bee genome sequence and improved genetic maps are utilized to analyze a genome displaying 10 times higher levels of recombination (19 cM/Mb) than previously analyzed genomes of higher eukaryotes. The exceptionally high recombination rate is distributed genome-wide, but varies by two orders of magnitude. Analysis of chromosome, sequence, and gene parameters with respect to recombination showed that local recombination rate is associated with distance to the telomere, GC content, and the number of simple repeats as described for low-recombining genomes. Recombination rate does not decrease with chromosome size. On average 5.7 recombination events per chromosome pair per meiosis are found in the honey bee genome. This contrasts with a wide range of taxa that have a uniform recombination frequency of about 1.6 per chromosome pair. The excess of recombination activity does not support a mechanistic role of recombination in stabilizing pairs of homologous chromosome during chromosome pairing. Recombination rate is associated with gene size, suggesting that introns are larger in regions of low recombination and may improve the efficacy of selection in these regions. Very few transposons and no retrotransposons are present in the high-recombining genome. We propose evolutionary explanations for the exceptionally high genome-wide recombination rate.

  9. Three-particle recombination at low temperature: QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Roy, A.

    2001-01-01

    A theoretical study of three-body recombination of proton in presence of a spectator electron with electronic beam at near-zero temperature is presented using field theory and invariant Lorentz gauge. Contributions from the Feynman diagrams of different orders give an insight into the physics of the phenomena. Recombination rate coefficient is obtained for low lying principal quantum number n = 1 to 10. At a fixed ion beam temperature (300 K) recombination rate coefficient is found to increase in general with n, having a flat and a sharp peak at quantum states 3 to 5, respectively. In absence of any theoretical and experimental results for low temperature formation of H-atom by three-body recombination at low lying quantum states, we have presented the theoretical results of Stevefelt and group for three-body recombination of deuteron with electron along with the present results. Three-body recombination of antihydrogen in antiproton-positron plasma is expected to yield similar result as that for three-body recombination of hydrogen formation in proton-electron plasma. The necessity for experimental investigation of low temperature three-body recombination at low quantum states is stressed. (author)

  10. Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants

    Directory of Open Access Journals (Sweden)

    Martina eDicker

    2016-01-01

    Full Text Available The production of therapeutic antibodies to combat pathogens and treat diseases such as cancer is of great interest for the biotechnology industry. The recent development of plant-based expression systems has demonstrated that plants are well-suited for the production of recombinant monoclonal antibodies with defined glycosylation. Compared to immunoglobulin G (IgG, less effort has been undertaken to express immunoglobulin A (IgA, which is the most prevalent antibody class at mucosal sites and a promising candidate for novel recombinant biopharmaceuticals with enhanced anti-tumour activity. Here, we transiently expressed recombinant human IgA1 against the VP8* rotavirus antigen in glyco-engineered deltaXT/FT Nicotiana benthamiana plants. Mass spectrometric analysis of IgA1 glycopeptides revealed the presence of complex biantennary N-glycans with terminal N-acetylglucosamine present on the N-glycosylation site of the CH2 domain in the IgA1 alpha chain. Analysis of the peptide carrying nine potential O-glycosylation sites in the IgA1 alpha chain hinge region showed the presence of plant-specific modifications including hydroxyproline formation and the attachment of pentoses. By co-expression of enzymes required for initiation and elongation of human O-glycosylation it was possible to generate disialylated mucin-type core 1 O-glycans on plant-produced IgA1. Our data demonstrate that deltaXT/FT Nicotiana benthamiana plants can be engineered towards the production of recombinant IgA1 with defined human-type N- and O-linked glycans.

  11. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Ceran Ceyhan

    2012-10-01

    Full Text Available Abstract Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α. Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells

  12. Sensitive radioimmunoassay for detection of antibodies to recombinant human interferon-alpha A

    International Nuclear Information System (INIS)

    Palleroni, A.V.; Trown, P.W.

    1986-01-01

    A radioimmunoassay (RIA) for the detection of antibodies to recombinant human leukocyte interferon A (rHuIFN-alpha A) in human serum has been developed and validated against the standard antiviral neutralization bioassay (ANB). The assay measures the binding of 125 I-labeled rHuIFN-alpha A to immunoglobulins in serum. Aliquots of patients' sera are incubated with 125 I-rHuIFN-alpha A and the complexes formed between antibodies in the sera and the 125 I-rHuIFN-alpha A are precipitated with goat anti-human IgG serum. The radioactivity in the immune precipitate is a measure of the quantity of antibody (if present) in the serum. The sensitivity of this RIA is 5 ng of IgG/ml of serum

  13. Activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  14. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  15. X-ray- and TEM-induced mitotic recombination in Drosophila melanogaster: Unequal and sister-strand recombination

    International Nuclear Information System (INIS)

    Becker, H.J.

    1975-01-01

    Twin mosaic spots of dark-apricot and light-apricot ommatidia were found in the eyes of wsup(a)/wsup(a) females, of wsup(a) males, of females homozygous for In(1)sc 4 , wsup(a) and of attached-X females homozygous for wsup(a). The flies were raised from larvae which had been treated with 1,630 R of X-rays at the age of 48-52 hours. An additional group of wsup(a)/wsup(a) females and wsup(a) males came from larvae that had been fed with triethylene melamine (TEM) at the age of 22-24 hours. The twin spots apparently were the result of induced unequal mitotic recombination, i.e. from unequal sister-strand recombination in the males and from unequal sister-strand recombination as well as, possibly, unequal recombination between homologous strands in the females. That is, a duplication resulted in wsup(a)Dpwsup(a)/wsup(a) dark-apricto ommatidia and the corresponding deficiency in an adjacent area of wsup(a)/Dfwsup(a) light-apricot ommatidia. In an additional experiment sister-strand mitotic recombination in the ring-X chromosome of ring-X/rod-X females heterozygous for w and wsup(co) is believed to be the cause for X-ray induced single mosaic spots that show the phenotype of the rod-X marker. (orig.) [de

  16. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants.

    Science.gov (United States)

    Chen, Nanhua; Li, Shuangjie; Zhou, Rongyun; Zhu, Meiqin; He, Shan; Ye, Mengxue; Huang, Yucheng; Li, Shuai; Zhu, Cong; Xia, Pengpeng; Zhu, Jianzhong

    2017-10-15

    Porcine epidemic diarrhea virus (PEDV) causes devastating impact on global pig-breeding industry and current vaccines have become not effective against the circulating PEDV variants since 2011. During the up-to-date investigation of PEDV prevalence in Fujian China 2016, PEDV was identified in vaccinated pig farms suffering severe diarrhea while other common diarrhea-associated pathogens were not detected. Complete genomes of two PEDV representatives (XM1-2 and XM2-4) were determined. Genomic comparison showed that these two viruses share the highest nucleotide identities (99.10% and 98.79%) with the 2011 ZMDZY strain, but only 96.65% and 96.50% nucleotide identities with the attenuated CV777 strain. Amino acid alignment of spike (S) proteins indicated that they have the similar mutation, insertion and deletion pattern as other Chinese PEDV variants but also contain several unique substitutions. Phylogenetic analysis showed that 2016 PEDV variants belong to the cluster of recombination strains but form a new branch. Recombination detection suggested that both XM1-2 and XM2-4 are inter-subgroup recombinants with breakpoints within ORF1b. Remarkably, the natural recombinant HNQX-3 isolate serves as a parental virus for both natural recombinants identified in this study. This up-to-date investigation provides the direct evidence that natural recombinants may serve as parental viruses to generate recombined PEDV progenies that are probably associated with the vaccination failure. Copyright © 2017. Published by Elsevier B.V.

  17. Rapid generation of markerless recombinant MVA vaccines by en passant recombineering of a self-excising bacterial artificial chromosome.

    Science.gov (United States)

    Cottingham, Matthew G; Gilbert, Sarah C

    2010-09-01

    The non-replicating poxviral vector modified vaccinia virus Ankara (MVA) is currently a leading candidate for development of novel recombinant vaccines against globally important diseases. The 1980s technology for making recombinant MVA (and other poxviruses) is powerful and robust, but relies on rare recombination events in poxviral-infected cells. In the 21st century, it has become possible to apply bacterial artificial chromosome (BAC) technology to poxviruses, as first demonstrated by B. Moss' lab in 2002 for vaccinia virus. A similar BAC clone of MVA was subsequently derived, but while recombination-mediated genetic engineering for rapid production was used of deletion mutants, an alternative method was required for efficient insertion of transgenes. Furthermore "markerless" viruses, which carry no trace of the selectable marker used for their isolation, are increasingly required for clinical trials, and the viruses derived via the new method contained the BAC sequence in their genomic DNA. Two methods are adapted to MVA-BAC to provide more rapid generation of markerless recombinants in weeks rather than months. "En passant" recombineering is applied to the insertion of a transgene expression cassette and the removal of the selectable marker in bacteria; and a self-excising variant of MVA-BAC is constructed, in which the BAC cassette region is rapidly and efficiently lost from the viral genome following rescue of the BAC into infectious virus. These methods greatly facilitate and accelerate production of recombinant MVA, including markerless constructs. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Anti-aggregatory effect of cyclodextrins in the refolding process of recombinant growth hormones from Escherichia coli inclusion bodies

    DEFF Research Database (Denmark)

    Bajorunaite, Egle; Cirkovas, Andrejus; Radzevicius, Kostas

    2009-01-01

    Cyclodextrins with different ring size and ring substituents were tested for recombinant mink and porcine growth hormones aggregation suppression in the refolding process from Escherichia coli inclusion bodies. Methyl-β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin show a positive effect...... on the aggregation suppression of both proteins. The influence of different methyl-β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin concentrations on the renaturation yield of both growth hormones was investigated. Moreover, methyl-β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin suppress not only folding...

  19. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Akihiro; Tamakoshi, Masato; Fujimoto, Shohei; Fujiwara, Hiroyuki, E-mail: fujiwara@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193 (Japan); Tampo, Hitoshi; Kim, Kang Min; Kim, Shinho; Shibata, Hajime; Niki, Shigeru [Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2016-08-14

    In developing photovoltaic devices with high efficiencies, quantitative determination of the carrier loss is crucial. In conventional solar-cell characterization techniques, however, photocurrent reduction originating from parasitic light absorption and carrier recombination within the light absorber cannot be assessed easily. Here, we develop a general analysis scheme in which the optical and recombination losses in submicron-textured solar cells are evaluated systematically from external quantum efficiency (EQE) spectra. In this method, the optical absorption in solar cells is first deduced by imposing the anti-reflection condition in the calculation of the absorptance spectrum, and the carrier extraction from the light absorber layer is then modeled by considering a carrier collection length from the absorber interface. Our analysis method is appropriate for a wide variety of photovoltaic devices, including kesterite solar cells [Cu{sub 2}ZnSnSe{sub 4}, Cu{sub 2}ZnSnS{sub 4}, and Cu{sub 2}ZnSn(S,Se){sub 4}], zincblende CdTe solar cells, and hybrid perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells, and provides excellent fitting to numerous EQE spectra reported earlier. Based on the results obtained from our EQE analyses, we discuss the effects of parasitic absorption and carrier recombination in different types of solar cells.

  20. Mechanisms and factors that influence high frequency retroviral recombination

    DEFF Research Database (Denmark)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse...... transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity...... of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment...

  1. The use of an in vitro microneutralization assay to evaluate the potential of recombinant VP5 protein as an antigen for vaccinating against Grass carp reovirus

    Directory of Open Access Journals (Sweden)

    Xu Dan

    2011-03-01

    Full Text Available Abstract Background Grass carp reovirus (GCRV is the causative pathogen of grass carp hemorrhagic disease, one of the major diseases damaging grass carp Ctenopharyngon idellus breeding industry in China. Prevention and control of the disease is impeded largely due to the lack of research in economic subunit vaccine development. This study aimed to evaluate the potential of viral outer shell protein VP5 as subunit vaccine. Methods The vp5 gene was isolated from the viral genome through RT-PCR and genetically engineered to express the recombinant VP5 protein in E coli. The viral origin of the recombinant protein was confirmed by Western blot analysis with a monoclonal antibody against viral VP5 protein. Polyclonal antibody against the recombinant VP5 protein was prepared from mice. A microneutralization assay was developed to test its neutralizing ability against GCRV infection in cell culture. Results The GST-VP5 fusion protein (rVP5 was produced from E. Coli with expected molecular weight of 90 kDa. The protein was purified and employed to prepare anti-VP5 polyclonal antibody from mice. The anti-VP5 antibody was found to neutralize GCRV through in vitro microneutralization assay and viral progeny quantification analysis. Conclusions The present study showed that the viral VP5 protein was involved in viral infection and bacterially-expressed VP5 could be suitable for developing subunit vaccine for the control of GCRV infection.

  2. Induction of homologous recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Simon, J R; Moore, P D

    1988-09-01

    We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, or the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.

  3. Spectrum Recombination.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  4. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  5. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  6. Production of polyclonal antisera using recombinant coat proteins of Grapevine leafroll-associated virus 2 and Grapevine virus B Produção de anti-soros policlonais a partir de proteínas capsidiais recombinantes de Grapevine leafroll-associated virus 2 e Grapevine virus B

    Directory of Open Access Journals (Sweden)

    Paula Radaelli

    2008-10-01

    Full Text Available The objective of this work was to produce and characterize specific antisera against Brazilian isolates of Grapevine leafroll-associated virus 2 (GLRaV-2 and Grapevine virus B (GVB, developed from expressed coat proteins (CPs in Escherichia coli, and to test their possible use for the detection of these two viruses in diseased grapevines. The coat protein (CP genes were RT-PCR-amplified, cloned and sequenced. The CP genes were subsequently subcloned, and the recombinant plasmids were used to transform E. coli cells and express the coat proteins. The recombinant coat proteins were purified, and their identities were confirmed by SDS-PAGE and Western blot and used for rabbit immunizations. Antisera raised against these proteins were able to recognize the corresponding recombinant proteins in Western blots and to detect GLRaV-2 and GVB in infected grapevine tissues, by indirect ELISA, discriminating healthy and infected grapevines with absorbances (A405 of 0.08/1.15 and 0.12/1.30, respectively. Expressing CP genes can yield high amount of viral protein with high antigenicity, and GLRaV-2 and GVB antisera obtained in this study can allow reliable virus disease diagnosis.O objetivo deste trabalho foi produzir e caracterizar anti-soros específicos contra isolados brasileiros do Vírus do enrolamento-da-folha da videira 2 (GLRaV-2 e do Vírus B da videira (GVB, desenvolvidos a partir das proteínas capsidiais expressas em Escherichia coli, e testar seu possível uso para a detecção destes dois vírus em videiras infectadas. Os genes da proteína capsidial (CP foram amplificados via RT-PCR, clonados e seqüenciados. Foram, subseqüentemente, subclonados, e os plasmídeos recombinantes foram empregados na transformação das células de E. coli e na expressão das proteínas capsidiais. As proteínas capsidiais recombinantes foram purificadas, e suas identidades foram confirmadas em SDS-PAGE e "Western blot" e utilizadas para imunizar coelhos. Os anti

  7. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Science.gov (United States)

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  8. The unconventional xer recombination machinery of Streptococci/Lactococci

    NARCIS (Netherlands)

    Le Bourgeois, Pascal; Bugarel, Marie; Campo, Nathalie; Daveran-Mingot, Marie-Line; Labonte, Jessica; Lanfranchi, Daniel; Lautier, Thomas; Pages, Carine; Ritzenthaler, Paul

    Homologous recombination between circular sister chromosomes during DNA replication in bacteria can generate chromosome dimers that must be resolved into monomers prior to cell division. In Escherichia coli, dimer resolution is achieved by site-specific recombination, Xer recombination, involving

  9. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.; Wang, Xihua; Sargent, Edward H.

    2012-01-01

    it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron

  10. V(D)J recombination frequency is affected by the sequence interposed between a pair of recombination signals: sequence comparison reveals a putative recombinational enhancer element

    DEFF Research Database (Denmark)

    Roch, F A; Hobi, R; Berchtold, M W

    1997-01-01

    respectively, can markedly affect the frequency of V(D)J recombination. We report that the entire Emu, the Emu core as well as its flanking 5' and 3' matrix associated regions (5' and 3' MARs) upregulate V(D)J recombination while the downstream section of the 3' MAR of Emu does not. Also, prokaryotic sequences...

  11. Anti-Inflammatory Thioredoxin Family Proteins for Medicare, Healthcare and Aging Care

    Directory of Open Access Journals (Sweden)

    Junji Yodoi

    2017-09-01

    Full Text Available Human thioredoxin (TRX is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-, which is induced by biological stress due to oxidative damage, metabolic dysfunction, chemicals, infection/inflammation, irradiation, or hypoxia/ischemia-reperfusion. Our research has demonstrated that exogenous TRX is effective in a wide variety of inflammatory diseases, including viral pneumonia, acute lung injury, gastric injury, and dermatitis, as well as in the prevention and amelioration of food allergies. Preclinical and clinical studies using recombinant TRX (rhTRX are now underway. We have also identified substances that induce the expression of TRX in the body, in vegetables and other plant ingredients. Skincare products are being developed that take advantage of the anti-inflammatory and anti-allergic action of TRX. Furthermore, we are currently engaged in the highly efficient production of pure rhTRX in several plants, such as lettuce, grain and rice.

  12. Bio-equivalent doses of recombinent HCG and recombinent LH during ovarian stimulation result in similar oestradiol output

    DEFF Research Database (Denmark)

    Alsbjerg, Birgit; Elbaek, Helle Olesen; Laursen, Rita Jakubcionyte

    2017-01-01

    In nature, HCG is secreted by the implanting embryo from peri-implantation and onwards. In contrast, LH is mandatory for steroidogenesis and follicular development during the follicular phase, working in synergy with FSH. Moreover, LH is mandatory for the function of the corpus luteum. Although LH...... and HCG bind to the same receptor, significant molecular, structural and functional differences exist, inducing differences in bioactivity. This randomized controlled study compared the effect of recombinant FSH stimulation combined with daily either micro-dose recombinant HCG or recombinant LH...

  13. Mechanisms and Factors that Influence High Frequency Retroviral Recombination

    Science.gov (United States)

    Delviks-Frankenberry, Krista; Galli, Andrea; Nikolaitchik, Olga; Mens, Helene; Pathak, Vinay K.; Hu, Wei-Shau

    2011-01-01

    With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development. PMID:21994801

  14. Recombinant innovation and endogenous technological transitions

    NARCIS (Netherlands)

    Frenken, K.; Izquierdo, L.R.; Zeppini, P.

    2012-01-01

    We propose a model of technological transitions based on two different types of innovations. Branching innovations refer to technological improvements along a particular path, while recombinant innovations represent fusions of multiple paths. Recombinant innovations create "short-cuts" which reduce

  15. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D. S. H.; de Vries, T.; Mathijssen, S. G. J.; Geluk, E. -J.; Smits, E. C. P.; Kemerink, M.; Janssen, R. A. J.

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron-hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  16. Bimolecular recombination in ambipolar organic field effect transistors

    NARCIS (Netherlands)

    Charrier, D.S.H.; Vries, T. de; Mathijssen, S.G.J.; Geluk, E.-J.; Smits, E.C.P.; Kemerink, M.; Janssen, R.A.J.

    2009-01-01

    In ambipolar organic field effect transistors (OFET) the shape of the channel potential is intimately related to the recombination zone width W, and hence to the electron–hole recombination strength. Experimentally, the recombination profile can be assessed by scanning Kelvin probe microscopy

  17. Genome-wide variation in recombination rate in Eucalyptus.

    Science.gov (United States)

    Gion, Jean-Marc; Hudson, Corey J; Lesur, Isabelle; Vaillancourt, René E; Potts, Brad M; Freeman, Jules S

    2016-08-09

    Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = -0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = -0.75). The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst

  18. Induction of intrachromosomal homologous recombination in whole plants

    International Nuclear Information System (INIS)

    Puchta, H.; Swoboda, P.; Hohn, B.

    1995-01-01

    The influence of different factors on frequencies of intrachromosomal homologous recombination in whole Arabidopsis thaliana and tobacco plants was analyzed using a disrupted β-glucuronidase marker gene. Recombination frequencies were enhanced several fold by DNA damaging agents like UV-light or MMS (methyl methanesulfonate). Applying 3-methoxybenzamide (3-MB), an inhibitor of poly(ADP)ribose polymerase (PARP), an enzyme that is postulated to be involved in DNA repair, enhanced homologous recombination frequencies strongly. These findings indicate that homologous recombination is involved in DNA repair and can (at least partially) compensate for other DNA repair pathways. Indications that recombination in plants can be induced by environmental stress factors that are not likely to be involved in DNA metabolism were also found; Arabidopsis plants growing in a medium containing 0.1 M NaCl exhibited elevated recombination frequencies. The possible general effects of ‘environmental’ challenges on genome flexibility are discussed. (author)

  19. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  20. Electric hydrogen recombiner special tests

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1975-12-01

    Westinghouse has produced an electric hydrogen recombiner to control hydrogen levels in reactor containments following a postulated loss-of-coolant accident. The recombiner underwent extensive testing for NRC qualification (see WCAP 7709-L and Supplements 1, 2, 3, 4). As a result, WCAP 7709-L and Supplements 1, 2, 3, and 4 have been accepted by the NRC for reference in applications not committed to IEEE-323-1974. Supplement 5 and the next supplement will demonstrate conformance to IEEE-323-1974. This supplement describes additional tests, beyond those necessary to qualify the system, which will be referenced in supplement 6. Each test has demonstrated a considerable margin of safety over required performance. Concurrently, the test results increased the fund of technical information on the electric hydrogen recombiner

  1. Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm

    Directory of Open Access Journals (Sweden)

    Markiv Anatoliy

    2011-11-01

    Full Text Available Abstract Background Antibody-fluorophore conjugates are invaluable reagents used in contemporary molecular cell biology for imaging, cell sorting and tracking intracellular events. However they suffer in some cases from batch to batch variation, partial loss of binding and susceptibility to photo-bleaching. In theory, these issues can all be addressed by using recombinant antibody fused directly to genetically encoded fluorescent reporters. However, single-chain fragment variable domains linked by long flexible linkers are themselves prone to disassociation and aggregation, and in some cases with isoelectric points incompatible with use in physiologically relevant milieu. Here we describe a general approach that permits fully functional intracellular production of a range of coloured fluorescent recombinant antibodies with optimally orientated VH/VL interfaces and isoelectric points compatible for use in physiological solutions at pH 7.4 with a binding site to fluorophore stoichiometry of 1:1. Results Here we report the design, assembly, intracellular bacterial production and purification of a panel of novel antibody fluorescent protein fusion constructs. The insertion of monomeric fluorescent protein derived from either Discosoma or Aequorea in-between the variable regions of anti-p185HER2-ECD antibody 4D5-8 resulted in optimal VH/VL interface interactions to create soluble coloured antibodies each with a single binding site, with isoelectric points of 6.5- 6. The fluorescent antibodies used in cell staining studies with SK-BR-3 cells retained the fluorophore properties and antibody specificity functions, whereas the conventional 4D5-8 single chain antibody with a (Gly4Ser3 linker precipitated at physiological pH 7.4. Conclusions This modular monomeric recombinant fluorescent antibody platform may be used to create a range of recombinant coloured antibody molecules for quantitative in situ, in vivo and ex vivo imaging, cell sorting and cell

  2. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity

    International Nuclear Information System (INIS)

    Liu, Lily; Yu, Haijia; Huang, Xin; Tan, Hongzhi; Li, Song; Luo, Yan; Zhang, Li; Jiang, Sumei; Jia, Huifeng; Xiong, Yao; Zhang, Ruliang; Huang, Yi; Chu, Charles C; Tian, Wenzhi

    2015-01-01

    Relatively poor penetration and retention in tumor tissue has been documented for large molecule drugs including therapeutic antibodies and recombinant immunoglobulin constant region (Fc)-fusion proteins due to their large size, positive charge, and strong target binding affinity. Therefore, when designing a large molecular drug candidate, smaller size, neutral charge, and optimal affinity should be considered. We engineered a recombinant protein by molecular engineering the second domain of VEGFR1 and a few flanking residues fused with the Fc fragment of human IgG1, which we named HB-002.1. This recombinant protein was extensively characterized both in vitro and in vivo for its target-binding and target-blocking activities, pharmacokinetic profile, angiogenesis inhibition activity, and anti-tumor therapeutic efficacy. HB-002.1 has a molecular weight of ~80 kDa, isoelectric point of ~6.7, and an optimal target binding affinity of <1 nM. The pharmacokinetic profile was excellent with a half-life of 5 days, maximal concentration of 20.27 μg/ml, and area under the curve of 81.46 μg · days/ml. When tested in a transgenic zebrafish embryonic angiogenesis model, dramatic inhibition in angiogenesis was exhibited by a markedly reduced number of subintestinal vessels. When tested for anti-tumor efficacy, HB-002.1 was confirmed in two xenograft tumor models (A549 and Colo-205) to have a robust tumor killing activity, showing a percentage of inhibition over 90% at the dose of 20 mg/kg. Most promisingly, HB-002.1 showed a superior therapeutic efficacy compared to bevacizumab in the A549 xenograft model (tumor inhibition: 84.7% for HB-002.1 versus 67.6% for bevacizumab, P < 0.0001). HB-002.1 is a strong angiogenesis inhibitor that has the potential to be a novel promising drug for angiogenesis-related diseases such as tumor neoplasms and age-related macular degeneration

  3. Frequent intra-subtype recombination among HIV-1 circulating in Tanzania.

    Directory of Open Access Journals (Sweden)

    Ireen E Kiwelu

    Full Text Available The study estimated the prevalence of HIV-1 intra-subtype recombinant variants among female bar and hotel workers in Tanzania. While intra-subtype recombination occurs in HIV-1, it is generally underestimated. HIV-1 env gp120 V1-C5 quasispecies from 45 subjects were generated by single-genome amplification and sequencing (median (IQR of 38 (28-50 sequences per subject. Recombination analysis was performed using seven methods implemented within the recombination detection program version 3, RDP3. HIV-1 sequences were considered recombinant if recombination signals were detected by at least three methods with p-values of ≤0.05 after Bonferroni correction for multiple comparisons. HIV-1 in 38 (84% subjects showed evidence for intra-subtype recombination including 22 with HIV-1 subtype A1, 13 with HIV-1 subtype C, and 3 with HIV-1 subtype D. The distribution of intra-patient recombination breakpoints suggested ongoing recombination and showed selective enrichment of recombinant variants in 23 (60% subjects. The number of subjects with evidence of intra-subtype recombination increased from 29 (69% to 36 (82% over one year of follow-up, although the increase did not reach statistical significance. Adjustment for intra-subtype recombination is important for the analysis of multiplicity of HIV infection. This is the first report of high prevalence of intra-subtype recombination in the HIV/AIDS epidemic in Tanzania, a region where multiple HIV-1 subtypes co-circulate. HIV-1 intra-subtype recombination increases viral diversity and presents additional challenges for HIV-1 vaccine design.

  4. Enhancement of retroviral infection in vitro by anti-Le(y) IgG: reversal by humanization of monoclonal mouse antibody

    DEFF Research Database (Denmark)

    Hansen, J E; Sørensen, A M; Arendrup, M

    1993-01-01

    Monoclonal mouse IgG3 antibody (ABL 364) against the carbohydrate Le(y) antigen enhanced infection in vitro with HTLV-1 and with HIV-1 when propagated in both transformed and normal lymphocytes. Enhancement was independent of complement, occurred with both lymphocytes and monocytes as target cells...... with no indication of any alternative pathway of infection, as evidenced by abrogation of enhancement by anti-CD4 MAb or soluble recombinant CD4, and also the inability of anti-Le(y) MAb to mediate HIV infection of HSB-2 cells in which HTLV-1/HIV pseudovirus infection was enhanced. While F(ab)2 fragments of ABL 364...

  5. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice

    Directory of Open Access Journals (Sweden)

    Ghasem Bagherpour

    2018-04-01

    Full Text Available Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi® was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA, was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001 compared to control groups (receiving wild type S. boulardii or PBS, and the fecal IgA titer was significantly higher in test group (P < 0.05 than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic

  6. Construction and characterization of a recombinant invertebrate iridovirus.

    Science.gov (United States)

    Ozgen, Arzu; Muratoglu, Hacer; Demirbag, Zihni; Vlak, Just M; van Oers, Monique M; Nalcacioglu, Remziye

    2014-08-30

    Chilo iridescent virus (CIV), officially named Insect iridescent virus 6 (IIV6), is the type species of the genus Iridovirus (family Iridoviridae). In this paper we constructed a recombinant CIV, encoding the green fluorescent protein (GFP). This recombinant can be used to investigate viral replication dynamics. We showed that homologous recombination is a valid method to make CIV gene knockouts and to insert foreign genes. The CIV 157L gene, putatively encoding a non-functional inhibitor of apoptosis (IAP), was chosen as target for foreign gene insertion. The gfp open reading frame preceded by the viral mcp promoter was inserted into the 157L locus by homologous recombination in Anthonomus grandis BRL-AG-3A cells. Recombinant virus (rCIV-Δ157L-gfp) was purified by successive rounds of plaque purification. All plaques produced by the purified recombinant virus emitted green fluorescence due to the presence of GFP. One-step growth curves for recombinant and wild-type CIV were similar and the recombinant was fully infectious in vivo. Hence, CIV157L can be inactivated without altering the replication kinetics of the virus. Consequently, the CIV 157L locus can be used as a site for insertion of foreign DNA, e.g. to modify viral properties for insect biocontrol. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    Science.gov (United States)

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a

  8. Genome-wide recombination dynamics are associated with phenotypic variation in maize.

    Science.gov (United States)

    Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing

    2016-05-01

    Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essen......During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  10. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  11. Temporally-controlled site-specific recombination in zebrafish.

    Directory of Open Access Journals (Sweden)

    Stefan Hans

    Full Text Available Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreER(T2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM or its active metabolite, 4-hydroxy-tamoxifen (4-OHT. Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms.

  12. Algae-based oral recombinant vaccines

    Science.gov (United States)

    Specht, Elizabeth A.; Mayfield, Stephen P.

    2014-01-01

    Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for “molecular pharming” in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae could be poised to become the next candidate in recombinant subunit vaccine production, as they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and systemic immune reactivity. PMID:24596570

  13. Recombination in hepatitis C virus.

    Science.gov (United States)

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  14. Algae-based oral recombinant vaccines

    Directory of Open Access Journals (Sweden)

    Elizabeth A Specht

    2014-02-01

    Full Text Available Recombinant subunit vaccines are some of the safest and most effective vaccines available, but their high cost and the requirement of advanced medical infrastructure for administration make them impractical for many developing world diseases. Plant-based vaccines have shifted that paradigm by paving the way for recombinant vaccine production at agricultural scale using an edible host. However, enthusiasm for molecular pharming in food crops has waned in the last decade due to difficulty in developing transgenic crop plants and concerns of contaminating the food supply. Microalgae are poised to become the next candidate in recombinant subunit vaccine production, and they present several advantages over terrestrial crop plant-based platforms including scalable and contained growth, rapid transformation, easily obtained stable cell lines, and consistent transgene expression levels. Algae have been shown to accumulate and properly fold several vaccine antigens, and efforts are underway to create recombinant algal fusion proteins that can enhance antigenicity for effective orally-delivered vaccines. These approaches have the potential to revolutionize the way subunit vaccines are made and delivered – from costly parenteral administration of purified protein, to an inexpensive oral algae tablet with effective mucosal and system immune reactivity.

  15. In vitro assessment of recombinant, mutant immunoglobulin G anti-D devoid of hemolytic activity for treatment of ongoing hemolytic disease of the fetus and newborn

    DEFF Research Database (Denmark)

    Nielsen, Leif K; Green, Trine H; Sandlie, Inger

    2008-01-01

    A specific treatment for ongoing hemolytic disease of the fetus and newborn (HDFN) due to anti-D would be very attractive. One approach could be administration to the mother of nonhemolytic anti-D, which by crossing the placenta can block the binding of hemolytic maternal anti-D.......A specific treatment for ongoing hemolytic disease of the fetus and newborn (HDFN) due to anti-D would be very attractive. One approach could be administration to the mother of nonhemolytic anti-D, which by crossing the placenta can block the binding of hemolytic maternal anti-D....

  16. Cross-Linking GPVI-Fc by Anti-Fc Antibodies Potentiates Its Inhibition of Atherosclerotic Plaque- and Collagen-Induced Platelet Activation

    Directory of Open Access Journals (Sweden)

    Janina Jamasbi, RPh

    2016-04-01

    Full Text Available To enhance the antithrombotic properties of recombinant glycoprotein VI fragment crystallizable (GPVI-Fc, the authors incubated GPVI-Fc with anti-human Fc antibodies to cross-link the Fc tails of GPVI-Fc. Cross-linking potentiated the inhibition of human plaque- and collagen-induced platelet aggregation by GPVI-Fc under static and flow conditions without increasing bleeding time in vitro. Cross-linking with anti-human-Fc Fab2 was even superior to anti-human-Fc immunoglobulin G (IgG. Advanced optical imaging revealed a continuous sheath-like coverage of collagen fibers by cross-linked GPVI-Fc complexes. Cross-linking of GPVI into oligomeric complexes provides a new, highly effective, and probably safe antithrombotic treatment as it suppresses platelet GPVI-plaque interaction selectively at the site of acute atherothrombosis.

  17. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    International Nuclear Information System (INIS)

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan; Li, Lin; Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen; Jiang, Shibo

    2010-01-01

    Research highlights: → One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. → N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. → These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  18. Protection by recombinant viral proteins against a respiratory challenge with virulent avian metapneumovirus.

    Science.gov (United States)

    Chary, Parag; Njenga, M Kariuki; Sharma, Jagdev M

    2005-12-15

    Protection by recombinant avian metapneumovirus (aMPV) N or M proteins against a respiratory challenge with virulent aMPV was examined. N, M or N+M proteins were administered intramuscularly (IM) with incomplete Freund's adjuvant (IFA) or by the oculonasal (ON) route with cholera toxin-B (CTB). Each turkey received 40 or 80 microg of each recombinant protein. Birds were considered protected against challenge if the challenge virus was not detectable in the choanal swabs by RT-PCR. At a dose of 40 microg/bird, N protein given with IFA by the IM route protected eight out of nine birds. M protein at the same dose protected three out of seven birds, while a combination of N+M proteins (40 microg each) protected three out of four birds. At a dose of 80 microg of each of N and M proteins per bird given with IFA by the IM route, 100% protection was achieved. ON immunization with a mixture of N and M proteins induced partial protection when the proteins were given with CTB; no detectable protection was noted without CTB. N and M proteins induced anti-aMPV antibodies, although protection against virulent virus challenge did not appear to be associated with the level or presence of antibodies.

  19. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates.

    Science.gov (United States)

    Wen, Xiaobo; Cao, Dianjun; Jones, Ronald W; Li, Jianping; Szu, Shousun; Hoshino, Yasutaka

    2012-09-21

    Two currently licensed live oral rotavirus vaccines (Rotarix® and RotaTeq®) are highly efficacious against severe rotavirus diarrhea. However, the efficacy of such vaccines in selected low-income African and Asian countries is much lower than that in middle or high-income countries. Additionally, these two vaccines have recently been associated with rare case of intussusception in vaccinated infants. We developed a novel recombinant subunit parenteral rotavirus vaccine which may be more effective in low-income countries and also avert the potential problem of intussusception. Truncated recombinant VP8* (ΔVP8*) protein of human rotavirus strain Wa P[8], DS-1 P[4] or 1076 P[6] expressed in Escherichia coli was highly soluble and was generated in high yield. Guinea pigs hyperimmunized intramuscularly with each of the ΔVP8* proteins (i.e., P[8], P[4] or P[6]) developed high levels of homotypic as well as variable levels of heterotypic neutralizing antibodies. Moreover, the selected ΔVP8* proteins when administered to mice at a clinically relevant dosage, route and schedule, elicited high levels of serum anti-VP8* IgG and/or neutralizing antibodies. Our data indicated that the ΔVP8* proteins may be a plausible additional candidate as new parenteral rotavirus vaccines. Published by Elsevier Ltd.

  20. Enhanced defects recombination in ion irradiated SiC

    International Nuclear Information System (INIS)

    Izzo, G.; Litrico, G.; Grassia, F.; Calcagno, L.; Foti, G.

    2010-01-01

    Point defects induced in SiC by ion irradiation show a recombination at temperatures as low as 320 K and this process is enhanced after running current density ranging from 80 to 120 A/cm 2 . Ion irradiation induces in SiC the formation of different defect levels and low-temperature annealing changes their concentration. Some levels (S 0 , S x and S 2 ) show a recombination and simultaneously a new level (S 1 ) is formed. An enhanced recombination of defects is besides observed after running current in the diode at room temperature. The carriers introduction reduces the S 2 trap concentration, while the remaining levels are not modified. The recombination is negligible up to a current density of 50 A/cm 2 and increases at higher current density. The enhanced recombination of the S 2 trap occurs at 300 K, which otherwise requires a 400 K annealing temperature. The process can be related to the electron-hole recombination at the associated defect.

  1. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  2. Recombinant in vitro assembled hepatitis C virus core particles induce strong specific immunity enhanced by formulation with an oil-based adjuvant

    Directory of Open Access Journals (Sweden)

    NELSON ACOSTA-RIVERO

    2009-01-01

    Full Text Available In the present work, immunogenicity of recombinant in vitro assembled hepatitis C virus core particles, HCcAg.120-VLPs, either alone or in combination with different adjuvants was evaluated in BALB/c mice. HCcAg.120-VLPs induced high titers of anti-HCcAg.120 antibodies and virus-specific cellular immune responses. Particularly, HCcAg.120-VLPs induced specific delayed type hypersensitivity, and generated a predominant T helper 1 cytokine pro file in immunized mice. In addition, HCcAg.120-VLPs prime splenocytes proliferate in vitro against different HCcAg.120-specific peptides, depending on either the immunization route or the adjuvant used. Remarkably, immunization with HCcAg.120-VLPs/Montanide ISA888 formulation resulted in a significant control of vaccinia virus titer in mice after challenge with a recombinant vaccinia virus expressing HCV core protein, vvCore. Animals immunized with this formulation had a marked increase in the number of IFN-γ producing spleen cells, after stimulation with P815 cells infected with vvCore. These results suggest the use of recombinant HCV core particles as components of therapeutic or preventive vaccine candidates against HCV.

  3. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Takashi J., E-mail: takashi.moriya@ipmu.jp [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583 (Japan)

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  4. Dissociation of recombinant prion autocatalysis from infectivity.

    Science.gov (United States)

    Noble, Geoffrey P; Supattapone, Surachai

    2015-01-01

    Within the mammalian prion field, the existence of recombinant prion protein (PrP) conformers with self-replicating (ie. autocatalytic) activity in vitro but little to no infectious activity in vivo challenges a key prediction of the protein-only hypothesis of prion replication--that autocatalytic PrP conformers should be infectious. To understand this dissociation of autocatalysis from infectivity, we recently performed a structural and functional comparison between a highly infectious and non-infectious pair of autocatalytic recombinant PrP conformers derived from the same initial prion strain. (1) We identified restricted, C-terminal structural differences between these 2 conformers and provided evidence that these relatively subtle differences prevent the non-infectious conformer from templating the conversion of native PrP(C) substrates containing a glycosylphosphatidylinositol (GPI) anchor. (1) In this article we discuss a model, consistent with these findings, in which recombinant PrP, lacking post-translational modifications and associated folding constraints, is capable of adopting a wide variety of autocatalytic conformations. Only a subset of these recombinant conformers can be adopted by post-translationally modified native PrP(C), and this subset represents the recombinant conformers with high specific infectivity. We examine this model's implications for the generation of highly infectious recombinant prions and the protein-only hypothesis of prion replication.

  5. Correlation of pharmacodynamic activity, pharmacokinetics, and anti-product antibody responses to anti-IL-21R antibody therapeutics following IV administration to cynomolgus monkeys

    Directory of Open Access Journals (Sweden)

    Spaulding Vikki

    2010-04-01

    Full Text Available Abstract Background Anti-IL-21R antibodies are potential therapeutics for the treatment of autoimmune diseases. This study evaluated correlations between the pharmacodynamic (PD activity, pharmacokinetics, and anti-product antibody responses of human anti-IL-21R antibodies Ab-01 and Ab-02 following IV administration to cynomolgus monkeys. Methods The PD assay was based on the ability of recombinant human IL-21 (rhuIL-21 to induce expression of the IL-2RA gene in cynomolgus monkey whole blood samples ex vivo. Monkeys screened for responsiveness to rhuIL-21 stimulation using the PD assay, were given a single 10 mg/kg IV dosage of Ab-01, Ab-02, or a control antibody (3/group, and blood samples were evaluated for PD activity (inhibition of IL-2RA expression for up to 148 days. Anti-IL-21R antibody concentrations and anti-product antibody responses were measured in serum using immunoassays and flow cytometry. Results Following IV administration of Ab-01 and Ab-02 to cynomolgus monkeys, PD activity was observed as early as 5 minutes (first time point sampled. This PD activity had good correlation with the serum concentrations and anti-product antibody responses throughout the study. The mean terminal half-life (t1/2 was ~10.6 and 2.3 days for Ab-01 and Ab-02, respectively. PD activity was lost at ~5-13 weeks for Ab-01 and at ~2 weeks for Ab-02, when serum concentrations were relatively low. The estimated minimum concentrations needed to maintain PD activity were ~4-6 nM for Ab-01 and ~2.5 nM for Ab-02, and were consistent with the respective KD values for binding to human IL-21R. For Ab-01, there was noticeable inter-animal variability in t1/2 values (~6-14 days and the resulting PD profiles, which correlated with the onset of anti-product antibody formation. While all three Ab-01-dosed animals were positive for anti-Ab-01 antibodies, only one monkey (with the shortest t1/2 and the earliest loss of PD activity had evidence of neutralizing anti-Ab-01

  6. Host Immunization with Recombinant Proteins to Screen Antigens for Tick Control.

    Science.gov (United States)

    Galay, Remil Linggatong; Miyata, Takeshi; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya

    2016-01-01

    Ticks (Parasitiformes: Ixodida) are known for their obligate blood feeding habit and their role in transmitting pathogens to various vertebrate hosts. Tick control using chemical acaricides is extensively used particularly in livestock management, but several disadvantages arise from resistance development of many tick species, and concerns on animal product and environmental contamination. Vaccination offers better protection and more cost-effective alternative to application of chemical acaricides, addressing their disadvantages. However, an ideal anti-tick vaccine targeting multiple tick species and all the tick stages is still wanting. Here, we describe the procedures involved in the evaluation of a vaccine candidate antigen against ticks at the laboratory level, from the preparation of recombinant proteins, administration to the rabbit host and monitoring of antibody titer, to tick infestation challenge and determination of the effects of immunization to ticks.

  7. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  8. Small-angle neutron scattering study of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particle

    Science.gov (United States)

    Sato, M.; Ito, Y.; Kameyama, K.; Imai, M.; Ishikawa, N.; Takagi, T.

    1995-02-01

    The overall and internal structure of recombinant yeast-derived human hepatitis B virus surface antigen vaccine particles was investigated by small-angle neutron scattering using the contrast variation method. The vaccine is a nearly spherical particle, and its contrast-matching point was determined to be at about 24% D 2O content, indicating that a large part of the vaccine particle is occupied by lipids and carbohydrates from the yeast. The Stuhrmann plot suggests that the surface antigens exist predominantly in the peripheral region of the particle, which is favorable to the induction of anti-virus antibodies.

  9. Kinetics of Anti-Phlebotomus perniciosus Saliva Antibodies in Experimentally Bitten Mice and Rabbits.

    Directory of Open Access Journals (Sweden)

    Inés Martín-Martín

    Full Text Available Sand flies are hematophagous arthropods that act as vectors of Leishmania parasites. When hosts are bitten they develop cellular and humoral responses against sand fly saliva. A positive correlation has been observed between the number of bites and antibody levels indicating that anti-saliva antibody response can be used as marker of exposure to sand flies. Little is known about kinetics of antibodies against Phlebotomus perniciosus salivary gland homogenate (SGH or recombinant salivary proteins (rSP. This work focused on the study of anti-P. perniciosus saliva antibodies in sera of mice and rabbits that were experimentally exposed to the bites of uninfected sand flies.Anti-saliva antibodies were evaluated by ELISA and Western blot. In addition, antibody levels against two P. perniciosus rSP, apyrase rSP01B and D7 related protein rSP04 were determined in mice sera. Anti-saliva antibody levels increased along the immunizations and correlated with the number of sand fly bites. Anti-SGH antibody levels were detected in sera of mice five weeks after exposure, and persisted for at least three months. Anti-apyrase rSP01B antibodies followed similar kinetic responses than anti-SGH antibodies while rSP04 showed a delayed response and exhibited a greater variability among sera of immunized mice. In rabbits, anti-saliva antibodies appeared after the second week of exposure and IgG antibodies persisted at high levels, even 7 months post-exposure.Our results contributed to increase the knowledge on the type of immune response P. perniciosus saliva and individual proteins elicited highlighting the use of rSP01B as an epidemiological marker of exposure. Anti-saliva kinetics in sera of experimentally bitten rabbits were studied for the first time. Results with rabbit model provided useful information for a better understanding of the anti-saliva antibody levels found in wild leporids in the human leishmaniasis focus in the Madrid region, Spain.

  10. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  11. Recombination and dissociative recombination of H2+ and H3+ ions on surfaces with application to hydrogen negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1988-12-01

    A four-step model for recombination and dissociative recombination of H 2 + and H 3 + ions on metal surfaces is discussed. Vibrationally excited molecules, H 2 (v''), from H 3 + recombination are produced in a broad spectrum that enhances the excited level distribution. The application of this latter process to hydrogen negative ion discharges is discussed. 5 refs., 3 figs., 1 tab

  12. Recombination rate variation in mice from an isolated island.

    Science.gov (United States)

    Wang, Richard J; Gray, Melissa M; Parmenter, Michelle D; Broman, Karl W; Payseur, Bret A

    2017-01-01

    Recombination rate is a heritable trait that varies among individuals. Despite the major impact of recombination rate on patterns of genetic diversity and the efficacy of selection, natural variation in this phenotype remains poorly characterized. We present a comparison of genetic maps, sampling 1212 meioses, from a unique population of wild house mice (Mus musculus domesticus) that recently colonized remote Gough Island. Crosses to a mainland reference strain (WSB/EiJ) reveal pervasive variation in recombination rate among Gough Island mice, including subchromosomal intervals spanning up to 28% of the genome. In spite of this high level of polymorphism, the genomewide recombination rate does not significantly vary. In general, we find that recombination rate varies more when measured in smaller genomic intervals. Using the current standard genetic map of the laboratory mouse to polarize intervals with divergent recombination rates, we infer that the majority of evolutionary change occurred in one of the two tested lines of Gough Island mice. Our results confirm that natural populations harbour a high level of recombination rate polymorphism and highlight the disparities in recombination rate evolution across genomic scales. © 2016 John Wiley & Sons Ltd.

  13. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    Science.gov (United States)

    2013-01-01

    Background Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. Methods We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. Results We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. Conclusions Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF. PMID:24279871

  14. Live recombinant BHV/BRSV vaccine

    OpenAIRE

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protection of cattle against both Bovine herpesvirus infection and against Bovine Respiratory Syncytium virus infection. Also the invention relates to methods for the preparation of such live attenuated r...

  15. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  16. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice.

    Science.gov (United States)

    Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M; Azizi, Mohammad; Khalaj, Vahid

    2018-01-01

    Saccharomyces boulardii , a subspecies of Saccharomyces cerevisiae , is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi ® ) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3 - S. boulardii . To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group ( P boulardii or PBS), and the fecal IgA titer was significantly higher in test group ( P boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii , as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.

  17. Photodynamic inactivation of rubella virus enhances recombination with a latent virus of a baby hamster kidney cell line BHK21

    International Nuclear Information System (INIS)

    Yamamoto, Nobuto; Urade, Masahiro

    1989-01-01

    Rubella virus is very sensitive to photodynamic action. When tested with 1.2 x 10 -5 M toluidine blue and 8 W fluorescent lamp at a fluence of 11 W/m 2 , inactivation kinetics showed a linear single hit curve with a k value of 1.48 min -1 . Photodynamic inactivation of rubella virus greatly enhanced recombination with a latent virus (R-virus) of baby hamster kidney BHK21 cells. In contrast, no hybrids were detected in lysates of the cells infected with either UV-treated or untreated rubella virus. Therefore, hybrid viruses were readily detected only in lysates of BHK21 cells infected with photodynamically treated rubella virus. Photodynamic damage of rubella virus genomes generated a new hybrid type (hybrid type 3) in addition to a previously described type 2 hybrid (formerly designated as HPV-RV variant). Although both of these hybrid types carry the CF antigens of rubella virus, plaque forming ability of type 3 hybrid is neutralized neither by anti-rubella serum nor by anti-latent virus serum while type 2 hybrid is neutralized by anti-latent virus serum. (author)

  18. Electronic recombination in some physics problems

    International Nuclear Information System (INIS)

    Guzman, O.

    1988-01-01

    This work is related to calculations of electronic recombination rates, as a function of electronic density, electronic temperature, and ion nuclear charge. Recombination times can be calculated and compared to cooling time, in cooling processes of ion beans by electrons from storage rings. (A.C.A.S.) [pt

  19. Studies to Prevent Degradation of Recombinant Fc-Fusion Protein Expressed in Mammalian Cell Line and Protein Characterization

    Directory of Open Access Journals (Sweden)

    Sanjukta Chakrabarti

    2016-06-01

    Full Text Available Clipping of recombinant proteins is a major issue in animal cell cultures. A recombinant Fc-fusion protein, VEGFR1(D1–D3-Fc expressed in CHOK1SV GS-KO cells was observed to be undergoing clippings in lab scale cultures. Partial cleaving of expressed protein initiated early on in cell culture and was observed to increase over time in culture and also on storage. In this study, a few parameters were explored in a bid to inhibit clipping in the fusion protein The effects of culture temperature, duration of culture, the addition of an anti-clumping agent, ferric citrate and use of protease inhibitor cocktail on inhibition of proteolysis of the Fc fusion were studied. Lowering of culture temperature from 37 to 30 °C alone appears to be the best solution for reducing protein degradation from the quality, cost and regulatory points of view. The obtained Fc protein was characterized and found to be in its stable folded state, exhibiting a high affinity for its ligand and also biological and functional activities.

  20. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  1. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  2. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  3. KARAKTERISTIK SEKUEN cDNA PENGKODE GEN ANTI VIRUS DARI UDANG WINDU, Penaeus monodon

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2016-11-01

    Full Text Available Transgenesis pada ikan merupakan sebuah teknik modern yang berpotensi besar dalam menghasilkan organisme yang memiliki karakter lebih baik melalui rekombinan DNA gen target termasuk gen anti virus dalam peningkatan resistensi pada udang. Gen anti virus PmAV (Penaeus monodon Anti Viral gene merupakan salah satu gen pengkode anti virus yang berasal dari spesies krustase. Penelitian ini dilakukan untuk mengetahui karakteristik gen anti virus yang diisolasi dari udang windu, Penaeus monodon. Isolasi gen anti virus menggunakan metode Polymerase Chain Reaction (PCR dan selanjutnya dipurifikasi untuk sekuensing. Data yang dihasilkan dianalisis dengan program Genetyx Versi 7 dan basic local alignment search tool (BLAST. Hasil penelitian menunjukkan bahwa gen anti virus PmAV yang berhasil diisolasi dari cDNA udang windu dengan panjang sekuen 520 bp yang mengkodekan 170 asam amino. BLAST-N menunjukkan tingkat similaritas yang sangat tinggi (100% dengan gen anti virus yang ada di GeneBank. Komposisi asam amino penyusun gen anti virus yang paling besar adalah serin (10,00%, sedangkan yang terkecil adalah asam amino prolin dan lisin masing-masing 1,76%. Analisis sekuen gen dan deduksi asam amino (BLAST-P memperlihatkan adanya C-type lectin-like domain (CTLD yang memiliki kemiripan dengan gen C-type lectin yang diisolasi dari beberapa spesies krustase. Transgenic fish technology is a potential modern technique in producing better character organism through DNA recombinant of target genes including anti viral gene for improvement of shrimp immunity. PmAV (Penaeus monodon Anti Viral gene is one of anti viral genes isolated from crustacean species. The research was conducted to analyze the characteristics anti viral gene isolated from tiger prawn, Penaeus monodon. Anti viral gene was isolated using Polymerase Chain Reaction (PCR technique and then purified for sequencing. Data obtained were analyzed using Genetyx Version 7 software and basic local alignment

  4. Bayesian inference of shared recombination hotspots between humans and chimpanzees.

    Science.gov (United States)

    Wang, Ying; Rannala, Bruce

    2014-12-01

    Recombination generates variation and facilitates evolution. Recombination (or lack thereof) also contributes to human genetic disease. Methods for mapping genes influencing complex genetic diseases via association rely on linkage disequilibrium (LD) in human populations, which is influenced by rates of recombination across the genome. Comparative population genomic analyses of recombination using related primate species can identify factors influencing rates of recombination in humans. Such studies can indicate how variable hotspots for recombination may be both among individuals (or populations) and over evolutionary timescales. Previous studies have suggested that locations of recombination hotspots are not conserved between humans and chimpanzees. We made use of the data sets from recent resequencing projects and applied a Bayesian method for identifying hotspots and estimating recombination rates. We also reanalyzed SNP data sets for regions with known hotspots in humans using samples from the human and chimpanzee. The Bayes factors (BF) of shared recombination hotspots between human and chimpanzee across regions were obtained. Based on the analysis of the aligned regions of human chromosome 21, locations where the two species show evidence of shared recombination hotspots (with high BFs) were identified. Interestingly, previous comparative studies of human and chimpanzee that focused on the known human recombination hotspots within the β-globin and HLA regions did not find overlapping of hotspots. Our results show high BFs of shared hotspots at locations within both regions, and the estimated locations of shared hotspots overlap with the locations of human recombination hotspots obtained from sperm-typing studies. Copyright © 2014 by the Genetics Society of America.

  5. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1979-01-01

    Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced, and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Intra- and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the hisl-1/hisl-315 and trp5-2/trp5-48 heteroalleles. Gene-centromere recombination was also not observed in rad52/rad52 diploids. No γ-ray-induced intragenic mitotic recombination is seen in rad52/rad52 diploids and uv-induced intragenic recombination is greatly reduced. However, spontaneous mitotic recombination is not similarly affected. The RAD52 gene thus functions in recombination in meiosis and in γ-ray and uv-induced mitotic recombination but not in spontaneous mitotic recombination

  6. Heterogeneous recombination among Hepatitis B virus genotypes.

    Science.gov (United States)

    Castelhano, Nadine; Araujo, Natalia M; Arenas, Miguel

    2017-10-01

    The rapid evolution of Hepatitis B virus (HBV) through both evolutionary forces, mutation and recombination, allows this virus to generate a large variety of adapted variants at both intra and inter-host levels. It can, for instance, generate drug resistance or the diverse viral genotypes that currently exist in the HBV epidemics. Concerning the latter, it is known that recombination played a major role in the emergence and genetic diversification of novel genotypes. In this regard, the quantification of viral recombination in each genotype can provide relevant information to devise expectations about the evolutionary trends of the epidemic. Here we measured the amount of this evolutionary force by estimating global and local recombination rates in >4700 HBV complete genome sequences corresponding to nine (A to I) HBV genotypes. Counterintuitively, we found that genotype E presents extremely high levels of recombination, followed by genotypes B and C. On the other hand, genotype G presents the lowest level, where recombination is almost negligible. We discuss these findings in the light of known characteristics of these genotypes. Additionally, we present a phylogenetic network to depict the evolutionary history of the studied HBV genotypes. This network clearly classified all genotypes into specific groups and indicated that diverse pairs of genotypes are derived from a common ancestor (i.e., C-I, D-E and, F-H) although still the origin of this virus presented large uncertainty. Altogether we conclude that the amount of observed recombination is heterogeneous among HBV genotypes and that this heterogeneity can influence on the future expansion of the epidemic. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers. © 2012 American Chemical Society.

  8. Review of Parton Recombination Models

    International Nuclear Information System (INIS)

    Bass, Steffen A

    2006-01-01

    Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models

  9. The model of recombination process in TlBr

    International Nuclear Information System (INIS)

    Grigorjeva, L.; Millers, D.

    2002-01-01

    The time-resolved luminescence was used as a tool in the study of recombination process in several undoped TlBr crystals. The spectra and decay kinetics observed under electron beam excitation were investigated. Observation of several luminescence bands with different decay rates shows that more than one recombination center is involved and the recombination process is quite complicated. The band at ∼2.5 eV is dominant under 10 ns excitation pulse (electron beam or nitrogen laser pulses). The results of short-lived absorption and luminescence are used for analysis of possible mechanisms of recombination processes in TlBr

  10. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.

  11. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  12. Inference of Ancestral Recombination Graphs through Topological Data Analysis

    Science.gov (United States)

    Cámara, Pablo G.; Levine, Arnold J.; Rabadán, Raúl

    2016-01-01

    The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Galápagos Islands. PMID:27532298

  13. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    Directory of Open Access Journals (Sweden)

    Jonathan M.O. Rawson

    2014-09-01

    Full Text Available Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.

  14. [Analytic study of dot blotting for the detection of anti-Jo-1, anti-M2, anti-ribosomes and anti-LKM].

    Science.gov (United States)

    Huguet, S; Sghiri, R; Ballot, E; Johanet, C

    2004-01-01

    The Cyto-Dot 4 HM043 kit commercialised by BMD, has replaced the Cyto-Dot HM010 kit that allowed three auto-antibodies detection (anti-Jo-1, anti-M2 and anti-ribosomal protein). Detection of anti-LKM1 auto-antibody was added. These four auto-antibodies have in common only the intracytoplasmic localisation of their respective antigen. The aim of our study was to evaluate this new kit using 104 sera and to compare our results with reference techniques (indirect immunofluorescence IF for anti-M2, anti-ribosomal protein and anti-LKM1, double immunodiffusion ID for anti-Jo-1 and anti-LKM1, western blotting WB for anti-M2) and with Cyto-Dot HM010. The one hundred and four sera were divided into five groups: Group I (n = 12) with anti-Jo-1 detected by ID; Group II (n = 28) with 26 anti-M2 positive by IF and WB, 2 anti-M2 positive only by WB; Group III (n = 10) with anti-ribosomal protein detected by IF 5 of which precipitated by ID; Group IV (n = 32) with anti-LKM1 by IF and ID divided into 18 AIH2 and 14 HCV; Group V (n = 22) consisting of 14 healthy individuals and 8 patients with hypergammaglobulinemia. Results of this study are similar to those of Cyto-Dot HM010 for the three auto-antibodies already in use. Cyto-Dot 4 is a very good anti-LKM1 confirmation method as it is ID. Copyright John Libbey Eurotext 2003.

  15. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  16. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  17. Recombination Processes and Nonlinear Markov Chains.

    Science.gov (United States)

    Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail

    2016-09-01

    Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.

  18. [Construction and expression of a recombinant adenovirus with LZP3].

    Science.gov (United States)

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  19. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes

    2003-01-01

    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  20. Experimental reinfection of BALB/c mice with different recombinant type I/III strains of Toxoplasma gondii: involvement of IFN-³ and IL-10

    OpenAIRE

    Brandão,Geane Peroni; Melo,Maria Norma; Gazzinelli,Ricardo Tostes; Caetano,Braulia Costa; Ferreira,Adriana Melo; Silva,Letícia Azevedo; Vitor,Ricardo Wagner Almeida

    2009-01-01

    To assess reinfection of BALB/c mice with different Toxoplasma gondii strains, the animals were prime infected with the non-virulent D8 strain and challenged with virulent recombinant strains. Thirty days after challenge, brain cysts were obtained from surviving BALB/c mice and inoculated in Swiss mice to obtain tachyzoites for DNA extraction and PCR-RFLP analysis to distinguish the different T. gondii strains present in possible co-infections. Anti-Toxoplasma immune responses were evaluated ...

  1. Variation in Recombination Rate and Its Genetic Determinism in Sheep Populations.

    Science.gov (United States)

    Petit, Morgane; Astruc, Jean-Michel; Sarry, Julien; Drouilhet, Laurence; Fabre, Stéphane; Moreno, Carole R; Servin, Bertrand

    2017-10-01

    Recombination is a complex biological process that results from a cascade of multiple events during meiosis. Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of Lacaune sheep at 1.5 cM/Mb, identified ∼50,000 crossover hotspots on the genome, and found a high correlation between historical and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome. The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their genetic determinism. Copyright © 2017 by the Genetics Society

  2. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference

    OpenAIRE

    Segura, Joana; Ferretti, Luca; Ramos-Onsins, Sebastián; Capilla, Laia; Farré, Marta; Reis, Fernanda; Oliver-Bonet, Maria; Fernández-Bellón, Hugo; Garcia, Francisca; Garcia-Caldés, Montserrat; Robinson, Terence J.; Ruiz-Herrera, Aurora

    2013-01-01

    Recombination allows faithful chromosomal segregation during meiosis and contributes to the production of new heritable allelic variants that are essential for the maintenance of genetic diversity. Therefore, an appreciation of how this variation is created and maintained is of critical importance to our understanding of biodiversity and evolutionary change. Here, we analysed the recombination features from species representing the major eutherian taxonomic groups Afrotheria, Rodentia, Primat...

  3. In vitro V(D)J recombination: signal joint formation.

    Science.gov (United States)

    Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D

    1996-11-26

    The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.

  4. Recombinant DNA production of spider silk proteins.

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  5. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies.

    Science.gov (United States)

    Beck, P; Nicholas, H

    1975-03-01

    1. A technique for indirectly labelling antibodies to polypeptide hormones, by combining them with radioactively labelled anti-(immunoglobulin G) is described. (a) 125I-labelled anti-(rabbit immunoglobulin G) and anti-(guinea-pig immunoglobulin G) antibodies with high specific radioactivity were prepared after purification of the antibodies on immunoadsorbents containing the respective antigens. (b) Rabbit immunoglobulin G antibodies to human growth hormone, porcine glucagon and guinea-pig immunoglobulin G antibodies to bovine insulin and bovine parathyroid hormone were combined with immunoadsorbents containing the respective polypeptide hormone antigen. (c) The immunoglobulin G antibodies to the polypeptide hormones were reacted with 125-I-labelled anti-(immunoglobulin G) antibodies directed against the appropriate species of immunoglobulin G,and the anti-hormone antibodies were combined with the hormone-containing immunoadsorbent. (d) 125I-labelled anti-(immunoglobulin G) antibodies and anti-hormone antibodies were simultaneously eluted from the hormone-containing immunoadsorbent by dilute HCl, pH 2.0. After elution the anti-(immunoglobulin G) antibodies and antihormone antibodies were allowed to recombine at pH 8.0 and 4 degrees C. 2. The resultant immunoglobulin G-anti-immunoglobulin G complex was used in immunoradiometric (labelled antibody) and two-site assays of the respective polypeptide hormone. 3. By using these immunoassays, concentrations down to 90pg of human growth hormone/ml, 100 pg of bovine insulin/ml, 80 pg of bovine parathyroid hormone/ml and 150 pg of glucagon/ml were readily detected. Assays of human plasma for growth hormone and insulin by these methods showed good agreement with results obtained by using a directly 125I-labelled anti-hormone antibody in an immunoradiometric assay of human growth hormone or by radioimmunoassay of human insulin. 4. The method described allows immunoradiometric or two-site assays to be performed starting with as

  6. Recombination-Driven Genome Evolution and Stability of Bacterial Species.

    Science.gov (United States)

    Dixit, Purushottam D; Pang, Tin Yau; Maslov, Sergei

    2017-09-01

    While bacteria divide clonally, horizontal gene transfer followed by homologous recombination is now recognized as an important contributor to their evolution. However, the details of how the competition between clonality and recombination shapes genome diversity remains poorly understood. Using a computational model, we find two principal regimes in bacterial evolution and identify two composite parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, characterized by either a low recombination frequency or strict barriers to recombination, cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence between pairs of genomes in the population steadily increases in the course of their evolution. The species lacks genetic coherence with sexually isolated clonal subpopulations continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination frequency combined with low barriers to recombination, genomes continuously recombine with the rest of the population. The population remains genetically cohesive and temporally stable. Notably, the transition between these two regimes can be affected by relatively small changes in evolutionary parameters. Using the Multi Locus Sequence Typing (MLST) data, we classify a number of bacterial species to be either the divergent or the metastable type. Generalizations of our framework to include selection, ecologically structured populations, and horizontal gene transfer of nonhomologous regions are discussed as well. Copyright © 2017 by the Genetics Society of America.

  7. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Belfield, Katherine; Bayston, Roger; Hajduk, Nadzieja; Levell, Georgia; Birchall, John P; Daniel, Matija

    2017-09-01

    To evaluate potential anti-biofilm agents for their ability to enhance the activity of antibiotics for local treatment of localized biofilm infections. Staphylococcus aureus and Pseudomonas aeruginosa in vitro biofilm models were developed. The putative antibiotic enhancers N-acetylcysteine, acetylsalicylic acid, sodium salicylate, recombinant human deoxyribonuclease I, dispersin B, hydrogen peroxide and Johnson's Baby Shampoo (JBS) were tested for their anti-biofilm activity alone and their ability to enhance the activity of antibiotics for 7 or 14 days, against 5 day old biofilms. The antibiotic enhancers were paired with rifampicin and clindamycin against S. aureus and gentamicin and ciprofloxacin against P. aeruginosa. Isolates from biofilms that were not eradicated were tested for antibiotic resistance. Antibiotic levels 10× MIC and 100× MIC significantly reduced biofilm, but did not consistently eradicate it. Antibiotics at 100× MIC with 10% JBS for 14 days was the only treatment to eradicate both staphylococcal and pseudomonal biofilms. Recombinant human deoxyribonuclease I significantly reduced staphylococcal biofilm. Emergence of resistance of surviving isolates was minimal and was often associated with the small colony variant phenotype. JBS enhanced the activity of antibiotics and several other promising anti-biofilm agents were identified. Antibiotics with 10% JBS eradicated biofilms produced by both organisms. Such combinations might be useful in local treatment of localized biofilm infections. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    Science.gov (United States)

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  10. Triplet formation in the ion recombination in irradiated liquids

    International Nuclear Information System (INIS)

    Bartczak, W.M.; Tachiya, M.; Hummel, A.

    1990-01-01

    The formation of singlet and triplet excited stages in the ion recombination in groups of oppositely charged ions (or positive ions and electrons) in nonpolar liquids, as occurs in the tracks of high energy electrons, is considered. Theoretical studies on triplet formation in groups of ion pairs have thus far concentrated on the case where recombination of the negative ions with any of the positive ions in the group is equally probable (random recombination). In this paper the probability for geminate recombination (electron and parent positive ion) vs cross-recombination (an electron with a positive ion other than its parent ion) in multiple ion pair groups is calculated by computer simulation and the effect of the initial spatial configuration of the charged species is investigated. It is also shown explicitly that the probability for singlet formation as a result of cross recombination is equal to 1/4, when spin relaxation by magnetic interaction with the medium and by exchange interaction can be neglected. The effect of the preferential recombination on the singlet formation probability is illustrated and recent experimental results on singlet to triplet ratios are discussed. (author)

  11. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  12. A Glance at Recombination Hotspots in the Domestic Cat.

    Directory of Open Access Journals (Sweden)

    Hasan Alhaddad

    Full Text Available Recombination has essential roles in increasing genetic variability within a population and in ensuring successful meiotic events. The objective of this study is to (i infer the population-scaled recombination rate (ρ, and (ii identify and characterize regions of increased recombination rate for the domestic cat, Felis silvestris catus. SNPs (n = 701 were genotyped in twenty-two East Asian feral cats (random bred. The SNPs covered ten different chromosomal regions (A1, A2, B3, C2, D1, D2, D4, E2, F2, X with an average region size of 850 Kb and an average SNP density of 70 SNPs/region. The Bayesian method in the program inferRho was used to infer regional population recombination rates and hotspots localities. The regions exhibited variable population recombination rates and four decisive recombination hotspots were identified on cat chromosome A2, D1, and E2 regions. As a description of the identified hotspots, no correlation was detected between the GC content and the locality of recombination spots, and the hotspots enclosed L2 LINE elements and MIR and tRNA-Lys SINE elements.

  13. Bile-Salt-Hydrolases from the Probiotic Strain Lactobacillus johnsonii La1 Mediate Anti-giardial Activity in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Thibault Allain

    2018-01-01

    Full Text Available Giardia duodenalis (syn. G. lamblia, G. intestinalis is the protozoan parasite responsible for giardiasis, the most common and widely spread intestinal parasitic disease worldwide, affecting both humans and animals. After cysts ingestion (through either contaminated food or water, Giardia excysts in the upper intestinal tract to release replicating trophozoites that are responsible for the production of symptoms. In the gut, Giardia cohabits with the host's microbiota, and several studies have revealed the importance of this gut ecosystem and/or some probiotic bacteria in providing protection against G. duodenalis infection through mechanisms that remain incompletely understood. Recent findings suggest that Bile-Salt-Hydrolase (BSH-like activities from the probiotic strain of Lactobacillus johnsonii La1 may contribute to the anti-giardial activity displayed by this strain. Here, we cloned and expressed each of the three bsh genes present in the L. johnsonii La1 genome to study their enzymatic and biological properties. While BSH47 and BSH56 were expressed as recombinant active enzymes, no significant enzymatic activity was detected with BSH12. In vitro assays allowed determining the substrate specificities of both BSH47 and BSH56, which were different. Modeling of these BSHs indicated a strong conservation of their 3-D structures despite low conservation of their primary structures. Both recombinant enzymes were able to mediate anti-giardial biological activity against Giardia trophozoites in vitro. Moreover, BSH47 exerted significant anti-giardial effects when tested in a murine model of giardiasis. These results shed new light on the mechanism, whereby active BSH derived from the probiotic strain Lactobacillus johnsonii La1 may yield anti-giardial effects in vitro and in vivo. These findings pave the way toward novel approaches for the treatment of this widely spread but neglected infectious disease, both in human and in veterinary medicine.

  14. Dielectronic recombination theory

    International Nuclear Information System (INIS)

    LaGattuta, K.J.

    1991-01-01

    A theory now in wide use for the calculation of dielectronic recombination cross sections (σ DR ) and rate coefficients (α DR ) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of σ DR have been described by Fano and by Seaton. We will not consider those theories here. Calculations of α DR have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of σ DR . While the measurements of σ DR for δn ≠ 0 excitations have tended to agree very well with calculations, the case of δn = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain

  15. Antiviral cationic peptides as a strategy for innovation in global health therapeutics for dengue virus: high yield production of the biologically active recombinant plectasin peptide.

    Science.gov (United States)

    Rothan, Hussin A; Mohamed, Zulqarnain; Suhaeb, Abdulrazzaq M; Rahman, Noorsaadah Abd; Yusof, Rohana

    2013-11-01

    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.

  16. Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1.

    Science.gov (United States)

    Daniel, C; Repa, A; Wild, C; Pollak, A; Pot, B; Breiteneder, H; Wiedermann, U; Mercenier, A

    2006-07-01

    Probiotic lactic acid bacteria (LAB) are able to modulate the host immune system and clinical trials have demonstrated that specific strains have the capacity to reduce allergic symptoms. Therefore, we aimed to evaluate the potential of recombinant LAB producing the major birch pollen allergen Bet v 1 for mucosal vaccination against birch pollen allergy. Recombinant Bet v 1-producing Lactobacillus plantarum and Lactococcus lactis strains were constructed. Their immunogenicity was compared with purified Bet v 1 by subcutaneous immunization of mice. Intranasal application of the live recombinant strains was performed to test their immunomodulatory potency in a mouse model of birch pollen allergy. Bet v 1 produced by the LAB was recognized by monoclonal anti-Bet v 1 and IgE antibodies from birch pollen-allergic patients. Systemic immunization with the recombinant strains induced significantly lower IgG1/IgG2a ratios compared with purified Bet v 1. Intranasal pretreatment led to reduced allergen-specific IgE vs enhanced IgG2a levels and reduced interleukin (IL)-5 production of splenocytes in vitro, indicating a shift towards non-allergic T-helper-1 (Th1) responses. Airway inflammation, i.e. eosinophils and IL-5 in lung lavages, was reduced using either Bet v 1-producing or control strains. Allergen-specific secretory IgA responses were enhanced in lungs and intestines after pretreatment with only the Bet v 1-producing strains. Mucosal vaccination with live recombinant LAB, leading to a shift towards non-allergic immune responses along with enhanced allergen-specific mucosal IgA levels offers a promising approach to prevent systemic and local allergic immune responses.

  17. Scrambling Eggs: Meiotic Drive and the Evolution of Female Recombination Rates

    Science.gov (United States)

    Brandvain, Yaniv; Coop, Graham

    2012-01-01

    Theories to explain the prevalence of sex and recombination have long been a central theme of evolutionary biology. Yet despite decades of attention dedicated to the evolution of sex and recombination, the widespread pattern of sex differences in the recombination rate is not well understood and has received relatively little theoretical attention. Here, we argue that female meiotic drivers—alleles that increase in frequency by exploiting the asymmetric cell division of oogenesis—present a potent selective pressure favoring the modification of the female recombination rate. Because recombination plays a central role in shaping patterns of variation within and among dyads, modifiers of the female recombination rate can function as potent suppressors or enhancers of female meiotic drive. We show that when female recombination modifiers are unlinked to female drivers, recombination modifiers that suppress harmful female drive can spread. By contrast, a recombination modifier tightly linked to a driver can increase in frequency by enhancing female drive. Our results predict that rapidly evolving female recombination rates, particularly around centromeres, should be a common outcome of meiotic drive. We discuss how selection to modify the efficacy of meiotic drive may contribute to commonly observed patterns of sex differences in recombination. PMID:22143919

  18. Anti-tumoral effect of recombinant vaccinia virus through US guided injection in a rabbit model of hepatic VX2 carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong Young; Park, Byeong Ho; Kang, Myong Jin; Cho, Jin Han; Choi, Jong Cheol; Choi, Sun Seob; Nam, Kyung Jin; Hwang, Tae Ho; Jeong, Jin Sook [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2006-02-15

    The purpose of this study was to evaluate the anti-tumoral effect of recombinant vaccinia virus (rVV) (Thymidine kinase (-)/GM-CSF (+)) that was administered as a US guided intratumoral injection in a rabbit model of hepatic VX2 carcinoma. VX2 carcinoma was implanted in the livers of 12 rabbits. US was performed at every week interval to detect hepatic mass after the implantation of VX2 carcinoma. The accurate tumor size and volume was evaluated with CT when the tumor was detected on US. US guided injection of rVV (10{sup 9} pfu/ml) was preformed in three rabbits, intravenous injection of the same dose of rVV was done in two rabbits and another seven rabbits that were without any treatment were selected as a control group. We evaluated the change of the hepatic tumor size and extrahepatic metastasis on serial CT. Tumor specimens were harvested from rabbits that were killed at 8 weeks after VX2 implantation. These tissues were histoimmuopathologically compared to each other (the virus injection group and the control group). The differences between these groups were statistically assessed with student t-tests. Tumor growth was significantly suppressed in the US guided injection group compared with the intravenous injection group or the control group ({rho} < 0.01). The intravenous injection group showed statistically significant tumor suppression compared to the control group ({rho} < 0.01) until 2 weeks after virus injection. Quantification of the pulmonary metastatic nodules was performed in view of both the number and volume. The average number or volume of the pulmonary metastatic nodules in the US injection group was much smaller than these in the control group. Histopathologically, the tumors of the US guided injection group showed less extensive necrosis than those of the control group. Immunohistochemically, the tumor of the US guided injection group showed more prominent infiltration of CD4 (+) and CD8 (+) lymphocytes than did the tumors of the other group

  19. Recombinant expression systems: the obstacle to helminth vaccines?

    Science.gov (United States)

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  20. A study on the hydrogen recombination rates of catalytic recombiners and deliberate ignition

    International Nuclear Information System (INIS)

    Fineschi, F.; Bazzichi, M.; Carcassi, M.

    1994-01-01

    A study is being carried out by the Department of Nuclear and Mechanical Constructions (DCMN) at the University of Pisa on catalytic recombiners and on deliberately induced weak deflagration. The recombination rates of different types of catalytic devices were obtained from a thorough analysis of published experimental data. The main parameter that affects the effectiveness of these devices seems to be the molar density of the deficiency reactant rather than its volumetric concentration. The recombination rate of weak deflagrations in vented compartments has been assessed with experimental tests carried out in a small scale glass vessel. Through a computerized system of analysis of video recordings of the deflagrations, the flame surface and the burned gas volume were obtained as functions of time. Although approximations are inevitable, the method adopted to identify the position of the flame during propagation is more reliable than other non-visual methods (thermocouples and ion-probes). It can only easily be applied to vented weak deflagrations, i.e. when the hydrogen concentration is far from stoichiometric conditions and near to flammability limits, because the pressurization has to be limited due to the low mechanical resistance of the glass. The values of flame surface and burned gas volume were used as inputs for a computer code to calculate the recombining rate, the burning velocity and the pressure transient in the experimental test. The code is being validated with a methodology principally based on a comparison of the measurements of pressure with the calculated values. The research gave some very interesting results on a small scale which should in the future be compared with large scale data

  1. Photoionization and electron-ion recombination of Cr I

    International Nuclear Information System (INIS)

    Nahar, Sultana N.

    2009-01-01

    Using the unified method, the inverse processes of photoionization and electron-ion recombination are studied in detail for neutral chromium, (CrI+hν↔CrII+e), for the ground and excited states. The unified method based on close-coupling approximation and R-matrix method (i) subsumes both the radiative recombination (RR) and dielectronic recombination (DR) for the total rate and (ii) provides self-consistent sets of photoionization cross sections σ PI and recombination rates α RC . The present results show in total photoionization of the ground and excited states an enhancement in the background at the first excited threshold, 3d 4 4s 5 D state of the core. One prominent phot-excitation-of-core (PEC) resonance due to one dipole allowed transition ( 6 S- 6 P o ) in the core is found in the photoionization cross sections of most of the valence electron excited states. Structures in the total and partial photoionization, for ionization into various excited core states and ground state only, respectively, are demonstrated. Results are presented for the septet and quintet states with n≤10 and l≤9 of Cr I. These states couple to the core ground state 6 S and contribute to the recombination rates. State-specific recombination rates are also presented for these states and their features are illustrated. The total recombination rate shows two DR peaks, one at a relatively low temperature, at 630 K, and the other around 40,000 K. This can explain existence of neutral Cr in interstellar medium. Calculations were carried out in LS coupling using a close-coupling wave function expansion of 40 core states. The results illustrate the features in the radiative processes of Cr I and provide photoionization cross sections and recombination rates with good approximation for this astrophysically important ion.

  2. Workshop on Radio Recombination Lines

    CERN Document Server

    1980-01-01

    Since their first detection 15 years ago, radio recombination lines from several elements have been observed in a wide variety of objects including HII regions, planetary nebulae, molecular clouds, the diffuse interstellar medium, and recently, other galaxies. The observations span almost the entire range from 0.1 to 100 GHz, and employ both single­ djsh and aperture synthesis techniques. The theory of radio recombination lines has also advanced strongly, to the point where it is perhaps one of the best-understood in astro­ physics. In a parallel development, it has become possible over the last decade to study these same highly-excited atoms in the laboratory; this work provides further confirmation of the theoretical framework. However there has been continuing controversy over the astrophysical interpre­ tation of radio recombination line observations, especially regarding the role of stimulated emission. A workshop was held in Ottawa on 24-25 August, 1979, bringing together many of the active scientist...

  3. Determination of recombination in Mycoplasma hominis

    DEFF Research Database (Denmark)

    Jacobsen, Iben Søgaard; Boesen, Thomas; Mygind, Tina

    2002-01-01

    disequilibrium and distance between the segregating sites, by the homoplasy ratio (H ratio), and by compatibility matrices. The gap gene showed well-supported evidence for high levels of recombination, whereas recombination was less frequent and not significant within the other genes. The analysis revealed......B-hitL, excinuclease ABC subunit A (uvrA) and glyceraldehyde-3-phosphate dehydrogenase (gap) genes. The level of variability of these M. hominis genes was low compared with the housekeeping genes from Helicobacter pylori and Neisseria meningitidis, but only few M. hominis isolates had identical sequences in all genes...... intergenic and intragenic recombination in M. hominis and this may explain the high intraspecies variability. The results obtained in the present study may be of importance for future population studies of Mycoplasma species....

  4. Anti-G with concomitant anti-C and anti-D: A case report in a pregnant woman.

    Science.gov (United States)

    Yousuf, Rabeya; Mustafa, Ahmad Nasirudin; Ho, Siew-Ling; Tang, Yee-Loong; Leong, Chooi-Fun

    2017-01-01

    The G antigen of Rh blood group system is present in almost all D-positive or C-positive red cells but absent from red cells lacking D and C antigens. The differentiation of anti-D and anti-C from anti-G is not necessary for routine transfusion; however, during pregnancy, it is important because anti-G can masquerade as anti-D and anti-C with initial antibody testing. The false presence of anti-D will exclude the patient from receiving anti-D immunoglobulin (RhIG) when the patient actually is a candidate for RhIG prophylaxis. Moreover, patients with positive anti-D or anti-G are at risk of developing hemolytic disease of the fetus and newborn and need close monitoring. Thus, proper identification allows the clinicians to manage patients properly. This case report highlights a rare case of anti-G together with anti-D and anti-C in a pregnant woman. This report disseminates knowledge on identification of anti-G and its importance in pregnant women.

  5. Radiative and three-body recombination in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Lumma, D.; Terry, J.L.; Lipschultz, B.

    1997-01-01

    Significant recombination of the majority ion species has been observed in the divertor region of Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under detached conditions. This determination is made by analysis of the visible spectrum from the divertor, in particular the Balmer series line emission and the observed recombination continuum, including an apparent recombination edge at ∼375 nm. The analysis shows that the electron temperature in the recombining plasma is 0.8 endash 1.5 eV. The measured volume recombination rate is comparable to the rate of ion collection at the divertor plates. The dominant recombination mechanism is three-body recombination into excited states (e+e+D + Right-arrow D 0 +e), although radiative recombination (e+D + Right-arrow D 0 +hν) contributes ∼5% to the total rate. Analysis of the Balmer series line intensities (from n upper =3 through 10) shows that the upper levels of these transitions are populated primarily by recombination. Thus the brightnesses of the Balmer series (and Lyman series) are directly related to the recombination rate. copyright 1997 American Institute of Physics

  6. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    Science.gov (United States)

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  7. A New Metazoan Recombination Rate Record and Consistently High Recombination Rates in the Honey Bee Genus Apis Accompanied by Frequent Inversions but Not Translocations

    Science.gov (United States)

    Kuster, Ryan; Miller, Katelyn; Fouks, Bertrand; Rubio Correa, Sara; Collazo, Juan; Phaincharoen, Mananya; Tingek, Salim; Koeniger, Nikolaus

    2016-01-01

    Abstract Western honey bees (Apis mellifera) far exceed the commonly observed 1–2 meiotic recombination events per chromosome and exhibit the highest Metazoan recombination rate (20 cM/Mb) described thus far. However, the reasons for this exceptional rate of recombination are not sufficiently understood. In a comparative study, we report on the newly constructed genomic linkage maps of Apis florea and Apis dorsata that represent the two honey bee lineages without recombination rate estimates so far. Each linkage map was generated de novo, based on SNP genotypes of haploid male offspring of a single female. The A. florea map spans 4,782 cM with 1,279 markers in 16 linkage groups. The A. dorsata map is 5,762 cM long and contains 1,189 markers in 16 linkage groups. Respectively, these map sizes result in average recombination rate estimates of 20.8 and 25.1 cM/Mb. Synteny analyses indicate that frequent intra-chromosomal rearrangements but no translocations among chromosomes accompany the high rates of recombination during the independent evolution of the three major honey bee lineages. Our results imply a common cause for the evolution of very high recombination rates in Apis. Our findings also suggest that frequent homologous recombination during meiosis might increase ectopic recombination and rearrangements within but not between chromosomes. It remains to be investigated whether the resulting inversions may have been important in the evolutionary differentiation between honey bee species. PMID:28173114

  8. Meiotic recombination hotspots - a comparative view.

    Science.gov (United States)

    Choi, Kyuha; Henderson, Ian R

    2015-07-01

    During meiosis homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover. Meiotic recombination has a profound effect on patterns of genetic variation and is an important tool during crop breeding. Crossovers initiate from programmed DNA double-stranded breaks that are processed to form single-stranded DNA, which can invade a homologous chromosome. Strand invasion events mature into double Holliday junctions that can be resolved as crossovers. Extensive variation in the frequency of meiotic recombination occurs along chromosomes and is typically focused in narrow hotspots, observed both at the level of DNA breaks and final crossovers. We review methodologies to profile hotspots at different steps of the meiotic recombination pathway that have been used in different eukaryote species. We then discuss what these studies have revealed concerning specification of hotspot locations and activity and the contributions of both genetic and epigenetic factors. Understanding hotspots is important for interpreting patterns of genetic variation in populations and how eukaryotic genomes evolve. In addition, manipulation of hotspots will allow us to accelerate crop breeding, where meiotic recombination distributions can be limiting. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  9. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  10. Recombination Parameters for Antimonide-Based Semiconductors using RF Photoreflection Techniques

    International Nuclear Information System (INIS)

    Kumar, R.J.; Borrego, J.M.; Dutta, P.S.; Gutmann, R.J.; Wang, C.A.; Martinelli, R.U.; Nichols, G.

    2002-01-01

    RF photoreflection measurements and PC-1D simulations have been used to evaluate bulk and surface recombination parameters in antimonide-based materials. PC-1D is used to simulate the photoconductivity response of antimonide-based substrates and doubly-capped epitaxial layers and also to determine how to extract the recombination parameters using experimental results. Excellent agreement has been obtained with a first-order model and test structure simulation when Shockley-Reed-Hall (SRH) recombination is the bulk recombination process. When radiative, Auger and surface recombination are included, the simulation results show good agreement with the model. RF photoreflection measurements and simulations using PC-1D are compatible with a radiative recombination coefficient (B) of approximately 5 x 10 -11 cm 3 /s, Auger coefficient (C) ∼ 1.0 x 10 -28 cm 6 /s and surface recombination velocity (SRV) ∼ 600 cm/s for 0.50-0.55 eV doubly-capped InGaAsSb material with GaSb capping layers using the experimentally determined active layer doping of 2 x 10 17 cm -3 . Photon recycling, neglected in the analysis and simulations presented, will affect the extracted recombination parameters to some extent

  11. Anti-Cyclic Citrullinated Peptide (Anti-CCP and Anti-Mutated Citrullinated Vimentin (Anti-MCV Relation with Extra-Articular Manifestations in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Laura Gonzalez-Lopez

    2014-01-01

    Full Text Available We evaluated the association between anti-cyclic citrullinated peptide antibodies (anti-CCP and anti-mutated citrullinated vimentin antibodies (anti-MCV with the presence of extra-articular (ExRA manifestations in 225 patients with rheumatoid arthritis (RA. Ninety-five patients had ExRA and 130 had no ExRA. There was no association of anti-CCP and anti-MCV levels with the presence of ExRA as total group (P=0.40 and P=0.91, resp.. Making an analysis of individual manifestations, rheumatoid nodules were associated with positivity for rheumatoid factor (RF; (P=0.01, anti-CCP (P=0.048, and anti-MCV (P=0.02. Instead, RF, anti-CCP, or anti-MCV were not associated with SS, chronic anemia, or peripheral neuropathy. Levels of anti-CCP correlated with the score of the Health Assessment Questionnaire-Disability Index (HAQ-Di (r=0.154, P=0.03, erythrocyte sedimentation rate (ESR; (r=0.155, P=0.03, and RF (P=0.254, P<0.001, whereas anti-MCV titres only correlated with RF (r=0.169, P=0.02. On adjusted analysis, ExRA was associated with longer age (P=0.015, longer disease duration (P=0.007, higher DAS-28 score (P=0.002, and higher HAQ-DI score (P=0.007, but serum levels of anti-CCP and anti-MCV were not associated. These findings show the need to strengthen the evaluation of the pathogenic mechanisms implied in each specific ExRA manifestation.

  12. Anti-IL-39 (IL-23p19/Ebi3) polyclonal antibodies ameliorate autoimmune symptoms in lupus-like mice

    Science.gov (United States)

    Wang, Xiaoqian; Zhang, Yu; Wang, Zhiding; Liu, Xiaoling; Zhu, Gaizhi; Han, Gencheng; Chen, Guojiang; Hou, Chunmei; Wang, Tianxiao; Shen, Beifen; Li, Yan; Xiao, He; Ma, Ning; Wang, Renxi

    2018-01-01

    The interleukin (IL)-12 family cytokines have been examined as therapeutic targets in the treatment of several autoimmune diseases. Our previous study showed that a novel IL-12 family cytokine, IL-39 (IL-23p19/Ebi3) mediates inflammation in lupus-like mice. In the present study, the effect of anti-mouse IL-39 polyclonal antibodies on autoimmune symptoms in lupus-like mice was investigated. Rabbit anti-mouse IL-39 polyclonal antibodies were produced by immunization with recombinant mouse IL-39, and purified using protein A chromatography. These antibodies were subsequently used to treat lupus-like mice. Flow cytometry, captured images, ELISA and H&E staining were used to determine the effect of anti-IL-39 polyclonal antibodies on inflammatory cells, autoantibody titers, proteinuria, infiltrating inflammatory cells and the structure of the glomerular region. The anti-IL-39 polyclonal antibodies effectively reduced the numbers of inflammatory cells, splenomegaly, autoantibody titers, proteinuria, infiltrating inflammatory cells, and restored the structure of the glomerular region in MRL/lpr mice. Taken together, these results suggested that anti-IL-39 polyclonal antibodies ameliorated autoimmune symptoms in lupus-like mice. Therefore, IL-39 may be used as a possible target for the treatment of systemic lupus erythematosus. PMID:29138852

  13. Production of recombinant Ig molecules from antigen-selected single B cells and restricted usage of Ig-gene segments by anti-D antibodies

    NARCIS (Netherlands)

    Dohmen, Serge E.; Mulder, Arend; Verhagen, Onno J. H. M.; Eijsink, Chantal; Franke-van Dijk, Marry E. I.; van der Schoot, C. Ellen

    2005-01-01

    The Ig-genes of the heavy chains in anti-D-specific hybridomas and Fab/scFv-fragments selected from phage-display libraries are restricted to a group of closely related genes (IGHV3s genes). We analyzed the Ig-gene repertoire in anti-D-specific B cells of two hyperimmunized donors using a completely

  14. Effects of the rad52 gene on recombination in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Prakash, S.; Prakash, L.; Burke, W.; Montelone, B.A.

    1980-01-01

    Effects of the rad 52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, uv-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1-1/his1-315 and trp-5-2/trp5-48 heteroalleles. Gene-centromere recombination also was not observed in rad/52/rad52 diploids. No γ-ray- or uv-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1-1/his1-315 and leu1-c/leu1-12 heteroalleles. Spontaneous reversion rates of both his1-1 and his1-315 were elevated 10 to 20 fold in rad52/rad52 diploids. The RAD52 gene function is required for spontaneous mitotic recombination, uv- and γ-ray-induced mitotic recombination and mitotic recombination

  15. Phylogenetic and recombination analysis of tomato spotted wilt virus.

    Directory of Open Access Journals (Sweden)

    Sen Lian

    Full Text Available Tomato spotted wilt virus (TSWV severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV.

  16. Anti-G with concomitant anti-C and anti-D: A case report in a pregnant woman

    Directory of Open Access Journals (Sweden)

    Rabeya Yousuf

    2017-01-01

    Full Text Available The G antigen of Rh blood group system is present in almost all D-positive or C-positive red cells but absent from red cells lacking D and C antigens. The differentiation of anti-D and anti-C from anti-G is not necessary for routine transfusion; however, during pregnancy, it is important because anti-G can masquerade as anti-D and anti-C with initial antibody testing. The false presence of anti-D will exclude the patient from receiving anti-D immunoglobulin (RhIG when the patient actually is a candidate for RhIG prophylaxis. Moreover, patients with positive anti-D or anti-G are at risk of developing hemolytic disease of the fetus and newborn and need close monitoring. Thus, proper identification allows the clinicians to manage patients properly. This case report highlights a rare case of anti-G together with anti-D and anti-C in a pregnant woman. This report disseminates knowledge on identification of anti-G and its importance in pregnant women.

  17. Effect of interface roughness on Auger recombination in semiconductor quantum wells

    Science.gov (United States)

    Tan, Chee-Keong; Sun, Wei; Wierer, Jonathan J.; Tansu, Nelson

    2017-03-01

    Auger recombination in a semiconductor is a three-carrier process, wherein the energy from the recombination of an electron and hole pair promotes a third carrier to a higher energy state. In semiconductor quantum wells with increased carrier densities, the Auger recombination becomes an appreciable fraction of the total recombination rate and degrades luminescence efficiency. Gaining insight into the variables that influence Auger recombination in semiconductor quantum wells could lead to further advances in optoelectronic and electronic devices. Here we demonstrate the important role that interface roughness has on Auger recombination within quantum wells. Our computational studies find that as the ratio of interface roughness to quantum well thickness is increased, Auger recombination is significantly enhanced. Specifically, when considering a realistic interface roughness for an InGaN quantum well, the enhancement in Auger recombination rate over a quantum well with perfect heterointerfaces can be approximately four orders of magnitude.

  18. Total and partial recombination cross sections for F6+

    International Nuclear Information System (INIS)

    Mitnik, D.M.; Pindzola, M.S.; Badnell, N.R.

    1999-01-01

    Total and partial recombination cross sections for F 6+ are calculated using close-coupling and distorted-wave theory. For total cross sections, close-coupling and distorted-wave results, which include interference between the radiative and dielectronic pathways, are found to be in good agreement with distorted-wave results based on a sum of independent processes. Total cross sections near zero energy are dominated by contributions from low-energy dielectronic recombination resonances. For partial cross sections, the close-coupling and distorted-wave theories predict strong interference for recombination into the final recombined ground state 1s 2 2s 21 S 0 of F 5+ , but only weak interference for recombination into the levels of the 1s 2 2s2p configuration. copyright 1999 The American Physical Society

  19. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    Science.gov (United States)

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  20. Model independent calculation of B(anti B0→D(*)+τ- anti ν)/B(anti B0→D(*)+e- anti ν)

    International Nuclear Information System (INIS)

    Hwang, D.S.

    2000-01-01

    Using the formulas for the dΓ/dq 2 distribution with non-zero lepton mass and experimentally determined form factors, we calculate the dΓ(D (*)+ l - anti ν)/dq 2 spectra and branching fractions for l=e,μ and τ. We obtain the results B(anti B 0 →D + τ - anti ν)/B(anti B 0 →D + e - anti ν)=0.278 +0.049 -0.035 and B(anti B 0 →D *+ τ - anti ν)/B(anti B 0 →D *+ e - anti ν)=0.256 +0.014 -0.013 . Since we used the experimentally measured form factors, these results are independent of theoretical models of the form factors. (orig.)

  1. 76 FR 63317 - Prospective Grant of Exclusive License: The Development of Human Anti-Mesothelin Monoclonal...

    Science.gov (United States)

    2011-10-12

    ... therapy for the treatment of pancreatic cancer, ovarian cancer, lung cancer, mesothelioma, and stomach.... Lambertson, Ph.D., Senior Licensing and Patenting Manager, Office of Technology Transfer, National Institutes... cancers, including mesothelioma, lung cancer, stomach/gastric cancer, ovarian cancer and pancreatic cancer...

  2. 77 FR 5036 - Prospective Grant of Exclusive License: The Development of Human Anti-Mesothelin Monoclonal...

    Science.gov (United States)

    2012-02-01

    ... cancer, lung cancer, mesothelioma, and stomach/gastric cancer. The Licensed Field of Use explicitly.... Lambertson, Ph.D., Senior Licensing and Patenting Manager, Office of Technology Transfer, National Institutes... cancers, including mesothelioma, lung cancer, stomach/gastric cancer, ovarian cancer and pancreatic cancer...

  3. Analysis of intermolecular RNA-RNA recombination by rubella virus

    International Nuclear Information System (INIS)

    Adams, Sandra D.; Tzeng, W.-P.; Chen, M.-H.; Frey, Teryl K.

    2003-01-01

    To investigate whether rubella virus (RUB) undergoes intermolecular RNA-RNA recombination, cells were cotransfected with pairs of in vitro transcripts from genomic cDNA plasmid vectors engineered to contain nonoverlapping deletions: the replicative transcript maintained the 5'-proximal nonstructural (NS) ORF (which contained the replicase, making it RNA replication competent), had a deletion in the 3'-proximal structural protein (SP) ORF, and maintained the 3' end of the genome, including the putative 3' cis-acting elements (CSE), while the nonreplicative transcript consisted of the 3' half of the genome including the SP-ORF and 3' CSE. Cotransfection yielded plaque-forming virus that synthesized the standard genomic and subgenomic RNAs and thus was generated by RNA-RNA recombination. Using transcripts tagged with a 3'-terminal deletion, it was found that recombinants contained the 3' end derived from the replicative strand, indicating a cis-preference for initiation of negative-strand synthesis. In cotransfections in which the replicative transcript lacked the 3' CSE, recombination occurred, albeit at lower efficiency, indicating that initiation in trans from the NS-ORF can occur. The 3' CSE was sufficient as a nonreplicative transcript, showing that it can serve as a promoter for negative-strand RNA synthesis. While deletion mutagenesis showed that the presence of the junction untranslated region (J-UTR) between the ORFs appeared to be necessary on both transcripts for recombination in this region of the genome, analysis with transcripts tagged with restriction sites showed that the J-UTR was not a hot spot for recombination compared to neighboring regions in both ORFs. Sequence analysis of recombinants revealed that both precise (homologous) and imprecise recombination (aberrant, homologous resulting in duplications) occurred; however, imprecise recombination only involved the J-UTR or the 3' end of the NS-ORF and the J-UTR (maintaining the NS-ORF), indicating

  4. Intrinsic and experimental quasiparticle recombination times in superconducting films

    International Nuclear Information System (INIS)

    Eisenmenger, W.; Lassmann, K.; Trumpp, H.J.; Krauss, R.

    1977-01-01

    Experimental quasiparticle recombination lifetime data for superconducting Al, Sn, and Pb films are compared with calculations based on a ray acoustic model taking account of the film thickness dependence of the reabsorption of recombination phonons. Information on the true or intrinsic quasiparticle recombination lifetime obtained from these and other data is discussed. (orig.) [de

  5. Extracts and compounds with anti-diabetic complications and anti-cancer activity from Castanea mollissina Blume (Chinese chestnut).

    Science.gov (United States)

    Zhang, Lin; Gao, Hui-yuan; Baba, Masaki; Okada, Yoshihito; Okuyama, Toru; Wu, Li-jun; Zhan, Li-bin

    2014-10-28

    Castanea mollissima Blume (Chinese chestnut), as a food product is known for its various nutrients and functional values to the human health. The present study was carried out to analyze the anti-diabetic complications and anti-cancer activities of the bioactive compounds present in C. mollissima. The kernels (CK), shells (CS) and involucres (CI) parts of C. Blume were extracted with 90% alcohol. The water suspension of these dried alcohol extracts were extracted using EtOAc and n-BuOH successively. The n-BuOH fraction of CI (CI-B) was isolated by silica gel column, Sephadex LH 20 column and preparative HPLC. The isolated compounds were identified by 1H-NMR, 13C-NMR, HMBC, HMQC and ESI-Q-TOF MS, All the fractions and compounds isolated were evaluated on human recombinant aldose reductase (HR-AR) assay, advanced glycation end products (AGEs) formation assay and human COLO 320 DM colon cancer cells inhibitory assay. CI-B was found to show a significant inhibitory effect in above biological screenings. Six flavonoids and three polyphenolic acids were obtained from CI-B. They were identified as kaempferol (1), kaempferol-3-O-[6''-O-(E)-p-coumaroyl]-β-D-glucopyranoside (2), kaempferol-3-O-[6''-O-(E)-p-coumaroyl]-β-D-galactopyranoside (3), kaempferol-3-O-[2''-O-(E)-p-coumaroyl]-β-D-glucopyranoside (4), kaempferol-3-O-[2", 6"-di-O-(E)-p-coumaroyl]-β-D-glucopyranoside (5) and kaempferol-3-O-[2", 6"-di-O-(E)-p-coumaroyl]-β-D-galactopyranoside (6), casuariin (7), casuarinin (8) and castalagin (9). Compounds 2-9 were found to show higher activity than quercetin (positive control) in the AR assay. Compounds 3-6, 8, and 9 showed stronger inhibitory effects than amino guanidine (positive control) on AGEs production. Compounds 4-6, 7, and 8 showed much higher cytotoxic activity than 5-fluorouracil (positive control) against the human COLO 320 DM colon cancer cells. Our results suggest that flavonoids and polyphenolic acids possesses anti-diabetes complications and anti

  6. What is it really? Anti-G or Anti-D plus Anti-C: Clinical Significance in Antenatal Mothers.

    Science.gov (United States)

    Das, Soumya; Shastry, Shamee; Murugesan, M; B, Poornima Baliga; Shastry, Shamee

    2017-06-01

    G antigen of Rh blood group system is present either along with D and/or C positive red cells. Hence, [serologically anti-G presents with the similar picture as that of multiple antibodies (anti-D + anti-C). Differentiating them is important as anti-D + anti-C causes severe hemolytic disease of the fetus and newborn than anti-G. In pregnancies with anti-G alone, alloimmunization due to D antigen could be prevented by prophylactic administration of RhIg. Differentiating between anti-D + C from anti-G in alloimmunized pregnant mothers becomes essential. Sera from antenatal mothers, whose antibody identification by 11-cell panel gave a pattern for anti-D and anti-C were selected. Extended phenotyping for Rh system was performed for these antenatal cases. Differential adsorption and elution testing using R 2 R 2 cells initially and r'r cells subsequently were performed to distinguish anit-G from anti-D + anti-C. Antibody titers of these antibodies were determined and their clinical outcome in the newborn was followed. A pattern suggestive of anti D and anti C on antibody identification were observed in six antenatal cases. On further workup 50 % of them confirmed to have anti G. Antibody titers of anti-G and anti-C were lower than that of Anti-D. All newborns were sensitized in vivo and the antibody specificity in them were confirmed with elution studies. The mothers who had only anti-G were subsequently administered with an appropriate dose of RhIg.Differential adsorption and elution studies help in identifying anti-G and distinguishing it from anti-D plus anti-C, thus helping in better patient management.

  7. Generation of Modified Pestiviruses by Targeted Recombination

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Friis, Martin Barfred; Risager, Peter Christian

    involves targeted modification of viral cDNA genomes, cloned within BACs, by Red/ET recombination-mediated mutagenesis in E.coli DH10B cells. Using recombination-mediated mutagenesis for the targeted design, the work can be expedited and focused in principal on any sequence within the viral genome...

  8. Identification of immunogenic proteins and evaluation of four recombinant proteins as potential vaccine antigens from Vibrio anguillarum in flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-05-31

    Vibrio anguillarum is a severe bacterial pathogen that can infect a wide range of fish species. Identification of immunogenic proteins and development of vaccine are essential for disease prevention. In this study, immunogenic proteins were screened and identified from V. anguillarum, and then protective efficacy of the immunogenic proteins was evaluated. Immunogenic proteins in V. anguillarum whole cell were detected by Western blotting (WB) using immunized flounder (Paralichthys olivaceus) serum, and then identified by Mass spectrometry (MS). The recombinant proteins of four identified immunogenic proteins were produced and immunized to fish, and then percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBL), total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were measured, respectively. The results showed that five immunogenic proteins, VAA, Groel, OmpU, PteF and SpK, were identified; their recombinant proteins, rOmpU, rGroel, rSpK and rVAA, could induce the proliferation of sIg+ cells in PBL and production of total antibodies, antibodies against V. anguillarum and antibodies against the recombinant proteins; their protection against V. anguillarum showed 64.86%, 72.97%, 21.62% and 78.38% RPS, respectively. The results revealed that the immunoproteomic technique using fish anti-V. anguillarum serum provided an efficient way to screen the immunogenic protein for vaccine antigen. Moreover, the rVAA, rGroel and rOmpU had potential to be vaccine candidates against V. anguillarum infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Anti-IgE Treatment for Disorders Other Than Asthma

    Directory of Open Access Journals (Sweden)

    Jeffrey Stokes

    2017-09-01

    Full Text Available Immunoglobulin E (IgE plays a key role in the pathogenesis of many allergic diseases. Thus, IgE-mediated immunologic pathways are an attractive target for intervention in allergic diseases. Omalizumab is a recombinant humanized monoclonal antibody that binds IgE and has been used treat allergic asthma for over a decade. Currently, omalizumab is approved for the treatment of both allergic asthma and chronic spontaneous urticaria. Since IgE plays a critical role in other allergic diseases, anti-IgE therapy has been evaluated in other allergic diseases in small clinical trials and case reports. Omalizumab has demonstrated efficacy in treating allergic rhinitis, atopic dermatitis, physical urticarias, mast cell disorders, food allergy, and other allergic diseases. In addition, the use of omalizumab with conventional allergen immunotherapy improves both safety and effectiveness.

  10. Flazinamide, a novel β-carboline compound with anti-HIV actions

    International Nuclear Information System (INIS)

    Wang Yunhua; Tang Jianguo; Wang Ruirui; Yang Liumeng; Dong Zejun; Du Li; Shen Xu; Liu Jikai; Zheng Yongtang

    2007-01-01

    A β-carboline compound, flazin isolated from Suillus granulatus has been shown weak anti-HIV-1 activity. Based on the structure of flazin, flazinamide [1-(5'- hydromethyl-2'-furyl)-β-carboline-3-carboxamide] was synthesized and its anti-HIV activities were evaluated in the present study. The cytotoxicity of flazinamide was about 4.1-fold lower than that of flazin. Flazinamide potently reduced syncytium formation induced by HIV-1IIIB with EC50 value of 0.38 μM, the EC50 of flazinamide was about 6.2-fold lower than that of flazin. Flazinamide also inhibited HIV-2ROD and HIV-2CBL-20 infection with EC50 values of 0.57 and 0.89 μM, respectively. Flazinamide reduced p24 antigen expression in HIV-1IIIB acute infected C8166 and in clinical isolated strain HIV-1KM018 infected PBMC, with EC50 values of 1.45 and 0.77 μM, respectively. Flazinamide did not suppress HIV-1 replication in chronically infected H9 cells. Flazinamide blocked the fusion between normal cells and HIV-1 or HIV-2 chronically infected cells. It weakly inhibited activities of recombinant HIV-1 reverse transcriptase, protease or integrase at higher concentrations. In conclusion, the conversion of the carboxyl group in 3 position of flazin markedly enhanced the anti-viral activity (TI value increased from 12.1 to 312.2) and flazinamide might interfere in the early stage of HIV life cycle

  11. Polarity of recombination in transformation of Streptococcus pneumoniae.

    Science.gov (United States)

    Pasta, F; Sicard, M A

    1999-03-16

    In transformation of Streptococcus pneumoniae DNA enters the cell as single-strand fragments and integrates into the chromosome by homologous recombination. Deletions and insertions of a few hundred base pairs frequently stop the recombination process of a donor strand. In this work we took advantage of such interruptions of recombination to compare the transformation efficiencies of the segments 5'- and 3'-ward from a deletion. The deletion was created in the center of a fragment of the ami locus, and sites around the deletion were labeled by a frameshift generating a restriction site. Heteroduplexes were constructed containing two restriction sites on one strand and two different ones on the complementary strand. ami+ bacteria were transformed with such heteroduplexes. ami- transformants were isolated and individually underwent amplification of the transformed ami region. We have obtained two kinds of amplification products: short when the deletion was integrated, long when recombination stops at the deletion. Each long fragment was tested by the four restriction enzymes to detect which strand and which side of the deletion had recombined. We found that 80% of the cuts were located 5' to the deletion, showing that, in vivo, the 5' side is strongly favored by recombination. Further results suggest that exchanges occurring from 5' to 3' relative to the donor strand are more efficient than in the opposite direction, thus accounting for the 5' preference.

  12. Recombinant activated factor VII in cardiac surgery: single-center experience.

    Science.gov (United States)

    Singh, Sarvesh Pal; Chauhan, Sandeep; Choudhury, Minati; Malik, Vishwas; Choudhary, Shiv Kumar

    2014-02-01

    The widespread off-label use of recombinant activated factor VII for the control of refractory postoperative hemorrhage continues despite a warning from the Food and Drug Administration. Although effective in reducing the need for transfusion of blood and blood products, safety concerns still prevail. To compare the dosing and efficacy of recombinant activated factor VII between pediatric and adult patients, and in the operating room and intensive care unit. The records of 69 patients (33 children and 36 adults) who underwent cardiovascular surgery and received recombinant activated factor VII were reviewed retrospectively. The dose of recombinant activated factor VII, mediastinal drainage, use of blood and blood products, incidence of thrombosis, and 28-day mortality were studied. the efficacy of recombinant activated factor VII was comparable in adults and children, despite the lower dose in adults. Prophylactic use of recombinant activated factor VII decreased the incidence of mediastinal exploration and the duration of intensive care unit stay. A 4.3% incidence of thrombotic complications was observed in this study. The efficacious dose of recombinant activated factor VII is much less in adults compared to children. Prophylactic use of recombinant activated factor VII decreases the dose required, the incidence of mediastinal exploration, and intensive care unit stay, with no survival benefit.

  13. PM1-Alpha ELISA: the assay of choice for the detection of anti-PM/Scl autoantibodies?

    Science.gov (United States)

    Mahler, Michael; Fritzler, Marvin J

    2009-03-01

    A characteristic serological feature of patients suffering from the overlap polymyositis and scleroderma (PM/Scl) syndrome are antibodies to the human counterpart of the yeast exosome referred to as the PM/Scl complex. Historically, the detection of anti-PM/Scl antibodies was laborious and relied largely on indirect immunofluorescence and immunodiffusion techniques. In 1992 the major autoantigen PM/Scl-100 was identified and cloned. Subsequently, the major epitopes were mapped and one of these, termed PM1-Alpha, became the antigen for a novel ELISA exhibiting high sensitivity and specificity for the detection of anti-PM/Scl antibodies. Comparative studies with other methods using other PM/Scl autoantigens have shown that the PM1-Alpha ELISA has higher sensitivity and specificity than assays that employed recombinant PM/Scl-75c and PM/Scl-100. Anti-PM1-Alpha antibodies were identified in 55.0% of sera from PM/Scl overlap syndrome patients, but were also seen in 7.9% of SSc and in 7.5% of PM patients. The frequency in other systemic autoimmune diseases and in infectious diseases was significant lower. In summary, the data derived from individual studies suggest that PM1-Alpha may become the "gold standard" for the detection of anti-PM/Scl antibodies.

  14. Homologous Recombination as a Replication Fork Escort: Fork-Protection and Recovery

    Directory of Open Access Journals (Sweden)

    Audrey Costes

    2012-12-01

    Full Text Available Homologous recombination is a universal mechanism that allows DNA repair and ensures the efficiency of DNA replication. The substrate initiating the process of homologous recombination is a single-stranded DNA that promotes a strand exchange reaction resulting in a genetic exchange that promotes genetic diversity and DNA repair. The molecular mechanisms by which homologous recombination repairs a double-strand break have been extensively studied and are now well characterized. However, the mechanisms by which homologous recombination contribute to DNA replication in eukaryotes remains poorly understood. Studies in bacteria have identified multiple roles for the machinery of homologous recombination at replication forks. Here, we review our understanding of the molecular pathways involving the homologous recombination machinery to support the robustness of DNA replication. In addition to its role in fork-recovery and in rebuilding a functional replication fork apparatus, homologous recombination may also act as a fork-protection mechanism. We discuss that some of the fork-escort functions of homologous recombination might be achieved by loading of the recombination machinery at inactivated forks without a need for a strand exchange step; as well as the consequence of such a model for the stability of eukaryotic genomes.

  15. Low-temperature radiative recombination of electrons with bare nuclei

    International Nuclear Information System (INIS)

    Omidvar, K.

    1993-01-01

    Aside from empirical formulas, the radiative-recombination cross section and coefficient are usually given in tabulated forms instead of analytic formulas. Here, we give analytic expressions in the form of expansions for the recombination cross section as a function of the electron energy E for low E, and for the recombination coefficient as a function of the temperature T for low T. The expansion coefficients are combinations of confluent hypergeometric functions, and are tabulated for a large number of the final principal and angular-momentum quantum numbers n and l. It is shown that the recombination cross section for arbitrary nuclear charge number Z is independent of Z, while the recombination coefficient for T/Z 2 much-lt 1.58x10 5 K increases as Z 2 . Excellent agreement is found with the published tabulated values

  16. PRODUCTION OF RECOMBINANT HIGH pI-BARLEY α-GLUCOSIDASE

    DEFF Research Database (Denmark)

    Næsted, Henrik; Svensson, Birte

    plantlet [1]. Recently, expression and characterization of the recombinant full length, fully functional barley high pI α-glucosidase in Pichia pastoris has been achieved. To enable production of recombinant protein in mg amounts, a transformant harbouring a clone encoding the N-terminally hexa histidine...... tagged recombinant form of the enzyme was propagated using a high cell-density fermentation procedure. This system resulted in successful expression under the highly sensitive methanol utilization phase conducting the fermentation process using a BiostatB 5 L reactor. The recombinant high pI α...... glycosylation of the recombinant α-glucosidase. The enzyme activity was highly stable during the 5 day long fermentation. Characterisation of the enzymatic properties confirmed the specific activity actually to be superior to that of the native enzyme purified from malt [2]. The kinetic parameters Km, Vmax...

  17. High-Resolution Patterns of Meiotic Recombination across the Human Major Histocompatibility Complex

    Science.gov (United States)

    Cullen, Michael; Perfetto, Stephen P.; Klitz, William; Nelson, George; Carrington, Mary

    2002-01-01

    Definitive characteristics of meiotic recombination events over large (i.e., >1 Mb) segments of the human genome remain obscure, yet they are essential for establishing the haplotypic structure of the genome and for efficient mapping of complex traits. We present a high-resolution map of recombination at the kilobase level across a 3.3-Mb interval encompassing the major histocompatibility complex (MHC). Genotyping of 20,031 single sperm from 12 individuals resulted in the identification and fine mapping of 325 recombinant chromosomes within genomic intervals as small as 7 kb. Several principal characteristics of recombination in this region were observed: (1) rates of recombination can differ significantly between individuals; (2) intense hot spots of recombination occur at least every 0.8 Mb but are not necessarily evenly spaced; (3) distribution in the location of recombination events can differ significantly among individuals; (4) between hot spots, low levels of recombination occur fairly evenly across 100-kb segments, suggesting the presence of warm spots of recombination; and (5) specific sequence motifs associate significantly with recombination distribution. These data provide a plausible model for recombination patterns of the human genome overall. PMID:12297984

  18. Intermediate bands versus levels in non-radiative recombination

    International Nuclear Information System (INIS)

    Luque, Antonio; Marti, Antonio; Antolin, Elisa; Tablero, Cesar

    2006-01-01

    There is a practical interest in developing semiconductors with levels situated within their band gap while preventing the non-radiative recombination that these levels promote. In this paper, the physical causes of this non-radiative recombination are analyzed and the increase in the density of the impurities responsible for the mid-gap levels to the point of forming bands is suggested as the means of suppressing the recombination. Simple models supporting this recommendation and helping in its quantification are presented

  19. Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora.

    Science.gov (United States)

    Zickler, D; Moreau, P J; Huynh, A D; Slezec, A M

    1992-09-01

    The decrease of meiotic exchanges (crossing over and conversion) in two mutants of Sordaria macrospora correlated strongly with a reduction of chiasmata and of both types of "recombination nodules." Serial section reconstruction electron microscopy was used to compare the synapsis pattern of meiotic prophase I in wild type and mutants. First, synapsis occurred but the number of synaptonemal complex initiation sites was reduced in both mutants. Second, this reduction was accompanied by, or resulted in, modifications of the pattern of synapsis. Genetic and synaptonemal complex maps were compared in three regions along one chromosome arm divided into well marked intervals. Reciprocal exchange frequencies and number of recombination nodules correlated in wild type in the three analyzed intervals, but disparity was found between the location of recombination nodules and exchanges in the mutants. Despite the twofold exchange decrease, sections of the genome such as the short arm of chromosome 2 and telomere regions were sheltered from nodule decrease and from pairing modifications. This indicated a certain amount of diversity in the control of these features and suggested that exchange frequency was dependent not only on the amount of effective pairing but also on the localization of the pairing sites, as revealed by the synaptonemal complex progression in the mutants.

  20. Sequence and recombination analyses of the geminivirus replication

    Indian Academy of Sciences (India)

    Prakash

    2006-09-18

    Sep 18, 2006 ... Recombination can provide selective advantage in the evolution of viruses .... Program (v 1.08): Recombination Detection Program (RDP). (Martin and Rybicki ..... Sweet potato leaf curl virus - [US:Louisiana:1994]. AF104036.