WorldWideScience

Sample records for recombinant adenovirus expression

  1. [Construction and expression of a recombinant adenovirus with LZP3].

    Science.gov (United States)

    Chen, Bang-dang; Zhang, Fu-chun; Sun, Mei-yu; Li, Yi-jie; Ma, Zheng-hai

    2007-08-01

    To explore a new immunocontraceptive vaccine and construct an attenuated recombinant adenoviral vaccine against Lagurus lagurus zona pellucida 3(LZP3). LZP3 gene was subcloned into the shuttle vector pShuttle-CMV, and then a two-step transformation procedure was employed to construct a recombinant adenoviral plasmid with LZP3, which was digested with Pac I and transfected into HEK293 cells to package recombinant adenovirus particles. Finally, HeLa cells were infected by the recombinant adenovirus. LZP3 gene was detected from the recombinant virus by PCR, and its transcription and expression were analyzed by RT-PCR and Western blot. Recombinant adenovirus vector pAd-LZP3 with LZP3 gene was constructed by homologous recombination in E.coli, and a recombinant adenovirus was obtained by transfecting HEK293 cells with pAd-LZP3. PCR test indicated that LZP3 gene was successfully integrated into the adenoviral genome, and the titer of the recombinant adenovirus reached 1.2x10(10) pfu/L. The transcription and expression of LZP3 gene in the infected HeLa cells were confirmed by RT-PCR and Western blot. The recombinant adenovirus RAd-LZP3 can be successfully expressed in the infected HeLa cells, which lays the foundation for further researches into immunizing animals with RAd-LZP3.

  2. Activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  3. Co-factor activated recombinant adenovirus proteinases

    Science.gov (United States)

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  4. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice.

    Science.gov (United States)

    Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N

    2016-01-06

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. A recombinant E1-deleted porcine adenovirus-3 as an expression vector

    International Nuclear Information System (INIS)

    Zakhartchouk, Alexander; Zhou Yan; Tikoo, Suresh Kumar

    2003-01-01

    Replication-defective E1-deleted porcine adenoviruses (PAVs) are attractive vectors for vaccination. As a prerequisite for generating PAV-3 vectors containing complete deletion of E1, we transfected VIDO R1 cells (fetal porcine retina cells transformed with E1 region of human adenovirus 5) with a construct containing PAV-3 E1B large coding sequences under the control of HCMV promoter. A cell line named VR1BL could be isolated that expressed E1B large of PAV-3 and also complemented PAV214 (E1A+E1B small deleted). The VR1BL cells could be efficiently transfected with DNA and allowed the rescue and propagation of recombinant PAV507 containing a triple stop codon inserted in the E1B large coding sequence. In addition, recombinant PAV227 containing complete deletion of E1 (E1A+E1B small + E1B large ) could be successfully rescued using VR1BL cell line. Recombinant PAV227 replicated as efficiently as wild-type in VR1BL cells but not in VIDO R1 cells, suggesting that E1B large was essential for replication of PAV-3. Next, we constructed recombinant PAV219 by inserting green fluorescent (GFP) protein gene flanked by a promoter and a poly(A) in the E1 region of the PAV227 genome. We demonstrated that PAV219 was able to transduce and direct expression of GFP in some human cell lines

  6. Inhibition of corneal neovascularization by recombinant adenovirus-mediated sFlk-1 expression

    International Nuclear Information System (INIS)

    Yu Hui; Wu Jihong; Li Huiming; Wang Zhanli; Chen Xiafang; Tian Yuhua; Yi Miaoying; Ji Xunda; Ma Jialie; Huang Qian

    2007-01-01

    The interaction of vascular endothelial growth factor (VEGF) and its receptors (Flt-1, Flk-1/KDR) is correlated with neovascularization in the eyes. Therefore, blocking the binding of VEGF and the corresponding receptor has become critical for inhibiting corneal neovascularization. In this study, we have expressed the cDNA for sFlk-1 under the control of cytomegalovirus immediate-early promoter (CMV) from an E1/partial E3 deleted replication defective recombinant adenovirus, and Ad.sflk-1 expression was determined by Western blotting. We have shown that conditioned media from Ad.sflk-1-infected ARPE-19 cells significantly reduced VEGF-induced human umbilical vein endothelial cells (HUVEC) and murine endothelial cells (SVEC) proliferation in vitro compared with the control vector. In vivo, adenoviral vectors expressing green fluorescent protein alone (Ad.GFP) were utilized to monitor gene transfer to the cornea. Moreover, in the models of corneal neovascularization, the injection of Ad.sflk-1 (10 8 PFU) into the anterior chamber could significantly inhibit angiogenic changes compared with Ad.null-injected and vehicle-injected models. Immunohistochemical analysis showed that corneal endothelial cells and corneal stroma of cauterized rat eyes were efficiently transduced and expressed sFlk-1. These results not only support that adenoviral vectors are capable of high-level transgene expression but also demonstrate that Ad.sflk-1 gene therapy might be a feasible approach for inhibiting the development of corneal neovascularization

  7. [Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system].

    Science.gov (United States)

    Lu, Yue; Liu, Dan; Zhang, Xiaoren; Liu, Xuerong; Shen, Wei; Zheng, Gang; Liu, Yunfan; Dong, Xiaoyan; Wu, Xiaobing; Gao, Jimin

    2011-08-01

    We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.

  8. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Science.gov (United States)

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  9. Comparison of the protective efficacy between single and combination of recombinant adenoviruses expressing complete and truncated glycoprotein, and nucleoprotein of the pathogenic street rabies virus in mice.

    Science.gov (United States)

    Kim, Ha-Hyun; Yang, Dong-Kun; Nah, Jin-Ju; Song, Jae-Young; Cho, In-Soo

    2017-06-24

    Rabies is an important viral zoonosis that causes acute encephalitis and death in mammals. To date, several recombinant vaccines have been developed based on G protein, which is considered to be the main antigen, and these vaccines are used for rabies control in many countries. Most recombinant viruses expressing RABV G protein retain the G gene from attenuated RABV. Not enough is currently known about the protective effect against RABV of a combination of recombinant adenoviruses expressing the G and N proteins of pathogenic street RABV. We constructed a recombinant adenovirus (Ad-0910Gsped) expressing the signal peptide and ectodomain (sped) of G protein of the Korean street strain, and evaluated the immunological protection conferred by a single and combination of three kinds of recombinant adenoviruses (Ad-0910Gsped and Ad-0910G with or without Ad-0910 N) in mice. A combination of Ad-0910G and Ad-0910 N conferred improved immunity against intracranial challenge compared to single administration of Ad-0910G. The Ad-0910G virus, expressing the complete G protein, was more immunogenic than Ad-0910Gsped, which expressed a truncated G protein with the transmembrane and cytoplasmic domains removed. Additionally, oral vaccination using a combination of viruses led to complete protection. Our results suggest that this combination of viruses is a viable new intramuscular and oral vaccine candidate.

  10. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    International Nuclear Information System (INIS)

    Yang, Hyun Suk; Park, Seong-Wook; Lee, Heuiran; Kim, Sung Jin; Lee, Won Woo; Yang, You-Jung; Moon, Dae Hyuk

    2004-01-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by 99m TcO 4 - scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10 7 , 2 x 10 8 or 1 x 10 9 plaque forming units (pfu)] or β-galactosidase gene (Rad-CMV-LacZ 1 x 10 9 pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of 99m TcO 4 - (1.85 MBq). An additional two rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS underwent 99m TcO 4 - scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of 99m TcO 4 - and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by 99m TcO 4 - scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of 99m TcO 4 - was retained in the liver (p 9 pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10 9 pfu of Rad-CMV-hNIS (p 9 pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that 99m TcO 4 - scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in skeletal muscle of rats, non-invasively and quantitatively. (orig.)

  11. Imaging of human sodium-iodide symporter gene expression mediated by recombinant adenovirus in skeletal muscle of living rats

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hyun Suk; Park, Seong-Wook [Department of Internal Medicine (Cardiology), Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-gu, 138-736, Seoul (Korea); Lee, Heuiran; Kim, Sung Jin [Department of Microbiology, University of Ulsan College of Medicine, Seoul (Korea); Lee, Won Woo [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam (Korea); Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea); Yang, You-Jung; Moon, Dae Hyuk [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea)

    2004-09-01

    We evaluated the feasibility of non-invasive imaging of recombinant adenovirus-mediated human sodium-iodide symporter (hNIS) gene expression by {sup 99m}TcO{sub 4}{sup -} scintigraphy in skeletal muscle of rats. Replication-defective recombinant adenovirus encoding hNIS gene [Rad-CMV-hNIS 5 x 10{sup 7}, 2 x 10{sup 8} or 1 x 10{sup 9} plaque forming units (pfu)] or {beta}-galactosidase gene (Rad-CMV-LacZ 1 x 10{sup 9} pfu) was injected into the right biceps femoris muscle of rats (n=5-6 for each group). Three days after gene transfer, scintigraphy was performed using a gamma camera 30 min after injection of {sup 99m}TcO{sub 4}{sup -} (1.85 MBq). An additional two rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS underwent {sup 99m}TcO{sub 4}{sup -} scintigraphy with sodium perchlorate. After the imaging studies, rats were sacrificed for assessment of the biodistribution of {sup 99m}TcO{sub 4}{sup -} and measurement of hNIS mRNA expression. In all the rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS, hNIS expression was successfully imaged by {sup 99m}TcO{sub 4}{sup -} scintigraphy, while rats injected with Rad-CMV-LacZ or lower doses of Rad-CMV-hNIS failed to show uptake. The biodistribution studies indicated that a significantly different amount of {sup 99m}TcO{sub 4}{sup -} was retained in the liver (p<0.001) and the right muscle (p<0.05), with the highest uptake in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS. The muscular hNIS mRNA level quantified by real-time reverse transcription-polymerase chain reaction was significantly higher in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS (p<0.05), with a positive correlation with the imaging counts (r=0.810, p<0.05) and the biodistribution (r=0.847, p<0.001). Hot spots in rats injected with 1 x 10{sup 9} pfu of Rad-CMV-hNIS were specifically inhibited by sodium perchlorate. This study illustrated that {sup 99m}TcO{sub 4}{sup -} scintigraphy can monitor Rad-CMV-hNIS-mediated gene expression in

  12. Recombinant canine adenovirus type-2 expressing TgROP16 provides partial protection against acute Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Li, Xiu-Zhen; Lv, Lin; Zhang, Xu; Anchang, Kenneth Yongabi; Abdullahi, Auwalu Yusuf; Tu, Liqing; Wang, Xiaohu; Xia, Lijun; Zhang, Xiu-Xiang; Feng, Weili; Lu, Chunxia; Li, Shoujun; Yuan, Zi-Guo

    2016-11-01

    We previously demonstrated that the survival time of BALB/c mice challenged with Toxoplasma gondii RH strain was prolonged by immunising the mice with a eukaryotic vector expressing the protein ROP16 of T. gondii. Building upon previous findings, we are exploring improved vaccination strategies to enhance protection. In this work, a novel recombinant canine adenovirus type 2 expressing ROP16 (CAV-2-ROP16) of T. gondii was constructed and identified to express ROP16 in Madin-Darby canine kidney cells (MDCK) cells by western blot (WB) and indirect immunofluorescence (IFA) assays. Intramuscular immunisation of BALB/c mice with CAV-2-ROP16 was performed to evaluate the humoral and cellular immune responses. This vaccination triggered significant humoral and cellular responses, including ROP16-stimulated lymphoproliferation (P0.05), revealing that a predominant Th1-type response had developed. The cell-mediated cytotoxic activity with high levels of IFN-γ and TNF-α was significantly increased in both CD4 + and CD8 + T-cell compartments in the mice immunised with CAV-2-ROP16 (Pdays post infection compared with control mice that all died within seven days (Pvaccination until now. Our work presents the successful use of recombinant virus CAV-2-ROP16 in vaccination protocols to protect against intraperitoneal challenge with the virulent RH strain of T. gondii. This system was shown to be extremely efficient in eliciting humoral and cellular immune responses that led to a significant improvement in survival time in mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Science.gov (United States)

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  14. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jeff Alexander

    Full Text Available Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4 vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn. Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  15. Complete protection of cats against feline panleukopenia virus challenge by a recombinant canine adenovirus type 2 expressing VP2 from FPV.

    Science.gov (United States)

    Yang, Songtao; Xia, Xianzhu; Qiao, Jun; Liu, Quan; Chang, Shuang; Xie, Zhijing; Ju, Huiyan; Zou, Xiaohuan; Gao, Yuwei

    2008-03-10

    Feline panleukopenia virus (FPV) is an important infectious pathogen of all members of the family Felidae. Here, we describe construction of a replication-competent recombinant canine adenovirus type 2 (CAV-2) expressing the VP2 protein of FPV (CAV-2-VP2) by transfection of MDCK cells with recombinant CAV-2 genome carrying a VP2 expression cassette. Ten 3-month-old cats were vaccinated with the recombinant virus with two boosters at 15-day intervals. All cats developed neutralizing antibodies of titers 1:16-1:32 by day 15 post-primary vaccination, increasing to 1:64-1:128 by day 45. Examination for clinical signs and viral presence, and total white blood cell counts in peripheral blood following FPV challenge, showed that all were completely protected. This recombinant virus appears to provide an effective alternative to attenuated and inactivated vaccines in immunizing cats against feline panleukopenia.

  16. Construction of a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen and mouse 4-1BBL genes and its effect on dendritic cells

    Directory of Open Access Journals (Sweden)

    Xiaodong Weng

    2011-03-01

    Full Text Available Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMaxTM Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12 in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA. Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4% and CD86 (80.13 ± 2.81%] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL and IL-12 (249.57 ± 12.51 pg/mL production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05 than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD450 = 0.614 ± 0.018, indicating that this recombinant adenovirus can effectively enhance the activity of DCs.

  17. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    Science.gov (United States)

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  18. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    International Nuclear Information System (INIS)

    Li Jianwei; Faber, Milosz; Papaneri, Amy; Faber, Marie-Luise; McGettigan, James P.; Schnell, Matthias J.; Dietzschold, Bernhard

    2006-01-01

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  19. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Science.gov (United States)

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  20. Immunizing Patients With Metastatic Melanoma Using Recombinant Adenoviruses Encoding MART-1 or gp100 Melanoma Antigens

    Science.gov (United States)

    Rosenberg, Steven A.; Zhai, Yifan; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Seipp, Claudia A.; Einhorn, Jan H.; Roberts, Bruce; White, Donald E.

    2008-01-01

    Background: The characterization of the genes encoding melanoma-associated antigens MART-1 or gp100, recognized by T cells, has opened new possibilities for the development of immunization strategies for patients with metastatic melanoma. With the use of recombinant adenoviruses expressing either MART-1 or gp100 to immunize patients with metastatic melanoma, we evaluated the safety, immunologic, and potential therapeutic aspects of these immunizations. Methods: In phase I studies, 54 patients received escalating doses (between 107 and 1011 plaque-forming units) of recombinant adenovirus encoding either MART-1 or gp100 melanoma antigen administered either alone or followed by the administration of interleukin 2 (IL-2). The immunologic impact of these immunizations on the development of cellular and antibody reactivity was assayed. Results: Recombinant adenoviruses expressing MART-1 or gp100 were safely administered. One of 16 patients with metastatic melanoma receiving the recombinant adenovirus MART-1 alone experienced a complete response. Other patients achieved objective responses, but they had received IL-2 along with an adenovirus, and their responses could be attributed to the cytokine. Immunologic assays showed no consistent immunization to the MART-1 or gp100 transgenes expressed by the recombinant adenoviruses. High levels of neutralizing antibody were found in the pretreatment sera of the patients. Conclusions: High doses of recombinant adenoviruses could be safely administered to cancer patients. High levels of neutralizing antibody present in patients' sera prior to treatment may have impaired the ability of these viruses to immunize patients against melanoma antigens. PMID:9862627

  1. [Adenovirus-mediated canine interferon-gamma expression and its antiviral activity against canine parvovirus].

    Science.gov (United States)

    Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.

  2. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    Science.gov (United States)

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-02-26

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.

  3. Production of Recombinant Adenovirus Containing Human Interlukin-4 Gene

    OpenAIRE

    Mojarrad, Majid; Abdolazimi, Yassan; Hajati, Jamshid; Modarressi, Mohammad Hossein

    2011-01-01

    Objective(s) Recombinant adenoviruses are currently used for a variety of purposes, including in vitro gene transfer, in vivo vaccination, and gene therapy. Ability to infect many cell types, high efficiency in gene transfer, entering both dividing and non dividing cells, and growing to high titers make this virus a good choice for using in various experiments. In the present experiment, a recombinant adenovirus containing human IL-4 coding sequence was made. IL-4 has several characteristics ...

  4. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    Science.gov (United States)

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Protective MCMV immunity by vaccination of the salivary gland via Wharton's duct: replication-deficient recombinant adenovirus expressing individual MCMV genes elicits protection similar to that of MCMV.

    Science.gov (United States)

    Liu, Guangliang; Zhang, Fangfang; Wang, Ruixue; London, Lucille; London, Steven D

    2014-04-01

    Salivary glands, a major component of the mucosal immune system, confer antigen-specific immunity to mucosally acquired pathogens. We investigated whether a physiological route of inoculation and a subunit vaccine approach elicited MCMV-specific and protective immunity. Mice were inoculated by retrograde perfusion of the submandibular salivary glands via Wharton's duct with tcMCMV or MCMV proteins focused to the salivary gland via replication-deficient adenovirus expressing individual MCMV genes (gB, gH, IE1; controls: saline and replication deficient adenovirus without MCMV inserts). Mice were evaluated for MCMV-specific antibodies, T-cell responses, germinal center formation, and protection against a lethal MCMV challenge. Retrograde perfusion with tcMCMV or adenovirus expressed MCMV proteins induced a 2- to 6-fold increase in systemic and mucosal MCMV-specific antibodies, a 3- to 6-fold increase in GC marker expression, and protection against a lethal systemic challenge, as evidenced by up to 80% increased survival, decreased splenic pathology, and decreased viral titers from 10(6) pfu to undetectable levels. Thus, a focused salivary gland immunization via a physiological route with a protein antigen induced systemic and mucosal protective immune responses. Therefore, salivary gland immunization can serve as an alternative mucosal route for administering vaccines, which is directly applicable for use in humans.

  6. A simple negative selection method to identify adenovirus recombinants using colony PCR

    Directory of Open Access Journals (Sweden)

    Yongliang Zhao

    2014-01-01

    Conclusions: The negative selection method to identify AdEasy adenovirus recombinants by colony PCR can identify the recombined colony within a short time-period, and maximally avoid damage to the recombinant plasmid by limiting recombination time, resulting in improved adenovirus packaging.

  7. Construction and immunogenicity of replication-competent adenovirus 5 host range mutant recombinants expressing HIV-1 gp160 of SF162 and TV1 strains.

    Science.gov (United States)

    Hidajat, Rachmat; Kuate, Seraphin; Venzon, David; Kalyanaraman, Vaniambadi; Kalisz, Irene; Treece, James; Lian, Ying; Barnett, Susan W; Robert-Guroff, Marjorie

    2010-05-21

    An HIV Env immunogen capable of eliciting broad immunity is critical for a successful vaccine. We constructed and characterized adenovirus 5 host range mutant (Ad5hr) recombinants encoding HIV(SF162) gp160 (subtype B) and HIV(TV1) gp160 (subtype C). Immunization of mice with one or both induced cellular immunity to subtype B and C peptides by ELISpot, and antibody responses with high binding titers to HIV Env of subtypes A, B, C, and E. Notably, Ad5hr-HIV(TV1) gp160 induced better cellular immunity than Ad5hr-HIV(SF162) gp160, either alone or following co-administration. Thus, the TV1 Env recombinant alone may be sufficient for eliciting immune responses against both subtype B and C envelopes. Further studies of Ad5hr-HIV(TV1) gp160 in rhesus macaques will evaluate the suitability of this insert for a future phase I clinical trial using a replication-competent Ad4 vector. Published by Elsevier Ltd.

  8. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    Science.gov (United States)

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  9. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    International Nuclear Information System (INIS)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  10. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  11. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    Science.gov (United States)

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  12. Alternate adenovirus type-pairs for a possible circumvention of host immune response to recombinant adenovirus vectors.

    Science.gov (United States)

    Nász, I; Adám, E; Lengyel, A

    2001-01-01

    With the help of monoclonal antibodies the existence of at least 18 different earlier not known intertype (IT) specific epitopes were demonstrated in different numbers and combinations on the hexons of different adenovirus serotypes. The IT specific epitopes play an important role in the experimental gene therapy and in the recombinant adenovirus vaccination because of the harmful immune response of the recipient organisms directed against the many different epitopes of the adenovirus vector. For the elimination of harmful effect the authors suggest the use of multiple vectors, each prepared from different adenovirus serotypes showing the loosest antigenic relationship to each other. The vectors would be used sequentially when second or multiple administration is needed. For this purpose the authors determined and described 31 such adenovirus type-pairs, which are probably the best alternates for sequential use in experimental gene therapy.

  13. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    Science.gov (United States)

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  14. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs

    Science.gov (United States)

    Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-01-01

    ABSTRACT Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against

  15. Accumulation of infectious mutants in stocks during the propagation of fiber-modified recombinant adenoviruses

    International Nuclear Information System (INIS)

    Ugai, Hideyo; Inabe, Kumiko; Yamasaki, Takahito; Murata, Takehide; Obata, Yuichi; Hamada, Hirofumi; Yokoyama, Kazunari K.

    2005-01-01

    In infected cells, replication errors during viral proliferation generate mutations in adenoviruses (Ads), and the mutant Ads proliferate and evolve in the intracellular environment. Genetically fiber-modified recombinant Ads (rAd variants) were generated, by modification of the fiber gene, for therapeutic applications in host cells that lack or express reduced levels of the Coxsackievirus and adenovirus receptor. To assess the genetic modifications of rAd variants that might induce the instability of Ad virions, we examined the frequencies of mutants that accumulated in propagated stocks. Seven of 41 lines of Ad variants generated mutants in the stocks and all mutants were infectious. Moreover, all the mutations occurred in the modified region that had been added at the 3' end of the fiber gene. Our results show that some genetic modifications at the carboxyl terminus of Ad fiber protein lead to the instability of Ad virions

  16. Protection of Non-Human Primates against Rabies with an Adenovirus Recombinant Vaccine

    Science.gov (United States)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H. C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. PMID:24503087

  17. Oral or parenteral administration of replication-deficient adenoviruses expressing the measles virus haemagglutinin and fusion proteins: protective immune responses in rodents.

    Science.gov (United States)

    Fooks, A R; Jeevarajah, D; Lee, J; Warnes, A; Niewiesk, S; ter Meulen, V; Stephenson, J R; Clegg, J C

    1998-05-01

    The genes encoding the measles virus (MV) haemagglutinin (H) and fusion (F) proteins were placed under the control of the human cytomegalovirus immediate early promoter in a replication-deficient adenovirus vector. Immunofluorescence and radioimmune precipitation demonstrated the synthesis of each protein and biological activity was confirmed by the detection of haemadsorption and fusion activities in infected cells. Oral as well as parenteral administration of the H-expressing recombinant adenovirus elicited a significant protective response in mice challenged with MV. While the F-expressing adenovirus failed to protect mice, cotton rats immunized with either the H- or F-expressing recombinant showed reduced MV replication in the lungs. Antibodies elicited in mice following immunization with either recombinant had no in vitro neutralizing activity, suggesting a protective mechanism involving a cell-mediated immune response. This study demonstrates the feasibility of using oral administration of adenovirus recombinants to induce protective responses to heterologous proteins.

  18. Construction of recombinant adenovirus with Egr-1 promoter and Smad7 cDNA and study of the Egr-1 promoter's biological activity

    International Nuclear Information System (INIS)

    Cai Xuwei; Fu Xiaolong; Yang Jian; Song Houyan

    2005-01-01

    Objective: To construct a recombinant replication-defective adenovirus containing Egr-1 promoter and Smad7 cDNA, then to evaluate the biological activity of Egr-1 promoter. Methods: Based on Adeno- X TM expression system, CMV promoter of the pShuttle vector was replaced by Egr-1 promoter, and the Smad7 cDNA was subcloned into the MCS(multiple cloning site) of pShuttle. The recombinant pShuttle was then sub-cloned into the Adeno-X TM genome, which was transformed into E. coli to get recombinant Adeno-X TM plasmid DNA. The recombinant adenovirus was packaged and amplified in the transfected HEK293 cells before it was purified and tested for viral titer. The fibroblasts (3T6 cells) infected by the recombinant adenovirus were irradiated , and the activity of Egr-1 promoter was quantitively determined by the amount of Smad7 protein expressed in the 3T6 cells using Western blot. Results: Identified by restriction endonuclease analysis and PCR, the recombinant adenovirus containing Egr-1 promoter and Smad7 cDNA was constructed successfully, with a viral titer of 1.0 x 10 11 TCID 50 /ml. The expressed amount of Smad7 protein varied at different dose levels and different time points post-irradiation in the 3T6 cells infected with the recombinant adenovirus. The amount of Smad7 protein increased along with the rising of the irradiation dose, and remained at a high expression level from 8 Gy to 15 Gy. The amount of Smad7 protein started to increase at 2 hours post-irradiation, and maintained a relatively high level for the next 5 hours before it descended, which was not observed in the control 3T6 cells. Conclusions: With the aid of Adeno-X TM expression system and molecular cloning techniques, construction of recombinant adenovirus could be quick and efficient. The recombined Egr-1 promoter has the activity of regulating the expression of downstream Smad7 cDNA. The increase in Smad7 expression under control of Egr-1 promoter induced by ionizing radiation is time- and dose

  19. Development and evaluation of novel recombinant adenovirus-based vaccine candidates for infectious bronchitis virus and Mycoplasma gallisepticum in chickens.

    Science.gov (United States)

    Zhang, Dongchao; Long, Yuqing; Li, Meng; Gong, Jianfang; Li, Xiaohui; Lin, Jing; Meng, Jiali; Gao, Keke; Zhao, Ruili; Jin, Tianming

    2018-04-01

    Avian infectious bronchitis caused by the infectious bronchitis virus (IBV), and mycoplasmosis caused by Mycoplasma gallisepticum (MG) are two major respiratory diseases in chickens that have resulted in severe economic losses in the poultry industry. We constructed a recombinant adenovirus that simultaneously expresses the S1 spike glycoprotein of IBV and the TM-1 protein of MG (pBH-S1-TM-1-EGFP). For comparison, we constructed two recombinant adenoviruses (pBH-S1-EGFP and pBH-TM-1-EGFP) that express either the S1 spike glycoprotein or the TM-1 protein alone. The protective efficacy of these three vaccine constructs against challenge with IBV and/or MG was evaluated in specific pathogen free chickens. Groups of seven-day-old specific pathogen free chicks were immunized twice, two weeks apart, via the oculonasal route with the pBH-S1-TM-1-EGFP, pBH-S1-EGFP, or pBH-TM-1-EGFP vaccine candidates or the commercial attenuated infectious bronchitis vaccine strain H52 and MG vaccine strain F-36 (positive controls), and challenged with virulent IBV or MG two weeks later. Interestingly, by days 7 and 14 after the booster immunization, pBH-S1-TM-1-EGFP-induced antibody titre was significantly higher (P attenuated commercial IBV vaccine; however, there was no significant difference between the pBH-S1-TM-1-EGFP and attenuated commercial MG vaccine groups (P > 0.05). The clinical signs, the gross, and histopathological lesions scores of the adenovirus vaccine constructs were not significantly different from that of the attenuated commercial IBV or MG vaccines (positive controls) (P > 0.05). These results demonstrate the potential of the bivalent pBH-S1-TM-1-EGFP adenovirus construct as a combination vaccine against IB and mycoplasmosis.

  20. Immunogenicity of heterologous recombinant adenovirus prime-boost vaccine regimens is enhanced by circumventing vector cross-reactivity

    NARCIS (Netherlands)

    Thorner, Anna R.; Lemckert, Angelique A. C.; Goudsmit, Jaap; Lynch, Diana M.; Ewald, Bonnie A.; Denholtz, Matthew; Havenga, Menzo J. E.; Barouch, Dan H.

    2006-01-01

    The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have

  1. Recombinant adenovirus-mediated gene transfer suppresses experimental arthritis

    Directory of Open Access Journals (Sweden)

    E. Quattrocchi

    2011-09-01

    Full Text Available Collagen Induced Arthritis (CIA is a widely studied animal model to develop and test novel therapeutic approaches for treating Rheumatoid Arthritis (RA in humans. Soluble Cytotoxic T-Lymphocyte Antigen 4 (CTLA4-Ig, which binds B7 molecule on antigen presenting cells and blocks CD28 mediated T-lymphocyte activation, has been shown to ameliorate experimental autoimmune diseases such as lupus, diabetes and CIA. Objective of our research was to investigate in vivo the effectiveness of blocking the B7/CD28 T-lymphocyte co-stimulatory pathway, utilizing a gene transfer technology, as a therapeutic strategy against CIA. Replication-deficient adenoviruses encoding a chimeric CTLA4-Ig fusion protein, or β-galactosidase as control, have been injected intravenously once at arthritis onset. Disease activity has been monitored by the assessment of clinical score, paw thickness and type II collagen (CII specific cellular and humoral immune responses for 21 days. The adenovirally delivered CTLA4-Ig fusion protein at a dose of 2×108 pfu suppressed established CIA, whereas the control β-galactosidase did not significantly affect the disease course. CII-specific lymphocyte proliferation, IFNg production and anti-CII antibodies were significantly reduced by CTLA4-Ig treatment. Our results demonstrate that blockade of the B7/CD28 co-stimulatory pathway by adenovirus-mediated CTLA4-Ig gene transfer is effective in treating established CIA suggesting its potential in treating RA.

  2. Prolonged peritoneal gene expression using a helper-dependent adenovirus.

    Science.gov (United States)

    Liu, Limin; Shi, Chang-Xin; Ghayur, Ayesha; Zhang, Claire; Su, Je Yen; Hoff, Catherine M; Margetts, Peter J

    2009-01-01

    Encapsulating peritoneal sclerosis (EPS) is a rare complication of peritoneal dialysis. The causes of EPS are not well defined and are likely multifactorial. A suitable animal model would facilitate research into the pathophysiology and treatment of EPS. We developed a helper-dependent adenovirus that expresses both green fluorescent protein (GFP) and active transforming growth factor-beta (TGF-beta1; HDAdTGF-beta1). Mice were administered HDAdTGF-beta1 via intraperitoneal injection and the response was compared with mice administered either first-generation adenovirus expressing TGF-beta1 (AdTGF-beta1) or control adenovirus (AdGFP). HDAdTGF-beta1-treated mice continued to express the GFP reporter transgene to day 74, the end of the observation period. Transgene expression lasted less than 28 days in the animals treated with first-generation adenoviruses. Animals treated with first-generation AdTGF-beta1 demonstrated submesothelial thickening and angiogenesis at day 7, with almost complete resolution by day 28. The HDAdTGF-beta1-treated mice demonstrated progressive peritoneal fibrosis with adhesion formation and encapsulation of bowels. Weight gain was significantly reduced in animals treated with HDAdTGF-beta1 compared to both the control-treated animals and the AdTGF-beta1-treated animals. Inflammation was not a major component of the fibroproliferative response. Peritoneal administration of a first-generation AdTGF-beta1 leads to transient gene expression, resulting in a resolving fibrotic response and histology similar to that seen in simple peritoneal sclerosis. Prolonged TGF-beta1 expression induced by the helper-dependent HDAdTGF-beta1 led to changes in peritoneal morphology resembling EPS. This suggests that TGF-beta1 may be a contributing factor in both simple peritoneal sclerosis and EPS. This model will be useful for elucidation of the mechanism of EPS and evaluation of potential treatment.

  3. Inhibitory effect of recombinant adenovirus carrying immunocaspase-3 on hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohua [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China); Fan, Rui [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China); Zou, Xue [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China); Gao, Lin [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China); Jin, Haifeng [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China); Du, Rui [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China); Xia, Lin [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China); Fan, Daiming [State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, 17 Changle Western Road, Xi' an 710032 (China)

    2007-06-29

    Previously, Srinivasula devised a contiguous molecule (C-cp-3 or immunocaspase-3) containing the small and large subunits similar to that in the active form of caspas-3 and found C-cp-3 had similar cleavage activity to the active form of caspase-3. To search for a new clinical application of C-cp-3 to treat hepatocellular carcinoma, recombinant adenoviruses carrying the C-cp-3 and a-fetoprotein (AFP) promoter (Ad-rAFP-C-cp-3) were constructed through a bacterial homologous recombinant system. The efficiency of adenovirus-mediated gene transfer and the inhibitory effect of Ad-rAFP-C-cp-3 on the proliferation of hepatocarcinoma cells were determined by X-gal stain and MTT assay, respectively. The tumorigenicity of hepatocarcinoma cells transfected by Ad-rAFP-C-cp-3 and the antitumor effect of Ad-rAFP-C-cp-3 on transplanted tumor in nude mice were detected in vivo. The results suggested that Ad-rAFP-C-cp-3 can inhibit specifically proliferation of AFP-producing human hepatocarcinoma cells in vitro and in vivo and adenovirus-mediated C-cp-3 transfer could be used as a new method to treat human hepatocarcinoma.

  4. Inhibitory effect of recombinant adenovirus carrying immunocaspase-3 on hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Li, Xiaohua; Fan, Rui; Zou, Xue; Gao, Lin; Jin, Haifeng; Du, Rui; Xia, Lin; Fan, Daiming

    2007-01-01

    Previously, Srinivasula devised a contiguous molecule (C-cp-3 or immunocaspase-3) containing the small and large subunits similar to that in the active form of caspas-3 and found C-cp-3 had similar cleavage activity to the active form of caspase-3. To search for a new clinical application of C-cp-3 to treat hepatocellular carcinoma, recombinant adenoviruses carrying the C-cp-3 and a-fetoprotein (AFP) promoter (Ad-rAFP-C-cp-3) were constructed through a bacterial homologous recombinant system. The efficiency of adenovirus-mediated gene transfer and the inhibitory effect of Ad-rAFP-C-cp-3 on the proliferation of hepatocarcinoma cells were determined by X-gal stain and MTT assay, respectively. The tumorigenicity of hepatocarcinoma cells transfected by Ad-rAFP-C-cp-3 and the antitumor effect of Ad-rAFP-C-cp-3 on transplanted tumor in nude mice were detected in vivo. The results suggested that Ad-rAFP-C-cp-3 can inhibit specifically proliferation of AFP-producing human hepatocarcinoma cells in vitro and in vivo and adenovirus-mediated C-cp-3 transfer could be used as a new method to treat human hepatocarcinoma

  5. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene combined with radiation therapy on human lymphoma cells lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wan Jianmei; Wang Yongqing; Wu Jinchang

    2008-01-01

    This paper analyzes the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Human lymphoma cell lines were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTF. The cell cycle and apoptosis were detected by flow cytometry, and the p53 protein expression was detected by Western blotting. The results showed that extrinsic p53 gene have expressed to some degree, but not at high level. The role of inhibition and radiation sensitivity of rAd-p53 was not significant to human lymphoma cell lines. (authors)

  6. Expression of recombinant Antibodies

    Directory of Open Access Journals (Sweden)

    André eFrenzel

    2013-07-01

    Full Text Available Recombinant antibodies are highly specific detection probes in research, diagnostics and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines and transgenic plants are promising to obtain antibodies with human-like post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  7. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    Science.gov (United States)

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  8. High prevalence of antibodies against canine adenovirus (CAV) type 2 in domestic dog populations in South Africa precludes the use of CAV-based recombinant rabies vaccines.

    Science.gov (United States)

    Wright, N; Jackson, F R; Niezgoda, M; Ellison, J A; Rupprecht, C E; Nel, L H

    2013-08-28

    Rabies in dogs can be controlled through mass vaccination. Oral vaccination of domestic dogs would be useful in the developing world, where greater vaccination coverage is needed especially in inaccessible areas or places with large numbers of free-roaming dogs. From this perspective, recent research has focused on development of new recombinant vaccines that can be administered orally in a bait to be used as adjunct for parenteral vaccination. One such candidate, a recombinant canine adenovirus type 2 vaccine expressing the rabies virus glycoprotein (CAV2-RG), is considered a promising option for dogs, given host specificity and safety. To assess the potential use of this vaccine in domestic dog populations, we investigated the prevalence of antibodies against canine adenovirus type 2 in South African dogs. Blood was collected from 241 dogs from the Gauteng and KwaZulu-Natal provinces. Sampled dogs had not previously been vaccinated against canine adenovirus type 1 (CAV1) or canine adenovirus type 2 (CAV2). Animals from both provinces had a high percentage of seropositivity (45% and 62%), suggesting that CAV2 circulates extensively among domestic dog populations in South Africa. Given this finding, we evaluated the effect of pre-existing CAV-specific antibodies on the efficacy of the CAV2-RG vaccine delivered via the oral route in dogs. Purpose-bred Beagle dogs, which received prior vaccination against canine parvovirus, canine distemper virus and CAV, were immunized by oral administration of CAV2-RG. After rabies virus (RABV) infection all animals, except one vaccinated dog, developed rabies. This study demonstrated that pre-existing antibodies against CAV, such as naturally occurs in South African dogs, inhibits the development of neutralizing antibodies against RABV when immunized with a CAV-based rabies recombinant vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis.

    Directory of Open Access Journals (Sweden)

    Michael P Walsh

    2009-06-01

    Full Text Available In 2005, a human adenovirus strain (formerly known as HAdV-D22/H8 but renamed here HAdV-D53 was isolated from an outbreak of epidemic keratoconjunctititis (EKC, a disease that is usually caused by HAdV-D8, -D19, or -D37, not HAdV-D22. To date, a complete change of tropism compared to the prototype has never been observed, although apparent recombinant strains of other viruses from species Human adenovirus D (HAdV-D have been described. The complete genome of HAdV-D53 was sequenced to elucidate recombination events that lead to the emergence of a viable and highly virulent virus with a modified tropism. Bioinformatic and phylogenetic analyses of this genome demonstrate that this adenovirus is a recombinant of HAdV-D8 (including the fiber gene encoding the primary cellular receptor binding site, HAdV-D22, (the epsilon determinant of the hexon gene, HAdV-D37 (including the penton base gene encoding the secondary cellular receptor binding site, and at least one unknown or unsequenced HAdV-D strain. Bootscanning analysis of the complete genomic sequence of this novel adenovirus, which we have re-named HAdV-D53, indicated at least five recombination events between the aforementioned adenoviruses. Intrahexon recombination sites perfectly framed the epsilon neutralization determinant that was almost identical to the HAdV-D22 prototype. Additional bootscan analysis of all HAdV-D hexon genes revealed recombinations in identical locations in several other adenoviruses. In addition, HAdV-D53 but not HAdV-D22 induced corneal inflammation in a mouse model. Serological analysis confirmed previous results and demonstrated that HAdV-D53 has a neutralization profile representative of the epsilon determinant of its hexon (HAdV-D22 and the fiber (HAdV-D8 proteins. Our recombinant hexon sequence is almost identical to the hexon sequences of the HAdV-D strain causing EKC outbreaks in Japan, suggesting that HAdV-D53 is pandemic as an emerging EKC agent. This documents

  10. Genetic analysis of a novel human adenovirus with a serologically unique hexon and a recombinant fiber gene.

    Directory of Open Access Journals (Sweden)

    Elizabeth B Liu

    Full Text Available In February of 1996 a human adenovirus (formerly known as Ad-Cor-96-487 was isolated from the stool of an AIDS patient who presented with severe chronic diarrhea. To characterize this apparently novel pathogen of potential public health significance, the complete genome of this adenovirus was sequenced to elucidate its origin. Bioinformatic and phylogenetic analyses of this genome demonstrate that this virus, heretofore referred to as HAdV-D58, contains a novel hexon gene as well as a recombinant fiber gene. In addition, serological analysis demonstrated that HAdV-D58 has a different neutralization profile than all previously characterized HAdVs. Bootscan analysis of the HAdV-D58 fiber gene strongly suggests one recombination event.

  11. Preparation of a recombinant adenoviral encoding human NIS gene and its specific expression in cardiomyocytes

    International Nuclear Information System (INIS)

    Wang Lihua; Zhang Miao; Guo Rui; Shi Shuo; Li Biao

    2012-01-01

    Objective: To construct a recombinant adenovirus vector containing the human NIS gene with the myosin light chain-2(MLC-2v) gene as the promoter and evaluate its specific expression and feasibility as a reporter gene in cardiomyocytes. Methods: MLC-2v promoter and NIS were subcloned into an adenovirus shuttle vector, and forwarded by homologous recombination in the bacteria BJ5183 containing AdEasy-1 plasmid. Positive recombinant adenovirus vector was selected, packaged and amplified in the HEK293 cells to obtain recombinant adenovirus Ad-MLC-NIS. Ad-cytomegalovirus (CMV)-NIS with cytomegalovirus as the promoter, Ad-MLC without NIS and Ad-NIS without promoter were constructed as the controls. Cardiomyocytes and non-cardiomyocytes were then infected by the adenovirus. The protein expression was tested by Western blot analysis. The function and features of NIS protein were evaluated by dynamic iodide uptake and NaClO 4 iodine uptake inhibition test in vitro. The viability and proliferation of cardiomyocytes after adenovirus transfection and radioiodine incubation were checked by trypan blue staining. Results: Recombinant NIS adenovirus was successfully constructed. Western blot analysis showed that the NIS protein was highly expressed in cardiomyocytes transfected with Ad-MLC-NIS, and all cells transfected with Ad-CMV-NIS. However, in non-cardiomyocytes transfected with Ad-MLC-NIS, little NIS protein was detected. Dynamic iodine uptake tests showed that the peaks of iodide uptake of the three different cell lines (H9C2, A549, U87 cell) transfected with Ad-MLC-NIS were 5844.0, 833.6 and 846.0 counts · min -1 , respectively. The iodide uptake function of H9C2 was inhibited by NaClO 4 . There was almost no change in cell viability and proliferation when the MOI was 100. Conclusions: Ad-MLC-NIS allows myocardial specific expression of an external gene, and the cardiomyocytes with NIS expression are capable of iodine uptake. Further research of NIS as a reporter gene in

  12. Immunogenicity and efficacy in mice of an adenovirus-based bicistronic rotavirus vaccine expressing NSP4 and VP7.

    Science.gov (United States)

    Xie, Li; Yan, Min; Wang, Xiaonan; Ye, Jing; Mi, Kai; Yan, Shanshan; Niu, Xianglian; Li, Hongjun; Sun, Maosheng

    2015-12-02

    NSP4 and VP7 are important functional proteins of rotavirus. Proper combination of viral gene expression is favorable to improving the protection effect of subunit vaccine. In the present study, We evaluated the immunogenicity and efficacy of the bicistronic recombinant adenovirus (rAd-NSP4-VP7) and two single-gene expressing adenoviruses (rAd-NSP4, rAd-VP7). The three adenovirus vaccines were used to immunize mice by intramuscular or intranasal administration. The data showed significant increases in serum antibodies, T lymphocyte subpopulations proliferation, and cytokine secretions of splenocyte in all immunized groups. However, the serum IgA and neutralizing antibody levels of the rAd-NSP4-VP7 or rAd-VP7 groups were significantly higher than those of the rAd-NSP4, while the splenocyte numbers of IFN-γ secretion in the rAd-NSP4-VP7 or rAd-NSP4 groups was greater than that of the rAd-VP7. Furthermore, the efficacy evaluation in a suckling mice model indicated that only rAd-NSP4-VP7 conferred significant protection against rotavirus shedding challenge. These results suggest that the co-expression of NSP4 and VP7 in an adenovirus vector induce both humoral and cell-mediated immune responses efficiently, and provide potential efficacy for protection against rotavirus disease. It is possible to represent an efficacious subunits vaccine strategy for control of rotavirus infection and transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Construction and Antiapoptosis Activities of Recombinant Adenoviral Expression Vector Carrying EBV Latent Membrane Protein 2A

    Directory of Open Access Journals (Sweden)

    Xishuang Liu

    2011-01-01

    Full Text Available To evaluate the possible effects of LMP2A (EBV latent membrane protein 2A on human gastric cancer cell line SGC-7901, LMP2A coding gene was subcloned into shuttle plasmid pAdTrackCMV to form transfer plasmid pAdTrackCMV-2A, which was linearized with PmeI and cotransformed into E.coli BJ5183 with adenovirus genomic plasmid of pAdeasy-1. The identified recombinant adenovirus plasmid DNA was digested with PacI and transfected into 293 cells to package recombinant adenovirus particles named vAd-2A. Then the expression and antiapoptosis activities of LMP2A on SGC-7901 infected with vAd-2A were analyzed. The vAd-2A was successfully constructed and identified by PCR, restriction digestion, and sequencing. LMP2A expression in SGC was identified by strong green fluorescence expression with fluorescence microscopic photograph and Southern blotting. The growth of LMP2A expressing SGC cells was apparently improved. Both cyclin E expression and S phase ratio in LMP2A expressing SGC cells were upregulated by cell cycle analysis and confocal microscopic analysis respectively. The replication-deficient recombinant adenovirus vector can express LMP2A antigen in SGC cells and inhibit their apoptosis. The results indicate that LMP2A might play an important role in pathogenesis of EBV-associated gastric cancer (EBVaGC. This study establishes a foundation for further study on EBVaGC and its gene therapy.

  14. Radiosensitization of head/neck sqaumous cell carcinoma by adenovirus-mediated expression of the Nbs1 protein

    International Nuclear Information System (INIS)

    Rhee, Juong G.; Li, Daqing; Suntharalingam, Mohan; Guo Chuanfa; O'Malley, Bert W.; Carney, James P.

    2007-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome, show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. Experimental Procedures: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1 into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line JHU011. These cells were evaluated for expression of the viral based constructs and assayed for clonogenic survival following radiation exposure. Results: Exposure of cells expressing Nbs1-300 to ionizing radiation resulted in a small reduction in survival relative to cells infected with control virus. Surprisingly, expression of full-length Nbs1 protein resulted in markedly enhanced sensitivity to ionizing radiation. Furthermore, the use of a fractionated radiation scheme following virus infection demonstrates that expression of full-length Nbs1 protein results in significant reduction in cell survival. Conclusions: These results provide a proof of principle that disruption of Nbs1 function may provide a means of enhancing the radiosensitivity of head and neck tumors. Additionally, this work highlights the Mre11 complex as an attractive target for development of radiation sensitizers

  15. Recombinant adenovirus-mediated overexpression of PTEN and KRT10 improves cisplatin resistance of ovarian cancer in vitro and in vivo.

    Science.gov (United States)

    Wu, H; Wang, K; Liu, W; Hao, Q

    2015-06-18

    Drug resistance is a major cause of treatment failure in ovarian cancer patients, and novel therapeutic strategies are urgently needed. Overexpression of phosphatase and tensin homolog (PTEN) has been shown to preserve the cisplatin-resistance of ovarian cancer cells, while cisplatin-induced keratin 10 (KRT10) overexpression mediates the resistance-reversing effect of PTEN. However, whether overexpression of PTEN or KRT10 can improve the cisplatin resistance of ovarian cancer in vivo has not been investigated. Therefore, we investigated the effects of adenovirus-mediated PTEN or KRT10 overexpression on the cisplatin resistance of ovarian cancer in vivo. Recombinant adenoviruses carrying the gene for PTEN or KRT10 were constructed. The effects of overexpression of PTEN and KRT10 on cisplatin resistance of ovarian cancer cells were examined using the 3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT) and TdT-mediated dUTP nick-end labeling (TUNEL) assays in vitro. Subcutaneously transplanted nude mice, as a model of human ovarian cancer, were used to test the effects of PTEN and KRT10 on cisplatin resistance of ovarian cancer in vivo. The MTT assay showed that recombinant adenovirus-mediated overexpression of KRT10 and PTEN enhanced the proliferation inhibition effect of cisplatin on C13K cells. Recombinant adenovirus-mediated overexpression of KRT10 and PTEN also increased the cisplatin-induced apoptosis rate of C13K cells. Furthermore, recombinant adenovirus-mediated overexpression of KRT10 and PTEN enhanced the inhibitory effect of cisplatin on C13K xenograft tumor growth. Thus, recombinant adenovirus-mediated overexpression of KRT10 and PTEN may improve the cisplatin resistance of ovarian cancer in vitro and in vivo.

  16. [Effect of Recombinant Adenovirus AdE-SH2-Caspase 8 on the Apoptosis of Imatinib-resistant K562/G01 Cell Line].

    Science.gov (United States)

    Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li

    2015-08-01

    To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.

  17. Protective immunity against tularemia provided by an adenovirus-vectored vaccine expressing Tul4 of Francisella tularensis.

    Science.gov (United States)

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-03-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.

  18. Impact of recombinant adenovirus serotype 35 priming versus boosting of a Plasmodium falciparum protein: Characterization of T- and B-Cell responses to liver-stage antigen 1

    NARCIS (Netherlands)

    Rodriguez, Ariane; Goudsmit, Jaap; Companjen, Arjen; Mintardjo, Ratna; Gillissen, Gert; Tax, Dennis; Sijtsma, Jeroen; Weverling, Gerrit Jan; Holterman, Lennart; Lanar, David E.; Havenga, Menzo J. E.; Radosevic, Katarina

    2008-01-01

    Prime-boost vaccination regimens with heterologous antigen delivery systems have indicated that redirection of the immune response is feasible. We showed earlier that T-cell responses to circumsporozoite (CS) protein improved significantly when the protein is primed with recombinant adenovirus

  19. Killing Effect of Ad5/F35-APE1 siRNA Recombinant Adenovirus in Combination with Hematoporphrphyrin Derivative-Mediated Photodynamic Therapy on Human Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lei Xia

    2013-01-01

    Full Text Available The main goal of this work is to investigate the killing effects and molecular mechanism of photodynamic therapy (PDT mediated by the Ad5/F35-APE1 siRNA recombinant adenovirus in combination with a hematoporphrphyrin derivative (HpD in the A549 human lung adenocarcinoma cell line in vitro to provide a theoretical reference for treating lung cancer by HpD-PDT. By using the technologies of MTT, flow cytometry, ELISA, and western blot, we observed that the proliferation inhibition and apoptosis of the A549 cells were significantly higher than the control group ( after HpD-PDT was performed. The inhibitory efficiency is dependent on the HpD concentration and laser intensity dose. The inhibitory effect on the proliferation of A549 cells of Ad5/F35-APE1 siRNA is more significant after combining with PDT, as indicated by a significant elevation of the intracellular ROS level and the expression of inflammatory factors (. The HpD-PDT-induced expression of the APE1 protein reached the peak after 24 h in A549 cells. The inhibition of APE1 expression in A549 cells was most significant after 48 hours of infection by Ad5/F35-APE1 siRNA recombinant adenovirus (10 MOI. In conclusion, the Ad5/F35-APE1 siRNA recombinant adenovirus could efficiently inhibit the HpD-PDT-induced APE1 expression hence could significantly enhance the killing effect of HpD-PDT in lung cancer cells.

  20. Phylogenetic evidence for intratypic recombinant events in a novel human adenovirus C that causes severe acute respiratory infection in children.

    Science.gov (United States)

    Wang, Yanqun; Li, Yamin; Lu, Roujian; Zhao, Yanjie; Xie, Zhengde; Shen, Jun; Tan, Wenjie

    2016-03-10

    Human adenoviruses (HAdVs) are prevalent in hospitalized children with severe acute respiratory infection (SARI). Here, we report a unique recombinant HAdV strain (CBJ113) isolated from a HAdV-positive child with SARI. The whole-genome sequence was determined using Sanger sequencing and high-throughput sequencing. A phylogenetic analysis of the complete genome indicated that the CBJ113 strain shares a common origin with HAdV-C2, HAdV-C6, HAdV-C1, HAdV-C5, and HAdV-C57 and formed a novel subclade on the same branch as other HAdV-C subtypes. BootScan and single nucleotide polymorphism analyses showed that the CBJ113 genome has an intra-subtype recombinant structure and comprises gene regions mainly originating from two circulating viral strains: HAdV-1 and HAdV-2. The parental penton base, pVI, and DBP genes of the recombinant strain clustered with the HAdV-1 prototype strain, and the E1B, hexon, fiber, and 100 K genes of the recombinant clustered within the HAdV-2 subtype, meanwhile the E4orf1 and DNA polymerase genes of the recombinant shared the greatest similarity with those of HAdV-5 and HAdV-6, respectively. All of these findings provide insight into our understanding of the dynamics of the complexity of the HAdV-C epidemic. More extensive studies should address the pathogenicity and clinical characteristics of the novel recombinant.

  1. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Science.gov (United States)

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-05-01

    Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.

  2. Expression of Recombinant Human Butyrylcholinesterase

    National Research Council Canada - National Science Library

    Lockridge, Oksana

    1997-01-01

    .... The G117H enzyme has the potential to be useful for decontamination of skin and eye. To determine how many amino acids could be deleted from butyrylcholinesterase without loss of activity, deletion mutants were expressed...

  3. Expression of recombinant Streptokinase from local Egyptian ...

    African Journals Online (AJOL)

    We reported for the first time the expression of a recombinant SK from a local Streptococcus strain. When produced on industrial scale this r-SK may substantially contribute to reducing the costs of thrombolytic therapy in developing countries. In this study, a highly purified r-SK from Streptococcus sp. isolated from Egyptian ...

  4. Expression and characterization of recombinant ecarin.

    NARCIS (Netherlands)

    Jonebring, A.; Lange, U.; Bucha, E.; Deinum, J.; Elg, M.; Lovgren, A.

    2012-01-01

    The snake venom protease ecarin from Echis carinatus was expressed in stable transfected CHO-S cells grown in animal component free cell culture medium. Recombinant ecarin (r-ecarin) was secreted from the suspension adapted Chinese Hamster Ovary (CHO-S) host cells as a pro-protein and activation to

  5. Vaccination using recombinants influenza and adenoviruses encoding amastigote surface protein-2 are highly effective on protection against Trypanosoma cruzi infection.

    Science.gov (United States)

    Barbosa, Rafael Polidoro Alves; Filho, Bruno Galvão; Dos Santos, Luara Isabela; Junior, Policarpo Ademar Sales; Marques, Pedro Elias; Pereira, Rafaela Vaz Sousa; Cara, Denise Carmona; Bruña-Romero, Oscar; Rodrigues, Maurício Martins; Gazzinelli, Ricardo Tostes; Machado, Alexandre Vieira

    2013-01-01

    In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.

  6. Effect of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on the growth and radiotherapeutic sensitivity of human lymphoma cell lines

    International Nuclear Information System (INIS)

    Yu Zeyang; Fan Wo; Li Dongqing; Zhu Ran; Wang Yongqing; Wu Jinchang

    2008-01-01

    Objective: To explore the inhibitory effect and radiation sensitization of recombinant adenovirus encoding human p53 tumor suppressor gene (rAd-p53) on human lymphoma cell lines. Methods: Human lymphoma cell lines Raji and Daudi were treated with rAd-p53, radiation therapy and combined treatment, respectively. The cell growth inhibition was assessed by MTT. The p53 protein expression was detected by Western blotting, and p53 mRNA was detected by BT-PCB. Results: The MTT results showed that the inhibitory effect and radiosensitivity enhancement of rAd-p53 on human lymphoma cell lines were not obvious [Raji: (27.5±4.1)%; Daudi: (28.1±1.6)%]. The results of Western blotting and BT-PCB showed that extrinsic p53 protein and p53 mRNA were expressed to some degree, but not at high-level. In addition, the results didn't demonstrate obvious radiosensitivity enhancement. Conclusions: The role of inhibition and radiosensitivity enhancement of rAd-p53 was not significant on human lymphoma cell lines. (authors)

  7. Radiosensitization of head/neck squamous cell carcinoma by adenovirus-mediated expression of dominant negative constructs of the Nbs1 protein

    International Nuclear Information System (INIS)

    Carney, J.P.; Rhee, J.G.; Li, D.; Chen, T.; Suntharalingam, M.; O'Malley, B.W.

    2001-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. In order to test this hypothesis we have devised recombinant adenoviruses expressing various portions of the Nbs1 protein and assessed the ability of these viruses to increase the radiation sensitivity of HNSCC cells. Materials and Methods: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1(Nbs1-300, aa453 to aa754) into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line 011. These cells were evaluated for expression of the viral based constructs and assayed for growth rate and clonogenic survival following radiation exposure. Results: A constitutively expressed GFP gene in the viral backbone confirmed efficient uptake of the virus into the 011 cell line and Western blot confirmed the presence of the virally expressed Nbs1 and Nbs1-300. Following exposure to ionizing radiation cells infected with the Nbs1-300 virus showed a significant reduction in growth rate relative to cells infected with control virus. Surprisingly, this effect was even stronger with the full-length wild-type Nbs1 protein. Examination of clonogenic survival also demonstrated statistically significant sensitization, however the effects of the two constructs were distinct as Nbs1-300 expression resulted in reduction of the shoulder while expression of the full-length Nbs1 showed a change in the slope of the survival curve

  8. Replicating Rather than Nonreplicating Adenovirus-Human Immunodeficiency Virus Recombinant Vaccines Are Better at Eliciting Potent Cellular Immunity and Priming High-Titer Antibodies

    OpenAIRE

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C.; Kalyanaraman, V. S.; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J.; Murthy, Krishna K.; Srivastava, Indresh; Barnett, Susan W.; Robert-Guroff, Marjorie

    2005-01-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1MNenv/rev recombinants and boosting wit...

  9. [EFFECT OF RECOMBINANT ADENOVIRUS-BONE MORPHOGENETIC PROTEIN 12 TRANSFECTION ON DIFFERENTIATION OF PERIPHERAL BLOOD MESENCHYMAL STEM CELLS INTO TENDON/LIGAMENT CELLS].

    Science.gov (United States)

    Fu, Weili; Chen, Gang; Tang, Xin; Li, Qi; Ll, Jian

    2015-04-01

    To research the effect of recombinant adenovirus-bone morphogenetic protein 12 (Ad-BMP-12) transfection on the differentiation of peripheral blood mesenchymal stem cells (MSCs) into tendon/ligament cells. Peripheral blood MSCs were isolated from New Zealand rabbits (3-4 months old) and cultured in vitro until passage 3. The recombinant adenoviral vector system was prepared using AdEasy system, then transfected into MSCs at passage 3 (transfected group); untransfected MSCs served as control (untransfected group). The morphological characteristics and growth of transfected cells were observed under inverted phase contrast microscope. The transfection efficiency and green fluorescent protein (GFP) expression were detected by flow cytometry (FCM) and fluorescence microscopy. After cultured for 14 days in vitro, the expressions of tendon/ligament-specific markers were determined by immunohistochemistry and real-time fluorescent quantitative PCR. GFP expression could be observed in peripheral blood MSCs at 8 hours after transfection. At 24 hours after transfection, the cells had clear morphology and grew slowly under inverted phase contrast microscope and almost all expressed GFP at the same field under fluorescence microscopy. FCM analysis showed that the transfection efficiency of the transfected group was 99.57%, while it was 2.46% in the untransfected group. The immunohistochemistry showed that the expression of collagen type I gradually increased with culture time in vitro. Real-time fluorescent quantitative PCR results showed that the mRNA expressions of the tendon/ligament-specific genes (Tenomodulin, Tenascin-C, and Decorin) in the transfected group were significantly higher than those in untransfected group (0.061+/- 0.013 vs. 0.004 +/- 0.002, t = -7.700, P=0.031; 0.029 +/- 0.008 vs. 0.003 +/- 0.001, t = -5.741, P=0.020; 0.679 +/- 0.067 vs. 0.142 +/- 0.024, t = -12.998, P=0.000). Ad-BMP-12 can significantly promote differentiation of peripheral blood MSCs into

  10. Adrenal gland infection by serotype 5 adenovirus requires coagulation factors.

    Directory of Open Access Journals (Sweden)

    Lucile Tran

    Full Text Available Recombinant, replication-deficient serotype 5 adenovirus infects the liver upon in vivo, systemic injection in rodents. This infection requires the binding of factor X to the capsid of this adenovirus. Another organ, the adrenal gland is also infected upon systemic administration of Ad, however, whether this infection is dependent on the cocksackie adenovirus receptor (CAR or depends on the binding of factor X to the viral capsid remained to be determined. In the present work, we have used a pharmacological agent (warfarin as well as recombinant adenoviruses lacking the binding site of Factor X to elucidate this mechanism in mice. We demonstrate that, as observed in the liver, adenovirus infection of the adrenal glands in vivo requires Factor X. Considering that the level of transduction of the adrenal glands is well-below that of the liver and that capsid-modified adenoviruses are unlikely to selectively infect the adrenal glands, we have used single-photon emission computed tomography (SPECT imaging of gene expression to determine whether local virus administration (direct injection in the kidney could increase gene transfer to the adrenal glands. We demonstrate that direct injection of the virus in the kidney increases gene transfer in the adrenal gland but liver transduction remains important. These observations strongly suggest that serotype 5 adenovirus uses a similar mechanism to infect liver and adrenal gland and that selective transgene expression in the latter is more likely to be achieved through transcriptional targeting.

  11. Recombination-ready Sindbis replicon expression vectors for transgene expression

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2007-10-01

    Full Text Available Abstract Background Sindbis viruses have been widely used as tools to study gene function in cells. Despite the utility of these systems, the construction and production of alphavirus replicons is time consuming and inefficient due to potential additional restriction sites within the insert region and lack of directionality for insert ligation. In this report, we present a system useful for producing recombinant Sindbis replicons that uses lambda phage recombination technology to rapidly and specifically construct replicon expression plasmids that contain insert regions in the desired orientation. Results Recombination of the gene of interest with the replicon plasmid resulted in nearly 100% recombinants, each of which contained a correctly orientated insert. Replicons were easily produced in cell culture and packaged into pseudo-infectious viral particles. Insect and mammalian cells infected with pseudo-infectious viral particles expressed various transgenes at high levels. Finally, inserts from persistently replicating replicon RNA were easily isolated and recombined back into entry plasmids for sequencing and subsequent analysis. Conclusion Replication-ready replicon expression plasmids make the use of alphavirus replicons fast and easy as compared to traditional replicon production methods. This system represents a significant step forward in the utility and ease of use of alphavirus replicons in the study of gene function.

  12. Genetic blockade of insulin-like growth factor-1 receptor via recombinant adenovirus in lung cancer can be enhanced by the histone deacetylase inhibitor, vorinostat.

    Science.gov (United States)

    Park, Mi-Young; Kim, Dal Rae; Eo, Eun Young; Lim, Hyo Jeong; Park, Jong Sun; Cho, Young-Jae; Yoon, Ho-Il; Lee, Jae Ho; Lee, Choon-Taek

    2013-01-01

    Many approaches have been suggested as anti-tumor therapy for targeting insulin-like growth factor 1 receptor (IGF-1R), such as monoclonal antibodies and tyrosine kinase inhibitor. We introduced recombinant adenoviruses expressing antisense, dominant negative or short hairpin RNA to IGF-1R. Moreover, we demonstrated that histone deacetylase inhibitor (vorinostat) can increase the transduction efficiency of adenoviruses by increasing CAR-induced transduction and by enhancing the transcription of the adenoviral transgene. In the present study, we showed that the combination of ad-sh (short hairpin) IGF-1R with vorinostat leads to a synergistic enhancement of IGF-1R blockade. We measured the change in IGF-1R upon cotreatment with vorinostat and ad-shIGF-1R. Changes in transduction efficiency of ad-shIGF-1R were measured by fluorescent microscopy. Changes in apoptotic proportion and cell survival after the cotreatment were measured by the sub-G1 assay and cell counts. The effect of nuclear factor (NF)-κB activation was also measured by NF-κB p65 activation enzyme-linked immunosorbent assay. Drug interactions were analyzed upon cotreatment with ad-shIGF-1R, vorinostat and cisplatin. Combined treatment of ad-shIGF-1R and vorinostat synergistically suppressed the IGF-1R expression in lung cancer cell lines and also increased the transduction efficiency of ad-shIGF-1R. Ad-shIGF-1R and vorinostat cotreatment increased apoptotic cell death and synergistically suppressed cell growth compared to ad-shIGF-1R or vorinostat treatment alone. Vorinostat suppressed NF-κB activation, which was activated by ad-shIGF-1R. Moreover, triple combination of ad-shIGF-1R, vorinostat and cisplatin demonstrated synergistic cytotoxicity on lung cancer cells. Vorinostat enhanced the blocking capability of ad-shIGF-1R. The combined treatment of vorinostat and ad-sh-IGF-1R appears to have promising potential as a new therapeutic approach for lung cancer. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Hepatic Expression of Adenovirus 36 E4ORF1 Improves Glycemic Control and Promotes Glucose Metabolism Through AKT Activation.

    Science.gov (United States)

    McMurphy, Travis B; Huang, Wei; Xiao, Run; Liu, Xianglan; Dhurandhar, Nikhil V; Cao, Lei

    2017-02-01

    Considering that impaired proximal insulin signaling is linked with diabetes, approaches that enhance glucose disposal independent of insulin signaling are attractive. In vitro data indicate that the E4ORF1 peptide derived from human adenovirus 36 (Ad36) interacts with cells from adipose tissue, skeletal muscle, and liver to enhance glucose disposal, independent of proximal insulin signaling. Adipocyte-specific expression of Ad36E4ORF1 improves hyperglycemia in mice. To determine the hepatic interaction of Ad36E4ORF1 in enhancing glycemic control, we expressed E4ORF1 of Ad36 or Ad5 or fluorescent tag alone by using recombinant adeno-associated viral vector in the liver of three mouse models. In db/db or diet-induced obesity (DIO) mice, hepatic expression of Ad36E4ORF1 but not Ad5E4ORF1 robustly improved glycemic control. In normoglycemic wild-type mice, hepatic expression of Ad36E4ORF1 lowered nonfasting blood glucose at a high dose of expression. Of note, Ad36E4ORF1 significantly reduced insulin levels in db/db and DIO mice. The improvement in glycemic control was observed without stimulation of the proximal insulin signaling pathway. Collectively, these data indicate that Ad36E4ORF1 is not a typical sensitizer, mimetic, or secretagogue of insulin. Instead, it may have insulin-sparing action, which seems to reduce the need for insulin and, hence, to reduce insulin levels. © 2017 by the American Diabetes Association.

  14. Immune Response to Recombinant Adenovirus in Humans: Capsid Components from Viral Input Are Targets for Vector-Specific Cytotoxic T Lymphocytes

    Science.gov (United States)

    Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise

    2000-01-01

    We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  15. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Science.gov (United States)

    Grimaldi, Gabriel; Teva, Antonio; Porrozzi, Renato; Pinto, Marcelo A; Marchevsky, Renato S; Rocha, Maria Gabrielle L; Dutra, Miriam S; Bruña-Romero, Oscar; Fernandes, Ana-Paula; Gazzinelli, Ricardo T

    2014-06-01

    Visceral leishmaniasis (VL) is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2) protein that protects against experimental L. infantum infections in mice and dogs. Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12) adsorbed in alum (rA2/rhIL-12/alum); two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2) followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum); and plasmid DNA encoding A2 gene (DNA-A2) boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2). Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. The remarkable clinical protection induced by A2 in an animal model that is

  16. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen.

    Directory of Open Access Journals (Sweden)

    Gabriel Grimaldi

    2014-06-01

    Full Text Available BACKGROUND: Visceral leishmaniasis (VL is a severe vector-born disease of humans and dogs caused by Leishmania donovani complex parasites. Approximately 0.2 to 0.4 million new human VL cases occur annually worldwide. In the new world, these alarming numbers are primarily due to the impracticality of current control methods based on vector reduction and dog euthanasia. Thus, a prophylactic vaccine appears to be essential for VL control. The current efforts to develop an efficacious vaccine include the use of animal models that are as close to human VL. We have previously reported a L. infantum-macaque infection model that is reliable to determine which vaccine candidates are most worthy for further development. Among the few amastigote antigens tested so far, one of specific interest is the recombinant A2 (rA2 protein that protects against experimental L. infantum infections in mice and dogs. METHODOLOGY/PRINCIPAL FINDINGS: Primates were vaccinated using three rA2-based prime-boost immunization regimes: three doses of rA2 plus recombinant human interleukin-12 (rhIL-12 adsorbed in alum (rA2/rhIL-12/alum; two doses of non-replicative adenovirus recombinant vector encoding A2 (Ad5-A2 followed by two boosts with rA2/rhIL-12/alum (Ad5-A2+rA2/rhIL12/alum; and plasmid DNA encoding A2 gene (DNA-A2 boosted with two doses of Ad5-A2 (DNA-A2+Ad5-A2. Primates received a subsequent infectious challenge with L. infantum. Vaccines, apart from being safe, were immunogenic as animals responded with increased pre-challenge production of anti-A2-specific IgG antibodies, though with some variability in the response, depending on the vaccine formulation/protocol. The relative parasite load in the liver was significantly lower in immunized macaques as compared to controls. Protection correlated with hepatic granuloma resolution, and reduction of clinical symptoms, particularly when primates were vaccinated with the Ad5-A2+rA2/rhIL12/alum protocol. CONCLUSIONS

  17. Adenovirus-encoding virus-associated RNAs suppress HDGF gene expression to support efficient viral replication.

    Directory of Open Access Journals (Sweden)

    Saki Kondo

    Full Text Available Non-coding small RNAs are involved in many physiological responses including viral life cycles. Adenovirus-encoding small RNAs, known as virus-associated RNAs (VA RNAs, are transcribed throughout the replication process in the host cells, and their transcript levels depend on the copy numbers of the viral genome. Therefore, VA RNAs are abundant in infected cells after genome replication, i.e. during the late phase of viral infection. Their function during the late phase is the inhibition of interferon-inducible protein kinase R (PKR activity to prevent antiviral responses; recently, mivaRNAs, the microRNAs processed from VA RNAs, have been reported to inhibit cellular gene expression. Although VA RNA transcription starts during the early phase, little is known about its function. The reason may be because much smaller amount of VA RNAs are transcribed during the early phase than the late phase. In this study, we applied replication-deficient adenovirus vectors (AdVs and novel AdVs lacking VA RNA genes to analyze the expression changes in cellular genes mediated by VA RNAs using microarray analysis. AdVs are suitable to examine the function of VA RNAs during the early phase, since they constitutively express VA RNAs but do not replicate except in 293 cells. We found that the expression level of hepatoma-derived growth factor (HDGF significantly decreased in response to the VA RNAs under replication-deficient condition, and this suppression was also observed during the early phase under replication-competent conditions. The suppression was independent of mivaRNA-induced downregulation, suggesting that the function of VA RNAs during the early phase differs from that during the late phase. Notably, overexpression of HDGF inhibited AdV growth. This is the first report to show the function, in part, of VA RNAs during the early phase that may be contribute to efficient viral growth.

  18. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    Science.gov (United States)

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  19. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging

    NARCIS (Netherlands)

    Lamfers, Martine L. M.; Fulci, Giulia; Gianni, Davide; Tang, Yi; Kurozumi, Kazuhiko; Kaur, Balveen; Moeniralm, Sharif; Saeki, Yoshinaga; Carette, Jan E.; Weissleder, Ralph; Vandertop, W. Peter; van Beusechem, Victor W.; Dirven, Clemens M. F.; Chiocca, E. Antonio

    2006-01-01

    Approaches to improve the oncolytic potency of replication-competent adenoviruses include the insertion of therapeutic transgenes into the viral genome. Little is known about the levels and duration of in vivo transgene expression by cells infected with such "armed" viruses. Using a tumor-selective

  20. The complete genome sequence of human adenovirus 84, a highly recombinant new Human mastadenovirus D type with a unique fiber gene.

    Science.gov (United States)

    Kaján, Győző L; Kajon, Adriana E; Pinto, Alexis Castillo; Bartha, Dániel; Arnberg, Niklas

    2017-10-15

    A novel human adenovirus was isolated from a pediatric case of acute respiratory disease in Panama City, Panama in 2011. The clinical isolate was initially identified as an intertypic recombinant based on hexon and fiber gene sequencing. Based on the analysis of its complete genome sequence, the novel complex recombinant Human mastadenovirus D (HAdV-D) strain was classified into a new HAdV type: HAdV-84, and it was designated Adenovirus D human/PAN/P309886/2011/84[P43H17F84]. HAdV-D types possess usually an ocular or gastrointestinal tropism, and respiratory association is scarcely reported. The virus has a novel fiber type, most closely related to, but still clearly distant from that of HAdV-36. The predicted fiber is hypothesised to bind sialic acid with lower affinity compared to HAdV-37. Bioinformatic analysis of the complete genomic sequence of HAdV-84 revealed multiple homologous recombination events and provided deeper insight into HAdV evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...... a protocol for expressing Hbs with low intrinsic solubilities. Since the alpha- and beta-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression......-translational modifications. CONCLUSION/SIGNIFICANCE: Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need...

  2. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  3. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    OpenAIRE

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  4. Evaluating the role of CRM1-mediated export for adenovirus gene expression

    International Nuclear Information System (INIS)

    Carter, Christoph C.; Izadpanah, Reza; Bridge, Eileen

    2003-01-01

    A complex of the Adenovirus (Ad) early region 1b 55-kDa (E1b-55kDa) and early region 4 ORF6 34-kDa (E4-34kDa) proteins promotes viral late gene expression. E1b-55kDa and E4-34kDa have leucine-rich nuclear export signals (NESs) similar to that of HIV Rev. It was proposed that E1b-55kDa and/or E4-34kDa might promote the export of Ad late mRNA via their Rev-like NESs, and the transport receptor CRM1. We treated infected cells with the cytotoxin leptomycin B to inhibit CRM1-mediated export; treatment initially delays the onset of late gene expression, but this activity completely recovers as the late phase progresses. We find that the E1b-55kDa NES is not required to promote late gene expression. Previous results showed that E4-34kDa-mediated late gene expression does not require an intact NES (J. Virol. 74 (2000), 6684-6688). Our results indicate that these Ad regulatory proteins promote late gene expression without intact NESs or active CRM1

  5. Expression and purification of recombinant nattokinase in Spodoptera frugiperda cells.

    Science.gov (United States)

    Li, Xiaoxiang; Wang, Xiaoli; Xiong, Shaoling; Zhang, Jing; Cai, Litao; Yang, Yanyan

    2007-10-01

    A recombinant baculovirus, rv-egfp-NK, containing a reporter gene encoding the enhanced green fluorescent protein (EGFP), was used to express nattokinase (NK), a fibrinolytic enzyme, in Spodoptera frugiperda (SF-9) cells. The recombinant protein also included a histidine tag for purification using Ni(2+) resins. The recombinant NK, approximately 30 kDa, retained fibrinolytic activity (60 U/ml). The integration of the EGFP expression cassette in the Bac-to-Bac system is thus an effective method for the expression and purification of recombinant NK protein in Spodoptera frugiperda insect cells.

  6. Suppression of leaky expression of adenovirus genes by insertion of microRNA-targeted sequences in the replication-incompetent adenovirus vector genome

    Directory of Open Access Journals (Sweden)

    Kahori Shimizu

    2014-01-01

    Full Text Available Leaky expression of adenovirus (Ad genes occurs following transduction with a conventional replication-incompetent Ad vector, leading to an induction of cellular immunity against Ad proteins and Ad protein-induced toxicity, especially in the late phase following administration. To suppress the leaky expression of Ad genes, we developed novel Ad vectors by incorporating four tandem copies of sequences with perfect complementarity to miR-122a or miR-142-3p into the 3′-untranslated region (UTR of the E2A, E4, or pIX gene, which were mainly expressed from the Ad vector genome after transduction. These Ad vectors easily grew to high titers comparable to those of a conventional Ad vector in conventional 293 cells. The leaky expression of these Ad genes in mouse organs was significantly suppressed by 2- to 100-fold, compared with a conventional Ad vector, by insertion of the miRNA-targeted sequences. Notably, the Ad vector carrying the miR-122a–targeted sequences into the 3′-UTR of the E4 gene expressed higher and longer-term transgene expression and more than 20-fold lower levels of all the Ad early and late genes examined in the liver than a conventional Ad vector. miR-122a–mediated suppression of the E4 gene expression in the liver significantly reduced the hepatotoxicity which an Ad vector causes via both adaptive and non-adaptive immune responses.

  7. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se [The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala (Sweden); Chen, Maoshan [Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 (Australia); Lind, Sara Bergström [Department of Chemistry-BMC, Analytical Chemistry, Science for Life Laboratory, Uppsala University, Box 599, SE-751 24 Uppsala (Sweden); Pettersson, Ulf [The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala (Sweden)

    2016-05-15

    The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phase and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.

  8. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  9. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  10. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  11. Recombinant expression systems: the obstacle to helminth vaccines?

    Science.gov (United States)

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  12. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    OpenAIRE

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.; Nettelbeck, Dirk M.

    2010-01-01

    Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show t...

  13. Development of an immunotherapeutic adenovirus targeting hormone-independent prostate cancer

    Directory of Open Access Journals (Sweden)

    Kim JS

    2013-11-01

    Full Text Available Jae Sik Kim,1 Sang Don Lee,2 Sang Jin Lee,3 Moon Kee Chung21Department of Urology, The Catholic University of Korea Incheon St Mary's Hospital, Incheon, 2Pusan National University Yangsan Hospital and Research Institute for Convergence of Biomedical Science and Technology, Yangsan, 3Genitourinary Cancer Branch, National Cancer Center, Goyang, KoreaBackground: To develop a targeting therapy for hormone-independent prostate cancer, we constructed and characterized conditionally replicating oncolytic adenovirus (Ad equipped with mRFP(monomeric red fluorescence protein/ttk (modified herpes simplex virus thymidine kinase This construct was then further modified to express both mRFP/ttk and a soluble form of cytokine FLT3L (fms-related tyrosine kinase 3 ligand simultaneously.Methods: To construct the recombinant oncolytic adenovirus, E1a and E4 genes, which are necessary for adenovirus replication, were controlled by the prostate-specific enhancer sequence (PSES targeting prostate cancer cells expressing prostate-specific antigen (PSA and prostate-specific membrane antigen (PSMA. Simultaneously, it expressed the mRFP/ttk fusion protein in order to be able to elicit the cytotoxic effect.Results: The Ad5/35PSES.mRFP/ttk chimeric recombinant adenovirus was generated successfully. When replication of Ad5/35PSES.mRFP/ttk was evaluated in prostate cancer cell lines under fluorescence microscopy, red fluorescence intensity increased more in LNCaP cells, suggesting that the mRFP/ttk fusion protein was folded functionally. In addition, the replication assay including wild-type adenovirus as a positive control showed that PSES-positive cells (LNCaP and CWR22rv permitted virus replication but not PSES-negative cells (DU145 and PC3. Next, we evaluated the killing activity of this recombinant adenovirus. The Ad5/35PSES.mRFP/ttk killed LNCaP and CWR22rv more effectively. Unlike PSES-positive cells, DU145 and PC3 were resistant to killing by this recombinant

  14. Expression and purification of soluble recombinant Hexastatin in E. coli

    International Nuclear Information System (INIS)

    He Xin; Wen Lei; Song Naling; Wang Dezhi; Zhao Qiren

    2012-01-01

    Purpose: To construct the expression vector of Hexastatin gene, to express and to purify the recombinant protein for further activity research. Methods: The human Hexastatin gene was isolated by RTPCR from EC9706 cells total RNA and cloned into pMD18-T for sequencing. Then the Hexastatin gene was subcloned into pMAL-c4x expression vector and induced to express by IPTG. The recombinant fusion protein was purified with Amylose Resin Heads. Results: RT-PCR product was about 687 bp and its sequence was the same as that of Hexastatin reported. The recombinant protein was expressed in E. coli BL21 with high level and the soluble protein accounted for 24.8% of the total bacterial protein. The purification of recombinant protein purified with Amylose Resin Heads reached more than 90%. Conclusion: The cloning, expression and purification of human Hexastatin have laid a foundation for its anti-angiogenesis therapy for tumor. (authors)

  15. Replicating rather than nonreplicating adenovirus-human immunodeficiency virus recombinant vaccines are better at eliciting potent cellular immunity and priming high-titer antibodies.

    Science.gov (United States)

    Peng, Bo; Wang, Liqun Rejean; Gómez-Román, Victor Raúl; Davis-Warren, Alberta; Montefiori, David C; Kalyanaraman, V S; Venzon, David; Zhao, Jun; Kan, Elaine; Rowell, Thomas J; Murthy, Krishna K; Srivastava, Indresh; Barnett, Susan W; Robert-Guroff, Marjorie

    2005-08-01

    A major challenge in combating the human immunodeficiency virus (HIV) epidemic is the development of vaccines capable of inducing potent, persistent cellular immunity and broadly reactive neutralizing antibody responses to HIV type 1 (HIV-1). We report here the results of a preclinical trial using the chimpanzee model to investigate a combination vaccine strategy involving sequential priming immunizations with different serotypes of adenovirus (Ad)/HIV-1(MN)env/rev recombinants and boosting with an HIV envelope subunit protein, oligomeric HIV(SF162) gp140deltaV2. The immunogenicities of replicating and nonreplicating Ad/HIV-1(MN)env/rev recombinants were compared. Replicating Ad/HIV recombinants were better at eliciting HIV-specific cellular immune responses and better at priming humoral immunity against HIV than nonreplicating Ad-HIV recombinants carrying the same gene insert. Enhanced cellular immunity was manifested by a greater frequency of HIV envelope-specific gamma interferon-secreting peripheral blood lymphocytes and better priming of T-cell proliferative responses. Enhanced humoral immunity was seen in higher anti-envelope binding and neutralizing antibody titers and better induction of antibody-dependent cellular cytotoxicity. More animals primed with replicating Ad recombinants mounted neutralizing antibodies against heterologous R5 viruses after one or two booster immunizations with the mismatched oligomeric HIV-1(SF162) gp140deltaV2 protein. These results support continued development of the replicating Ad-HIV recombinant vaccine approach and suggest that the use of replicating vectors for other vaccines may prove fruitful.

  16. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    Science.gov (United States)

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  17. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice.

    Directory of Open Access Journals (Sweden)

    Mark R Soboleski

    Full Text Available The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1 highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca influenza viruses from 1977 or recombinant adenoviruses (rAd expressing 1934 nucleoprotein (NP and consensus matrix 2 (M2 (NP+M2-rAd. Antibodies against the M2 ectodomain (M2e were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.

  18. Expression and purification of recombinant Shiga toxin 2B from ...

    African Journals Online (AJOL)

    Expression and purification of recombinant Shiga toxin 2B from Escherichia coli O157:H7. ... (SDS-PAGE) and StxB2 yield was 450 μg ml-1 confirmed by Bradford assay. Recombinant Stx2B protein was produced in highly pure yield using ...

  19. Improved means and methods for expressing recombinant proteins

    NARCIS (Netherlands)

    Poolman, Berend; Martinez Linares, Daniel; Gul, Nadia

    2014-01-01

    The invention relates to the field of genetic engineering and the production of recombinant proteins in microbial host cells. Provided is a method for enhanced expression of a recombinant protein of interest in a microbial host cell, comprising providing a microbial host cell wherein the function of

  20. Expression and purification of recombinant hemoglobin in Escherichia coli

    DEFF Research Database (Denmark)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela

    2011-01-01

    BACKGROUND: Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe...

  1. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... venting sexual transmission of HIV in women. Base on the .... genetically engineer lactobacilli that can express these .... nerative Medicine, an emerging interdisciplinary field of research and ... Barriers to recombination. In S.

  2. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma

    International Nuclear Information System (INIS)

    Kim, Wonwoo; Seong, Jinsil; Oh, Hae-Jin; Koom, Woong-Sub; Choi, Kyung-Joo; Yun, Chae-Ok

    2011-01-01

    In this study, a novel combination treatment of armed oncolytic adenovirus expressing interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) with radiation was investigated for antitumor and antimetastatic effect in a murine hepatic cancer (HCa-I) model. Tumor bearing syngeneic mice were treated with radiation, armed oncolytic virus Ad-ΔE1Bmt7 (dB7) expressing both IL-12 and GM-CSF (armed dB7), or a combination of both. The adenovirus was administered by intratumoral injection 1 x 10 8 plaque forming units (PFU) per tumor in 50 μl of phosphate buffered saline (PBS) four times every other day. Tumor response to treatment was determined by a tumor growth delay assay. Metastatic potential was evaluated by a lung metastasis model. To understand the underlying mechanism, the level of apoptosis was examined as well as the change in microvessel density and expression of immunological markers: CD4+, CD8+ and Cd11c. The combination of armed dB7 and radiation resulted in significant growth delay of murine hepatic cancer, HCa-1, with an enhancement factor of 4.3. The combination treatment also resulted in significant suppression of lung metastasis. Increase of apoptosis level as well as decrease of microvessel density was shown in the combination treatment, suggesting an underlying mechanism for the enhancement of antitumor effect. Expression of immunological markers: CD4+, CD8+ and Cd11c also increased in the combination treatment. This study showed that a novel combination treatment of radiotherapy with armed oncolytic adenovirus expressing IL-12 and GM-CSF was effective in suppressing primary tumor growth. (author)

  3. Conditionally replicating adenovirus expressing TIMP2 increases survival in a mouse model of disseminated ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Sherry W Yang

    Full Text Available Ovarian cancer remains difficult to treat mainly due to presentation of the disease at an advanced stage. Conditionally-replicating adenoviruses (CRAds are promising anti-cancer agents that selectively kill the tumor cells. The present study evaluated the efficacy of a novel CRAd (Ad5/3-CXCR4-TIMP2 containing the CXCR4 promoter for selective viral replication in cancer cells together with TIMP2 as a therapeutic transgene, targeting the matrix metalloproteases (MMPs in a murine orthotopic model of disseminated ovarian cancer. An orthotopic model of ovarian cancer was established in athymic nude mice by intraperitonal injection of the human ovarian cancer cell line, SKOV3-Luc, expressing luciferase. Upon confirmation of peritoneal dissemination of the cells by non-invasive imaging, mice were randomly divided into four treatment groups: PBS, Ad-ΔE1-TIMP2, Ad5/3-CXCR4, and Ad5/3-CXCR4-TIMP2. All mice were imaged weekly to monitor tumor growth and were sacrificed upon reaching any of the predefined endpoints, including high tumor burden and significant weight loss along with clinical evidence of pain and distress. Survival analysis was performed using the Log-rank test. The median survival for the PBS cohort was 33 days; for Ad-ΔE1-TIMP2, 39 days; for Ad5/3-CXCR4, 52.5 days; and for Ad5/3-CXCR4-TIMP2, 63 days. The TIMP2-armed CRAd delayed tumor growth and significantly increased survival when compared to the unarmed CRAd. This therapeutic effect was confirmed to be mediated through inhibition of MMP9. Results of the in vivo study support the translational potential of Ad5/3-CXCR4-TIMP2 for treatment of human patients with advanced ovarian cancer.

  4. Recombinant protein expression in microbial systems

    OpenAIRE

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    The emergence of recombinant DNA technology during the early 70's set a revolution in molecular biology. This set of techniques was strengthened even further later on with the introduction of the polymerase chain reaction and allowed scientists to explore and understand essential life processes in an easy and straightforward way. It also marked the birth of the modern biotech industry. At that time, it was shown that eukaryotic DNA could be propagated in Escherichia coli (Morrow et al., 1974)...

  5. Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus.

    Science.gov (United States)

    Flannery, J G; Zolotukhin, S; Vaquero, M I; LaVail, M M; Muzyczka, N; Hauswirth, W W

    1997-06-24

    We describe a general approach for achieving efficient and cell type-specific expression of exogenous genes in photoreceptor cells of the mammalian retina. Recombinant adeno-associated virus (rAAV) vectors were used to transfer the bacterial lacZ gene or a synthetic green fluorescent protein gene (gfp) to mouse or rat retinas after injection into the subretinal space. Using a proximal murine rod opsin promoter (+86 to -385) to drive expression, reporter gene product was found exclusively in photoreceptors, not in any other retinal cell type or in the adjacent retinal pigment epithelium. GFP-expressing photoreceptors typically encompassed 10-20% of the total retinal area after a single 2-microl injection. Photoreceptors were transduced with nearly 100% efficiency in the region directly surrounding the injection site. We estimate approximately 2.5 million photoreceptors were transduced as a result of the single subretinal inoculation. This level of gene transfer and expression suggests the feasibility of genetic therapy for retinal disease. The gfp-containing rAAV stock was substantially free of both adenovirus and wild-type AAV, as judged by plaque assay and infectious center assay, respectively. Thus, highly purified, helper virus-free rAAV vectors can achieve high-frequency tissue-specific transduction of terminally differentiated, postmitotic photoreceptor cells.

  6. An oncolytic adenovirus regulated by a radiation-inducible promoter selectively mediates hSulf-1 gene expression and mutually reinforces antitumor activity of I131-metuximab in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Yan; Fang, Lin; Zhang, Quan'an; Zheng, Qin; Tong, Jinlong; Fu, Xiaohui; Jiang, Xiaoqing; Su, Changqing; Zheng, Junnian

    2013-06-01

    Gene therapy and antibody approaches are crucial auxiliary strategies for hepatocellular carcinoma (HCC) treatment. Previously, we established a survivin promoter-regulated oncolytic adenovirus that has inhibitory effect on HCC growth. The human sulfatase-1 (hSulf-1) gene can suppress the growth factor signaling pathways, then inhibit the proliferation of cancer cells and enhance cellular sensitivity to radiotherapy and chemotherapy. I(131)-metuximab (I(131)-mab) is a monoclonal anti-HCC antibody that conjugated to I(131) and specifically recognizes the HAb18G/CD147 antigen on HCC cells. To integrate the oncolytic adenovirus-based gene therapy and the I(131)-mab-based radioimmunotherapy, this study combined the CArG element of early growth response-l (Egr-l) gene with the survivin promoter to construct a radiation-inducible enhanced promoter, which was used to recombine a radiation-inducible oncolytic adenovirus as hSulf-1 gene vector. When I(131)-mab was incorporated into the treatment regimen, not only could the antibody produce radioimmunotherapeutic effect, but the I(131) radiation was able to further boost adenoviral proliferation. We demonstrated that the CArG-enhanced survivin promoter markedly improved the proliferative activity of the oncolytic adenovirus in HCC cells, thereby augmenting hSulf-1 expression and inducing cancer cell apoptosis. This novel strategy that involved multiple, synergistic mechanisms, including oncolytic therapy, gene therapy and radioimmunotherapy, was demonstrated to exert an excellent anti-cancer outcome, which will be a promising approach in HCC treatment. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases

    Science.gov (United States)

    Sauter, Bernhard V.; Martinet, Olivier; Zhang, Wei-Jian; Mandeli, John; Woo, Savio L. C.

    2000-04-01

    Inhibition of angiogenesis has been shown to be an effective strategy in cancer therapy in mice. However, its widespread application has been hampered by difficulties in the large-scale production of the antiangiogenic proteins. This limitation may be resolved by in vivo delivery and expression of the antiangiogenic genes. We have constructed a recombinant adenovirus that expresses murine endostatin that is biologically active both in vitro, as determined in endothelial cell proliferation assays, and in vivo, by suppression of angiogenesis induced by vascular endothelial growth factor 165. Persistent high serum levels of endostatin (605-1740 ng/ml; mean, 936 ng/ml) were achieved after systemic administration of the vector to nude mice, which resulted in significant reduction of the growth rates and the volumes of JC breast carcinoma and Lewis lung carcinoma (P < 0.001 and P < 0.05, respectively). In addition, the endostatin vector treatment completely prevented the formation of pulmonary micrometastases in Lewis lung carcinoma (P = 0.0001). Immunohistochemical staining of the tumors demonstrated a decreased number of blood vessels in the treatment group versus the controls. In conclusion, the present study clearly demonstrates the potential of vector-mediated antiangiogenic gene therapy as a component in cancer therapy.

  8. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    Science.gov (United States)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  9. Experimental oral immunization of ferret badgers (Melogale moschata) with a recombinant canine adenovirus vaccine CAV-2-E3Δ-RGP and an attenuated rabies virus SRV9.

    Science.gov (United States)

    Zhao, Jinghui; Liu, Ye; Zhang, Shoufeng; Fang, Lijun; Zhang, Fei; Hu, Rongliang

    2014-04-01

    Ferret badgers (Melogale moschata) are a major reservoir of rabies virus in southeastern China. Oral immunization has been shown to be a practical method for wildlife rabies management in Europe and North America. Two groups of 20 ferret badgers were given a single oral dose of a recombinant canine adenovirus-rabies vaccine, CAV-2-E3Δ-RGP, or an experimental attenuated rabies virus vaccine, SRV9. At 21 days, all ferret badgers had seroconverted, with serum virus-neutralizing antibodies ranging from 0.1 to 4.5 IU/mL. Titers were >0.50 IU/mL (an acceptable level) in 17/20 and 16/20 animals receiving CAV-2-E3Δ-RGP or SRV9, respectively. The serologic results indicate that the recombinant CAV-2-E3Δ-RGP is at least as effective as the attenuated rabies virus vaccine. Both may be considered for additional research as oral rabies vaccine candidates for ferret badgers.

  10. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    A new amylase gene APGA1 was cloned from Aureobasidium pullulans NRRL 12974 and expressed in Pichia pastoris. This is the first report on cloning and expression of amylolytic gene from the industrially important microorganism A. pullulans. The purified recombinant protein with MW of 66 kDa and specific activity of ...

  11. Protective Immunity against Tularemia Provided by an Adenovirus-Vectored Vaccine Expressing Tul4 of Francisella tularensis

    OpenAIRE

    Kaur, Ravinder; Chen, Shan; Arévalo, Maria T.; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao

    2012-01-01

    Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane prote...

  12. Effect of adenovirus infection on transgene expression under the adenoviral MLP/TPL and the CMVie promoter/enhancer in CHO cells

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Mogy

    2017-06-01

    Full Text Available The adenovirus major late promoter (MLP and its translational regulator – the tripartite leader (TPL sequence – can actively drive efficient gene expression during adenoviral infection. However, both elements have not been widely tested in transgene expression outside of the adenovirus genome context. In this study, we tested whether the combination of MLP and TPL would enhance transgene expression beyond that of the most widely used promoter in transgene expression in mammalian cells, the cytomegalovirus immediate early (CMVie promoter/enhancer. The activity of these two regulatory elements was compared in Chinese hamster ovary (CHO cells. Although transient expression was significantly higher under the control of the CMVie promoter/enhance compared to the MLP/TPL, this difference was greater at the level of transcription (30 folds than translation (11 folds. Even with adenovirus infection to provide additional elements (in trans, CMVie promoter/enhancer exhibited significantly higher activity relative to MLP/TPL. Interestingly, the CMVie promoter/enhancer was 1.9 folds more active in adenovirus-infected cells than in non-infected cells. Our study shows that the MLP-TPL drives lower transgene expression than the CMVie promoter/enhancer particularly at the transcription level. The data also highlight the utility of the TPL sequence at the translation level and/or possible overwhelming of the cellular translational machinery by the high transcription activity of the CMVie promoter/enhancer. In addition, here we present data that show stimulation of the CMVie promoter/enhancer by adenovirus infection, which may prove interesting in future work to test the combination of CMVie/TPL sequence, and additional adenovirus elements, for transgene expression.

  13. Recombinant Brucella abortus gene expressing immunogenic protein

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, J.E.; Tabatabai, L.B.

    1991-06-11

    This patent describes a synthetic recombinant DNA molecule containing a DNA sequence. It comprises a gene of Brucella abortus encoding an immunogenic protein having a molecular weight of approximately 31,000 daltons as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis under denaturing conditions, the protein having an isoelectric point around 4.9, and containing a twenty-five amino acid sequence from its amino terminal end consisting of Gln-Ala-Pro-Thr-Phe-Phe-Arg-Ile-Gly-Thr-Gly-Gly-Thr-Ala-Gly-Thr-Tyr-Tyr-Pro-Ile-Gly-Gly-Leu-Ile-Ala, wherein Gln, Ala, Pro, Thr, Phe, Arg, Ile, Gly, Tyr, and Leu, respectively, represent glutamine, alanine, proline, threonine, phenylalanine, arginine, isolecuine, glycine, tyrosine, and leucine.

  14. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Science.gov (United States)

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  15. Expression and characterization of recombinant human serum ...

    African Journals Online (AJOL)

    C-peptide (CP), connecting the A and B chains in proinsulin, has been considered to possess physiological effects in diabetes. In order to prolong the half-life of CP in vivo, a long acting CP analog [human serum albumin (HSA-CP)] was obtained by direct gene fusion of a single-chain CP to HSA and expressed in host ...

  16. EXPRESSION AND CHARACTERIZATION OF RECOMBINANT β ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    enzyme had an optimum pH and temperature of 6.0 and 40 oC .... were sterilized by autoclave on liquid cycle at 121 oC for 15 ... minutes) at room temperature. ... hydrophobic and ionic interactions stabilize the anionic form of the ..... review. Bioresource Technology, 55(1): 1–33. EasySelectTM Pichia Expression Kit user ...

  17. Molecular cloning, sequencing and recombinant expression of a ...

    African Journals Online (AJOL)

    The 4D8 gene was recently discovered in Ixodes scapularis and identified as a tick protective antigen. Vaccination using recombinant 4D8 from I. scapularis showed a significant reduction against I. scapularis tick infestation in a sheep model. This protein is expressed in both salivary gland and gut tissues, and is thought to ...

  18. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    kesiena

    2012-02-09

    Feb 9, 2012 ... 44 amino acid residues mediated by dipeptidylpeptidase. IV (Vlasak et al., 1983). It has been reported that the melittin exhibits antimicrobial activity and pro- ... Construction of recombinant expression vector. A pair of complementary oligonucleotides named Mel-1 (5′-GAT. CCG GAA TTG GAG CAG TTC ...

  19. Genome engineering for improved recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-12-19

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.

  20. Sequential priming with simian immunodeficiency virus (SIV) DNA vaccines, with or without encoded cytokines, and a replicating adenovirus-SIV recombinant followed by protein boosting does not control a pathogenic SIVmac251 mucosal challenge.

    Science.gov (United States)

    Demberg, Thorsten; Boyer, Jean D; Malkevich, Nina; Patterson, L Jean; Venzon, David; Summers, Ebonita L; Kalisz, Irene; Kalyanaraman, V S; Lee, Eun Mi; Weiner, David B; Robert-Guroff, Marjorie

    2008-11-01

    Previously, combination DNA/nonreplicating adenovirus (Ad)- or poxvirus-vectored vaccines have strongly protected against SHIV(89.6P), DNAs expressing cytokines have modulated immunity elicited by DNA vaccines, and replication-competent Ad-recombinant priming and protein boosting has strongly protected against simian immunodeficiency virus (SIV) challenge. Here we evaluated a vaccine strategy composed of these promising components. Seven rhesus macaques per group were primed twice with multigenic SIV plasmid DNA with or without interleukin-12 (IL-12) DNA or IL-15 DNA. After a multigenic replicating Ad-SIV immunization, all groups received two booster immunizations with SIV gp140 and SIV Nef protein. Four control macaques received control DNA plasmids, empty Ad vector, and adjuvant. All vaccine components were immunogenic, but the cytokine DNAs had little effect. Macaques that received IL-15-DNA exhibited higher peak anti-Nef titers, a more rapid anti-Nef anamnestic response postchallenge, and expanded CD8(CM) T cells 2 weeks postchallenge compared to the DNA-only group. Other immune responses were indistinguishable between groups. Overall, no protection against intrarectal challenge with SIV(mac251) was observed, although immunized non-Mamu-A*01 macaques as a group exhibited a statistically significant 1-log decline in acute viremia compared to non-Mamu-A*01 controls. Possible factors contributing to the poor outcome include administration of cytokine DNAs to sites different from the Ad recombinants (intramuscular and intratracheal, respectively), too few DNA priming immunizations, a suboptimal DNA delivery method, failure to ensure delivery of SIV and cytokine plasmids to the same cell, and instability and short half-life of the IL-15 component. Future experiments should address these issues to determine if this combination approach is able to control a virulent SIV challenge.

  1. Imaging of adenovirus-mediated expression of human sodium iodide symporter (hNIS) by 99mTcO4 scan in mice

    International Nuclear Information System (INIS)

    Lee, Won Woo; Moon, D. H.; Park, S. Y.; Jin, J.; Kim, S. J.; Lee, H.

    2002-01-01

    We have evaluated the feasibility of human sodium iodide symporter (hNIS) as a reporter gene by 99m TcO 4 scan in vivo. Recombinant adenovirus encoding hNIS (Rad-hNIS) gene was introduced to FRO cell. hNIS expression was assessed by western blot and 99m TcO 4 uptake in vitro. 99m TcO 4 scan were obtained in BALB/c mice 48 hrs post injection of Tris buffer, Rad-hNIS (1x10 9 or 2x10 8 pfu), or Rad-LacZ (1x10 9 pfu) via the tail vein (n=5-7 for each group). Biodistribution study and RT-PCR were performed. A series of 99m TcO 4 scans were obtained in 2 mice until 21 days post Rad-hNIS injection. FRO readily expressed hNIS protein and incorporated significantly higher level of 99m TcO 4 in vitro. With 99m TcO 4 scan, prominent hepatic uptake was observed only in the mice with 1x10 9 pfu of Rad-hNIS. Liver/lung ratio was increased in this group from 15 (5.7±2.5) till 60 min(6.7±3.6) (p 99m TcO 4 uptake (22.7±11.2 %ID/g) and hNIS mRNA expression were exclusively noticed in livers of this group. The persistent hepatic uptake was observed for up one week. NaClO 4 inhibited the hepatic uptake of 99m TcO 4 . hNIS holds a promising potential as an effective reporter gene for noninvasive/repeated imaging in combination with 99m TcO 4

  2. A Naturally Occurring Recombinant Enterovirus Expresses a Torovirus Deubiquitinase.

    Science.gov (United States)

    Shang, Pengcheng; Misra, Saurav; Hause, Ben; Fang, Ying

    2017-07-15

    Enteroviruses (EVs) are implicated in a wide range of diseases in humans and animals. In this study, a novel enterovirus (enterovirus species G [EVG]) (EVG 08/NC_USA/2015) was isolated from a diagnostic sample from a neonatal pig diarrhea case and identified by using metagenomics and complete genome sequencing. The viral genome shares 75.4% nucleotide identity with a prototypic EVG strain (PEV9 UKG/410/73). Remarkably, a 582-nucleotide insertion, flanked by 3C pro cleavage sites at the 5' and 3' ends, was found in the 2C/3A junction region of the viral genome. This insertion encodes a predicted protease with 54 to 68% amino acid identity to torovirus (ToV) papain-like protease (PLP) (ToV-PLP). Structural homology modeling predicts that this protease adopts a fold and a catalytic site characteristic of minimal PLP catalytic domains. This structure is similar to those of core catalytic domains of the foot-and-mouth disease virus leader protease and coronavirus PLPs, which act as deubiquitinating and deISGylating (interferon [IFN]-stimulated gene 15 [ISG15]-removing) enzymes on host cell substrates. Importantly, the recombinant ToV-PLP protein derived from this novel enterovirus also showed strong deubiquitination and deISGylation activities and demonstrated the ability to suppress IFN-β expression. Using reverse genetics, we generated a ToV-PLP knockout recombinant virus. Compared to the wild-type virus, the ToV-PLP knockout mutant virus showed impaired growth and induced higher expression levels of innate immune genes in infected cells. These results suggest that ToV-PLP functions as an innate immune antagonist; enterovirus G may therefore gain fitness through the acquisition of ToV-PLP from a recombination event. IMPORTANCE Enteroviruses comprise a highly diversified group of viruses. Genetic recombination has been considered a driving force for viral evolution; however, recombination between viruses from two different orders is a rare event. In this study, we

  3. Improved expression of recombinant plant-made hEGF.

    Science.gov (United States)

    Thomas, David Rhys; Walmsley, Amanda Maree

    2014-11-01

    The yield of recombinant hEGF was increased approximately tenfold through a range of optimisations. Further, the recombinant protein was found to have biological activity comparable to commercial hEGF. Human epidermal growth factor (hEGF) is a powerful mitogen that can enhance the healing of a wide range of injuries, including burns, cuts, diabetic ulcers and gastric ulcers. However, despite its clinical value, hEGF is only consistently used for the treatment of chronic diabetic ulcers due to its high cost. In this study, hEGF was transiently expressed in Nicotiana benthamiana plants and targeted to the apoplast, ER and vacuole. Several other approaches were also included in a stepwise fashion to identify the optimal conditions for the expression of recombinant hEGF. Expression was found to be highest in the vacuole, while targeting hEGF to the ER caused a decrease in total soluble protein (TSP). Using a codon optimised sequence was found to increase vacuolar targeted hEGF yield by ~34 %, while it was unable to increase the yield of ER targeted hEGF. The use of the P19 silencing inhibitor was able to further increase expression by over threefold, and using 5-week-old plants significantly increased expression compared to 4- or 6-week-old-plants. The combined effect of these optimisations increased expression tenfold over the initial apoplast targeted construct to an average yield of 6.24 % of TSP. The plant-made hEGF was then shown to be equivalent to commercial E. coli derived hEGF in its ability to promote the proliferation of mouse keratinocytes. This study supports the potential for plants to be used for the commercial production of hEGF, and identifies a potential limitation for the further improvement of recombinant protein yields.

  4. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    Science.gov (United States)

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  5. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  6. Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis

    Science.gov (United States)

    2011-09-01

    future predictive modeling toolkits. 1 1. Introduction The use of Bacillus anthracis as a bio - weapon in the United States in 2001 affirmed the need...for improved sensing and detection of biological weapons of mass destruction (WMD). Protective Antigen (PA) protein of Bacillus anthracis is the...Cloning and Expressing Recombinant Protective Antigen Domains of B. anthracis by Deborah A. Sarkes, Joshua M. Kogot, Irene Val-Addo

  7. Recombinant allergen Lol p II: expression, purification and characterization.

    Science.gov (United States)

    Tamborini, E; Brandazza, A; De Lalla, C; Musco, G; Siccardi, A G; Arosio, P; Sidoli, A

    1995-05-01

    Pollen from perennial rye grass (Lolium perenne) is a major cause of type I allergies worldwide. It contains complex mixtures of proteins, among which Lol p II is a major allergen. Previously, we have reported the cloning and sequencing of Lol p II and its expression in fusion with the heavy chain of human ferritin as carrier polypeptide (Sidoli et al., 1993, J. biol. Chem. 268, 21819-21825). Here, we describe the expression, purification and characterization of a recombinant Lol p II overproduced as a non-fusion protein in the periplasm of E. coli. The recombinant allergen was expressed in high yields and was easily purified in milligram amounts. It competed with the natural Lol p II for binding to specific IgE, and it induced allergic responses in skin prick tests, indicating to be immunologically analogous to the natural protein. Biochemical analyses indicate that recombinant Lol p II is a highly stable and soluble monomeric molecule which behaves like a small globular protein.

  8. HIV-1-Specific Antibody Response and Function after DNA Prime and Recombinant Adenovirus 5 Boost HIV Vaccine in HIV-Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Johannes S Gach

    Full Text Available Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5 boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART. Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC. We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.

  9. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells

    Directory of Open Access Journals (Sweden)

    Selander Martin

    2007-02-01

    Full Text Available Abstract Background Recombinant adenovirus vectors and transfection agents comprising cationic lipids are widely used as gene delivery vehicles for functional expression in cultured cells. Consequently, these tools are utilized to investigate the effects of functional over-expression of proteins on insulin mediated events. However, we have previously reported that cationic lipid reagents cause a state of insulin unresponsiveness in cell cultures. In addition, we have found that cultured cells often do not respond to insulin stimulation following adenovirus treatment. Infection with adenovirus compromises vital functions of the host cell leading to the activation of protein kinases central to insulin signalling, such as protein kinase B/Akt. Therefore, we investigated the effect of adenovirus infection on insulin unresponsiveness by means of Akt activation in cultured cells. Moreover, we investigated the use of baculovirus as a heterologous viral gene delivery vehicle to circumvent these phenomena. Since the finding that baculovirus can efficiently transduce mammalian cells, the applications of this viral system in gene delivery has greatly expanded and one advantage is the virtual absence of cytotoxicity in mammalian cells. Results We show that infection of human neuroblastoma SHSY-5Y and liver C3A cells with recombinant adenovirus results in the activation of Akt in a dose dependent manner. In addition, this activation makes treated cells unresponsive to insulin stimulation as determined by an apparent lack of differential phosphorylation of Akt on serine-473. Our data further indicate that the use of recombinant baculovirus does not increase the phosphorylation of Akt in SHSY-5Y and C3A cells. Moreover, following infection with baculovirus, SHSY-5Y and C3A cells respond to insulin by means of phosphorylation of Akt on serine-473 in the same manner as uninfected cells. Conclusion Widely-used adenovirus vectors for gene delivery cause a state of

  10. Cloning and expression of recombinant, functional ricin B chain

    International Nuclear Information System (INIS)

    Chang, M.S.; Russell, D.W.; Uhr, J.W.; Vitetta, E.S.

    1987-01-01

    The cDNA encoding the B chain of the plant toxin ricin has been cloned and expressed in monkey kidney COS-M6 cells. The recombinant B chain was detected by labeling the transfected cells with [ 35 S]methionine and [ 35 S]-cysteine and demonstrating the secretion of a protein with a M/sub r/ of 30,000-32,000 that was not present in the medium of mock-transfected COS-M6 cells. This protein was specifically immunoprecipitated by an anti-ricin or anti-B-chain antibody and the amount of recombinant B chain secreted by the COS-M6 cells was determined by a radioimmunoassay. Virtually all of the recombinant B chain formed active ricin when mixed with native A chain; it could also bind to the galactose-containing glycoprotein asialofetuin as effectively as native B chain.These results indicate that the vast majority of recombinant B chains secreted into the medium of the COS-M6 cells retain biological function

  11. Fiber-chimeric adenoviruses expressing fibers from serotype 16 and 50 improve gene transfer to human pancreatic adenocarcinoma

    NARCIS (Netherlands)

    Kuhlmann, K.F.D.; Geer, M.A. van; Bakker, C.T.; Dekker, J.E.M.; Havenga, M.J.E.; Oude Elferink, R.P.J.; Gouma, D.J.; Bosma, P.J.; Wesseling, J.G.

    2009-01-01

    Survival of patients with pancreatic cancer is poor. Adenoviral (Ad) gene therapy employing the commonly used serotype 5 reveals limited transduction efficiency due to the low amount of coxsackie-adenovirus receptor on pancreatic cancer cells. To identify fiber-chimeric adenoviruses with improved

  12. Prime immunization with rotavirus VLP 2/6 followed by boosting with an adenovirus expressing VP6 induces protective immunization against rotavirus in mice

    Directory of Open Access Journals (Sweden)

    Qu Jianguo

    2011-01-01

    Full Text Available Abstract Background Rotavirus (RV is the main cause of severe gastroenteritis in children. An effective vaccination regime against RV can substantially reduce morbidity and mortality. Previous studies have demonstrated the efficacy of virus-like particles formed by RV VP2 and VP6 (VLP2/6, as well as that of recombinant adenovirus expressing RV VP6 (rAd, in eliciting protective immunities against RV. However, the efficacy of such prime-boost strategy, which incorporates VLP and rAd in inducing protective immunities against RV, has not been addressed. We assessed the immune effects of different regimens in mice, including rAd prime-VLP2/6 boost (rAd+VLP, VLP2/6 prime-rAd boost (VLP+rAd, rAd alone, and VLP alone. Results Mice immunized with the VLP+rAd regimen elicit stronger humoral, mucosal, and cellular immune responses than those immunized with other regimens. RV challenging experiments showed that the highest reduction (92.9% in viral shedding was achieved in the VLP+rAd group when compared with rAd+VLP (25%, VLP alone (75%, or rAd alone (40% treatment groups. The reduction in RV shedding in mice correlated with fecal IgG (r = 0.95773, P = 0.04227 and IgA (r = 0.96137, P = 0.038663. Conclusions A VLP2/6 prime-rAd boost regimen is effective in conferring immunoprotection against RV challenge in mice. This finding may lay the groundwork for an alternative strategy in novel RV vaccine development.

  13. Genetic Tools and Techniques for Recombinant Expression in Thermophilic Bacillaceae

    Directory of Open Access Journals (Sweden)

    Eivind B. Drejer

    2018-05-01

    Full Text Available Although Escherichia coli and Bacillus subtilis are the most prominent bacterial hosts for recombinant protein production by far, additional species are being explored as alternatives for production of difficult-to-express proteins. In particular, for thermostable proteins, there is a need for hosts able to properly synthesize, fold, and excrete these in high yields, and thermophilic Bacillaceae represent one potentially interesting group of microorganisms for such purposes. A number of thermophilic Bacillaceae including B. methanolicus, B. coagulans, B. smithii, B. licheniformis, Geobacillus thermoglucosidasius, G. kaustophilus, and G. stearothermophilus are investigated concerning physiology, genomics, genetic tools, and technologies, altogether paving the way for their utilization as hosts for recombinant production of thermostable and other difficult-to-express proteins. Moreover, recent successful deployments of CRISPR/Cas9 in several of these species have accelerated the progress in their metabolic engineering, which should increase their attractiveness for future industrial-scale production of proteins. This review describes the biology of thermophilic Bacillaceae and in particular focuses on genetic tools and methods enabling use of these organisms as hosts for recombinant protein production.

  14. Targeted adenovirus mediated inhibition of NF-κB-dependent inflammatory gene expression in endothelial cells in vitro and in vivo.

    Science.gov (United States)

    Kułdo, J M; Ásgeirsdóttir, S A; Zwiers, P J; Bellu, A R; Rots, M G; Schalk, J A C; Ogawara, K I; Trautwein, C; Banas, B; Haisma, H J; Molema, G; Kamps, J A A M

    2013-02-28

    In chronic inflammatory diseases the endothelium expresses mediators responsible for harmful leukocyte infiltration. We investigated whether targeted delivery of a therapeutic transgene that inhibits nuclear factor κB signal transduction could silence the proinflammatory activation status of endothelial cells. For this, an adenovirus encoding dominant-negative IκB (dnIκB) as a therapeutic transgene was employed. Selectivity for the endothelial cells was achieved by introduction of antibodies specific for inflammatory endothelial adhesion molecules E-selectin or VCAM-1 chemically linked to the virus via polyethylene glycol. In vitro, the retargeted adenoviruses selectively infected cytokine-activated endothelial cells to express functional transgene. The comparison of transductional capacity of both retargeted viruses revealed that E-selectin based transgene delivery exerted superior pharmacological effects. Targeted delivery mediated dnIκB transgene expression in endothelial cells inhibited the induced expression of several inflammatory genes, including adhesion molecules, cytokines, and chemokines. In vivo, in mice suffering from glomerulonephritis, E-selectin-retargeted adenovirus selectively homed in the kidney to microvascular glomerular endothelium. Subsequent downregulation of endothelial adhesion molecule expression 2 days after induction of inflammation demonstrated the pharmacological potential of this gene therapy approach. The data justify further studies towards therapeutic virus design and optimization of treatment schedules to investigate their capacity to interfere with inflammatory disease progression. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors

    Directory of Open Access Journals (Sweden)

    Catherine M. Crosby

    2017-02-01

    Full Text Available Most adenovirus (Ad vectors are E1 gene deleted replication defective (RD-Ad vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed “single cycle” Ad (SC-Ad vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In

  16. Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endoproteinase cleavage consensus sequence.

    Science.gov (United States)

    Freimuth, P; Anderson, C W

    1993-03-01

    The sequence of a 1158-base pair fragment of the human adenovirus serotype 12 (Ad12) genome was determined. This segment encodes the precursors for virion components Mu and VI. Both Ad12 precursors contain two sequences that conform to a consensus sequence motif for cleavage by the endoproteinase of adenovirus 2 (Ad2). Analysis of the amino terminus of VI and of the peptide fragments found in Ad12 virions demonstrated that these sites are cleaved during Ad12 maturation. This observation suggests that the recognition motif for adenovirus endoproteinases is highly conserved among human serotypes. The adenovirus 2 endoproteinase polypeptide requires additional co-factors for activity (C. W. Anderson, Protein Expression Purif., 1993, 4, 8-15). Synthetic Ad12 or Ad2 pVI carboxy-terminal peptides each permitted efficient cleavage of an artificial endoproteinase substrate by recombinant Ad2 endoproteinase polypeptide.

  17. Cellulases for biomass degradation: comparing recombinant cellulase expression platforms.

    Science.gov (United States)

    Garvey, Megan; Klose, Holger; Fischer, Rainer; Lambertz, Camilla; Commandeur, Ulrich

    2013-10-01

    Improvement of cellulase expression has the potential to change the nature of the biofuel industry. Increasing the economic feasibility of cellulase systems would significantly broaden the range of practicable biomass conversion, lowering the environmental impact of our civilisations' fuel needs. Cellulases are derived from certain fungi and bacteria, which are often difficult to culture on an industrial scale. Accordingly, methods to recombinantly express important cellulases and other glycosyl hydrolase (GH) enzymes are under serious investigation. Herein, we examine the latest developments in bacterial, yeast, plant, and fungal expression systems. We discuss current strategies for producing cellulases, and evaluate the benefits and drawbacks in yield, stability, and activity of enzymes from each system, and the overall progress in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  19. Production and purification of non replicative canine adenovirus type 2 derived vectors.

    Science.gov (United States)

    Szelechowski, Marion; Bergeron, Corinne; Gonzalez-Dunia, Daniel; Klonjkowski, Bernard

    2013-12-03

    Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 10(10) infectious particles per ml and can be directly administrated in vivo.

  20. Oncolytic Adenoviruses in Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Ramon Alemany

    2014-02-01

    Full Text Available The therapeutic use of viruses against cancer has been revived during the last two decades. Oncolytic viruses replicate and spread inside tumors, amplifying their cytotoxicity and simultaneously reversing the tumor immune suppression. Among different viruses, recombinant adenoviruses designed to replicate selectively in tumor cells have been clinically tested by intratumoral or systemic administration. Limited efficacy has been associated to poor tumor targeting, intratumoral spread, and virocentric immune responses. A deeper understanding of these three barriers will be required to design more effective oncolytic adenoviruses that, alone or combined with chemotherapy or immunotherapy, may become tools for oncologists.

  1. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  2. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Imaging of adenovirus-mediated expression of human sodium iodide symporter (hNIS) by {sup 99m}TcO{sub 4} scan in mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Woo; Moon, D. H.; Park, S. Y.; Jin, J.; Kim, S. J.; Lee, H. [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    We have evaluated the feasibility of human sodium iodide symporter (hNIS) as a reporter gene by {sup 99m}TcO{sub 4} scan in vivo. Recombinant adenovirus encoding hNIS (Rad-hNIS) gene was introduced to FRO cell. hNIS expression was assessed by western blot and {sup 99m}TcO{sub 4} uptake in vitro. {sup 99m}TcO{sub 4} scan were obtained in BALB/c mice 48 hrs post injection of Tris buffer, Rad-hNIS (1x10{sup 9} or 2x10{sup 8} pfu), or Rad-LacZ (1x10{sup 9} pfu) via the tail vein (n=5-7 for each group). Biodistribution study and RT-PCR were performed. A series of {sup 99m}TcO{sub 4} scans were obtained in 2 mice until 21 days post Rad-hNIS injection. FRO readily expressed hNIS protein and incorporated significantly higher level of {sup 99m}TcO{sub 4} in vitro. With {sup 99m}TcO{sub 4} scan, prominent hepatic uptake was observed only in the mice with 1x10{sup 9} pfu of Rad-hNIS. Liver/lung ratio was increased in this group from 15 (5.7{+-}2.5) till 60 min(6.7{+-}3.6) (p<0.01). Significantly increased {sup 99m}TcO{sub 4} uptake (22.7{+-}11.2 %ID/g) and hNIS mRNA expression were exclusively noticed in livers of this group. The persistent hepatic uptake was observed for up one week. NaClO{sub 4} inhibited the hepatic uptake of {sup 99m}TcO{sub 4}. hNIS holds a promising potential as an effective reporter gene for noninvasive/repeated imaging in combination with {sup 99m}TcO{sub 4}.

  4. Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes.

    Science.gov (United States)

    Iizuka, Shunsuke; Sakurai, Fuminori; Tachibana, Masashi; Ohashi, Kazuo; Mizuguchi, Hiroyuki

    2017-09-15

    Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.

  5. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Science.gov (United States)

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  6. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Directory of Open Access Journals (Sweden)

    Érica Araújo Mendes

    Full Text Available The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1 of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination. Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1, to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  7. Covalent decoration of adenovirus vector capsids with the carbohydrate epitope αGal does not improve vector immunogenicity, but allows to study the in vivo fate of adenovirus immunocomplexes.

    Science.gov (United States)

    Kratzer, Ramona F; Espenlaub, Sigrid; Hoffmeister, Andrea; Kron, Matthias W; Kreppel, Florian

    2017-01-01

    Adenovirus-based vectors are promising tools for genetic vaccination. However, several obstacles have to be overcome prior to a routine clinical application of adenovirus-based vectors as efficacious vectored vaccines. The linear trisaccharide epitope αGal (alpha-Gal) with the carbohydrate sequence galactose-α-1,3-galactosyl-β-1,4-N-acetylglucosamine has been described as a potent adjuvant for recombinant or attenuated vaccines. Humans and α-1,3-galactosyltransferase knockout mice do not express this epitope. Upon exposure of α-1,3-galactosyltransferase-deficient organisms to αGal in the environment, large amounts of circulating anti-Gal antibodies are produced consistently. Immunocomplexes formed between recombinant αGal-decorated vaccines and anti-Gal antibodies exhibit superior immunogenicity. We studied the effects of the trisaccharide epitope on CD8 T cell responses that are directed specifically to vector-encoded transgenic antigens. For that, covalently αGal-decorated adenovirus vectors were delivered to anti-Gal α-1,3-galactosyltransferase knockout mice. We generated replication-defective, E1-deleted adenovirus type 5 vectors that were decorated with αGal at the hexon hypervariable regions 1 or 5, at fiber knob, or at penton base. Surprisingly, none of the adenovirus immunocomplexes being formed from αGal-decorated adenovirus vectors and anti-Gal immunoglobulins improved the frequencies of CD8 T cell responses against the transgenic antigen ovalbumin. Humoral immunity directed to the adenovirus vector was neither increased. However, our data indicated that decoration of Ad vectors with the αGal epitope is a powerful tool to analyze the fate of adenovirus immunocomplexes in vivo.

  8. Expression of Recombinant Human Coagulation Factor VII by the Lizard Leishmania Expression System

    Directory of Open Access Journals (Sweden)

    Sina Mirzaahmadi

    2011-01-01

    Full Text Available The variety of recombinant protein expression systems have been developed as a resource of FVII gene expression. In the current study, the authors used a novel protein expression system based on the Iranian Lizard Leishmania, a trypanosomatid protozoan as a host for expression of FVII. Plasmid containing cDNA encoding full-length human FVII was introduced into Lizard Leishmania and positive transfectants were analyzed by SDS-PAGE and Western blot analysis. Furthermore, biological activity of purified protein was detected by PT assay. The recombinant strain harboring a construct was analyzed for expression of FVII at the mRNA and protein level. Purified rFVII was obtained and in order to confirm the purified compound was in fact rFVII. Western blot analysis was carried out. Clotting time in PT assay was reduced about 30 seconds with the purified rFVII. In Conclusion, this study has demonstrated, for the first time, that Leishmania cells can be used as an expression system for producing recombinant FVII.

  9. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    Science.gov (United States)

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  10. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial.

    Science.gov (United States)

    Zhu, Feng-Cai; Hou, Li-Hua; Li, Jing-Xin; Wu, Shi-Po; Liu, Pei; Zhang, Gui-Rong; Hu, Yue-Mei; Meng, Fan-Yue; Xu, Jun-Jie; Tang, Rong; Zhang, Jin-Long; Wang, Wen-Juan; Duan, Lei; Chu, Kai; Liang, Qi; Hu, Jia-Lei; Luo, Li; Zhu, Tao; Wang, Jun-Zhi; Chen, Wei

    2015-06-06

    Up to now, all tested Ebola virus vaccines have been based on the virus strain from the Zaire outbreak in 1976. We aimed to assess the safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine expressing the glycoprotein of the 2014 epidemic strain. We did this randomised, double-blind, placebo-controlled, phase 1 clinical trial at one site in Taizhou County, Jiangsu Province, China. Healthy adults (aged 18-60 years) were sequentially enrolled and randomly assigned (2:1), by computer-generated block randomisation (block size of six), to receive placebo, low-dose adenovirus type-5 vector-based Ebola vaccine, or high-dose vaccine. Randomisation was pre-stratified by dose group. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was occurrence of solicited adverse reactions within 7 days of vaccination. The primary immunogenicity endpoints were glycoprotein-specific antibody titres and T-cell responses at day 28 after the vaccination. Analysis was by intention to treat. The study is registered with ClinicalTrials.gov, number NCT02326194. Between Dec 28, 2014, and Jan 9, 2015, 120 participants were enrolled and randomly assigned to receive placebo (n=40), low-dose vaccine (n=40), or high-dose vaccine. Participants were followed up for 28 days. Overall, 82 (68%) participants reported at least one solicited adverse reaction within 7 days of vaccination (n=19 in the placebo group vs n=27 in the low-dose group vs n=36 in the high-dose group; p=0·0002). The most common reaction was mild pain at the injection site, which was reported in eight (20%) participants in the placebo group, 14 (35%) participants in the low-dose group, and 29 (73%) participants in the high-dose vaccine group (pvaccine groups at both day 14 (geometric mean titre 421·4 [95% CI 249·7-711·3] and 820·5 [598·9-1124·0], respectively; pday 28 (682·7 [424·3-1098·5] and 1305·7 [970·1-1757·2

  11. Characterization of a transcriptional promoter of human papillomavirus 18 and modulation of its expression by simian virus 40 and adenovirus early antigens

    International Nuclear Information System (INIS)

    Thierry, F.; Heard, J.M.; Dartmann, K.; Yaniv, M.

    1987-01-01

    RNA present in cells derived from cervical carcinoma that contained human papillomavirus 18 genomes was initiated in the 1.053-kilobase BamHI fragment that covered the complete noncoding region of this virus. When cloned upstream of the chloramphenicol acetyltransferase gene, this viral fragment directed the expression of the bacterial enzyme only in the sense orientation. Initiation sites were mapped around the ATG of open reading frame E6. This promoter was active in some human and simian cell lines, and its expression was modulated positively by simian virus 40 large T antigen and negatively by adenovirus type 5 E1a antigen

  12. Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression

    International Nuclear Information System (INIS)

    Yang, Shan; Kawamura, Kiyoko; Okamoto, Shinya; Yamauchi, Suguru; Shingyoji, Masato; Sekine, Ikuo; Kobayashi, Hiroshi; Tada, Yuji; Tatsumi, Koichiro; Hiroshima, Kenzo; Shimada, Hideaki; Tagawa, Masatoshi

    2015-01-01

    Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized

  13. Expression and the antigenicity of recombinant coat proteins of tungro viruses expressed in Escherichia coli.

    Science.gov (United States)

    Yee, Siew Fung; Chu, Chia Huay; Poili, Evenni; Sum, Magdline Sia Henry

    2017-02-01

    Rice tungro disease (RTD) is a recurring disease affecting rice farming especially in the South and Southeast Asia. The disease is commonly diagnosed by visual observation of the symptoms on diseased plants in paddy fields and by polymerase chain reaction (PCR). However, visual observation is unreliable and PCR can be costly. High-throughput as well as relatively cheap detection methods are important for RTD management for screening large number of samples. Due to this, detection by serological assays such as immunoblotting assays and enzyme-linked immunosorbent assay are preferred. However, these serological assays are limited by lack of continuous supply of antibodies as reagents due to the difficulty in preparing sufficient purified virions as antigens. This study aimed to generate and evaluate the reactivity of the recombinant coat proteins of Rice tungro bacilliform virus (RTBV) and Rice tungro spherical virus (RTSV) as alternative antigens to generate antibodies. The genes encoding the coat proteins of both viruses, RTBV (CP), and RTSV (CP1, CP2 and CP3) were cloned and expressed as recombinant fusion proteins in Escherichia coli. All of the recombinant fusion proteins, with the exception of the recombinant fusion protein of the CP2 of RTSV, were reactive against our in-house anti-tungro rabbit serum. In conclusion, our study showed the potential use of the recombinant fusion coat proteins of the tungro viruses as alternative antigens for production of antibodies for diagnostic purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Development of a replication defective adenovirus 5 vector expressing porcine interleukin-18 and a mutated analog

    Science.gov (United States)

    Cell-mediated immune responses against swine pathogens are sometimes necessary to elicit durable protective immunity. Cell mediated or Th1 immunity is dependent on the coordinated expression of several cytokines, including interferon-gamma to assist in the production of antigen-specific cytotoxic T...

  15. Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha

    Directory of Open Access Journals (Sweden)

    Moussa Manal

    2012-12-01

    Full Text Available Abstract Background Currently, the two most commonly used fibrinolytic agents in thrombolytic therapy are recombinant tissue plasminogen activator (rt-PA and streptokinase (SK. Whereas SK has the advantage of substantially lower costs when compared to other agents, it is less effective than either rt-PA or related variants, has significant allergenic potential, lacks fibrin selectivity and causes transient hypotensive effects in high dosing schedules. Therefore, development of an alternative fibrinolytic agent having superior efficacy to SK, approaching that of rt-PA, together with a similar or enhanced safety profile and advantageous cost-benefit ratio, would be of substantial importance. Pre-clinical data suggest that the novel fibrinolytic recombinant staphylokinase (rSAK, or related rSAK variants, could be candidates for such development. However, since an efficient expression system for rSAK is still lacking, it has not yet been fully developed or evaluated for clinical purposes. This study’s goal was development of an efficient fermentation process for the production of a modified, non-glycosylated, biologically active rSAK, namely rSAK-2, using the well-established single cell yeast Hansenula polymorpha expression system. Results The development of an efficient large scale (80 L Hansenula polymorpha fermentation process of short duration for rSAK-2 production is described. It evolved from an initial 1mL HTP methodology by successive scale-up over almost 5 orders of magnitude and improvement steps, including the optimization of critical process parameters (e.g. temperature, pH, feeding strategy, medium composition, etc.. Potential glycosylation of rSAK-2 was successfully suppressed through amino acid substitution within its only N-acetyl glycosylation motif. Expression at high yields (≥ 1g rSAK-2/L cell culture broth of biologically active rSAK-2 of expected molecular weight was achieved. Conclusion The optimized production process

  16. Intrahepatic injection of adenovirus reduces inflammation and increases gene transfer and therapeutic effect in mice

    OpenAIRE

    Crettaz, J. (Julien); Berraondo, P. (Pedro); Mauleon, I. (Itsaso); Ochoa, L. (Laura); Shankar, V. (Vijay); Barajas, M. (Miguel); Rooijen, N. (Nico) van; Kochanek, S. (Stefan); Qian, C. (Cheng); Prieto, J. (Jesús); Hernandez-Alcoceba, R. (Rubén); Gonzalez-Aseguinolaza, G. (Gloria)

    2006-01-01

    Recombinant adenoviruses (Ad) are among the most extensively used vectors for liver gene transfer. One of the major limitations for the clinical application of these vectors is the inflammatory immune response associated with systemic administration of high dose of virus. We evaluated the effect of Ad administration route on the inflammatory immune response and liver transgene expression. We compared direct intrahepatic injection (IH) with the systemic administration via tail vein (IV). IH in...

  17. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  18. Expression of UV-irradiated adenovirus in normal and UV-sensitive Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1985-01-01

    The chinese hamster ovary (CHO) cell mutants UV-20, UV-24, and UV-41 are abnormally sensitive to UV and harbour various defects lin their ability to repair cellular DNA. This study has examined the expression of UV-irradiated AD2 in these cells. HCR of UV-irradiated Ad2, as measured by viral structural antigen (Vag) formation or progeny production, was found to be similar for the normal and the UV-sensitive CHO strains. UV-irradiation of Ad2 (1200 J/m/sup 2/) resulted in a delay of Vag expression of 18 hours in normal human fibroblasts, which is thought to reflect the time required for removal of UV-induced lesions from the DNA before viral DNA synthesis can proceed. However, a similar UV-irradiation of Ad2 did not result in a delay of Vag expression for infection of CHO cells, suggesting that UV-induced lesions in Ad2 DNA do not inhibit its replication in CHO cells. These results indicate a fundamental difference in the processing of UV-irradiated AD2-DNA in CHO as compared to human cells

  19. Recombiner

    International Nuclear Information System (INIS)

    Kikuchi, Nobuo.

    1983-01-01

    Purpose: To shorten the pre-heating time for a recombiner and obtain a uniform temperature distribution for the charged catalyst layer in a BWR type reactor. Constitution: A pre-heating heater is disposed to the outer periphery of a vessel for a recombiner packed with catalysts for recombining hydrogen and oxygen in gases flowing through a radioactive gaseous wastes processing system. Heat pipes for transmitting the heat applied to said container to the catalyst are disposed vertically and horizontally within the container. Different length of the heat pipes are combined. In this way, pre-heating time for the recombiner before the operation start and before the system switching can be shortened and the uniform pre-heating for the inside of the recombiner is also made possible. Further, heater control in the pre-heating can be carried out effectively and with ease. (Moriyama, K.)

  20. Comparative pharmacology of a new recombinant FSH expressed by a human cell line

    DEFF Research Database (Denmark)

    Koechling, Wolfgang; Plaksin, Daniel; Croston, Glenn E.

    2017-01-01

    Recombinant FSH proteins are important therapeutic agents for the treatment of infertility, including follitropin alfa expressed in Chinese Hamster Ovary (CHO) cells and, more recently, follitropin delta expressed in the human cell line PER.C6. These recombinant FSH proteins have distinct glycosy...

  1. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  2. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  3. Recombiner

    International Nuclear Information System (INIS)

    Osumi, Morimichi.

    1979-01-01

    Purpose: To provide a recombiner which is capable of converting hydrogen gas into water by use of high-frequency heating at comparatively low temperatures and is safe and cheap in cost. Constitution: Hydrogen gas is introduced from an outer pipeline to the main structure of a recombiner, and when it passes through the vicinity of the central part of the recombiner, it is reacted with copper oxide (CuO 2 ) heated to a temperature more than 300 0 C by a high-frequency heater, and converted gently into water by reduction operation (2H 2 + CuO 2 → Cu + 2H 2 O). The thus prepared water is exhausted through the outer pipeline to a suppression pool. A part of hydrogen gas which has not been converted completely into water by the reaction and is remaining as hydrogen is recovered through exhaust nozzles and again introduced into the main structure of the recombiner. (Yoshino, Y.)

  4. Adenovirus-mediated IL-24 expression enhances the chemosensitivity of multidrug-resistantgastric cancer cells to cisplatin.

    Science.gov (United States)

    Mao, Zonglei; Bian, Guochun; Sheng, Weihua; He, Songbin; Yang, Jicheng; Dong, Xiaoqiang

    2013-11-01

    Chemotherapy is one of the commonly used strategies in gastric cancer, especially for unresectable patients, but it becomes insensitive to repeated administration of even the most effective chemotherapeutic agents, such as cisplatin. Given this, there is an urgent need for developing chemosensitizers to overcome acquired resistance to chemotherapeutic agents. Interleukin-24 (IL-24), a cytokine-tumor suppressor, shows broad-spectrum and tumor-specific antitumor properties, and studies have demonstrated that IL-24 could conspicuously restore the chemosensitivity of MDR cancer cells. Herein, we developed a human MDR gastric cancer cell subline, SGC7901/CDDP, by repeated selection of resistant clones of parental sensitive cells, and further investigated the chemosensitizing effects and the underlying mechanisms of adenovirus-mediated IL-24 (Ad-IL-24) gene therapy plus CDDP for the human MDR gastric cancer cells SGC7901/CDDP in vitro and in vivo. The results demonstrated that the expression of IL-24 mRNA and protein was profoundly downregulated in SGC7901/CDDP cells by RT-PCR and western blot analysis. In addition, the cell viability assay showed that the IC50 of SGC7901/CDDP cells to CDDP, 5-FU, ADM and MTX was significantly enhanced compared to parental sensitive SGC7901 cells. Ad-IL-24-induced IL-24 overexpression decreased the IC50 of the above agents (not MTX), induced G2/M cell cycle arrest, and Ad-IL-24 plus CDDP elicited significant apoptosis and tumor suppression of SGC7901/CDDP cells in vitro and SGC7901/CDDP cell xenograft tumors in vivo, respectively. Moreover, our results demonstrated that the mechanisms of Ad-IL-24-elicited chemosensitizing effects were closely associated with a substantial upregulation of Bax and downregulation of P-gp and Bcl-2 in SGC7901/CDDP cells in vitro and SGC7901/CDDP xenograft tissues in vivo. Thus, this study indicates that overexpression of IL-24 gene can significantly promote chemosensitivity in MDR phenotype SGC7901

  5. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    Science.gov (United States)

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  6. Oral Administration of Recombinant Lactococcus lactis Expressing the Cellulase Gene Increases Digestibility of Fiber in Geese.

    Science.gov (United States)

    Zhou, Haizhu; Gao, Yunhang; Gao, Guang; Lou, Yujie

    2015-12-01

    Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.

  7. Similarity of recombinant human perlecan domain 1 by alternative expression systems bioactive heterogenous recombinant human perlecan D1

    DEFF Research Database (Denmark)

    Ellis, April L; Pan, Wensheng; Yang, Guang

    2010-01-01

    BACKGROUND: Heparan sulfate glycosaminoglycans are diverse components of certain proteoglycans and are known to interact with growth factors as a co-receptor necessary to induce signalling and growth factor activity. In this report we characterize heterogeneously glycosylated recombinant human...... perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology. RESULTS: By SDS-PAGE analysis following anion exchange chromatography, the recombinant proteoglycans appeared to possess...... glycosaminoglycan chains ranging, in total, from 6 kDa to >90 kDa per recombinant. Immunoblot analysis of enzyme-digested high Mr rhPln.D1 demonstrated that the rhPln.D1 was synthesized as either a chondroitin sulfate or heparan sulfate proteoglycan, in an approximately 2:1 ratio, with negligible hybrids. Secondary...

  8. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    Science.gov (United States)

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-11-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  9. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  10. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  11. Expression and purification of recombinant polyomavirus VP2 protein and its interactions with polyomavirus proteins

    Science.gov (United States)

    Cai, X.; Chang, D.; Rottinghaus, S.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Recombinant polyomavirus VP2 protein was expressed in Escherichia coli (RK1448), using the recombinant expression system pFPYV2. Recombinant VP2 was purified to near homogeneity by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, electroelution, and Extracti-Gel chromatography. Polyclonal serum to this protein which reacted specifically with recombinant VP2 as well as polyomavirus virion VP2 and VP3 on Western blots (immunoblots) was produced. Purified VP2 was used to establish an in vitro protein-protein interaction assay with polyomavirus structural proteins and purified recombinant VP1. Recombinant VP2 interacted with recombinant VP1, virion VP1, and the four virion histones. Recombinant VP1 coimmunoprecipitated with recombinant VP2 or truncated VP2 (delta C12VP2), which lacked the carboxy-terminal 12 amino acids. These experiments confirmed the interaction between VP1 and VP2 and revealed that the carboxyterminal 12 amino acids of VP2 and VP3 were not necessary for formation of this interaction. In vivo VP1-VP2 interaction study accomplished by cotransfection of COS-7 cells with VP2 and truncated VP1 (delta N11VP1) lacking the nuclear localization signal demonstrated that VP2 was capable of translocating delta N11VP1 into the nucleus. These studies suggest that complexes of VP1 and VP2 may be formed in the cytoplasm and cotransported to the nucleus for virion assembly to occur.

  12. Core labeling of adenovirus with EGFP

    International Nuclear Information System (INIS)

    Le, Long P.; Le, Helen N.; Nelson, Amy R.; Matthews, David A.; Yamamoto, Masato; Curiel, David T.

    2006-01-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology

  13. Adenovirus or HA-2 fusogenic peptide-assisted lipofection increases cytoplasmic levels of plasmid in nondividing endothelium with little enhancement of transgene expression.

    Science.gov (United States)

    Subramanian, Ajit; Ma, Haiching; Dahl, Kris N; Zhu, Jingya; Diamond, Scott L

    2002-01-01

    Adenovirus-assisted lipofection has been reported to increase transfection efficiency through mechanisms potentially involving endosome escape and/or nuclear targeting activity. Similarly, transfection with the viral fusogenic peptide HA-2 of the influenza virus hemagglutinin can increase transfection efficiency. However, there are few studies examining the mechanism and intracellular trafficking of these viral and/or viral fusogenic peptide-assisted lipofections. Endosome escape was directly assayed with T7 RNA polymerase bound to plasmid (pTM beta gal) expressing beta-galactosidase under a T7 promoter to detect transcribable plasmid that escapes the endosomal compartment. Lipofection of pTM beta gal with replication-deficient adenovirus (Ad5-null) at a multiplicity of infection (MOI) of 100 and 1000 increased cytoplasmic levels of transcribable plasmid by 24- and 117-fold, respectively, over lipofection alone, without an effect on total plasmid uptake. However, lipofection of pCMV beta gal with Ad5-null at a MOI of 100 and 1000 increased transgene expression only seven- and eight-fold, respectively, over lipofection alone. Thus, a 24-fold increase in endosome escape saturated expression from pCMV beta gal and provided only a seven-fold benefit in nondividing cells, which was not significantly increased with further increases in endosome escape. A cationic form of HA-2 (HA-K(4)) also caused significant enhancements in endosome escape, as detected with the cytoplasmic transcription assay. However, HA-K(4) enhancement of endosome escape did not correlate with transgene expression from pCMV beta gal, consistent with the detection of HA-K(4)-mediated partitioning of plasmid to the insoluble fraction of the cell lysate. These results indicate that enhancement of endosome escape in nondividing cells does not fully alleviate rate limits related to nuclear import of the plasmid. Copyright 2001 John Wiley & Sons, Ltd.

  14. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    DEFF Research Database (Denmark)

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy

    2013-01-01

    to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance...... is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription...

  15. Recombiner

    International Nuclear Information System (INIS)

    Saalfrank, H.

    1985-01-01

    Air containing hydrogen can be oxidized by heating in a container called a recombiner, in order to avoid the collection of hydrogen. The container is long and a large number of straight heating bars are arranged in parallel in it and they are flanged to a lid. The heating bars are surrounded by tubes, in order to obtain good heat transfer by a narrow annular gap. (orig.) [de

  16. Cloning, recombinant expression and characterization of a new ...

    African Journals Online (AJOL)

    Jane

    2011-06-13

    Jun 13, 2011 ... recombinant glucoamylase with optimal pH of 4.5, and temperature of 60°C, showed good hydrolytic ... from Dr. James Swezey, collection manager of ARS culture collection (NRRL). ... genes and was grown at 37°C in LB medium containing 1.0% (w/v) tryptone ..... However, the enzyme was inactivated.

  17. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    Science.gov (United States)

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  18. High-Level Expression of Recombinant Bovine Lactoferrin in Pichia pastoris with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Blanca Iglesias-Figueroa

    2016-06-01

    Full Text Available In this study, bovine lactoferrin (bLf, an iron-binding glycoprotein considered an important nutraceutical protein because of its several properties, was expressed in Pichia pastoris KM71-H under AOX1 promoter control, using pJ902 as the recombinant plasmid. Dot blotting analysis revealed the expression of recombinant bovine lactoferrin (rbLf in Pichia pastoris. After Bach fermentation and purification by molecular exclusion, we obtained an expression yield of 3.5 g/L of rbLf. rbLf and predominantly pepsin-digested rbLf (rbLfcin demonstrated antibacterial activity against Escherichia coli (E. coli BL21DE3, Staphylococcus aureus (S. aureus FRI137, and, in a smaller percentage, Pseudomonas aeruginosa (Ps. Aeruginosa ATCC 27833. The successful expression and characterization of functional rbLf expressed in Pichia pastoris opens a prospect for the development of natural antimicrobial agents produced recombinantly.

  19. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    Directory of Open Access Journals (Sweden)

    Chen Dishi

    2011-06-01

    Full Text Available Abstract Background Porcine parvovirus (PPV VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs with similar morphology to the native capsid. Here, a pseudorabies virus (PRV system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28 following virulent PPV challenge compared with the control (7 of 31. Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  20. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    International Nuclear Information System (INIS)

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-01

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity

  1. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    Science.gov (United States)

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

  2. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production

    International Nuclear Information System (INIS)

    Jarvis, Donald L.

    2003-01-01

    The baculovirus-insect cell expression system is widely used to produce recombinant glycoproteins for many different biomedical applications. However, due to the fundamental nature of insect glycoprotein processing pathways, this system is typically unable to produce recombinant mammalian glycoproteins with authentic oligosaccharide side chains. This minireview summarizes our current understanding of insect protein glycosylation pathways and our recent efforts to address this problem. These efforts have yielded new insect cell lines and baculoviral vectors that can produce recombinant glycoproteins with humanized oligosaccharide side chains

  3. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  4. Protein expression of Myt272-3 recombinant clone and in silico ...

    African Journals Online (AJOL)

    Purpose: To investigate the expression of Myt272-3 recombinant protein and also to predict a possible protein vaccine candidate against Mycobacterium tuberculosis. Methods: Myt272-3 protein was expressed in pET30a+-Myt272-3 clone. The purity of the protein was determined using Dynabeads® His-Tag Isolation ...

  5. Expression and evaluation of IgE-binding capacity of recombinant Pacific mackerel parvalbumin

    OpenAIRE

    Hamada, Yuki; Tanaka, Hiroyuki; Sato, Ayako; Ishizaki, Shoichiro; Nagashima, Yuji; Shiomi, Kazuo

    2004-01-01

    Background: Parvalbumin is the major and cross-reactive allergen in fish. Sufficient amounts of IgE-reactive recombinant fish parvalbumin are needed for diagnosis and immunotherapy of fish allergy. Methods: A DNA fragment corresponding to parvalbumin of the Pacific mackerel Scomber japonicus was synthesized and cloned into the expression vector pGEX-6p-3 to produce glutathione S-transferase (GST)-fusion parvalbumin in Escherichia coli. The GST-free recombinant parvalbumin was purified usin...

  6. An easy method for preparation of Cre-loxP regulated fluorescent adenoviral expression vectors and its application for direct reprogramming into hepatocytes

    Directory of Open Access Journals (Sweden)

    Chitose Kurihara

    2016-12-01

    Full Text Available The recombinant adenoviral gene expression system is a powerful tool for gene delivery. However, it is difficult to obtain high titers of infectious virus, principally due to the toxicity of the expressed gene which affects on virus replication in the host HEK293 cells. To avoid these problems, we generated a Cre-loxP-regulated fluorescent universal vector (termed pAxCALRL. This vector produces recombinant adenoviruses that express the red fluorescent protein (RFP instead of the inserted gene during proliferation, which limits toxicity and can be used to monitor viral replication. Expression of the gene of interest is induced by co-infection with an adenovirus that expresses Cre-recombinase (AxCANCre. Recombinant adenovirus produced by this system that express Hnf4α and Foxa2 were used to reprogram mouse embryo fibroblast (MEF into induced-hepatocyte-like cells (iHep following several rounds of infection, demonstrating the efficacy of this new system.

  7. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy

    Science.gov (United States)

    Oka, Tetsuo; Kurozumi, Kazuhiko; Shimazu, Yosuke; Ichikawa, Tomotsugu; Ishida, Joji; Otani, Yoshihiro; Shimizu, Toshihiko; Tomita, Yusuke; Sakaguchi, Masakiyo; Watanabe, Masami; Nasu, Yasutomo; Kumon, Hiromi; Date, Isao

    2016-09-01

    Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.

  8. Uptake of 131I-FIAU in BMSCs infected by adenovirus vector-mediated HSV1-TK

    International Nuclear Information System (INIS)

    Zhang Binqing; Wu Tao; Sun Xun; An Rui

    2010-01-01

    Report gene HSV1-TK and therapy gene were connected by IRES, and recombinant adenovirus vector Ad5-TK-IRES-BDNF-EGFP was constructed and infected with BMSCs at MOI of 0, 50, 100, 150, 200 and 250, with the control recombinant adenovirus vector of Ad5-EGFP. Green fluorescence cell positive rate was observed under the microscopy. MTT assay was used to determine the cell proliferation. bFGF and EGF were used to induce the BMSCs, and RQ-PCR to determine target gene expression in infection BMSCs. Uptake of 131 I-FIAU was assessed by gamma counter. The data were processed by SPSS11.code. Recombinant adenovirus at MOI 150 had high infectionefficiency and low toxic in BMSCs. There was a strong relation between the mRNA expression of TK and BDNF in infection BMSCs. The significance between the infection BMSCs and control BMSCs for uptake of 131 I-FIAU at all the time points was t=23.06-173.83 and P 131 I-FIAU. This suggests a suitable gene vector for tracing genetically modified stem cells. (authors)

  9. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2015-10-01

    Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.

  10. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  11. Rare codons effect on expression of recombinant gene cassette in Escherichia coli BL21(DE3

    Directory of Open Access Journals (Sweden)

    Aghil Esmaeili-Bandboni

    2017-11-01

    Full Text Available Objective: To demonstrate the sensitivity of expression of fusion genes to existence of a large number of rare codons in recombinant gene sequenced. Methods: Primers for amplification of cholera toxin B, Shiga toxin B and gfp genes were designed by Primer3 software and synthesized. All of these 3 genes were cloned. Then the genes were fused together by restriction sites and enzymatic method. Two linkers were used as a flexible bridge in connection of these genes. Results: Cloning and fusion of cholera toxin B, Shiga toxin B and gfp genes were done correctly. After that, expression of the recombinant gene construction was surveyed. Conclusions: According to what was seen, because of the accumulation of 12 rare codons of Shiga toxin B and 19 rare codons of cholera toxin B in this gene cassette, the expression of the recombinant gene cassette, in Escherichia coli BL21, failed.

  12. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli

    DEFF Research Database (Denmark)

    Sørensen, Hans; Mortensen, Kim

    2005-01-01

    Pure, soluble and functional proteins are of high demand in modern biotechnology. Natural protein sources rarely meet the requirements for quantity, ease of isolation or price and hence recombinant technology is often the method of choice. Recombinant cell factories are constantly employed...... molecular tools available. In spite of all these qualities, expression of recombinant proteins with E. coli as the host often results in insoluble and/or nonfunctional proteins. Here we review new approaches to overcome these obstacles by strategies that focus on either controlled expression of target...... for the production of protein preparations bound for downstream purification and processing. Eschericia coli is a frequently used host, since it facilitates protein expression by its relative simplicity, its inexpensive and fast high density cultivation, the well known genetics and the large number of compatible...

  13. Construction and characterization of a recombinant yellow fever virus stably expressing Gaussia luciferase

    Directory of Open Access Journals (Sweden)

    TELISSA C. KASSAR

    Full Text Available ABSTRACT Yellow fever is an arthropod-borne viral disease that still poses high public health concerns, despite the availability of an effective vaccine. The development of recombinant viruses is of utmost importance for several types of studies, such as those aimed to dissect virus-host interactions and to search for novel antiviral strategies. Moreover, recombinant viruses expressing reporter genes may greatly facilitate these studies. Here, we report the construction of a recombinant yellow fever virus (YFV expressing Gaussia luciferase (GLuc (YFV-GLuc. We show, through RT-PCR, sequencing and measurement of GLuc activity, that stability of the heterologous gene was maintained after six passages. Furthermore, a direct association between GLuc expression and viral replication was observed (r2=0.9967, indicating that measurement of GLuc activity may be used to assess viral replication in different applications. In addition, we evaluated the use of the recombinant virus in an antiviral assay with recombinant human alfa-2b interferon. A 60% inhibition of GLuc expression was observed in cells infected with YFV-GLuc and incubated with IFN alfa-2b. Previously tested on YFV inhibition by plaque assays indicated a similar fold-decrease in viral replication. These results are valuable as they show the stability of YFV-GLuc and one of several possible applications of this construct.

  14. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  15. Expression of Recombinant Streptokinase from Streptococcus Pyogenes and its Reaction with Infected Human and Murine Sera

    Science.gov (United States)

    Molaee, Neda; Abtahi, Hamid; Mosayebi, Ghasem

    2013-01-01

    Objective(s): Streptokinase (SKa) is an antigenic protein which is secreted by Streptococcus pyogenes. Streptokinase induces inflammation by complement activation, which may play a role in post infectious diseases. In the present study, recombinant streptokinase from S. pyogenes was produced and showed that recombinant SKa protein was recognized by infected human sera using Western blot analysis. Materials and Methods: In this study, the ska gene from S. pyogenes was amplified and cloned into pET32a which is a prokaryotic expression vector. pET32a-ska was transformed to Escherichia coli BL21 (DE3) pLysS and gene expression was induced by IPTG. Protein production was improved by modification of composition of the bacterial culture media and altering the induction time by IPTG. The expressed protein was purified by affinity chromatography using the Ni-NTA resin. The integrity of the product was confirmed by Westernblot analysis using infected mice. Serum reactivity of five infected individuals was further analyzed against the recombinant SKa protein. Results: Data indicated that recombinant SKa protein from S. pyogenes can be recognized by patient and mice sera. The concentration of the purified recombinant protein was 3.2 mg/L of initial culture. The highest amount of the expressed protein after addition of IPTG was obtained in a bacterial culture without glucose with the culture optical density of 0.8 (OD600 = 0.8). Conclusion : Present data shows, recombinant SKa protein has same epitopes with natural form of this antigen. Recombinant SKa also seemed to be a promising antigen for the serologic diagnosis of S. pyogenes infections. PMID:24171077

  16. Expression of Recombinant Streptokinase from Streptococcus Pyogenes and Its Reaction with Infected Human and Murine Sera

    Directory of Open Access Journals (Sweden)

    Neda Molaee

    2013-09-01

    Full Text Available   Objective(s: Streptokinase (SKa is an antigenic protein which is secreted by Streptococcus pyogenes. Streptokinase induces inflammation by complement activation, which may play a role in post infectious diseases. In the present study, recombinant streptokinase from S. pyogenes was produced and showed that recombinant SKa protein was recognized by infected human sera using Western blot analysis.   Materials and Methods: In this study, the ska gene from S. pyogenes was amplified and cloned into pET32a which is a prokaryotic expression vector. pET32a-ska was transformed to Escherichia coli BL21 (DE3 pLysS and gene expression was induced by IPTG. Protein production was improved by modification of composition of the bacterial culture media and altering the induction time by IPTG. The expressed protein was purified by affinity chromatography using the Ni-NTA resin. The integrity of the product was confirmed by Westernblot analysis using infected mice. Serum reactivity of five infected individuals was further analyzed against the recombinant SKa protein. Results: Data indicated that recombinant SKa protein from S. pyogenes can be recognized by patient and mice sera. The concentration of the purified recombinant protein was 3.2 mg/L of initial culture. The highest amount of the expressed protein after addition of IPTG was obtained in a bacterial culture without glucose with the culture optical density of 0.8 (OD600 = 0.8. Conclusion : Present data shows, recombinant SKa protein has same epitopes with natural form of this antigen. Recombinant SKa also seemed to be a promising antigen for the serologic diagnosis of S. pyogenes infections.

  17. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  18. Usage of adenovirus expressing thymidine kinase mediated hepatocellular damage for enabling mouse liver repopulation with allogenic or xenogenic hepatocytes.

    Directory of Open Access Journals (Sweden)

    Daniel Moreno

    Full Text Available It has been shown that the liver of immunodeficient mice can be efficiently repopulated with human hepatocytes when subjected to chronic hepatocellular damage. Mice with such chimeric livers represent useful reagents for medical and clinical studies. However all previously reported models of humanized livers are difficult to implement as they involve cross-breeding of immunodeficient mice with mice exhibiting genetic alterations causing sustained hepatic injury. In this paper we attempted to create chimeric livers by inducing persistent hepatocellular damage in immunodeficient Rag2(-/- γc(-/- mice using an adenovirus encoding herpes virus thymidine kinase (AdTk and two consecutive doses of ganciclovir (GCV. We found that this treatment resulted in hepatocellular damage persisting for at least 10 weeks and enabled efficient engraftment and proliferation within the liver of either human or allogenic hepatocytes. Interestingly, while the nodules generated from the transplanted mouse hepatocytes were well vascularized, the human hepatocytes experienced progressive depolarization and exhibited reduced numbers of murine endothelial cells inside the nodules. In conclusion, AdTk/GCV-induced liver damage licenses the liver of immunodeficient mice for allogenic and xenogenic hepatocyte repopulation. This approach represents a simple alternative strategy for chimeric liver generation using immunodeficient mice without additional genetic manipulation of the germ line.

  19. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    OpenAIRE

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice...

  20. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    2010-03-01

    Full Text Available Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  1. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein

    OpenAIRE

    Bertagnoli, Stéphane; Gelfi, Jacqueline; Le Gall, Ghislaine; Boilletot, Eric; Vautherot, Jean-François; Rasschaert, Denis; Laurent, Sylvie; Petit, Frédérique; Boucraut-Baralon, Corine; Milon, Alain

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma vir...

  2. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide.

    Science.gov (United States)

    Cui, Yanbing; Meng, Yiwei; Zhang, Juan; Cheng, Bin; Yin, Huijia; Gao, Chao; Xu, Ping; Yang, Chunyu

    2017-01-01

    In well-established heterologous hosts, such as Escherichia coli, recombinant proteins are usually intracellular and frequently found as inclusion bodies-especially proteins possessing high rare codon content. In this study, successful secretory expression of three hydrolases, in a constructed inducible or constitutive system, was achieved by fusion with a novel signal peptide (Kp-SP) from an actinomycete. The signal peptide efficiently enabled extracellular protein secretion and also contributed to the active expression of the intracellular recombinant proteins. The thermophilic α-amylase gene of Bacillus licheniformis was fused with Kp-SP. Both recombinants, carrying inducible and constitutive plasmids, showed remarkable increases in extracellular and intracellular amylolytic activity. Amylase activity was observed to be > 10-fold in recombinant cultures with the constitutive plasmid, pBSPPc, compared to that in recombinants lacking Kp-SP. Further, the signal peptide enabled efficient secretion of a thermophilic cellulase into the culture medium, as demonstrated by larger halo zones and increased enzymatic activities detected in both constructs from different plasmids. For heterologous proteins with a high proportion of rare codons, it is difficult to obtain high expression in E. coli owing to the codon bias. Here, the fusion of an archaeal homologue of the amylase encoding gene, FSA, with Kp-SP resulted in > 5-fold higher extracellular activity. The successful extracellular expression of the amylase indicated that the signal peptide also contributed significantly to its active expression and signified the potential value of this novel and versatile signal peptide in recombinant protein production. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Development of a recombinant poxvirus expressing bovine herpesvirus-1 glycoprotein D

    International Nuclear Information System (INIS)

    Ruiz Saenz, Julian; Osorio, Jorge E; Vera, Victor J.

    2012-01-01

    Bovine herpesvirus-1 is a DNA virus belonging to the family herpesviridae, which affects cattle, causing a wide spectrum of clinical manifestations and economic losses. The main immunogenic component is its envelope glycoprotein d (GD), which has been characterized and used as immunogen in different expression systems. The aim of this work was to generate a recombinant poxvirus (raccoonpox [RCN]) expressing a truncated version of BHV-1 GD to be used as a vaccine. to do this, it was amplified the gene for a truncated version of GD which subsequently was cloned in transfer plasmid PTK/IRES/TPA which has homology to sites of poxvirus thymidine kinase, an internal site of ribosome entry (IRES) and a secretory signal (TPA), generating the construct PTK/GD/IRES/TPA. to generate the recombinant RCN, we took BSC-1 cells and we infected with a wild type RCN (CDC/v71-i-85a) at a multiplicity of infection of 0.05, then cells were transfected with the construct PTK/GD/IRES/TPA, generating different viral populations with and without the gene of interest. To select recombinant viruses expressing the gene of interest, we performed a selection of recombinant thymidine kinase negative and positive for GD by three rounds of plaque purification on rat-2 cells monolayers which are thymidine kinase null and using bromodeoxyuridine. Recombinant viruses were recovered and confirmed by PCR and nucleotide sequencing and so called RCN-GD.

  4. Comparative immunological evaluation of recombinant Salmonella Typhimurium strains expressing model antigens as live oral vaccines.

    Science.gov (United States)

    Zheng, Song-yue; Yu, Bin; Zhang, Ke; Chen, Min; Hua, Yan-Hong; Yuan, Shuofeng; Watt, Rory M; Zheng, Bo-Jian; Yuen, Kwok-Yung; Huang, Jian-Dong

    2012-09-26

    Despite the development of various systems to generate live recombinant Salmonella Typhimurium vaccine strains, little work has been performed to systematically evaluate and compare their relative immunogenicity. Such information would provide invaluable guidance for the future rational design of live recombinant Salmonella oral vaccines. To compare vaccine strains encoded with different antigen delivery and expression strategies, a series of recombinant Salmonella Typhimurium strains were constructed that expressed either the enhanced green fluorescent protein (EGFP) or a fragment of the hemagglutinin (HA) protein from the H5N1 influenza virus, as model antigens. The antigens were expressed from the chromosome, from high or low-copy plasmids, or encoded on a eukaryotic expression plasmid. Antigens were targeted for expression in either the cytoplasm or the outer membrane. Combinations of strategies were employed to evaluate the efficacy of combined delivery/expression approaches. After investigating in vitro and in vivo antigen expression, growth and infection abilities; the immunogenicity of the constructed recombinant Salmonella strains was evaluated in mice. Using the soluble model antigen EGFP, our results indicated that vaccine strains with high and stable antigen expression exhibited high B cell responses, whilst eukaryotic expression or colonization with good construct stability was critical for T cell responses. For the insoluble model antigen HA, an outer membrane expression strategy induced better B cell and T cell responses than a cytoplasmic strategy. Most notably, the combination of two different expression strategies did not increase the immune response elicited. Through systematically evaluating and comparing the immunogenicity of the constructed recombinant Salmonella strains in mice, we identified their respective advantages and deleterious or synergistic effects. Different construction strategies were optimally-required for soluble versus

  5. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    International Nuclear Information System (INIS)

    Germann, U.A.; Willingham, M.C.; Pastan, I.; Gottesman, M.M.

    1990-01-01

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by [ 3 H]azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the [ 3 H]azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart

  6. Expression of recombinant antibacterial lactoferricin-related peptides from Pichia pastoris expression system.

    Science.gov (United States)

    Chen, Gen-Hung; Chen, Wei-Ming; Huang, Guo-Ting; Chen, Yu-Wen; Jiang, Shann-Tzong

    2009-10-28

    Four recombinant antimicrobial peptide (rAMP) cDNAs, constructed from two goat lactoferricin-related peptide cDNAs (GLFcin and GLFcin II) with/without (His)(6)-Tag, were cloned into pPICZalphaC and transformed into Pichia pastoris SMD1168H. After methanol induction, these rAMPs were expressed and secreted into broth. They were purified after CM-Sepharose (without His-tg), HisTrap (with His-tg) and Sephadex G-25 chromatographies. The yield of purified rAMP was 0.15 mg/mL of broth. These 4 rAMPs were thermal-stable and with high antibacterial activity against Escherichia coli BCRC 11549, Pseudomonas aeruginosa BCRC 12450, Bacillus cereus BCRC 10603, Staphylococcus aureus BCRC 25923, Propioni bacterium acnes BCRC 10723, and Listera monocytogenes BCRC 14845. The minimum inhibitory concentration (MIC) of rAMPs against these indicators ranged from 4.07 to 16.00 mg/mL.

  7. Cloning, expression and purification of recombinant streptokinase: partial characterization of the protein expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    L. Avilán

    1997-12-01

    Full Text Available We cloned the streptokinase (STK gene of Streptococcus equisimilis in an expression vector of Escherichia coli to overexpress the profibrinolytic protein under the control of a tac promoter. Almost all the recombinant STK was exported to the periplasmic space and recovered after gentle lysozyme digestion of induced cells. The periplasmic fraction was chromatographed on DEAE Sepharose followed by chromatography on phenyl-agarose. Active proteins eluted between 4.5 and 0% ammonium sulfate, when a linear gradient was applied. Three major STK derivatives of 47.5 kDa, 45 kDa and 32 kDa were detected by Western blot analysis with a polyclonal antibody. The 32-kDa protein formed a complex with human plasminogen but did not exhibit Glu-plasminogen activator activity, as revealed by a zymographic assay, whereas the 45-kDa protein showed a Km = 0.70 µM and kcat = 0.82 s-1, when assayed with a chromogen-coupled substrate. These results suggest that these proteins are putative fragments of STK, possibly derived from partial degradation during the export pathway or the purification steps. The 47.5-kDa band corresponded to the native STK, as revealed by peptide sequencing

  8. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    Using genetically engineered endogenous lactobacillus strains colonizing the vagina mucosa to express heterogenous proteins has of late joined the novel strategies aimed at developing a microbicides against HIV. Using the lactobacillus metabolic genome pathway, we found that these bacteria do not naturally produce ...

  9. Expression of recombinant interferon α-2a in tobacco chloroplasts ...

    African Journals Online (AJOL)

    Yomi

    2011-11-23

    Nov 23, 2011 ... and multiple genes can be expressed in operons (Khan,. 2006) because of the fact that the ..... use of a cannabis-based medicine in the treatment of spasticity and other symptoms in multiple sclerosis. Mult. Scler. 12: 639–645.

  10. Recombinant expression and purification of L2 domain of human ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... in cell multiplication processes and seem as good targets for interventional therapies. EGFR is a receptor tyrosine kinase that expresses in a significantly higher level in several types of cancer cells and its activation results in cell proliferation, differentiation, cell adhesion, migration and angiogenesis.

  11. HDAd5/35++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in Human Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Chang Li

    2018-06-01

    Full Text Available We generated helper-dependent HDAd5/35++ adenovirus vectors expressing CRISPR/Cas9 for potential hematopoietic stem cells (HSCs gene therapy of β-thalassemia and sickle cell disease through re-activation of fetal γ-globin expression (HDAd-globin-CRISPR. The process of CRISPR/Cas9 gene transfer using these vectors was not associated with death of human CD34+ cells and did not affect their in vitro expansion and erythroid differentiation. However, functional assays for primitive HSCs, e.g., multi-lineage progenitor colony formation and engraftment in irradiated NOD/Shi-scid/interleukin-2 receptor γ (IL-2Rγ null (NSG mice, revealed toxicity of HDAd-globin-CRISPR vectors related to the prolonged expression and activity of CRISPR/Cas9. To control the duration of CRISPR/Cas9 activity, we generated an HDAd5/35++ vector that expressed two anti-CRISPR (Acr peptides (AcrII4 and AcrII2 capable of binding to the CRISPR/Cas9 complex (HDAd-Acr. CD34+ cells that were sequentially infected with HDAd-CRISPR and HDAd-Acr engrafted at a significantly higher rate. Target site disruption frequencies in engrafted human cells were similar to those in pre-transplantation CD34+ cells, indicating that genome-edited primitive HSCs survived. In vitro differentiated HSCs isolated from transplanted mice demonstrated increased γ-globin expression as a result of genome editing. Our data indicate that the HDAd-Acr vector can be used as a tool to reduce HSC cytotoxicity of the CRISPR/Cas9 complex.

  12. DNA damage and biological expression of adenovirus: A comparison of liquid versus frozen conditions of exposure to gamma rays

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1989-01-01

    Human adenovirus type 2 (Ad 2) was irradiated with 137Cs gamma rays in the liquid state at 0 degree C. DNA breaks were correlated with the inactivation of several viral functions and compared to results obtained previously for irradiation of Ad 2 under frozen conditions at -75 degrees C. Irradiation at 0 degree C induced 170 +/- 20 single-strand breaks and 2.6 +/- 0.4 double-strand breaks/Gy/10(12) Da in the viral DNA. Viral adsorption to human KB cells was inactivated with a D0 of 9.72 +/- 1.18 kGy, whereas the inactivation of Ad 2 plaque formation had a D0 of 0.99 +/- 0.14 or 1.1 +/- 0.29 kGy when corrected for the effect of radiation on virus adsorption. For the adsorbed virus, an average of 4.3 +/- 1.7 single-strand and 0.065 +/- 0.02 double-strand breaks were induced in the viral DNA per lethal hit. In contrast, irradiation of Ad 2 at -75 degrees C results in 2.6- to 3.4-fold less DNA breakage per Gy and a 5.6-fold increase in D0 for plaque formation of the adsorbed virus. Furthermore, although host cell reactivation (HCR) of Ad 2 viral structural antigen production for irradiated virus was substantially reduced in the xeroderma pigmentosum fibroblast strain (XP25RO) compared to normal strains for irradiation at -75 degrees C (57% HCR), it was only slightly reduced compared to normal for irradiation at 0 degree C (88% HCR). These results indicate that the spectrum of DNA damage is both quantitatively and qualitatively different for the two conditions of irradiation

  13. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    Science.gov (United States)

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-05

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. [Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].

    Science.gov (United States)

    Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie

    2012-07-01

    To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.

  15. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    Directory of Open Access Journals (Sweden)

    Ryuichi Miura

    Full Text Available Canine distemper virus (CDV vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively. Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  16. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    Science.gov (United States)

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  17. Recombinant dioscorins of the yam storage protein expressed in Escherichia coli exhibit antioxidant and immunomodulatory activities.

    Science.gov (United States)

    Jheng, Yi-Jyun; Tsai, Wei-Yi; Chen, Kuo-Hsuan; Lin, Kuo-Wei; Chyan, Chia-Lin; Yang, Ching-Chi; Lin, Kuo-Chih

    2012-09-01

    Dioscorins, the major storage proteins in yam tubers, exhibit biochemical and immunomodulatroy activities. To investigate the potential application of dioscorins in biomedical research, we expressed the dioscorin genes Dj-dioA3 and Dp-dioA2 from Dioscorea japonica and Dioscorea pseudojaponica, respectively, in E. coli and routinely obtained approximately 15 mg proteins per liter Escherichia coli culture (mg/L) to 30 mg/L of rDj-dioscorinA3 and 4 to 8 mg/L of rDp-dioscorinA2. Western blot analyses revealed that both recombinant dioscorins contained epitopes with similar antigenicities to those of the native dioscorins. Results from dithiothreitol (DTT) treatment followed by monobromobimane (mBBr) staining showed that both recombinant dioscorins, like the native dioscorins, contain an intramolecular disulfide bond between Cys(28) and Cys(187) residues. Circular dichroism spectroscopy findings indicated that the secondary structural contents of the recombinant dioscorins showed high similarity to those of their corresponding native dioscorins. Both recombinant dioscorins, like the native dioscorins, exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and Toll-like receptor 4 signaling activities, and stimulated the phagocytosis of E. coli by macrophage. Overall, our results indicated that substantial amounts of recombinant dioscorins can be purified easily from E. coli and that these recombinant dioscorins are appropriate for application in future investigations of the biomedical functions of dioscorins. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Expression of active recombinant human alpha 1-antitrypsin in transgenic rabbits

    NARCIS (Netherlands)

    Massoud, M.; Bischoff, Rainer; Dalemans, W.; Pointu, H.; Attal, J.; Schultz, H.; Clesse, D.; Stinnakre, M.G.; Pavirani, A.; Houdebine, L.M.

    1991-01-01

    A DNA construct containing the human alpha 1-antitrypsin gene including 1.5 and 4 kb of 5' and 3' flanking sequences, was microinjected into the pronucleus of rabbit embryos. The recombinant human protein was (a) expressed in the blood circulation of F0 and F1 transgenic rabbits at an average

  19. Chapter 15. transforming lepidopteran insect cells for continuous recombinant protein expression

    Science.gov (United States)

    The baculovirus expression vector system (BEVS) is widely used to produce large quantities of recombinant proteins. However, yields of extracellular and membrane-bound proteins obtained with this system often are very low, possibly due to the adverse effects of baculovirus infection on the host ins...

  20. Recombinant protein production data after expression in the bacterium Escherichia coli

    Directory of Open Access Journals (Sweden)

    J. Enrique Cantu-Bustos

    2016-06-01

    Full Text Available Fusion proteins have become essential for the expression and purification of recombinant proteins in Escherichia coli. The metal-binding protein CusF has shown several features that make it an attractive fusion protein and affinity tag: "Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF" (Cantu-Bustos et al., 2016 [1]. Here we present accompanying data from protein expression experiments; we tested different protein tags, temperatures, expression times, cellular compartments, and concentrations of inducer in order to obtain soluble protein and low formation of inclusion bodies. Additionally, we present data from the purification of the green fluorescent protein (GFP tagged with CusF, using Ag(I metal affinity chromatography.

  1. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Amy R Noe

    Full Text Available The circumsporozoite protein (CSP of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA and immunofluorescence assay (IFA, as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime

  2. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    Science.gov (United States)

    Díaz-Rincón, Dennis J.; Duque, Ivonne; Osorio, Erika; Rodríguez-López, Alexander; Espejo-Mojica, Angela; Parra-Giraldo, Claudia M.

    2017-01-01

    Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII) in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1) were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile. PMID:28951785

  3. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    Directory of Open Access Journals (Sweden)

    Dennis J. Díaz-Rincón

    2017-01-01

    Full Text Available Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1 were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.

  4. Adenovirus Vector E4 Gene Regulates Connexin 40 and 43 Expression in Endothelial Cells via PKA and PI3K Signal Pathways

    Science.gov (United States)

    Zhang, Fan; Cheng, Joseph; Lam, George; Jin, David K.; Vincent, Loïc; Hackett, Neil R.; Wang, Shiyang; Young, Lauren M.; Hempstead, Barbara; Crystal, Ronald G.; Rafii, Shahin

    2010-01-01

    Connexins (Cxs) provide a means for intercellular communication and play important roles in the pathophysiology of vascular cardiac diseases. Infection of endothelial cells (ECs) with first-generation E1/E3-deleted E4+ adenovirus (AdE4+) selectively modulates the survival and angiogenic potential of ECs by as of yet unrecognized mechanisms. We show here that AdE4+ vectors potentiate Cx expression in ECs in vitro and in mouse heart tissue. Infection of ECs with AdE4+, but not AdE4−, resulted in a time- and dose-dependent induction of junctional Cx40 expression and suppression of Cx43 protein and mRNA expression. Treatment of ECs with PKA inhibitor H89 or PI3K inhibitor LY294002 prevented the AdE4+-mediated regulation of Cx40 and Cx43 that was associated with diminished AdE4+-mediated survival of ECs. Moreover, both PKA activity and cAMP-response element (CRE)-binding activity were enhanced by treatment of ECs with AdE4+. However, there is no causal evidence of a cross-talk between the 2 modulatory pathways, PKA and PI3K. Remarkably, Cx40 immunostaining was markedly increased and Cx43 was decreased in the heart tissue of mice treated with intratracheal AdE4+. Taken together, these results suggest that AdE4+ may play an important role in the regulation of Cx expression in ECs, and that these effects are mediated by both the PKA/CREB and PI3K signaling pathways. PMID:15831817

  5. Injury and mechanism of recombinant E. coli expressing STa on piglets colon.

    Science.gov (United States)

    Lv, Yang; Li, Xueni; Zhang, Lin; Shi, Yutao; DU, Linxiao; Ding, Binying; Hou, Yongqing; Gong, Joshua; Wu, Tao

    2018-02-09

    Enterotoxigenic Escherichia coli (ETEC) is primary pathogenic bacteria of piglet diarrhea, over two thirds of piglets diarrhea caused by ETEC are resulted from STa-producing ETEC strains. This experiment was conducted to construct the recombinant E. coli expressing STa and study the injury and mechanism of recombinant E. coli expressing STa on 7 days old piglets colon. Twenty-four 7 days old piglets were allotted to four treatments: control group, STa group (2 × 10 9 CFU E. coli LMG194-STa), LMG194 group (2 × 10 9 CFU E. coli LMG194) and K88 group (2 × 10 9 CFU E. coli K88). The result showed that E. coli infection significantly increased diarrhea rates; changed DAO activity in plasma and colon; damaged colonic mucosal morphology including crypt depth, number of globet cells, density of lymphocytes and lamina propria cell density; substantially reduced antioxidant capacity by altering activities of GSH-Px, SOD, and TNOS and productions of MDA and H 2 O 2 ; obviously decreased AQP3, AQP4 and KCNJ13 protein expression levels; substantially altered the gene expression levels of inflammatory cytokines. Conclusively, STa group had the biggest effect on these indices in four treatment groups. These results suggested that the recombinant strain expressed STa can induce piglets diarrhea and colonic morphological and funtional damage by altering expression of proteins connect to transportation function and genes associated with intestinal injury and inflammatory cytokines.

  6. A human parvovirus, adeno-associated virus, as a eucaryotic vector: Transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tratschin, J.D.; West, M.H.P.; Sandbank, T.; Carter, B.J.

    1984-10-01

    The authors have used the defective human parvovirus adeno-associated virus (AAV) as a novel eurocaryotic vector (parvector) for the expression of a foreign gene in human cells. The recombinant, pAV2, contains the AAV genome in a pBR322-derived bacterial plasmid. When pAV2 is transfected into human cells together with helper adenovirus particles, the AAV genome is rescued from the recombinant plasmid and replicated to produce infectious AAV particles at high efficiency. To create a vector, we inserted a procaryotic sequence coding for chloramphenicol acetyltransferase (CAT) into derivatives of pAV2 following either of the AAV promoters p/sub 40/ (pAVHiCAT) and p/sub 19/ (pAVBcCAT). When transfected into human 293 cells or HeLa cells, pAVHiCAT expressed CAT activity in the absence of adenovirus. In the presence of adenovirus, this vector produced increased amounts of CAT activity and the recombinant AAV-CAT genome was replicated. In 293 cells, pAVBcCAT expressed a similar amount of CAT activity in the absence or presence of adenovirus and the recombinant AAV-CAT genome was not replicated. In HeLa cells, pAVBcCAT expressed low levels of CAT activity, but this level was elevated by coinfection with adenovirus particles or by cotransfection with a plasmid which expressed the adenovirus early region 1A (E1A) product. The E1A product is a transcriptional activator and is expressed in 293 cells. Thus, expression from two AAV promoters is differentially regulated: expression from p/sub 19/ is increased by E1A, whereas p/sub 40/ yields high levels of constitutive expression in the absence of E1A. Both AAV vectors were packaged into AAV particles by complementation with wild-type AAV and yielded CAT activity when subsequently infected into cells in the presence of adenovirus.

  7. Interferon induction by adenoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Beladi, I; Bakay, M; Pusztai, R; Mucsi, I; Tarodi, B [University Medical School, Szeged (Hungary). Inst. of Microbiology

    1979-02-01

    All human, simian, bovine and avian adenovirus types tested so far and the canine hepatitis virus induce interferon production in chick cells. This finding indicated this property to be characteristic for viruses belonging to the adenovirus group. Trypsin treatment, which had no effect upon the infectivity, diminished or eliminated the interferon-inducing abilities of crude adenoviruses, and thus the need for a trypsin-sensitive protein in interferon induction was suggested. T antigen and interferon were formed simultaneously in chick embryo fibroblast cells infected with human adenovirus type 12, and there-fore the adenovirus-specific T antigen was resitant to the action of endogenous interferon synthetized by the same cells. In chicks inoculated with human types, the appearance of interferon was biphasic: an 'early' and a 'late' interferon could be demonstrated with maximum titre 4 and 10 hr, respectively, after virus infection. In chicks infected with adenoviruses, first interferon production and then a decreased primary immune response to sheep red blood cells was observed. It was assumed that in adenovirus-infected chicks the interferon produced by viral stimulus resulted in a transient immunosuppression.

  8. The expression and serological reactivity of recombinant canine herpesvirus 1 glycoprotein D

    Directory of Open Access Journals (Sweden)

    MarkéŽta Vaňkov‡á

    2016-01-01

    Full Text Available The aim of this work was to express recombinant glycoprotein D of canine herpesvirus 1 in bacterial cells and to evaluate its diagnostic sensitivity and specificity when compared to traditional serological methods. The gene fragment coding glycoprotein D of canine herpesvirus 1 was amplified by polymerase chain reaction, cloned into plasmid vector and expressed in Escherichia coli cells. Recombinant protein was then purified and used as an antigen in immunoblot for a detection of canine herpesvirus 1 specific antibodies. Antibody testing was performed on the panel of 100 canine sera by immunoblot with recombinant glycoprotein D as antigen and compared with indirect immunofluorescence assay. Serum samples were collected from 83 dogs with no history of canine herpesvirus 1 or reproductive disorders, and from 17 dogs from breeding kennels with a history of canine herpesvirus 1 related reproductive disorders. Sensitivity of glycoprotein D based immunoblot was 89.2% and specificity was 93%. Kappa value was calculated to be 0.8 between immunoblot and indirect immunofluorescence assay. Antibodies against canine herpesvirus 1 infection were detected in 33% of samples by immunoblot assay. Our study confirms that recombinant glycoprotein D expressed in bacterial cells could be used as a suitable and sensitive antigen for immunological tests and that herpesvirus infection seems to be common among the canine population in the Czech Republic.

  9. Construction and analysis of the transgenic carrot and celery plants expressing the recombinant thaumatin II protein

    Directory of Open Access Journals (Sweden)

    Luchakivska Yu. S.

    2015-08-01

    Full Text Available Aim To obtain the transgenic carrot and celery plants able to express recombinant thaumatin II in order to increase plant stress tolerance. Methods. Agrobacterium-mediated transformation of the carrot and celery seedlings was used for obtaining the transgenic plants. Presence and transcription of the transgene in plant tissues were proved by PCR and RT-PCR analysis. The plants were tested for the biotic stress tolerance by in vitro antifungal and antibacterial activity assays and for the salinity and osmotic stress tolerance by plant survival test in presence of NaCl and PEG in different concentrations. Results. Transgenic plants able to express recombinant thaumatin II gene (transcription proved for 60–100 % were obtained by agrobacterial transformation. The transgenic carrot plant extracts inhibited the growth of the studied phytopathogenic bacteria strains but exhibited no antifungal activity. Survival level of transgenic plants under the salinity and osmotic stress effect was definitely higher comparing to the untransgenic ones. The analysis of the photosynthetic pigment content in the transgenic carrot plants showed no significant difference of this parameter under salinity stress that may indicate a possible protective activity of the recombinant protein. Conclusions. The obtained in our study transgenic carrot and celery plants able to express the recombinant thaumatin II gene were characterized by antibacterial activity and increased tolerance to salinity and osmotic stress factors.

  10. A rapid generation of adenovirus vector with a genetic modification in hexon protein.

    Science.gov (United States)

    Di, Bingyan; Mao, Qinwen; Zhao, Junli; Li, Xing; Wang, Dongyang; Xia, Haibin

    2012-02-10

    The generation of hexon-modified adenovirus vector has proven difficult. In this paper, we developed a novel method for rapid generation of hexon-modified adenoviral vector via one step ligation in vitro followed by quick white/blue color screening. The new system has the following features. First, eGFP expression driven by the CMV promoter in E1 region functions as a reporter to evaluate the tropism of hexon-modified adenovirus in vitro. Second, it has two unique restriction enzyme sites with sticky ends located in the hexon HVR5 region. Third, a lacZ expression cassette under the control of plac promoter is placed between the two restriction enzyme sites, which allows recombinants to be selected using blue/white screening. To prove the principle of the method, genetically modified adenoviruses were successfully produced by insertion of NGR, RGD or Tat PTD peptide into hexon HVR5. Furthermore, the transduction efficiency of the Tat PTD modified virus was shown to be a significant enhancement in A172 and CHO-K1 cells. In conclusion, the novel system makes the production of truly retargeted vectors more promising, which would be of substantial benefit for cancer gene therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Multiplexed expression and screening for recombinant protein production in mammalian cells

    Directory of Open Access Journals (Sweden)

    McCafferty John

    2006-12-01

    Full Text Available Abstract Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell

  12. Targeting the genital tract mucosa with a lipopeptide/recombinant adenovirus prime/boost vaccine induces potent and long-lasting CD8+ T cell immunity against herpes: importance of MyD88.

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; Benmohamed, Lbachir

    2012-11-01

    Targeting of the mucosal immune system of the genital tract with subunit vaccines has failed to induce potent and durable local CD8(+) T cell immunity, which is crucial for protection against many sexually transmitted viral pathogens, including HSV type 2 (HSV-2), which causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8(+) T cell immunity to protect the female genital tract from herpes. The lipopeptide vaccine and the rAdv5 vaccine express the immunodominant HSV-2 CD8(+) T cell epitope (gB(498-505)), and both were delivered intravaginally in the progesterone-induced B6 mouse model of genital herpes. Compared with mice immunized with the homologous lipopeptide/lipopeptide (Lipo/Lipo) vaccine, the Lipo/rAdv5 prime/boost immunized mice 1) developed potent and sustained HSV-specific CD8(+) T cells, detected in both the genital tract draining nodes and in the vaginal mucosa; 2) had significantly lower virus titers; 3) had decreased overt signs of genital herpes disease; and 4) did not succumb to lethal infection (p herpes infection and disease.

  13. Targeting the Genital Tract Mucosa with a Lipopeptide/Recombinant Adenovirus Prime/Boost Vaccine Induces Potent and Long-Lasting CD8+ T Cell Immunity Against Herpes: Importance of Myeloid Differentiation Factor 881

    Science.gov (United States)

    Zhang, Xiuli; Dervillez, Xavier; Chentoufi, Aziz Alami; Badakhshan, Tina; Bettahi, Ilham; BenMohamed, Lbachir

    2012-01-01

    Targeting the mucosal immune system of the genital tract (GT) with subunit vaccines failed to induce potent and durable local CD8+ T cell immunity, crucial for protection against many sexually transmitted viral (STV) pathogens, including herpes simplex virus type 2 (HSV-2) that causes genital herpes. In this study, we aimed to investigate the potential of a novel lipopeptide/adenovirus type 5 (Lipo/rAdv5) prime/boost mucosal vaccine for induction of CD8+ T cell immunity to protect the female genital tract from herpes. The lipopeptide and the rAdv5 vaccine express the immunodominant HSV-2 CD8+ T cell epitope (gB498-505) and both were delivered intravaginally (IVAG) in the progesterone-induced B6 mouse model of genital herpes. Compared to its homologous lipopeptide/lipopeptide (Lipo/Lipo); the Lipo/rAdv5 prime/boost immunized mice: (i) developed potent and sustained HSV-specific CD8+ T cells, detected in both the GT draining nodes (GT-DLN) and in the vaginal mucosa (VM); (ii) had significantly lower virus titers; (iii) had decreased overt signs of genital herpes disease; and (iv) did not succumb to lethal infection (p herpes infection and disease. PMID:23018456

  14. Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin.

    Science.gov (United States)

    Boyle, D B; Selleck, P; Heine, H G

    2000-01-01

    To evaluate the vaccine efficacy of a fowlpox virus recombinant expressing the H7 haemagglutinin of avian influenza virus in poultry. Specific-pathogen-free poultry were vaccinated with fowlpox recombinants expressing H7 or H1 haemagglutinins of influenza virus. Chickens were vaccinated at 2 or 7 days of age and challenged with virulent Australian avian influenza virus at 10 and 21 days later, respectively. Morbidity and mortality, body weight change and the development of immune responses to influenza haemagglutinin and nucleoprotein were recorded. Vaccination of poultry with fowlpox H7 avian influenza virus recombinants induced protective immune responses. All chickens vaccinated at 7 days of age and challenged 21 days later were protected from death. Few clinical signs of infection developed. In contrast, unvaccinated or chickens vaccinated with a non-recombinant fowlpox or a fowlpox expressing the H1 haemagglutinin of human influenza were highly susceptible to avian influenza. All those chickens died within 72 h of challenge. In younger chickens, vaccinated at 2 days of age and challenged 10 days later the protection was lower with 80% of chickens protected from death. Chickens surviving vaccination and challenge had high antibody responses to haemagglutinin and primary antibody responses to nucleoprotein suggesting that although vaccination protected substantially against disease it failed to completely prevent replication of the challenge avian influenza virus. Vaccination of chickens with fowlpox virus expressing the avian influenza H7 haemagglutinin provided good protection against experimental challenge with virulent avian influenza of H7 type. Although eradication will remain the method of first choice for control of avian influenza, in the circumstances of a continuing and widespread outbreak the availability of vaccines based upon fowlpox recombinants provides an additional method for disease control.

  15. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  16. Expression of recombinant myostatin propeptide pPIC9K-Msp plasmid in Pichia pastoris.

    Science.gov (United States)

    Du, W; Xia, J; Zhang, Y; Liu, M J; Li, H B; Yan, X M; Zhang, J S; Li, N; Zhou, Z Y; Xie, W Z

    2015-12-28

    Myostatin propeptide can inhibit the biological activity of myostatin protein and promote muscle growth. To express myostatin propeptide in vitro with a higher biological activity, we performed codon optimization on the sheep myostatin propeptide gene sequence, and mutated aspartic acid-76 to alanine based on the codon usage bias of Pichia pastoris and the enhanced biological activity of myostatin propeptide mutant. Modified myostatin propeptide gene was cloned into the pPIC9K plasmid to form the recombinant plasmid pPIC9K-Msp. Recombinant plasmid pPIC9K-Msp was transformed into Pichia pastoris GS115 by electrotransformation. Transformed cells were screened, and methanol was used to induce expression. SDS-PAGE and western blotting were used to verify the successful expression of myostatin propeptide with biological activity in Pichia pastoris, providing the basis for characterization of this protein.

  17. A Comparative Analysis of Recombinant Expression and Solubility Screening of Two Phytases in E. coli

    Directory of Open Access Journals (Sweden)

    Ashok Pandey

    2011-01-01

    Full Text Available Microbial phytases, especially from fungal and bacterial sources, have received much attention as food additives in human nutrition and as feed supplements for monogastric animals. An effective expression screening method for recombinant production of this enzyme on a small scale is industrially desirable. An effort has been made in this work to clone and express phytase genes from Aspergillus sp. and Escherichia coli with the selected host, vector and inducer combination. Albeit the formation of insoluble inclusion bodies by fungal phytase, recombinant E. coli appA was effectively expressed in a cost-effective manner in the periplasm of BL21plysS using an inducer concentration of 0.01 mM in 4 h of growth. Enzyme was purified in three consecutive steps and functional studies were carried out.

  18. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    Science.gov (United States)

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  19. Respiratory syncytial virus subunit vaccine based on a recombinant fusion protein expressed transiently in mammalian cells.

    Science.gov (United States)

    Nallet, Sophie; Amacker, Mario; Westerfeld, Nicole; Baldi, Lucia; König, Iwo; Hacker, David L; Zaborosch, Christiane; Zurbriggen, Rinaldo; Wurm, Florian M

    2009-10-30

    Although respiratory syncytial virus (RSV) causes severe lower respiratory tract infection in infants and adults at risk, no RSV vaccine is currently available. In this report, efforts toward the generation of an RSV subunit vaccine using recombinant RSV fusion protein (rRSV-F) are described. The recombinant protein was produced by transient gene expression (TGE) in suspension-adapted human embryonic kidney cells (HEK-293E) in 4 L orbitally shaken bioreactors. It was then purified and formulated in immunostimulating reconstituted influenza virosomes (IRIVs). The candidate vaccine induced anti-RSV-F neutralizing antibodies in mice, and challenge studies in cotton rats are ongoing. If successful in preclinical and clinical trials, this will be the first recombinant subunit vaccine produced by large-scale TGE in mammalian cells.

  20. Purification and characterization of recombinant protein kinase CK2 from Zea mays expressed in Escherichia coli

    DEFF Research Database (Denmark)

    Riera, Marta; Pages, Montserrat; Issinger, Olaf Georg

    2003-01-01

    Recombinant protein kinase subunits rmCK2alpha-1 and rmCK2beta-1 from Zea mays were expressed separately in Escherichia coli and assembled to a fully active tetrameric holoenzyme complex in vitro. The obtained maize holoenzyme was purified to homogeneity, biochemically characterized, and compared...... to CK2 from human. Kinetic measurements of the recombinant maize holoenzyme (rmCK2) revealed k(cat) values for ATP and GTP of 4 and 2s(-1), respectively; whereas the recombinant maize catalytic subunit showed almost equal values for ATP and GTP, i.e., ca. 0.8s(-1). A comparison of the k(cat)/K(m) ratio...

  1. Protection against California 2002 NDV strain afforded by adenovirus vectored vaccine expressing Fusion or Hemagglutination-neuraminidase genes

    Science.gov (United States)

    Vectored vaccines expressing the combination of the hemagglutinin-neuraminidase (HN) and fusion (F) genes generally have better clinical protection against Newcastle disease virus (NDV) than when either the F and HN genes are expressed alone. Interestingly, the protection induced by F is usually bet...

  2. [Recombinant human gapM1 expressed in Pichia pastoris and its anti-diabetic effect].

    Science.gov (United States)

    Mei, Xiang; Du, Renqian; Li, Xi; Huang, Haiyan; Yu, Min; Tang, Qiqun

    2009-08-01

    Adiponectin is an adipokine predominantly synthesized and secreted by adipocytes in the white adipose tissue, and it can lower the blood glucose level and increase free fatty acid oxidation. In the current study, we developed the globular domain of adiponectin (gapM1) to treat type II diabetes. In both flask and fermentor, we cultivated Pichia pastoris expressing recombinant gapM1 and established the purification procedure by using gel filtration and anion exchange chromatography. To evaluate the biological activity of recombinant gapM1, we used rat type II diabetes model fed high-fat diet in combination with low-dose STZ (Streptozocin) induction. We purified 200 mg gapM1 with purity of 96% from 10 liters of supernatant. The recombinant gapM1 significantly lowered blood glucose (34.2%), serum triglyceride (79.6%) and total cholesterol (62.1%) in type II diabetes induced rat. Therefore, the recombinant human gapM1 is successfully expressed in Pichia pastoris and effectively treated type II diabetes in rat models.

  3. Tunable recombinant protein expression with E. coli in a mixed-feed environment.

    Science.gov (United States)

    Sagmeister, Patrick; Schimek, Clemens; Meitz, Andrea; Herwig, Christoph; Spadiut, Oliver

    2014-04-01

    Controlling the recombinant protein production rate in Escherichia coli is of utmost importance to ensure product quality and quantity. Up to now, only the genetic construct, introduced into E. coli, and the specific growth rate of the culture were used to influence and stir the productivity. However, bioprocess technological means to control or even tune the productivity of E. coli are scarce. Here, we present a novel method for the process-technological control over the recombinant protein expression rate in E. coli. A mixed-feed fed-batch bioprocess based on the araBAD promoter expression system using both D-glucose and L-arabinose as assimilable C-sources was designed. Using the model product green fluorescent protein, we show that the specific product formation rate can be efficiently tuned even on the cellular level only via the uptake rate of L-arabinose. This novel approach introduces an additional degree of freedom for the design of recombinant bioprocesses with E. coli. We anticipate that the presented method will result in significant quality and robustness improvement as well as cost and process time reduction for recombinant bacterial bioprocesses in the future.

  4. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Science.gov (United States)

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    Science.gov (United States)

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  6. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    Science.gov (United States)

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  7. Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Sarah Inwood

    2018-01-01

    Full Text Available The ability to produce recombinant proteins by utilizing different “cell factories” revolutionized the biotherapeutic and pharmaceutical industry. Chinese hamster ovary (CHO cells are the dominant industrial producer, especially for antibodies. Human embryonic kidney cells (HEK, while not being as widely used as CHO cells, are used where CHO cells are unable to meet the needs for expression, such as growth factors. Therefore, improving recombinant protein expression from mammalian cells is a priority, and continuing effort is being devoted to this topic. Non-coding RNAs are RNA segments that are not translated into a protein and often have a regulatory role. Since their discovery, major progress has been made towards understanding their functions. Non-coding RNA has been investigated extensively in relation to disease, especially cancer, and recently they have also been used as a method for engineering cells to improve their protein expression capability. In this review, we provide information about methods used to identify non-coding RNAs with the potential of improving recombinant protein expression in mammalian cell lines.

  8. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  9. Comparison of two recombinant systems for expression of cholera toxin B subunit from Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    M Boustanshenas

    2013-01-01

    Full Text Available Purpose: The aim of this study was to assess the production of recombinant cholera toxin B subunit (rCTB protein in two different expression systems (pAE_ctxB and pQE_ctxB constructs in Escherichia coli BL21 (DE3. Materials and Methods: The ctxB fragment was amplified from Vibrio cholerae O 1 ATCC14035 and cloned in pGETM-T easy vector after which it was transformed to E. coli Top 10F′ and grown on LB-ampicillin agar medium. Sequence analysis confirmed the complete ctxB gene sequence in the construct which was further subcloned to pQE-30 vector. The construct was subsequently transformed to E. coli M15 (pREP4. The recombinant pAE_ctxB and pQE_ctxB were transformed to competent E. coli BL21 (DE3 cells to express CTB protein. Result: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE analysis showed the maximum expression of rCTB in both systems at 5 h after induction and western blot analysis confirmed the presence of recombinant CTB in blotting membranes. Conclusion: Expression of rCTB in pAE_ctxB construct was more efficient (15-fold than pQE_ctxB, and it seems that Lac UV5 in E. coli BL21 (DE3 is more compatible with the former construct. This expression system can be used to produce recombinant CTB in high yield which may enable us to study the oral tolerance or mucosal adjuvant properties of rCTB using animal models.

  10. Adenovirus Particles that Display the Plasmodium falciparum Circumsporozoite Protein NANP Repeat Induce Sporozoite-Neutralizing Antibodies in Mice

    Science.gov (United States)

    Palma, Christopher; Overstreet, Michael G.; Guedon, Jean-Marc; Hoiczyk, Egbert; Ward, Cameron; Karen, Kasey A.; Zavala, Fidel; Ketner, Gary

    2011-01-01

    Adenovirus particles can be engineered to display exogenous peptides on their surfaces by modification of viral capsid proteins, and particles that display pathogen-derived peptides can induce protective immunity. We constructed viable recombinant adenoviruses that display B-cell epitopes from the Plasmodium falciparum circumsporozoite protein (PfCSP) in the major adenovirus capsid protein, hexon. Recombinants induced high-titer antibodies against CSP when injected intraperitoneally into mice. Serum obtained from immunized mice recognized both recombinant PfCSP protein and P. falciparum sporozoites, and neutralized P. falciparum sporozoites in vitro. Replicating adenovirus vaccines have provided economical protection against adenovirus disease for over three decades. The recombinants described here may provide a path to an affordable malaria vaccine in the developing world. PMID:21199707

  11. Construction of an expression system for bioactive IL-18 and generation of recombinant canine distemper virus expressing IL-18.

    Science.gov (United States)

    Liu, Yuxiu; Sato, Hiroki; Hamana, Masahiro; Moonan, Navita Anisia; Yoneda, Misako; Xia, Xianzhu; Kai, Chieko

    2014-09-01

    Interleukin 18 (IL-18) plays an important role in the T-helper-cell type 1 immune response against intracellular parasites, bacteria and viral infections. It has been widely used as an adjuvant for vaccines and as an anticancer agent. However, IL-18 protein lacks a typical signal sequence and requires cleavage into its mature active form by caspase 1. In this study, we constructed mammalian expression vectors carrying cDNA encoding mature canine IL-18 (cIL-18) or mouse IL-18 (mIL-18) fused to the human IL-2 (hIL-2) signal sequence. The expressed proIL-18 proteins were processed to their mature forms in the cells. The supernatants of cells transfected with these plasmids induced high interferon-γ production in canine peripheral blood mononuclear cells or mouse splenocytes, respectively, indicating the secretion of bioactive IL-18. Using reverse genetics, we also generated a recombinant canine distemper virus that expresses cIL-18 or mIL-18 fused to the hIL-2 signal sequence. As expected, both recombinant viruses produced mature IL-18 in the infected cells, which secreted bioactive IL-18. These results indicate that the signal sequence from hIL-2 is suitable for the secretion of mature IL-18. These recombinant viruses can also potentially be used as immunoadjuvants and agents for anticancer therapies in vivo.

  12. Helper-dependent adenovirus achieve more efficient and persistent liver transgene expression in non-human primates under immunosuppression.

    Science.gov (United States)

    Unzu, C; Melero, I; Hervás-Stubbs, S; Sampedro, A; Mancheño, U; Morales-Kastresana, A; Serrano-Mendioroz, I; de Salamanca, R E; Benito, A; Fontanellas, A

    2015-11-01

    Helper-dependent adenoviral (HDA) vectors constitute excellent gene therapy tools for metabolic liver diseases. We have previously shown that an HDA vector encoding human porphobilinogen deaminase (PBGD) corrects acute intermittent porphyria mice. Now, six non-human primates were injected in the left hepatic lobe with the PBGD-encoding HDA vector to study levels and persistence of transgene expression. Intrahepatic administration of 5 × 10(12) viral particles kg(-1) (10(10) infective units kg(-1)) of HDA only resulted in transient (≈14 weeks) transgene expression in one out of three individuals. In contrast, a more prolonged 90-day immunosuppressive regimen (tacrolimus, mycophenolate, rituximab and steroids) extended meaningful transgene expression for over 76 weeks in two out of two cases. Transgene expression under immunosuppression (IS) reached maximum levels 6 weeks after HDA administration and gradually declined reaching a stable plateau within the therapeutic range for acute porphyria. The non-injected liver lobes also expressed the transgene because of vector circulation. IS controlled anticapsid T-cell responses and decreased the induction of neutralizing antibodies. Re-administration of HDA-hPBGD at week +78 achieved therapeutically meaningful transgene expression only in those animals receiving IS again at the time of this second vector exposure. Overall, immunity against adenoviral capsids poses serious hurdles for long-term HDA-mediated liver transduction, which can be partially circumvented by pharmacological IS.

  13. The new pLAI (lux regulon based auto-inducible expression system for recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nocadello Salvatore

    2012-01-01

    Full Text Available Abstract Background After many years of intensive research, it is generally assumed that no universal expression system can exist for high-level production of a given recombinant protein. Among the different expression systems, the inducible systems are the most popular for their tight regulation. However, induction is in many cases less favorable due to the high cost and/or toxicity of inducers, incompatibilities with industrial scale-up or detrimental growth conditions. Expression systems using autoinduction (or self-induction prove to be extremely versatile allowing growth and induction of recombinant proteins without the need to monitor cell density or add inducer. Unfortunately, almost all the actual auto inducible expression systems need endogenous or induced metabolic changes during the growth to trigger induction, both frequently linked to detrimental condition to cell growth. In this context, we use a simple modular approach for a cell density-based genetic regulation in order to assemble an autoinducible recombinant protein expression system in E. coli. Result The newly designed pLAI expression system places the expression of recombinant proteins in Escherichia coli under control of the regulatory genes of the lux regulon of Vibrio fischeri's Quorum Sensing (QS system. The pLAI system allows a tight regulation of the recombinant gene allowing a negligible basal expression and expression only at high cell density. Sequence optimization of regulative genes of QS of V. fischeri for expression in E. coli upgraded the system to high level expression. Moreover, partition of regulative genes between the plasmid and the host genome and introduction of a molecular safety lock permitted tighter control of gene expression. Conclusion Coupling gene expression to cell density using cell-to-cell communication provides a promising approach for recombinant protein production. The system allows the control of expression of the target recombinant gene

  14. Recombinant expression in E. coli of human FGFR2 with its transmembrane and extracellular domains

    Directory of Open Access Journals (Sweden)

    Adam Bajinting

    2017-06-01

    Full Text Available Fibroblast growth factor receptors (FGFRs are a family of receptor tyrosine kinases containing three domains: an extracellular receptor domain, a single transmembrane helix, and an intracellular tyrosine kinase domain. FGFRs are activated by fibroblast growth factors (FGFs as part of complex signal transduction cascades regulating angiogenesis, skeletal formation, cell differentiation, proliferation, cell survival, and cancer. We have developed the first recombinant expression system in E. coli to produce a construct of human FGFR2 containing its transmembrane and extracellular receptor domains. We demonstrate that the expressed construct is functional in binding heparin and dimerizing. Size exclusion chromatography demonstrates that the purified FGFR2 does not form a complex with FGF1 or adopts an inactive dimer conformation. Progress towards the successful recombinant production of intact FGFRs will facilitate further biochemical experiments and structure determination that will provide insight into how extracellular FGF binding activates intracellular kinase activity.

  15. Studies of the cytosolic thymidine kinase in human cells and comparison to the recombinantly expressed enzyme

    DEFF Research Database (Denmark)

    Kock Jensen, Helle

    by recombinant technics to examine the relation between the TKl gene and the TKl protein. In the second part of this investigation a direct expression system for human TKl in E.coli was developed to produce a source of high amounts of TKl, to be able to examine the structure of TKl. The resulting recombinant TKl...... cells and that this modification can not be performed in E.coli....... infections. In the first part of the present investigation a sensitive test for quantitating TKl mRNA (competitive PCR) is developed and the results show that PHA stimulated lymphocytes reveal the same pattern concerning expression of TKl mRNA and TKl enzyme activity as serum-stimulated cells. This pattern...

  16. Data set for mass spectrometric analysis of recombinant human serum albumin from various expression systems

    Directory of Open Access Journals (Sweden)

    Daryl G.S. Smith

    2015-09-01

    Full Text Available Human serum albumin (HSA is a versatile and important protein for the pharmaceutical industry (Fanali et al., Mol. Aspects Med. 33(3 (2012 209–290. Due to the potential transmission of pathogens from plasma sourced albumin, numerous expression systems have been developed to produce recombinant HSA (rHSA (Chen et al., Biochim. Biophys. Acta (BBA—Gen. Subj. 1830(12 (2013 5515–5525; Kobayashi, Biologicals 34(1 (2006 55–59. Based on our previous study showing increased glycation of rHSA expressed in Asian rice (Frahm et al., J. Phys. Chem. B 116(15 (2012 4661–4670, both supplier-to-supplier and lot-to-lot variability of rHSAs from a number of expression systems were evaluated using reversed phase liquid chromatography linked with MS and MS/MS analyses. The data are associated with the research article ‘Determination of Supplier-to-Supplier and Lot-to-Lot Variability in Glycation of Recombinant Human Serum Albumin Expressed in Oryza sativa’ where further analysis of rHSA samples with additional biophysical methods can be found (Frahm et al., PLoS ONE 10(9 (2014 e109893. We determined that all rHSA samples expressed in rice showed elevated levels of arginine and lysine hexose glycation compared to rHSA expressed in yeast, suggesting that the extensive glycation of the recombinant proteins is a by-product of either the expression system or purification process and not a random occurrence.

  17. Anti-tumor effect of a recombinant plasmid expressing human interleukin-12: an initial research

    International Nuclear Information System (INIS)

    Zheng Chuansheng; Xia Xiangwen; Feng Gansheng; Li Xin; Liang Huimin; Liang Bin

    2010-01-01

    Objective: To study the anti-tumor effect of a recombinant plasmid expressing human interleukin-12 (pEGFP-CI I L- 12) in vivo and in vitro. Methods: We transduct the recombinant gene (pEGFP-CI I L-12) to liver cancer cell HepG 2 in vitro, and detect reproductive activity of the cell using MTT and the activity of expressing vascular endothelial growth factor(VEGF) using semiquantitative PCR. And then, we deliver the gene to rabbit liver tumor tissue intraarterial and combine with chemoembolization to observe the anti- tumor effect to VX 2 tumor in vivo. Results: There are no statistical difference compared With control group in activity of reproductive and expressing VEGF in vitro. In vivo, tumor growth rate significantly reduce in gene therapy combined with chemoembolization group. Conclusion: Recombinant gene (pEGFP-Cl I L-12) exhibit significant anti-tumor effect in vivo but not in vitro, perhaps the anti-tumor effect is associated with an indirect pathway instead of a direct pathway. (authors)

  18. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding.

    Science.gov (United States)

    Mamipour, Mina; Yousefi, Mohammadreza; Hasanzadeh, Mohammad

    2017-09-01

    The majority of research topics declared that most of the recombinant proteins have been expressed by Escherichia coli in basic investigations. But the majority of high expressed proteins formed as inactive recombinant proteins that are called inclusion body. To overcome this problem, several methods have been used including suitable promoter, environmental factors, ladder tag to secretion of proteins into the periplasm, gene protein optimization, chemical chaperones and molecular chaperones sets. Co-expression of the interest protein with molecular chaperones is one of the common methods The chaperones are a group of proteins, which are involved in making correct folding of recombinant proteins. Chaperones are divided two groups including; cytoplasmic and periplasmic chaperones. Moreover, periplasmic chaperones and proteases can be manipulated to increase the yields of secreted proteins. In this article, we attempted to review cytoplasmic chaperones such as Hsp families and periplasmic chaperones including; generic chaperones, specialized chaperones, PPIases, and proteins involved in disulfide bond formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Stable Plastid Transformation for High-Level Recombinant Protein Expression: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Meili Gao

    2012-01-01

    Full Text Available Plants are a promising expression system for the production of recombinant proteins. However, low protein productivity remains a major obstacle that limits extensive commercialization of whole plant and plant cell bioproduction platform. Plastid genetic engineering offers several advantages, including high levels of transgenic expression, transgenic containment via maternal inheritance, and multigene expression in a single transformation event. In recent years, the development of optimized expression strategies has given a huge boost to the exploitation of plastids in molecular farming. The driving forces behind the high expression level of plastid bioreactors include codon optimization, promoters and UTRs, genotypic modifications, endogenous enhancer and regulatory elements, posttranslational modification, and proteolysis. Exciting progress of the high expression level has been made with the plastid-based production of two particularly important classes of pharmaceuticals: vaccine antigens, therapeutic proteins, and antibiotics and enzymes. Approaches to overcome and solve the associated challenges of this culture system that include low transformation frequencies, the formation of inclusion bodies, and purification of recombinant proteins will also be discussed.

  20. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway.

    Science.gov (United States)

    Guzman, Efrain; Taylor, Geraldine; Hope, Jayne; Herbert, Rebecca; Cubillos-Zapata, Carolina; Charleston, Bryan

    2016-10-01

    Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B-Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B-Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.

  1. Purification of infectious adenovirus in two hours by ultracentrifugation and tangential flow filtration

    International Nuclear Information System (INIS)

    Ugai, Hideyo; Yamasaki, Takahito; Hirose, Megumi; Inabe, Kumiko; Kujime, Yukari; Terashima, Miho; Liu, Bingbing; Tang, Hong; Zhao, Mujun; Murata, Takehide; Kimura, Makoto; Pan, Jianzhi; Obata, Yuichi; Hamada, Hirofumi; Yokoyama, Kazunari K.

    2005-01-01

    Adenoviruses are excellent vectors for gene transfer and are used extensively for high-level expression of the products of transgenes in living cells. The development of simple and rapid methods for the purification of stable infectious recombinant adenoviruses (rAds) remains a challenge. We report here a method for the purification of infectious adenovirus type 5 (Ad5) that involves ultracentrifugation on a cesium chloride gradient at 604,000g for 15 min at 4 deg C and tangential flow filtration. The entire procedure requires less than two hours and infectious Ad5 can be recovered at levels higher than 64% of the number of plaque-forming units (pfu) in the initial crude preparation of viruses. We have obtained titers of infectious purified Ad5 of 1.35 x 10 10 pfu/ml and a ratio of particle titer to infectious titer of seven. The method described here allows the rapid purification of rAds for studies of gene function in vivo and in vitro, as well as the rapid purification of Ad5

  2. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pieper Rembert

    2011-05-01

    Full Text Available Abstract Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3 pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP, SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA and Glutathione S-transferase (GST improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.

  3. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium

    Directory of Open Access Journals (Sweden)

    Nie Weijia

    2008-11-01

    Full Text Available Abstract Background Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. Results The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB were purified from bacterial crude extracts. Approximately 5 – 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. Conclusion We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.

  4. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G

    1993-01-01

    to support the immunological data also by biochemical and biophysical experiments the availability of a recombinant CK-2 alpha from maize was a prerequisite. A maize cDNA clone of maize CK-2 alpha was expressed in the bacterial strain BL21 (DE3). The recombinant protein was purified to homogeneity; its......CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In order...... molecular mass on one-dimensional SDS PAGE was estimated to be 36.5 kDa. The calculated molecular mass according to the amino acid composition is 39,228 Da (332 amino acids). The recombinant maize CK-2 alpha (rmCK-2 alpha) exhibited mostly the same properties as the recombinant human CK-2 alpha (rhCK-2...

  5. Expression of human DNA polymerase β in Escherichia coli and characterization of the recombinant enzyme

    International Nuclear Information System (INIS)

    Abbotts, J.; SenGupta, D.N.; Zmudzka, B.; Widen, S.G.; Notario, V.; Wilson, S.H.

    1988-01-01

    The coding region of a human β-polymerase cDNA, predicting a 335 amino acid protein, was subcloned in the Escherichia coli expression plasmid pRC23. After induction of transformed cells, the crude soluble extract was found to contain a new protein immunoreactive with β-polymerase antibody and corresponding in size to the protein deduced from the cDNA. This protein was purified in a yield of 1-2 mg/50 g of cells. The recombinant protein had about the same DNA polymerase specific activity as β-polymerase purified from mammalian tissues, and template-primer specificity and immunological properties of the recombinant polymerase were similar to those of natural β-polymerases. The purified enzyme was free of nuclease activity. The authors studied detailed catalytic properties of the recombinant β-polymerase using defined template-primer systems. The results indicate that this β-polymerase is essentially identical with natural β-polymerases. The recombinant enzyme is distributive in mode of synthesis and is capable of detecting changes in the integrity of the single-stranded template, such as methylated bases and a double-stranded region. The enzyme recognizes a template region four to seven bases downstream of the primer 3' end and utilizes alternative primers if this downstream template region is double stranded. The enzyme is unable to synthesize past methylated bases N 3 -methyl-dT or O 6 -methyl-dG

  6. Purification of Microbially Expressed Recombinant Proteins via a Dual ELP Split Intein System.

    Science.gov (United States)

    Shi, Changhua; Han, Tzu-Chiang; Wood, David W

    2017-01-01

    Fusions of elastin-like peptide (ELP) purification tags and self-cleaving inteins provide a powerful platform for purifying tagless recombinant proteins without the need for conventional packed-bed columns. A drawback to this method has been premature cleaving of the ELP tag during expression, before the purification procedure can take place. Here we demonstrate a split-intein method, where the self-cleaving intein is divided into two inactive segments during expression and purification. Spontaneous assembly of the purified intein segments then restores self-cleaving activity to deliver the tagless target protein.

  7. Recombinant Expression and Purification of the Shigella Translocator IpaB.

    Science.gov (United States)

    Barta, Michael L; Adam, Philip R; Dickenson, Nicholas E

    2017-01-01

    Type III secretion systems (T3SS) are highly conserved virulence factors employed by a large number of pathogenic gram-negative bacteria. Like many T3SS translocators, recombinant expression of the hydrophobic Shigella protein IpaB requires the presence of its cognate chaperone IpgC. Chaperone-bound IpaB is maintained in a nonfunctional state, which has hampered in vitro studies aimed at understanding molecular structure and function of this important class of T3SS proteins. Herein, we describe an expression and purification protocol that utilizes mild detergents to produce highly purified, homogeneous IpaB of defined oligomeric states.

  8. Affinity Maturation of an Anti-V Antigen IgG Expressed In Situ Via Adenovirus Gene Delivery Confers Enhanced Protection Against Yersinia pestis Challenge

    Science.gov (United States)

    Van Blarcom, Thomas J.; Sofer-Podesta, Carolina; Ang, John; Boyer, Julie L.; Crystal, Ronald G.; Georgiou, George

    2013-01-01

    Genetic transfer of neutralizing antibodies has been shown to confer strong and persistent protection against bacterial and viral infectious agents. While it is well established that for many exogenous neutralizing antibodies increased antigen affinity correlates with protection, the effect of antigen affinity on antibodies produced in situ following adenoviral gene transfer has not been examined. The mouse IgG2b monoclonal antibody 2C12.4 recognizes the Yersinia pestis Type III secretion apparatus protein LcrV (V antigen) and confers protection in mice when administered as an IgG intraperitoneally or, following genetic immunization with engineered, replication-defective serotype 5 human adenovirus (Ad) 1. 2C12.4 was expressed as a scFv fragment in E. coli and was shown to display a KD=3.5 nM by surface plasmon resonance (SPR) analysis. The 2C12.4 scFv was subjected to random mutagenesis and variants with increased affinity were isolated by flow cytometry using the Anchored Periplasmic Expression (APEx) bacterial display system. After a single round of mutagenesis, variants displaying up to 35-fold lower KD values (H8, KD=100 pM) were isolated. The variable domains of the H8 scFv were used to replace those of the parental 2C12.4 IgG encoded in the Ad vector, AdαV giving rise to AdαV.H8. The two adenoviral vectors resulted in similar titers of anti-V antigen antibodies 3 days post-immunization with 109, 1010 or 1011 particle units. Following intranasal challenge with 363 LD50Y. pestis CO92, 54% of the mice immunized with 1010 pu of AdαV.H8 survived at the 14 day end point compared to only 15% survivors for the group immunized with AdαV expressing the lower affinity 2C12.4 (Pgenetic transfer may confer increased protection not only for Y. pestis challenge but possibly for other pathogens. PMID:20393511

  9. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    Science.gov (United States)

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  10. Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant

    Energy Technology Data Exchange (ETDEWEB)

    Shinkyo, Raku; Inouye, Kuniyo [Kyoto Univ. (Japan). Div. of Food Science and Biotechnology; Kamakura, Masaki; Ikushiro, Shin-ichi; Sakaki, Toshiyuki [Toyama Prefectural Univ. (Japan). Biotechnology Research Center

    2006-09-15

    Among polychlorinated dibenzo-p-dioxins (PCDDs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is the most toxic one. Recently, we reported that rat CYP1A1 mutant, F240A, expressed in yeast showed metabolic activity toward 2,3,7,8-TetraCDD. In this study, we successfully expressed N-terminal truncated P450s ({delta}1A1 and {delta}F240A) in Escherichia coli cells. Kinetic analysis using membrane fractions prepared from the recombinant E. coli cells revealed that {delta}F240A has enzymatic properties similar to F240A expressed in yeast. The metabolism of PCDDs by recombinant E. coli cells expressing both {delta}F240A and human NADPH-P450 reductase was also examined. When 2,3,7-TriCDD was added to the E. coli cell culture at a final concentration of 10 {mu}M, approximately 90% of the 2,3,7-TriCDD was converted into multiple metabolites within 8 h. These results indicate the possible application of prokaryotic cells expressing {delta}F240A to the bioremediation of PCDD-contaminated soil. (orig.)

  11. Vaccine development against the Taenia solium parasite: the role of recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Gauci, Charles; Jayashi, César; Lightowlers, Marshall W

    2013-01-01

    Taenia solium is a zoonotic parasite that causes cysticercosis. The parasite is a major cause of human disease in impoverished communities where it is transmitted to humans from pigs which act as intermediate hosts. Vaccination of pigs to prevent transmission of T. solium to humans is an approach that has been investigated to control the disease. A recombinant vaccine antigen, TSOL18, has been remarkably successful at reducing infection of pigs with T. solium in several experimental challenge trials. The vaccine has been shown to eliminate transmission of naturally acquired T. solium in a field trial conducted in Africa. We recently reported that the vaccine was also effective in a field trial conducted in Peru. The TSOL18 recombinant antigen for each of these trials has been produced by expression in Escherichia coli. Here we discuss research that has been undertaken on the TSOL18 antigen and related antigens with a focus on improved methods of preparation of recombinant TSOL18 and optimized expression in Escherichia coli.

  12. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    Science.gov (United States)

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  13. METHODS FOR RECOMBINANT EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF HUMAN CANNABINOID RECEPTOR CB2

    Directory of Open Access Journals (Sweden)

    Alexei A. Yeliseev

    2013-03-01

    Full Text Available Cannabinoid receptor CB2 is a seven transmembrane-domain integral membrane protein that belongs to a large superfamily of G protein-coupled receptors (GPCR. CB2 is a part of the endocannabinoid system that plays vital role in regulation of immune response, inflammation, pain sensitivity, obesity and other physiological responses. Information about the structure and mechanisms of functioning of this receptor in cell membranes is essential for the rational development of specific pharmaceuticals. Here we review the methodology for recombinant expression, purification, stabilization and biochemical characterization of CB2 suitable for preparation of multi-milligram quantities of functionally active receptor. The biotechnological protocols include expression of the recombinant CB2 in E. coli cells as a fusion with the maltose binding protein, stabilization with a high affinity ligand and a derivative of cholesterol in detergent micelles, efficient purification by tandem affinity chromatography, and reconstitution of the receptor into lipid bilayers. The purified recombinant CB2 receptor is amenable to functional and structural studies including nuclear magnetic resonance spectroscopy and a wide range of biochemical and biophysical techniques.

  14. Improvement of oncolytic adenovirus vectors through genetic capsid modifications

    NARCIS (Netherlands)

    Vrij, Jeroen de

    2012-01-01

    Recombinant viral vectors hold great promise in the field of cancer gene therapy. While a plethora of viruses is being evaluated as oncolytic agents, human adenoviruses of serotype 5 (HAdV-5) are among the most popular of viruses to be developed. Although clinical studies have demonstrated safety of

  15. Cloning and Expression of Recombinant Nucleoprotein of Influenza H1N1

    Directory of Open Access Journals (Sweden)

    Somaie Tavakoli

    2015-04-01

    Full Text Available Background: Influenza virus is the major cause of lower respiratory tract illnesses on the worldwide. Vaccination can be an effective tool to prevent its outbreak. Highly conserved viral nucleoprotein is an effective vaccine candidate to provide heterosubtypic immunity, offering resistance against various influenza virus strains.Materials and Methods: In present research NP gene was inserted in pET-22b expression vector. New construct (pET-22b/NP was transformed into E. coli BL21 (DE3 strain and the expression of nucleoprotein was induced by IPTG. It was analyzed by SDS-PAGE and confirmed by Western blotting.Results: Western blotting confirmed the expression and production of recombinant Influenza nucleoprotein.Conclusion: These results suggest that the codon-optimized influenza A virus NP gene can be efficiently expressed in E. coli.

  16. Production of Brugia malayi BmSXP Recombinant Protein Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Khoo, T. K.

    2010-01-01

    Full Text Available A rapid antibody detection test is very useful for detection of lymphatic filariasis, especially for certification and surveillance of post-mass drug administration. One such kit, panLF RapidTM (commercialized by Malaysian BioDiagnostic Research Sdn. Bhd. had been developed in our laboratory for the detection of all species of filarial infections. It is based on the detection of anti-filarial IgG4 antibodies that react with recombinant Brugia malayi antigens, BmR1 and BmSXP. In this study, the growth of recombinant bacteria that produce BmSXP was optimized under shake flask fermentation for high yield of the recombinant antigen. The optimizations involved selection of suitable growth medium, IPTG concentration and induction time. The medium that yielded the highest biomass as well as total protein was Terrific Broth (TB medium, which is an undefined medium. Initiation of induction of protein expression was found to be best at mid-log phase (OD600 = 1.5, with IPTG concentration of 1.0 mM, and harvest time at 9 h post-induction. This study showed that under the optimized conditions, the shake flask culture produced 4 g/L biomass (dry cell weight of recombinant Escherichia coli BmSXP/pPROEXHTa/TOP10F’, which yielded 2.42 mg/L of purified BmSXP recombinant antigen. The purified antigen was analyzed by SDS-PAGE and the antigenicity of protein was confirmed by Western blot.

  17. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  18. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    International Nuclear Information System (INIS)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui; Leppla, Stephen H.

    2013-01-01

    Highlights: ► Non-infectious and protease-deficient Bacillus anthracis protein expression system. ► Successful expression and purification of a tumor-targeted fusion protein drug. ► Very low endotoxin contamination of purified protein. ► Efficient protein secretion simplifies purification. ► Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGFα). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGFα). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  19. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.; Liu, Shihui [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Leppla, Stephen H., E-mail: sleppla@niaid.nih.gov [National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression host offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.

  20. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  1. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  2. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Science.gov (United States)

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  3. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Directory of Open Access Journals (Sweden)

    Jason S Richardson

    Full Text Available BACKGROUND: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP. The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. METHODOLOGY/PRINCIPAL FINDINGS: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP. Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. CONCLUSIONS/SIGNIFICANCE: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the

  4. Immunogenicity of seven new recombinant yellow fever viruses 17D expressing fragments of SIVmac239 Gag, Nef, and Vif in Indian rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Mauricio A Martins

    Full Text Available An effective vaccine remains the best solution to stop the spread of human immunodeficiency virus (HIV. Cellular immune responses have been repeatedly associated with control of viral replication and thus may be an important element of the immune response that must be evoked by an efficacious vaccine. Recombinant viral vectors can induce potent T-cell responses. Although several viral vectors have been developed to deliver HIV genes, only a few have been advanced for clinical trials. The live-attenuated yellow fever vaccine virus 17D (YF17D has many properties that make it an attractive vector for AIDS vaccine regimens. YF17D is well tolerated in humans and vaccination induces robust T-cell responses that persist for years. Additionally, methods to manipulate the YF17D genome have been established, enabling the generation of recombinant (rYF17D vectors carrying genes from unrelated pathogens. Here, we report the generation of seven new rYF17D viruses expressing fragments of simian immunodeficiency virus (SIVmac239 Gag, Nef, and Vif. Studies in Indian rhesus macaques demonstrated that these live-attenuated vectors replicated in vivo, but only elicited low levels of SIV-specific cellular responses. Boosting with recombinant Adenovirus type-5 (rAd5 vectors resulted in robust expansion of SIV-specific CD8(+ T-cell responses, particularly those targeting Vif. Priming with rYF17D also increased the frequency of CD4(+ cellular responses in rYF17D/rAd5-immunized macaques compared to animals that received rAd5 only. The effect of the rYF17D prime on the breadth of SIV-specific T-cell responses was limited and we also found evidence that some rYF17D vectors were more effective than others at priming SIV-specific T-cell responses. Together, our data suggest that YF17D - a clinically relevant vaccine vector - can be used to prime AIDS virus-specific T-cell responses in heterologous prime boost regimens. However, it will be important to optimize rYF17D

  5. Methods for efficient high-throughput screening of protein expression in recombinant Pichia pastoris strains.

    Science.gov (United States)

    Camattari, Andrea; Weinhandl, Katrin; Gudiminchi, Rama K

    2014-01-01

    The methylotrophic yeast Pichia pastoris is becoming one of the favorite industrial workhorses for protein expression. Due to the widespread use of integration vectors, which generates significant clonal variability, screening methods allowing assaying hundreds of individual clones are of particular importance. Here we describe methods to detect and analyze protein expression, developed in a 96-well format for high-throughput screening of recombinant P. pastoris strains. The chapter covers essentially three common scenarios: (1) an enzymatic assay for proteins expressed in the cell cytoplasm, requiring cell lysis; (2) a whole-cell assay for a fungal cytochrome P450; and (3) a nonenzymatic assay for detection and quantification of tagged protein secreted into the supernatant.

  6. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins.

    Science.gov (United States)

    Rozov, S M; Permyakova, N V; Deineko, E V

    2018-03-01

    Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.

  7. A replication defective recombinant Ad5 vaccine expressing Ebola virus GP is safe and immunogenic in healthy adults.

    Science.gov (United States)

    Ledgerwood, J E; Costner, P; Desai, N; Holman, L; Enama, M E; Yamshchikov, G; Mulangu, S; Hu, Z; Andrews, C A; Sheets, R A; Koup, R A; Roederer, M; Bailer, R; Mascola, J R; Pau, M G; Sullivan, N J; Goudsmit, J; Nabel, G J; Graham, B S

    2010-12-16

    Ebola virus causes irregular outbreaks of severe hemorrhagic fever in equatorial Africa. Case mortality remains high; there is no effective treatment and outbreaks are sporadic and unpredictable. Studies of Ebola virus vaccine platforms in non-human primates have established that the induction of protective immunity is possible and safety and human immunogenicity has been demonstrated in a previous Phase I clinical trial of a 1st generation Ebola DNA vaccine. We now report the safety and immunogenicity of a recombinant adenovirus serotype 5 (rAd5) vaccine encoding the envelope glycoprotein (GP) from the Zaire and Sudan Ebola virus species, in a randomized, placebo-controlled, double-blinded, dose escalation, Phase I human study. Thirty-one healthy adults received vaccine at 2×10(9) (n=12), or 2×10(10) (n=11) viral particles or placebo (n=8) as an intramuscular injection. Antibody responses were assessed by ELISA and neutralizing assays; and T cell responses were assessed by ELISpot and intracellular cytokine staining assays. This recombinant Ebola virus vaccine was safe and subjects developed antigen specific humoral and cellular immune responses. Published by Elsevier Ltd.

  8. Polyclonal antibodies against the recombinantly expressed coat protein of the Citrus psorosis virus

    Directory of Open Access Journals (Sweden)

    Reda Salem

    2018-05-01

    Full Text Available Psorosis is a damaging disease of citrus that is widespread in many parts of the world. Citrus psorosis virus (CPsV, the type species of the genus Ophiovirus, is the putative causal agent of psorosis. Detection of CPsV by laboratory methods, serology in particular is a primary requirement for large-scale surveys but their production has been impaired by the difficulty of obtaining sufficient clean antigen for immunization. Specific PAbs against coat protein were produced in E. coli using recombinant DNA approach. The full length CP gene fragment was amplified by RT-PCR using total RNA extracted from CPsV infected citrus leaves and CP specific primers. The obtained product (1320bp was cloned, sequenced and sub-cloned into pET-30(+ expression vector. Expression was induced and screened in different bacterial clones by the presence of the expressed protein (48kDa and optimized in one clone. Expressed CP was purified using batch chromatography under denaturing conditions. Specificity of expressed protein was demonstrated by ELISA before used as antigen for raising PAbs in mice. Specificity of the raised PAbs to CPsV was verified by ELISA and western blotting. The raised PAbs were showed highly effectiveness in screening by ELISA comparing with the commercial antibodies purchased from Agritest, Valanzano, Italy.The expression of CPsV CP gene in E. coli, production of PAbs using recombinant protein as an antigen, the suitability of these antibodies for use in immunodiagnostics against the CPsV Egyptian isolate have been accomplished in this work. Keywords: CPsV, CP, PAbs, RT-PCR, ELISA, Western blotting

  9. Expression and purification of recombinant truncated human keratinocyte growth factor-1

    International Nuclear Information System (INIS)

    Deng Lin; Ma Jisheng; Liu Xiaoju; Wang Xiaojie; Li Xiaokun; Gong Shouliang; Wang Huiyan; Tian Haishan

    2010-01-01

    Objective: To construct the genetic engineering bacteria highly expressing 23 amino acids human keratinocyte growth factor-1 (rhKGF1 dest23 ) missing N terminal, and provide experimental data for development of new drug for treatment of oral mucositis after radiotherapy and chemotherapy. Methods: PCR was used to synthese 23 amino acids rhKGF1 dest23 missing N terminal and sumo gene fragments, and construct four kinds of recombinant prokaryotic expression vectors: pET22b-rhKGF1 dest23 , pET22b-sumo-rhKGF1 dest23 , pET3c-rhKGF1 dest23 and pET3c-sumo-rhKGF1 dest23 , then they were transformed into prokaryotic expression host bacteria: Rosetta (DE3) plysS, BL21 (DE3), BL21 (DE3) Star plysS, origima(DE3) and BL21AI, the best expression combination of plasmid and host strain of rhKGF1 dest23 protein was screened and purified by CM ion-exchange and heparin affinity chromatography and identified with Western blotting. Results: pET22b-rhKGF1 dest23 plasmid and the BL21AI host bacteria was the best combination of expression, after induced by IPTG and arabinose, the majority of recombinant protein was expressed in soluble form, accounting for about 12% of the total bacterial proteins. Its purity reached to more than 95% of the protein after two steps chromatography, then conformed with Western blotting. Conclusion: Human genetic engineering bacteria of KGF1 dest23 is successfully constructed and induced by IPTG and arabinose, then after CM weak cation exchange and heparin affinity chromatography, the purified rhKGF1 dest23 protein is obtained. (authors)

  10. New baculovirus recombinants expressing Pseudorabies virus (PRV) glycoproteins protect mice against lethal challenge infection.

    Science.gov (United States)

    Grabowska, Agnieszka K; Lipińska, Andrea D; Rohde, Jörg; Szewczyk, Boguslaw; Bienkowska-Szewczyk, Krystyna; Rziha, Hanns-Joachim

    2009-06-02

    The present study demonstrates the protective potential of novel baculovirus recombinants, which express the glycoproteins gB, gC, or gD of Pseudorabies virus (PRV; Alphaherpesvirus of swine) and additionally contain the glycoprotein G of Vesicular Stomatitis Virus (VSV-G) in the virion (Bac-G-PRV). To evaluate the protective capacity, mixtures of equal amounts of the PRV gB-, gC-, and gD-expressing baculoviruses were used for immunization. Three intramuscular immunizations with that Bac-G-PRV mixture could protect mice against a lethal PRV challenge infection. To achieve complete protection high titers of Bac-G-PRV and three immunizations were necessary. This immunization with Bac-G-PRV resulted in the induction of high titers of PRV-specific serum antibodies of the IgG2a subclass and of interferon (IFN)-gamma, indicating a Th1-type immune response. Moreover, splenocytes of immunized mice exhibited natural killer cell activity accompanied by the production of IFN-alpha and IFN-gamma. Collectively, the presented data demonstrate for the first time that co-expression of VSV-G in baculovirus recombinant vaccines can improve the induction of a protective immune response against foreign antigens.

  11. Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain.

    Science.gov (United States)

    Nandi, Somen; Yalda, Dorice; Lu, Stephen; Nikolov, Zivko; Misaki, Ryo; Fujiyama, Kazuhito; Huang, Ning

    2005-06-01

    In this paper, we show that recombinant human lactoferrin (rhLF) has been stably expressed at 0.5% brown rice flour weight for nine generations. Process development indicates that rhLF can be efficiently extracted from rice flour in 20 mM phosphate buffer (pH 7.0) containing up to 0.5 M NaCl and at a ratio of 1 kg flour to 10 L buffer. After solid/liquid separation, the extract can then be loaded directly onto an ion-exchange column and rhLF can be eluted using 0.8 M NaCl. The resulting rhLF is about 95% pure. A range of biochemical and biophysical analyses were carried out and results indicated that the purified rhLF was identical to its native human counterpart other than its glycosylation. Economic analysis shows that at 600 kg/year scale, the cash cost to produce 1 g of rhLF of pharmaceutical grade is US$ 5.90. Analysis also indicates that the expression level has profound impact on costs related to planting, milling, extraction and purification, thus high level expression of recombinant protein in plants is one of the key parameters for the success of plant made pharmaceuticals.

  12. The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection.

    Science.gov (United States)

    Ma, Li; Ding, Qinfeng; Feng, Xiping; Li, Fei

    2013-10-01

    A number of studies have shown that the outer membrane protein FomA found in Fusobacterium nucleatum demonstrates great potential as an immune target for combating periodontitis. Lactobacillus acidophilus is a useful antigen delivery vehicle for mucosal immunisation, and previous studies by our group have shown that L. acidophilus acts as a protective factor in periodontal health. In this study, making use of the immunogenicity of FomA and the probiotic properties of L. acidophilus, we constructed a recombinant form of L. acidophilus expressing the FomA protein and detected the FomA-specific IgG in the serum and sIgA in the saliva of mice through oral administration with the recombinant strains. When serum containing FomA-specific antibodies was incubated with the F. nucleatum in vitro, the number of Porphyromonas gingivalis cells that coaggregated with the F. nucleatum cells was significantly reduced. Furthermore, a mouse gum abscess model was successfully generated, and the range of gingival abscesses in the immune mice was relatively limited compared with the control group. The level of IL-1β in the serum and local gum tissues of the immune mice was consistently lower than in the control group. Our findings indicated that oral administration of the recombinant L. acidophilus reduced the risk of periodontal infection with P. gingivalis and F. nucleatum.

  13. MVA recombinants expressing the fusion and hemagglutinin genes of PPRV protects goats against virulent challenge.

    Science.gov (United States)

    Chandran, Dev; Reddy, Kolli Bhaktavatsala; Vijayan, Shahana Pallichera; Sugumar, Parthasarthy; Rani, Gudavalli Sudha; Kumar, Ponsekaran Santha; Rajendra, Lingala; Srinivasan, Villuppanoor Alwar

    2010-09-01

    Peste des Petits Ruminants (PPR) is a highly contagious animal disease caused by the Peste des Petits Ruminants virus (PPRV) belonging to the genus morbillivirus and family Paramyxoviridae. The disease results in high morbidity and mortality in goats, sheep and in some small wild ruminants. The presence of large number of small ruminants reared in endemic areas makes PPR a notorious disease threatening the livelihood of poor farmers. Conventional vaccination using a live, attenuated vaccine gives adequate protection but cannot be used in case of eradication of the disease due to difficulty in differentiation of infected animals from the vaccinated ones.In the present study, we constructed two recombinant viruses using attenuated Modified Vaccinia virus Ankara virus (MVA) namely MVA-F and MVA-H expressing the full length PPRV fusion (F) and hemagglutinin (H) glycoproteins, respectively. Goats were vaccinated intramuscularly with 105 plaque forming units (PFU) each of the recombinant viruses and a live attenuated vaccine (RAKSHA PPR) and challenged 4 months later with PPRV challenge virus (10(3) goat LD(50)). All goats were completely protected from the clinical disease. This study gave an indication that mass vaccination of small ruminants with either of the above or both recombinant inexpensive virus vaccines could help in possible eradication of PPRV from endemic countries like India and subsequent seromonitoring of the disease for differentiation of infected animals from vaccinated ones.

  14. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  15. Adenovirus-assisted lipofection: efficient in vitro gene transfer of luciferase and cytosine deaminase to human smooth muscle cells.

    Science.gov (United States)

    Kreuzer, J; Denger, S; Reifers, F; Beisel, C; Haack, K; Gebert, J; Kübler, W

    1996-07-01

    Smooth muscle cells (SMC) are a central cell type involved in multiple processes of coronary artery diseases including restenosis and therefore are major target cells for different aspects of gene transfer. Previous attempts to transfect primary arterial cells using different techniques like liposomes, CaPO4 and electroporation resulted in only low transfection efficiency. The development of recombinant adenoviruses dramatically improved the delivery of foreign genes into different cell types including SMC. However, cloning and identification of recombinants remain difficult and time-consuming techniques. The present study demonstrates that a complex consisting of reporter plasmid encoding firefly luciferase (pLUC), polycationic liposomes and replication-deficient adenovirus was able to yield very high in vitro transfection of primary human smooth muscle cells under optimized conditions. The technique of adenovirus-assisted lipofection (AAL) increases transfer and expression of plasmid DNA in human smooth muscle cells in vitro up to 1000-fold compared to lipofection. To verify the applicability of AAL for gene transfer into human smooth muscle cells we studied a gene therapy approach to suppress proliferation of SMC in vitro, using the prokaryotic cytosine deaminase gene (CD) which enables transfected mammalian cells to deaminate 5-fluorocytosine (5-FC) to the highly toxic 5-fluorouracil (5-FU). The effect of a transient CD expression on RNA synthesis was investigated by means of a cotransfection with a RSV-CD expression plasmid and the luciferase reporter plasmid. Western blot analysis demonstrated high expression of CD protein in transfected SMC. Cotransfected SMC demonstrated two-fold less luciferase activity in the presence of 5-FC (5 mmol/l) after 48 h compared to cells transfected with a non-CD coding plasmid. The data demonstrate that a transient expression of CD could be sufficient to reduce the capacity of protein synthesis in human SMC. This simple and

  16. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  17. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo

    International Nuclear Information System (INIS)

    Rivera, Angel A.; Wang Minghui; Suzuki, Kaori; Uil, Taco G.; Krasnykh, Victor; Curiel, David T.; Nettelbeck, Dirk M.

    2004-01-01

    The expression of therapeutic genes by oncolytic viruses is a promising strategy to improve viral oncolysis, to augment gene transfer compared with a nonreplicating adenoviral vector, or to combine virotherapy and gene therapy. Both the mode of transgene expression and the locale of transgene insertion into the virus genome critically determine the efficacy of this approach. We report here on the properties of oncolytic adenoviruses which contain the luciferase cDNA fused via an optimized internal ribosome entry site (IRES) to the immediate early adenoviral gene E1A (AdΔE1AIL), the early gene E2B (AdΔE2BIL), or the late fiber gene (AdΔfiberIL). These viruses showed distinct kinetics of transgene expression and luciferase activity. Early after infection, luciferase activities were lower for these viruses, especially for AdΔE2BIL, compared with nonreplicating AdTL, which contained the luciferase gene expressed from the strong CMV promoter. However, 6 days after infection, luciferase activities were approximately four (AdΔE1AIL) to six (AdΔfiberIL) orders of magnitude higher than for AdTL, reflecting virus replication and efficient transgene expression. Similar results were obtained in vivo after intratumoral injection of AdΔE2BIL, AdΔfiberIL, and AdTL. AdΔfiberIL and the parental virus, Ad5-Δ24, resulted in similar cytotoxicity, but AdΔE2BIL and AdΔE1AIL were slightly attenuated. Disruption of the expression of neighboring viral genes by insertion of the transgene was minimal for AdΔE2BIL and AdΔfiberIL, but substantial for AdΔE1AIL. Our observations suggest that insertion of IRES-transgene cassettes into viral transcription units is an attractive strategy for the development of armed oncolytic adenoviruses with defined kinetics and strength of transgene expression

  18. Adenovirus (For Parents)

    Science.gov (United States)

    ... by sharing contaminated objects (such as towels or toys), or by touch. Once a child is exposed to adenovirus, symptoms usually develop from ... washing, keep shared surfaces (such as countertops and toys) clean, and remove kids ... a week your child has breathing problems your child is under 3 ...

  19. Comparative evaluation of oral and intranasal priming with replication-competent adenovirus 5 host range mutant (Ad5hr)-simian immunodeficiency virus (SIV) recombinant vaccines on immunogenicity and protective efficacy against SIV(mac251).

    Science.gov (United States)

    Zhou, Qifeng; Hidajat, Rachmat; Peng, Bo; Venzon, David; Aldrich, M Kristine; Richardson, Ersell; Lee, Eun Mi; Kalyanaraman, V S; Grimes, George; Gómez-Román, V Raúl; Summers, L Ebonita; Malkevich, Nina; Robert-Guroff, Marjorie

    2007-11-19

    Oral, replication-competent Ad-HIV vaccines are advancing to human trials. Previous evaluation of protective efficacy in non-human primates has primarily followed upper respiratory tract administrations. Here we compared sequential oral (O/O) versus intranasal/oral (I/O) priming of rhesus macaques with Ad5 host range mutant-SIV recombinants expressing SIV env/rev, gag, and nef genes followed by boosting with SIV gp120 protein. Cellular immune responses in PBMC were stronger and more frequent after I/O administration. Both groups developed mucosal immunity, including memory cells in bronchial alveolar lavage, and gut-homing receptors on PBMC. Following intrarectal SIV(mac251) challenge, both groups exhibited equivalent, significant protection and robust post-challenge cellular immunity. Our results illustrate the promise of oral replication-competent Ad-recombinant vaccines. Pre-challenge PBMC ELISPOT and proliferative responses did not predict protection in the O/O group, highlighting the need for simple, non-invasive methods to reliably assess mucosal immunity.

  20. Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression.

    Science.gov (United States)

    Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D

    2009-02-01

    The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.

  1. Restricted expression of recombination activating gene (RAG-1) in mouse lymphoid tissues

    International Nuclear Information System (INIS)

    Yamamoto, Akihito; Fujinaga, Hiroyuki; Hamatani, Kiyohiro; Atsuta, Mitsuru.

    1993-03-01

    In an attempt to determine the distribution of recombinase activity in the mouse thymus, spleen, and lymph nodes, we used the in situ hybridization method to examine the expression of the recombination activating genes RAG-1 and RAG-2. Expression of RAG-1 was found in most cortical thymocytes but not in the majority of medullary thymocytes. Although hybridization signals of RAG-2 were not as intense as those of RAG-1, the localization of RAG-2 transcripts was similar to that of RAG-1. In the spleen, expression of RAG-1 was found only in limited cells near the splenic sinus, and the majority of the cells within the follicle were negative for RAG-1 transcript. In nude mice, RAG-1-expressing cells were detected in the same regions, which suggests that in situ hybridization signals of RAG-1 in the spleen are due to the cells of B-cell origin. In the lymph nodes, expression of RAG-1 was found only in the medullary region. Expression of RAG-2 transcript in the spleen and the lymph nodes, if any, was too faint to allow determination of the specific localization. These results suggest that most of the cortical thymocytes and some cells in the spleen are capable of rearranging T-cell receptor genes and immunoglobulin genes, respectively, but the possible involvement of the RAG-1 transcript in RAG-1-positive cells of the spleen and the lymph nodes in functions other than the rearrangement of genes could not be ruled out. (author)

  2. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II.

    Science.gov (United States)

    Sidoli, A; Tamborini, E; Giuntini, I; Levi, S; Volonté, G; Paini, C; De Lalla, C; Siccardi, A G; Baralle, F E; Galliani, S

    1993-10-15

    The molecular cloning of the cDNA encoding for an isoallergenic form of Lol p II, a major rye grass (Lolium perenne) pollen allergen, was performed by polymerase chain reaction amplification on mRNA extracted from pollen. The amino acid sequence derived from the cDNA was truncated by 4 and 5 residues at the NH2- and COOH-terminal ends, respectively, and differed only in one position from that previously reported. This cDNA was expressed in Escherichia coli by fusion to the carboxyl terminus of the human ferritin H-chain. The molecule was produced in high yields as a soluble protein and was easily purified. The protein retains the multimeric quaternary structure of ferritin, and it exposes on the surface the allergenic moiety, which can be recognized in Western blotting and in enzyme-linked immunosorbent assay experiments by specific IgE from allergic patients. The recombinant allergen was used to analyze the sera of 26 patients allergic to L. perenne compared with control sera. The results were in good agreement with the values obtained with the radioallergosorbent test assay. In addition, histamine release experiments in whole blood from an allergic patient and skin prick tests showed that the recombinant allergen retains some of the biological properties of the natural compound. These findings indicate that the availability of homogeneous recombinant allergens may be useful for the development of more specific diagnostic and therapeutic procedures. Moreover, this expression system may be of more general interest for producing large amounts of soluble protein domains in E. coli.

  3. Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro.

    Directory of Open Access Journals (Sweden)

    Ok Kyung Koo

    Full Text Available BACKGROUND: Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection. METHODOLOGY/PRINCIPAL FINDINGS: The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (Lbp(LAP to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to Lbp(LAP for 1, 4, 15, or 24 h significantly (P<0.05 reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, Lbp(LAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. Lbp(LAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, Lbp(LAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h. CONCLUSIONS/SIGNIFICANCE: Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, Lbp(LAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise

  4. Recombinant human parvovirus B19 vectors: erythroid cell-specific delivery and expression of transduced genes.

    Science.gov (United States)

    Ponnazhagan, S; Weigel, K A; Raikwar, S P; Mukherjee, P; Yoder, M C; Srivastava, A

    1998-06-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562-566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111-1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited and

  5. Recombinant Human Parvovirus B19 Vectors: Erythroid Cell-Specific Delivery and Expression of Transduced Genes

    Science.gov (United States)

    Ponnazhagan, Selvarangan; Weigel, Kirsten A.; Raikwar, Sudhanshu P.; Mukherjee, Pinku; Yoder, Mervin C.; Srivastava, Arun

    1998-01-01

    A novel packaging strategy combining the salient features of two human parvoviruses, namely the pathogenic parvovirus B19 and the nonpathogenic adeno-associated virus type 2 (AAV), was developed to achieve erythroid cell-specific delivery as well as expression of the transduced gene. The development of such a chimeric vector system was accomplished by packaging heterologous DNA sequences cloned within the inverted terminal repeats of AAV and subsequently packaging the DNA inside the capsid structure of B19 virus. Recombinant B19 virus particles were assembled, as evidenced by electron microscopy as well as DNA slot blot analyses. The hybrid vector failed to transduce nonerythroid human cells, such as 293 cells, as expected. However, MB-02 cells, a human megakaryocytic leukemia cell line which can be infected by B19 virus following erythroid differentiation with erythropoietin (N. C. Munshi, S. Z. Zhou, M. J. Woody, D. A. Morgan, and A. Srivastava, J. Virol. 67:562–566, 1993) but lacks the putative receptor for AAV (S. Ponnazhagan, X.-S. Wang, M. J. Woody, F. Luo, L. Y. Kang, M. L. Nallari, N. C. Munshi, S. Z. Zhou, and A. Srivastava, J. Gen. Virol. 77:1111–1122, 1996), were readily transduced by this vector. The hybrid vector was also found to specifically target the erythroid population in primary human bone marrow cells as well as more immature hematopoietic progenitor cells following erythroid differentiation, as evidenced by selective expression of the transduced gene in these target cells. Preincubation with anticapsid antibodies against B19 virus, but not anticapsid antibodies against AAV, inhibited transduction of primary human erythroid cells. The efficiency of transduction of primary human erythroid cells by the recombinant B19 virus vector was significantly higher than that by the recombinant AAV vector. Further development of the AAV-B19 virus hybrid vector system should prove beneficial in gene therapy protocols aimed at the correction of inherited

  6. Expression of recombinant Arabian camel lactoferricin-related peptide in Pichia pastoris and its antimicrobial identification.

    Science.gov (United States)

    Chahardooli, Mahmood; Niazi, Ali; Aram, Farzaneh; Sohrabi, Seyyed Mohsen

    2016-01-30

    Lactoferricin (LFcin) is a strong cationic peptide released from the N-terminus of lactoferrin by gastric pepsin digestion. LFcin has some important properties, including high antimicrobial activity. To date, lactoferricins have been isolated and characterised from various animal species, but not from camel. The aim of this study was to characterise and express recombinant camel lactoferricin (LFcinC) in Pichia pastoris and investigate its antimicrobial activity. After methanol induction, LFcinC was expressed and secreted into a culture broth medium and the results determined by concentrated supernatant culture medium showed high antimicrobial activity against the following microorganisms: Escherichia coli PTCC 1330 (ATCC 8739), Staphylococcus aureus PTCC 1112 (ATCC 6538), Pseudomonas aeruginosa PTCC 1074 (ATCC 9027), Bacillus subtilis PTCC 1023 (ATCC 6633), and Candida albicans PTCC 5027 (ATCC 10231). Thermal stability was clarified with antibacterial activity against Escherichia coli PTCC 1330 (ATCC 8739). Results confirmed that camel lactoferricin had suitable antimicrobial activity and its production by Pichia pastoris can be used for recombinant production. © 2015 Society of Chemical Industry.

  7. [Identification of occult disseminated tumor cells by recombinant herpes simplex virus expressing GFP (HSV(GFP))].

    Science.gov (United States)

    Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei

    2012-12-01

    To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).

  8. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    Science.gov (United States)

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  9. Antigenic evaluation of a recombinant baculovirus-expressed Sarcocystis neurona SAG1 antigen.

    Science.gov (United States)

    Gupta, G D; Lakritz, J; Saville, W J; Livingston, R S; Dubey, J P; Middleton, J R; Marsh, A E

    2004-10-01

    Sarcocystis neurona is the primary parasite associated with equine protozoal myeloencephalitis (EPM). This is a commonly diagnosed neurological disorder in the Americas that infects the central nervous system of horses. Current serologic assays utilize culture-derived parasites as antigen. This method requires large numbers of parasites to be grown in culture, which is labor intensive and time consuming. Also, a culture-derived whole-parasite preparation contains conserved antigens that could cross-react with antibodies against other Sarcocystis species and members of Sarcocystidae such as Neospora spp., Hammondia spp., and Toxoplasma gondii. Therefore, there is a need to develop an improved method for the detection of S. neurona-specific antibodies. The sera of infected horses react strongly to surface antigen 1 (SnSAG1), an approximately 29-kDa protein, in immunoblot analysis, suggesting that it is an immunodominant antigen. The SnSAG1 gene of S. neurona was cloned, and recombinant S. neurona SAG1 protein (rSnSAG1-Bac) was expressed with the use of a baculovirus system. By immunoblot analysis, the rSnSAG1-Bac antigen detected antibodies to S. neurona from naturally infected and experimentally inoculated equids, cats, rabbit, mice, and skunk. This is the first report of a baculovirus-expressed recombinant S. neurona antigen being used to detect anti-S. neurona antibodies in a variety of host species.

  10. Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs.

    Science.gov (United States)

    Zhou, Ming; Wang, Lei; Zhou, Songqin; Wang, Zhao; Ruan, Juncheng; Tang, Lijun; Jia, Ziming; Cui, Min; Zhao, Ling; Fu, Zhen F

    2015-11-17

    Developing efficacious oral rabies vaccines is an important step to increase immunization coverage for stray dogs, which are not accessible for parenteral vaccination. Our previous studies have demonstrated that recombinant rabies virus (RABV) expressing cytokines/chemokines induces robust protective immune responses after oral immunization in mice by recruiting and activating dendritic cells (DCs) and B cells. To develop an effective oral rabies vaccine for dogs, a recombinant attenuated RABV expressing dog GM-CSF, designated as LBNSE-dGM-CSF was constructed and used for oral vaccination in a dog model. Significantly more DCs or B cells were activated in the peripheral blood of dogs vaccinated orally with LBNSE-dGM-CSF than those vaccinated with the parent virus LBNSE, particularly at 3 days post immunization (dpi). As a result, significantly higher levels of virus neutralizing antibodies (VNAs) were detected in dogs immunized with LBNSE-dGM-CSF than with the parent virus. All the immunized dogs were protected against a lethal challenge with 4500 MICLD50 of wild-type RABV SXTYD01. LBNSE-dGM-CSF was found to replicate mainly in the tonsils after oral vaccination as detected by nested RT-PCR and immunohistochemistry. Taken together, our results indicate that LBNSE-dGM-CSF could be a promising oral rabies vaccine candidate for dogs.

  11. Identification and recombinant expression of anandamide hydrolyzing enzyme from Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Neelamegan Dhamodharan

    2012-06-01

    Full Text Available Abstract Background Anandamide (Arachidonoyl ethanolamide is a potent bioactive lipid studied extensively in humans, which regulates several neurobehavioral processes including pain, feeding and memory. Bioactivity is terminated when hydrolyzed into free arachidonic acid and ethanolamine by the enzyme fatty acid amide hydrolase (FAAH. In this study we report the identification of a FAAH homolog from Dictyostelium discoideum and its function to hydrolyze anandamide. Results A putative FAAH DNA sequence coding for a conserved amidase signature motif was identified in the Dictyostelium genome database and the corresponding cDNA was isolated and expressed as an epitope tagged fusion protein in either E.coli or Dictyostelium. Wild type Dictyostelium cells express FAAH throughout their development life cycle and the protein was found to be predominantly membrane associated. Production of recombinant HIS tagged FAAH protein was not supported in E.coli host, but homologous Dictyostelium host was able to produce the same successfully. Recombinant FAAH protein isolated from Dictyostelium was shown to hydrolyze anandamide and related synthetic fatty acid amide substrates. Conclusions This study describes the first identification and characterisation of an anandamide hydrolyzing enzyme from Dictyostelium discoideum, suggesting the potential of Dictyostelium as a simple eukaryotic model system for studying mechanisms of action of any FAAH inhibitors as drug targets.

  12. INCREASING OF THE EXPRESSION OF RECOMBINANT scFv-ANTIBODIES EFFICIENCY

    Directory of Open Access Journals (Sweden)

    O.V. Galkin

    2017-10-01

    Full Text Available Obtaining single-chain variable fragments (scFv of recombinant antibodies in E. coli cells is often associated with numerous problems causing low yields or inactive conformation of the product. The aim of this work was to study the influence of staphylococcal protein A fragment fused with scFv antibodies (SpA-tag on the efficiency of expression of final product. Examination of scFv antibodies of different origin and specificity has shown that in similar expression systems fused scFv is synthesized in much higher quantities than free scFv. Furthermore, the scFv antibodies in fused form retained their antigen-binding properties and the SpA fragment the ability to bind other immunoglobulins. Thus, the proposed strategy can be considered effective in improving the efficiency of scFv-antibodies production in E. coli cells.

  13. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology.

    Science.gov (United States)

    Aricescu, A Radu; Owens, Raymond J

    2013-06-01

    Mammalian cells are rapidly becoming the system of choice for the production of recombinant glycoproteins for structural biology applications. Their use has enabled the structural investigation of a whole new set of targets including large, multi-domain and highly glycosylated eukaryotic cell surface receptors and their supra-molecular assemblies. We summarize the technical advances that have been made in mammalian expression technology and highlight some of the structural insights that have been obtained using these methods. Looking forward, it is clear that mammalian cell expression will provide exciting and unique opportunities for an integrative approach to the structural study of proteins, especially of human origin and medically relevant, by bridging the gap between the purified state and the cellular context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Advances in animal cell recombinant protein production: GS-NS0 expression system.

    Science.gov (United States)

    Barnes, L M; Bentley, C M; Dickson, A J

    2000-02-01

    The production of recombinant proteins using mammalian cell expression systems is of growing importance within biotechnology, largely due to the ability of specific mammalian cells to carry out post-translational modifications of the correct fidelity. The Glutamine Synthetase-NS0 system is now one such industrially important expression system.Glutamine synthetase catalyses the formation ofglutamine from glutamate and ammonia. NS0 cellscontain extremely low levels of endogenous glutaminesynthetase activity, therefore exogenous glutaminesynthetase can be used efficiently as a selectablemarker to identify successful transfectants in theabsence of glutamine in the media. In addition, theinclusion of methionine sulphoximine, an inhibitor ofglutamine synthetase activity, enables furtherselection of those clones producing relatively highlevels of transfected glutamine synthetase and henceany heterologous gene which is coupled to it. Theglutamine synthetase system technology has been usedfor research and development purposes during thisdecade and its importance is clearly demonstrated nowthat two therapeutic products produced using thissystem have reached the market place.

  15. A novel technology to target adenovirus vectors : application in cells involved in atherosclerosis

    NARCIS (Netherlands)

    Gras, Jan Cornelis Emile

    2007-01-01

    In this thesis a novel technology is described to target adenovirus vectors. Adenovirus vectors are powerful tools to modulate gene expression. The use of these vectors however, is hampered by the fact that many for gene therapy interesting cell types do not, or only at low levels express the CAR

  16. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    Science.gov (United States)

    2012-01-01

    Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Conclusions Co

  17. Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm

    Directory of Open Access Journals (Sweden)

    Markiv Anatoliy

    2011-11-01

    trafficking studies. Assembling the single chain antibody with monomeric fluorescent protein linker facilitates optimal variable domain pairing and alters the isoelectric point of the recombinant 4D5-8 protein conferring solubility at physiological pH 7.4. The efficient intracellular expression of these functional molecules opens up the possibility of developing an alternative approach for tagging intracellular targets with fluorescent proteins for a range of molecular cell biology imaging studies.

  18. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    Directory of Open Access Journals (Sweden)

    Krainer Florian W

    2012-02-01

    Full Text Available Abstract Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein

  19. Characterization of Vesicular Stomatitis Virus Recombinants That Express and Incorporate High Levels of Hepatitis C Virus Glycoproteins

    OpenAIRE

    Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.

    2002-01-01

    We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...

  20. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli

    OpenAIRE

    Fakruddin, Md.; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md. Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the s...

  1. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

    KAUST Repository

    Yamashita, Mami; Xu, Jian; Morokuma, Daisuke; Hirata, Kazuma; Hino, Masato; Mon, Hiroaki; Takahashi, Masateru; Hamdan, Samir; Sakashita, Kosuke; Iiyama, Kazuhiro; Banno, Yutaka; Kusakabe, Takahiro; Lee, Jae Man

    2017-01-01

    The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

  2. Characterization of Recombinant Thermococcus kodakaraensis (KOD) DNA Polymerases Produced Using Silkworm-Baculovirus Expression Vector System

    KAUST Repository

    Yamashita, Mami

    2017-05-08

    The KOD DNA polymerase from Thermococcus kodakarensis (Tkod-Pol) has been preferred for PCR due to its rapid elongation rate, extreme thermostability and outstanding fidelity. Here in this study, we utilized silkworm-baculovirus expression vector system (silkworm-BEVS) to express the recombinant Tkod-Pol (rKOD) with N-terminal (rKOD-N) or C-terminal (rKOD-C) tandem fusion tags. By using BEVS, we produced functional rKODs with satisfactory yields, about 1.1 mg/larva for rKOD-N and 0.25 mg/larva for rKOD-C, respectively. Interestingly, we found that rKOD-C shows higher thermostability at 95 °C than that of rKOD-N, while that rKOD-N is significantly unstable after exposing to long period of heat-shock. We also assessed the polymerase activity as well as the fidelity of purified rKODs under various conditions. Compared with commercially available rKOD, which is expressed in E. coli expression system, rKOD-C exhibited almost the same PCR performance as the commercial rKOD did, while rKOD-N did lower performance. Taken together, our results suggested that silkworm-BEVS can be used to express and purify efficient rKOD in a commercial way.

  3. Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli.

    Science.gov (United States)

    Tseng, Chi-Ling; Leng, Chih-Hsiang

    2012-02-01

    Bacterial lipoproteins are crucial antigens for protective immunity against bacterial pathogens. Expression of exogenous lipoproteins in Escherichia coli at high levels is thought to be an extremely difficult endeavor because it frequently results in incomplete or absent lipid modification. Previously, we identified a fusion sequence (D1) from a Neisseria meningitidis lipoprotein that induced a non-lipidated protein, E3 (the domain III of the dengue virus envelope protein), to become lipidated. However, without optimizing the growth conditions, some of the D1-fusion proteins were not lipidated. Here, we report the influence of medium components on the expression of recombinant lipoproteins in E. coli. For high-level expression of mature lipoproteins in the C43 (DE3) strain, M9 medium was better than M63 and the rich medium. Furthermore, we analyzed the influence of other media factors (including nitrogen and carbon sources, phosphate, ferrous ions, calcium, magnesium, and pH) on the levels of lipoprotein expression. The results showed that excess nitrogen sources and phosphate in M9 medium could increase the amount of immature lipoproteins, and glucose was a better carbon source than glycerol for expressing mature lipoproteins. We also found that lipoproteins tended to be completely processed in the alkaline environment, even in the nutrient-rich medium. Additional constructs expressing different immunogens or lipid signal peptides as targets were also utilized, demonstrating that these targets could be expressed as completely mature lipoproteins in the M9 medium but not in the rich medium. Our results provide the useful information for expressing mature exogenous lipoproteins in E. coli.

  4. Construction of a novel kind of expression plasmid by homologous recombination in Saccharomyces cerevisiae

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xiangling

    2005-01-01

    [1]Brunelli, J. P., Pall, M. L., A series of yeast vectors for expression of cDNAs and other DNA sequences, Yeast, 1993, 9: 1299―1308.[2]Sikorski, R. S., Hieter, P., A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, 1989, 122: 19―27.[3]Bonneaud, N., Ozier-Kalogerogoulos, O., Li, G. et al., A family of low and high copy replicative, integrative and single-stranded S. cerevisiae /E. coli shuttle vector, Yeast, 1991, 7: 609―615.[4]Huo, K. K., Yu, L. L., Chen, X. J., Li, Y. Y., A stable vector for high-level expression and secretion of human interferon alpha A in yeast, Science in China, Ser. B, 1993, 36(5): 557―567.[5]Zhou, Z. X., Yuan, H. Y., He, W. et al., Expression of the modified HBsAg gene SA-28 directed by a constitutive promoter, Journal of Fudan university (Natural Science), 2000, 39(3): 264―268.[6]Paques, F., Haber, J. E., Multiple pathways of recombination induces by double-strand breaks in Saccharomyces cerevisiae, Microbiology and Molecular Biology Reviews, 1999, 63(2): 349―404.[7]Martin, K., Damage-induced recombination in the yeast Saccharomyces cerevisiae, Mutation Research, 2000, 451: 91―105.[8]Alira, S., Tomoko, O., Homologous recombination and the roles of double-strand breaks, TIBS, 1995, 20: 387―391.[9]Patrick, S., Kelly, M. T., Stephen, V. K., Recombination factor of Saccharomyces cerevisiae, Mutation Research, 2000, 451: 257―275.[10]Manivasakam, P., Weber, S. C., McElver, J., Schiestl, R. H., Micro-homology mediated PCR targeting in Saccharomyces cerevisiae, Nucleic Acids Res., 1995, 23(14): 2799―2800.[11]Baudin, A., Lacroute, F., Cullin, C., A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 1993, 21(14): 3329―3330.[12]Hua, S. B., Qiu, M., Chan, E., Zhu, L., Luo, Y., Minimum length of sequence homology required for in vivo cloning by homolo-gous recombination in yeast, Plasmid, 1997, 38

  5. The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease.

    Science.gov (United States)

    Tang, Zeli; Shang, Mei; Chen, Tingjin; Ren, Pengli; Sun, Hengchang; Qu, Hongling; Lin, Zhipeng; Zhou, Lina; Yu, Jinyun; Jiang, Hongye; Zhou, Xinyi; Li, Xuerong; Huang, Yan; Xu, Jin; Yu, Xinbing

    2016-12-19

    Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores' surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson's trichrome. The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic

  6. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  7. Oncogenicity by adenovirus is not determined by the transforming region only

    NARCIS (Netherlands)

    Bernards, R.A.; Leeuw, M.G.W. de; Vaessen, M.J.; Houweling, A.; Eb, A.J. van der

    1984-01-01

    We have constructed a nondefective recombinant virus between the nononcogenic adenovirus 5 (Ad5) and the highly oncogenic Ad12. The recombinant genome consists essentially of Ad5 sequences, with the exception of the transforming early region 1 (E1) which is derived from Ad12. HeLa cells infected

  8. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    Science.gov (United States)

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  9. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants.

    Science.gov (United States)

    Jutras, Philippe V; D'Aoust, Marc-André; Couture, Manon M-J; Vézina, Louis-Philippe; Goulet, Marie-Claire; Michaud, Dominique; Sainsbury, Frank

    2015-09-01

    Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Cambridge CD

    2013-05-01

    Full Text Available Chino D Cambridge, Shree R Singh, Alain B Waffo, Stacie J Fairley, Vida A DennisCenter for NanoBiotechnology Research (CNBR, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP and encapsulated it in chitosan nanoparticles (DMCNP using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 µg/mL to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and

  11. Construction and expression of a recombinant antibody-targeted plasminogen activator

    International Nuclear Information System (INIS)

    Schnee, J.M.; Runge, M.S.; Matsueda, G.A.; Hudson, N.W.; Seidman, J.G.; Haber, E.; Quertermous, T.

    1987-01-01

    Covalent linkage of tissue-type plasminogen activator (t-PA) to a monoclonal antibody specific for the fibrin β chain (anti-fibrin 59D8) results in a thrombolytic agent that is more specific and more potent that t-PA alone. To provide a ready source of this hybrid molecule and to allow tailoring of the active moieties for optimal activity, the authors have engineered a recombinant version of the 59D8-t-PA conjugate. The rearranged 59D8 heavy chain gene was cloned and combined in the expression vector pSV2gpt with sequence coding for a portion of the γ2b constant region and the catalytic β chain of t-PA. This construct was transfected into heavy chain loss variant cells derived form the 59D8 hybridoma. Recombinant protein was purified by affinity chromatography and analyzed with electrophoretic transfer blots and radioimmunoassay. These revealed a 65-kDa heavy chain-t-PA fusion protein that is secreted in association with the 59D8 light chain in the form of a 170-kDa disulfide-linked dimer. Chromogenic substrate assays showed the fusion protein to have 70% of the peptidolytic activity of native t-PA and to activate plasminogen as efficiently as t-PA. IN a competitive binding assay, reconstituted antibody was shown to have a binding profile similar to that of native 59D8. Thus, by recombinant techniques, they have produced a hybrid protein capable of high affinity fibrin binding and plasminogen activation

  12. Heterogeneity within populations of recombinant Chinese hamster ovary cells expressing human interferon-gamma.

    Science.gov (United States)

    Coppen, S R; Newsam, R; Bull, A T; Baines, A J

    1995-04-20

    The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.

  13. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance

    Directory of Open Access Journals (Sweden)

    Cashman Kathleen A

    2008-06-01

    Full Text Available Abstract Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP, glycoprotein 1 (GP1, and glycoprotein 2 (GP2. Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP fusions in the Rosetta strains of Escherichia coli (E. coli using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC. Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA. Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination.

  14. Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase

    International Nuclear Information System (INIS)

    Brizio, Carmen; Galluccio, Michele; Wait, Robin; Torchetti, Enza Maria; Bafunno, Valeria; Accardi, Rosita; Gianazza, Elisabetta; Indiveri, Cesare; Barile, Maria

    2006-01-01

    FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-step affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl 2 , as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 ± 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K M value for FMN of 1.5 ± 0.3 μM. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast

  15. Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.

    Science.gov (United States)

    Fakruddin, Md; Mohammad Mazumdar, Reaz; Bin Mannan, Khanjada Shahnewaj; Chowdhury, Abhijit; Hossain, Md Nur

    2013-01-01

    E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.

  16. Soluble multimer of recombinant endostatin expressed in E. coli has anti-angiogenesis activity

    International Nuclear Information System (INIS)

    Wei Dongmei; Gao Yan; Cao Xiangrong; Zhu Nianchun; Liang Jianfu; Xie Weiping; Zhen Mingying; Zhu Minsheng

    2006-01-01

    The bioactivity, refolding, and multimer formation of endostatin, particularly of recombinant endostatin produced from bacteria, are proved challenging for clinical application. In order to determine the biological activity of recombinant endostatin multimer, first, we expressed endostatin in Escherichia coli and purified it with ion-exchange chromatography. The purified active protein could elicit multimer formation spontaneously, but still has comparable activity. Aim to determine the anti-angiogenic activity of multimer endostatin, by use of RP-HPLC, we then successfully separated endostatin monomer and multimer for subjecting to anti-angiogenesis assay. The results from CAM (chorioallantoic membrane) inhibition assay showed that both monomer and multimer suppressed CAM vascularization significantly. At the dosage of 0.8 μg, inhibition rates of multimeric and monomeric proteins were about 58% and 38%, respectively. Multimeric endostatin exerted a higher activity than monomeric endostatin (p 0.05), although both of them show a high inhibition effect in contrast to control. The results from HUVEC proliferation assay also showed similar effects at dosages of 0.6 and 1.6 μg/ml, multimer exerted a higher activity on inhibition of HUVEC proliferation comparing with monomer (p < 0.05). In conclusion, our results suggest that endostatin multimer has a comparable or higher bioactivity and multimerization will not affect its bioactivity, implying that endostatin activity is insensitive to structure conformation contributed by disulfide bonds

  17. Recombinant Protein Production from TPO Gen Cloning and Expression for Early Detection of Autoimmune Thyroid Diseases

    Science.gov (United States)

    Aulanni'am, Aulanni'am; Kinasih Wuragil, Dyah; Wahono Soeatmadji, Djoko; Zulkarnain; Marhendra, Agung Pramana W.

    2018-01-01

    Autoimmune Thyroid Disease (AITD) is an autoimmune disease that has many clinical symptoms but is difficult to detect at the onset of disease progression. Most thyroid autoimmune disease patients are positive with high titre of thyroid autoantibodies, especially thyroid peroxidase (TPO). The detection AITD are still needed because these tests are extremely high cost and have not regularly been performed in most of clinical laboratories. In the past, we have explored the autoimmune disease marker and it has been developed as source of polyclonal antibodies from patient origin. In the current study, we develop recombinant protein which resulted from cloning and expression of TPO gene from normal person and AITD patients. This work flows involves: DNA isolation and PCR to obtain TPO gene from human blood, insertion of TPO gene to plasmid and transformation to E. coli BL21, Bacterial culture to obtain protein product, protein purification and product analysis. This products can use for application to immunochromatography based test. This work could achieved with the goal of producing autoimmune markers with a guaranteed quality, sensitive, specific and economically. So with the collaboration with industries these devices could be used for early detection. Keywords: recombinant protein, TPO gene, Autoimmune thyroid diseases (AITD)ction of the diseases in the community.

  18. Che a 1: recombinant expression, purification and correspondence to the natural form.

    Science.gov (United States)

    Barderas, Rodrigo; Villalba, Mayte; Rodríguez, Rosalía

    2004-12-01

    Pollinosis to chenopods is one of the main causes of allergy in desertic regions and it is increasing in the South of Europe and Western USA. Che a 1 is a major allergen for chenopod-allergic subjects and belongs to the Ole-e-1-like family of proteins. Pichia pastoris yeast has been used as expression system to produce the recombinant form of Che a 1 (rChe a 1). The allergen was isolated using a gel permeation column and reverse-phase/high-performance liquid chromatography. Molecular characterization was performed using Edman degradation, mass spectrometry and concanavalin A staining. Sera from patients allergic to chenopod pollen, as well as polyclonal and monoclonal antibodies raised against Ole e 1, were used in immunoblotting, ELISA and inhibition assays for immunological characterization of rChe a 1. The allergen was purified to homogeneity with a final yield of 15 mg/l of cell culture and showed a glycosylated character. N-terminal amino acid sequence of rChe a 1 and molecular mass were according to those of the protein isolated from chenopod pollen. The recombinant allergen maintained the IgG and IgE epitopes of the natural allergen deduced from the immunological assays. Structural and in vitro immunological properties of rChe a 1 produced in P. pastoris were equivalent to those of the natural form of the allergen and, thus, it could be used in testing patients allergic to chenopods. 2004 S. Karger AG, Basel.

  19. Biochemical characterization of Aspergillus oryzae recombinant α-l-rhamnosidase expressed in Pichia pastoris.

    Science.gov (United States)

    Ishikawa, Mai; Shiono, Yoshihito; Koseki, Takuya

    2017-12-01

    An α-l-rhamnosidase-encoding gene from Aspergillus oryzae, which belongs to the glycoside hydrolase family 78, was cloned and expressed in Pichia pastoris. SDS-PAGE of the purified recombinant α-l-rhamnosidase protein revealed smeared bands with apparent molecular mass of 90-130 kDa. After N-deglycosylation, the recombinant enzyme showed a molecular mass of 70 kDa. The enzyme exhibited optimal activity at a pH of 5.0 and a temperature of 70 °C. Specific activity of the enzyme was higher toward hesperidin than toward naringin, which consist of α-1,6 and α-1,2 linkages, respectively. The activity was also higher toward hesperidin than toward rutin, which consist of 7-O- and 3-O-glycosyl linkages of flavonoids, respectively. Kinetic analysis of the enzyme showed that the Michaelis constant (K m ) was lowest toward rutin, moderate toward naringin, and higher toward p-nitrophenyl-α-l-rhamnopyranoside and hesperidin. Its high catalytic efficiency (k cat /K m ) toward rutin was results of its low K m value while its high catalytic efficiency toward hesperidin was results of a considerably high k cat value. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Effect of Plasmid Design and Type of Integration Event on Recombinant Protein Expression in Pichia pastoris.

    Science.gov (United States)

    Vogl, Thomas; Gebbie, Leigh; Palfreyman, Robin W; Speight, Robert

    2018-03-15

    Saccharomyces cerevisiae , expression cassettes carrying foreign genes integrate highly specifically at the targeted sites in the genome. In contrast, cassettes often integrate at random genomic positions in nonconventional yeasts, such as Pichia pastoris (syn. Komagataella phaffii ). Hence, cells from the same transformation event often behave differently, with significant clonal variation necessitating the screening of large numbers of strains. The importance of this study is that we systematically investigated the influence of integration events in more than 700 strains. Our findings provide novel insight into clonal variation in P. pastoris and, thus, how to avoid pitfalls and obtain reliable results. The underlying mechanisms may also play a role in other yeasts and hence could be generally relevant for recombinant yeast protein production strains. Copyright © 2018 American Society for Microbiology.

  1. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  2. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  3. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  4. Recombinant expression of homodimeric 660 kDa human thyroglobulin in soybean seeds: an alternative source of human thyroglobulin.

    Science.gov (United States)

    Powell, Rebecca; Hudson, Laura C; Lambirth, Kevin C; Luth, Diane; Wang, Kan; Bost, Kenneth L; Piller, Kenneth J

    2011-07-01

    Soybean seeds possess many qualities that make them ideal targets for the production of recombinant proteins. However, one quality often overlooked is their ability to stockpile large amounts of complex storage proteins. Because of this characteristic, we hypothesized that soybean seeds would support recombinant expression of large and complex proteins that are currently difficult or impossible to express using traditional plant and non-plant-based host systems. To test this hypothesis, we transformed soybeans with a synthetic gene encoding human thyroglobulin (hTG)-a 660 kDa homodimeric protein that is widely used in the diagnostic industry for screening and detection of thyroid disease. In the absence of a recombinant system that can produce recombinant hTG, research and diagnostic grade hTG continues to be purified from cadaver and surgically removed thyroid tissue. These less-than-ideal tissue sources lack uniform glycosylation and iodination and therefore introduce variability when purified hTG is used in sensitive ELISA screens. In this study, we report the successful expression of recombinant hTG in soybean seeds. Authenticity of the soy-derived protein was demonstrated using commercial ELISA kits developed specifically for the detection of hTG in patient sera. Western analyses and gel filtration chromatography demonstrated that recombinant hTG and thyroid-purified hTG are biologically similar with respect to size, mass, charge and subunit interaction. The recombinant protein was stable over three generations and accumulated to ~1.5% of total soluble seed protein. These results support our hypothesis that soybeans represent a practical alternative to traditional host systems for the expression of large and complex proteins.

  5. Construction of recombinant plasmid pIRESEgr-IFN γ and its expression in Lewis lung carcinoma induced by irradiation

    International Nuclear Information System (INIS)

    Yang Wei; Li Xiuyi; Gong Shouliang; Sun Ting; Gong Pingsheng

    2007-01-01

    Objective: To construct the recombinant plasmid pIRESEgr-IFN γ and detect its expression in Lewis lung carcinoma induced by irradiation in vitro. Methods: The recombinant plasmid pIRESEgr-IFN γ containing Egr-1 promoter and IFN γ gene was constructed with gene recombinant technique. The plasmid was transferred into Lewis lung carcinoma by liposome in vitro. The correlations of dose- and time-effects in the expression of IFN γ gene induced by X-ray were detected by ELISA. Results: The identification with enzymes proved that Egr-1 promoter and IFN γ gene were inserted into vector pIRESlneo correctly. After X-ray irradiation with different doses, the expression of IFN γ in the supernatant of Lewis lung carcinoma transfected by pIRESEgr-IFN γ was significantly higher than that in 0 Gy group (P<0.001). After 5 Gy X-ray irradiation, the expression of IFN γ was the highest, being 4.39 times as much as that in 0 Gy group. The expression of IFN γ in the supernatant increased after 5 Gy X-ray irradiation, being 6.27 times as much as that in 0 h group 36 h after irradiation. Conclusion: The recombinant plasmid pIRESEgr-IFN γ is constructed successfully, and it has the property of enhancing the expression of IFN γ gene induced by irradiation. (authors)

  6. Formation of a Multiple Protein Complex on the Adenovirus Packaging Sequence by the IVa2 Protein▿

    OpenAIRE

    Tyler, Ryan E.; Ewing, Sean G.; Imperiale, Michael J.

    2007-01-01

    During adenovirus virion assembly, the packaging sequence mediates the encapsidation of the viral genome. This sequence is composed of seven functional units, termed A repeats. Recent evidence suggests that the adenovirus IVa2 protein binds the packaging sequence and is involved in packaging of the genome. Study of the IVa2-packaging sequence interaction has been hindered by difficulty in purifying the protein produced in virus-infected cells or by recombinant techniques. We report the first ...

  7. Recombinant expression, purification, and characterization of an acyl-CoA binding protein from Aspergillus oryzae.

    Science.gov (United States)

    Hao, Qing; Liu, Xiaoguang; Zhao, Guozhong; Jiang, Lu; Li, Ming; Zeng, Bin

    2016-03-01

    To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA encoding a candidate ACBP from A. oryzae (AoACBP) was cloned and expressed in Escherichia coli as a maltose-binding protein (MBP) fusion protein. The MBP-AoACBP protein was purified by an amylose resin chromatography column. SDS-PAGE showed that MBP-AoACBP has an estimated molecular weight of 82 kDa. Microscale thermophoresis binding assay showed that the recombinant AoACBP displayed much greater affinity for palmitoyl-CoA (K d = 80 nM) than for myristoyl-CoA (K d = 510 nM), thus demonstrating the preference of AoACBP for long-chain acyl-CoA. The data support the identification of AoACBP as a long-chain ACBP in A. oryzae.

  8. Radioiodine uptake of undifferentiated thyroid cancer cells by adenovirus-mediated Na+/ I- symporter gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    So, Y.; Lee, Y. J.; Shin, J. H.; Oh, H. J.; Chung, J. K.; Lee, M. C.; Cho, B. Y. [College of Medicine, Univ. of Seoul National, Seoul (Korea, Republic of); Lee, K. H. [Samsung Medical Center, Seoul (Korea, Republic of)

    2003-07-01

    To increase radioiodine uptake on undifferentiated thyroid cancer cell (ARO cells) by adenovirus-mediated human Na+/I- symporter (hNIS) gene transfer. Recombinant adenovirus Ad-hNIS was manufactured successfully. After transfecting Ad-hNIS on ARO cells, in vitro I-125 uptake and efflux studies were performed. For in vivo studies, 1.510'8 p.f.u. (50 1) of Ad-hNIS was injected into xenograft ARO tumors on the R thigh of BALB/c nu/nu mice (n=12), and same amount of normal saline was injected into xenograft ARO tumors on the L thigh. Two, 3, 4 and 6 days after intratumoral injection of Ad-hNIS, I-131 images (3 mice per day) were taken and xenograft tumors on both thighs were all excised. Total RNA was extracted from each tumor tissue and RT-PCR was performed to confirm the hNIS expression of Ad-hNIS injected xenograft ARO tumors. I-125 uptake of Ad-hNIS transfected ARO cells was increased up to 233 folds at 120 minutes in vitro. I-125 efflux study revealed rapid washout of I-125 from Ad-hNIS transfected ARO cells. On dynamic image, I-131 uptake of Ad-hNIS injected ARO tumor was continuously increased until 60 minutes. Mean count ratios of xenograft ARO tumors (R/L) of 60 minutes I-131 images at 2, 3, 4 and 6 days after Ad-hNIS injection were 2.85, 2.54, 2.31, and 2.18, each. On RT-PCR, hNIS expression of Ad-hNIS transfected ARO xenograft tumors was confirmed. Radioiodine uptake was successfully increased in ARO cells by adenovirus-mediated hNIs gene transfer both in vitro and in vivo.

  9. Construction of an infectious clone of human adenovirus type 41.

    Science.gov (United States)

    Chen, Duo-Ling; Dong, Liu-Xin; Li, Meng; Guo, Xiao-Juan; Wang, Min; Liu, Xin-Feng; Lu, Zhuo-Zhuang; Hung, Tao

    2012-07-01

    Human adenovirus type 41 (HAdV-41) is well known for its fastidiousness in cell culture. To construct an infectious clone of HAdV-41, a DNA fragment containing the left and right ends of HAdV-41 as well as a kanamycin resistance gene and a pBR322 replication origin was excised from the previously constructed plasmid pAd41-GFP. Using homologous recombination, the plasmid pKAd41 was generated by co-transformation of the E. coli BJ5183 strain with this fragment and HAdV-41 genomic DNA. Virus was rescued from pKAd41-transfected 293TE7 cells, a HAdV-41 E1B55K-expressing cell line. The genomic integrity of the rescued virus was verified by restriction analysis and sequencing. Two fibers on the virion were confirmed by western blot. Immunofluorescence showed that more expression of the hexon protein could be found in 293TE7 cells than in 293 cells after HAdV-41 infection. The feature of non-lytic replication was preserved in 293TE7 cells, since very few progeny HAdV-41 viruses were released to the culture medium. These results show that pKAd41 is an effective infectious clone and suggest that the combination of pKAd41 and 293TE7 cells is an ideal system for virological study of HAdV-41.

  10. Controlled Autolysis and Enzyme Release in a Recombinant Lactococcal Strain Expressing the Metalloendopeptidase Enterolysin A

    Science.gov (United States)

    Hickey, Rita M.; Ross, R. Paul; Hill, Colin

    2004-01-01

    This study concerns the exploitation of the lytic enzyme enterolysin A (EntL), produced by Enterococcus faecalis strain DPC5280, to elicit the controlled autolysis of starter lactococci. EntL, a cell wall metalloendopeptidase secreted by some E. faecalis strains, can kill a wide range of gram-positive bacteria, including lactococci. The controlled expression of entL, which encodes EntL, was achieved using a nisin-inducible expression system in a lactococcal host. Zymographic analysis of EntL activity demonstrated that active enzyme is produced by the recombinant lactococcal host. Indeed, expression of EntL resulted in almost complete autolysis of the host strain 2 h after induction with nisin. Model cheese experiments using a starter strain in addition to the inducible enterolysin-producing strain showed a 27-fold increase in activity with respect to the release of lactate dehydrogenase in the strain overexpressing EntL, demonstrating the potential of EntL production in large-scale cheese production systems. Indeed, the observation that a wide range of lactic bacteria are sensitive to EntL suggests that EntL-induced autolysis has potential applications with a variety of lactic acid bacteria and could be a basis for probiotic delivery systems. PMID:15006800

  11. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  12. Novel recombinant adeno-associated viruses for Cre activated and inactivated transgene expression in neurons

    Science.gov (United States)

    Saunders, Arpiar; Johnson, Caroline A.; Sabatini, Bernardo L.

    2012-01-01

    Understanding the organization of the nervous system requires methods for dissecting the contributions of each component cell type to circuit function. One widely used approach combines genetic targeting of Cre recombinase to specific cell populations with infection of recombinant adeno-associated viruses (rAAVs) whose transgene expression is activated by Cre (“Cre-On”). Distinguishing how the Cre-expressing neurons differ functionally from neighboring Cre-negative neurons requires rAAVs that are inactivated by Cre (“Cre-Off”) and can be used in tandem with Cre-On viruses. Here we introduce two rAAV vectors that are inactivated by Cre and carry different fluorophore and optogenetic constructs. We demonstrate single and dual rAAV systems to achieve Cre-On and Cre-Off expression in spatially-intermingled cell populations of the striatum. Using these systems, we uncovered cryptic genomic interactions that occur between multiple Cre-sensitive rAAVs or between Cre-sensitive rAAVs and somatic Cre-conditional alleles and devised methods to avoid these interactions. Our data highlight both important experimental caveats associated with Cre-dependent rAAV use as well as opportunities for the development of improved rAAVs for gene delivery. PMID:22866029

  13. N-Lauroylation during the Expression of Recombinant N-Myristoylated Proteins: Implications and Solutions.

    Science.gov (United States)

    Flamm, Andrea Gabriele; Le Roux, Anabel-Lise; Mateos, Borja; Díaz-Lobo, Mireia; Storch, Barbara; Breuker, Kathrin; Konrat, Robert; Pons, Miquel; Coudevylle, Nicolas

    2016-01-01

    Incorporation of myristic acid onto the N terminus of a protein is a crucial modification that promotes membrane binding and correct localization of important components of signaling pathways. Recombinant expression of N-myristoylated proteins in Escherichia coli can be achieved by co-expressing yeast N-myristoyltransferase and supplementing the growth medium with myristic acid. However, undesired incorporation of the 12-carbon fatty acid lauric acid can also occur (leading to heterogeneous samples), especially when the available carbon sources are scarce, as it is the case in minimal medium for the expression of isotopically enriched samples. By applying this method to the brain acid soluble protein 1 and the 1-185 N-terminal region of c-Src, we show the significant, and protein-specific, differences in the membrane binding properties of lauroylated and myristoylated forms. We also present a robust strategy for obtaining lauryl-free samples of myristoylated proteins in both rich and minimal media. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.

    Science.gov (United States)

    Linares, Daniel M; Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, María; Alvarez, Miguel A

    2014-12-04

    Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.

  15. Expression, Purification and Bioactivities Analysis of Recombinant Active Peptide from Shark Liver

    Directory of Open Access Journals (Sweden)

    Boping Ye

    2009-06-01

    Full Text Available The Active Peptide from Shark Liver (APSL was expressed in E. coli BL21 cells. The cDNA encoding APSL protein was obtained from shark regenerated hepatic tissue by RT-PCR, then it was cloned in the pET-28a expression vector. The expressed fusion protein was purified by Ni-IDA affinity chromatography. SDS-PAGE and HPLC analysis showed the purity of the purified fusion protein was more than 98%. The recombinant APSL (rAPSL was tested for its biological activity both in vitro, by its ability to improve the proliferation of SMMC7721 cells, and in vivo, by its significant protective effects against acute hepatic injury induced by CCl4 and AAP (acetaminophen in mice. In addition, the rAPSL could decrease the blood glucose concentration of mice with diabetes mellitus induced by alloxan. Paraffin sections of mouse pancreas tissues showed that rAPSL (3 mg/kg could effectively protect mouse islets from lesions induced by alloxan, which indicated its potential application in theoretical research and industry.

  16. Effective non-denaturing purification method for improving the solubility of recombinant actin-binding proteins produced by bacterial expression.

    Science.gov (United States)

    Chung, Jeong Min; Lee, Sangmin; Jung, Hyun Suk

    2017-05-01

    Bacterial expression is commonly used to produce recombinant and truncated mutant eukaryotic proteins. However, heterologous protein expression may render synthesized proteins insoluble. The conventional method used to express a poorly soluble protein, which involves denaturation and refolding, is time-consuming and inefficient. There are several non-denaturing approaches that can increase the solubility of recombinant proteins that include using different bacterial cell strains, altering the time of induction, lowering the incubation temperature, and employing different detergents for purification. In this study, we compared several non-denaturing protocols to express and purify two insoluble 34 kDa actin-bundling protein mutants. The solubility of the mutant proteins was not affected by any of the approaches except for treatment with the detergent sarkosyl. These results indicate that sarkosyl can effectively improve the solubility of insoluble proteins during bacterial expression. Copyright © 2016. Published by Elsevier Inc.

  17. Recombinant myostatin reduces highly expressed microRNAs in differentiating C2C12 cells

    Directory of Open Access Journals (Sweden)

    Zachary A. Graham

    2017-03-01

    Full Text Available Myostatin is small glycopeptide that is produced and secreted by skeletal muscle. It is a potent negative regulator of muscle growth that has been associated with conditions of frailty. In C2C12 cells, myostatin limits cell differentiation. Myostatin acts through activin receptor IIB, activin receptor-like kinase (ALK and Smad transcription factors. microRNAs (miRNA are short, 22 base pair nucleotides that bind to the 3′ UTR of target mRNA to repress translation or reduce mRNA stability. In the present study, expression in differentiating C2C12 cells of the myomiRs miR-1 and 133a were down-regulated following treatment with 1 µg of recombinant myostatin at 1 d post-induction of differentiation while all myomiRs (miR-1, 133a/b and 206 were upregulated by SB431542, a potent ALK4/5/7 inhibitor which reduces Smad2 signaling, at 1 d and all, with the exception of miR-206, were upregulated by SB431542 at 3 d. The expression of the muscle-enriched miR-486 was greater following treatment with SB431542 but not altered by myostatin. Other highly expressed miRNAs in skeletal muscle, miR-23a/b and 145, were altered only at 1 d post-induction of differentiation. miR-27b responded differently to treatments at 1 d, where it was upregulated, as compared to 3 d, where it was downregulated. Neither myostatin nor SB431542 altered cell size or cell morphology. The data indicate that myostatin represses myomiR expression in differentiating C2C12 cells and that inhibition of Smad signaling with SB431542 can result in large changes in highly expressed miRNAs in differentiating myoblasts.

  18. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun [Korea Institute of Radiological and Medical and Medical Sciences, Seoul (Korea, Republic of); Chung, June Key [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using {sup 125}I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of {sup 131}I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by {sup 125}I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to {sup 131}I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system.

  19. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha fetoprotein producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression

    International Nuclear Information System (INIS)

    Kim, Kwang Il; Lee, Yong Jin; Lee, Tae Sup; Song, Inho; Cheon, Gi Jeong; Lim, Sang Moo; Kang, Joo Hyun; Chung, June Key

    2012-01-01

    This study aimed to develop a gene expression targeting method for specific imaging and therapy of alpha fetoprotein (AFP) producing hepatocellular carcinoma (HCC) cells, using an adenovirus vector containing the human sodium/iodide symporter (hNIS) gene driven by an AFP enhancer/promoter. The recombinant adenovirus vector, AdAFPhNIS (containing the hNIS gene driven by human AFP enhancer/promoter) was prepared. After in vitro infection by the adenovirus, hNIS gene expression in AFP producing cells and in AFP nonproducing cells was investigated using 125 I uptake assay and semi quantitative reverse transcription polymerase chain reaction (RT-PCR). The killing effect of 131 I vitro clonogenic assay. In addition, tumor bearing mice were intravenously injected with the adenovirus, and scintigraphic images were obtained. The expression of hNIS was efficiently demonstrated by 125 I uptake assay in AFP producing cells, but not in AFP nonproducing cells. AFP producing HCC targeted gene expression was confirmed at the mRNA level. Furthermore, in vitro clonogenic assay showed that hNIS gene expression induced by AdAFPhNIS infection in AFP producing cells caused more sensitivity to 131 I than that in AFP nonproducing cells. Injected intravenously in HuH-7 tumor xenografts mice by adenovirus, the functional hNIS gene expression was confirmed in tumor by in vivo scintigraphic imaging. An AFP producing HCC was targeted with an adenovirus vector containing the hNIS gene using the AFP enhancer/promoter in vitro and in vivo. These findings demonstrate that AFP producing HCC specific molecular imaging and radionuclide gene therapy are feasible using this recombinant adenovirus vector system

  20. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    Science.gov (United States)

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Transformation and oncogenicity by Adenoviruses

    NARCIS (Netherlands)

    Bernards, R.A.; Eb, A.J. van der

    1984-01-01

    Adenoviruses have attracted considerable attention since it was discovered by TRENTIN et all. and HUEBNER et al. that certain species (formerly called serotypes) are oncogenic when injected into newborn hamsters. Since then, adenoviruses have been used extensively as a model for studies on tumor

  2. Novel recombinant human lactoferrin: differential activation of oxidative stress related gene expression.

    Science.gov (United States)

    Kruzel, Marian L; Actor, Jeffrey K; Zimecki, Michał; Wise, Jasen; Płoszaj, Paulina; Mirza, Shaper; Kruzel, Mark; Hwang, Shen-An; Ba, Xueqing; Boldogh, Istvan

    2013-12-01

    Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Improved adhesive properties of recombinant bifidobacteria expressing the Bifidobacterium bifidum-specific lipoprotein BopA

    Directory of Open Access Journals (Sweden)

    Gleinser Marita

    2012-06-01

    Full Text Available Abstract Background Bifidobacteria belong to one of the predominant bacterial groups in the intestinal microbiota of infants and adults. Several beneficial effects on the health status of their human hosts have been demonstrated making bifidobacteria interesting candidates for probiotic applications. Adhesion of probiotics to the intestinal epithelium is discussed as a prerequisite for colonisation of and persistence in the gastrointestinal tract. Results In the present study, 15 different strains of bifidobacteria were tested for adhesion. B. bifidum was identified as the species showing highest adhesion to all tested intestinal epithelial cell (IEC lines. Adhesion of B. bifidum S17 to IECs was strongly reduced after treatment of bacteria with pronase. These results strongly indicate that a proteinaceous cell surface component mediates adhesion of B. bifidum S17 to IECs. In silico analysis of the currently accessible Bifidobacterium genomes identified bopA encoding a lipoprotein as a B. bifidum-specific gene previously shown to function as an adhesin of B. bifidum MIMBb75. The in silico results were confirmed by Southern Blot analysis. Furthermore, Northern Blot analysis demonstrated that bopA is expressed in all B. bifidum strains tested under conditions used to cultivate bacteria for adhesion assays. The BopA gene was successfully expressed in E. coli and purified by Ni-NTA affinity chromatography as a C-terminal His6-fusion. Purified BopA had an inhibitory effect on adhesion of B. bifidum S17 to IECs. Moreover, bopA was successfully expressed in B. bifidum S17 and B. longum/infantis E18. Strains overexpressing bopA showed enhanced adhesion to IECs, clearly demonstrating a role of BopA in adhesion of B. bifidum strains. Conclusions BopA was identified as a B. bifidum-specific protein involved in adhesion to IECs. Bifidobacterium strains expressing bopA show enhanced adhesion. Our results represent the first report on recombinant

  4. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    Science.gov (United States)

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant

  5. Alteration of a recombinant protein N-glycan structure in silkworms by partial suppression of N-acetylglucosaminidase gene expression.

    Science.gov (United States)

    Kato, Tatsuya; Kikuta, Kotaro; Kanematsu, Ayumi; Kondo, Sachiko; Yagi, Hirokazu; Kato, Koichi; Park, Enoch Y

    2017-09-01

    To synthesize complex type N-glycans in silkworms, shRNAs against the fused lobe from Bombyx mori (BmFDL), which codes N-acetylglucosaminidase (GlcNAcase) in the Golgi, was expressed by recombinant B. mori nucleopolyhedrovirus (BmNPV) in silkworm larvae. Expression was under the control of the actin promoter of B. mori or the U6-2 and i.e.-2 promoters from Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV). The reduction of specific GlcNAcase activity was observed in Bm5 cells and silkworm larvae using the U6-2 promoter. In silkworm larvae, the partial suppression of BmFDL gene expression was observed. When shRNA against BmFDL was expressed under the control of U6-2 promoter, the Man 3 GlcNAc(Fuc)GlcNAc structure appeared in a main N-glycans of recombinant human IgG. These results suggested that the control of BmFDL expression by its shRNA in silkworms caused the modification of its N-glycan synthetic pathway, which may lead to the alteration of N-glycans in the expressed recombinant proteins. Suppression of BmFDL gene expression by shRNA is not sufficient to synthesize complex N-glycans in silkworm larvae but can modify the N-glycan synthetic pathway.

  6. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

    Directory of Open Access Journals (Sweden)

    Zanotto Carlo

    2011-11-01

    Full Text Available Abstract Background Human papilloma virus (HPV-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1 have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. Methods A new fowlpox virus recombinant encoding HPV-L1 (FPL1 was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. Results The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. Conclusion This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.

  7. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2003-01-01

    We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes(XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into...

  8. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadi Tashakkori

    2016-01-01

    Conclusion: These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB.

  9. Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis.

    Science.gov (United States)

    Hayhurst, Andrew; Happe, Scott; Mabry, Robert; Koch, Zephyr; Iverson, Brent L; Georgiou, George

    2003-05-01

    Brucella melitensis is a highly infectious animal pathogen able to cause a recurring debilitating disease in humans and is therefore high on the list of biological warfare agents. Immunoglobulin genes from mice immunized with gamma-irradiated B. melitensis strain 16M were used to construct a library that was screened by phage display against similarly prepared bacteria. The selected phage particles afforded a strong enzyme-linked immunosorbent assay (ELISA) signal against gamma-irradiated B. melitensis cells. However, extensive efforts to express the respective single chain antibody variable region fragment (scFv) in soluble form failed due to: (i) poor solubility and (ii) in vivo degradation of the c-myc tag used for the detection of the recombinant antibodies. Both problems could be addressed by: (i) fusing a human kappa light chain constant domain (Ck) chain to the scFv to generate single chain antibody fragment (scAb) antibody fragments and (ii) by co-expression of the periplasmic chaperone Skp. While soluble, functional antibodies could be produced in this manner, phage-displaying scFvs or scAbs were still found to be superior ELISA reagents for immunoassays, due to the large signal amplification afforded by anti-phage antibodies. The isolated phage antibodies were shown to be highly specific to B. melitensis and did not recognize Yersinia pseudotuberculosis in contrast to the existing diagnostic monoclonal YST 9.2.1.

  10. A simple approach for human recombinant apolipoprotein E4 expression and purification.

    Science.gov (United States)

    Argyri, Letta; Skamnaki, Vassiliki; Stratikos, Efstratios; Chroni, Angeliki

    2011-10-01

    We report a simple expression and purification procedure for the production of recombinant apolipoprotein E4 (apoE4), an important protein for the lipid homeostasis in humans that plays critical roles in the pathogenesis of cardiovascular and neurodegenerative diseases. Our approach is based on the expression of a thioredoxin-apoE4 fusion construct in bacterial cells and subsequent removal of the fused thioredoxin using the highly specific 3C protease, avoiding costly and laborious lipidation-delipidation steps used before. Our approach results in rapid, high-yield production of structurally and functionally competent apoE4 as evidenced by secondary structure measurements, thermal and chemical melting profiles and the kinetic profile of solubilization of dimyristoyl-phosphatidylcholine (DMPC) vesicles. This protocol is appropriate for laboratories with little experience in apolipoprotein biochemistry and will facilitate future studies on the role of apoE4 in the pathogenesis of cardiovascular disease and neurodegenerative diseases, including Alzheimer's disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Cloning, recombinant expression and characterization of a new phytase from Penicillium chrysogenum.

    Science.gov (United States)

    Ribeiro Corrêa, Thamy Lívia; de Queiroz, Marisa Vieira; de Araújo, Elza Fernandes

    2015-01-01

    The phy gene, which encodes a phytase in Penicillium chrysogenum CCT 1273, was cloned into the vector pAN-52-1-phy and the resulting plasmid was used for the cotransformation of Penicillium griseoroseum PG63 protoplasts. Among the 91 transformants obtained, 23 were cotransformants. From there, the phytase activity of these 23 transformants was evaluated and P. griseoroseum T73 showed the highest. The recombinant strain P. griseoroseum T73 contained the phy gene integrated in at least three sites of the genome and showed a 5.1-fold increase in phytase activity in comparison to the host strain (from 0.56 ± 0.2 to 2.86 ± 0.4 U μg protein(-1)). The deduced PHY protein has 483 amino acids; an isoelectric point (pI) higher than that reported for phytases from filamentous fungi (7.6); higher activity at pH 2.0 (73%), pH 5.0 (100%) and 50 °C; and is stable at pH values 3.0-8.0 and temperatures 70-80 °C. PHY produced by the recombinant strain P. griseoroseum T73 was stable after four weeks of storage at -20, 8 and 25 °C and was effective in releasing Pi, especially from soybeans. The data presented here show that P. griseoroseum is a successful host for expression of heterologous protein and suggest the potential use of PHY in the animal nutrition industry. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Construction of a recombinant baculovirus expressing swine hepatitis E Virus ORF2 and preliminary research on its immune effect.

    Science.gov (United States)

    Yang, Z; Hu, Y; Yuan, P; Yang, Y; Wang, K; Xie, L Y; Huang, S L; Liu, J; Ran, L; Song, Z H

    2018-03-01

    In the swine hepatitis E virus (HEV), open reading frame 2 (ORF2) is rich in antigenic determinants and neutralizing epitopes that could induce immune protection. We chose the Bac-to-Bac® Baculovirus Expression System to express fragments containing the critical neutralizing antigenic sites within the HEV ORF2 protein of pigs to obtain a recombinant baculovirus. The fragment of swine HEV ORF2 region (1198-1881bp) was cloned into vector pFastBacTM. A recombinant baculovirus, rBacmid-ORF2, was obtained after transposition and transfection. The molecular mass of the recombinant protein was 26 kDa. Mice were immunized by the intraperitoneal and oral routes with cell lysates of recombinant baculovirus rBacmid-ORF2. Serum and feces of the mice were collected separately at 0, 14, 28, and 42 d after immunization and the antibody levels of IgG and secretory IgA against swine HEV were determined using an enzyme-linked immunosorbent assay. The results suggested that rBacmid-ORF2 induced antibodies of the humoral and mucosal immune responses in mice and that the oral route was significantly superior to the intraperitoneal route. This is the first study to demonstrate that that recombinant baculovirus swine HEV ORF2 could induce humoral and mucosal immune responses in mice. Copyright© by the Polish Academy of Sciences.

  13. [Construction of a recombinant HVT virus expressing the HA gene of avian influenza virus H5N1 via Rde/ET recombination system].

    Science.gov (United States)

    Lan, Desong; Shi, Xingming; Wang, Yunfeng; Liu, Changjun; Wang, Mei; Cui, Hongyu; Tian, Guobin; Li, Jisong; Tong, Guangzhi

    2009-01-01

    In recent years,manipulation of large herpesvirus genomes has been facilitated by using bacterial artificial chromosome (BAC) vectors. We have previously reported the construction of the BAC clones (HVT BACs) of herpesvirus of turkey (HVT). With these BAC clones in hand,we manipulated the genome of HVT by utilizing Red/ET recombination system, and developed a biologically safe live vaccine based on the HVT BACs. In this two-step approach, we first transformed the plasmid pRedET into the DH10B competent cells that carried the HVT BACs,and added inducer L-arabinose into the cells. We prepared the cells into competent cells and electroporated the linear rpsL-neo counter-selection/selection cassette flanked by the 50 bp long homology arms into the cells. So the functional cassette was inserted into the U(S)2 locus. Only colonies carrying the modified BAC would survive Kanamycin selection on the agar plates. The successful integration of the rpsL-neo cassette was monitored by PCR and Streptomycin selection, for the insertion of rpsL-neo cassette cells will become Streptomycin sensitive. Secondly, in the same way, we replaced the rpsL-neo cassette with the hemagglutinin (HA) gene of (HPAIV) A/Goose/ Guangdong/1/96(H5N1) flanked by the same homology arms. Only colonies which lost the rpsL-neo cassette will grow on Streptomycin containing plates. Finally, we obtained many colonies of which the HA gene of the AIV was inserted into the U(S)2 locus to be modified of HVT. And we reconstituted one recombinant virus from transfecting one of these BAC clones DNA into chick embryo fibroblasts (CEFs). We achieved one rescued recombinant virus which designated as rHVT-HA3. The H5 subtype HA gene expression in this recombinant virus rHVT-HA3 was confirmed by immunofluorescence assay.

  14. GroEL-GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli.

    Science.gov (United States)

    Goyal, Megha; Chaudhuri, Tapan K

    2015-07-01

    Folding of aggregation prone recombinant proteins through co-expression of chaperonin GroEL and GroES has been a popular practice in the effort to optimize preparation of functional protein in Escherichia coli. Considering the demand for functional recombinant protein products, it is desirable to apply the chaperone assisted protein folding strategy for enhancing the yield of properly folded protein. Toward the same direction, it is also worth attempting folding of multiple recombinant proteins simultaneously over-expressed in E. coli through the assistance of co-expressed GroEL-ES. The genesis of this thinking was originated from the fact that cellular GroEL and GroES assist in the folding of several endogenous proteins expressed in the bacterial cell. Here we present the experimental findings from our study on co-expressed GroEL-GroES assisted folding of simultaneously over-expressed proteins maltodextrin glucosidase (MalZ) and yeast mitochondrial aconitase (mAco). Both proteins mentioned here are relatively larger and aggregation prone, mostly form inclusion bodies, and undergo GroEL-ES assisted folding in E. coli cells during over-expression. It has been reported that the relative yield of properly folded functional forms of MalZ and mAco with the exogenous GroEL-ES assistance were comparable with the results when these proteins were overexpressed alone. This observation is quite promising and highlights the fact that GroEL and GroES can assist in the folding of multiple substrate proteins simultaneously when over-expressed in E. coli. This method might be a potential tool for enhanced production of multiple functional recombinant proteins simultaneously in E. coli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  16. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  17. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase

    Directory of Open Access Journals (Sweden)

    Garg Neha

    2012-10-01

    Full Text Available Abstract Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac. Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was

  18. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase.

    Science.gov (United States)

    Garg, Neha; Bieler, Nora; Kenzom, Tenzin; Chhabra, Meenu; Ansorge-Schumacher, Marion; Mishra, Saroj

    2012-10-23

    Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg(-1) protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Laccase of C. bulleri was successfully produced extra-cellularly to a high level of 7200

  19. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2010-07-01

    Full Text Available Abstract Background Hydrogenases catalyze reversible reaction between hydrogen (H2 and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hyaA and hyaB genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability. Results Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction, based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition. Conclusions This is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is

  20. A rapid screening method to monitor expression of various recombinant proteins from prokaryotic and eukaryotic expression systems using MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Jebanathirajah, J.A.; Andersen, S.; Blagoev, B.

    2002-01-01

    Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive...

  1. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Preliminary studies on gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats

    International Nuclear Information System (INIS)

    Liu Chunjie; Wang Dewen; Zhang Zhaoshan; Gao Yabing; Xiong Chengqi; Long Jianyin; Wang Huixin; Peng Ruiyun; Cui Xuemei

    2001-01-01

    Objective: To observed the efficiency of gene therapy with TGF β1 antisense gene/liposome complexes and adenovirus transfer vector in RPF rats. Methods: TGFβ1 sense and antisense gene expression vectors and adenovirus transfer vector were introduced into rat bronchus by way of intratracheal instillation. Results: At day 1.5 after TGFβ1 sense and antisense gene transfer, PCR amplification using neo gene-specific primer from lung tissue DNA was all positive. After day 5.5, 67% (2/3) of lung tissue DNA was positive. RNA dot blot hybridization indicated that TGFβ1 mRNA content of lung tissue transfected with pMAMneo-antiTGFβ1 gene decreased. Detection of lung hydroxyproline (Hyp) content after day 35 of gene transfer showed that even in lung of rats received pMAMneo-AntiTGFβ1 lipid complexes it raised remarkably (P 9 pfu/ml were instilled into bronchus at 0.5 ml per rat. After day 2 day 6, the lung tissues of all six rats (three per each group )expressed the transfected luciferase gene by luminometer. Conclusion: Cationic lipid-mediated TGFβ1 antisense gene therapy was a simple and easy method. It can slow down the course of pathogenesis of lung fibrosis. Replication-deficient recombinant adenovirus-mediated gene therapy of lung diseases is a good and efficient method

  3. Two potential recombinant rabies vaccines expressing canine parvovirus virion protein 2 induce immunogenicity to canine parvovirus and rabies virus.

    Science.gov (United States)

    Luo, Jun; Shi, Hehe; Tan, Yeping; Niu, Xuefeng; Long, Teng; Zhao, Jing; Tian, Qin; Wang, Yifei; Chen, Hao; Guo, Xiaofeng

    2016-08-17

    Both rabies virus (RABV) and canine parvovirus (CPV) cause lethal diseases in dogs. In this study, both high egg passage Flury (HEP-Flury) strains of RABV and recombinant RABV carrying double RABV glycoprotein (G) gene were used to express the CPV virion protein 2 (VP2) gene, and were designated rHEP-VP2 and, rHEP-dG-VP2 respectively. The two recombinant RABVs maintained optimal virus titration according to their viral growth kinetics assay compared with the parental strain HEP-Flury. Western blotting indicated that G protein and VP2 were expressed in vitro. The expression of VP2 in Crandell feline kidney cells post-infection by rHEP-VP2 and rHEP-dG-VP2 was confirmed by indirect immunofluorescence assay with antibody against VP2. Immunogenicity of recombinant rabies viruses was tested in Kunming mice. Both rHEP-VP2 and rHEP-dG-VP2 induced high levels of rabies antibody compared with HEP-Flury. Mice immunized with rHEP-VP2 and rHEP-dG-VP2 both had a high level of antibodies against VP2, which can protect against CPV infection. A challenge experiment indicated that more than 80% mice immunized with recombinant RABVs survived after infection of challenge virus standard 24 (CVS-24). Together, this study showed that recombinant RABVs expressing VP2 induced protective immune responses to RABV and CPV. Therefore, rHEP-VP2 and rHEP-dG-VP2 might be potential combined vaccines for RABV and CPV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Immunogenicity of adenovirus-derived porcine parvovirus-like particles displaying B and T cell epitopes of foot-and-mouth disease.

    Science.gov (United States)

    Pan, Qunxing; Wang, Hui; Ouyang, Wei; Wang, Xiaoli; Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; He, Kongwang

    2016-01-20

    Virus-like particles (VLPs) vaccines combine many of the advantages of whole-virus vaccines and recombinant subunit vaccines, integrating key features that underlay their immunogenicity, safety and protective potential. We have hypothesized here the effective insertion of the VP1 epitopes (three amino acid residues 21-40, 141-160 and 200-213 in VP1, designated VPe) of foot-and-mouth disease (FMDV) within the external loops of PPV VP2 could be carried out without altering assembly based on structural and antigenic data. To investigate the possibility, development of two recombinant adenovirus rAd-PPV:VP2-FMDV:VPe a or rAd-PPV:VP2-FMDV:VPe b were expressed in HEK-293 cells. Out of the two insertion strategies tested, one of them tolerated an insert of 57 amino acids in one of the four external loops without disrupting the VLPs assembly. Mice were inoculated with the two recombinant adenoviruses, and an immunogenicity study showed that the highest levels of FMDV-specific humoral responses and T cell proliferation could be induced by rAd-PPV:VP2-FMDV:VPe b expressing hybrid PPV:VLPs (FMDV) in the absence of an adjuvant. Then, the protective efficacy of inoculating swine with rAd-PPV:VP2-FMDV:VPe b was tested. All pigs inoculated with rAd-PPV:VP2-FMDV:VPe b were protected from viral challenge, meanwhile the neutralizing antibody titers were significantly higher than those in the group inoculated with swine FMD type O synthetic peptide vaccine. Our results clearly demonstrate the potential usefulness of adenovirus-derived PPV VLPs as a vaccine strategy in prevention of FMDV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Recombinant HAV Expressing a Neutralization Epitope of HEV Induces Immune Response against HAV and HEV in Mice.

    Science.gov (United States)

    Xiang, Kui; Kusov, Yuri; Ying, Guan; Yan, Wang; Shan, Yi; Jinyuan, Wu; Na, Yin; Yan, Zhou; Hongjun, Li; Maosheng, Sun

    2017-09-15

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) are causative agents of acute viral hepatitis transmitted via the fecal-oral route. Both viruses place a heavy burden on the public health and economy of developing countries. To test the possibility that HAV could be used as an expression vector for the development of a combination vaccine against hepatitis A and E infections, recombinant HAV-HEp148 was created as a vector to express an HEV neutralization epitope (HEp148) located at aa 459-606 of the HEV capsid protein. The recombinant virus expressed the HEp148 protein in a partially dimerized state in HAV-susceptible cells. Immunization with the HAV-HEp148 virus induced a strong HAV- and HEV-specific immune response in mice. Thus, the present study demonstrates a novel approach to the development of a combined hepatitis A and E vaccine.

  6. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge.

    Science.gov (United States)

    Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun

    2014-12-05

    The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Construction and expression of pEgr-sHemopexin recombinant plasmid induced by ionizing radiation in vitro

    International Nuclear Information System (INIS)

    Wang Guiquan; Jilin Univ., Changchun; Xu Chuanjie; Yang Wen; Piao Chunji; Dong Zhen

    2005-01-01

    Objective: To clone mouse secretable Hemopexin (sPEX) cDNA, construct pEgr-sPEX recombinant plasmid and detect the expression of recombinant plasmid in B16F10 cells. Methods: Hemopexin cDNA was amplified from the NIH3T3 cells by RT-PCR. After the cDNA identified by sequencing, the pEgr-sPEX recombinant plasmid was constructed and the plasmid was transfected into B16F10 cells with liposome and the expression of PEX induced by ionizing radiation in B16F10 cells was detected by Western blotting. Results: The sequencing results proved the cloned sPEX cDNA to be completely identical with that reported in the GenBank. The mouse sPEX cDNA was inserted correctly into expression vector and expressed successfully. Conclusion: The mouse sPEX cDNA is cloned successfully and it is confirmed that pEgr-sPEX possesses the radiation inducing expression characteristics in vitro. (authors)

  8. Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli.

    Science.gov (United States)

    Zheng, Wenjun; Wang, Qingsong; Bi, Qun

    2016-04-01

    Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.

  9. Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Young Kee Chae

    Full Text Available Escherichia coli has been the most widely used host to produce large amounts of heterologous proteins. However, given an input plasmid DNA, E. coli may produce soluble protein, produce only inclusion bodies, or yield little or no protein at all. Many efforts have been made to surmount these problems, but most of them have involved time-consuming and labor-intensive trial-and-error. We hypothesized that different metabolomic fingerprints might be associated with different protein production outcomes. If so, then it might be possible to change the expression pattern by manipulating the metabolite environment. As a first step in testing this hypothesis, we probed a subset of the intracellular metabolites by partially labeling it with 13C-glucose. We tested 71 genes and identified 17 metabolites by employing the two-dimensional NMR spectroscopy. The statistical analysis showed that there existed the metabolite compositions favoring protein production. We hope that this work would help devise a systematic and predictive approach to the recombinant protein production.

  10. Glycosylation analysis of recombinant neutral protease I from Aspergillus oryzae expressed in Pichia pastoris.

    Science.gov (United States)

    Lei, Da; Xu, Yang; He, Qinghua; Pang, Yifeng; Chen, Bo; Xiong, Liang; Li, Yanping

    2013-12-01

    Neutral protease I from Aspergillus oryzae 3.042 was expressed in Pichia pastoris and its N-glycosylation properties were analyzed. After purification by nickel-affinity chromatography column, the recombinant neutral protease (rNPI) was confirmed to be N-glycosylated by periodicacid/Schiff's base staining and Endo H digestion. Moreover, the deglycosylated protein's molecular weight decreased to 43.3 kDa from 54.5 kDa analyzed by SDS-PAGE and MALDI-TOF-MS, and the hyperglycosylation extent was 21 %. The N-glycosylation site of rNPI was analyzed by nano LC-MS/MS after digesting by trypsin and Glu-C, and the unique potential site Asn41 of mature peptide was found to be glycosylated. Homology modeling of the 3D structure of rNPI indicated that the attached N-glycans hardly affected neutral protease's activity due to the great distance away from the active site of the enzyme.

  11. Recombinant expression, purification and biochemical characterization of kievitone hydratase from Nectria haematococca.

    Directory of Open Access Journals (Sweden)

    Matthias Engleder

    Full Text Available Kievitone hydratase catalyzes the addition of water to the double bond of the prenyl moiety of plant isoflavonoid kievitone and, thereby, forms the tertiary alcohol hydroxy-kievitone. In nature, this conversion is associated with a defense mechanism of fungal pathogens against phytoalexins generated by host plants after infection. As of today, a gene sequence coding for kievitone hydratase activity has only been identified and characterized in Fusarium solani f. sp. phaseoli. Here, we report on the identification of a putative kievitone hydratase sequence in Nectria haematococca (NhKHS, the teleomorph state of F. solani, based on in silico sequence analyses. After heterologous expression of the enzyme in the methylotrophic yeast Pichia pastoris, we have confirmed its kievitone hydration activity and have assessed its biochemical properties and substrate specificity. Purified recombinant NhKHS is obviously a homodimeric glycoprotein. Due to its good activity for the readily available chalcone derivative xanthohumol (XN, this compound was selected as a model substrate for biochemical studies. The optimal pH and temperature for hydratase activity were 6.0 and 35°C, respectively, and apparent Vmax and Km values for hydration of XN were 7.16 μmol min-1 mg-1 and 0.98 ± 0.13 mM, respectively. Due to its catalytic properties and apparent substrate promiscuity, NhKHS is a promising enzyme for the biocatalytic production of tertiary alcohols.

  12. Design, Recombinant Fusion Expression and Biological Evaluation of Vasoactive Intestinal Peptide Analogue as Novel Antimicrobial Agent

    Directory of Open Access Journals (Sweden)

    Chunlan Xu

    2017-11-01

    Full Text Available Antimicrobial peptides represent an emerging category of therapeutic agents with remarkable structural and functional diversity. Modified vasoactive intestinal peptide (VIP (VIP analogue 8 with amino acid sequence “FTANYTRLRRQLAVRRYLAAILGRR” without haemolytic activity and cytotoxicity displayed enhanced antimicrobial activities against Staphylococcus aureus (S. aureus ATCC 25923 and Escherichia coli (E. coli ATCC 25922 than parent VIP even in the presence of 180 mM NaCl or 50 mM MgCl2, or in the range of pH 4–10. VIP analogue 8 was expressed as fusion protein thioredoxin (Trx-VIP8 in E. coli BL21(DE at a yield of 45.67 mg/L. The minimum inhibitory concentration (MIC of the recombinant VIP analogue 8 against S. aureus ATCC 25923 and E. coli ATCC 25922 were 2 μM. These findings suggest that VIP analogue 8 is a promising candidate for application as a new and safe antimicrobial agent.

  13. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    Science.gov (United States)

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  14. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    Science.gov (United States)

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Application and expression of HSV gG1 protein from a recombinant strain.

    Science.gov (United States)

    Yan, Hua; Yan, Huishen; Huang, Tao; Li, Guocai; Gong, Weijuan; Jiao, Hongmei; Chen, Hongju; Ji, Mingchun

    2010-11-01

    According to the homologous sequence of glycoprotein G1 (gG1) genes from different strains of herpes simplex virus type 1 (HSV-1), a pair of primers was designed to amplify the gG1 gene fragment by PCR. Both the PCR product and the pGEX-4T-1 vector were digested with EcoR I and Sal I. The gG1 gene fragment was subcloned into the digested pGEX-4T-1 vector to construct a recombinant plasmid (pGEX-4T-1-gG1). The resultant plasmid was identified by dual-enzyme digestion and sequence analysis, and then transformed into Escherichia coli BL21 for expression under the induction of isopropyl β-D-1-thiogalactoside (IPTG). The expressed GST-gG1 fragment was detected by SDS-PAGE and purified by affinity chromatography. The properties of GST-gG1 fragment were evaluated by immunoblot analysis. Enzyme-linked immunosorbent assays (ELISAs) based on the GST-gG1 fragment were used for determining IgG or IgM to HSV-1. The GST-gG1 fragment-specific ELISA was also compared with ELISA with whole-HSV-1 antigen and commercial ELISA kits. The gG1-specific IgG and IFN-γ producing CD8+ T cells were induced in mice immunized with the GST-gG1 fragment. These results indicated that the GST-gG1 fragment could be used for replacing whole-virus antigen to detect IgM and IgG to HSV-1 in human sera, which provided a strategy for developing vaccines to protect HSV-1 infection using gG1 fragment. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Cloning and expression of the recombinant NP24I protein from ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... protein from tomato fruit and study of its antimicrobial ... the recombinant NP24, as well as to prove the activity of native protein on the bacterial as well as fungal .... The antifungal effect of the recombinant NP24I protein was.

  17. Adenovirus-mediated truncated Bid overexpression induced by the Cre/LoxP system promotes the cell apoptosis of CD133+ ovarian cancer stem cells.

    Science.gov (United States)

    Long, Qifang; Yang, Ru; Lu, Weixian; Zhu, Weipei; Zhou, Jundong; Zheng, Cui; Zhou, Dongmei; Yu, Ling; Wu, Jinchang

    2017-01-01

    Cancer stem cells are a small subset of cancer cells that contribute to cancer progression, metastasis, chemoresistance and recurrence. CD133-positive (CD133+) ovarian cancer cells have been identified as ovarian cancer stem cells. Adenovirus-mediated gene therapy is an innovative therapeutic method for cancer treatment. In the present study, we aimed to develop a new gene therapy to specifically eliminate CD133+ ovarian cancer stem cells by targeting CD133. We used the Cre/LoxP system to augment the selective expression of the truncated Bid (tBid) gene as suicide gene therapy in CD133+ ovarian cancer stem cells. The adenovirus (Ad)-CD133-Cre expressing Cre recombinase under the control of the CD133 promoter and Ad-CMV-LoxP-Neo-LoxP-tBid expressing tBid under the control of the CMV promoter were successfully constructed using the Cre/LoxP switching system. The co-infection of Ad-CMV-LoxP-Neo-LoxP-tBid and Ad-CD133-Cre selectively induced tBid overexpression, which inhibited cell growth and triggered the cell apoptosis of CD133+ ovarian cancer stem cells. The Cre/LoxP system-mediated tBid overexpression activated the pro-apoptotic signaling pathway and augmented the cytotoxic effect of cisplatin in CD133+ ovarian cancer stem cells. Furthermore, in xenograft experiments, co-infection with the two recombinant adenoviruses markedly suppressed tumor growth in vivo and promoted cell apoptosis in tumor tissues. Taken together, the present study provides evidence that the adenovirus-mediated tBid overexpression induced by the Cre/LoxP system can effectively eliminate CD133+ ovarian cancer stem cells, representing a novel therapeutic strategy for the treatment of ovarian cancer.

  18. Expression and characterization of recombinant single-chain salmon class I MHC fused with beta2-microglobulin with biological activity

    DEFF Research Database (Denmark)

    Zhao, Heng; Stet, René J M; Skjødt, Karsten

    2008-01-01

    Heterodimeric class I major histocompatibility complex (MHC) molecules consist of a putative 45-kDa heavy chain and a 12-kDa beta2-microglobulin (beta2m) light chain. The knowledge about MHC genes in Atlantic salmon accumulated during the last decade has allowed us to generate soluble and stable ...... MHC class I molecules with biological activity. We report here the use of a bacterial expression system to produce the recombinant single-chain MHC molecules based on a specific allele Sasa-UBA*0301. This particular allele was selected because previous work has shown its association...... antibodies were successfully produced against both the MHC class I heavy chain and beta(2)m, and showed binding to the recombinant molecule. The recombinant complex Sasabeta2mUBA*0301 was expressed and isolated; the production was scaled up by adjusting to its optimal conditions. Subsequently......, the recombinant proteins were purified by affinity chromatography using mAb against beta2m and alpha3. Eluates were analyzed by Western blot and refolded by the removal of denaturant. The correct folding was confirmed by measuring its binding capacity against mAb produced to recognize the native form of MHC...

  19. UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1

    International Nuclear Information System (INIS)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2013-01-01

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D 3 or vitamin D 2 was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D 2 was produced without additional vitamin D 2 . Endogenous ergosterol was likely converted into vitamin D 2 by UV irradiation and thermal isomerization, and then the resulting vitamin D 2 was converted to 25-hydroxyvitamin D 2 by CYP2R1. This novel method for producing 25-hydroxyvitamin D 2 without a substrate could be useful for practical purposes

  20. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice.

    Science.gov (United States)

    Bagherpour, Ghasem; Ghasemi, Hosnie; Zand, Bahare; Zarei, Najmeh; Roohvand, Farzin; Ardakani, Esmat M; Azizi, Mohammad; Khalaj, Vahid

    2018-01-01

    Saccharomyces boulardii , a subspecies of Saccharomyces cerevisiae , is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi ® ) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3 - S. boulardii . To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group ( P boulardii or PBS), and the fecal IgA titer was significantly higher in test group ( P boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii , as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.

  1. Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme.

    Science.gov (United States)

    Wang, Miaomiao; Wu, Jing; Wu, Dan

    2018-02-15

    Kojibiose as a prebiotic and inhibitor of α-glucosidase exhibits potential for a wide range of applications in the food and medicine fields; however, large-scale separation and extraction of kojibiose from nature is difficult. Sucrose phosphorylase (SPase) can be used for the production of kojibiose, and currently, SPase is only heterologously expressed in E. coli, making it unsuitable for use in the food industry. However, Bacillus subtilis is generally considered to be a safe organism potentially useful for SPase expression. Here, for the first time, we heterologously expressed Bifidobacterium adolescentis SPase in a food-grade B. subtilis strain. The results showed that SPase was efficiently secreted into the extracellular medium in the absence of a signal peptide. After culturing the recombinant strain in a 3-L bioreactor, crude SPase yield and activity reached 7.5 g/L and 5.3 U/mL, respectively, the highest levels reported to date. The optimal reaction conditions for kojibiose synthesis catalyzed by recombinant SPase were as follows: 0.5 M sucrose, 0.5 M glucose, 0.02 U enzyme /mg all_substrates , pH 7.0, 50 °C, and 30 h. Furthermore, the substrate-conversion rate reached 40.01%, with kojibiose accounting for 104.45 g/L and selectivity for kojibiose production at 97%. Here, we successfully expressed SPase in B. subtilis in the absence of a signal peptide and demonstrated its secretion into the extracellular medium. Our results indicated high levels of recombinant enzyme expression, with a substrate-conversion rate of 40.01%. These results provide a basis for large-scale preparation of kojibiose by the recombinant SPase.

  2. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis

    Science.gov (United States)

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  3. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    Science.gov (United States)

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    Science.gov (United States)

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses. Copyright © 2017 American Society for Microbiology.

  5. Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures

    Directory of Open Access Journals (Sweden)

    Cubillos Francisco A

    2012-03-01

    Full Text Available Abstract Background Expression traits can vary quantitatively between individuals and have a complex inheritance. Identification of the genetics underlying transcript variation can help in the understanding of phenotypic variation due to genetic factors regulating transcript abundance and shed light into divergence patterns. So far, only a limited number of studies have addressed this subject in Arabidopsis, with contrasting results due to dissimilar statistical power. Here, we present the transcriptome architecture in leaf tissue of two RIL sets obtained from a connected-cross design involving 3 commonly used accessions. We also present the transcriptome architecture observed in developing seeds of a third independent cross. Results The utilisation of the novel R/eqtl package (which goal is to automatize and extend functions from the R/qtl package allowed us to map 4,290 and 6,534 eQTLs in the Cvi-0 × Col-0 and Bur-0 × Col-0 recombinant populations respectively. In agreement with previous studies, we observed a larger phenotypic variance explained by eQTLs in linkage with the controlled gene (potentially cis-acting, compared to distant loci (acting necessarily indirectly or in trans. Distant eQTLs hotspots were essentially not conserved between crosses, but instead, cross-specific. Accounting for confounding factors using a probabilistic approach (VBQTL increased the mapping resolution and the number of significant associations. Moreover, using local eQTLs obtained from this approach, we detected evidence for a directional allelic effect in genes with related function, where significantly more eQTLs than expected by chance were up-regulated from one of the accessions. Primary experimental data, analysis parameters, eQTL results and visualisation of LOD score curves presented here are stored and accessible through the QTLstore service database http://qtlstore.versailles.inra.fr/. Conclusions Our results demonstrate the extensive diversity and

  6. Construction of a recombinant eukaryotic human ZHX1 gene expression plasmid and the role of ZHX1 in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jianping; Liu, Dejie; Liang, Xiaohong; Gao, Lifen; Yue, Xuetian; Yang, Yang; Ma, Chunhong; Liu, Jun

    2013-11-01

    The zinc-fingers and homeoboxes protein 1 (ZHX1) consists of 873 amino acid residues, is localized in the cell nucleus and appears to act as a transcriptional repressor. Previous studies have shown that ZHX1 interacts with nuclear factor Y subunit α (NF-YA), DNA methyltransferases (DNMT) 3B and ZHX2, all of which are involved in tumorigenesis. However, the exact role of ZHX1 in tumorigenesis remains unknown. The aim of the current study was to construct a recombinant eukaryotic expression plasmid containing the human ZHX1 (hZHX1) gene and to investigate the biological activities of ZHX1 in hepatocellular carcinoma (HCC). Reverse transcription-polymerase chain reaction (RT‑PCR) was used to amplify the N- and C-terminal fragments (ZHX1‑N and ZHX1‑C, respectively) of the hZHX1 gene. The two PCR fragments were cloned into the pEASY-T1 vector and subcloned into the pcDNA3 plasmid to generate a recombinant pcDNA3‑ZHX1 plasmid. Following identification by enzyme digestion and DNA sequencing, the recombinant pcDNA3‑ZHX1 plasmid was transfected into SMMC-7721 cells. The level of ZHX1 expression was detected by RT-PCR and western blot analysis. Cell growth curve assays were used to evaluate the effect of ZHX1 on cell proliferation. Moreover, the differential expression of ZHX1 between cancer and adjacent cirrhotic liver tissue was investigated by quantitative PCR (qPCR). Enzyme digestion and DNA sequencing confirmed the successful construction of the recombinant plasmid, pcDNA3‑ZHX1. qPCR and western blot analysis demonstrated that ZHX1 was efficiently expressed in SMMC-7721 cells and overexpression of ZHX1 may inhibit the proliferation of SMMC-7721 cells. In addition, reduced ZHX1 expression is widespread among cancer tissues from HCC patients. In conclusion, a recombinant eukaryotic expression plasmid, pcDNA3‑ZHX1, was successfully constructed. In addition, the current results indicate that a low expression of ZHX1 may be responsible for hepatocarcinogenesis.

  7. Recombinant adenovirus expressing the haemagglutinin of peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR

    OpenAIRE

    Herbert , Rebecca; Baron , Jana; Batten , Carrie; Baron , Michael; Taylor , Geraldine

    2014-01-01

    International audience; Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vacci...

  8. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

    OpenAIRE

    Casimiro, Danilo R.; Chen, Ling; Fu, Tong-Ming; Evans, Robert K.; Caulfield, Michael J.; Davies, Mary-Ellen; Tang, Aimin; Chen, Minchun; Huang, Lingyi; Harris, Virginia; Freed, Daniel C.; Wilson, Keith A.; Dubey, Sheri; Zhu, De-Min; Nawrocki, Denise

    2003-01-01

    Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defecti...

  9. Indirect Enzyme-Linked Immunosorbent Assay for Detection of Immunoglobulin G Reactive with a Recombinant Protein Expressed from the Gene Encoding the 116-Kilodalton Protein of Mycoplasma pneumoniae

    OpenAIRE

    Duffy, Michael F.; Whithear, Kevin G.; Noormohammadi, Amir H.; Markham, Philip F.; Catton, Michael; Leydon, Jennie; Browning, Glenn F.

    1999-01-01

    Serology remains the method of choice for laboratory diagnosis of Mycoplasma pneumoniae infection. Currently available serological tests employ complex cellular fractions of M. pneumoniae as antigen. To improve the specificity of M. pneumoniae diagnosis, a recombinant protein was assessed as a serodiagnostic reagent. A panel of recombinant proteins were expressed from a cloned M. pneumoniae gene that encodes a 116-kDa surface protein antigen. The recombinant proteins were assessed for reactiv...

  10. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  11. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi

    2004-01-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different...... shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall....

  12. Further Insights into the Catalytical Properties of Deglycosylated Pyranose Dehydrogenase from Agaricus meleagris Recombinantly Expressed in Pichia pastoris

    OpenAIRE

    Yakovleva, Maria E.; Killyeni, Aniko; Seubert, Oliver; Conghaile, Peter O.; MacAodha, Domhnall; Leech, Donal; Gonaus, Christoph; Popescu, Ionel Catalin; Peterbauer, Clemens K.; Kjellstrom, Sven; Gorton, Lo

    2013-01-01

    The present study focuses on fragmented deglycosylated pyranose dehydrogenase (fdgPDH) from Agaricus meleagris recombinantly expressed in Pichia pastoris. Fragmented deglycosylated PDH is formed from the deglycosylated enzyme (dgPDH) when it spontaneously loses a C-terminal fragment when stored in a buffer solution at 4 °C. The remaining larger fragment has a molecular weight of ∼46 kDa and exhibits higher volumetric activity for glucose oxidation compared with the deglycosylated and glycosyl...

  13. Hydroxylation of recombinant human collagen type I alpha 1 in transgenic maize co-expressed with a recombinant human prolyl 4-hydroxylase

    Directory of Open Access Journals (Sweden)

    Pappu Kameshwari M

    2011-06-01

    Full Text Available Abstract Background Collagens require the hydroxylation of proline (Pro residues in their triple-helical domain repeating sequence Xaa-Pro-Gly to function properly as a main structural component of the extracellular matrix in animals at physiologically relevant conditions. The regioselective proline hydroxylation is catalyzed by a specific prolyl 4-hydroxylase (P4H as a posttranslational processing step. Results A recombinant human collagen type I α-1 (rCIα1 with high percentage of hydroxylated prolines (Hyp was produced in transgenic maize seeds when co-expressed with both the α- and β- subunits of a recombinant human P4H (rP4H. Germ-specific expression of rCIα1 using maize globulin-1 gene promoter resulted in an average yield of 12 mg/kg seed for the full-length rCIα1 in seeds without co-expression of rP4H and 4 mg/kg seed for the rCIα1 (rCIα1-OH in seeds with co-expression of rP4H. High-resolution mass spectrometry (HRMS analysis revealed that nearly half of the collagenous repeating triplets in rCIα1 isolated from rP4H co-expressing maize line had the Pro residues changed to Hyp residues. The HRMS analysis determined the Hyp content of maize-derived rCIα1-OH as 18.11%, which is comparable to the Hyp level of yeast-derived rCIα1-OH (17.47% and the native human CIa1 (14.59%, respectively. The increased Hyp percentage was correlated with a markedly enhanced thermal stability of maize-derived rCIα1-OH when compared to the non-hydroxylated rCIα1. Conclusions This work shows that maize has potential to produce adequately modified exogenous proteins with mammalian-like post-translational modifications that may be require for their use as pharmaceutical and industrial products.

  14. Expression optimization and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Escherichia coli novablue.

    Science.gov (United States)

    Yao, Ya-Feng; Weng, Yih-Ming; Hu, Hui-Yu; Ku, Kuo-Lung; Lin, Long-Liu

    2006-09-01

    A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.

  15. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  16. Recombinant measles virus vaccine expressing the Nipah virus glycoprotein protects against lethal Nipah virus challenge.

    Directory of Open Access Journals (Sweden)

    Misako Yoneda

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus, which emerged in Malaysia in 1998. In pigs, infection resulted in a predominantly non-lethal respiratory disease; however, infection in humans resulted in over 100 deaths. Nipah virus has continued to re-emerge in Bangladesh and India, and person-to-person transmission appeared in the outbreak. Although a number of NiV vaccine studies have been reported, there are currently no vaccines or treatments licensed for human use. In this study, we have developed a recombinant measles virus (rMV vaccine expressing NiV envelope glycoproteins (rMV-HL-G and rMV-Ed-G. Vaccinated hamsters were completely protected against NiV challenge, while the mortality of unvaccinated control hamsters was 90%. We trialed our vaccine in a non-human primate model, African green monkeys. Upon intraperitoneal infection with NiV, monkeys showed several clinical signs of disease including severe depression, reduced ability to move and decreased food ingestion and died at 7 days post infection (dpi. Intranasal and oral inoculation induced similar clinical illness in monkeys, evident around 9 dpi, and resulted in a moribund stage around 14 dpi. Two monkeys immunized subcutaneously with rMV-Ed-G showed no clinical illness prior to euthanasia after challenge with NiV. Viral RNA was not detected in any organ samples collected from vaccinated monkeys, and no pathological changes were found upon histopathological examination. From our findings, we propose that rMV-NiV-G is an appropriate NiV vaccine candidate for use in humans.

  17. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  18. Expression and evaluation of IgE-binding capacity of recombinant Pacific mackerel parvalbumin

    Directory of Open Access Journals (Sweden)

    Yuki Hamada

    2004-01-01

    Conclusions: Because the recombinant Pacific mackerel parvalbumin bearing the IgE-binding capacity of the natural counterpart is cross-reactive with various fish parvalbumins, it can be a useful tool for the diagnosis and immunotherapy of fish allergy.

  19. High-titer recombinant adeno-associated virus production utilizing a recombinant herpes simplex virus type I vector expressing AAV-2 Rep and Cap.

    Science.gov (United States)

    Conway, J E; Rhys, C M; Zolotukhin, I; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1999-06-01

    Recombinant adeno-associated virus type 2 (rAAV) vectors have recently been used to achieve long-term, high level transduction in vivo. Further development of rAAV vectors for clinical use requires significant technological improvements in large-scale vector production. In order to facilitate the production of rAAV vectors, a recombinant herpes simplex virus type I vector (rHSV-1) which does not produce ICP27, has been engineered to express the AAV-2 rep and cap genes. The optimal dose of this vector, d27.1-rc, for AAV production has been determined and results in a yield of 380 expression units (EU) of AAV-GFP produced from 293 cells following transfection with AAV-GFP plasmid DNA. In addition, d27.1-rc was also efficient at producing rAAV from cell lines that have an integrated AAV-GFP provirus. Up to 480 EU/cell of AAV-GFP could be produced from the cell line GFP-92, a proviral, 293 derived cell line. Effective amplification of rAAV vectors introduced into 293 cells by infection was also demonstrated. Passage of rAAV with d27. 1-rc results in up to 200-fold amplification of AAV-GFP with each passage after coinfection of the vectors. Efficient, large-scale production (>109 cells) of AAV-GFP from a proviral cell line was also achieved and these stocks were free of replication-competent AAV. The described rHSV-1 vector provides a novel, simple and flexible way to introduce the AAV-2 rep and cap genes and helper virus functions required to produce high-titer rAAV preparations from any rAAV proviral construct. The efficiency and potential for scalable delivery of d27.1-rc to producer cell cultures should facilitate the production of sufficient quantities of rAAV vectors for clinical application.

  20. Monitoring of Biodistribution and Persistence of Conditionally Replicative Adenovirus in a Murine Model of Ovarian Cancer Using Capsid-Incorporated mCherry and Expression of Human Somatostatin Receptor Subtype 2 Gene

    Directory of Open Access Journals (Sweden)

    Igor P. Dmitriev

    2014-10-01

    Full Text Available A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.

  1. Immunogenicity of recombinant Lactobacillus plantarum NC8 expressing goose parvovirus VP2 gene in BALB/c mice.

    Science.gov (United States)

    Liu, Yu-Ying; Yang, Wen-Tao; Shi, Shao-Hua; Li, Ya-Jie; Zhao, Liang; Shi, Chun-Wei; Zhou, Fang-Yu; Jiang, Yan-Long; Hu, Jing-Tao; Gu, Wei; Yang, Gui-Lian; Wang, Chun-Feng

    2017-06-30

    Goose parvovirus (GPV) continues to be a threat to goose farms and has significant economic effects on the production of geese. Current commercially available vaccines only rarely prevent GPV infection. In our study, Lactobacillus (L.) plantarum NC8 was selected as a vector to express the VP2 gene of GPV, and recombinant L. plantarum pSIP409-VP2/NC8 was successfully constructed. The molecular weight of the expressed recombinant protein was approximately 70 kDa. Mice were immunized with a 2 × 10 9 colony-forming unit/200 μL dose of the recombinant L. plantarum strain, and the ratios and numbers of CD11c + , CD3 + CD4 + , CD3 + CD8 + , and interferon gamma- and tumor necrosis factor alpha-expressing spleen lymphocytes in the pSIP409-VP2/NC8 group were higher than those in the control groups. In addition, we assessed the capacity of L. plantarum SIP409-VP2/NC8 to induce secretory IgA production. We conclude that administered pSIP409-VP2/NC8 leads to relatively extensive cellular responses. This study provides information on GPV infection and offers a clear framework of options available for GPV control strategies.

  2. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    Energy Technology Data Exchange (ETDEWEB)

    Albariño, César G., E-mail: calbarino@cdc.gov; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-10-15

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies.

  3. Development of a reverse genetics system to generate a recombinant Ebola virus Makona expressing a green fluorescent protein

    International Nuclear Information System (INIS)

    Albariño, César G.; Wiggleton Guerrero, Lisa; Lo, Michael K.; Nichol, Stuart T.; Towner, Jonathan S.

    2015-01-01

    Previous studies have demonstrated the potential application of reverse genetics technology in studying a broad range of aspects of viral biology, including gene regulation, protein function, cell entry, and pathogenesis. Here, we describe a highly efficient reverse genetics system used to generate recombinant Ebola virus (EBOV) based on a recent isolate from a human patient infected during the 2014–2015 outbreak in Western Africa. We also rescued a recombinant EBOV expressing a fluorescent reporter protein from a cleaved VP40 protein fusion. Using this virus and an inexpensive method to quantitate the expression of the foreign gene, we demonstrate its potential usefulness as a tool for screening antiviral compounds and measuring neutralizing antibodies. - Highlights: • Recombinant Ebola virus (EBOV) derived from Makona variant was rescued. • New protocol for viral rescue allows 100% efficiency. • Modified EBOV expresses a green fluorescent protein from a VP40-fused protein. • Modified EBOV was tested as tool to screen antiviral compounds and measure neutralizing antibodies

  4. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli.

    Science.gov (United States)

    Chiang, Chung-Jen; Chen, Hong-Chen; Chao, Yun-Peng; Tzen, Jason T C

    2005-06-15

    Nattokinase, a serine protease, and pronattokinase, when expressed in Escherichia coli, formed insoluble aggregates without enzymatic activity. For functional expression and purification, nattokinase or pronattokinase was first overexpressed in E. coli as an insoluble recombinant protein linked to the C terminus of oleosin, a structural protein of seed oil bodies, by an intein fragment. Artificial oil bodies were reconstituted with triacylglycerol, phospholipid, and the insoluble recombinant protein thus formed. Soluble nattokinase was subsequently released through self-splicing of intein induced by temperature alteration, with the remaining oleosin-intein residing in oil bodies and the leading propeptide of pronattokinase, when present, spontaneously cleaved in the process. Active nattokinase with fibrinolytic activity was harvested by concentrating the supernatant. Nattokinase released from oleosin-intein-pronattokinase exhibited 5 times higher activity than that released from oleosin-intein-nattokinase, although the production yields were similar in both cases. Furthermore, active nattokinase could be harvested in the same system by fusing pronattokinase to the N terminus of oleosin via a different intein linker, with self-splicing induced by 1,4-dithiothreitol. These results have shown a great potential of this system for bacterial expression and purification of functional recombinant proteins.

  5. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  6. Differential gene expression in human granulosa cells from recombinant FSH versus human menopausal gonadotropin ovarian stimulation protocols

    Directory of Open Access Journals (Sweden)

    Bietz Mandi G

    2010-03-01

    Full Text Available Abstract Background The study was designed to test the hypothesis that granulosa cell (GC gene expression response differs between recombinant FSH and human menopausal gonadotropin (hMG stimulation regimens. Methods Females Results After exclusions, 1736 genes exhibited differential expression between groups. Over 400 were categorized as signal transduction genes, ~180 as transcriptional regulators, and ~175 as enzymes/metabolic genes. Expression of selected genes was confirmed by RT-PCR. Differentially expressed genes included A kinase anchor protein 11 (AKAP11, bone morphogenetic protein receptor II (BMPR2, epidermal growth factor (EGF, insulin-like growth factor binding protein (IGFBP-4, IGFBP-5, and hypoxia-inducible factor (HIF-1 alpha. Conclusions Results suggest that major differences exist in the mechanism by which pure FSH alone versus FSH/LH regulate gene expression in preovulatory GC that could impact oocyte maturity and developmental competence.

  7. Adenoviruses using the cancer marker EphA2 as a receptor in vitro and in vivo by genetic ligand insertion into different capsid scaffolds.

    Directory of Open Access Journals (Sweden)

    Michael Behr

    Full Text Available Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK. This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis.

  8. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Di Yu

    Full Text Available Recombinant adenovirus serotype 5 (Ad5 vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR on the surface of target cell for efficient transduction, which limits it's utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.

  9. Adenoviruses Using the Cancer Marker EphA2 as a Receptor In Vitro and In Vivo by Genetic Ligand Insertion into Different Capsid Scaffolds

    Science.gov (United States)

    Behr, Michael; Kaufmann, Johanna K.; Ketzer, Patrick; Engelhardt, Sarah; Mück-Häusl, Martin; Okun, Pamela M.; Petersen, Gabriele; Neipel, Frank; Hassel, Jessica C.; Ehrhardt, Anja; Enk, Alexander H.; Nettelbeck, Dirk M.

    2014-01-01

    Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK). This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis. PMID:24760010

  10. Isolation and structure determination of the intact sialylated N-linked carbohydrate chains of recombinant human follitropin expressed in Chinese hamster ovary cells

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Hård, K.; Mekking, A.; Damm, J.B.L.; Kamerling, J.P.; Boer, W. de; Wijnands, R.A.

    1990-01-01

    Biologically active recombinant human follitropin has been expressed in Chinese hamster ovary cells. The carbohydrate chains of the recombinant glycoprotein hormone were enzymatically released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The oligosaccharides were separated from

  11. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  12. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    International Nuclear Information System (INIS)

    Vita, N.; Magazin, M.; Marchese, E.; Lupker, J.; Ferrara, P.

    1990-01-01

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with [35S]-methionine, or with [3H]-glucosamine and [3H]-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the [35S]-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and the structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2

  13. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins.

    Science.gov (United States)

    Hoffmann, Daniel; Ebrahimi, Mehrdad; Gerlach, Doreen; Salzig, Denise; Czermak, Peter

    2017-11-10

    The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.

  14. Expression of Hepatitis C Virus Core and E2 antigenic recombinant proteins and their use for development of diagnostic assays.

    Science.gov (United States)

    Ali, Amjad; Nisar, Muhammad; Idrees, Muhammad; Rafique, Shazia; Iqbal, Muhammad

    2015-05-01

    Early diagnosis of HCV infection is based on detection of antibodies against HCV proteins using recombinant viral antigens. The present study was designed to select, clone and express the antigenic regions of Core and E2 genes from local HCV-3a genotype and to utilize the antigenic recombinant proteins (Core & E2) to develop highly sensitive, specific and economical diagnostic assays for detection of HCV infection. The antigenic sites were determined within Core and E2 genes and were then cloned in pET-28a expression vector. The right orientation of the desired inserted fragments of Core and E2 were confirmed via sequencing prior to expression and were then transformed in BL21 (DE3) pLysS strains of E. coli and induced with 0.5mM Isopropyl-b-D-thiogalactopyranoside (IPTG) for the production of antigenic recombinant proteins. The produced truncated antigens were then purified by Nickel affinity chromatography and were confirmed by western blotting, immunoblotting and enzyme-linked immunosorbent assay (ELISA). The expressed Core and E2 recombinant antigens were used to develop immunoblotting assay for the detection of anti-HCV antibodies in sera. With immunoblotting, a total of 93-HCV infected sera and 35-HCV negative individuals were tested for the presence of anti-HCV antibodies to the Core and E2 antigens. Recombinant antigen showed 100% reactivity against HCV infected sera, with no cross reactivity against HCV-negative sera. The immunoblot assay mixture of recombinant antigens (Core+E2) showed a strong reaction intensity in the test area (TA) as compared to the individual truncated Core and E2 recombinant antigens. In the in-house ELISA assay, mixed Core and E2 recombinant antigens showed 100% reactivity against a standardized panel of 150-HCV-positive sera and non reactivity against a standardized panel of 150 HCV-negative sera while also being non reactive to sera positive for other viral infections. The antigenic recombinant antigens also were tested for the

  15. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice

    Directory of Open Access Journals (Sweden)

    Ghasem Bagherpour

    2018-04-01

    Full Text Available Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi® was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA, was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001 compared to control groups (receiving wild type S. boulardii or PBS, and the fecal IgA titer was significantly higher in test group (P < 0.05 than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic

  16. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    Science.gov (United States)

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  17. Extended Follow-up Confirms Early Vaccine-Enhanced Risk of HIV Acquisition and Demonstrates Waning Effect Over Time Among Participants in a Randomized Trial of Recombinant Adenovirus HIV Vaccine (Step Study)

    Science.gov (United States)

    Duerr, Ann; Huang, Yunda; Buchbinder, Susan; Coombs, Robert W.; Sanchez, Jorge; del Rio, Carlos; Casapia, Martin; Santiago, Steven; Gilbert, Peter; Corey, Lawrence; Robertson, Michael N.

    2012-01-01

    Background. The Step Study tested whether an adenovirus serotype 5 (Ad5)–vectored human immunodeficiency virus (HIV) vaccine could prevent HIV acquisition and/or reduce viral load set-point after infection. At the first interim analysis, nonefficacy criteria were met. Vaccinations were halted; participants were unblinded. In post hoc analyses, more HIV infections occurred in vaccinees vs placebo recipients in men who had Ad5-neutralizing antibodies and/or were uncircumcised. Follow-up was extended to assess relative risk of HIV acquisition in vaccinees vs placebo recipients over time. Methods. We used Cox proportional hazard models for analyses of vaccine effect on HIV acquisition and vaccine effect modifiers, and nonparametric and semiparametric methods for analysis of constancy of relative risk over time. Results. One hundred seventy-two of 1836 men were infected. The adjusted vaccinees vs placebo recipients hazard ratio (HR) for all follow-up time was 1.40 (95% confidence interval [CI], 1.03–1.92; P = .03). Vaccine effect differed by baseline Ad5 or circumcision status during first 18 months, but neither was significant for all follow-up time. The HR among uncircumcised and/or Ad5-seropositive men waned with time since vaccination. No significant vaccine-associated risk was seen among circumcised, Ad5-negative men (HR, 0.97; P = 1.0) over all follow-up time. Conclusions. The vaccine-associated risk seen in interim analysis was confirmed but waned with time from vaccination. Clinical Trials Registration. NCT00095576. PMID:22561365

  18. High-level expression of Bacillus naganoensis pullulanase from recombinant Escherichia coli with auto-induction: effect of lac operator.

    Directory of Open Access Journals (Sweden)

    Yao Nie

    Full Text Available Pullulanase plays an important role in specific hydrolysis of branch points in amylopectin and is generally employed as an important enzyme in starch-processing industry. So far, however, the production level of pullulanase is still somewhat low from wide-type strains and even heterologous expression systems. Here the gene encoding Bacillus naganoensis pullulanase was amplified and cloned. For expression of the protein, two recombinant systems, Escherichia coli BL21(DE3/pET-20b(+-pul and E. coli BL21(DE3/pET-22b(+-pul, were constructed, both bearing T7 promoter and signal peptide sequence, but different in the existance of lac operator and lacI gene encoding lac repressor. Recombinant pullulanase was initially expressed with the activity of up to 14 U/mL by E. coli BL21(DE3/pET-20b(+-pul with IPTG induction in LB medium, but its expression level reduced continually with the extension of cryopreservation time and basal expression was observed. However, E. coli BL21(DE3/pET-22b(+-pul , involving lac operator downstream of T7 promoter to regulate foreign gene transcription, exhibited pullulanase activity consistently without detected basal expression. By investigating the effect of lac operator, basal expression of foreign protein was found to cause expression instability and negative effect on production of target protein. Thus double-repression strategy was proposed that lac operators in both chromosome and plasmid were bound with lac repressor to repress T7 RNA polymerase synthesis and target protein expression before induction. Consequently, the total activity of pullulanase was remarkably increased to 580 U/mL with auto-induction by lac operator-involved E. coli BL21(DE3/pET-22b(+-pul. When adding 0.6% glycine in culture, the extracellular production of pullulanase was significantly improved with the extracellular activity of 502 U/mL, which is a relatively higher level achieved to date for extracellular production of pullulanase. The

  19. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.

    Science.gov (United States)

    Baek, A-Hyong; Jeon, Eun-Yeong; Lee, Sun-Mee; Park, Jin-Byung

    2015-05-01

    We demonstrated for the first time that the archaeal chaperones (i.e., γ-prefoldin and thermosome) can stabilize enzyme activity in vivo. Ricinoleic acid biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and the Pseudomonas putida KT2440 Baeyer-Villiger monooxygenase improved significantly with co-expression of γ-prefoldin or recombinant themosome originating from the deep-sea hyperthermophile archaea Methanocaldococcus jannaschii. Furthermore, the degree of enhanced activity was dependent on the expression levels of the chaperones. For example, whole-cell biotransformation activity was highest at 12 µmol/g dry cells/min when γ-prefoldin expression level was approximately 46% of the theoretical maximum. This value was approximately two-fold greater than that in E. coli, where the γ-prefoldin expression level was zero or set to the theoretical maximum. Therefore, it was assumed that the expression levels of chaperones must be optimized to achieve maximum biotransformation activity in whole-cell biocatalysts. © 2014 Wiley Periodicals, Inc.

  20. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    Science.gov (United States)

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  2. In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Choi Yoo

    2012-10-01

    Full Text Available Abstract Background In nature, mussel adhesive proteins (MAPs show remarkable adhesive properties, biocompatibility, and biodegradability. Thus, they have been considered promising adhesive biomaterials for various biomedical and industrial applications. However, limited production of natural MAPs has hampered their practical applications. Recombinant production in bacterial cells could be one alternative to obtain useable amounts of MAPs, although additional post-translational modification of tyrosine residues into 3,4-dihydroxyphenyl-alanine (Dopa and Dopaquinone is required. The superior properties of MAPs are mainly attributed to the introduction of quinone-derived intermolecular cross-links. To solve this problem, we utilized a co-expression strategy of recombinant MAP and tyrosinase in Escherichia coli to successfully modify tyrosine residues in vivo. Results A recombinant hybrid MAP, fp-151, was used as a target for in vivo modification, and a dual vector system of pET and pACYC-Duet provided co-expression of fp-151 and tyrosinase. As a result, fp-151 was over-expressed and mainly obtained from the soluble fraction in the co-expression system. Without tyrosinase co-expression, fp-151 was over-expressed in an insoluble form in inclusion bodies. The modification of tyrosine residues in the soluble-expressed fp-151 was clearly observed from nitroblue tetrazolium staining and liquid-chromatography-mass/mass spectrometry analyses. The purified, in vivo modified, fp-151 from the co-expression system showed approximately 4-fold higher bulk-scale adhesive strength compared to in vitro tyrosinase-treated fp-151. Conclusion Here, we reported a co-expression system to obtain in vivo modified MAP; additional in vitro tyrosinase modification was not needed to obtain adhesive properties and the in vivo modified MAP showed superior adhesive strength compared to in vitro modified protein. It is expected that this co-expression strategy will accelerate

  3. PDGF-receptor beta-targeted adenovirus redirects gene transfer from hepatocytes to activated stellate cells

    NARCIS (Netherlands)

    Schoemaker, Marieke H.; Rots, Marianne G.; Beljaars, Leonie; Ypma, Arjen Y.; Jansen, Peter L. M.; Poelstra, Klaas; Moshage, Albert; Haisma, Hidde J.

    2008-01-01

    Chronic liver damage may lead to liver fibrosis. In this process, hepatic activated stellate cells are the key players. Thus, activated stellate cells are attractive targets for antifibrotic gene therapy. Recombinant, adenovirus is a promising vehicle for delivering therapeutic genes to liver cells.

  4. Chimpanzee Adenovirus Vector Ebola Vaccine.

    Science.gov (United States)

    Ledgerwood, Julie E; DeZure, Adam D; Stanley, Daphne A; Coates, Emily E; Novik, Laura; Enama, Mary E; Berkowitz, Nina M; Hu, Zonghui; Joshi, Gyan; Ploquin, Aurélie; Sitar, Sandra; Gordon, Ingelise J; Plummer, Sarah A; Holman, LaSonji A; Hendel, Cynthia S; Yamshchikov, Galina; Roman, Francois; Nicosia, Alfredo; Colloca, Stefano; Cortese, Riccardo; Bailer, Robert T; Schwartz, Richard M; Roederer, Mario; Mascola, John R; Koup, Richard A; Sullivan, Nancy J; Graham, Barney S

    2017-03-09

    The unprecedented 2014 epidemic of Ebola virus disease (EVD) prompted an international response to accelerate the availability of a preventive vaccine. A replication-defective recombinant chimpanzee adenovirus type 3-vectored ebolavirus vaccine (cAd3-EBO), encoding the glycoprotein from Zaire and Sudan species, that offers protection in the nonhuman primate model, was rapidly advanced into phase 1 clinical evaluation. We conducted a phase 1, dose-escalation, open-label trial of cAd3-EBO. Twenty healthy adults, in sequentially enrolled groups of 10 each, received vaccination intramuscularly in doses of 2×10 10 particle units or 2×10 11 particle units. Primary and secondary end points related to safety and immunogenicity were assessed throughout the first 8 weeks after vaccination; in addition, longer-term vaccine durability was assessed at 48 weeks after vaccination. In this small study, no safety concerns were identified; however, transient fever developed within 1 day after vaccination in two participants who had received the 2×10 11 particle-unit dose. Glycoprotein-specific antibodies were induced in all 20 participants; the titers were of greater magnitude in the group that received the 2×10 11 particle-unit dose than in the group that received the 2×10 10 particle-unit dose (geometric mean titer against the Zaire antigen at week 4, 2037 vs. 331; P=0.001). Glycoprotein-specific T-cell responses were more frequent among those who received the 2×10 11 particle-unit dose than among those who received the 2×10 10 particle-unit dose, with a CD4 response in 10 of 10 participants versus 3 of 10 participants (P=0.004) and a CD8 response in 7 of 10 participants versus 2 of 10 participants (P=0.07) at week 4. Assessment of the durability of the antibody response showed that titers remained high at week 48, with the highest titers in those who received the 2×10 11 particle-unit dose. Reactogenicity and immune responses to cAd3-EBO vaccine were dose-dependent. At

  5. Knocking out Ornithine Decarboxylase Antizyme 1 (OAZ1 Improves Recombinant Protein Expression in the HEK293 Cell Line

    Directory of Open Access Journals (Sweden)

    Laura Abaandou

    2018-06-01

    Full Text Available Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA and small interfering RNA (siRNA, to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1 gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293 cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.

  6. Repression of the DCL2 and DCL4 genes in Nicotiana benthamiana plants for the transient expression of recombinant proteins.

    Science.gov (United States)

    Matsuo, Kouki; Matsumura, Takeshi

    2017-08-01

    The production of recombinant proteins in plants has many advantages, including safety and reduced costs. However, this technology still faces several issues, including low levels of production. The repression of RNA silencing seems to be particularly important for improving recombinant protein production because RNA silencing effectively degrades transgene-derived mRNAs in plant cells. Therefore, to overcome this, we used RNA interference technology to develop DCL2- and DCL4-repressed transgenic Nicotiana benthamiana plants (ΔD2, ΔD4, and ΔD2ΔD4 plants), which had much lower levels of NbDCL2 and/or NbDCL4 mRNAs than wild-type plants. A transient gene expression assay showed that the ΔD2ΔD4 plants accumulated larger amounts of green fluorescent protein (GFP) and human acidic fibroblast growth factor (aFGF) than ΔD2, ΔD4, and wild-type plants. Furthermore, the levels of GFP and aFGF mRNAs were also higher in ΔD2ΔD4 plants than in ΔD2, ΔD4, and wild-type plants. These findings demonstrate that ΔD2ΔD4 plants express larger amounts of recombinant proteins than wild-type plants, and so would be useful for recombinant protein production. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection.

    Directory of Open Access Journals (Sweden)

    Daniel Mendes Pereira Ardisson-Araújo

    Full Text Available Baculoviruses are the most studied insect viruses in the world and are used for biological control of agricultural and forest insect pests. They are also used as versatile vectors for expression of heterologous proteins. One of the major problems of their use as biopesticides is their slow speed to kill insects. Thus, to address this shortcoming, insect-specific neurotoxins from arachnids have been introduced into the baculovirus genome solely aiming to improve its virulence. In this work, an insecticide-like toxin gene was obtained from a cDNA derived from the venom glands of the theraphosid spider Brachypelma albiceps. The mature form of the peptide toxin (called Ba3 has a high content of basic amino acid residues, potential for three possible disulfide bonds, and a predicted three-stranded β-sheetDifferent constructions of the gene were engineered for recombinant baculovirus Autographa californica multiple nuclepolyhedrovirus (AcMNPV expression. Five different forms of Ba3 were assessed; (1 the full-length sequence, (2 the pro-peptide and mature region, (3 only the mature region, and the mature region fused to an (4 insect or a (5 virus-derived signal peptide were inserted separately into the genome of the baculovirus. All the recombinant viruses induced cell death by necrosis earlier in infection relative to a control virus lacking the toxin gene. However, the recombinant virus containing the mature portion of the toxin gene induced a faster cell death than the other recombinants. We found that the toxin construct with the signal peptide and/or pro-peptide regions delayed the necrosis phenotype. When infected cells were subjected to ultrastructural analysis, the cells showed loss of plasma membrane integrity and structural changes in mitochondria before death. Our results suggest this use of baculovirus is a potential tool to help understand or to identify the effect of insect-specific toxic peptides when produced during infection of insect

  8. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  9. Getting genetic access to natural adenovirus genomes to explore vector diversity.

    Science.gov (United States)

    Zhang, Wenli; Ehrhardt, Anja

    2017-10-01

    Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.

  10. Surface expression, single-channel analysis and membrane topology of recombinant Chlamydia trachomatis Major Outer Membrane Protein

    Directory of Open Access Journals (Sweden)

    McClafferty Heather

    2005-01-01

    Full Text Available Abstract Background Chlamydial bacteria are obligate intracellular pathogens containing a cysteine-rich porin (Major Outer Membrane Protein, MOMP with important structural and, in many species, immunity-related roles. MOMP forms extensive disulphide bonds with other chlamydial proteins, and is difficult to purify. Leaderless, recombinant MOMPs expressed in E. coli have yet to be refolded from inclusion bodies, and although leadered MOMP can be expressed in E. coli cells, it often misfolds and aggregates. We aimed to improve the surface expression of correctly folded MOMP to investigate the membrane topology of the protein, and provide a system to display native and modified MOMP epitopes. Results C. trachomatis MOMP was expressed on the surface of E. coli cells (including "porin knockout" cells after optimizing leader sequence, temperature and medium composition, and the protein was functionally reconstituted at the single-channel level to confirm it was folded correctly. Recombinant MOMP formed oligomers even in the absence of its 9 cysteine residues, and the unmodified protein also formed inter- and intra-subunit disulphide bonds. Its topology was modeled as a (16-stranded β-barrel, and specific structural predictions were tested by removing each of the four putative surface-exposed loops corresponding to highly immunogenic variable sequence (VS domains, and one or two of the putative transmembrane strands. The deletion of predicted external loops did not prevent folding and incorporation of MOMP into the E. coli outer membrane, in contrast to the removal of predicted transmembrane strands. Conclusions C. trachomatis MOMP was functionally expressed on the surface of E. coli cells under newly optimized conditions. Tests of its predicted membrane topology were consistent with β-barrel oligomers in which major immunogenic regions are displayed on surface-exposed loops. Functional surface expression, coupled with improved understanding of MOMP

  11. Expression of Recombinant Potato leafroll virus Structural and Non-structural Proteins for Antibody Production

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Moravec, Tomáš; Dědič, P.; Čeřovská, Noemi

    2011-01-01

    Roč. 159, č. 2 (2011), s. 130-132 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030; GA MZe QH71123 Institutional research plan: CEZ:AV0Z50380511 Keywords : Potato leafroll virus * recombinant viral antigen * antibody production Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.791, year: 2011

  12. Expression and Characterisation of Recombinant Rhodocyclus tenuis High Potential Iron-Sulphur Protein

    DEFF Research Database (Denmark)

    Caspersen, Michael Bjerg; Bennet, K.; Christensen, Hans Erik Mølager

    2000-01-01

    The high potential iron-sulfur protein (HiPIP) from Rhodocyclus tenuis strain 2761 has been overproduced in Escherichia coli from its structural gene, purified to apparent homogeneity, and then characterized by an array of methods. UV-visible spectra of the reduced and oxidized recombinant protein...

  13. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  14. Expression and characterization of recombinant human factor V and a mutant lacking a major portion of the connecting region

    International Nuclear Information System (INIS)

    Kane, W.H.; Devore-Carter, D.; Ortel, T.L.

    1990-01-01

    Human coagulation factor V is a protein cofactor that is an essential component of the prothrombinase complex. A full-length factor V cDNA has been subcloned into the mammalian expression vector pDX and used to transfect COS cells. Approximately 95 ± 4% of the recombinant human factor V (rHFV) synthesized in COS cells is secreted into the culture medium. Factor V activity determined by fibrometer assay increased approximately 5-fold from 0.027 ± 0.012 to 0.124 ± 0.044 unit/mL following activation by the factor V activating enzyme from Russell's viper venom (RVV-V). A chromogenic assay specific for factor Va indicated that recombinant factor V had 3.8 ± 1.3% of the activity of the activated protein. The estimated specific activity of the recombinant factor Va was approximately 1,800 ± 500 units/mg, which is similar to the specific activity of purified plasma factor Va of 1,700-2,000 units/mg. Immunoprecipitation of [ 35 S]methionine-labeled rHFV revealed a single high molecular mass component. Treatment of rHFV with thrombin or RVV-V resulted in the formation of proteolytic products that were similar to those seen with plasma factor V. The authors have also expressed a mutant, rHFV-des-B 811-1441 , that lacks a large portion of the highly glycosylated connecting region that is present in factor V. This mutant constitutively expressed 38 ± 7% of the activity of the RVV-V-activated protein. These results suggest that one of the functions of the large connecting region in factor V is to inhibit constitutive procoagulant activity

  15. Modification of the Creator recombination system for proteomics applications – improved expression by addition of splice sites

    Science.gov (United States)

    Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B

    2006-01-01

    Background Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. Results To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. Conclusion The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice

  16. Modification of the Creator recombination system for proteomics applications--improved expression by addition of splice sites.

    Science.gov (United States)

    Colwill, Karen; Wells, Clark D; Elder, Kelly; Goudreault, Marilyn; Hersi, Kadija; Kulkarni, Sarang; Hardy, W Rod; Pawson, Tony; Morin, Gregg B

    2006-03-06

    Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors. To date, we have developed over 20 novel acceptor vectors that employ a variety of promoters and epitope tags commonly employed for proteomics applications and gene function analysis. We also made several enhancements to the donor vectors including addition of different multiple cloning sites to allow shuttling from pre-existing vectors and introduction of the lacZ alpha reporter gene to allow for selection. Importantly, in order to ameliorate any effects on protein expression of the loxP site between a 5' tag and ORF, we introduced a splicing event into our expression vectors. The message produced from the resulting 'Creator Splice' vector undergoes splicing in mammalian systems to remove the loxP site. Upon analysis of our Creator Splice constructs, we discovered that protein expression levels were also significantly increased. The development of new donor and acceptor vectors has increased versatility during the cloning process and made this system compatible with a wider variety of downstream applications. The modifications introduced in our Creator Splice system were designed to remove extraneous sequences due to recombination but also aided in downstream analysis by increasing protein expression levels. As a result, we can now employ epitope tags that are detected less efficiently and reduce our assay scale to allow for higher throughput. The Creator Splice system appears to be an extremely

  17. Protective immunity induced by the vaccination of recombinant Proteus mirabilis OmpA expressed in Pichia pastoris.

    Science.gov (United States)

    Zhang, Yongbing; Yang, Shifa; Dai, Xiumei; Liu, Liping; Jiang, Xiaodong; Shao, Mingxu; Chi, Shanshan; Wang, Chuanwen; Yu, Cuilian; Wei, Kai; Zhu, Ruiliang

    2015-01-01

    Proteus mirabilis (P. mirabilis) is a zoonotic pathogen that has recently presented a rising infection rate in the poultry industry. To develop an effective vaccine to protect chickens against P. mirabilis infection, OmpA, one of the major outer membrane proteins of P. mirabilis, was expressed in Pichia pastoris. The concentration of the expressed recombinant OmpA protein reached 8.0μg/mL after induction for 96h with 1.0% methanol in the culture. In addition, OmpA protein was confirmed by SDS-PAGE and Western blot analysis using the antibody against Escherichia coli-expressed OmpA protein. Taishan Pinus massoniana pollen polysaccharide, a known plant-derived adjuvant, was mixed into the recombinant OmpA protein to prepare the OmpA subunit vaccine. We then subcutaneously inoculated this vaccine into chickens to examine the immunoprotective effects. ELISA analysis indicated that an excellent antibody response against OmpA was elicited in the vaccinated chickens. Moreover, a high protection rate of 80.0% was observed in the vaccinated group, which was subsequently challenged with P. mirabilis. The results suggest that the eukaryotic P. mirabilis OmpA was an ideal candidate protein for developing an effective subunit vaccine against P. mirabilis infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. New Orf virus (Parapoxvirus) recombinant expressing H5 hemagglutinin protects mice against H5N1 and H1N1 influenza A virus.

    Science.gov (United States)

    Rohde, Jörg; Amann, Ralf; Rziha, Hanns-Joachim

    2013-01-01

    Previously we demonstrated the versatile utility of the Parapoxvirus Orf virus (ORFV) as a vector platform for the development of potent recombinant vaccines. In this study we present the generation of new ORFV recombinants expressing the hemagglutinin (HA) or nucleoprotein (NP) of the highly pathogenic avian influenza virus (HPAIV) H5N1. Correct foreign gene expression was examined in vitro by immunofluorescence, Western blotting and flow cytometry. The protective potential of both recombinants was evaluated in the mouse challenge model. Despite adequate expression of NP, the recombinant D1701-V-NPh5 completely failed to protect mice from lethal challenge. However, the H5 HA-expressing recombinant D1701-V-HAh5n mediated solid protection in a dose-dependent manner. Two intramuscular (i.m.) injections of the HA-expressing recombinant protected all animals from lethal HPAIV infection without loss of body weight. Notably, the immunized mice resisted cross-clade H5N1 and heterologous H1N1 (strain PR8) influenza virus challenge. In vivo antibody-mediated depletion of CD4-positive and/or CD8-posititve T-cell subpopulations during immunization and/or challenge infection implicated the relevance of CD4-positive T-cells for induction of protective immunity by D1701-V-HAh5n, whereas the absence of CD8-positive T-cells did not significantly influence protection. In summary, this study validates the potential of the ORFV vectored vaccines also to combat HPAIV.

  19. Expression and Evaluation of Recombinant Plasmodium knowlesi Merozoite Surface Protein-3 (MSP-3 for Detection of Human Malaria.

    Directory of Open Access Journals (Sweden)

    Jeremy Ryan De Silva

    Full Text Available Malaria remains a major health threat in many parts of the globe and causes high mortality and morbidity with 214 million cases of malaria occurring globally in 2015. Recent studies have outlined potential diagnostic markers and vaccine candidates one of which is the merozoite surface protein (MSP-3. In this study, novel recombinant Plasmodium knowlesi MSP-3 was cloned, expressed and purified in an Escherichia coli system. Subsequently, the recombinant protein was evaluated for its sensitivity and specificity. The recombinant pkMSP-3 protein reacted with sera from patients with P. knowlesi infection in both Western blot (61% and ELISA (100%. Specificity-wise, pkMSP-3 did not react with healthy donor sera in either assay and only reacted with a few non-malarial parasitic patient sera in the ELISA assay (3 of 49. In conclusion, sensitivity and specificity of pkMSP-3 was found to be high in the ELISA and Western Blot assay and thus utilising both assays in tandem would provide the best sero-diagnostic result for P. knowlesi infection.

  20. Expression and purification of recombinant proteins in Escherichia coli tagged with a small metal-binding protein from Nitrosomonas europaea.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2016-02-01

    Escherichia coli is still the preferred organism for large-scale production of recombinant proteins. The use of fusion proteins has helped considerably in enhancing the solubility of heterologous proteins and their purification with affinity chromatography. Here, the use of a small metal-binding protein (SmbP) from Nitrosomonas europaea is described as a new fusion protein for protein expression and purification in E. coli. Fluorescent proteins tagged at the N-terminal with SmbP showed high levels of solubility, compared with those of maltose-binding protein and glutathione S-transferase, and low formation of inclusion bodies. Using commercially available IMAC resins charged with Ni(II), highly pure recombinant proteins were obtained after just one chromatography step. Proteins may be purified from the periplasm of E. coli if SmbP contains the signal sequence at the N-terminal. After removal of the SmbP tag from the protein of interest, high-yields are obtained since SmbP is a protein of just 9.9 kDa. The results here obtained suggest that SmbP is a good alternative as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Expression and kinetic properties of a recombinant 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzyme of human liver.

    Science.gov (United States)

    Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A

    1995-08-01

    Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.

  2. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    Science.gov (United States)

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant</