WorldWideScience

Sample records for recognition memory trace

  1. Spoken word recognition without a TRACE

    Science.gov (United States)

    Hannagan, Thomas; Magnuson, James S.; Grainger, Jonathan

    2013-01-01

    How do we map the rapid input of spoken language onto phonological and lexical representations over time? Attempts at psychologically-tractable computational models of spoken word recognition tend either to ignore time or to transform the temporal input into a spatial representation. TRACE, a connectionist model with broad and deep coverage of speech perception and spoken word recognition phenomena, takes the latter approach, using exclusively time-specific units at every level of representation. TRACE reduplicates featural, phonemic, and lexical inputs at every time step in a large memory trace, with rich interconnections (excitatory forward and backward connections between levels and inhibitory links within levels). As the length of the memory trace is increased, or as the phoneme and lexical inventory of the model is increased to a realistic size, this reduplication of time- (temporal position) specific units leads to a dramatic proliferation of units and connections, begging the question of whether a more efficient approach is possible. Our starting point is the observation that models of visual object recognition—including visual word recognition—have grappled with the problem of spatial invariance, and arrived at solutions other than a fully-reduplicative strategy like that of TRACE. This inspires a new model of spoken word recognition that combines time-specific phoneme representations similar to those in TRACE with higher-level representations based on string kernels: temporally independent (time invariant) diphone and lexical units. This reduces the number of necessary units and connections by several orders of magnitude relative to TRACE. Critically, we compare the new model to TRACE on a set of key phenomena, demonstrating that the new model inherits much of the behavior of TRACE and that the drastic computational savings do not come at the cost of explanatory power. PMID:24058349

  2. Output Interference in Recognition Memory

    Science.gov (United States)

    Criss, Amy H.; Malmberg, Kenneth J.; Shiffrin, Richard M.

    2011-01-01

    Dennis and Humphreys (2001) proposed that interference in recognition memory arises solely from the prior contexts of the test word: Interference does not arise from memory traces of other words (from events prior to the study list or on the study list, and regardless of similarity to the test item). We evaluate this model using output…

  3. Recency, repetition, and the multidimensional basis of recognition memory.

    Science.gov (United States)

    Buchsbaum, Bradley R; Lemire-Rodger, Sabrina; Bondad, Ashley; Chepesiuk, Alexander

    2015-02-25

    Recency and repetition are two factors that have large effects on human memory performance. One way of viewing the beneficial impact of these variables on recognition memory is to assume that both factors modulate a unidimensional memory trace strength. Although previous functional neuroimaging studies have indicated that recency and repetition may modulate similar brain structures, particularly in the region of the inferior parietal cortex, there is extensive behavioral evidence that human subjects can make independent and accurate recognition memory judgments about both an item's recency and its frequency. In the present study, we used fMRI to examine patterns of brain activity during recognition memory for auditory-verbal stimuli that were parametrically and orthogonally manipulated in terms of recency and number of repetitions. We found in a continuous recognition paradigm that the lateral inferior parietal cortex, a region that has previously been associated with recollective forms of memory, is highly sensitive to recency but not repetition. In a multivariate analysis of whole-brain activation patterns, we found orthogonal components that dissociated recency and repetition variables, indicating largely independent neural bases underlying these two factors. The results demonstrate that although both recency and repetition dramatically improve recognition memory performance, the neural bases for this improvement are dissociable, and thus are difficult to explain in terms of access to a unitary memory trace. Copyright © 2015 the authors 0270-6474/15/353544-11$15.00/0.

  4. Event-related brain potentials reflect traces of echoic memory in humans.

    Science.gov (United States)

    Winkler, I; Reinikainen, K; Näätänen, R

    1993-04-01

    In sequences of identical auditory stimuli, infrequent deviant stimuli elicit an event-related brain potential component called mismatch negativity (MMN). MMN is presumed to reflect the existence of a memory trace of the frequent stimulus at the moment of presentation of the infrequent stimulus. This hypothesis was tested by applying the recognition-masking paradigm of cognitive psychology. In this paradigm, a masking sound presented shortly before or after a test stimulus diminishes the recognition memory of this stimulus, the more so the shorter the interval between the test and masking stimuli. This interval was varied in the present study. It was found that the MMN amplitude strongly correlated with the subject's ability to discriminate between frequent and infrequent stimuli. This result strongly suggests that MMN provides a measure for a trace of sensory memory, and further, that with MMN, this memory can be studied without performance-related distortions.

  5. Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.

    Science.gov (United States)

    Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum

    2014-09-01

    Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.

  6. Traces of Drosophila Memory

    Science.gov (United States)

    Davis, Ronald L.

    2012-01-01

    Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352

  7. Right parietal cortex mediates recognition memory for melodies.

    Science.gov (United States)

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  9. How Fuzzy-Trace Theory Predicts True and False Memories for Words, Sentences, and Narratives

    Science.gov (United States)

    Reyna, Valerie F.; Corbin, Jonathan C.; Weldon, Rebecca B.; Brainerd, Charles J.

    2016-01-01

    Fuzzy-trace theory posits independent verbatim and gist memory processes, a distinction that has implications for such applied topics as eyewitness testimony. This distinction between precise, literal verbatim memory and meaning-based, intuitive gist accounts for memory paradoxes including dissociations between true and false memory, false memories outlasting true memories, and developmental increases in false memory. We provide an overview of fuzzy-trace theory, and, using mathematical modeling, also present results demonstrating verbatim and gist memory in true and false recognition of narrative sentences and inferences. Results supported fuzzy-trace theory's dual-process view of memory: verbatim memory was relied on to reject meaning-consistent, but unpresented, sentences (via recollection rejection). However, verbatim memory was often not retrieved, and gist memory supported acceptance of these sentences (via similarity judgment and phantom recollection). Thus, mathematical models of words can be extended to explain memory for complex stimuli, such as narratives, the kind of memory interrogated in law. PMID:27042402

  10. Enriched environment effects on remote object recognition memory.

    Science.gov (United States)

    Melani, Riccardo; Chelini, Gabriele; Cenni, Maria Cristina; Berardi, Nicoletta

    2017-06-03

    Since Ebbinghaus' classical work on oblivion and saving effects, we know that declarative memories may become at first spontaneously irretrievable and only subsequently completely extinguished. Recently, this time-dependent path toward memory-trace loss has been shown to correlate with different patterns of brain activation. Environmental enrichment (EE) enhances learning and memory and affects system memory consolidation. However, there is no evidence on whether and how EE could affect the time-dependent path toward oblivion. We used Object Recognition Test (ORT) to assess in adult mice put in EE for 40days (EE mice) or left in standard condition (SC mice) memory retrieval of the familiar objects 9 and 21days after learning with or without a brief retraining performed the day before. We found that SC mice show preferential exploration of new object at day 9 only with retraining, while EE mice do it even without. At day 21 SC mice do not show preferential exploration of novel object, irrespective of the retraining, while EE mice are still capable to benefit from retraining, even if they were not able to spontaneously recover the trace. Analysis of c-fos expression 20days after learning shows a different pattern of active brain areas in response to the retraining session in EE and SC mice, with SC mice recruiting the same brain network as naïve SC or EE mice following de novo learning. This suggests that EE promotes formation of longer lasting object recognition memory, allowing a longer time window during which saving is present. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Infant Visual Recognition Memory

    Science.gov (United States)

    Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.

    2004-01-01

    Visual recognition memory is a robust form of memory that is evident from early infancy, shows pronounced developmental change, and is influenced by many of the same factors that affect adult memory; it is surprisingly resistant to decay and interference. Infant visual recognition memory shows (a) modest reliability, (b) good discriminant…

  12. Tracking explicit and implicit long-lasting traces of fearful memories in humans.

    Science.gov (United States)

    Packard, Pau Alexander; Rodríguez-Fornells, Antoni; Stein, Lilian Milnitsky; Nicolás, Berta; Fuentemilla, Lluís

    2014-12-01

    Recent accounts of Posttraumatic Stress Disorder (PTSD) suggest that the encoding of an episode within a fearful context generates different implicit and explicit memory representations. Whilst implicit memory traces include the associated emotional states, explicit traces include a recoding into an abstract or gist-based structural context of the episode. Theoretically, the long-term preservation of implicit memory traces may facilitate the often untreatable memory intrusions in PTSD. Here, we tracked in two experiments how implicit and explicit memory traces for fearful episodes dissociate and evolve over time. Subjects (N=86) were presented with semantically-related word-lists in a contextual fear paradigm and tested for explicit memories either immediately (i.e., 30 min) or after a delay (i.e., 1 or 2 weeks) with a verbal recognition task. Skin Conductance Response (SCR) was used to assess implicit memory responses. Subjects showed high memory accuracy for words when tested immediately after encoding. At test, SCR was higher during the presentation of verbatim but not gist-based words encoded in a fearful context, and remained unchanged after 2 weeks, despite subjects being unaware of words' encoding context. We found no clear evidence of accurate explicit memory traces for the fearful or neutral contexts of words presented during encoding, either 30 min or 2 weeks afterwards. These findings indicate that the implicit, but not the explicit, memory trace of a fearful context of an episode can be detected at long-term through SCR and is dissociated from the gist-based memory. They may have implicationstowards the understanding of how the processing of fearful memoriescould lead to PTSD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The Role of Memory Traces Quality in Directed Forgetting: A Comparison of Young and Older Participants

    Directory of Open Access Journals (Sweden)

    Fabienne Collette

    2014-06-01

    Full Text Available A reduced directed-forgetting (DF effect in normal aging has frequently been observed with the item method. These results were interpreted as age-related difficulties in inhibiting the processing of irrelevant information. However, since the performance of older adults is usually lower on items to remember, the age effect on DF abilities could also be interpreted as reflecting memory problems. Consequently, the present study aimed at investigating the influence of memory traces quality on the magnitude of the DF effects in normal aging. We predicted that increasing the quality of memory traces (by increasing presentation times at encoding would be associated with attenuated DF effects in older participants due to the increased difficulty of inhibiting highly activated memory traces. A classical item-method DF paradigm was administered to 48 young and 48 older participants under short and long encoding conditions. Memory performance for information to memorize and to suppress was assessed with recall and recognition procedures, as well as with a Remember/Know/Guess (RKG paradigm. The results indicated that, when memory traces are equated between groups, DF effects observed with the recall, recognition and RKG procedures are of similar amplitude in both groups (all ps>0.05. This suggests that the decreased DF effect previously observed in older adults might not actually depend on their inhibitory abilities but may rather reflect quantitative and qualitative differences in episodic memory functioning.

  14. The use of the Emotional-Object Recognition as an assay to assess learning and memory associated to an aversive stimulus in rodents.

    Science.gov (United States)

    Brancato, Anna; Lavanco, Gianluca; Cavallaro, Angela; Plescia, Fulvio; Cannizzaro, Carla

    2016-12-01

    Emotionally salient experiences induce the formation of explicit memory traces, besides eliciting automatic or implicit emotional memory in rodents. This study aims at investigating the implementation of a novel task for studying the formation of limbic memory engrams as a result of the acquisition- and retrieval- of fear-conditioning - biased declarative memory traces, measured by animal discrimination of an "emotional-object". Moreover, by using this new method we investigated the potential interactions between stimulation of cannabinoid transmission and integration of emotional information and cognitive functioning. The Emotional-Object Recognition task is composed of 3 following sessions: habituation; cued fear-conditioned learning; emotional recognition. Rats are exposed to Context "B chamber" for habituation and cued fear-conditioning, and tested in Context "A chamber" for emotional-object recognition. Cued fear-conditioning induces a reduction in emotional-object exploration time during the Emotional-Object Recognition task in controls. The activation of cannabinoid signalling impairs limbic memory formation, with respect to vehicle. The Emotional-Object Recognition test overcomes several limitations of commonly employed methods that explore declarative-, spatial memory and fear-conditioning in a non-integrated manner. It allows the assessment of unbiased cognitive indicators of emotional learning and memory. The Emotional-Object Recognition task is a valuable tool for investigating whether, and at what extent, specific drugs or pathological conditions that interfere with the individual affective/emotional homeostasis, can modulate the formation of emotionally salient explicit memory traces, thus jeopardizing control and regulation of animal behavioural strategy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    Science.gov (United States)

    Yang, Jiongjiong; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiment 1–2) or pairs (Experiment 3–6) during the study phase. They then recalled the word by a cue during a cued recall task (Experiment 1–4), and judged whether the presented two words were in the same or in a different order compared to the study phase during a recognition task (Experiment 1–6). To control for perceptual matching between the study and test phase, participants were presented with vertical test pairs when they made directional judgment in Experiment 5. In Experiment 6, participants also made associative recognition judgments for word pairs presented at the same or the reversed position. The results showed that forward associations were recalled at similar levels as backward associations, and that the correlations between forward and backward associations were high in the cued recall tasks. On the other hand, the direction of forward associations was recognized more accurately (and more quickly) than backward associations, and their correlations were comparable to the control condition in the recognition tasks. This forward advantage was also obtained for the associative recognition task. Diminishing positional information did not change the pattern of associative asymmetry. These results suggest that associative asymmetry is modulated by cued recall and recognition manipulations, and that direction as a constituent part of a memory trace can facilitate associative memory. PMID:22924326

  16. Object recognition memory in zebrafish.

    Science.gov (United States)

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A single-trace dual-process model of episodic memory: a novel computational account of familiarity and recollection.

    Science.gov (United States)

    Greve, Andrea; Donaldson, David I; van Rossum, Mark C W

    2010-02-01

    Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.

  18. The influence of encoding intention on electrophysiological indices of recognition memory.

    Science.gov (United States)

    van Hooff, Johanna Catharina

    2005-04-01

    The main aim of this study was to further specify the encoding and retrieval conditions that determine the success of an ERP-based memory assessment procedure, originally derived from lie detection studies. We examined whether event-related brain potentials (ERPs) recorded during successful and unsuccessful retrieval would vary according to intentional (study) and incidental (repetition) encoding conditions. Participants (N=20) were asked to indicate recognition of previously studied words (learned targets, p=0.2) and words that were used as distractors in a preceding recognition task (repeated targets, p=0.2). Words that were recognised elicited a P3 component, which was largely absent for new words and words that failed to be recognised. Encoding intention was found to increase the P3 amplitude slightly but had no influence on P3 scalp distribution, suggesting that the differently encoded targets were similarly processed during retrieval but to a different extent. The amplitude difference was explained in terms of variance in memory trace strength and decision confidence. With respect to negative findings for repeated items in our earlier study (Van Hooff, J.C., Golden, S. 2002. Validation of an event-related potential memory assessment procedure: Intentional learning as opposed to simple repetition. J. Psychophysiol., 16, 12-22.), it was suggested that the instruction to actively retrieve the repeated words was essential for obtaining reliable indications of the presence or absence of weak memory traces.

  19. A dual-trace model for visual sensory memory.

    Science.gov (United States)

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Effects of modality and repetition in a continuous recognition memory task: Repetition has no effect on auditory recognition memory.

    Science.gov (United States)

    Amir Kassim, Azlina; Rehman, Rehan; Price, Jessica M

    2018-04-01

    Previous research has shown that auditory recognition memory is poorer compared to visual and cross-modal (visual and auditory) recognition memory. The effect of repetition on memory has been robust in showing improved performance. It is not clear, however, how auditory recognition memory compares to visual and cross-modal recognition memory following repetition. Participants performed a recognition memory task, making old/new discriminations to new stimuli, stimuli repeated for the first time after 4-7 intervening items (R1), or repeated for the second time after 36-39 intervening items (R2). Depending on the condition, participants were either exposed to visual stimuli (2D line drawings), auditory stimuli (spoken words), or cross-modal stimuli (pairs of images and associated spoken words). Results showed that unlike participants in the visual and cross-modal conditions, participants in the auditory recognition did not show improvements in performance on R2 trials compared to R1 trials. These findings have implications for pedagogical techniques in education, as well as for interventions and exercises aimed at boosting memory performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Neural circuitry for rat recognition memory

    Science.gov (United States)

    Warburton, E.C.; Brown, M.W.

    2015-01-01

    Information concerning the roles of different brain regions in recognition memory processes is reviewed. The review concentrates on findings from spontaneous recognition memory tasks performed by rats, including memory for single objects, locations, object–location associations and temporal order. Particular emphasis is given to the potential roles of different regions in the circuit of interacting structures involving the perirhinal cortex, hippocampus, medial prefrontal cortex and medial dorsal thalamus in recognition memory for the association of objects and places. It is concluded that while all structures in this circuit play roles critical to such memory, these roles can potentially be differentiated and differences in the underlying synaptic and biochemical processes involved in each region are beginning to be uncovered. PMID:25315129

  2. Accurate forced-choice recognition without awareness of memory retrieval

    OpenAIRE

    Voss, Joel L.; Baym, Carol L.; Paller, Ken A.

    2008-01-01

    Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit ...

  3. Infant word recognition: Insights from TRACE simulations.

    Science.gov (United States)

    Mayor, Julien; Plunkett, Kim

    2014-02-01

    The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants' graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan's stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life.

  4. Sleep Enhances Explicit Recollection in Recognition Memory

    Science.gov (United States)

    Drosopoulos, Spyridon; Wagner, Ullrich; Born, Jan

    2005-01-01

    Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on a contextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of…

  5. Bidirectional Modulation of Recognition Memory.

    Science.gov (United States)

    Ho, Jonathan W; Poeta, Devon L; Jacobson, Tara K; Zolnik, Timothy A; Neske, Garrett T; Connors, Barry W; Burwell, Rebecca D

    2015-09-30

    Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30-40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30-40 Hz was not effective in increasing exploration of novel images. Stimulation at 10-15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. Significance statement: Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of

  6. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection.

    Science.gov (United States)

    Cadavid, Sara; Beato, Maria Soledad

    2016-01-01

    Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively) were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on recollection

  7. Memory Distortion and Its Avoidance: An Event-Related Potentials Study on False Recognition and Correct Rejection.

    Directory of Open Access Journals (Sweden)

    Sara Cadavid

    Full Text Available Memory researchers have long been captivated by the nature of memory distortions and have made efforts to identify the neural correlates of true and false memories. However, the underlying mechanisms of avoiding false memories by correctly rejecting related lures remains underexplored. In this study, we employed a variant of the Deese/Roediger-McDermott paradigm to explore neural signatures of committing and avoiding false memories. ERP were obtained for True recognition, False recognition, Correct rejection of new items, and, more importantly, Correct rejection of related lures. With these ERP data, early-frontal, left-parietal, and late right-frontal old/new effects (associated with familiarity, recollection, and monitoring processes, respectively were analysed. Results indicated that there were similar patterns for True and False recognition in all three old/new effects analysed in our study. Also, False recognition and Correct rejection of related lures activities seemed to share common underlying familiarity-based processes. The ERP similarities between False recognition and Correct rejection of related lures disappeared when recollection processes were examined because only False recognition presented a parietal old/new effect. This finding supported the view that actual false recollections underlie false memories, providing evidence consistent with previous behavioural research and with most ERP and neuroimaging studies. Later, with the onset of monitoring processes, False recognition and Correct rejection of related lures waveforms presented, again, clearly dissociated patterns. Specifically, False recognition and True recognition showed more positive going patterns than Correct rejection of related lures signal and Correct rejection of new items signature. Since False recognition and Correct rejection of related lures triggered familiarity-recognition processes, our results suggest that deciding which items are studied is based more on

  8. Infant word recognition: Insights from TRACE simulations☆

    Science.gov (United States)

    Mayor, Julien; Plunkett, Kim

    2014-01-01

    The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants’ graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan’s stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life. PMID:24493907

  9. Hierarchical Traces for Reduced NSM Memory Requirements

    Science.gov (United States)

    Dahl, Torbjørn S.

    This paper presents work on using hierarchical long term memory to reduce the memory requirements of nearest sequence memory (NSM) learning, a previously published, instance-based reinforcement learning algorithm. A hierarchical memory representation reduces the memory requirements by allowing traces to share common sub-sequences. We present moderated mechanisms for estimating discounted future rewards and for dealing with hidden state using hierarchical memory. We also present an experimental analysis of how the sub-sequence length affects the memory compression achieved and show that the reduced memory requirements do not effect the speed of learning. Finally, we analyse and discuss the persistence of the sub-sequences independent of specific trace instances.

  10. Distributed trace using central performance counter memory

    Science.gov (United States)

    Satterfield, David L.; Sexton, James C.

    2013-01-22

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  11. Rapid eye movement sleep deprivation disrupts consolidation but not reconsolidation of novel object recognition memory in rats.

    Science.gov (United States)

    Chen, Lin; Tian, Shaowen; Ke, Jie

    2014-03-20

    There is increasing evidence that sleep plays a critical role in memory consolidation. However, there are comparatively few studies that have assessed the relationship between sleep and memory reconsolidation. In the present study, we explored the effects of rapid eye movement sleep deprivation (RSD) on the consolidation (experiment 1) and reconsolidation (experiment 2) of novel object recognition memory in rats. In experiment 1 behavioral procedure involved two training phases: sample and test. Rats were subjected to 6h RSD starting either immediately after sample (exposed to 2 objects) or 6h later. In experiment 2 behavioral procedure involved three training phases: sample, reactivation and test. Rats were subjected to 6h RSD starting either immediately after reactivation (exposed to the same 2 sample objects to reactivate the memory trace) or 6h later. Results from experiment 1 showed that post-sample RSD from 0 to 6h but not 6 to 12h disrupted novel object recognition memory consolidation. However, we found that post-reactivation RSD whether from 0 to 6h or 6 to 12h had no effect on novel object recognition memory reconsolidation in experiment 2. The results indicated that RSD selectively disrupted consolidation of novel object recognition memory, suggesting a dissociation effect of RSD on consolidation and reconsolidation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Visual Recognition Memory across Contexts

    Science.gov (United States)

    Jones, Emily J. H.; Pascalis, Olivier; Eacott, Madeline J.; Herbert, Jane S.

    2011-01-01

    In two experiments, we investigated the development of representational flexibility in visual recognition memory during infancy using the Visual Paired Comparison (VPC) task. In Experiment 1, 6- and 9-month-old infants exhibited recognition when familiarization and test occurred in the same room, but showed no evidence of recognition when…

  13. Misattribution, false recognition and the sins of memory.

    Science.gov (United States)

    Schacter, D L; Dodson, C S

    2001-09-29

    Memory is sometimes a troublemaker. Schacter has classified memory's transgressions into seven fundamental 'sins': transience, absent-mindedness, blocking, misattribution, suggestibility, bias and persistence. This paper focuses on one memory sin, misattribution, that is implicated in false or illusory recognition of episodes that never occurred. We present data from cognitive, neuropsychological and neuroimaging studies that illuminate aspects of misattribution and false recognition. We first discuss cognitive research examining possible mechanisms of misattribution associated with false recognition. We also consider ways in which false recognition can be reduced or avoided, focusing in particular on the role of distinctive information. We next turn to neuropsychological research concerning patients with amnesia and Alzheimer's disease that reveals conditions under which such patients are less susceptible to false recognition than are healthy controls, thus providing clues about the brain mechanisms that drive false recognition. We then consider neuroimaging studies concerned with the neural correlates of true and false recognition, examining when the two forms of recognition can and cannot be distinguished on the basis of brain activity. Finally, we argue that even though misattribution and other memory sins are annoying and even dangerous, they can also be viewed as by-products of adaptive features of memory.

  14. Two processes support visual recognition memory in rhesus monkeys.

    Science.gov (United States)

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-11-29

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans.

  15. fMRI characterization of visual working memory recognition.

    Science.gov (United States)

    Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph

    2014-04-15

    Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in

  16. Recall, Recognition, and the Measurement of Memory for Print Advertisements

    OpenAIRE

    Richard P. Bagozzi; Alvin J. Silk

    1983-01-01

    The recall and recognition of people for 95 print ads were examined with an aim toward investigating memory structure and decay processes. It was found that recall and recognition do not, by themselves, measure a single underlying memory state. Rather, memory is multidimensional, and recall and recognition capture only a portion of memory, while at the same time reflecting other mental states. When interest in the ads was held constant, however, recall and recognition did measure memory as a ...

  17. When is the hippocampus involved in recognition memory?

    OpenAIRE

    Barker, Gareth R. I.; Warburton, Elizabeth C.

    2011-01-01

    The role of the hippocampus in recognition memory is controversial. Recognition memory judgments may be made using different types of information, including object familiarity, an object's spatial location, or when an object was encountered. Experiment 1 examined the role of the hippocampus in recognition memory tasks that required the animals to use these different types of mnemonic information. Rats with bilateral cytotoxic lesions in the hippocampus or perirhinal or prefrontal cortex were ...

  18. Object recognition memory: neurobiological mechanisms of encoding, consolidation and retrieval.

    Science.gov (United States)

    Winters, Boyer D; Saksida, Lisa M; Bussey, Timothy J

    2008-07-01

    Tests of object recognition memory, or the judgment of the prior occurrence of an object, have made substantial contributions to our understanding of the nature and neurobiological underpinnings of mammalian memory. Only in recent years, however, have researchers begun to elucidate the specific brain areas and neural processes involved in object recognition memory. The present review considers some of this recent research, with an emphasis on studies addressing the neural bases of perirhinal cortex-dependent object recognition memory processes. We first briefly discuss operational definitions of object recognition and the common behavioural tests used to measure it in non-human primates and rodents. We then consider research from the non-human primate and rat literature examining the anatomical basis of object recognition memory in the delayed nonmatching-to-sample (DNMS) and spontaneous object recognition (SOR) tasks, respectively. The results of these studies overwhelmingly favor the view that perirhinal cortex (PRh) is a critical region for object recognition memory. We then discuss the involvement of PRh in the different stages--encoding, consolidation, and retrieval--of object recognition memory. Specifically, recent work in rats has indicated that neural activity in PRh contributes to object memory encoding, consolidation, and retrieval processes. Finally, we consider the pharmacological, cellular, and molecular factors that might play a part in PRh-mediated object recognition memory. Recent studies in rodents have begun to indicate the remarkable complexity of the neural substrates underlying this seemingly simple aspect of declarative memory.

  19. The Patrimonial Heritage of Uranium: From a Trace to a Contested Memory

    International Nuclear Information System (INIS)

    Bretesche, Sophie

    2014-01-01

    Industrial heritage of uranium mines is a sensitive question dealing with both traces issued from operations and long term management of territories. This paper investigates the recognition of a specific heritage issued from former uranium mines. Indeed, the issue of the heritage of uranium mines is debated with two stories. On the one hand, risks of territories are related to traces and remnants from the industrial period. On the other hand, the cultural heritage of territories is highlighted to be part of the national history it embodies. Tensions between the two perceptions of the territories conduct to the need of qualifying territories. A memory work, within the meaning of Ricoeur may establish a mediation between past and present

  20. Examining ERP correlates of recognition memory: Evidence of accurate source recognition without recollection

    Science.gov (United States)

    Addante, Richard, J.; Ranganath, Charan; Yonelinas, Andrew, P.

    2012-01-01

    Recollection is typically associated with high recognition confidence and accurate source memory. However, subjects sometimes make accurate source memory judgments even for items that are not confidently recognized, and it is not known whether these responses are based on recollection or some other memory process. In the current study, we measured event related potentials (ERPs) while subjects made item and source memory confidence judgments in order to determine whether recollection supported accurate source recognition responses for items that were not confidently recognized. In line with previous studies, we found that recognition memory was associated with two ERP effects: an early on-setting FN400 effect, and a later parietal old-new effect [Late Positive Component (LPC)], which have been associated with familiarity and recollection, respectively. The FN400 increased gradually with item recognition confidence, whereas the LPC was only observed for highly confident recognition responses. The LPC was also related to source accuracy, but only for items that had received a high confidence item recognition response; accurate source judgments to items that were less confidently recognized did not exhibit the typical ERP correlate of recollection or familiarity, but rather showed a late, broadly distributed negative ERP difference. The results indicate that accurate source judgments of episodic context can occur even when recollection fails. PMID:22548808

  1. The role of the hippocampus in recognition memory.

    Science.gov (United States)

    Bird, Chris M

    2017-08-01

    Many theories of declarative memory propose that it is supported by partially separable processes underpinned by different brain structures. The hippocampus plays a critical role in binding together item and contextual information together and processing the relationships between individual items. By contrast, the processing of individual items and their later recognition can be supported by extrahippocampal regions of the medial temporal lobes (MTL), particularly when recognition is based on feelings of familiarity without the retrieval of any associated information. These theories are domain-general in that "items" might be words, faces, objects, scenes, etc. However, there is mixed evidence that item recognition does not require the hippocampus, or that familiarity-based recognition can be supported by extrahippocampal regions. By contrast, there is compelling evidence that in humans, hippocampal damage does not affect recognition memory for unfamiliar faces, whilst recognition memory for several other stimulus classes is impaired. I propose that regions outside of the hippocampus can support recognition of unfamiliar faces because they are perceived as discrete items and have no prior conceptual associations. Conversely, extrahippocampal processes are inadequate for recognition of items which (a) have been previously experienced, (b) are conceptually meaningful, or (c) are perceived as being comprised of individual elements. This account reconciles findings from primate and human studies of recognition memory. Furthermore, it suggests that while the hippocampus is critical for binding and relational processing, these processes are required for item recognition memory in most situations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Medial prefrontal cortex role in recognition memory in rodents.

    Science.gov (United States)

    Morici, Juan Facundo; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-10-01

    The study of the neurobiology of recognition memory, defined by the integration of the different components of experiences that support recollection of past experiences have been a challenge for memory researches for many years. In the last twenty years, with the development of the spontaneous novel object recognition task and all its variants this has started to change. The features of recognition memory include a particular object or person ("what"), the context in which the experience took place, which can be the arena itself or the location within a particular arena ("where") and the particular time at which the event occurred ("when"). This definition instead of the historical anthropocentric one allows the study of this type of episodic memory in animal models. Some forms of recognition memory that require integration of different features recruit the medial prefrontal cortex. Focusing on findings from spontaneous recognition memory tasks performed by rodents, this review concentrates on the description of previous works that have examined the role that the medial prefrontal cortex has on the different steps of recognition memory. We conclude that this structure, independently of the task used, is required at different memory stages when the task cannot be solved by a single item strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Consolidation and restoration of memory traces in working memory.

    Science.gov (United States)

    De Schrijver, Sébastien; Barrouillet, Pierre

    2017-10-01

    Consolidation is the process through which ephemeral sensory traces are transformed into more stable short-term memory traces. It has been shown that consolidation plays a crucial role in working memory (WM) performance, by strengthening memory traces that then better resist interference and decay. In a recent study, Bayliss, Bogdanovs, and Jarrold (Journal of Memory and Language, 81, 34-50, 2015) argued that this process is separate from the processes known to restore WM traces after degradation, such as attentional refreshing and verbal rehearsal. In the present study, we investigated the relationship between the two types of processes in the context of WM span tasks. Participants were presented with series of letters for serial recall, each letter being followed by four digits for parity judgment. Consolidation opportunity was manipulated by varying the delay between each letter and the first digit to be processed, while opportunities for restoration were manipulated by varying the pace at which the parity task had to be performed (i.e., its cognitive load, or CL). Increasing the time available for either consolidation or restoration resulted in higher WM spans, with some substitutability between the two processes. Accordingly, when consolidation time was added to restoration time in the calculation of CL, the new resulting index, called extended CL, proved a very good predictor of recall performance, a finding also observed when verbal rehearsal was prevented by articulatory suppression. This substitutability between consolidation and restoration suggests that both processes may rely on the same mechanisms.

  4. Investigations into the involvement of NMDA mechanisms in recognition memory.

    Science.gov (United States)

    Warburton, E Clea; Barker, Gareth R I; Brown, Malcom W

    2013-11-01

    This review will focus on evidence showing that NMDA receptor neurotransmission is critical for synaptic plasticity processes within brain regions known to be necessary for the formation of object recognition memories. The aim will be to provide evidence concerning NMDA mechanisms related to recognition memory processes and show that recognition memory for objects, places or associations between objects and places depends on NMDA neurotransmission within the perirhinal cortex, temporal association cortex medial prefrontal cortex and hippocampus. Administration of the NMDA antagonist AP5, selectively into each of these brain regions has revealed that the extent of the involvement NMDA receptors appears dependent on the type of information required to solve the recognition memory task; thus NMDA receptors in the perirhinal cortex are crucial for the encoding of long-term recognition memory for objects, and object-in-place associations, but not for short-term recognition memory or for retrieval. In contrast the hippocampus and medial prefrontal cortex are required for both long-term and short-term recognition memory for places or associations between objects and places, or for recognition memory tasks that have a temporal component. Such studies have therefore confirmed that the multiple brain regions make distinct contributions to recognition memory but in addition that more than one synaptic plasticity process must be involved. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Memory Reconsolidation, Trace Reassociation and the Freudian Unconscious

    KAUST Repository

    Alberini, Cristina M.

    2013-01-01

    Memory traces can become labile when retrieved. This has intrigued not only neuroscientists, psychologists, and cognitive scientists but also clinicians who work with memories to treat psychopathologies, such as psychotherapists and psychoanalysts. Psychotherapists and psychoanalysts question whether the treatments based on re-evoking memories engage reconsolidation and how treatments may work and be effective with reconsolidation processes. However, reconsolidation may not easily occur in older or very strong, consolidated memories, which are, in fact, those deeply rooted in most maladaptive behaviors, and most animal reconsolidation studies have been done on memories that are only days old. Hence, the questions deepen into many more complex layers, asking the following: How are memories formed and retrieved and in part become unconscious? How does retrieval in a therapeutic setting change those traces? Here, we propose some hypotheses based on neuroscientific knowledge to begin explaining the bases of Freudian unconscious and speculate on how memory traces and Freudian unconscious intersect. © 2013 Elsevier Inc. All rights reserved.

  6. The role of nitric oxide in the object recognition memory.

    Science.gov (United States)

    Pitsikas, Nikolaos

    2015-05-15

    The novel object recognition task (NORT) assesses recognition memory in animals. It is a non-rewarded paradigm that it is based on spontaneous exploratory behavior in rodents. This procedure is widely used for testing the effects of compounds on recognition memory. Recognition memory is a type of memory severely compromised in schizophrenic and Alzheimer's disease patients. Nitric oxide (NO) is sought to be an intra- and inter-cellular messenger in the central nervous system and its implication in learning and memory is well documented. Here I intended to critically review the role of NO-related compounds on different aspects of recognition memory. Current analysis shows that both NO donors and NO synthase (NOS) inhibitors are involved in object recognition memory and suggests that NO might be a promising target for cognition impairments. However, the potential neurotoxicity of NO would add a note of caution in this context. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Can corrective feedback improve recognition memory?

    Science.gov (United States)

    Kantner, Justin; Lindsay, D Stephen

    2010-06-01

    An understanding of the effects of corrective feedback on recognition memory can inform both recognition theory and memory training programs, but few published studies have investigated the issue. Although the evidence to date suggests that feedback does not improve recognition accuracy, few studies have directly examined its effect on sensitivity, and fewer have created conditions that facilitate a feedback advantage by encouraging controlled processing at test. In Experiment 1, null effects of feedback were observed following both deep and shallow encoding of categorized study lists. In Experiment 2, feedback robustly influenced response bias by allowing participants to discern highly uneven base rates of old and new items, but sensitivity remained unaffected. In Experiment 3, a false-memory procedure, feedback failed to attenuate false recognition of critical lures. In Experiment 4, participants were unable to use feedback to learn a simple category rule separating old items from new items, despite the fact that feedback was of substantial benefit in a nearly identical categorization task. The recognition system, despite a documented ability to utilize controlled strategic or inferential decision-making processes, appears largely impenetrable to a benefit of corrective feedback.

  8. Accessing forgotten memory traces from long-term memory via visual movements

    Directory of Open Access Journals (Sweden)

    Estela eCamara

    2014-11-01

    Full Text Available Because memory retrieval often requires overt responses, it is difficult to determine to what extend forgetting occurs as a problem in explicit accessing of long-term memory traces. In this study, we used eye-tracking measures in combination with a behavioural task that favoured high forgetting rates to investigate the existence of memory traces from long-term memory in spite of failure in accessing them consciously. In 2 experiments, participants were encouraged to encode a large set of sound-picture-location associations. In a later test, sounds were presented and participants were instructed to visually scan, before a verbal memory report, for the correct location of the associated pictures in an empty screen. We found the reactivation of associated memories by sound cues at test biased oculomotor behaviour towards locations congruent with memory representations, even when participants failed to consciously provide a memory report of it. These findings reveal the emergence of a memory-guided behaviour that can be used to map internal representations of forgotten memories from long-term memory.

  9. The origin of children's implanted false memories: memory traces or compliance?

    Science.gov (United States)

    Otgaar, Henry; Verschuere, Bruno; Meijer, Ewout H; van Oorsouw, Kim

    2012-03-01

    A longstanding question in false memory research is whether children's implanted false memories represent actual memory traces or merely result from compliance. The current study examined this question using a response latency based deception task. Forty-five 8-year-old children received narratives about a true (first day at school) and false event (hot air balloon ride). Across two interviews, 58/32% of the participants developed a partial/full false memory. Interestingly, these children also showed higher false recall on an unrelated DRM paradigm compared to children without a false memory. The crucial finding, however, was that the results of the deception task revealed that children with partial and full false memories were faster to confirm than to deny statements relating to the false event. This indicates that children's implanted false memories reflect actual memory traces, and are unlikely to be explained by mere compliance. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Neural population-level memory traces in the mouse hippocampus.

    Science.gov (United States)

    Chen, Guifen; Wang, L Phillip; Tsien, Joe Z

    2009-12-16

    One of the fundamental goals in neurosciences is to elucidate the formation and retrieval of brain's associative memory traces in real-time. Here, we describe real-time neural ensemble transient dynamics in the mouse hippocampal CA1 region and demonstrate their relationships with behavioral performances during both learning and recall. We employed the classic trace fear conditioning paradigm involving a neutral tone followed by a mild foot-shock 20 seconds later. Our large-scale recording and decoding methods revealed that conditioned tone responses and tone-shock association patterns were not present in CA1 during the first pairing, but emerged quickly after multiple pairings. These encoding patterns showed increased immediate-replay, correlating tightly with increased immediate-freezing during learning. Moreover, during contextual recall, these patterns reappeared in tandem six-to-fourteen times per minute, again correlating tightly with behavioral recall. Upon traced tone recall, while various fear memories were retrieved, the shock traces exhibited a unique recall-peak around the 20-second trace interval, further signifying the memory of time for the expected shock. Therefore, our study has revealed various real-time associative memory traces during learning and recall in CA1, and demonstrates that real-time memory traces can be decoded on a moment-to-moment basis over any single trial.

  11. Neural population-level memory traces in the mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Guifen Chen

    2009-12-01

    Full Text Available One of the fundamental goals in neurosciences is to elucidate the formation and retrieval of brain's associative memory traces in real-time. Here, we describe real-time neural ensemble transient dynamics in the mouse hippocampal CA1 region and demonstrate their relationships with behavioral performances during both learning and recall. We employed the classic trace fear conditioning paradigm involving a neutral tone followed by a mild foot-shock 20 seconds later. Our large-scale recording and decoding methods revealed that conditioned tone responses and tone-shock association patterns were not present in CA1 during the first pairing, but emerged quickly after multiple pairings. These encoding patterns showed increased immediate-replay, correlating tightly with increased immediate-freezing during learning. Moreover, during contextual recall, these patterns reappeared in tandem six-to-fourteen times per minute, again correlating tightly with behavioral recall. Upon traced tone recall, while various fear memories were retrieved, the shock traces exhibited a unique recall-peak around the 20-second trace interval, further signifying the memory of time for the expected shock. Therefore, our study has revealed various real-time associative memory traces during learning and recall in CA1, and demonstrates that real-time memory traces can be decoded on a moment-to-moment basis over any single trial.

  12. Olfactory memory traces in Drosophila

    OpenAIRE

    Berry, Jacob; Krause, William C.; Davis, Ronald L.

    2008-01-01

    In Drosophila the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons’ response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed...

  13. Recognition memory probes affect what is remembered in schizophrenia.

    Science.gov (United States)

    Schwartz, Barbara L; Parker, Elizabeth S; Rosse, Richard B; Deutsch, Stephen I

    2009-05-15

    Cognitive psychology offers tools to localize the memory processes most vulnerable to disruption in schizophrenia and to identify how patients with schizophrenia best remember. In this research, we used the University of Southern California Repeatable Episodic Memory Test (USC-REMT; Parker, E.S., Landau, S.M., Whipple, S.C., Schwartz, B.L., 2004. Aging, recall, and recognition: A study on the sensitivity of the University of Southern California Repeatable Episodic Memory Test (USC-REMT). Journal of Clinical and Experimental Neuropsychology 26(3), 428-440.) to examine how two different recognition memory probes affect memory performance in patients with schizophrenia and matched controls. Patients with schizophrenia studied equivalent word lists and were tested by yes-no recognition and forced-choice recognition following identical encoding and storage conditions. Compared with controls, patients with schizophrenia were particularly impaired when tested by yes-no recognition relative to forced-choice recognition. Patients had greatest deficits on hits in yes-no recognition but did not exhibit elevated false alarms. The data point to the importance of retrieval processes in schizophrenia, and highlight the need for further research on ways to help patients with schizophrenia access what they have learned.

  14. Transfer-Appropriate Processing in Recognition Memory: Perceptual and Conceptual Effects on Recognition Memory Depend on Task Demands

    Science.gov (United States)

    Parks, Colleen M.

    2013-01-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which…

  15. Misattribution, false recognition and the sins of memory.

    OpenAIRE

    Schacter, D L; Dodson, C S

    2001-01-01

    Memory is sometimes a troublemaker. Schacter has classified memory's transgressions into seven fundamental 'sins': transience, absent-mindedness, blocking, misattribution, suggestibility, bias and persistence. This paper focuses on one memory sin, misattribution, that is implicated in false or illusory recognition of episodes that never occurred. We present data from cognitive, neuropsychological and neuroimaging studies that illuminate aspects of misattribution and false recognition. We firs...

  16. The origin of children's implanted false memories: memory traces or compliance?

    NARCIS (Netherlands)

    Otgaar, H.; Verschuere, B.; Meijer, E.H.; van Oorsouw, K.

    2012-01-01

    A longstanding question in false memory research is whether children’s implanted false memories represent actual memory traces or merely result from compliance. The current study examined this question using a response latency based deception task. Forty-five 8-year-old children received narratives

  17. Tests of a Structural Theory of the Memory Trace.

    Science.gov (United States)

    Jones, Gregory V.

    1978-01-01

    Jones (1976) has shown that the memory trace resulting from the viewing of a picture corresponds to a "fragment" of that picture. This research shows that the fragmentation hypothesis also correctly represents the recall of memories derived from sentences, i.e., the functional unit of memory, the mnemonic trace, is a fragment of the original item.…

  18. Infants' Recognition Memory for Hue

    Science.gov (United States)

    Bornstein, Marc H.

    1976-01-01

    Fifty 4-month-old infants were habituated to one wavelength of light and then tested for recognition with the original and two new spectral lights. After short- and long-term delays with different types of retroactive interference, the results indicated that the infants' recognition memory for hue was quite resilient to interference or delay. (JMB)

  19. Achievement motivation and memory: achievement goals differentially influence immediate and delayed remember-know recognition memory.

    Science.gov (United States)

    Murayama, Kou; Elliot, Andrew J

    2011-10-01

    Little research has been conducted on achievement motivation and memory and, more specifically, on achievement goals and memory. In the present research, the authors conducted two experiments designed to examine the influence of mastery-approach and performance-approach goals on immediate and delayed remember-know recognition memory. The experiments revealed differential effects for achievement goals over time: Performance-approach goals showed higher correct remember responding on an immediate recognition test, whereas mastery-approach goals showed higher correct remember responding on a delayed recognition test. Achievement goals had no influence on overall recognition memory and no consistent influence on know responding across experiments. These findings indicate that it is important to consider quality, not just quantity, in both motivation and memory, when studying relations between these constructs.

  20. Hypergraph-Based Recognition Memory Model for Lifelong Experience

    Science.gov (United States)

    2014-01-01

    Cognitive agents are expected to interact with and adapt to a nonstationary dynamic environment. As an initial process of decision making in a real-world agent interaction, familiarity judgment leads the following processes for intelligence. Familiarity judgment includes knowing previously encoded data as well as completing original patterns from partial information, which are fundamental functions of recognition memory. Although previous computational memory models have attempted to reflect human behavioral properties on the recognition memory, they have been focused on static conditions without considering temporal changes in terms of lifelong learning. To provide temporal adaptability to an agent, in this paper, we suggest a computational model for recognition memory that enables lifelong learning. The proposed model is based on a hypergraph structure, and thus it allows a high-order relationship between contextual nodes and enables incremental learning. Through a simulated experiment, we investigate the optimal conditions of the memory model and validate the consistency of memory performance for lifelong learning. PMID:25371665

  1. A dynamic approach to recognition memory.

    Science.gov (United States)

    Cox, Gregory E; Shiffrin, Richard M

    2017-11-01

    We present a dynamic model of memory that integrates the processes of perception, retrieval from knowledge, retrieval of events, and decision making as these evolve from 1 moment to the next. The core of the model is that recognition depends on tracking changes in familiarity over time from an initial baseline generally determined by context, with these changes depending on the availability of different kinds of information at different times. A mathematical implementation of this model leads to precise, accurate predictions of accuracy, response time, and speed-accuracy trade-off in episodic recognition at the levels of both groups and individuals across a variety of paradigms. Our approach leads to novel insights regarding word frequency, speeded responding, context reinstatement, short-term priming, similarity, source memory, and associative recognition, revealing how the same set of core dynamic principles can help unify otherwise disparate phenomena in the study of memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. New automated procedure to assess context recognition memory in mice.

    Science.gov (United States)

    Reiss, David; Walter, Ondine; Bourgoin, Lucie; Kieffer, Brigitte L; Ouagazzal, Abdel-Mouttalib

    2014-11-01

    Recognition memory is an important aspect of human declarative memory and is one of the routine memory abilities altered in patients with amnestic syndrome and Alzheimer's disease. In rodents, recognition memory has been most widely assessed using the novel object preference paradigm, which exploits the spontaneous preference that animals display for novel objects. Here, we used nose-poke units instead of objects to design a simple automated method for assessing context recognition memory in mice. In the acquisition trial, mice are exposed for the first time to an operant chamber with one blinking nose-poke unit. In the choice session, a novel nonblinking nose-poke unit is inserted into an empty spatial location and the number of nose poking dedicated to each set of nose-poke unit is used as an index of recognition memory. We report that recognition performance varies as a function of the length of the acquisition period and the retention delay and is sensitive to conventional amnestic treatments. By manipulating the features of the operant chamber during a brief retrieval episode (3-min long), we further demonstrate that reconsolidation of the original contextual memory depends on the magnitude and the type of environmental changes introduced into the familiar spatial environment. These results show that the nose-poke recognition task provides a rapid and reliable way for assessing context recognition memory in mice and offers new possibilities for the deciphering of the brain mechanisms governing the reconsolidation process.

  3. Infants' Delayed Recognition Memory and Forgetting

    Science.gov (United States)

    Fagan, Joseph F., III

    1973-01-01

    Infants 21- to 25-weeks-old devoted more visual fixation to novel than familiar stimuli on immediate and delayed recognition tests. The experiments confirm the existence of long-term recognition memory for pictorial stimuli in the early months of life. (DP)

  4. Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty.

    Science.gov (United States)

    Mill, Ravi D; O'Connor, Akira R; Dobbins, Ian G

    2016-09-01

    Optimally discriminating familiar from novel stimuli demands a decision-making process informed by prior expectations. Here we demonstrate that pupillary dilation (PD) responses during recognition memory decisions are modulated by expectations, and more specifically, that pupil dilation increases for unexpected compared to expected recognition. Furthermore, multi-level modeling demonstrated that the time course of the dilation during each individual trial contains separable early and late dilation components, with the early amplitude capturing unexpected recognition, and the later trailing slope reflecting general judgment uncertainty or effort. This is the first demonstration that the early dilation response during recognition is dependent upon observer expectations and that separate recognition expectation and judgment uncertainty components are present in the dilation time course of every trial. The findings provide novel insights into adaptive memory-linked orienting mechanisms as well as the general cognitive underpinnings of the pupillary index of autonomic nervous system activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Electrophysiological distinctions between recognition memory with and without awareness

    Science.gov (United States)

    Ko, Philip C.; Duda, Bryant; Hussey, Erin P.; Ally, Brandon A.

    2013-01-01

    The influence of implicit memory representations on explicit recognition may help to explain cases of accurate recognition decisions made with high uncertainty. During a recognition task, implicit memory may enhance the fluency of a test item, biasing decision processes to endorse it as “old”. This model may help explain recognition-without-identification, a remarkable phenomenon in which participants make highly accurate recognition decisions despite the inability to identify the test item. The current study investigated whether recognition-without-identification for pictures elicits a similar pattern of neural activity as other types of accurate recognition decisions made with uncertainty. Further, this study also examined whether recognition-without-identification for pictures could be attained by the use of perceptual and conceptual information from memory. To accomplish this, participants studied pictures and then performed a recognition task under difficult viewing conditions while event-related potentials (ERPs) were recorded. Behavioral results showed that recognition was highly accurate even when test items could not be identified, demonstrating recognition-without identification. The behavioral performance also indicated that recognition-without-identification was mediated by both perceptual and conceptual information, independently of one another. The ERP results showed dramatically different memory related activity during the early 300 to 500 ms epoch for identified items that were studied compared to unidentified items that were studied. Similar to previous work highlighting accurate recognition without retrieval awareness, test items that were not identified, but correctly endorsed as “old,” elicited a negative posterior old/new effect (i.e., N300). In contrast, test items that were identified and correctly endorsed as “old,” elicited the classic positive frontal old/new effect (i.e., FN400). Importantly, both of these effects were

  6. Impaired Odor Recognition Memory in Patients with Hippocampal Lesions

    Science.gov (United States)

    Levy, Daniel A.; Squire, Larry R.; Hopkins, Ramona O.

    2004-01-01

    In humans, impaired recognition memory following lesions thought to be limited to the hippocampal region has been demonstrated for a wide variety of tasks. However, the importance of the human hippocampus for olfactory recognition memory has scarcely been explored. We evaluated the ability of memory-impaired patients with damage thought to be…

  7. Likelihood ratio sequential sampling models of recognition memory.

    Science.gov (United States)

    Osth, Adam F; Dennis, Simon; Heathcote, Andrew

    2017-02-01

    The mirror effect - a phenomenon whereby a manipulation produces opposite effects on hit and false alarm rates - is benchmark regularity of recognition memory. A likelihood ratio decision process, basing recognition on the relative likelihood that a stimulus is a target or a lure, naturally predicts the mirror effect, and so has been widely adopted in quantitative models of recognition memory. Glanzer, Hilford, and Maloney (2009) demonstrated that likelihood ratio models, assuming Gaussian memory strength, are also capable of explaining regularities observed in receiver-operating characteristics (ROCs), such as greater target than lure variance. Despite its central place in theorising about recognition memory, however, this class of models has not been tested using response time (RT) distributions. In this article, we develop a linear approximation to the likelihood ratio transformation, which we show predicts the same regularities as the exact transformation. This development enabled us to develop a tractable model of recognition-memory RT based on the diffusion decision model (DDM), with inputs (drift rates) provided by an approximate likelihood ratio transformation. We compared this "LR-DDM" to a standard DDM where all targets and lures receive their own drift rate parameters. Both were implemented as hierarchical Bayesian models and applied to four datasets. Model selection taking into account parsimony favored the LR-DDM, which requires fewer parameters than the standard DDM but still fits the data well. These results support log-likelihood based models as providing an elegant explanation of the regularities of recognition memory, not only in terms of choices made but also in terms of the times it takes to make them. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Infliximab ameliorates AD-associated object recognition memory impairment.

    Science.gov (United States)

    Kim, Dong Hyun; Choi, Seong-Min; Jho, Jihoon; Park, Man-Seok; Kang, Jisu; Park, Se Jin; Ryu, Jong Hoon; Jo, Jihoon; Kim, Hyun Hee; Kim, Byeong C

    2016-09-15

    Dysfunctions in the perirhinal cortex (PRh) are associated with visual recognition memory deficit, which is frequently detected in the early stage of Alzheimer's disease. Muscarinic acetylcholine receptor-dependent long-term depression (mAChR-LTD) of synaptic transmission is known as a key pathway in eliciting this type of memory, and Tg2576 mice expressing enhanced levels of Aβ oligomers are found to have impaired mAChR-LTD in this brain area at as early as 3 months of age. We found that the administration of Aβ oligomers in young normal mice also induced visual recognition memory impairment and perturbed mAChR-LTD in mouse PRh slices. In addition, when mice were treated with infliximab, a monoclonal antibody against TNF-α, visual recognition memory impaired by pre-administered Aβ oligomers dramatically improved and the detrimental Aβ effect on mAChR-LTD was annulled. Taken together, these findings suggest that Aβ-induced inflammation is mediated through TNF-α signaling cascades, disturbing synaptic transmission in the PRh, and leading to visual recognition memory deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Developmental reversals in recognition memory in children and adults.

    Science.gov (United States)

    Gross, Julien; Gardiner, Beatrix; Hayne, Harlene

    2016-01-01

    Older members of a given species typically exhibit superior learning and memory abilities relative to younger members, however, the developmental difference does not always occur in this younger-to-older direction. Developmental reversals are thought to reflect adaptive responses to the unique challenges imposed by the infant's niche. In humans, identification of developmental reversals has largely been precluded because infants, children, and adults are rarely tested using the same experimental procedures. Here, we adapted the visual recognition memory task and tested 3-year-olds and adults using one set of child-oriented stimuli and one set of adult-orientated stimuli. When tested immediately, children and adults exhibited recognition memory for both stimuli. When tested after a 1-week delay, children exhibited recognition memory for the child-oriented stimuli, but not for the adult-oriented stimuli and adults exhibited recognition memory for the adult-oriented stimuli, but not for the child-oriented stimuli. These data have important implications for current theories of memory development. © 2015 Wiley Periodicals, Inc.

  10. Relaxing decision criteria does not improve recognition memory in amnesic patients.

    Science.gov (United States)

    Reber, P J; Squire, L R

    1999-05-01

    An important question about the organization of memory is whether information available in non-declarative memory can contribute to performance on tasks of declarative memory. Dorfman, Kihlstrom, Cork, and Misiaszek (1995) described a circumstance in which the phenomenon of priming might benefit recognition memory performance. They reported that patients receiving electroconvulsive therapy improved their recognition performance when they were encouraged to relax their criteria for endorsing test items as familiar. It was suggested that priming improved recognition by making information available about the familiarity of test items. In three experiments, we sought unsuccessfully to reproduce this phenomenon in amnesic patients. In Experiment 3, we reproduced the methods and procedure used by Dorfman et al. but still found no evidence for improved recognition memory following the manipulation of decision criteria. Although negative findings have their own limitations, our findings suggest that the phenomenon reported by Dorfman et al. does not generalize well. Our results agree with several recent findings that suggest that priming is independent of recognition memory and does not contribute to recognition memory scores.

  11. Corticosterone and propranolol's role on taste recognition memory.

    Science.gov (United States)

    Ruetti, E; Justel, N; Mustaca, A; Boccia, M

    2014-12-01

    Taste recognition is a robust procedure to study learning and memory processes, as well as the different stages involved in them, i.e. encoding, storage and recall. Considerable evidence indicates that adrenal hormones and the noradrenergic system play an important role in aversive and appetitive memory formation in rats and humans. The present experiments were designed to characterize the effects of immediate post training corticosterone (Experiment 1) and propranolol administration (Experiment 2 and 3) on taste recognition memory. Administration of a high dose of corticosterone (5mg/kg, sc) impairs consolidation of taste memory, but the low and moderate doses (1 and 3mg/kg, sc) didn't affect it. On the other hand, immediate post-training administration of propranolol (1 and 2mg/kg, ip) impaired taste recognition memory. These effects were time-dependent since no effects were seen when drug administration was delayed 3h after training. These findings support the importance of stress hormones and noradrenergic system on the modulation of taste memory consolidation. Copyright © 2014. Published by Elsevier Inc.

  12. Recognition Memory, Self-Other Source Memory, and Theory-of-Mind in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Lind, Sophie E.; Bowler, Dermot M.

    2009-01-01

    This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and…

  13. Stability of retrieved memory: inverse correlation with trace dominance.

    Science.gov (United States)

    Eisenberg, Mark; Kobilo, Tali; Berman, Diego E; Dudai, Yadin

    2003-08-22

    In memory consolidation, the memory trace stabilizes and becomes resistant to certain amnesic agents. The textbook account is that for any memorized item, consolidation starts and ends just once. However, evidence has accumulated that upon activation in retrieval, the trace may reconsolidate. Whereas some authors reported transient renewed susceptibility of retrieved memories to consolidation blockers, others could not detect it. Here, we report that in both conditioned taste aversion in the rat and fear conditioning in the medaka fish, the stability of retrieved memory is inversely correlated with the control of behavior by that memory. This result may explain some conflicting findings on reconsolidation of activated memories.

  14. Recognition-induced forgetting of faces in visual long-term memory.

    Science.gov (United States)

    Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F; Maxcey, Ashleigh M

    2017-10-01

    Despite more than a century of evidence that long-term memory for pictures and words are different, much of what we know about memory comes from studies using words. Recent research examining visual long-term memory has demonstrated that recognizing an object induces the forgetting of objects from the same category. This recognition-induced forgetting has been shown with a variety of everyday objects. However, unlike everyday objects, faces are objects of expertise. As a result, faces may be immune to recognition-induced forgetting. However, despite excellent memory for such stimuli, we found that faces were susceptible to recognition-induced forgetting. Our findings have implications for how models of human memory account for recognition-induced forgetting as well as represent objects of expertise and consequences for eyewitness testimony and the justice system.

  15. Recognition memory, self-other source memory, and theory-of-mind in children with autism spectrum disorder.

    Science.gov (United States)

    Lind, Sophie E; Bowler, Dermot M

    2009-09-01

    This study investigated semantic and episodic memory in autism spectrum disorder (ASD), using a task which assessed recognition and self-other source memory. Children with ASD showed undiminished recognition memory but significantly diminished source memory, relative to age- and verbal ability-matched comparison children. Both children with and without ASD showed an "enactment effect", demonstrating significantly better recognition and source memory for self-performed actions than other-person-performed actions. Within the comparison group, theory-of-mind (ToM) task performance was significantly correlated with source memory, specifically for other-person-performed actions (after statistically controlling for verbal ability). Within the ASD group, ToM task performance was not significantly correlated with source memory (after controlling for verbal ability). Possible explanations for these relations between source memory and ToM are considered.

  16. The fate of object memory traces under change detection and change blindness.

    Science.gov (United States)

    Busch, Niko A

    2013-07-03

    Observers often fail to detect substantial changes in a visual scene. This so-called change blindness is often taken as evidence that visual representations are sparse and volatile. This notion rests on the assumption that the failure to detect a change implies that representations of the changing objects are lost all together. However, recent evidence suggests that under change blindness, object memory representations may be formed and stored, but not retrieved. This study investigated the fate of object memory representations when changes go unnoticed. Participants were presented with scenes consisting of real world objects, one of which changed on each trial, while recording event-related potentials (ERPs). Participants were first asked to localize where the change had occurred. In an additional recognition task, participants then discriminated old objects, either from the pre-change or the post-change scene, from entirely new objects. Neural traces of object memories were studied by comparing ERPs for old and novel objects. Participants performed poorly in the detection task and often failed to recognize objects from the scene, especially pre-change objects. However, a robust old/novel effect was observed in the ERP, even when participants were change blind and did not recognize the old object. This implicit memory trace was found both for pre-change and post-change objects. These findings suggest that object memories are stored even under change blindness. Thus, visual representations may not be as sparse and volatile as previously thought. Rather, change blindness may point to a failure to retrieve and use these representations for change detection. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Infant Visual Recognition Memory: Independent Contributions of Speed and Attention.

    Science.gov (United States)

    Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.

    2003-01-01

    Examined contributions of cognitive processing speed, short-term memory capacity, and attention to infant visual recognition memory. Found that infants who showed better attention and faster processing had better recognition memory. Contributions of attention and processing speed were independent of one another and similar at all ages studied--5,…

  18. Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory.

    Science.gov (United States)

    Benn, Abigail; Barker, Gareth R I; Stuart, Sarah A; Roloff, Eva V L; Teschemacher, Anja G; Warburton, E Clea; Robinson, Emma S J

    2016-05-04

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement. Copyright © 2016 Benn et al.

  19. Sources of interference in item and associative recognition memory.

    Science.gov (United States)

    Osth, Adam F; Dennis, Simon

    2015-04-01

    A powerful theoretical framework for exploring recognition memory is the global matching framework, in which a cue's memory strength reflects the similarity of the retrieval cues being matched against the contents of memory simultaneously. Contributions at retrieval can be categorized as matches and mismatches to the item and context cues, including the self match (match on item and context), item noise (match on context, mismatch on item), context noise (match on item, mismatch on context), and background noise (mismatch on item and context). We present a model that directly parameterizes the matches and mismatches to the item and context cues, which enables estimation of the magnitude of each interference contribution (item noise, context noise, and background noise). The model was fit within a hierarchical Bayesian framework to 10 recognition memory datasets that use manipulations of strength, list length, list strength, word frequency, study-test delay, and stimulus class in item and associative recognition. Estimates of the model parameters revealed at most a small contribution of item noise that varies by stimulus class, with virtually no item noise for single words and scenes. Despite the unpopularity of background noise in recognition memory models, background noise estimates dominated at retrieval across nearly all stimulus classes with the exception of high frequency words, which exhibited equivalent levels of context noise and background noise. These parameter estimates suggest that the majority of interference in recognition memory stems from experiences acquired before the learning episode. (c) 2015 APA, all rights reserved).

  20. Stimulus effects and the mediation of recognition memory.

    Science.gov (United States)

    McAdoo, Ryan M; Key, Kylie N; Gronlund, Scott D

    2018-04-19

    Two broad approaches characterize the type of evidence that mediates recognition memory: discrete state and continuous. Discrete-state models posit a thresholded memory process that provides accurate information about an item (it is detected) or, failing that, no mnemonic information about the item. Continuous models, in contrast, posit the existence of graded mnemonic information about an item. Evidence favoring 1 approach over the other has been mixed, suggesting the possibility that the mediation of recognition memory may be adaptable and influenced by other factors. We tested this possibility with 2 experiments that varied the semantic similarity of word targets and fillers. Experiment 1, which used semantically similar fillers, displayed evidence of continuous mediation (contrary to Kellen & Klauer, 2015), whereas Experiment 2, which used semantically dissimilar fillers, displayed evidence of discrete mediation. The results have implications for basic theories of recognition memory, as well as for theories of applied domains like eyewitness identification. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Usage of semantic representations in recognition memory.

    Science.gov (United States)

    Nishiyama, Ryoji; Hirano, Tetsuji; Ukita, Jun

    2017-11-01

    Meanings of words facilitate false acceptance as well as correct rejection of lures in recognition memory tests, depending on the experimental context. This suggests that semantic representations are both directly and indirectly (i.e., mediated by perceptual representations) used in remembering. Studies using memory conjunction errors (MCEs) paradigms, in which the lures consist of component parts of studied words, have reported semantic facilitation of rejection of the lures. However, attending to components of the lures could potentially cause this. Therefore, we investigated whether semantic overlap of lures facilitates MCEs using Japanese Kanji words in which a whole-word image is more concerned in reading. Experiments demonstrated semantic facilitation of MCEs in a delayed recognition test (Experiment 1), and in immediate recognition tests in which participants were prevented from using phonological or orthographic representations (Experiment 2), and the salient effect on individuals with high semantic memory capacities (Experiment 3). Additionally, analysis of the receiver operating characteristic suggested that this effect is attributed to familiarity-based memory judgement and phantom recollection. These findings indicate that semantic representations can be directly used in remembering, even when perceptual representations of studied words are available.

  2. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    Science.gov (United States)

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. ERP Correlates of Recognition Memory in Autism Spectrum Disorder

    Science.gov (United States)

    Massand, Esha; Bowler, Dermot M.; Mottron, Laurent; Hosein, Anthony; Jemel, Boutheina

    2013-01-01

    Recognition memory in autism spectrum disorder (ASD) tends to be undiminished compared to that of typically developing (TD) individuals (Bowler et al. 2007), but it is still unknown whether memory in ASD relies on qualitatively similar or different neurophysiology. We sought to explore the neural activity underlying recognition by employing the…

  4. Memory Reconsolidation, Trace Reassociation and the Freudian Unconscious

    KAUST Repository

    Alberini, Cristina M.; Ansermet, Franç ois; Magistretti, Pierre J.

    2013-01-01

    Memory traces can become labile when retrieved. This has intrigued not only neuroscientists, psychologists, and cognitive scientists but also clinicians who work with memories to treat psychopathologies, such as psychotherapists and psychoanalysts

  5. Role of medial prefrontal cortex serotonin 2A receptors in the control of retrieval of recognition memory in rats.

    Science.gov (United States)

    Bekinschtein, Pedro; Renner, Maria Constanza; Gonzalez, Maria Carolina; Weisstaub, Noelia

    2013-10-02

    Often, retrieval cues are not uniquely related to one specific memory, which could lead to memory interference. Controlling interference is particularly important during episodic memory retrieval or when remembering specific events in a spatiotemporal context. Despite a clear involvement of prefrontal cortex (PFC) in episodic memory in human studies, information regarding the mechanisms and neurotransmitter systems in PFC involved in memory is scarce. Although the serotoninergic system has been linked to PFC functionality and modulation, its role in memory processing is poorly understood. We hypothesized that the serotoninergic system in PFC, in particular the 5-HT2A receptor (5-HT2AR) could have a role in the control of memory retrieval. In this work we used different versions of the object recognition task in rats to study the role of the serotoninergic modulation in the medial PFC (mPFC) in memory retrieval. We found that blockade of 5-HT2AR in mPFC affects retrieval of an object in context memory in a spontaneous novelty preference task, while sparing single-item recognition memory. We also determined that 5-HT2ARs in mPFC are required for hippocampal-mPFC interaction during retrieval of this type of memory, suggesting that the mPFC controls the expression of memory traces stored in the hippocampus biasing retrieval to the most relevant one.

  6. Goal- and retrieval-dependent activity in the striatum during memory recognition.

    Science.gov (United States)

    Clos, Mareike; Schwarze, Ulrike; Gluth, Sebastian; Bunzeck, Nico; Sommer, Tobias

    2015-06-01

    The striatum has been associated with successful memory retrieval but the precise functional link still remains unclear. One hypothesis is that striatal activity reflects an active evaluation process of the retrieval outcome dependent on the current behavioral goals rather than being a consequence of memory reactivation. We have recently shown that the striatum also correlates with confidence in memory recognition, which could reflect high subjective value ascribed to high certainty decisions. To examine whether striatal activity during memory recognition reflects subjective value indeed, we conducted an fMRI study using a recognition memory paradigm in which the participants rated not only the recognition confidence but also indicated the pleasantness associated with the previous memory retrieval. The results demonstrated a high positive correlation between confidence and pleasantness both on the behavioral and brain activation level particularly in the striatum. As almost all of variance in the striatal confidence signal could be explained by experienced pleasantness, this part of the striatal memory recognition response probably corresponds to greater subjective value of high confidence responses. While perceived oldness was also strongly correlated with striatal activity, this activation pattern was clearly distinct from that associated with confidence and pleasantness and thus could not be explained by higher subjective value to detect "old" items. Together, these results show that at least two independent processes contribute to striatal activation in recognition memory: a more flexible evaluation response dependent on context and goals captured by memory confidence and a potentially retrieval-related response captured by perceived oldness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. [Effect of opioid receptors on acute stress-induced changes in recognition memory].

    Science.gov (United States)

    Liu, Ying; Wu, Yu-Wei; Qian, Zhao-Qiang; Yan, Cai-Fang; Fan, Ka-Min; Xu, Jin-Hui; Li, Xiao; Liu, Zhi-Qiang

    2016-12-25

    Although ample evidence has shown that acute stress impairs memory, the influences of acute stress on different phases of memory, such as acquisition, consolidation and retrieval, are different. Experimental data from both human and animals support that endogenous opioid system plays a role in stress, as endogenous opioid release is increased and opioid receptors are activated during stress experience. On the other hand, endogenous opioid system mediates learning and memory. The aim of the present study was to investigate the effect of acute forced swimming stress on recognition memory of C57 mice and the role of opioid receptors in this process by using a three-day pattern of new object recognition task. The results showed that 15-min acute forced swimming damaged the retrieval of recognition memory, but had no effect on acquisition and consolidation of recognition memory. No significant change of object recognition memory was found in mice that were given naloxone, an opioid receptor antagonist, by intraperitoneal injection. But intraperitoneal injection of naloxone before forced swimming stress could inhibit the impairment of recognition memory retrieval caused by forced swimming stress. The results of real-time PCR showed that acute forced swimming decreased the μ opioid receptor mRNA levels in whole brain and hippocampus, while the injection of naloxone before stress could reverse this change. These results suggest that acute stress may impair recognition memory retrieval via opioid receptors.

  8. Sex influence on face recognition memory moderated by presentation duration and reencoding.

    Science.gov (United States)

    Weirich, Sebastian; Hoffmann, Ferdinand; Meissner, Lucia; Heinz, Andreas; Bengner, Thomas

    2011-11-01

    It has been suggested that women have a better face recognition memory than men. Here we analyzed whether this advantage depends on a better encoding or consolidation of information and if the advantage is visible during short-term memory (STM), only, or whether it also remains evident in long-term memory (LTM). We tested short- and long-term face recognition memory in 36 nonclinical participants (19 women). We varied the duration of item presentation (1, 5, and 10 s), the time of testing (immediately after the study phase, 1 hr, and 24 hr later), and the possibility to reencode items (none, immediately after the study phase, after 1 hr). Women showed better overall face recognition memory than men (ηp² = .15, p face recognition was visible mainly if participants had the possibility to reencode faces during former test trials. Our results suggest women do not have a better face recognition memory than men per se, but may profit more than men from longer durations of presentation during encoding or the possibility for reencoding. Future research on sex differences in face recognition memory should explicate possible causes for the better encoding of face information in women.

  9. Proactive Interference in Short-Term Recognition and Recall Memory

    Science.gov (United States)

    Dillon, Richard F.; Petrusic, William M.

    1972-01-01

    Purpose of study was to (a) compare the rate of increase of proactive interference over the first few trials under recall and recognition memory test conditions, (2) determine the effects of two types of distractors on short-term recognition, and (3) test memory after proactive interference had reached a stable level under each of three test…

  10. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    Science.gov (United States)

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats

  11. Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.

    Science.gov (United States)

    Salmon, David P; Heindel, William C; Hamilton, Joanne M; Vincent Filoteo, J; Cidambi, Varun; Hansen, Lawrence A; Masliah, Eliezer; Galasko, Douglas

    2015-08-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Antidepressant drugs specifically inhibiting noradrenaline reuptake enhance recognition memory in rats.

    Science.gov (United States)

    Feltmann, Kristin; Konradsson-Geuken, Åsa; De Bundel, Dimitri; Lindskog, Maria; Schilström, Björn

    2015-12-01

    Patients suffering from major depression often experience memory deficits even after the remission of mood symptoms, and many antidepressant drugs do not affect, or impair, memory in animals and humans. However, some antidepressant drugs, after a single dose, enhance cognition in humans (Harmer et al., 2009). To compare different classes of antidepressant drugs for their potential as memory enhancers, we used a version of the novel object recognition task in which rats spontaneously forget objects 24 hr after their presentation. Antidepressant drugs were injected systemically 30 min before or directly after the training phase (Session 1 [S1]). Post-S1 injections were used to test for specific memory-consolidation effects. The noradrenaline reuptake inhibitors reboxetine and atomoxetine, as well as the serotonin noradrenaline reuptake inhibitor duloxetine, injected prior to S1 significantly enhanced recognition memory. In contrast, the serotonin reuptake inhibitors citalopram and paroxetine and the cyclic antidepressant drugs desipramine and mianserin did not enhance recognition memory. Post-S1 injection of either reboxetine or citalopram significantly enhanced recognition memory, indicating an effect on memory consolidation. The fact that citalopram had an effect only when injected after S1 suggests that it may counteract its own consolidation-enhancing effect by interfering with memory acquisition. However, pretreatment with citalopram did not attenuate reboxetine's memory-enhancing effect. The D1/5-receptor antagonist SCH23390 blunted reboxetine's memory-enhancing effect, indicating a role of dopaminergic transmission in reboxetine-induced recognition memory enhancement. Our results suggest that antidepressant drugs specifically inhibiting noradrenaline reuptake enhance cognition and may be beneficial in the treatment of cognitive symptoms of depression. (c) 2015 APA, all rights reserved).

  13. Adult Word Recognition and Visual Sequential Memory

    Science.gov (United States)

    Holmes, V. M.

    2012-01-01

    Two experiments were conducted investigating the role of visual sequential memory skill in the word recognition efficiency of undergraduate university students. Word recognition was assessed in a lexical decision task using regularly and strangely spelt words, and nonwords that were either standard orthographically legal strings or items made from…

  14. Selective attention meets spontaneous recognition memory: Evidence for effects at retrieval.

    Science.gov (United States)

    Moen, Katherine C; Miller, Jeremy K; Lloyd, Marianne E

    2017-03-01

    Previous research on the effects of Divided Attention on recognition memory have shown consistent impairments during encoding but more variable effects at retrieval. The present study explored whether effects of Selective Attention at retrieval and subsequent testing were parallel to those of Divided Attention. Participants studied a list of pictures and then had a recognition memory test that included both full attention and selective attention (the to be responded to object was overlaid atop a blue outlined object) trials. All participants then completed a second recognition memory test. The results of 2 experiments suggest that subsequent tests consistently show impacts of the status of the ignored stimulus, and that having an initial test changes performance on a later test. The results are discussed in relation to effect of attention on memory more generally as well as spontaneous recognition memory research. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Children's familiarity preference in self-directed study improves recognition memory

    NARCIS (Netherlands)

    Adams, K.A.; Kachergis, G.E.; Markant, D.; Gunzelmann, G.; Howes, A.; Tenbrink, T.; Davelaar, E.

    2017-01-01

    In both adults and school-age children, volitional control over the presentation of stimuli during study leads to enhanced recognition memory. Yet little is known about how very young learners choose to allocate their time and attention during self-directed study. Using a recognition memory task, we

  16. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    OpenAIRE

    Gutiérrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index. In addition, learned taste aversion in both short- and long-term memory tests was exclusively impa...

  17. Taste and odor recognition memory: the emotional flavor of life.

    Science.gov (United States)

    Miranda, Maria Isabel

    2012-01-01

    In recent years, our knowledge of the neurobiology of taste and smell has greatly increased; by using several learning models, we now have a better understanding of the behavioral and neurochemical basis of memory recognition. Studies have provided new evidence of some processes that depend on prior experience with the specific combination of sensory stimuli. This review contains recent research related to taste and odor recognition memory, and the goal is to highlight the role of two prominent brain structures, the insular cortex and the amygdala. These structures have an important function during learning and memory and have been associated with the differences in learning induced by the diverse degrees of emotion during taste/odor memory formation, either aversive or appetitive or when taste and odor are combined and/or potentiated.Therefore, this review includes information about certain neurochemical transmitters and their interactions during appetitive or aversive taste memory formation,taste-potentiated odor aversion memory, and conditioned odor aversion, which might be able to maintain the complex processes necessary for flavor recognition memory.

  18. Collaboration can improve individual recognition memory: evidence from immediate and delayed tests.

    Science.gov (United States)

    Rajaram, Suparna; Pereira-Pasarin, Luciane P

    2007-02-01

    In two experiments, we tested the effects of collaboration on individual recognition memory. In Experiment 1, participants studied pictures and words either for meaning or for surface properties and made recognition memory judgments individually either following group discussion among 3 members (collaborative condition) or in the absence of discussion (noncollaborative condition). Levels of processing and picture superiority effects were replicated, and collaboration significantly increased individual recognition memory. Experiment 2 replicated this positive effect and showed that even though memory sensitivity declined at longer delays (48 h and 1 week), collaboration continued to exert a positive influence. These findings show that (1) consensus is not necessary for producing benefits of collaboration on individual recognition, (2) collaborative facilitation on individual memory is robust, and (3) collaboration enhances individual memory further if conditions predispose individual accuracy in the absence of collaboration.

  19. The memory state heuristic: A formal model based on repeated recognition judgments.

    Science.gov (United States)

    Castela, Marta; Erdfelder, Edgar

    2017-02-01

    The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e., recognition certainty, uncertainty, or rejection certainty). Specifically, the larger the discrepancy between memory states, the larger the probability of choosing the object in the higher state. The typical RH paradigm does not allow estimation of the underlying memory states because it is unknown whether the objects were previously experienced or not. Therefore, we extended the paradigm by repeating the recognition task twice. In line with high threshold models of recognition, we assumed that inconsistent recognition judgments result from uncertainty whereas consistent judgments most likely result from memory certainty. In Experiment 1, we fitted 2 nested multinomial models to the data: an MSH model that formalizes the relation between memory states and binary choices explicitly and an approximate model that ignores the (unlikely) possibility of consistent guesses. Both models provided converging results. As predicted, reliance on recognition increased with the discrepancy in the underlying memory states. In Experiment 2, we replicated these results and found support for choice consistency predictions of the MSH. Additionally, recognition and choice latencies were in agreement with the MSH in both experiments. Finally, we validated critical parameters of our MSH model through a cross-validation method and a third experiment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    Science.gov (United States)

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  1. Memory evaluation in mild cognitive impairment using recall and recognition tests.

    Science.gov (United States)

    Bennett, Ilana J; Golob, Edward J; Parker, Elizabeth S; Starr, Arnold

    2006-11-01

    Amnestic mild cognitive impairment (MCI) is a selective episodic memory deficit that often indicates early Alzheimer's disease. Episodic memory function in MCI is typically defined by deficits in free recall, but can also be tested using recognition procedures. To assess both recall and recognition in MCI, MCI (n = 21) and older comparison (n = 30) groups completed the USC-Repeatable Episodic Memory Test. Subjects memorized two verbally presented 15-item lists. One list was used for three free recall trials, immediately followed by yes/no recognition. The second list was used for three-alternative forced-choice recognition. Relative to the comparison group, MCI had significantly fewer hits and more false alarms in yes/no recognition, and were less accurate in forced-choice recognition. Signal detection analysis showed that group differences were not due to response bias. Discriminant function analysis showed that yes/no recognition was a better predictor of group membership than free recall or forced-choice measures. MCI subjects recalled fewer items than comparison subjects, with no group differences in repetitions, intrusions, serial position effects, or measures of recall strategy (subjective organization, recall consistency). Performance deficits on free recall and recognition in MCI suggest a combination of both tests may be useful for defining episodic memory impairment associated with MCI and early Alzheimer's disease.

  2. Odor recognition memory is not idepentently impaired in Parkinson's disease

    NARCIS (Netherlands)

    Boesveldt, S.; Muinck Keizer, de R.J.O.; Wolters, E.C.H.; Berendse, H.W.

    2009-01-01

    The results of previous studies in small groups of Parkinson's disease (PD) patients are inconclusive with regard to the presence of an odor recognition memory impairment in PD. The aim of the present study was to investigate odor recognition memory in PD in a larger group of patients. Odor

  3. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    Science.gov (United States)

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  4. Object Recognition Memory and the Rodent Hippocampus

    Science.gov (United States)

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  5. Involvement of hippocampal NMDA receptors in retrieval of spontaneous object recognition memory in rats.

    Science.gov (United States)

    Iwamura, Etsushi; Yamada, Kazuo; Ichitani, Yukio

    2016-07-01

    The involvement of hippocampal N-methyl-d-aspartate (NMDA) receptors in the retrieval process of spontaneous object recognition memory was investigated. The spontaneous object recognition test consisted of three phases. In the sample phase, rats were exposed to two identical objects several (2-5) times in the arena. After the sample phase, various lengths of delay intervals (24h-6 weeks) were inserted (delay phase). In the test phase in which both the familiar and the novel objects were placed in the arena, rats' novel object exploration behavior under the hippocampal treatment of NMDA receptor antagonist, AP5, or vehicle was observed. With 5 exposure sessions in the sample phase (experiment 1), AP5 treatment in the test phase significantly decreased discrimination ratio when the delay was 3 weeks but not when it was one week. On the other hand, with 2 exposure sessions in the sample phase (experiment 2) in which even vehicle-injected control animals could not discriminate the novel object from the familiar one with a 3 week delay, AP5 treatment significantly decreased discrimination ratio when the delay was one week, but not when it was 24h. Additional experiment (experiment 3) showed that the hippocampal treatment of an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, NBQX, decreased discrimination ratio with all delay intervals tested (24h-3 weeks). Results suggest that hippocampal NMDA receptors play an important role in the retrieval of spontaneous object recognition memory especially when the memory trace weakens. Copyright © 2016. Published by Elsevier B.V.

  6. Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.

    Science.gov (United States)

    Brainerd, C J; Reyna, V F

    2001-01-01

    Fuzzy-trace theory has evolved in response to counterintuitive data on how memory development influences the development of reasoning. The two traditional perspectives on memory-reasoning relations--the necessity and constructivist hypotheses--stipulate that the accuracy of children's memory for problem information and the accuracy of their reasoning are closely intertwined, albeit for different reasons. However, contrary to necessity, correlational and experimental dissociations have been found between children's memory for problem information that is determinative in solving certain problems and their solutions of those problems. In these same tasks, age changes in memory for problem information appear to be dissociated from age changes in reasoning. Contrary to constructivism, correlational and experimental dissociations also have been found between children's performance on memory tests for actual experience and memory tests for the meaning of experience. As in memory-reasoning studies, age changes in one type of memory performance do not seem to be closely connected to age changes in the other type of performance. Subsequent experiments have led to dual-process accounts in both the memory and reasoning spheres. The account of memory development features four other principles: parallel verbatim-gist storage, dissociated verbatim-gist retrieval, memorial bases of conscious recollection, and identity/similarity processes. The account of the development of reasoning features three principles: gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences. The fuzzy-processing preference is a particularly important notion because it implies that gist-based intuitive reasoning often suffices to deliver "logical" solutions and that such reasoning confers multiple cognitive advantages that enhance accuracy. The explanation of memory-reasoning dissociations in cognitive development then falls out of fuzzy-trace theory's dual-process models of memory and

  7. Haloperidol increases false recognition memory of thematically related pictures in healthy volunteers.

    Science.gov (United States)

    Guarnieri, Regina V; Buratto, Luciano G; Gomes, Carlos F A; Ribeiro, Rafaela L; de Souza, Altay A Lino; Stein, Lilian M; Galduróz, José C; Bueno, Orlando F A

    2017-01-01

    Dopamine can modulate long-term episodic memory. Its potential role on the generation of false memories, however, is less well known. In a randomized, double-blind, placebo-controlled experiment, 24 young healthy volunteers ingested a 4-mg oral dose of haloperidol, a dopamine D 2 -receptor antagonist, or placebo, before taking part in a recognition memory task. Haloperidol was active during both study and test phases of the experiment. Participants in the haloperidol group produced more false recognition responses than those in the placebo group, despite similar levels of correct recognition. These findings show that dopamine blockade in healthy volunteers can specifically increase false recognition memory. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Females scan more than males: a potential mechanism for sex differences in recognition memory.

    Science.gov (United States)

    Heisz, Jennifer J; Pottruff, Molly M; Shore, David I

    2013-07-01

    Recognition-memory tests reveal individual differences in episodic memory; however, by themselves, these tests provide little information regarding the stage (or stages) in memory processing at which differences are manifested. We used eye-tracking technology, together with a recognition paradigm, to achieve a more detailed analysis of visual processing during encoding and retrieval. Although this approach may be useful for assessing differences in memory across many different populations, we focused on sex differences in face memory. Females outperformed males on recognition-memory tests, and this advantage was directly related to females' scanning behavior at encoding. Moreover, additional exposures to the faces reduced sex differences in face recognition, which suggests that males may be able to improve their recognition memory by extracting more information at encoding through increased scanning. A strategy of increased scanning at encoding may prove to be a simple way to enhance memory performance in other populations with memory impairment.

  9. Developmental Differences in the Use of Recognition Memory Rejection Mechanisms

    Science.gov (United States)

    Odegard, Timothy N.; Jenkins, Kara M.; Koen, Joshua D.

    2010-01-01

    The current experiment examined the use of plausibility judgments by children to reject distractors presented on "yes/no" recognition memory tests. Participants studied two lists of word pairs that shared either a categorical or rhyme association, which constituted the global nature of the two study conditions. During the recognition memory tests,…

  10. Item Effects in Recognition Memory for Words

    Science.gov (United States)

    Freeman, Emily; Heathcote, Andrew; Chalmers, Kerry; Hockley, William

    2010-01-01

    We investigate the effects of word characteristics on episodic recognition memory using analyses that avoid Clark's (1973) "language-as-a-fixed-effect" fallacy. Our results demonstrate the importance of modeling word variability and show that episodic memory for words is strongly affected by item noise (Criss & Shiffrin, 2004), as measured by the…

  11. Acute Alcohol Effects on Repetition Priming and Word Recognition Memory with Equivalent Memory Cues

    Science.gov (United States)

    Ray, Suchismita; Bates, Marsha E.

    2006-01-01

    Acute alcohol intoxication effects on memory were examined using a recollection-based word recognition memory task and a repetition priming task of memory for the same information without explicit reference to the study context. Memory cues were equivalent across tasks; encoding was manipulated by varying the frequency of occurrence (FOC) of words…

  12. Short term memory may be the depletion of the readily releasable pool of presynaptic neurotransmitter vesicles of a metastable long term memory trace pattern.

    Science.gov (United States)

    Tarnow, Eugen

    2009-09-01

    The Tagging/Retagging model of short term memory was introduced earlier (Tarnow in Cogn Neurodyn 2(4):347-353, 2008) to explain the linear relationship between response time and correct response probability for word recall and recognition: At the initial stimulus presentation the words displayed tag the corresponding long term memory locations. The tagging process is linear in time and takes about one second to reach a tagging level of 100%. After stimulus presentation the tagging level decays logarithmically with time to 50% after 14 s and to 20% after 220 s. If a probe word is reintroduced the tagging level has to return to 100% for the word to be properly identified, which leads to a delay in response time. This delay is proportional to the tagging loss. The tagging level is directly related to the probability of correct word recall and recognition. Evidence presented suggests that the tagging level is the level of depletion of the Readily Releasable Pool (RRP) of neurotransmitter vesicles at presynaptic terminals. The evidence includes the initial linear relationship between tagging level and time as well as the subsequent logarithmic decay of the tagging level. The activation of a short term memory may thus be the depletion of RRP (exocytosis) and short term memory decay may be the ensuing recycling of the neurotransmitter vesicles (endocytosis). The pattern of depleted presynaptic terminals corresponds to the long term memory trace.

  13. Using Maintenance Rehearsal to Explore Recognition Memory

    Science.gov (United States)

    Humphreys, Michael S.; Maguire, Angela M.; McFarlane, Kimberley A.; Burt, Jennifer S.; Bolland, Scott W.; Murray, Krista L.; Dunn, Ryan

    2010-01-01

    We examined associative and item recognition using the maintenance rehearsal paradigm. Our intent was to control for mnemonic strategies; to produce a low, graded level of learning; and to provide evidence of the role of attention in long-term memory. An advantage for low-frequency words emerged in both associative and item recognition at very low…

  14. Fluency Effects in Recognition Memory: Are Perceptual Fluency and Conceptual Fluency Interchangeable?

    Science.gov (United States)

    Lanska, Meredith; Olds, Justin M.; Westerman, Deanne L.

    2014-01-01

    On a recognition memory test, both perceptual and conceptual fluency can engender a sense of familiarity and elicit recognition memory illusions. To date, perceptual and conceptual fluency have been studied separately but are they interchangeable in terms of their influence on recognition judgments? Five experiments compared the effect of…

  15. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory.

    Science.gov (United States)

    Brown, M W; Barker, G R I; Aggleton, J P; Warburton, E C

    2012-11-01

    Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty

  16. The effect of word concreteness on recognition memory.

    Science.gov (United States)

    Fliessbach, K; Weis, S; Klaver, P; Elger, C E; Weber, B

    2006-09-01

    Concrete words that are readily imagined are better remembered than abstract words. Theoretical explanations for this effect either claim a dual coding of concrete words in the form of both a verbal and a sensory code (dual-coding theory), or a more accessible semantic network for concrete words than for abstract words (context-availability theory). However, the neural mechanisms of improved memory for concrete versus abstract words are poorly understood. Here, we investigated the processing of concrete and abstract words during encoding and retrieval in a recognition memory task using event-related functional magnetic resonance imaging (fMRI). As predicted, memory performance was significantly better for concrete words than for abstract words. Abstract words elicited stronger activations of the left inferior frontal cortex both during encoding and recognition than did concrete words. Stronger activation of this area was also associated with successful encoding for both abstract and concrete words. Concrete words elicited stronger activations bilaterally in the posterior inferior parietal lobe during recognition. The left parietal activation was associated with correct identification of old stimuli. The anterior precuneus, left cerebellar hemisphere and the posterior and anterior cingulate cortex showed activations both for successful recognition of concrete words and for online processing of concrete words during encoding. Additionally, we observed a correlation across subjects between brain activity in the left anterior fusiform gyrus and hippocampus during recognition of learned words and the strength of the concreteness effect. These findings support the idea of specific brain processes for concrete words, which are reactivated during successful recognition.

  17. Recognition Decisions from Visual Working Memory Are Mediated by Continuous Latent Strengths

    Science.gov (United States)

    Ricker, Timothy J.; Thiele, Jonathan E.; Swagman, April R.; Rouder, Jeffrey N.

    2017-01-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the…

  18. The relationship between protein synthesis and protein degradation in object recognition memory.

    Science.gov (United States)

    Furini, Cristiane R G; Myskiw, Jociane de C; Schmidt, Bianca E; Zinn, Carolina G; Peixoto, Patricia B; Pereira, Luiza D; Izquierdo, Ivan

    2015-11-01

    For decades there has been a consensus that de novo protein synthesis is necessary for long-term memory. A second round of protein synthesis has been described for both extinction and reconsolidation following an unreinforced test session. Recently, it was shown that consolidation and reconsolidation depend not only on protein synthesis but also on protein degradation by the ubiquitin-proteasome system (UPS), a major mechanism responsible for protein turnover. However, the involvement of UPS on consolidation and reconsolidation of object recognition memory remains unknown. Here we investigate in the CA1 region of the dorsal hippocampus the involvement of UPS-mediated protein degradation in consolidation and reconsolidation of object recognition memory. Animals with infusion cannulae stereotaxically implanted in the CA1 region of the dorsal hippocampus, were exposed to an object recognition task. The UPS inhibitor β-Lactacystin did not affect the consolidation and the reconsolidation of object recognition memory at doses known to affect other forms of memory (inhibitory avoidance, spatial learning in a water maze) while the protein synthesis inhibitor anisomycin impaired the consolidation and the reconsolidation of the object recognition memory. However, β-Lactacystin was able to reverse the impairment caused by anisomycin on the reconsolidation process in the CA1 region of the hippocampus. Therefore, it is possible to postulate a direct link between protein degradation and protein synthesis during the reconsolidation of the object recognition memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Influence of Emotion on Recognition Memory for Scenes

    OpenAIRE

    Pryde, Beatrice

    2012-01-01

    According to dual-process models, recognition memory is supported by two distinct processes: familiarity, a relatively automatic process that involves the retrieval of a previously encountered item, and recollection, a more effortful process that involves the retrieval of information associated with the context in which an item was encoded (Mickes, Wais & Wixted, 2009). There is a wealth of research suggesting that recognition memory performance is affected by the emotional content of stimul...

  20. The effect of mood-context on visual recognition and recall memory.

    Science.gov (United States)

    Robinson, Sarita J; Rollings, Lucy J L

    2011-01-01

    Although it is widely known that memory is enhanced when encoding and retrieval occur in the same state, the impact of elevated stress/arousal is less understood. This study explores mood-dependent memory's effects on visual recognition and recall of material memorized either in a neutral mood or under higher stress/arousal levels. Participants' (N = 60) recognition and recall were assessed while they experienced either the same o a mismatched mood at retrieval. The results suggested that both visual recognition and recall memory were higher when participants experienced the same mood at encoding and retrieval compared with those who experienced a mismatch in mood context between encoding and retrieval. These findings offer support for a mood dependency effect on both the recognition and recall of visual information.

  1. Neurotrophins play differential roles in short and long-term recognition memory.

    Science.gov (United States)

    Callaghan, Charlotte K; Kelly, Aine M

    2013-09-01

    The neurotrophin family of proteins are believed to mediate various forms of synaptic plasticity in the adult brain. Here we have assessed the roles of these proteins in object recognition memory in the rat, using icv infusions of function-blocking antibodies or the tyrosine kinase antagonist, tyrphostin AG879, to block Trk receptors. We report that tyrphostin AG879 impairs both short-term and long-term recognition memory, indicating a requirement for Trk receptor activation in both processes. The effect of inhibition of each of the neurotrophins with activity-blocking neutralising antibodies was also tested. Treatment with anti-BDNF, anti-NGF or anti-NT4 had no effect on short-term memory, but blocked long-term recognition memory. Treatment with anti-NT3 had no effect on either process. We also assessed changes in expression of neurotrophins and their respective receptors in the hippocampus, dentate gyrus and perirhinal cortex over a 24 h period following training in the object recognition task. We observed time-dependent changes in expression of the Trk receptors and their ligands in the dentate gyrus and perirhinal cortex. The data are consistent with a pivotal role for neurotrophic factors in the expression of recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Effects of Pre-Experimental Knowledge on Recognition Memory

    Science.gov (United States)

    Bird, Chris M.; Davies, Rachel A.; Ward, Jamie; Burgess, Neil

    2011-01-01

    The influence of pre-experimental autobiographical knowledge on recognition memory was investigated using as memoranda faces that were either personally known or unknown to the participant. Under a dual process theory, such knowledge boosted both recollection- and familiarity-based recognition judgements. Under an unequal variance signal detection…

  3. The Doors and People Test: The effect of frontal lobe lesions on recall and recognition memory performance.

    Science.gov (United States)

    MacPherson, Sarah E; Turner, Martha S; Bozzali, Marco; Cipolotti, Lisa; Shallice, Tim

    2016-03-01

    Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition memory performance. Other studies that do compare recall and recognition in the same frontal group do not consider recall or recognition tests that are comparable for difficulty. Recognition memory impairments may not be reported because recognition memory tasks are less demanding. This study aimed to investigate recall and recognition impairments in the same group of 47 frontal patients and 78 healthy controls. The Doors and People Test was administered as a neuropsychological test of memory as it assesses both verbal and visual recall and recognition using subtests that are matched for difficulty. Significant verbal and visual recall and recognition impairments were found in the frontal patients. These results demonstrate that when frontal patients are assessed on recall and recognition memory tests of comparable difficulty, memory impairments are found on both types of episodic memory test. (c) 2016 APA, all rights reserved).

  4. Effect of depression on psychomotor skills, eye movements and recognition memory

    NARCIS (Netherlands)

    Deijen, J.B.; Orlebeke, J.F.; Rijsdijk, F.V.

    1993-01-01

    In this study 12 depressed outpatients were compared to 12 healthy controls with respect to their performance on a number of cognitive tasks, including a recognition-memory task, and their eye movements and pupil size were recorded while watching a traffic film. The recognition-memory task consisted

  5. Effects of hydrocortisone on false memory recognition in healthy men and women.

    Science.gov (United States)

    Duesenberg, Moritz; Weber, Juliane; Schaeuffele, Carmen; Fleischer, Juliane; Hellmann-Regen, Julian; Roepke, Stefan; Moritz, Steffen; Otte, Christian; Wingenfeld, Katja

    2016-12-01

    Most of the studies focusing on the effect of stress on false memories by using psychosocial and physiological stressors yielded diverse results. In the present study, we systematically tested the effect of exogenous hydrocortisone using a false memory paradigm. In this placebo-controlled study, 37 healthy men and 38 healthy women (mean age 24.59 years) received either 10 mg of hydrocortisone or placebo 75 min before using the false memory, that is, Deese-Roediger-McDermott (DRM), paradigm. We used emotionally charged and neutral DRM-based word lists to look for false recognition rates in comparison to true recognition rates. Overall, we expected an increase in false memory after hydrocortisone compared to placebo. No differences between the cortisol and the placebo group were revealed for false and for true recognition performance. In general, false recognition rates were lower compared to true recognition rates. Furthermore, we found a valence effect (neutral, positive, negative, disgust word stimuli), indicating higher rates of true and false recognition for emotional compared to neutral words. We further found an interaction effect between sex and recognition. Post hoc t tests showed that for true recognition women showed a significantly better memory performance than men, independent of treatment. This study does not support the hypothesis that cortisol decreases the ability to distinguish between old versus novel words in young healthy individuals. However, sex and emotional valence of word stimuli appear to be important moderators. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Event-related brain potential correlates of human auditory sensory memory-trace formation.

    Science.gov (United States)

    Haenschel, Corinna; Vernon, David J; Dwivedi, Prabuddh; Gruzelier, John H; Baldeweg, Torsten

    2005-11-09

    The event-related potential (ERP) component mismatch negativity (MMN) is a neural marker of human echoic memory. MMN is elicited by deviant sounds embedded in a stream of frequent standards, reflecting the deviation from an inferred memory trace of the standard stimulus. The strength of this memory trace is thought to be proportional to the number of repetitions of the standard tone, visible as the progressive enhancement of MMN with number of repetitions (MMN memory-trace effect). However, no direct ERP correlates of the formation of echoic memory traces are currently known. This study set out to investigate changes in ERPs to different numbers of repetitions of standards, delivered in a roving-stimulus paradigm in which the frequency of the standard stimulus changed randomly between stimulus trains. Normal healthy volunteers (n = 40) were engaged in two experimental conditions: during passive listening and while actively discriminating changes in tone frequency. As predicted, MMN increased with increasing number of standards. However, this MMN memory-trace effect was caused mainly by enhancement with stimulus repetition of a slow positive wave from 50 to 250 ms poststimulus in the standard ERP, which is termed here "repetition positivity" (RP). This RP was recorded from frontocentral electrodes when participants were passively listening to or actively discriminating changes in tone frequency. RP may represent a human ERP correlate of rapid and stimulus-specific adaptation, a candidate neuronal mechanism underlying sensory memory formation in the auditory cortex.

  7. Enhanced tactile encoding and memory recognition in congenital blindness.

    Science.gov (United States)

    D'Angiulli, Amedeo; Waraich, Paul

    2002-06-01

    Several behavioural studies have shown that early-blind persons possess superior tactile skills. Since neurophysiological data show that early-blind persons recruit visual as well as somatosensory cortex to carry out tactile processing (cross-modal plasticity), blind persons' sharper tactile skills may be related to cortical re-organisation resulting from loss of vision early in their life. To examine the nature of blind individuals' tactile superiority and its implications for cross-modal plasticity, we compared the tactile performance of congenitally totally blind, low-vision and sighted children on raised-line picture identification test and re-test, assessing effects of task familiarity, exploratory strategy and memory recognition. What distinguished the blind from the other children was higher memory recognition and higher tactile encoding associated with efficient exploration. These results suggest that enhanced perceptual encoding and recognition memory may be two cognitive correlates of cross-modal plasticity in congenital blindness.

  8. How Fuzzy-Trace Theory Predicts True and False Memories for Words, Sentences, and Narratives

    OpenAIRE

    Reyna, Valerie F.; Corbin, Jonathan C.; Weldon, Rebecca B.; Brainerd, Charles J.

    2016-01-01

    Fuzzy-trace theory posits independent verbatim and gist memory processes, a distinction that has implications for such applied topics as eyewitness testimony. This distinction between precise, literal verbatim memory and meaning-based, intuitive gist accounts for memory paradoxes including dissociations between true and false memory, false memories outlasting true memories, and developmental increases in false memory. We provide an overview of fuzzy-trace theory, and, using mathematical model...

  9. Neural correlates of auditory recognition memory in primate lateral prefrontal cortex.

    Science.gov (United States)

    Plakke, B; Ng, C-W; Poremba, A

    2013-08-06

    The neural underpinnings of working and recognition memory have traditionally been studied in the visual domain and these studies pinpoint the lateral prefrontal cortex (lPFC) as a primary region for visual memory processing (Miller et al., 1996; Ranganath et al., 2004; Kennerley and Wallis, 2009). Herein, we utilize single-unit recordings for the same region in monkeys (Macaca mulatta) but investigate a second modality examining auditory working and recognition memory during delayed matching-to-sample (DMS) performance. A large portion of neurons in the dorsal and ventral banks of the principal sulcus (area 46, 46/9) show DMS event-related activity to one or more of the following task events: auditory cues, memory delay, decision wait time, response, and/or reward portions. Approximately 50% of the neurons show evidence of auditory-evoked activity during the task and population activity demonstrated encoding of recognition memory in the form of match enhancement. However, neither robust nor sustained delay activity was observed. The neuronal responses during the auditory DMS task are similar in many respects to those found within the visual working memory domain, which supports the hypothesis that the lPFC, particularly area 46, functionally represents key pieces of information for recognition memory inclusive of decision-making, but regardless of modality. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Interplay between affect and arousal in recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Bahri, Pooja; Soto, David

    2010-07-23

    Emotional states linked to arousal and mood are known to affect the efficiency of cognitive performance. However, the extent to which memory processes may be affected by arousal, mood or their interaction is poorly understood. Following a study phase of abstract shapes, we altered the emotional state of participants by means of exposure to music that varied in both mood and arousal dimensions, leading to four different emotional states: (i) positive mood-high arousal; (ii) positive mood-low arousal; (iii) negative mood-high arousal; (iv) negative mood-low arousal. Following the emotional induction, participants performed a memory recognition test. Critically, there was an interaction between mood and arousal on recognition performance. Memory was enhanced in the positive mood-high arousal and in the negative mood-low arousal states, relative to the other emotional conditions. Neither mood nor arousal alone but their interaction appears most critical to understanding the emotional enhancement of memory.

  11. Interplay between affect and arousal in recognition memory.

    Directory of Open Access Journals (Sweden)

    Ciara M Greene

    2010-07-01

    Full Text Available Emotional states linked to arousal and mood are known to affect the efficiency of cognitive performance. However, the extent to which memory processes may be affected by arousal, mood or their interaction is poorly understood.Following a study phase of abstract shapes, we altered the emotional state of participants by means of exposure to music that varied in both mood and arousal dimensions, leading to four different emotional states: (i positive mood-high arousal; (ii positive mood-low arousal; (iii negative mood-high arousal; (iv negative mood-low arousal. Following the emotional induction, participants performed a memory recognition test. Critically, there was an interaction between mood and arousal on recognition performance. Memory was enhanced in the positive mood-high arousal and in the negative mood-low arousal states, relative to the other emotional conditions.Neither mood nor arousal alone but their interaction appears most critical to understanding the emotional enhancement of memory.

  12. Nobiletin improves emotional and novelty recognition memory but not spatial referential memory.

    Science.gov (United States)

    Kang, Jiyun; Shin, Jung-Won; Kim, Yoo-Rim; Swanberg, Kelley M; Kim, Yooseung; Bae, Jae Ryong; Kim, Young Ki; Lee, Jinwon; Kim, Soo-Yeon; Sohn, Nak-Won; Maeng, Sungho

    2017-01-01

    How to maintain and enhance cognitive functions for both aged and young populations is a highly interesting subject. But candidate memory-enhancing reagents are tested almost exclusively on lesioned or aged animals. Also, there is insufficient information on the type of memory these reagents can improve. Working memory, located in the prefrontal cortex, manages short-term sensory information, but, by gaining significant relevance, this information is converted to long-term memory by hippocampal formation and/or amygdala, followed by tagging with space-time or emotional cues, respectively. Nobiletin is a product of citrus peel known for cognitive-enhancing effects in various pharmacological and neurodegenerative disease models, yet, it is not well studied in non-lesioned animals and the type of memory that nobiletin can improve remains unclear. In this study, 8-week-old male mice were tested using behavioral measurements for working, spatial referential, emotional and visual recognition memory after daily administration of nobiletin. While nobiletin did not induce any change of spontaneous activity in the open field test, freezing by fear conditioning and novel object recognition increased. However, the effectiveness of spatial navigation in the Y-maze and Morris water maze was not improved. These results mean that nobiletin can specifically improve memories of emotionally salient information associated with fear and novelty, but not of spatial information without emotional saliency. Accordingly, the use of nobiletin on normal subjects as a memory enhancer would be more effective on emotional types but may have limited value for the improvement of episodic memories.

  13. Unraveling the Contributions of the Diencephalon to Recognition Memory: A Review

    Science.gov (United States)

    Aggleton, John P.; Dumont, Julie R.; Warburton, Elizabeth Clea

    2011-01-01

    Both clinical investigations and studies with animals reveal nuclei within the diencephalon that are vital for recognition memory (the judgment of prior occurrence). This review seeks to identify these nuclei and to consider why they might be important for recognition memory. Despite the lack of clinical cases with circumscribed pathology within…

  14. Visual search for changes in scenes creates long-term, incidental memory traces.

    Science.gov (United States)

    Utochkin, Igor S; Wolfe, Jeremy M

    2018-05-01

    Humans are very good at remembering large numbers of scenes over substantial periods of time. But how good are they at remembering changes to scenes? In this study, we tested scene memory and change detection two weeks after initial scene learning. In Experiments 1-3, scenes were learned incidentally during visual search for change. In Experiment 4, observers explicitly memorized scenes. At test, after two weeks observers were asked to discriminate old from new scenes, to recall a change that they had detected in the study phase, or to detect a newly introduced change in the memorization experiment. Next, they performed a change detection task, usually looking for the same change as in the study period. Scene recognition memory was found to be similar in all experiments, regardless of the study task. In Experiment 1, more difficult change detection produced better scene memory. Experiments 2 and 3 supported a "depth-of-processing" account for the effects of initial search and change detection on incidental memory for scenes. Of most interest, change detection was faster during the test phase than during the study phase, even when the observer had no explicit memory of having found that change previously. This result was replicated in two of our three change detection experiments. We conclude that scenes can be encoded incidentally as well as explicitly and that changes in those scenes can leave measurable traces even if they are not explicitly recalled.

  15. How similar are recognition memory and inductive reasoning?

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan

    2013-07-01

    Conventionally, memory and reasoning are seen as different types of cognitive activities driven by different processes. In two experiments, we challenged this view by examining the relationship between recognition memory and inductive reasoning involving multiple forms of similarity. A common study set (members of a conjunctive category) was followed by a test set containing old and new category members, as well as items that matched the study set on only one dimension. The study and test sets were presented under recognition or induction instructions. In Experiments 1 and 2, the inductive property being generalized was varied in order to direct attention to different dimensions of similarity. When there was no time pressure on decisions, patterns of positive responding were strongly affected by property type, indicating that different types of similarity were driving recognition and induction. By comparison, speeded judgments showed weaker property effects and could be explained by generalization based on overall similarity. An exemplar model, GEN-EX (GENeralization from EXamples), could account for both the induction and recognition data. These findings show that induction and recognition share core component processes, even when the tasks involve flexible forms of similarity.

  16. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    Science.gov (United States)

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  17. Memory evaluation in mild cognitive impairment using recall and recognition tests

    OpenAIRE

    Bennett, IJ; Golob, EJ; Parker, ES; Starr, A

    2006-01-01

    Amnestic mild cognitive impairment (MCI) is a selective episodic memory deficit that often indicates early Alzheimer's disease. Episodic memory function in MCI is typically defined by deficits in free recall, but can also be tested using recognition procedures. To assess both recall and recognition in MCI, MCI (n = 21) and older comparison (n = 30) groups completed the USC-Repeatable Episodic Memory Test. Subjects memorized two verbally presented 15-item lists. One list was used for three fre...

  18. Long-Term Social Recognition Memory in Zebrafish.

    Science.gov (United States)

    Madeira, Natália; Oliveira, Rui F

    2017-08-01

    In species in which individuals live in stable social groups, individual recognition is expected to evolve to allow individuals to remember past interactions with different individuals and adjust future behavior toward them accordingly. Thus, social memory is expected to be a ubiquitous component of social cognition of social species. However, few studies have investigated the occurrence of social memory in non-mammals. Here we evaluated the ability of zebrafish (Danio rerio) to recognize different conspecifics and to retain this information in long lasting (i.e. 24 h) memories. We used a social discrimination paradigm, adapted from mouse studies, in which the focal individual meets two pairs of conspecifics in two consecutive days: one conspecific is the same in both days and the other is different between days 1 and 2. If animals have the ability to discriminate between different conspecifics, it is predicted that they will spend more time exploring the novel than the familiar (i.e. already seen in day 1) conspecific. In this study, zebrafish with access to both olfactory and visual conspecific cues exhibited consistent recognition of a previously encountered (familiar) conspecific after a 24 h delay. This result supports the hypothesis that long-term social memory, previously described in mammals, is also present in zebrafish, hence extending the evidence for the presence of this type of memory to teleost fish.

  19. Neural correlates of recognition memory of social information in people with schizophrenia.

    Science.gov (United States)

    Harvey, Philippe-Olivier; Lepage, Martin

    2014-03-01

    Social dysfunction is a hallmark characteristic of schizophrenia. Part of it may stem from an inability to efficiently encode social information into memory and retrieve it later. This study focused on whether patients with schizophrenia show a memory boost for socially relevant information and engage the same neural network as controls when processing social stimuli that were previously encoded into memory. Patients with schizophrenia and healthy controls performed a social and nonsocial picture recognition memory task while being scanned. We calculated memory performance using d'. Our main analysis focused on brain activity associated with recognition memory of social and nonsocial pictures. Our study included 28 patients with schizophrenia and 26 controls. Healthy controls demonstrated a memory boost for socially relevant information. In contrast, patients with schizophrenia failed to show enhanced recognition sensitivity for social pictures. At the neural level, patients did not engage the dorsomedial prefrontal cortex (DMPFC) as much as controls while recognizing social pictures. Our study did not include direct measures of self-referential processing. All but 3 patients were taking antipsychotic medications, which may have altered both the behavioural performance during the picture recognition memory task and brain activity. Impaired social memory in patients with schizophrenia may be associated with altered DMPFC activity. A reduction of DMPFC activity may reflect less involvement of self-referential processes during memory retrieval. Our functional MRI results contribute to a better mapping of the neural disturbances associated with social memory impairment in patients with schizophrenia and may facilitate the development of innovative treatments, such as transcranial magnetic stimulation.

  20. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  1. The effect of mild acute stress during memory consolidation on emotional recognition memory

    Science.gov (United States)

    Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey

    2018-01-01

    Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48 h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. PMID:28838881

  2. Modeling Confidence and Response Time in Recognition Memory

    Science.gov (United States)

    Ratcliff, Roger; Starns, Jeffrey J.

    2009-01-01

    A new model for confidence judgments in recognition memory is presented. In the model, the match between a single test item and memory produces a distribution of evidence, with better matches corresponding to distributions with higher means. On this match dimension, confidence criteria are placed, and the areas between the criteria under the…

  3. PKC-epsilon activation is required for recognition memory in the rat.

    Science.gov (United States)

    Zisopoulou, Styliani; Asimaki, Olga; Leondaritis, George; Vasilaki, Anna; Sakellaridis, Nikos; Pitsikas, Nikolaos; Mangoura, Dimitra

    2013-09-15

    Activation of PKCɛ, an abundant and developmentally regulated PKC isoform in the brain, has been implicated in memory throughout life and across species. Yet, direct evidence for a mechanistic role for PKCɛ in memory is still lacking. Hence, we sought to evaluate this in rats, using short-term treatments with two PKCɛ-selective peptides, the inhibitory ɛV1-2 and the activating ψɛRACK, and the novel object recognition task (NORT). Our results show that the PKCɛ-selective activator ψɛRACK, did not have a significant effect on recognition memory. In the short time frames used, however, inhibition of PKCɛ activation with the peptide inhibitor ɛV1-2 significantly impaired recognition memory. Moreover, when we addressed at the molecular level the immediate proximal signalling events of PKCɛ activation in acutely dissected rat hippocampi, we found that ψɛRACK increased in a time-dependent manner phosphorylation of MARCKS and activation of Src, Raf, and finally ERK1/2, whereas ɛV1-2 inhibited all basal activity of this pathway. Taken together, these findings present the first direct evidence that PKCɛ activation is an essential molecular component of recognition memory and point toward the use of systemically administered PKCɛ-regulating peptides as memory study tools and putative therapeutic agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Food restriction affects Y-maze spatial recognition memory in developing mice.

    Science.gov (United States)

    Fu, Yu; Chen, Yanmei; Li, Liane; Wang, Yumei; Kong, Xiangyang; Wang, Jianhong

    2017-08-01

    The ambiguous effects of food restriction (FR) on cognition in rodents have been mostly explored in the aged brain by a variety of paradigms, in which either rewards or punishments are involved. This study aims to examine the effects of chronic and acute FR with varying intensities on spatial recognition memory in developing mice. We have used a Y-maze task that is based on the innate tendency of rodents to explore novel environments. In chronic FR, mice had 70-30% chow of control for seven weeks. In acute FR, mice were food restricted for 12-48h before the tests. We found that chronic FR had no effect on the preference of mice for novelty in the Y-maze, but severe FR (50-30% of control) caused impairment on spatial recognition memory. The impairment significantly correlated with the slow weight growth induced by FR. Acute FR also did not affect the novelty preference of mice, but either improved or impaired the memory retention. These data suggest chronic FR impairs Y-maze spatial recognition memory in developing mice depending on FR intensity and individual tolerability of the FR. Moreover, acute FR exerts diverse effects on the memory, either positive or negative. Our findings have revealed new insights on the effects of FR on spatial recognition memory in developing animals. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. Recognition Memory for Novel Stimuli: The Structural Regularity Hypothesis

    Science.gov (United States)

    Cleary, Anne M.; Morris, Alison L.; Langley, Moses M.

    2007-01-01

    Early studies of human memory suggest that adherence to a known structural regularity (e.g., orthographic regularity) benefits memory for an otherwise novel stimulus (e.g., G. A. Miller, 1958). However, a more recent study suggests that structural regularity can lead to an increase in false-positive responses on recognition memory tests (B. W. A.…

  6. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Directory of Open Access Journals (Sweden)

    Rainer Stollhoff

    Full Text Available The study investigates long-term recognition memory in congenital prosopagnosia (CP, a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs. In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  7. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    Science.gov (United States)

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  8. In search of a recognition memory engram

    Science.gov (United States)

    Brown, M.W.; Banks, P.J.

    2015-01-01

    A large body of data from human and animal studies using psychological, recording, imaging, and lesion techniques indicates that recognition memory involves at least two separable processes: familiarity discrimination and recollection. Familiarity discrimination for individual visual stimuli seems to be effected by a system centred on the perirhinal cortex of the temporal lobe. The fundamental change that encodes prior occurrence within the perirhinal cortex is a reduction in the responses of neurones when a stimulus is repeated. Neuronal network modelling indicates that a system based on such a change in responsiveness is potentially highly efficient in information theoretic terms. A review is given of findings indicating that perirhinal cortex acts as a storage site for recognition memory of objects and that such storage depends upon processes producing synaptic weakening. PMID:25280908

  9. Differential effects of acute cortisol administration on deep and shallow episodic memory traces: a study on healthy males.

    Science.gov (United States)

    Cioncoloni, David; Galli, Giulia; Mazzocchio, Riccardo; Feurra, Matteo; Giovannelli, Fabio; Santarnecchi, Emiliano; Bonifazi, Marco; Rossi, Alessandro; Rossi, Simone

    2014-10-01

    We aimed at investigating rapid effects of plasma cortisol elevations on the episodic memory phase of encoding or retrieval, and on the strength of the memory trace. Participants were asked either to select a word containing the letter "e" (shallow encoding task) or to judge if a word referred to a living entity (deep encoding task). We intravenously administered a bolus of 20mg of cortisol either 5 min before encoding or 5 min before retrieval, in a between-subjects design. The study included only male participants tested in the late afternoon, and neutral words as stimuli. When cortisol administration occurred prior to retrieval, a main effect of group emerged. Recognition accuracy was higher for individuals who received cortisol compared to placebo. The higher discrimination accuracy for the cortisol group was significant for words encoded during deep but not shallow task. Cortisol administration before encoding did not affect subsequent retrieval performance (either for deep or shallow stimuli) despite a facilitatory trend. Because genomic mechanisms take some time to develop, such a mechanism cannot apply to our findings where the memory task was performed shortly after the enhancement of glucocorticoid levels. Therefore, glucocorticoids, through non-genomic fast effects, determine an enhancement in episodic memory if administered immediately prior to retrieval. This effect is more evident if the memory trace is laid down through deep encoding operations involving the recruitment of specific neural networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Hippocampal Infusion of Zeta Inhibitory Peptide Impairs Recent, but Not Remote, Recognition Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jena B. Hales

    2015-01-01

    Full Text Available Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP. However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF. In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion.

  11. Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex.

    Science.gov (United States)

    Cowell, Rosemary A; Bussey, Timothy J; Saksida, Lisa M

    2006-11-22

    Object recognition is the canonical test of declarative memory, the type of memory putatively impaired after damage to the temporal lobes. Studies of object recognition memory have helped elucidate the anatomical structures involved in declarative memory, indicating a critical role for perirhinal cortex. We offer a mechanistic account of the effects of perirhinal cortex damage on object recognition memory, based on the assumption that perirhinal cortex stores representations of the conjunctions of visual features possessed by complex objects. Such representations are proposed to play an important role in memory when it is difficult to solve a task using representations of only individual visual features of stimuli, thought to be stored in regions of the ventral visual stream caudal to perirhinal cortex. The account is instantiated in a connectionist model, in which development of object representations with visual experience provides a mechanism for judgment of previous occurrence. We present simulations addressing the following empirical findings: (1) that impairments after damage to perirhinal cortex (modeled by removing the "perirhinal cortex" layer of the network) are exacerbated by lengthening the delay between presentation of to-be-remembered items and test, (2) that such impairments are also exacerbated by lengthening the list of to-be-remembered items, and (3) that impairments are revealed only when stimuli are trial unique rather than repeatedly presented. This study shows that it may be possible to account for object recognition impairments after damage to perirhinal cortex within a hierarchical, representational framework, in which complex conjunctive representations in perirhinal cortex play a critical role.

  12. Individual differences in language and working memory affect children's speech recognition in noise.

    Science.gov (United States)

    McCreery, Ryan W; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc

    2017-05-01

    We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Ninety-six children with normal hearing, who were between 5 and 12 years of age. Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Working memory and language both influence children's speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child's auditory skills, consistent with the Ease of Language Understanding model.

  13. Changes in recognition memory over time: an ERP investigation into vocabulary learning.

    Directory of Open Access Journals (Sweden)

    Shekeila D Palmer

    Full Text Available Although it seems intuitive to assume that recognition memory fades over time when information is not reinforced, some aspects of word learning may benefit from a period of consolidation. In the present study, event-related potentials (ERP were used to examine changes in recognition memory responses to familiar and newly learned (novel words over time. Native English speakers were taught novel words associated with English translations, and subsequently performed a Recognition Memory task in which they made old/new decisions in response to both words (trained word vs. untrained word, and novel words (trained novel word vs. untrained novel word. The Recognition task was performed 45 minutes after training (Day 1 and then repeated the following day (Day 2 with no additional training session in between. For familiar words, the late parietal old/new effect distinguished old from new items on both Day 1 and Day 2, although response to trained items was significantly weaker on Day 2. For novel words, the LPC again distinguished old from new items on both days, but the effect became significantly larger on Day 2. These data suggest that while recognition memory for familiar items may fade over time, recognition of novel items, conscious recollection in particular may benefit from a period of consolidation.

  14. The effect of glucose administration on the recollection and familiarity components of recognition memory.

    Science.gov (United States)

    Sünram-Lea, Sandra I; Dewhurst, Stephen A; Foster, Jonathan K

    2008-01-01

    Previous research has demonstrated that glucose administration facilitates long-term memory performance. The aim of the present research was to evaluate the effect of glucose administration on different components of long-term recognition memory. Fifty-six healthy young individuals received (a) a drink containing 25 g of glucose or (b) an inert placebo drink. Recollection and familiarity components of recognition memory were measured using the 'remember-know' paradigm. The results revealed that glucose administration led to significantly increased proportion of recognition responses based on recollection, but had no effect on the proportion of recognition responses made through participants' detection of stimulus familiarity. Consequently, the data suggest that glucose administration appears to facilitate recognition memory that is accompanied by recollection of contextual details and episodic richness. The findings also suggest that memory tasks that result in high levels of hippocampal activity may be more likely to be enhanced by glucose administration than tasks that are less reliant on medial temporal lobe structures.

  15. Atypical evening cortisol profile induces visual recognition memory deficit in healthy human subjects

    Directory of Open Access Journals (Sweden)

    Gilpin Heather

    2008-08-01

    Full Text Available Abstract Background Diurnal rhythm-mediated endogenous cortisol levels in humans are characterised by a peak in secretion after awakening that declines throughout the day to an evening trough. However, a significant proportion of the population exhibits an atypical cycle of diurnal cortisol due to shift work, jet-lag, aging, and mental illness. Results The present study has demonstrated a correlation between elevation of cortisol in the evening and deterioration of visual object recognition memory. However, high evening cortisol levels have no effect on spatial memory. Conclusion This study suggests that atypical evening salivary cortisol levels have an important role in the early deterioration of recognition memory. The loss of recognition memory, which is vital for everyday life, is a major symptom of the amnesic syndrome and early stages of Alzheimer's disease. Therefore, this study will promote a potential physiologic marker of early deterioration of recognition memory and a possible diagnostic strategy for Alzheimer's disease.

  16. The effects of acute social isolation on long-term social recognition memory.

    Science.gov (United States)

    Leser, Noam; Wagner, Shlomo

    2015-10-01

    The abilities to recognize individual animals of the same species and to distinguish them from other individuals are the basis for all mammalian social organizations and relationships. These abilities, termed social recognition memory, can be explored in mice and rats using their innate tendency to investigate novel social stimuli more persistently than familiar ones. Using this methodology it was found that social recognition memory is mediated by a specific neural network in the brain, the activity of which is modulated by several molecules, such the neuropeptides oxytocin and vasopressin. During the last 15 years several independent studies have revealed that social recognition memory of mice and rats depends upon their housing conditions. Specifically, long-term social recognition memory cannot be formed as shortly as few days following social isolation of the animal. This rapid and reversible impairment caused by acute social isolation seems to be specific to social memory and has not been observed in other types of memory. Here we review these studies and suggest that this unique system may serve for exploring of the mechanisms underlying the well-known negative effects of partial or perceived social isolation on human mental health. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The effect of mild acute stress during memory consolidation on emotional recognition memory.

    Science.gov (United States)

    Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey

    2017-11-01

    Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Basic perceptual changes that alter meaning and neural correlates of recognition memory.

    Science.gov (United States)

    Gao, Chuanji; Hermiller, Molly S; Voss, Joel L; Guo, Chunyan

    2015-01-01

    It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color) on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not). Abstract visual shapes ("squiggles") were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential (ERP) correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400), implying that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition). Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates of memory

  19. The Sensory Nature of Episodic Memory: Sensory Priming Effects Due to Memory Trace Activation

    Science.gov (United States)

    Brunel, Lionel; Labeye, Elodie; Lesourd, Mathieu; Versace, Remy

    2009-01-01

    The aim of this study was to provide evidence that memory and perceptual processing are underpinned by the same mechanisms. Specifically, the authors conducted 3 experiments that emphasized the sensory aspect of memory traces. They examined their predictions with a short-term priming paradigm based on 2 distinct phases: a learning phase consisting…

  20. Receiver Operating Characteristics (ROCs) in Recognition Memory: A Review

    Science.gov (United States)

    Yonelinas, Andrew P.; Parks, Colleen M.

    2007-01-01

    Receiver operating characteristic (ROC) analysis is being used increasingly to examine the memory processes underlying recognition memory. The authors discuss the methodological issues involved in conducting and analyzing ROC results, describe the various models that have been developed to account for these results, review the behavioral empirical…

  1. Recognition memory is improved by a structured temporal framework during encoding

    Directory of Open Access Journals (Sweden)

    Sathesan eThavabalasingam

    2016-01-01

    Full Text Available In order to function optimally within our environment, we continuously extract temporal patterns from our experiences and formulate expectations that facilitate adaptive behavior. Given that our memories are embedded within spatiotemporal contexts, an intriguing possibility is that mnemonic processes are sensitive to the temporal structure of events. To test this hypothesis, in a series of behavioral experiments we manipulated the regularity of interval durations at encoding to create temporally structured and unstructured frameworks. Our findings revealed enhanced recognition memory (d’ for stimuli that were explicitly encoded within a temporally structured versus unstructured framework. Encoding information within a temporally structured framework was also associated with a reduction in the negative effects of proactive interference and was linked to greater recollective recognition memory. Furthermore, rhythmic temporal structure was found to enhance recognition memory for incidentally encoded information. Collectively, these results support the possibility that we possess a greater capacity to learn and subsequently remember temporally structured information.

  2. The effect of prenatal methamphetamine exposure on recognition memory in adult rats.

    Science.gov (United States)

    Fialová, Markéta; Šírová, Jana; Bubeníková-Valešová, Věra; Šlamberová, Romana

    2015-01-01

    The use of methamphetamine (MA) among pregnant women is an increasing world-wide health problem. Prenatal MA exposure may cause changes in foetus but the exact effects have remained unclear. The aim of this study is to present the effect of prenatal MA exposure on recognition memory in adult rats. Adult female Wistar rats were injected daily with D-methamphetamine HCl (MA; 5 mg/kg, s.c.) during the entire gestation period. Control females were treated with saline in the same regime. Adult male offspring was administrated acutely by MA (1 mg/kg i.p.) or saline 30 minutes before beginning of an experiment. For testing recognition memory two tasks were chosen: Novel Object Recognition Test (NORT) and Object Location Test (OLT). Our results demonstrate that prenatally MA-exposed animals were worse in NORT independently on an acute administration of MA in adulthood. Prenatally MA-exposed rats did not deteriorate in OLT, but after acute administration of MA in adulthood, there was significant worsening compared to appropriate control. Prenatally saline-exposed offspring did not deteriorate in any test even after acute administration of MA. Our data suggest that prenatal MA exposure in rats cause impairment in recognition memory in adult offspring, but not in spatial memory. In addition, acute administration of MA to controls did not deteriorate either recognition or spatial memory.

  3. Recognition memory for low- and high-frequency-filtered emotional faces: Low spatial frequencies drive emotional memory enhancement, whereas high spatial frequencies drive the emotion-induced recognition bias.

    Science.gov (United States)

    Rohr, Michaela; Tröger, Johannes; Michely, Nils; Uhde, Alarith; Wentura, Dirk

    2017-07-01

    This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement-that is, better long-term memory for emotional than for neutral stimuli-and the emotion-induced recognition bias-that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account-that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.

  4. Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory

    Science.gov (United States)

    Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.

    2011-01-01

    Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100

  5. Disruption of Memory Reconsolidation Erases a Fear Memory Trace in the Human Amygdala: An 18-Month Follow-Up.

    Directory of Open Access Journals (Sweden)

    Johannes Björkstrand

    Full Text Available Fear memories can be attenuated by reactivation followed by disrupted reconsolidation. Using functional magnetic resonance imaging we recently showed that reactivation and reconsolidation of a conditioned fear memory trace in the basolateral amygdala predicts subsequent fear expression over two days, while reactivation followed by disrupted reconsolidation abolishes the memory trace and suppresses fear. In this follow-up study we demonstrate that the behavioral effect persists over 18 months reflected in superior reacquisition after undisrupted, as compared to disrupted reconsolidation, and that neural activity in the basolateral amygdala representing the initial fear memory predicts return of fear. We conclude that disrupting reconsolidation have long lasting behavioral effects and may permanently erase the fear component of an amygdala-dependent memory.

  6. Remembering the snake in the grass: Threat enhances recognition but not source memory.

    Science.gov (United States)

    Meyer, Miriam Magdalena; Bell, Raoul; Buchner, Axel

    2015-12-01

    Research on the influence of emotion on source memory has yielded inconsistent findings. The object-based framework (Mather, 2007) predicts that negatively arousing stimuli attract attention, resulting in enhanced within-object binding, and, thereby, enhanced source memory for intrinsic context features of emotional stimuli. To test this prediction, we presented pictures of threatening and harmless animals, the color of which had been experimentally manipulated. In a memory test, old-new recognition for the animals and source memory for their color was assessed. In all 3 experiments, old-new recognition was better for the more threatening material, which supports previous reports of an emotional memory enhancement. This recognition advantage was due to the emotional properties of the stimulus material, and not specific for snake stimuli. However, inconsistent with the prediction of the object-based framework, intrinsic source memory was not affected by emotion. (c) 2015 APA, all rights reserved).

  7. Estradiol and luteinizing hormone regulate recognition memory following subchronic phencyclidine: Evidence for hippocampal GABA action.

    Science.gov (United States)

    Riordan, Alexander J; Schaler, Ari W; Fried, Jenny; Paine, Tracie A; Thornton, Janice E

    2018-05-01

    The cognitive symptoms of schizophrenia are poorly understood and difficult to treat. Estrogens may mitigate these symptoms via unknown mechanisms. To examine these mechanisms, we tested whether increasing estradiol (E) or decreasing luteinizing hormone (LH) could mitigate short-term episodic memory loss in a phencyclidine (PCP) model of schizophrenia. We then assessed whether changes in cortical or hippocampal GABA may underlie these effects. Female rats were ovariectomized and injected subchronically with PCP. To modulate E and LH, animals received estradiol capsules or Antide injections. Short-term episodic memory was assessed using the novel object recognition task (NORT). Brain expression of GAD67 was analyzed via western blot, and parvalbumin-containing cells were counted using immunohistochemistry. Some rats received hippocampal infusions of a GABA A agonist, GABA A antagonist, or GAD inhibitor before behavioral testing. We found that PCP reduced hippocampal GAD67 and abolished recognition memory. Antide restored hippocampal GAD67 and rescued recognition memory in PCP-treated animals. Estradiol prevented PCP's amnesic effect in NORT but failed to restore hippocampal GAD67. PCP did not cause significant differences in number of parvalbumin-expressing cells or cortical expression of GAD67. Hippocampal infusions of a GABA A agonist restored recognition memory in PCP-treated rats. Blocking hippocampal GAD or GABA A receptors in ovx animals reproduced recognition memory loss similar to PCP and inhibited estradiol's protection of recognition memory in PCP-treated animals. In summary, decreasing LH or increasing E can lessen short-term episodic memory loss, as measured by novel object recognition, in a PCP model of schizophrenia. Alterations in hippocampal GABA may contribute to both PCP's effects on recognition memory and the hormones' ability to prevent or reverse them. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Optical-electronic shape recognition system based on synergetic associative memory

    Science.gov (United States)

    Gao, Jun; Bao, Jie; Chen, Dingguo; Yang, Youqing; Yang, Xuedong

    2001-04-01

    This paper presents a novel optical-electronic shape recognition system based on synergetic associative memory. Our shape recognition system is composed of two parts: the first one is feature extraction system; the second is synergetic pattern recognition system. Hough transform is proposed for feature extraction of unrecognized object, with the effects of reducing dimensions and filtering for object distortion and noise, synergetic neural network is proposed for realizing associative memory in order to eliminate spurious states. Then we adopt an approach of optical- electronic realization to our system that can satisfy the demands of real time, high speed and parallelism. In order to realize fast algorithm, we replace the dynamic evolution circuit with adjudge circuit according to the relationship between attention parameters and order parameters, then implement the recognition of some simple images and its validity is proved.

  9. Effect of nitrogen narcosis on free recall and recognition memory in open water.

    Science.gov (United States)

    Hobbs, M; Kneller, W

    2009-01-01

    Previous research has demonstrated that nitrogen narcosis causes decrements in memory performance but the precise aspect of memory impaired is not clear in the literature. The present research investigated the effect of narcosis on free recall and recognition memory by appling signal detection theory (SDT) to the analysis of the recognition data. Using a repeated measures design, the free recall and recognition memory of 20 divers was tested in four learning-recall conditions: shallow-shallow (SS), deep-deep (DD), shallow-deep (SD) and deep-shallow (DS). The data was collected in the ocean offDahab, Egypt with shallow water representing a depth of 0-10m (33ft) and deep water 37-40m (121-131ft). The presence of narcosis was independently indexed with subjective ratings. In comparison to the SS condition there was a clear impairment of free recall in the DD and DS conditions, but not the SD condition. Recognition memory remained unaffected by narcosis. It was concluded narcosis-induced memory decrements cannot be explained as simply an impairment of input into long term memory or of self-guided search and it is suggested instead that narcosis acts to reduce the level of processing/encoding of information.

  10. Long-term memory traces for language sounds are highly context-sensitive: an MEG/ERF study

    DEFF Research Database (Denmark)

    Nielsen, Andreas Højlund; Gebauer, Line; Mcgregor, William

    impact on the proposed long-term memory traces for native phonological categories. In order to generate different MMF responses to the same language sound contrast depending on the phonetic context, these long-term memory traces must thus be context-sensitive themselves or exist as separate traces...

  11. Recognition and source memory for pictures in children and adults.

    Science.gov (United States)

    Cycowicz, Y M; Friedman, D; Snodgrass, J G; Duff, M

    2001-01-01

    The present experiment investigated the developmental aspects of source compared to item memory. College students and 7-8-year-old children viewed pictures drawn in red or green during a study phase, and were asked either to remember the pictures for a subsequent recognition test, or to remember both the pictures and their associated colors for a subsequent source memory test. In the test phase, new and old pictures were presented in black. In the recognition task, participants were asked to make binary old/new recognition judgments, while in the source task, they were asked to make trinary old-green/old-red/new source judgements. Performance on all tasks improved with increasing age, but the age difference for source was much larger than that for item memory. It has been suggested that the frontal lobes play a critical role in the retrieval of source information, and that this brain region relative to the medial temporal lobes continues to develop into late adolescence. Thus, it is possible that immaturity of the frontal lobes may be causally related to the children's lower performance on the source memory task.

  12. A single-system model predicts recognition memory and repetition priming in amnesia.

    Science.gov (United States)

    Berry, Christopher J; Kessels, Roy P C; Wester, Arie J; Shanks, David R

    2014-08-13

    We challenge the claim that there are distinct neural systems for explicit and implicit memory by demonstrating that a formal single-system model predicts the pattern of recognition memory (explicit) and repetition priming (implicit) in amnesia. In the current investigation, human participants with amnesia categorized pictures of objects at study and then, at test, identified fragmented versions of studied (old) and nonstudied (new) objects (providing a measure of priming), and made a recognition memory judgment (old vs new) for each object. Numerous results in the amnesic patients were predicted in advance by the single-system model, as follows: (1) deficits in recognition memory and priming were evident relative to a control group; (2) items judged as old were identified at greater levels of fragmentation than items judged new, regardless of whether the items were actually old or new; and (3) the magnitude of the priming effect (the identification advantage for old vs new items) overall was greater than that of items judged new. Model evidence measures also favored the single-system model over two formal multiple-systems models. The findings support the single-system model, which explains the pattern of recognition and priming in amnesia primarily as a reduction in the strength of a single dimension of memory strength, rather than a selective explicit memory system deficit. Copyright © 2014 the authors 0270-6474/14/3410963-12$15.00/0.

  13. Insular Cortex Is Involved in Consolidation of Object Recognition Memory

    Science.gov (United States)

    Bermudez-Rattoni, Federico; Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2005-01-01

    Extensive evidence indicates that the insular cortex (IC), also termed gustatory cortex, is critically involved in conditioned taste aversion and taste recognition memory. Although most studies of the involvement of the IC in memory have investigated taste, there is some evidence that the IC is involved in memory that is not based on taste. In…

  14. The Response Dynamics of Recognition Memory: Sensitivity and Bias

    Science.gov (United States)

    Koop, Gregory J.; Criss, Amy H.

    2016-01-01

    Advances in theories of memory are hampered by insufficient metrics for measuring memory. The goal of this paper is to further the development of model-independent, sensitive empirical measures of the recognition decision process. We evaluate whether metrics from continuous mouse tracking, or response dynamics, uniquely identify response bias and…

  15. The Memory State Heuristic: A Formal Model Based on Repeated Recognition Judgments

    Science.gov (United States)

    Castela, Marta; Erdfelder, Edgar

    2017-01-01

    The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e.,…

  16. Basic perceptual changes that alter meaning and neural correlates of recognition memory

    Directory of Open Access Journals (Sweden)

    Chuanji eGao

    2015-02-01

    Full Text Available It is difficult to pinpoint the border between perceptual and conceptual processing, despite their treatment as distinct entities in many studies of recognition memory. For instance, alteration of simple perceptual characteristics of a stimulus can radically change meaning, such as the color of bread changing from white to green. We sought to better understand the role of perceptual and conceptual processing in memory by identifying the effects of changing a basic perceptual feature (color on behavioral and neural correlates of memory in circumstances when this change would be expected to either change the meaning of a stimulus or to have no effect on meaning (i.e., to influence conceptual processing or not. Abstract visual shapes (squiggles were colorized during study and presented during test in either the same color or a different color. Those squiggles that subjects found to resemble meaningful objects supported behavioral measures of conceptual priming, whereas meaningless squiggles did not. Further, changing color from study to test had a selective effect on behavioral correlates of priming for meaningful squiggles, indicating that color change altered conceptual processing. During a recognition memory test, color change altered event-related brain potential correlates of memory for meaningful squiggles but not for meaningless squiggles. Specifically, color change reduced the amplitude of frontally distributed N400 potentials (FN400, indicating that these potentials indicated conceptual processing during recognition memory that was sensitive to color change. In contrast, color change had no effect on FN400 correlates of recognition for meaningless squiggles, which were overall smaller in amplitude than for meaningful squiggles (further indicating that these potentials signal conceptual processing during recognition. Thus, merely changing the color of abstract visual shapes can alter their meaning, changing behavioral and neural correlates

  17. Working memory affects older adults' use of context in spoken-word recognition.

    Science.gov (United States)

    Janse, Esther; Jesse, Alexandra

    2014-01-01

    Many older listeners report difficulties in understanding speech in noisy situations. Working memory and other cognitive skills may modulate older listeners' ability to use context information to alleviate the effects of noise on spoken-word recognition. In the present study, we investigated whether verbal working memory predicts older adults' ability to immediately use context information in the recognition of words embedded in sentences, presented in different listening conditions. In a phoneme-monitoring task, older adults were asked to detect as fast and as accurately as possible target phonemes in sentences spoken by a target speaker. Target speech was presented without noise, with fluctuating speech-shaped noise, or with competing speech from a single distractor speaker. The gradient measure of contextual probability (derived from a separate offline rating study) affected the speed of recognition. Contextual facilitation was modulated by older listeners' verbal working memory (measured with a backward digit span task) and age across listening conditions. Working memory and age, as well as hearing loss, were also the most consistent predictors of overall listening performance. Older listeners' immediate benefit from context in spoken-word recognition thus relates to their ability to keep and update a semantic representation of the sentence content in working memory.

  18. Individual differences in language and working memory affect children’s speech recognition in noise

    Science.gov (United States)

    McCreery, Ryan W.; Spratford, Meredith; Kirby, Benjamin; Brennan, Marc

    2017-01-01

    Objective We examined how cognitive and linguistic skills affect speech recognition in noise for children with normal hearing. Children with better working memory and language abilities were expected to have better speech recognition in noise than peers with poorer skills in these domains. Design As part of a prospective, cross-sectional study, children with normal hearing completed speech recognition in noise for three types of stimuli: (1) monosyllabic words, (2) syntactically correct but semantically anomalous sentences and (3) semantically and syntactically anomalous word sequences. Measures of vocabulary, syntax and working memory were used to predict individual differences in speech recognition in noise. Study sample Ninety-six children with normal hearing, who were between 5 and 12 years of age. Results Higher working memory was associated with better speech recognition in noise for all three stimulus types. Higher vocabulary abilities were associated with better recognition in noise for sentences and word sequences, but not for words. Conclusions Working memory and language both influence children’s speech recognition in noise, but the relationships vary across types of stimuli. These findings suggest that clinical assessment of speech recognition is likely to reflect underlying cognitive and linguistic abilities, in addition to a child’s auditory skills, consistent with the Ease of Language Understanding model. PMID:27981855

  19. Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory.

    Science.gov (United States)

    Scott, Hannah; Smith, Anna E; Barker, Gareth R; Uney, James B; Warburton, E Clea

    2017-03-01

    Recognition memory enables us to judge whether we have encountered a stimulus before and to recall associated information, including where the stimulus was encountered. The perirhinal cortex (PRh) is required for judgment of stimulus familiarity, while hippocampus (HPC) and medial prefrontal cortex (mPFC) are additionally involved when spatial information associated with a stimulus needs to be remembered. While gene expression is known to be essential for the consolidation of long-term recognition memory, the underlying regulatory mechanisms are not fully understood. Here we investigated the roles of two epigenetic mechanisms, DNA methylation and histone deacetylation, in recognition memory. Infusion of DNA methyltransferase inhibitors into PRh impaired performance in novel object recognition and object-in-place tasks while infusions into HPC or mPFC impaired object-in-place performance only. In contrast, inhibition of histone deacetylases in PRh, but not mPFC, enhanced recognition memory. These results support the emerging role of epigenetic processes in learning and memory.

  20. Contrasting roles for DNA methyltransferases and histone deacetylases in single-item and associative recognition memory

    Directory of Open Access Journals (Sweden)

    Hannah Scott

    2017-03-01

    Full Text Available Recognition memory enables us to judge whether we have encountered a stimulus before and to recall associated information, including where the stimulus was encountered. The perirhinal cortex (PRh is required for judgment of stimulus familiarity, while hippocampus (HPC and medial prefrontal cortex (mPFC are additionally involved when spatial information associated with a stimulus needs to be remembered. While gene expression is known to be essential for the consolidation of long-term recognition memory, the underlying regulatory mechanisms are not fully understood. Here we investigated the roles of two epigenetic mechanisms, DNA methylation and histone deacetylation, in recognition memory. Infusion of DNA methyltransferase inhibitors into PRh impaired performance in novel object recognition and object-in-place tasks while infusions into HPC or mPFC impaired object-in-place performance only. In contrast, inhibition of histone deacetylases in PRh, but not mPFC, enhanced recognition memory. These results support the emerging role of epigenetic processes in learning and memory.

  1. The impact of left and right intracranial tumors on picture and word recognition memory.

    Science.gov (United States)

    Goldstein, Bram; Armstrong, Carol L; Modestino, Edward; Ledakis, George; John, Cameron; Hunter, Jill V

    2004-02-01

    This study investigated the effects of left and right intracranial tumors on picture and word recognition memory. We hypothesized that left hemispheric (LH) patients would exhibit greater word recognition memory impairment than right hemispheric (RH) patients, with no significant hemispheric group picture recognition memory differences. The LH patient group obtained a significantly slower mean picture recognition reaction time than the RH group. The LH group had a higher proportion of tumors extending into the temporal lobes, possibly accounting for their greater pictorial processing impairments. Dual coding and enhanced visual imagery may have contributed to the patient groups' similar performance on the remainder of the measures.

  2. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    Science.gov (United States)

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. ERK pathway activation bidirectionally affects visual recognition memory and synaptic plasticity in the perirhinal cortex

    Directory of Open Access Journals (Sweden)

    Davide eSilingardi

    2011-12-01

    Full Text Available ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and several studies have identified its pivotal role in experience-dependent synaptic plasticity and in forms of long term memory involving hippocampus, amygdala or striatum. The perirhinal cortex (PRHC plays an essential role in familiarity-based object recognition memory. It is still unknown whether ERK activation in PRHC is necessary for recognition memory consolidation. Most important, it is unknown whether by modulating the gain of the ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC synaptic plasticity.We have first pharmacologically blocked ERK activation in the PRHC of adult mice and found that this was sufficient to impair long term recognition memory in a familiarity-based task, the Object Recognition Task (ORT. We have then tested performance in the ORT in Ras-GRF1 knock-out (KO mice, which exhibit a reduced activation of ERK by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2 and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-GRF1 KO mice have normal short-term memory but display a long term memory deficit; memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better performance than WT mice at 72 hour retention interval, suggesting a longer lasting recognition memory. In parallel with behavioural data, LTD was strongly reduced and LTP was significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced LTP and LTD were found in PRHC slices from ERK1 KO mice.

  4. Memory bias for negative emotional words in recognition memory is driven by effects of category membership.

    Science.gov (United States)

    White, Corey N; Kapucu, Aycan; Bruno, Davide; Rotello, Caren M; Ratcliff, Roger

    2014-01-01

    Recognition memory studies often find that emotional items are more likely than neutral items to be labelled as studied. Previous work suggests this bias is driven by increased memory strength/familiarity for emotional items. We explored strength and bias interpretations of this effect with the conjecture that emotional stimuli might seem more familiar because they share features with studied items from the same category. Categorical effects were manipulated in a recognition task by presenting lists with a small, medium or large proportion of emotional words. The liberal memory bias for emotional words was only observed when a medium or large proportion of categorised words were presented in the lists. Similar, though weaker, effects were observed with categorised words that were not emotional (animal names). These results suggest that liberal memory bias for emotional items may be largely driven by effects of category membership.

  5. Modeling recognition memory using the similarity structure of natural input

    NARCIS (Netherlands)

    Lacroix, J.P.W.; Murre, J.M.J.; Postma, E.O.; van den Herik, H.J.

    2006-01-01

    The natural input memory (NIM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During

  6. Semantic relations differentially impact associative recognition memory: electrophysiological evidence.

    Science.gov (United States)

    Kriukova, Olga; Bridger, Emma; Mecklinger, Axel

    2013-10-01

    Though associative recognition memory is thought to rely primarily on recollection, recent research indicates that familiarity might also make a substantial contribution when to-be-learned items are integrated into a coherent structure by means of an existing semantic relation. It remains unclear how different types of semantic relations, such as categorical (e.g., dancer-singer) and thematic (e.g., dancer-stage) relations might affect associative recognition, however. Using event-related potentials (ERPs), we addressed this question by manipulating the type of semantic link between paired words in an associative recognition memory experiment. An early midfrontal old/new effect, typically linked to familiarity, was observed across the relation types. In contrast, a robust left parietal old/new effect was found in the categorical condition only, suggesting a clear contribution of recollection to associative recognition for this kind of pairs. One interpretation of this pattern is that familiarity was sufficiently diagnostic for associative recognition of thematic relations, which could result from the integrative nature of the thematic relatedness compared to the similarity-based nature of categorical pairs. The present study suggests that the extent to which recollection and familiarity are involved in associative recognition is at least in part determined by the properties of semantic relations between the paired associates. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Variability in the impairments of recognition memory in patients with frontal lobe lesions

    OpenAIRE

    Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric

    2006-01-01

    Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased...

  8. Can color changes alter the neural correlates of recognition memory? Manipulation of processing affects an electrophysiological indicator of conceptual implicit memory.

    Science.gov (United States)

    Cui, Xiaoyu; Gao, Chuanji; Zhou, Jianshe; Guo, Chunyan

    2016-09-28

    It has been widely shown that recognition memory includes two distinct retrieval processes: familiarity and recollection. Many studies have shown that recognition memory can be facilitated when there is a perceptual match between the studied and the tested items. Most event-related potential studies have explored the perceptual match effect on familiarity on the basis of the hypothesis that the specific event-related potential component associated with familiarity is the FN400 (300-500 ms mid-frontal effect). However, it is currently unclear whether the FN400 indexes familiarity or conceptual implicit memory. In addition, on the basis of the findings of a previous study, the so-called perceptual manipulations in previous studies may also involve some conceptual alterations. Therefore, we sought to determine the influence of perceptual manipulation by color changes on recognition memory when the perceptual or the conceptual processes were emphasized. Specifically, different instructions (perceptually or conceptually oriented) were provided to the participants. The results showed that color changes may significantly affect overall recognition memory behaviorally and that congruent items were recognized with a higher accuracy rate than incongruent items in both tasks, but no corresponding neural changes were found. Despite the evident familiarity shown in the two tasks (the behavioral performance of recognition memory was much higher than at the chance level), the FN400 effect was found in conceptually oriented tasks, but not perceptually oriented tasks. It is thus highly interesting that the FN400 effect was not induced, although color manipulation of recognition memory was behaviorally shown, as seen in previous studies. Our findings of the FN400 effect for the conceptual but not perceptual condition support the explanation that the FN400 effect indexes conceptual implicit memory.

  9. Neuronal Oscillations Indicate Sleep-dependent Changes in the Cortical Memory Trace.

    Science.gov (United States)

    Köster, Moritz; Finger, Holger; Kater, Maren-Jo; Schenk, Christoph; Gruber, Thomas

    2017-04-01

    Sleep promotes the consolidation of newly acquired associative memories. Here we used neuronal oscillations in the human EEG to investigate sleep-dependent changes in the cortical memory trace. The retrieval activity for object-color associations was assessed immediately after encoding and after 3 hr of sleep or wakefulness. Sleep had beneficial effects on memory performance and led to reduced event-related theta and gamma power during the retrieval of associative memories. Furthermore, event-related alpha suppression was attenuated in the wake group for memorized and novel stimuli. There were no sleep-dependent changes in retrieval activity for missed items or items retrieved without color. Thus, the sleep-dependent reduction in theta and gamma oscillations was specific for the retrieval of associative memories. In line with theoretical accounts on sleep-dependent memory consolidation, decreased theta may indicate reduced mediotemporal activity because of a transfer of information into neocortical networks during sleep, whereas reduced parietal gamma may reflect effects of synaptic downscaling. Changes in alpha suppression in the wake group possibly index reduced attentional resources that may also contribute to a lower memory performance in this group. These findings indicate that the consolidation of associative memories during sleep is associated with profound changes in the cortical memory trace and relies on multiple neuronal processes working in concert.

  10. The Effect of Mood-Context on Visual Recognition and Recall Memory

    OpenAIRE

    Robinson, Sarita Jane; Rollings, Lucy J. L.

    2010-01-01

    Although it is widely known that memory is enhanced when encoding and retrieval occur in the same state, the impact of elevated stress/arousal is less understood. This study explores mood-dependent memory's effects on visual recognition and recall of material memorized either in a neutral mood or under higher stress/arousal levels. Participants’ (N = 60) recognition and recall were assessed while they experienced either the same or a mismatched mood at retrieval. The results suggested that bo...

  11. The Effect of Attractiveness on Recognition Memory when Women Look at Female Faces

    Directory of Open Access Journals (Sweden)

    Kana Kuraguchi

    2011-05-01

    Full Text Available In previous studies, the relationship between facial attractiveness and memory has been inconsistent. We investigated the effect of facial attractiveness on recognition memory in terms of gender and judgment contents. Both female and male facial images were judged for their attractiveness and personal character, and incidental memory was tested later. Recognition performance was shown as d' and analyzed with 2 (participant's gender x 2 (condition of attractiveness ANOVA. The interaction was significant for female faces but not for male faces. It is, therefore, suggested that the difference of gender affects the recognition memory concerning facial attractiveness. In particular, attractiveness of female faces had different effects for female participants when compared to other combinations. As a control, the interaction for female faces was not significant when the task was to judge the physical features such as the size of eyes and the angle of mouth. In sum, unattractive faces were better recognized than attractive faces in general except for the case when women judged attractiveness of female faces. These results suggest that there may be an effect of attention to attractiveness on recognition memory that is particularly strong when women look at female faces.

  12. Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory.

    Science.gov (United States)

    McCullough, Andrew M; Ritchey, Maureen; Ranganath, Charan; Yonelinas, Andrew

    2015-09-01

    Stress-induced changes in cortisol can impact memory in various ways. However, the precise relationship between cortisol and recognition memory is still poorly understood. For instance, there is reason to believe that stress could differentially affect recollection-based memory, which depends on the hippocampus, and familiarity-based recognition, which can be supported by neocortical areas alone. Accordingly, in the current study we examined the effects of stress-related changes in cortisol on the processes underlying recognition memory. Stress was induced with a cold-pressor test after incidental encoding of emotional and neutral pictures, and recollection and familiarity-based recognition memory were measured one day later. The relationship between stress-induced cortisol responses and recollection was non-monotonic, such that subjects with moderate stress-related increases in cortisol had the highest levels of recollection. In contrast, stress-related cortisol responses were linearly related to increases in familiarity. In addition, measures of cortisol taken at the onset of the experiment showed that individuals with higher levels of pre-learning cortisol had lower levels of both recollection and familiarity. The results are consistent with the proposition that hippocampal-dependent memory processes such as recollection function optimally under moderate levels of stress, whereas more cortically-based processes such as familiarity are enhanced even with higher levels of stress. These results indicate that whether post-encoding stress improves or disrupts recognition memory depends on the specific memory process examined as well as the magnitude of the stress-induced cortisol response. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Glucocorticoid effects on object recognition memory require training-associated emotional arousal.

    Science.gov (United States)

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L

    2004-01-20

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.

  14. Track recognition with an associative pattern memory

    International Nuclear Information System (INIS)

    Bok, H.W. den; Visschers, J.L.; Borgers, A.J.; Lourens, W.

    1991-01-01

    Using Programmable Gate Arrays (PGAs), a prototype for a fast Associative Pattern Memory module has been realized. The associative memory performs the recognition of tracks within the hadron detector data acquisition system at NIKHEF-K. The memory matches the detector state with a set of 24 predefined tracks to identify the particle tracks that occur during an event. This information enables the trigger hardware to classify and select or discriminate the event. Mounted on a standard size (6U) VME board, several PGAs together form an associative memory. The internal logic architecture of the Gate Array is used in such a way as to minimize signal propagation delay. The memory cells, containing a binary representation of the particle tracks, are dynamically loadable through a VME bus interface, providing a high level of flexibility. The hadron detector and its readout system are briefly described and our track representation method is presented. Results from measurements under experimental conditions are discussed. (orig.)

  15. Recognition Memory in Amnestic-Mild Cognitive Impairment: Insights from Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    David A Wolk

    2013-12-01

    Full Text Available Episodic memory loss is the hallmark cognitive dysfunction associated with Alzheimer’s Disease (AD. Amnestic Mild Cognitive Impairment (a-MCI frequently represents a transitional stage between normal aging and early AD. A better understanding of the qualitative features of memory loss in a-MCI may have important implications for predicting those most likely to harbor AD-related pathology and for disease monitoring. Dual process models of memory argue that recognition memory is subserved by the dissociable processes of recollection and familiarity. Work studying recognition memory in a-MCI from this perspective has been controversial, particularly with regard to the integrity of familiarity. Event-related potentials (ERPs offer an alternative means for assessing these functions without the associated assumptions of behavioral estimation methods. ERPs were recorded while a-MCI patients and cognitively normal (CN age-matched adults performed a recognition memory task. When retrieval success was measured (hits versus correct rejections in which performance was matched by group, a-MCI patients displayed similar neural correlates to that of the CN group, including modulation of the FN400 and the late parietal complex (LPC which are thought to index familiarity and recollection, respectively. Alternatively, when the integrity of these components were measured based on retrieval attempts (studied versus unstudied items, a-MCI patients displayed a reduced FN400 and LPC. Furthermore, modulation of the FN400 correlated with a behavioral estimate of familiarity and the LPC with a behavioral estimates of recollection obtained in a separate experiment in the same individuals, consistent with the proposed mappings of these indices. These results support a global decline of recognition memory in a-MCI, which suggests that the memory loss of prodromal AD may be qualitatively distinct from normal aging.

  16. Verifying visual properties in sentence verification facilitates picture recognition memory.

    Science.gov (United States)

    Pecher, Diane; Zanolie, Kiki; Zeelenberg, René

    2007-01-01

    According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. We investigated whether recognition memory for pictures of concepts was facilitated by earlier representation of visual properties of those concepts. During study, concept names (e.g., apple) were presented in a property verification task with a visual property (e.g., shiny) or with a nonvisual property (e.g., tart). Delayed picture recognition memory was better if the concept name had been presented with a visual property than if it had been presented with a nonvisual property. These results indicate that modality-specific simulations are used for concept representation.

  17. Arousal Rather than Basic Emotions Influence Long-Term Recognition Memory in Humans.

    Science.gov (United States)

    Marchewka, Artur; Wypych, Marek; Moslehi, Abnoos; Riegel, Monika; Michałowski, Jarosław M; Jednoróg, Katarzyna

    2016-01-01

    Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After 6 months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized) vs. forgotten (not recognized) images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia.

  18. Arousal rather than basic emotions influence long-term recognition memory in humans.

    Directory of Open Access Journals (Sweden)

    Artur Marchewka

    2016-10-01

    Full Text Available Emotion can influence various cognitive processes, however its impact on memory has been traditionally studied over relatively short retention periods and in line with dimensional models of affect. The present study aimed to investigate emotional effects on long-term recognition memory according to a combined framework of affective dimensions and basic emotions. Images selected from the Nencki Affective Picture System were rated on the scale of affective dimensions and basic emotions. After six months, subjects took part in a surprise recognition test during an fMRI session. The more negative the pictures the better they were remembered, but also the more false recognitions they provoked. Similar effects were found for the arousal dimension. Recognition success was greater for pictures with lower intensity of happiness and with higher intensity of surprise, sadness, fear, and disgust. Consecutive fMRI analyses showed a significant activation for remembered (recognized vs. forgotten (not recognized images in anterior cingulate and bilateral anterior insula as well as in bilateral caudate nuclei and right thalamus. Further, arousal was found to be the only subjective rating significantly modulating brain activation. Higher subjective arousal evoked higher activation associated with memory recognition in the right caudate and the left cingulate gyrus. Notably, no significant modulation was observed for other subjective ratings, including basic emotion intensities. These results emphasize the crucial role of arousal for long-term recognition memory and support the hypothesis that the memorized material, over time, becomes stored in a distributed cortical network including the core salience network and basal ganglia.

  19. Cross-modal working memory binding and word recognition skills: how specific is the link?

    Science.gov (United States)

    Wang, Shinmin; Allen, Richard J

    2018-04-01

    Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.

  20. Psychophysiological indices of recognition memory

    OpenAIRE

    Heaver, Becky

    2012-01-01

    It has recently been found that during recognition memory tests participants’ pupils dilate more when they view old items compared to novel items. This thesis sought to replicate this novel ‘‘Pupil Old/New Effect’’ (PONE) and to determine its relationship to implicit and explicit mnemonic processes, the veracity of participants’ responses, and the analogous Event-Related Potential (ERP) old/new effect. Across 9 experiments, pupil-size was measured with a video-based eye-tracker during a varie...

  1. Who is the boss? Individual recognition memory and social hierarchy formation in crayfish.

    Science.gov (United States)

    Jiménez-Morales, Nayeli; Mendoza-Ángeles, Karina; Porras-Villalobos, Mercedes; Ibarra-Coronado, Elizabeth; Roldán-Roldán, Gabriel; Hernández-Falcón, Jesús

    2018-01-01

    Under laboratory conditions, crayfish establish hierarchical orders through agonistic encounters whose outcome defines the dominant one and one, or more, submissive animals. These agonistic encounters are ritualistic, based on threats, pushes, attacks, grabs, and avoidance behaviors that include retreats and escape responses. Agonistic behavior in a triad of unfamiliar, size-matched animals is intense on the first day of social interaction and the intensity fades on daily repetitions. The dominant animal keeps its status for long periods, and the submissive ones seem to remember 'who the boss is'. It has been assumed that animals remember and recognize their hierarchical status by urine signals, but the putative substance mediating this recognition has not been reported. The aim of this work was to characterize this hierarchical recognition memory. Triads of unfamiliar crayfish (male animals, size and weight-matched) were faced during standardized agonistic protocols for five consecutive days to analyze memory acquisition dynamics (Experiment 1). In Experiment 2, dominant crayfish were shifted among triads to disclose whether hierarchy depended upon individual recognition memory or recognition of status. The maintenance of the hierarchical structure without behavioral reinforcement was assessed by immobilizing the dominant animal during eleven daily agonistic encounters, and considering any shift in the dominance order (Experiment 3). Standard amnesic treatments (anisomycin, scopolamine or cold-anesthesia) were given to all members of the triads immediately after the first interaction session to prevent individual recognition memory consolidation and evaluate its effect on the hierarchical order (Experiment 4). Acquisition of hierarchical recognition occurs at the first agonistic encounter and agonistic behavior gradually diminishes in the following days; animals keep their hierarchical order despite the inability of the dominant crayfish to attack the submissive

  2. Recollection and Familiarity in Recognition Memory: Evidence from ROC Curves

    Science.gov (United States)

    Heathcote, Andrew; Raymond, Frances; Dunn, John

    2006-01-01

    Does recognition memory rely on discrete recollection, continuous evidence, or both? Is continuous evidence sensitive to only the recency and duration of study (familiarity), or is it also sensitive to details of the study episode? Dual process theories assume recognition is based on recollection and familiarity, with only recollection providing…

  3. Event-Related Potential (ERP) Evidence for Fluency-Based Recognition Memory

    Science.gov (United States)

    Leynes, P. Andrew; Zish, Kevin

    2012-01-01

    Two experiments investigated the influence of perceptual fluency on recognition memory. Words were studied using a shallow encoding task to decrease the contribution of recollection on recognition. Fluency was manipulated by blurring half of the test probes. Clarity varied randomly across trials in one experiment and was grouped into two blocks…

  4. Glucocorticoid effects on object recognition memory require training-associated emotional arousal

    OpenAIRE

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L.

    2004-01-01

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague–Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two condition...

  5. Enhanced recognition memory in grapheme-color synaesthesia for different categories of visual stimuli.

    Science.gov (United States)

    Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas

    2013-01-01

    Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.

  6. The Doors and People Test: The effect of frontal lobe lesions on recall and recognition memory performance

    OpenAIRE

    MacPherson, S. E.; Turner, M. S.; Bozzali, M.; Cipolotti, L.; Shallice, T.

    2016-01-01

    OBJECTIVE: Memory deficits in patients with frontal lobe lesions are most apparent on free recall tasks that require the selection, initiation, and implementation of retrieval strategies. The effect of frontal lesions on recognition memory performance is less clear with some studies reporting recognition memory impairments but others not. The majority of these studies do not directly compare recall and recognition within the same group of frontal patients, assessing only recall or recognition...

  7. Nicotine enhances the reconsolidation of novel object recognition memory in rats.

    Science.gov (United States)

    Tian, Shaowen; Pan, Si; You, Yong

    2015-02-01

    There is increasing evidence that nicotine is involved in learning and memory. However, there are only few studies that have evaluated the relationship between nicotine and memory reconsolidation. In this study, we investigated the effects of nicotine on the reconsolidation of novel object recognition memory in rats. Behavior procedure involved four training phases: habituation (Days 1 and 2), sample (Day 3), reactivation (Day 4) and test (Day 6). Rats were injected with saline or nicotine (0.1, 0.2 and 0.4 mg/kg) immediately or 6h after reactivation. The discrimination index was used to assess memory performance and calculated as the difference in time exploring on the novel and familiar objects. Results showed that nicotine administration immediately but not 6 h after reactivation significantly enhanced memory performance of rats. Further results showed that the enhancing effect of nicotine on memory performance was dependent on memory reactivation, and was not attributed to the changes of the nonspecific responses (locomotor activity and anxiety level) 48 h after nicotine administration. The results suggest that post-reactivation nicotine administration enhances the reconsolidation of novel object recognition memory. Our present finding extends previous research on the nicotinic effects on learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory

    Directory of Open Access Journals (Sweden)

    Bradley Russell Buchsbaum

    2011-07-01

    Full Text Available The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such recency effects have shown that activation in the lateral inferior parietal cortex (LIPC tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging (fMRI we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations – the memory strength and expectancy hypotheses, respectively -- of the parietal lobe recency effect.

  9. Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb.

    Science.gov (United States)

    Larrazolo-López, A; Kendrick, K M; Aburto-Arciniega, M; Arriaga-Avila, V; Morimoto, S; Frias, M; Guevara-Guzmán, R

    2008-03-27

    The ability of vaginocervical stimulation (VCS) to promote olfactory social recognition memory at different stages of the ovarian cycle was investigated in female rats. A juvenile social recognition paradigm was used and memory retention tested at 30 and 300 min after an adult was exposed to a juvenile during three 4-min trials. Results showed that an intact social recognition memory was present at 30 min in animals with or without VCS and at all stages of the estrus cycle. However, whereas no animals in any stage of the estrus cycle showed retention of the specific recognition memory at 300 min, those in the proestrus/estrus phase that received VCS 10 min before the trial started did. In vivo microdialysis studies showed that there was a significant release of oxytocin after VCS in the olfactory bulb during proestrus. There was also increased oxytocin immunoreactivity within the olfactory bulb after VCS in proestrus animals compared with diestrus ones. Furthermore, when animals received an infusion of an oxytocin antagonist directly into the olfactory bulb, or a systemic administration of alpha or beta noradrenaline-antagonists, they failed to show evidence for maintenance of a selective olfactory recognition memory at 300 min. Animals with vagus or pelvic nerve section also showed no memory retention when tested after 300 min. These results suggest that VCS releases oxytocin in the olfactory bulb to enhance the social recognition memory and that this may be due to modulatory actions on noradrenaline release. The vagus and pelvic nerves are responsible for carrying the information from the pelvic area to the CNS.

  10. The Modality-Match Effect in Recognition Memory

    Science.gov (United States)

    Mulligan, Neil W.; Osborn, Katherine

    2009-01-01

    The modality-match effect in recognition refers to superior memory for words presented in the same modality at study and test. Prior research on this effect is ambiguous and inconsistent. The present study demonstrates that the modality-match effect is found when modality is rendered salient at either encoding or retrieval. Specifically, in…

  11. Standard object recognition memory and "what" and "where" components: Improvement by post-training epinephrine in highly habituated rats.

    Science.gov (United States)

    Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel

    2010-02-11

    The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.

  12. Infants’ Visual Recognition Memory for a Series of Categorically Related Items

    Science.gov (United States)

    Oakes, Lisa M.; Kovack-Lesh, Kristine A.

    2013-01-01

    Six-month-old infants' ("N" = 168) memory for individual items in a categorized list (e.g., images of dogs or cats) was examined to investigate the interactions between visual recognition memory, working memory, and categorization. In Experiments 1 and 2, infants were familiarized with six different cats or dogs, presented one at a time…

  13. The Neural Correlates of Everyday Recognition Memory

    Science.gov (United States)

    Milton, F.; Muhlert, N.; Butler, C. R.; Benattayallah, A.; Zeman, A. Z.

    2011-01-01

    We used a novel automatic camera, SenseCam, to create a recognition memory test for real-life events. Adapting a "Remember/Know" paradigm, we asked healthy undergraduates, who wore SenseCam for 2 days, in their everyday environments, to classify images as strongly or weakly remembered, strongly or weakly familiar or novel, while brain activation…

  14. Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.

    Science.gov (United States)

    Grilli, Matthew D; Glisky, Elizabeth L

    2010-11-01

    The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.

  15. Enhanced Recognition Memory in Grapheme-Colour Synaesthesia for Different Categories of Visual Stimuli

    Directory of Open Access Journals (Sweden)

    Jamie eWard

    2013-10-01

    Full Text Available Memory has been shown to be enhanced in grapheme-colour synaesthesia, and this enhancement extends to certain visual stimuli (that don’t induce synaesthesia as well as stimuli comprised of graphemes (which do. Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g. free recall, recognition, associative learning making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory for a variety of stimuli (written words, nonwords, scenes, and fractals and also check which memorisation strategies were used. We demonstrate that grapheme-colour synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory. In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing colour, orientation, or object presence. Again, grapheme-colour synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals and scenes for which colour can be used to discriminate old/new status.

  16. Enhanced recognition memory after incidental encoding in children with developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Martina Hedenius

    Full Text Available Developmental dyslexia (DD has previously been associated with a number of cognitive deficits. Little attention has been directed to cognitive functions that remain intact in the disorder, though the investigation and identification of such strengths might be useful for developing new, and improving current, therapeutical interventions. In this study, an old/new recognition memory paradigm was used to examine previously untested aspects of declarative memory in children with DD and typically developing control children. The DD group was not only not impaired at the task, but actually showed superior recognition memory, as compared to the control children. These findings complement previous reports of enhanced cognition in other domains (e.g., visuo-spatial processing in DD. Possible underlying mechanisms for the observed DD advantage in declarative memory, and the possibility of compensation by this system for reading deficits in dyslexia, are discussed.

  17. Memory Asymmetry of Forward and Backward Associations in Recognition Tasks

    Science.gov (United States)

    Yang, Jiongjiong; Zhao, Peng; Zhu, Zijian; Mecklinger, Axel; Fang, Zhiyong; Li, Han

    2013-01-01

    There is an intensive debate on whether memory for serial order is symmetric. The objective of this study was to explore whether associative asymmetry is modulated by memory task (recognition vs. cued recall). Participants were asked to memorize word triples (Experiments 1-2) or pairs (Experiments 3-6) during the study phase. They then recalled…

  18. The effects of aging and Alzheimer's disease on associative recognition memory.

    Science.gov (United States)

    Hanaki, Risa; Abe, Nobuhito; Fujii, Toshikatsu; Ueno, Aya; Nishio, Yoshiyuki; Hiraoka, Kotaro; Shimomura, Tatsuo; Iizuka, Osamu; Shinohara, Mayumi; Hirayama, Kazumi; Mori, Etsuro

    2011-12-01

    We investigated the effects of aging and Alzheimer's disease (AD) on item and associative recognition memory. Three groups of participants (younger adults, elderly adults, and AD patients) studied photographs of common objects that were located on either the left or the right side of a black computer screen inside either a red or a blue square. In a subsequent old/new recognition memory test, the participants were presented with four kinds of stimuli: "intact" stimuli, which were presented as they were during the study phase; "location-altered" stimuli, which were presented in a different location; "color-altered" stimuli, which were presented with a different surrounding color; and "new" stimuli, which consisted of photographs that had not been presented during the study phase. Compared with younger adults, the older adults showed equivalent performance in simple item recognition but worse performance in discriminating location-altered and color-altered stimuli. Compared with older adults, the AD patients showed equivalent performance in discriminating color-altered stimuli but worse performance in simple item recognition and the discrimination of location-altered stimuli. We speculate that distinct structural and functional changes in specific brain regions that are caused by aging and AD are responsible for the different patterns of memory impairment.

  19. A Critical Role for the Nucleus Reuniens in Long-Term, But Not Short-Term Associative Recognition Memory Formation.

    Science.gov (United States)

    Barker, Gareth R I; Warburton, Elizabeth Clea

    2018-03-28

    Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the

  20. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    Science.gov (United States)

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  1. Consequences of temporary inhibition of the medial amygdala on social recognition memory performance in mice

    Directory of Open Access Journals (Sweden)

    Julia eNoack

    2015-04-01

    Full Text Available Different lines of investigation suggest that the medial amygdala is causally involved in the processing of information linked to social behaviour in rodents. Here we investigated the consequences of temporary inhibition of the medial amygdala by bilateral injections of lidocaine on long-term social recognition memory as tested in the social discrimination task. Lidocaine or control NaCl solution was infused immediately before learning or before retrieval. Our data show that lidocaine infusion immediately before learning did not affect long-term memory retrieval. However, intra-amygdalar lidocaine infusions immediately before choice interfered with correct memory retrieval. Analysis of the aggressive behaviour measured simultaneously during all sessions in the social recognition memory task support the impression that the lidocaine dosage used here was effective as it – at least partially – reduced the aggressive behaviour shown by the experimental subjects towards the juveniles. Surprisingly, also infusions of NaCl solution blocked recognition memory at both injection time points. The results are interpreted in the context of the importance of the medial amygdala for the processing of non-volatile odours as a major contributor to the olfactory signature for social recognition memory.

  2. Developmental Changes in Item and Source Memory: Evidence from an ERP Recognition Memory Study with Children, Adolescents, and Adults

    Science.gov (United States)

    Sprondel, Volker; Kipp, Kerstin H.; Mecklinger, Axel

    2011-01-01

    Event-related potential (ERP) correlates of item and source memory were assessed in 18 children (7-8 years), 20 adolescents (13-14 years), and 20 adults (20-29 years) performing a continuous recognition memory task with object and nonobject stimuli. Memory performance increased with age and was particularly low for source memory in children. The…

  3. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory.

    Directory of Open Access Journals (Sweden)

    Bradley H Lee

    Full Text Available Anesthetic exposure early in life affects neural development and long-term cognitive function, but our understanding of the types of memory that are altered is incomplete. Specific cognitive tests in rodents that isolate different memory processes provide a useful approach for gaining insight into this issue.Postnatal day 7 (P7 rats were exposed to either desflurane or isoflurane at 1 Minimum Alveolar Concentration for 4 h. Acute neuronal death was assessed 12 h later in the thalamus, CA1-3 regions of hippocampus, and dentate gyrus. In separate behavioral experiments, beginning at P48, subjects were evaluated in a series of object recognition tests relying on associative learning, as well as social recognition.Exposure to either anesthetic led to a significant increase in neuroapoptosis in each brain region. The extent of neuronal death did not differ between groups. Subjects were unaffected in simple tasks of novel object and object-location recognition. However, anesthetized animals from both groups were impaired in allocentric object-location memory and a more complex task requiring subjects to associate an object with its location and contextual setting. Isoflurane exposure led to additional impairment in object-context association and social memory.Isoflurane and desflurane exposure during development result in deficits in tasks relying on associative learning and recognition memory. Isoflurane may potentially cause worse impairment than desflurane.

  4. Recognition memory for vibrotactile rhythms: an fMRI study in blind and sighted individuals.

    Science.gov (United States)

    Sinclair, Robert J; Dixit, Sachin; Burton, Harold

    2011-01-01

    Calcarine sulcal cortex possibly contributes to semantic recognition memory in early blind (EB). We assessed a recognition memory role using vibrotactile rhythms and a retrieval success paradigm involving learned "old" and "new" rhythms in EB and sighted. EB showed no activation differences in occipital cortex indicating retrieval success but replicated findings of somatosensory processing. Both groups showed retrieval success in primary somatosensory, precuneus, and orbitofrontal cortex. The S1 activity might indicate generic sensory memory processes.

  5. Role of the medial temporal lobes in relational memory: Neuropsychological evidence from a cued recognition paradigm

    OpenAIRE

    Kan, Irene P.; Giovanello, Kelly S.; Schnyer, David M.; Makris, Nikos; Verfaellie, Mieke

    2007-01-01

    In this study, we examined the role of the hippocampus in relational memory by comparing item recognition performance in amnesic patients with medial temporal lobe (MTL) damage and their matched controls. Specifically, we investigated the contribution of associative memory to item recognition using a cued recognition paradigm. Control subjects studied cue-target pairs once, whereas amnesic patients studied cue-target pairs six times. Following study, subjects made recognition judgments about ...

  6. Determination of memory performance

    International Nuclear Information System (INIS)

    Gopych, P.M.

    1999-01-01

    Within the scope of testing statistical hypotheses theory a model definition and a computer method for model calculation of widely used in neuropsychology human memory performance (free recall, cued recall, and recognition probabilities), a model definition and a computer method for model calculation of intensities of cues used in experiments for testing human memory quality are proposed. Models for active and passive traces of memory and their relations are found. It was shown that autoassociative memory unit in the form of short two-layer artificial neural network with (or without) damages can be used for model description of memory performance in subjects with (or without) local brain lesions

  7. Practice makes imperfect: Working memory training can harm recognition memory performance

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Laura E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Trumbo, Michael C. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Haass, Michael J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hunter, Michael A. [Univ. of New Mexico, Albuquerque, NM (United States); Silva, Austin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Stevens-Adams, Susan M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bunting, Michael F. [Univ. of Maryland, College Park, MD (United States). Center for Advanced Study of Language; O?Rourke, Polly [Univ. of Maryland, College Park, MD (United States). Center for Advanced Study of Language

    2016-07-05

    There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved on the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group’s performance on a recognition memory task increased after training, the WM training group’s performance on the task decreased after training. Participants’ descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. Our results indicate that WM training may have unintended consequences for other types of memory performance.

  8. Communicative Signals Promote Object Recognition Memory and Modulate the Right Posterior STS.

    Science.gov (United States)

    Redcay, Elizabeth; Ludlum, Ruth S; Velnoskey, Kayla R; Kanwal, Simren

    2016-01-01

    Detection of communicative signals is thought to facilitate knowledge acquisition early in life, but less is known about the role these signals play in adult learning or about the brain systems supporting sensitivity to communicative intent. The current study examined how ostensive gaze cues and communicative actions affect adult recognition memory and modulate neural activity as measured by fMRI. For both the behavioral and fMRI experiments, participants viewed a series of videos of an actress acting on one of two objects in front of her. Communicative context in the videos was manipulated in a 2 × 2 design in which the actress either had direct gaze (Gaze) or wore a visor (NoGaze) and either pointed at (Point) or reached for (Reach) one of the objects (target) in front of her. Participants then completed a recognition memory task with old (target and nontarget) objects and novel objects. Recognition memory for target objects in the Gaze conditions was greater than NoGaze, but no effects of gesture type were seen. Similarly, the fMRI video-viewing task revealed a significant effect of Gaze within right posterior STS (pSTS), but no significant effects of Gesture. Furthermore, pSTS sensitivity to Gaze conditions was related to greater memory for objects viewed in Gaze, as compared with NoGaze, conditions. Taken together, these results demonstrate that the ostensive, communicative signal of direct gaze preceding an object-directed action enhances recognition memory for attended items and modulates the pSTS response to object-directed actions. Thus, establishment of a communicative context through ostensive signals remains an important component of learning and memory into adulthood, and the pSTS may play a role in facilitating this type of social learning.

  9. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    Science.gov (United States)

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  10. Effect of Time Delay on Recognition Memory for Pictures: The Modulatory Role of Emotion

    Science.gov (United States)

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay. PMID:24971457

  11. Evidences of the role of the rodent hippocampus in the non-spatial recognition memory.

    Science.gov (United States)

    Yi, Jee Hyun; Park, Hye Jin; Kim, Byeong C; Kim, Dong Hyun; Ryu, Jong Hoon

    2016-01-15

    The hippocampus is a key region responsible for processing spatial information. However, the role of the hippocampus in non-spatial recognition memory is still controversial. In the present study, we performed hippocampal lesioning to address this controversy. The hippocampi of mice were disrupted with bilateral cytotoxic lesions, and standard object recognition (non-spatial) and object location recognition (spatial) were tested. In the habituation period, mice with hippocampal lesions needed a significantly longer time to fully habituate to the test box. Interestingly, after 4 days of habituation (insufficient habituation), the recognition index was similar in the sham and hippocampal lesion groups. However, exploration time was significantly shorter in mice with hippocampal lesions compared with that in control mice. Interestingly, if mice were subjected to a 10-days-long period of habituation (full habituation), the recognition index was significantly lower in mice with hippocampal lesions compared with that in control mice; however, total exploration time was similar in both groups. Furthermore, the object recognition test after full habituation occluded hippocampal long-term potentiation, a cellular model of memory. These results indicate that sufficient habituation is required to observe the effects of hippocampal lesions on object recognition memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A new intuitionism: Meaning, memory, and development in Fuzzy-Trace Theory.

    Science.gov (United States)

    Reyna, Valerie F

    2012-05-01

    Combining meaning, memory, and development, the perennially popular topic of intuition can be approached in a new way. Fuzzy-trace theory integrates these topics by distinguishing between meaning-based gist representations, which support fuzzy (yet advanced) intuition, and superficial verbatim representations of information, which support precise analysis. Here, I review the counterintuitive findings that led to the development of the theory and its most recent extensions to the neuroscience of risky decision making. These findings include memory interference (worse verbatim memory is associated with better reasoning); nonnumerical framing (framing effects increase when numbers are deleted from decision problems); developmental decreases in gray matter and increases in brain connectivity; developmental reversals in memory, judgment, and decision making (heuristics and biases based on gist increase from childhood to adulthood, challenging conceptions of rationality); and selective attention effects that provide critical tests comparing fuzzy-trace theory, expected utility theory, and its variants (e.g., prospect theory). Surprising implications for judgment and decision making in real life are also discussed, notably, that adaptive decision making relies mainly on gist-based intuition in law, medicine, and public health.

  13. Administration of riluzole into the basolateral amygdala has an anxiolytic-like effect and enhances recognition memory in the rat.

    Science.gov (United States)

    Sugiyama, Azusa; Saitoh, Akiyoshi; Yamada, Misa; Oka, Jun-Ichiro; Yamada, Mitsuhiko

    2017-06-01

    It is widely thought that inactivation of the glutamatergic system impairs recognition memory in rodents. However, we previously demonstrated that systemic administration of riluzole, which blocks the glutamatergic system, enhances recognition memory in the rat novel object recognition (NOR) test. The mechanisms underlying this paradoxical effect of riluzole on recognition memory remain unclear. In the present study, adult male Wistar rats were bilaterally cannulated in the basolateral amygdala (BLA) to examine the effects of intra-BLA administration of riluzole. We also compared the effects of riluzole with those of d-cycloserine, a partial agonist at the glycine binding site on the N-methyl-d-aspartate (NMDA) receptor. The BLA plays a critical role not only in recognition memory, but also in the regulation of anxiety. In the present study, intra-BLA administration of riluzole or d-cycloserine enhanced recognition memory in the NOR test. It was previously suggested that recognition memory can be strongly affected by the state of anxiety in rodents. Interestingly, intra-BLA administration of riluzole, but not d-cycloserine, produced a potent anxiolytic-like effect in the elevated plus-maze test. Thus, the enhancement of recognition memory by riluzole might be an indirect effect resulting from the anxiolytic-like action of the intra-BLA administration of the drug, and may not be directly related to inhibition of the glutamatergic system. Further studies are needed to clarify the mechanisms underlying the memory enhancing effect of riluzole. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electrographic imaging of recognition memory in 34-38 week gestation intrauterine growth restricted newborns.

    Science.gov (United States)

    Black, Linda S; deRegnier, Raye-Ann; Long, Jeffrey; Georgieff, Michael K; Nelson, Charles A

    2004-11-01

    Electrophysiological imaging of recognition memory using event-related potentials (ERPs) in intrauterine growth-restricted (IUGR) newborns allows assessment of recognition memory before the onset of multiple confounding variables. Animal models that reproduce the physiologic components associated with IUGR have demonstrated adverse effects on the hippocampus, a structure that is essential to normal memory processing. Previous electrophysiologic studies have demonstrated shortened auditory-evoked potential (AEP) and visual-evoked potential (VEP) latencies in IUGR infants suggesting accelerated neural maturation in response to the adverse in-utero environment. The hypothesis of the current study was that newborns with IUGR and head-sparing would demonstrate altered auditory recognition memory when compared to controls and that the configuration of the alteration would evidence advanced maturation but still be different from that of typically grown newborns. Twelve IUGR newborns born at 34-38 weeks gestation with head-sparing and 16 age-matched control newborns were tested with both a speech/nonspeech paradigm to assess auditory sensory processing and a novel (stranger's voice) and familiar (mother's voice) paradigm to assess recognition memory. In the recognition memory experiment, a three-way interaction of condition, lead, and group was identified for the lateral leads T4, CM3, and CM4 with the response to the mother being of much greater area in the IUGR cohort than in the controls. This ERP configuration has previously been reported for the midline leads in term newborns. The findings indicate that IUGR newborns with head-sparing have electrophysiologic evidence of accelerated maturation of cognitive processing suggesting an atypical process of maturation that may not support typical cognitive development.

  15. A multimodal imaging study of recognition memory in very preterm born adults.

    Science.gov (United States)

    Tseng, Chieh-En Jane; Froudist-Walsh, Seán; Brittain, Philip J; Karolis, Vyacheslav; Caldinelli, Chiara; Kroll, Jasmin; Counsell, Serena J; Williams, Steven C R; Murray, Robin M; Nosarti, Chiara

    2017-02-01

    Very preterm (memory impairments throughout childhood and adolescence. Here, we used functional MRI (fMRI) to study the neuroanatomy of recognition memory in 49 very preterm-born adults and 50 controls (mean age: 30 years) during completion of a task involving visual encoding and recognition of abstract pictures. T1-weighted and diffusion-weighted images were also collected. Bilateral hippocampal volumes were calculated and tractography of the fornix and cingulum was performed and assessed in terms of volume and hindrance modulated orientational anisotropy (HMOA). Online recognition memory task performance, assessed with A scores, was poorer in the very preterm compared with the control group. Analysis of fMRI data focused on differences in neural activity between the recognition and encoding trials. Very preterm born adults showed decreased activation in the right middle frontal gyrus and posterior cingulate cortex/precuneus and increased activation in the left inferior frontal gyrus and bilateral lateral occipital cortex (LOC) compared with controls. Hippocampi, fornix and cingulum volume was significantly smaller and fornix HMOA was lower in very preterm adults. Among all the structural and functional brain metrics that showed statistically significant group differences, LOC activation was the best predictor of online task performance (P = 0.020). In terms of association between brain function and structure, LOC activation was predicted by fornix HMOA in the preterm group only (P = 0.020). These results suggest that neuroanatomical alterations in very preterm born individuals may be underlying their poorer recognition memory performance. Hum Brain Mapp 38:644-655, 2017. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  16. Two waves of proteasome-dependent protein degradation in the hippocampus are required for recognition memory consolidation.

    Science.gov (United States)

    Figueiredo, Luciana S; Dornelles, Arethuza S; Petry, Fernanda S; Falavigna, Lucio; Dargél, Vinicius A; Köbe, Luiza M; Aguzzoli, Cristiano; Roesler, Rafael; Schröder, Nadja

    2015-04-01

    Healthy neuronal function and synaptic modification require a concert of synthesis and degradation of proteins. Increasing evidence indicates that protein turnover mediated by proteasome activity is involved in long-term synaptic plasticity and memory. However, its role in different phases of memory remains debated, and previous studies have not examined the possible requirement of protein degradation in recognition memory. Here, we show that the proteasome inhibitor, lactacystin (LAC), infused into the CA1 area of the hippocampus at two specific time points during consolidation, impairs 24-retention of memory for object recognition in rats. Administration of LAC after retrieval did not affect retention. These findings provide the first evidence for a requirement of proteasome activity in recognition memory, indicate that protein degradation in the hippocampus is necessary during selective time windows of memory consolidation, and further our understanding of the role of protein turnover in memory formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cueing vocabulary during sleep increases theta activity during later recognition testing.

    Science.gov (United States)

    Schreiner, Thomas; Göldi, Maurice; Rasch, Björn

    2015-11-01

    Neural oscillations in the theta band have repeatedly been implicated in successful memory encoding and retrieval. Several recent studies have shown that memory retrieval can be facilitated by reactivating memories during their consolidation during sleep. However, it is still unknown whether reactivation during sleep also enhances subsequent retrieval-related neural oscillations. We have recently demonstrated that foreign vocabulary cues presented during sleep improve later recall of the associated translations. Here, we examined the effect of cueing foreign vocabulary during sleep on oscillatory activity during subsequent recognition testing after sleep. We show that those words that were replayed during sleep after learning (cued words) elicited stronger centroparietal theta activity during recognition as compared to noncued words. The reactivation-induced increase in theta oscillations during later recognition testing might reflect a strengthening of individual memory traces and the integration of the newly learned words into the mental lexicon by cueing during sleep. © 2015 Society for Psychophysiological Research.

  18. Sensory, Cognitive, and Sensorimotor Learning Effects in Recognition Memory for Music.

    Science.gov (United States)

    Mathias, Brian; Tillmann, Barbara; Palmer, Caroline

    2016-08-01

    Recent research suggests that perception and action are strongly interrelated and that motor experience may aid memory recognition. We investigated the role of motor experience in auditory memory recognition processes by musicians using behavioral, ERP, and neural source current density measures. Skilled pianists learned one set of novel melodies by producing them and another set by perception only. Pianists then completed an auditory memory recognition test during which the previously learned melodies were presented with or without an out-of-key pitch alteration while the EEG was recorded. Pianists indicated whether each melody was altered from or identical to one of the original melodies. Altered pitches elicited a larger N2 ERP component than original pitches, and pitches within previously produced melodies elicited a larger N2 than pitches in previously perceived melodies. Cortical motor planning regions were more strongly activated within the time frame of the N2 following altered pitches in previously produced melodies compared with previously perceived melodies, and larger N2 amplitudes were associated with greater detection accuracy following production learning than perception learning. Early sensory (N1) and later cognitive (P3a) components elicited by pitch alterations correlated with predictions of sensory echoic and schematic tonality models, respectively, but only for the perception learning condition, suggesting that production experience alters the extent to which performers rely on sensory and tonal recognition cues. These findings provide evidence for distinct time courses of sensory, schematic, and motoric influences within the same recognition task and suggest that learned auditory-motor associations influence responses to out-of-key pitches.

  19. Impact of encoding depth on awareness of perceptual effects in recognition memory.

    Science.gov (United States)

    Gardiner, J M; Gregg, V H; Mashru, R; Thaman, M

    2001-04-01

    Pictorial stimuli are more likely to be recognized if they are the same size, rather than a different size, at study and at test. This size congruency effect was replicated in two experiments in which the encoding variables were respectively undivided versus divided attention and level of processing. In terms of performance, these variables influenced recognition and did not influence size congruency effects. But in terms of awareness, measured by remember and know responses, these variables did influence size congruency effects. With undivided attention and with a deep level of processing, size congruency effects occurred only in remembering. With divided attention and with a shallow level of processing, size congruency effects occurred only in knowing. The results show that effects that occur in remembering may also occur independently in knowing. They support theories in which remembering and knowing reflect different memory processes or systems. They do not support the theory that remembering and knowing reflect differences in trace strength.

  20. The relationships between trait anxiety, place recognition memory, and learning strategy.

    Science.gov (United States)

    Hawley, Wayne R; Grissom, Elin M; Dohanich, Gary P

    2011-01-20

    Rodents learn to navigate mazes using various strategies that are governed by specific regions of the brain. The type of strategy used when learning to navigate a spatial environment is moderated by a number of factors including emotional states. Heightened anxiety states, induced by exposure to stressors or administration of anxiogenic agents, have been found to bias male rats toward the use of a striatum-based stimulus-response strategy rather than a hippocampus-based place strategy. However, no study has yet examined the relationship between natural anxiety levels, or trait anxiety, and the type of learning strategy used by rats on a dual-solution task. In the current experiment, levels of inherent anxiety were measured in an open field and compared to performance on two separate cognitive tasks, a Y-maze task that assessed place recognition memory, and a visible platform water maze task that assessed learning strategy. Results indicated that place recognition memory on the Y-maze correlated with the use of place learning strategy on the water maze. Furthermore, lower levels of trait anxiety correlated positively with better place recognition memory and with the preferred use of place learning strategy. Therefore, competency in place memory and bias in place strategy are linked to the levels of inherent anxiety in male rats. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. When unfamiliarity matters: Changing environmental context between study and test affects recognition memory for unfamiliar stimuli

    NARCIS (Netherlands)

    Russo, R.; Ward, G.; Geurts, H.M.; Scheres, A.P.J.

    1999-01-01

    Performance in recognition memory has been shown to be relatively insensitive to the effect of environmental context changes between study and test. Recent evidence (P. Dalton, 1993) showed that environmental context changes between study and test affected recognition memory discrimination for

  2. On the Relationship between Memory and Perception: Sequential Dependencies in Recognition Memory Testing

    Science.gov (United States)

    Malmberg, Kenneth J.; Annis, Jeffrey

    2012-01-01

    Many models of recognition are derived from models originally applied to perception tasks, which assume that decisions from trial to trial are independent. While the independence assumption is violated for many perception tasks, we present the results of several experiments intended to relate memory and perception by exploring sequential…

  3. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    Science.gov (United States)

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory

  4. A Pilot Study of a Test for Visual Recognition Memory in Adults with Moderate to Severe Intellectual Disability

    Science.gov (United States)

    Pyo, Geunyeong; Ala, Tom; Kyrouac, Gregory A.; Verhulst, Steven J.

    2010-01-01

    Objective assessment of memory functioning is an important part of evaluation for Dementia of Alzheimer Type (DAT). The revised Picture Recognition Memory Test (r-PRMT) is a test for visual recognition memory to assess memory functioning of persons with intellectual disabilities (ID), specifically targeting moderate to severe ID. A pilot study was…

  5. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.

    Science.gov (United States)

    Gordon-Salant, Sandra; Cole, Stacey Samuels

    2016-01-01

    This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening

  6. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.

    Science.gov (United States)

    Chen, Xi; Guo, Yiping; Feng, Jingyu; Liao, Zhengli; Li, Xinjian; Wang, Haitao; Li, Xiao; He, Jufang

    2013-06-12

    Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.

  7. The role of reinstating generation operations in recognition memory and reality monitoring

    Directory of Open Access Journals (Sweden)

    Nieznański Marek

    2014-09-01

    Full Text Available The role of encoding/retrieval conditions compatibility was investigated in a reality-monitoring task. An experiment was conducted which showed a positive effect of reinstating distinctive encoding operations at test. That is, generation of a low-frequency (LF word from the same word fragment at study and test significantly enhanced item recognition memory. However, reinstating of relatively more automatic operations of reading or generating a highfrequency (HF word did not influence recognition performance. Moreover, LF words were better recognized than HF words, but memory for source did not depend on the encoding/retrieval match or on the word-frequency. In comparison with reading, generating an item at study significantly enhanced source memory but generating it at test had no effect. The data were analysed using a multinomial modelling approach which allowed ruling out the influence of a response bias on the measurement of memory ability.

  8. The inferior parietal lobule and recognition memory : expectancy violation or successful retrieval?

    OpenAIRE

    O'Connor, Akira R.; Han, Sanghoon; Dobbins, Ian G.

    2010-01-01

    Functional neuroimaging studies of episodic recognition demonstrate an increased lateral parietal response for studied versus new materials, often termed a retrieval success effect. Using a novel memory analog of attentional cueing, we manipulated the correspondence between anticipated and actual recognition evidence by presenting valid or invalid anticipatory cues (e. g., "likely old") before recognition judgments. Although a superior parietal region demonstrated the retrieval success patter...

  9. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.

    Science.gov (United States)

    Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A

    2016-04-01

    The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory

    Science.gov (United States)

    Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert

    2010-01-01

    Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…

  11. Genetic variation in the serotonin transporter gene influences ERP old/new effects during recognition memory.

    Science.gov (United States)

    Ross, Robert S; Medrano, Paolo; Boyle, Kaitlin; Smolen, Andrew; Curran, Tim; Nyhus, Erika

    2015-11-01

    Recognition memory is defined as the ability to recognize a previously encountered stimulus and has been associated with spatially and temporally distinct event-related potentials (ERPs). Allelic variations of the serotonin transporter gene (SLC6A4) have recently been shown to impact memory performance. Common variants of the serotonin transporter-linked polymorphic region (5HTTLPR) of the SLC6A4 gene result in long (l) and short (s) allelic variants with carriers of the s allele having lowered transcriptional efficiency. Thus, the current study examines the effects polymorphisms of the SLC6A4 gene have on performance and ERP amplitudes commonly associated with recognition memory. Electroencephalogram (EEG), genetic, and behavioral data were collected from sixty participants as they performed an item and source memory recognition task. In both tasks, participants studied and encoded 200 words, which were then mixed with 200 new words during retrieval. Participants were monitored with EEG during the retrieval portion of each memory task. EEG electrodes were grouped into four ROIs, left anterior superior, right anterior superior, left posterior superior, and right posterior superior. ERP mean amplitudes during hits in the item and source memory task were compared to correctly recognizing new items (correct rejections). Results show that s-carriers have decreased mean hit amplitudes in both the right anterior superior ROI 1000-1500ms post stimulus during the source memory task and the left anterior superior ROI 300-500ms post stimulus during the item memory task. These results suggest that individual differences due to genetic variation of the serotonin transporter gene influences recognition memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Threshold models of recognition and the recognition heuristic

    Directory of Open Access Journals (Sweden)

    Edgar Erdfelder

    2011-02-01

    Full Text Available According to the recognition heuristic (RH theory, decisions follow the recognition principle: Given a high validity of the recognition cue, people should prefer recognized choice options compared to unrecognized ones. Assuming that the memory strength of choice options is strongly correlated with both the choice criterion and recognition judgments, the RH is a reasonable strategy that approximates optimal decisions with a minimum of cognitive effort (Davis-Stober, Dana, and Budescu, 2010. However, theories of recognition memory are not generally compatible with this assumption. For example, some threshold models of recognition presume that recognition judgments can arise from two types of cognitive states: (1 certainty states in which judgments are almost perfectly correlated with memory strength and (2 uncertainty states in which recognition judgments reflect guessing rather than differences in memory strength. We report an experiment designed to test the prediction that the RH applies to certainty states only. Our results show that memory states rather than recognition judgments affect use of recognition information in binary decisions.

  13. 1Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults

    Science.gov (United States)

    Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin

    2013-01-01

    Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495

  14. Examining Event-Related Potential (ERP) correlates of decision bias in recognition memory judgments.

    Science.gov (United States)

    Hill, Holger; Windmann, Sabine

    2014-01-01

    Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500-700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions.

  15. Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments

    Science.gov (United States)

    Hill, Holger; Windmann, Sabine

    2014-01-01

    Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions. PMID

  16. Examining Event-Related Potential (ERP correlates of decision bias in recognition memory judgments.

    Directory of Open Access Journals (Sweden)

    Holger Hill

    Full Text Available Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure. Event related potentials (ERP correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias. In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320 that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500-700 ms poststimulus, bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions.

  17. The functional neuroanatomy of verbal memory in Alzheimer's disease: [18F]-Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) correlates of recency and recognition memory.

    Science.gov (United States)

    Staffaroni, Adam M; Melrose, Rebecca J; Leskin, Lorraine P; Riskin-Jones, Hannah; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-09-01

    The objective of this study was to distinguish the functional neuroanatomy of verbal learning and recognition in Alzheimer's disease (AD) using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning task. In 81 Veterans diagnosed with dementia due to AD, we conducted a cluster-based correlation analysis to assess the relationships between recency and recognition memory scores from the CERAD Word Learning Task and cortical metabolic activity measured using [ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). AD patients (Mini-Mental State Examination, MMSE mean = 20.2) performed significantly better on the recall of recency items during learning trials than of primacy and middle items. Recency memory was associated with cerebral metabolism in the left middle and inferior temporal gyri and left fusiform gyrus (p recognition memory was correlated with metabolic activity in two clusters: (a) a large cluster that included the left hippocampus, parahippocampal gyrus, entorhinal cortex, anterior temporal lobe, and inferior and middle temporal gyri; (b) the bilateral orbitofrontal cortices (OFC). The present study further informs our understanding of the disparate functional neuroanatomy of recency memory and recognition memory in AD. We anticipated that the recency effect would be relatively preserved and associated with temporoparietal brain regions implicated in short-term verbal memory, while recognition memory would be associated with the medial temporal lobe and possibly the OFC. Consistent with our a priori hypotheses, list learning in our AD sample was characterized by a reduced primacy effect and a relatively spared recency effect; however, recency memory was associated with cerebral metabolism in inferior and lateral temporal regions associated with the semantic memory network, rather than regions associated with short-term verbal memory. The correlates of recognition memory included the medial temporal lobe

  18. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  19. Social Recognition Memory: The Effect of Other People's Responses for Previously Seen and Unseen Items

    Science.gov (United States)

    Wright, Daniel B.; Mathews, Sorcha A.; Skagerberg, Elin M.

    2005-01-01

    When people discuss their memories, what one person says can influence what another personal reports. In 3 studies, participants were shown sets of stimuli and then given recognition memory tests to measure the effect of one person's response on another's. The 1st study (n=24) used word recognition with participant-confederate pairs and found that…

  20. A new intuitionism: Meaning, memory, and development in Fuzzy-Trace Theory

    Science.gov (United States)

    Reyna, Valerie F.

    2014-01-01

    Combining meaning, memory, and development, the perennially popular topic of intuition can be approached in a new way. Fuzzy-trace theory integrates these topics by distinguishing between meaning-based gist representations, which support fuzzy (yet advanced) intuition, and superficial verbatim representations of information, which support precise analysis. Here, I review the counterintuitive findings that led to the development of the theory and its most recent extensions to the neuroscience of risky decision making. These findings include memory interference (worse verbatim memory is associated with better reasoning); nonnumerical framing (framing effects increase when numbers are deleted from decision problems); developmental decreases in gray matter and increases in brain connectivity; developmental reversals in memory, judgment, and decision making (heuristics and biases based on gist increase from childhood to adulthood, challenging conceptions of rationality); and selective attention effects that provide critical tests comparing fuzzy-trace theory, expected utility theory, and its variants (e.g., prospect theory). Surprising implications for judgment and decision making in real life are also discussed, notably, that adaptive decision making relies mainly on gist-based intuition in law, medicine, and public health. PMID:25530822

  1. A new intuitionism: Meaning, memory, and development in Fuzzy-Trace Theory

    Directory of Open Access Journals (Sweden)

    Valerie F. Reyna

    2012-05-01

    Full Text Available Combining meaning, memory, and development, the perennially popular topic of intuition can be approached in a new way. Fuzzy-trace theory integrates these topics by distinguishing between meaning-based gist representations, which support fuzzy (yet advanced intuition, and superficial verbatim representations of information, which support precise analysis. Here, I review the counterintuitive findings that led to the development of the theory and its most recent extensions to the neuroscience of risky decision making. These findings include memory interference (worse verbatim memory is associated with better reasoning; nonnumerical framing (framing effects increase when numbers are deleted from decision problems; developmental decreases in gray matter and increases in brain connectivity; developmental reversals in memory, judgment, and decision making (heuristics and biases based on gist increase from childhood to adulthood, challenging conceptions of rationality; and selective attention effects that provide critical tests comparing fuzzy-trace theory, expected utility theory, and its variants (e.g., prospect theory. Surprising implications for judgment and decision making in real life are also discussed, notably, that adaptive decision making relies mainly on gist-based intuition in law, medicine, and public health.

  2. Effects of Trace Amine-associated Receptor 1 Agonists on the Expression, Reconsolidation, and Extinction of Cocaine Reward Memory.

    Science.gov (United States)

    Liu, Jian-Feng; Thorn, David A; Zhang, Yanan; Li, Jun-Xu

    2016-07-01

    As a modulator of dopaminergic system, trace amine-associated receptor 1 has been shown to play a critical role in regulating the rewarding properties of additive drugs. It has been demonstrated that activation of trace amine-associated receptor 1 decreased the abuse-related behaviors of cocaine in rats. However, the role of trace amine-associated receptor 1 in specific stages of cocaine reward memory is still unclear. Here, using a cocaine-induced conditioned place preference model, we tested the effects of a selective trace amine-associated receptor 1 agonist RO5166017 on the expression, reconsolidation, and extinction of cocaine reward memory. We found that RO5166017 inhibited the expression but not retention of cocaine-induced conditioned place preference. RO5166017 had no effect on the reconsolidation of cocaine reward memory. Pretreatment with RO5166017 before extinction hindered the formation of extinction long-term memory. RO5166017 did not affect the movement during the conditioned place preference test, indicating the inhibitory effect of RO5166017 on the expression of cocaine-induced conditioned place preference was not caused by locomotion inhibition. Using a cocaine i.v. self-administration model, we found that the combined trace amine-associated receptor 1 partial agonist RO5263397 with extinction had no effect on the following cue- and drug-induced reinstatement of cocaine-seeking behavior. Repeated administration of the trace amine-associated receptor 1 agonist during extinction showed a continually inhibitory effect on the expression of cocaine reward memory both in cocaine-induced conditioned place preference and cocaine self-administration models. Taken together, these results indicate that activation of trace amine-associated receptor 1 specifically inhibited the expression of cocaine reward memory. The inhibitory effect of trace amine-associated receptor 1 agonists on cocaine reward memory suggests that trace amine-associated receptor 1

  3. Emotion and memory: a recognition advantage for positive and negative words independent of arousal.

    Science.gov (United States)

    Adelman, James S; Estes, Zachary

    2013-12-01

    Much evidence indicates that emotion enhances memory, but the precise effects of the two primary factors of arousal and valence remain at issue. Moreover, the current knowledge of emotional memory enhancement is based mostly on small samples of extremely emotive stimuli presented in unnaturally high proportions without adequate affective, lexical, and semantic controls. To investigate how emotion affects memory under conditions of natural variation, we tested whether arousal and valence predicted recognition memory for over 2500 words that were not sampled for their emotionality, and we controlled a large variety of lexical and semantic factors. Both negative and positive stimuli were remembered better than neutral stimuli, whether arousing or calming. Arousal failed to predict recognition memory, either independently or interactively with valence. Results support models that posit a facilitative role of valence in memory. This study also highlights the importance of stimulus controls and experimental designs in research on emotional memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Preserving objects, preserving memories: Repair professionals and object owners on the relation between traces on personal possessions and memories

    NARCIS (Netherlands)

    Zijlema, A.F.; van den Hoven, E.A.W.H.; Eggen, J.H.; Bakker, C.; Mugge, R.

    2017-01-01

    Traces of ageing and use on the material of products, and memories associated with products, have been found to contribute to product attachment and can stimulate product longevity. We present findings of a qualitative study that focused on the relation between traces of ageing and use on personal

  5. Speech Recognition in Adults With Cochlear Implants: The Effects of Working Memory, Phonological Sensitivity, and Aging.

    Science.gov (United States)

    Moberly, Aaron C; Harris, Michael S; Boyce, Lauren; Nittrouer, Susan

    2017-04-14

    Models of speech recognition suggest that "top-down" linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users.

  6. Stressors impair odor recognition memory via an olfactory bulb-dependent noradrenergic mechanism

    Directory of Open Access Journals (Sweden)

    Laura C Manella

    2013-12-01

    Full Text Available Non-associative habituation and odor recognition tasks have been widely used to probe questions social recognition, odor memory duration, and odor memory specificity. Among others, these paradigms have provided valuable insight into how neuromodulation, and specifically norepinephrine/noradrenaline (NE influences odor memory. In general, NE levels are modulated by arousal, stress, and behavioral state, and there is sparse evidence of a direct relationship between NE and odor memory in adult rodents. The present study uses simple mild psychological stressors (bright light and sound, to modulate NE levels physiologically in order to probe its effect on olfactory memory. In rats with bilateral bulbar cannulations, we show that these stressors modulate olfactory memory and that this effect is at least partially mediated by olfactory bulb. Specifically, we show that the presence of stressors during the acquisition of odor memory suppresses memory for an odor when tested 30 minutes after the acquisition. This suppression is blocked by infusing NE antagonists into the olfactory bulb prior to odor acquisition. Additionally, we find that infusion of bulbar NE is sufficient to suppress odor memory in a manner mimicking that of our stressors. These effects are unlikely to be solely mediated by locomotor/exploratory changes produced by stressors, although these stressors influence certain behaviors not directly related to odor investigation. This study provides important information about how behaviorally relevant changes in NE can influence top-down sensory processing and odor memory.

  7. One process is not enough! A speed-accuracy tradeoff study of recognition memory.

    Science.gov (United States)

    Boldini, Angela; Russo, Riccardo; Avons, S E

    2004-04-01

    Speed-accuracy tradeoff (SAT) methods have been used to contrast single- and dual-process accounts of recognition memory. In these procedures, subjects are presented with individual test items and are required to make recognition decisions under various time constraints. In this experiment, we presented word lists under incidental learning conditions, varying the modality of presentation and level of processing. At test, we manipulated the interval between each visually presented test item and a response signal, thus controlling the amount of time available to retrieve target information. Study-test modality match had a beneficial effect on recognition accuracy at short response-signal delays (deep than from shallow processing at study only at relatively long response-signal delays (> or =300 msec). The results are congruent with views suggesting that both fast familiarity and slower recollection processes contribute to recognition memory.

  8. Variability in the impairment of recognition memory in patients with frontal lobe lesions.

    Science.gov (United States)

    Bastin, Christine; Van der Linden, Martial; Lekeu, Françoise; Andrés, Pilar; Salmon, Eric

    2006-10-01

    Fourteen patients with frontal lobe lesions and 14 normal subjects were tested on a recognition memory task that required discriminating between target words, new words that are synonyms of the targets and unrelated distractors. A deficit was found in 12 of the patients. Moreover, three different patterns of recognition impairment were identified: (I) poor memory for targets, (II) normal hits but increased false recognitions for both types of distractors, (III) normal hit rates, but increased false recognitions for synonyms only. Differences in terms of location of the damage and behavioral characteristics between these subgroups were examined. An encoding deficit was proposed to explain the performance of patients in subgroup I. The behavioral patterns of the patients in subgroups II and III could be interpreted as deficient post-retrieval verification processes and an inability to recollect item-specific information, respectively.

  9. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts delay-dependent and scopolamine-induced recognition memory deficits in rats.

    Science.gov (United States)

    Pitsikas, Nikolaos; Gravanis, Achille

    2017-04-01

    Experimental evidence indicates that the neurosteroids dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) are involved in cognition. BNN27 is a novel 17C spiroepoxy-DHEA derivative, which devoid of steroidogenic activity. The neuroprotective effects of BNN27 have been recently reported. The present study was designed to investigate the effects of BNN27 on recognition memory in rats. For this purpose, the novel object task (NOT), a procedure assessing non-spatial recognition memory and the novel location task (NLT), a procedure evaluating spatial recognition memory were used. Intraperitoneal (i.p.) administration of BNN27 (3 and 10mg/kg) antagonized delay-dependent deficits in the NOT in the normal rat, suggesting that this DHEA derivative affected acquisition, storage and retrieval of information. In addition, BNN27 (3 and 10mg/kg, i.p.) counteracted the scopolamine [0.2mg/kg, subcutaneously (s.c.)]-induced non-spatial and spatial recognition memory deficits. These findings suggest that BNN27 may modulate different aspects of recognition memory, potentially interacting with the cholinergic system, relevant to cognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Machine parts recognition using a trinary associative memory

    Science.gov (United States)

    Awwal, Abdul Ahad S.; Karim, Mohammad A.; Liu, Hua-Kuang

    1989-01-01

    The convergence mechanism of vectors in Hopfield's neural network in relation to recognition of partially known patterns is studied in terms of both inner products and Hamming distance. It has been shown that Hamming distance should not always be used in determining the convergence of vectors. Instead, inner product weighting coefficients play a more dominant role in certain data representations for determining the convergence mechanism. A trinary neuron representation for associative memory is found to be more effective for associative recall. Applications of the trinary associative memory to reconstruct machine part images that are partially missing are demonstrated by means of computer simulation as examples of the usefulness of this approach.

  11. Recognition memory for social and non-social odors: differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex.

    Science.gov (United States)

    Feinberg, Leila M; Allen, Timothy A; Ly, Denise; Fortin, Norbert J

    2012-01-01

    The contributions of the hippocampus (HC) and perirhinal cortex (PER) to recognition memory are currently topics of debate in neuroscience. Here we used a rapidly-learned (seconds) spontaneous novel odor recognition paradigm to assess the effects of pre-training N-methyl-D-aspartate lesions to the HC or PER on odor recognition memory. We tested memory for both social and non-social odor stimuli. Social odors were acquired from conspecifics, while non-social odors were household spices. Conspecific odor stimuli are ethologically-relevant and have a high degree of overlapping features compared to non-social household spices. Various retention intervals (5 min, 20 min, 1h, 24h, or 48 h) were used between study and test phases, each with a unique odor pair, to assess changes in novelty preference over time. Consistent with findings in other paradigms, modalities, and species, we found that HC lesions yielded no significant recognition memory deficits. In contrast, PER lesions caused significant deficits for social odor recognition memory at long retention intervals, demonstrating a critical role for PER in long-term memory for social odors. PER lesions had no effect on memory for non-social odors. The results are consistent with a general role for PER in long-term recognition memory for stimuli that have a high degree of overlapping features, which must be distinguished by conjunctive representations. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Differences in Spatial Memory Recognition Due to Cognitive Style.

    Science.gov (United States)

    Tascón, Laura; Boccia, Maddalena; Piccardi, Laura; Cimadevilla, José M

    2017-01-01

    Field independence refers to the ability to perceive details from the surrounding context as a whole and to represent the environment by relying on an internal reference frame. Conversely, field dependence individuals tend to focus their attention on single environmental features analysing them individually. This cognitive style affects several visuo-spatial abilities including spatial memory. This study assesses both the effect of field independence and field dependence on performance displayed on virtual environments of different complexity. Forty young healthy individuals took part in this study. Participants performed the Embedded Figures Test for field independence or dependence assessment and a new spatial memory recognition test. The spatial memory recognition test demanded to memorize a green box location in a virtual room picture. Thereafter, during ten trials participants had to decide if a green box was located in the same position as in the sample picture. Five of the pictures were correct. The information available in the virtual room was manipulated. Hence, two different experimental conditions were tested: a virtual room containing all landmarks and a virtual room with only two cues. Accuracy and reaction time were registered. Analyses demonstrated that higher field independent individuals were related to better spatial memory performance in two landmarks condition and were faster in all landmark condition. In addition, men and women did not differ in their performance. These results suggested that cognitive style affects spatial memory performance and this phenomenon is modulated by environment complexity. This does not affect accuracy but time spent. Moreover, field dependent individuals are unable to organize the navigational field by relying on internal reference frames when few landmarks are available, and this causes them to commit more errors.

  13. The effects of two health information texts on patient recognition memory: a randomized controlled trial.

    Science.gov (United States)

    Freed, Erin; Long, Debra; Rodriguez, Tonantzin; Franks, Peter; Kravitz, Richard L; Jerant, Anthony

    2013-08-01

    To compare the effects of two health information texts on patient recognition memory, a key aspect of comprehension. Randomized controlled trial (N=60), comparing the effects of experimental and control colorectal cancer (CRC) screening texts on recognition memory, measured using a statement recognition test, accounting for response bias (score range -0.91 to 5.34). The experimental text had a lower Flesch-Kincaid reading grade level (7.4 versus 9.6), was more focused on addressing screening barriers, and employed more comparative tables than the control text. Recognition memory was higher in the experimental group (2.54 versus 1.09, t=-3.63, P=0.001), including after adjustment for age, education, and health literacy (β=0.42, 95% CI: 0.17, 0.68, P=0.001), and in analyses limited to persons with college degrees (β=0.52, 95% CI: 0.18, 0.86, P=0.004) or no self-reported health literacy problems (β=0.39, 95% CI: 0.07, 0.71, P=0.02). An experimental CRC screening text improved recognition memory, including among patients with high education and self-assessed health literacy. CRC screening texts comparable to our experimental text may be warranted for all screening-eligible patients, if such texts improve screening uptake. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Neural correlates of auditory recognition memory in the primate dorsal temporal pole

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany

    2013-01-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324

  15. Neural correlates of auditory recognition memory in the primate dorsal temporal pole.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2014-02-01

    Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects.

  16. Separating recognition processes of declarative memory via anodal tDCS: boosting old item recognition by temporal and new item detection by parietal stimulation.

    Science.gov (United States)

    Pisoni, Alberto; Turi, Zsolt; Raithel, Almuth; Ambrus, Géza Gergely; Alekseichuk, Ivan; Schacht, Annekathrin; Paulus, Walter; Antal, Andrea

    2015-01-01

    There is emerging evidence from imaging studies that parietal and temporal cortices act together to achieve successful recognition of declarative information; nevertheless, the precise role of these regions remains elusive. To evaluate the role of these brain areas in declarative memory retrieval, we applied bilateral tDCS, with anode over the left and cathode over the right parietal or temporal cortices separately, during the recognition phase of a verbal learning paradigm using a balanced old-new decision task. In a parallel group design, we tested three different groups of healthy adults, matched for demographic and neurocognitive status: two groups received bilateral active stimulation of either the parietal or the temporal cortex, while a third group received sham stimulation. Accuracy, discriminability index (d') and reaction times of recognition memory performance were measurements of interest. The d' sensitivity index and accuracy percentage improved in both active stimulation groups, as compared with the sham one, while reaction times remained unaffected. Moreover, the analysis of accuracy revealed a different effect of tDCS for old and new item recognition. While the temporal group showed enhanced performance for old item recognition, the parietal group was better at correctly recognising new ones. Our results support an active role of both of these areas in memory retrieval, possibly underpinning different stages of the recognition process.

  17. The effect of focal cortical frontal and posterior lesions on recollection and familiarity in recognition memory.

    Science.gov (United States)

    Stamenova, Vessela; Gao, Fuqiang; Black, Sandra E; Schwartz, Michael L; Kovacevic, Natasha; Alexander, Michael P; Levine, Brian

    2017-06-01

    Recognition memory can be subdivided into two processes: recollection (a contextually rich memory) and familiarity (a sense that an item is old). The brain network supporting recognition encompasses frontal, parietal and medial temporal regions. Which specific regions within the frontal lobe are critical for recollection vs. familiarity, however, are unknown; past studies of focal lesion patients have yielded conflicting results. We examined patients with focal lesions confined to medial polar (MP), right dorsal frontal (RDF), right frontotemporal (RFT), left dorsal frontal (LDF), temporal, and parietal regions and matched controls. A series of words and their humorous definitions were presented either auditorily or visually to all participants. Recall, recognition, and source memory were tested at 30 min and 24 h delay, along with "remember/know" judgments for recognized items. The MP, RDF, temporal and parietal groups were impaired on subjectively reported recollection; their intact recognition performance was supported by familiarity. None of the groups were impaired on cued recall, recognition familiarity or source memory. These findings suggest that the MP and RDF regions, along with parietal and temporal regions, are necessary for subjectively-reported recollection, while the LDF and right frontal ventral regions, as those affected in the RTF group, are not. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Memory for Emotional Pictures in Patients with Alzheimer's Dementia: Comparing Picture-Location Binding and Subsequent Recognition

    Directory of Open Access Journals (Sweden)

    Marloes J. Huijbers

    2011-01-01

    Full Text Available Emotional content typically facilitates subsequent memory, known as the emotional enhancement effect. We investigated whether emotional content facilitates spatial and item memory in patients with Alzheimer's dementia (AD. Twenty-three AD patients, twenty-three healthy elderly, and twenty-three young adults performed a picture relocation task and a delayed recognition task with positive, negative, and neutral stimuli. AD patients showed a benefit in immediate spatial memory for positive pictures, while healthy young and older participants did not benefit from emotional content. No emotional enhancement effects on delayed item recognition were seen. We conclude that AD patients may have a memory bias for positive information in spatial memory. Discrepancies between our findings and earlier studies are discussed.

  19. Hippocampal Arc (Arg3.1) expression is induced by memory recall and required for memory reconsolidation in trace fear conditioning.

    Science.gov (United States)

    Chia, Chester; Otto, Tim

    2013-11-01

    Mounting evidence suggests that long-lasting, protein synthesis-dependent changes in synaptic strength accompany both the initial acquisition and subsequent recall of specific memories. Within brain areas thought to be important for learning and memory, including the hippocampus, learning-related plasticity is likely mediated in part by NMDA receptor activation and experience-dependent changes in gene expression. In the present study, we examined the role of activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) expression in the acquisition, recall, and reconsolidation of memory in a trace fear conditioning paradigm. First, we show that the expression of Arc protein in ventral hippocampus (VH) is dramatically enhanced by memory recall 24h after the acquisition of trace fear conditioning, and that both memory recall and the associated recall-induced enhancement of Arc expression are blocked by pre-training administration of 2-amino-5-phosphonovaleric acid (APV). Next, we show that while infusion of Arc antisense oligodeoxynucleotides (ODNs) into VH prior to testing had little effect on memory recall, it significantly reduced both Arc protein expression and freezing behavior during subsequent testing sessions. Collectively, these results suggest that Arc/Arg3.1 protein plays an important functional role in both the initial acquisition of hippocampal-dependent memory and the reconsolidation of these memories after recall. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A new selective developmental deficit: Impaired object recognition with normal face recognition.

    Science.gov (United States)

    Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley

    2011-05-01

    Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual

  1. Recognition Memory for Movement in Photographs: A Developmental Study.

    Science.gov (United States)

    Futterweit, Lorelle R.; Beilin, Harry

    1994-01-01

    Investigated whether children's recognition memory for movement in photographs is distorted forward in the direction of implied motion. When asked whether the second photograph was the same as or different from the first, subjects made more errors for test photographs showing the action slightly forward in time, compared with slightly backward in…

  2. Recognition of faces and names: multimodal physiological correlates of memory and executive function.

    Science.gov (United States)

    Mitchell, Meghan B; Shirk, Steven D; McLaren, Donald G; Dodd, Jessica S; Ezzati, Ali; Ally, Brandon A; Atri, Alireza

    2016-06-01

    We sought to characterize electrophysiological, eye-tracking and behavioral correlates of face-name recognition memory in healthy younger adults using high-density electroencephalography (EEG), infrared eye-tracking (ET), and neuropsychological measures. Twenty-one participants first studied 40 face-name (FN) pairs; 20 were presented four times (4R) and 20 were shown once (1R). Recognition memory was assessed by asking participants to make old/new judgments for 80 FN pairs, of which half were previously studied items and half were novel FN pairs (N). Simultaneous EEG and ET recording were collected during recognition trials. Comparisons of event-related potentials (ERPs) for correctly identified FN pairs were compared across the three item types revealing classic ERP old/new effects including 1) relative positivity (1R > N) bi-frontally from 300 to 500 ms, reflecting enhanced familiarity, 2) relative positivity (4R > 1R and 4R > N) in parietal areas from 500 to 800 ms, reflecting enhanced recollection, and 3) late frontal effects (1R > N) from 1000 to 1800 ms in right frontal areas, reflecting post-retrieval monitoring. ET analysis also revealed significant differences in eye movements across conditions. Exploration of cross-modality relationships suggested associations between memory and executive function measures and the three ERP effects. Executive function measures were associated with several indicators of saccadic eye movements and fixations, which were also associated with all three ERP effects. This novel characterization of face-name recognition memory performance using simultaneous EEG and ET reproduced classic ERP and ET effects, supports the construct validity of the multimodal FN paradigm, and holds promise as an integrative tool to probe brain networks supporting memory and executive functioning.

  3. Decay of Iconic Memory Traces Is Related to Psychometric Intelligence: A Fixed-Links Modeling Approach

    Science.gov (United States)

    Miller, Robert; Rammsayer, Thomas H.; Schweizer, Karl; Troche, Stefan J.

    2010-01-01

    Several memory processes have been examined regarding their relation to psychometric intelligence with the exception of sensory memory. This study examined the relation between decay of iconic memory traces, measured with a partial-report task, and psychometric intelligence, assessed with the Berlin Intelligence Structure test, in 111…

  4. Differences in Spatial Memory Recognition Due to Cognitive Style

    Directory of Open Access Journals (Sweden)

    Laura Tascón

    2017-08-01

    Full Text Available Field independence refers to the ability to perceive details from the surrounding context as a whole and to represent the environment by relying on an internal reference frame. Conversely, field dependence individuals tend to focus their attention on single environmental features analysing them individually. This cognitive style affects several visuo-spatial abilities including spatial memory. This study assesses both the effect of field independence and field dependence on performance displayed on virtual environments of different complexity. Forty young healthy individuals took part in this study. Participants performed the Embedded Figures Test for field independence or dependence assessment and a new spatial memory recognition test. The spatial memory recognition test demanded to memorize a green box location in a virtual room picture. Thereafter, during ten trials participants had to decide if a green box was located in the same position as in the sample picture. Five of the pictures were correct. The information available in the virtual room was manipulated. Hence, two different experimental conditions were tested: a virtual room containing all landmarks and a virtual room with only two cues. Accuracy and reaction time were registered. Analyses demonstrated that higher field independent individuals were related to better spatial memory performance in two landmarks condition and were faster in all landmark condition. In addition, men and women did not differ in their performance. These results suggested that cognitive style affects spatial memory performance and this phenomenon is modulated by environment complexity. This does not affect accuracy but time spent. Moreover, field dependent individuals are unable to organize the navigational field by relying on internal reference frames when few landmarks are available, and this causes them to commit more errors.

  5. Semantic similarity between old and new items produces false alarms in recognition memory.

    Science.gov (United States)

    Montefinese, Maria; Zannino, Gian Daniele; Ambrosini, Ettore

    2015-09-01

    In everyday life, human beings can report memories of past events that did not occur or that occurred differently from the way they remember them because memory is an imperfect process of reconstruction and is prone to distortion and errors. In this recognition study using word stimuli, we investigated whether a specific operationalization of semantic similarity among concepts can modulate false memories while controlling for the possible effect of associative strength and word co-occurrence in an old-new recognition task. The semantic similarity value of each new concept was calculated as the mean cosine similarity between pairs of vectors representing that new concept and each old concept belonging to the same semantic category. Results showed that, compared with (new) low-similarity concepts, (new) high-similarity concepts had significantly higher probability of being falsely recognized as old, even after partialling out the effect of confounding variables, including associative relatedness and lexical co-occurrence. This finding supports the feature-based view of semantic memory, suggesting that meaning overlap and sharing of semantic features (which are greater when more similar semantic concepts are being processed) have an influence on recognition performance, resulting in more false alarms for new high-similarity concepts. We propose that the associative strength and word co-occurrence among concepts are not sufficient to explain illusory memories but is important to take into account also the effects of feature-based semantic relations, and, in particular, the semantic similarity among concepts.

  6. Automaticity of Basic-Level Categorization Accounts for Labeling Effects in Visual Recognition Memory

    Science.gov (United States)

    Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.

    2011-01-01

    Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…

  7. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice.

    Science.gov (United States)

    Duque, Aránzazu; Vinader-Caerols, Concepción; Monleón, Santiago

    2017-01-01

    We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10-12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.

  8. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice.

    Directory of Open Access Journals (Sweden)

    Aránzazu Duque

    Full Text Available We have previously observed the impairing effects of chronic social defeat stress (CSDS on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL; non-stressed + indomethacin (NS+IND; stressed + saline (S+SAL; and stressed + indomethacin (S+IND. Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.. 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10-12 per group were then evaluated in inhibitory avoidance (IA, novel object recognition (NOR, elevated plus maze and hot plate tests. As in control animals (NS+SAL group, IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group. Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.

  9. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory.

    Science.gov (United States)

    Heisler, Jillian M; O'Connor, Jason C

    2015-11-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. Published by Elsevier Inc.

  10. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory

    Science.gov (United States)

    Heisler, Jillian M.; O’Connor, Jason C.

    2015-01-01

    Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057

  11. Problems with a False Recognition Paradigm for Developmental Memory Research

    Science.gov (United States)

    Lindauer, Barbara K.; Paris, Scott G.

    1976-01-01

    Developmental changes in memory organization based on synonym and antonym relationships were examined in three experiments. Subjects were 64 second graders and 64 sixth graders. Some inadequacies of a false recognition paradigm for developmental research are identified and some alternative analyses are proposed. (Author/JH)

  12. Does emotion modulate the efficacy of spaced learning in recognition memory?

    Directory of Open Access Journals (Sweden)

    Nicola Mammarella

    2014-12-01

    Full Text Available Memory for repeated items improves when presentations are spaced during study. Here, two experiments assessed the so-called spacing effect on a yes–no recognition memory task using affective and neutral words. In Experiment 1, a group of participants was asked to orient their attention to semantic features of target words (deep semantic analysis that were consecutively repeated or spaced, while another group was engaged in a graphemic shallow analysis of words (Experiment 2. The depth of word processing approach was meant to highlight the role of repetition priming mechanisms in the generation of spacing effects. We found that spacing effects occurred for both affective and neutral words (Experiment 1. However, following shallow analysis of words, the spacing effect was reduced for both affective and neutral words (Experiment 2. No differences were detected in terms of positive versus negative words. These results suggest that spaced learning operates when the to-be-remembered material is also affectively charged and that, under certain circumstances, it may enhance recognition memory as affective connotation does.

  13. Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory.

    Science.gov (United States)

    Kim, Jong Min; Kim, Dong Hyun; Lee, Younghwan; Park, Se Jin; Ryu, Jong Hoon

    2014-03-13

    It is well known that the hippocampus plays a role in spatial and contextual memory, and that spatial information is tightly regulated by the hippocampus. However, it is still highly controversial whether the hippocampus plays a role in object recognition memory. In a pilot study, the administration of bicuculline, a GABAA receptor antagonist, enhanced memory in the passive avoidance task, but not in the novel object recognition task. In the present study, we hypothesized that these different results are related to the characteristics of each task and the different roles of hippocampus and perirhinal cortex. A region-specific drug-treatment model was employed to clarify the role of the hippocampus and perirhinal cortex in object recognition memory. After a single habituation in the novel object recognition task, intra-perirhinal cortical injection of bicuculline increased and intra-hippocampal injection decreased the exploration time ratio to novel object. In addition, when animals were repeatedly habituated to the context, intra-perirhinal cortical administration of bicuculline still increased exploration time ratio to novel object, but the effect of intra-hippocampal administration disappeared. Concurrent increases of c-Fos expression and ERK phosphorylation were observed in the perirhinal cortex of the object with context-exposed group either after single or repeated habituation to the context, but no changes were noted in the hippocampus. Altogether, these results suggest that object recognition memory formation requires the perirhinal cortex but not the hippocampus, and that hippocampal activation interferes with object recognition memory by the information encoding of unfamiliar environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Individual differences in forced-choice recognition memory: partitioning contributions of recollection and familiarity.

    Science.gov (United States)

    Migo, Ellen M; Quamme, Joel R; Holmes, Selina; Bendell, Andrew; Norman, Kenneth A; Mayes, Andrew R; Montaldi, Daniela

    2014-01-01

    In forced-choice recognition memory, two different testing formats are possible under conditions of high target-foil similarity: Each target can be presented alongside foils similar to itself (forced-choice corresponding; FCC), or alongside foils similar to other targets (forced-choice noncorresponding; FCNC). Recent behavioural and neuropsychological studies suggest that FCC performance can be supported by familiarity whereas FCNC performance is supported primarily by recollection. In this paper, we corroborate this finding from an individual differences perspective. A group of older adults were given a test of FCC and FCNC recognition for object pictures, as well as standardized tests of recall, recognition, and IQ. Recall measures were found to predict FCNC, but not FCC performance, consistent with a critical role for recollection in FCNC only. After the common influence of recall was removed, standardized tests of recognition predicted FCC, but not FCNC performance. This is consistent with a contribution of only familiarity in FCC. Simulations show that a two-process model, where familiarity and recollection make separate contributions to recognition, is 10 times more likely to give these results than a single-process model. This evidence highlights the importance of recognition memory test design when examining the involvement of recollection and familiarity.

  15. Amnesiacs might get the gist: reduced false recognition in amnesia may be the result of impaired item-specific memory.

    Science.gov (United States)

    Nissan, Jack; Abrahams, Sharon; Sala, Sergio Della

    2013-01-01

    It is a common finding in tests of false recognition that amnesic patients recognize fewer related lures than healthy controls, and this has led to assumptions that gist memory is damaged in these patients (Schacter, Verfaellie, & Anes, 1997, Neuropsychology, 11; Schacter, Verfaellie, Anes, & Racine, 1998, Journal of Cognitive Neuroscience, 10; Schacter, Verfaellie, & Pradere, 1996, Journal of Memory and Language, 35). However, clinical observations find that amnesic patients typically hold meaningful conversations and make relevant remarks, and there is some experimental evidence highlighting preserved immediate recall of prose (Baddeley & Wilson, 2002, Neuropsychologia, 40; Gooding, Isaac, & Mayes, 2005, Neuropsychologia, 43; Rosenbaum, Gilboa, Levine, Winocur, & Moscovitch, 2009, Neuropsychologia, 47), which suggests that amnesiacs can get the gist. The present experiment used false recognition paradigms to assess whether the reduced rate of false recognition found in amnesic patients may be a consequence of their impaired item-specific memory. It examined the effect of increasing the item-specific memory of amnesic patient DA by bringing her to criterion on relevant study-lists and compared her performance on a false recognition paradigm with a group of 32 healthy young adults. Results indicated that when DA's item-specific memory was increased she was more able to gist and her performance was no different to the healthy young adults. Previous assumptions that gist memory is necessarily damaged in amnesia might therefore be revisited, since the reduced rate of false recognition could be caused by impaired item-specific memory. The experiment also highlights a positive relationship between item-specific and gist memory which has not previously been accounted for in false-recognition experiments.

  16. Effects of varying presentation time on long-term recognition memory for scenes: Verbatim and gist representations.

    Science.gov (United States)

    Ahmad, Fahad N; Moscovitch, Morris; Hockley, William E

    2017-04-01

    Konkle, Brady, Alvarez and Oliva (Psychological Science, 21, 1551-1556, 2010) showed that participants have an exceptional long-term memory (LTM) for photographs of scenes. We examined to what extent participants' exceptional LTM for scenes is determined by presentation time during encoding. In addition, at retrieval, we varied the nature of the lures in a forced-choice recognition task so that they resembled the target in gist (i.e., global or categorical) information, but were distinct in verbatim information (e.g., an "old" beach scene and a similar "new" beach scene; exemplar condition) or vice versa (e.g., a beach scene and a new scene from a novel category; novel condition). In Experiment 1, half of the list of scenes was presented for 1 s, whereas the other half was presented for 4 s. We found lower performance for shorter study presentation time in the exemplar test condition and similar performance for both study presentation times in the novel test condition. In Experiment 2, participants showed similar performance in an exemplar test for which the lure was of a different category but a category that was used at study. In Experiment 3, when presentation time was lowered to 500 ms, recognition accuracy was reduced in both novel and exemplar test conditions. A less detailed memorial representation of the studied scene containing more gist (i.e., meaning) than verbatim (i.e., surface or perceptual details) information is retrieved from LTM after a short compared to a long study presentation time. We conclude that our findings support fuzzy-trace theory.

  17. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex.

    Science.gov (United States)

    Pezze, Marie A; Marshall, Hayley J; Fone, Kevin C F; Cassaday, Helen J

    2015-11-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. A role for CA3 in social recognition memory.

    Science.gov (United States)

    Chiang, Ming-Ching; Huang, Arthur J Y; Wintzer, Marie E; Ohshima, Toshio; McHugh, Thomas J

    2018-02-02

    Social recognition memory is crucial for survival across species, underlying the need to correctly identify conspecifics, mates and potential enemies. In humans the hippocampus is engaged in social and episodic memory, however the circuit mechanisms of social memory in rodent models has only recently come under scrutiny. Work in mice has established that the dorsal CA2 and ventral CA1 regions play critical roles, however a more comprehensive comparative analyses of the circuits and mechanisms required has not been reported. Here we employ conditional genetics to examine the differential contributions of the hippocampal subfields to social memory. We find that the deletion of NMDA receptor subunit 1 gene (NR1), which abolishes NMDA receptor synaptic plasticity, in CA3 pyramidal cells led to deficits in social memory; however, mice lacking the same gene in DG granule cells performed indistinguishable from controls. Further, we use conditional pharmacogenetic inhibition to demonstrate that activity in ventral, but not dorsal, CA3 is necessary for the encoding of a social memory. These findings demonstrated CA3 pyramidal cell plasticity and transmission contribute to the encoding of social stimuli and help further identify the distinct circuits underlying the role of the hippocampus in social memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    Science.gov (United States)

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  20. Associative recognition and the hippocampus: differential effects of hippocampal lesions on object-place, object-context and object-place-context memory.

    Science.gov (United States)

    Langston, Rosamund F; Wood, Emma R

    2010-10-01

    The hippocampus is thought to be required for the associative recognition of objects together with the spatial or temporal contexts in which they occur. However, recent data showing that rats with fornix lesions perform as well as controls in an object-place task, while being impaired on an object-place-context task (Eacott and Norman (2004) J Neurosci 24:1948-1953), suggest that not all forms of context-dependent associative recognition depend on the integrity of the hippocampus. To examine the role of the hippocampus in context-dependent recognition directly, the present study tested the effects of large, selective, bilateral hippocampus lesions in rats on performance of a series of spontaneous recognition memory tasks: object recognition, object-place recognition, object-context recognition and object-place-context recognition. Consistent with the effects of fornix lesions, animals with hippocampus lesions were impaired only on the object-place-context task. These data confirm that not all forms of context-dependent associative recognition are mediated by the hippocampus. Subsequent experiments suggested that the object-place task does not require an allocentric representation of space, which could account for the lack of impairment following hippocampus lesions. Importantly, as the object-place-context task has similar spatial requirements, the selective deficit in object-place-context recognition suggests that this task requires hippocampus-dependent neural processes distinct from those required for allocentric spatial memory, or for object memory, object-place memory or object-context memory. Two possibilities are that object, place, and context information converge only in the hippocampus, or that recognition of integrated object-place-context information requires a hippocampus-dependent mode of retrieval, such as recollection. © 2009 Wiley-Liss, Inc.

  1. Perceptual effects on remembering: recollective processes in picture recognition memory.

    Science.gov (United States)

    Rajaram, S

    1996-03-01

    In 3 experiments, the effects of perceptual manipulations on recollective experience were tested. In Experiment 1, a picture-superiority effect was obtained for overall recognition and Remember judgements in a picture recognition task. In Experiment 2, size changes of pictorial stimuli across study and test reduced recognition memory and Remember judgements. In Experiment 3, deleterious effects of changes in left-right orientation of pictorial stimuli across study and test were obtained for Remember judgements. An alternate framework that emphasizes a distinctiveness-fluency processing distinction is proposed to account for these findings because they cannot easily be accommodated within the existing account of differences in conceptual and perceptual processing for the 2 categories of recollective experience: Remembering and Knowing, respectively (J. M. Gardiner, 1988; S. Rajaram, 1993).

  2. Recognition memory: a review of the critical findings and an integrated theory for relating them.

    Science.gov (United States)

    Malmberg, Kenneth J

    2008-12-01

    The development of formal models has aided theoretical progress in recognition memory research. Here, I review the findings that are critical for testing them, including behavioral and brain imaging results of single-item recognition, plurality discrimination, and associative recognition experiments under a variety of testing conditions. I also review the major approaches to measurement and process modeling of recognition. The review indicates that several extant dual-process measures of recollection are unreliable, and thus they are unsuitable as a basis for forming strong conclusions. At the process level, however, the retrieval dynamics of recognition memory and the effect of strengthening operations suggest that a recall-to-reject process plays an important role in plurality discrimination and associative recognition, but not necessarily in single-item recognition. A new theoretical framework proposes that the contribution of recollection to recognition depends on whether the retrieval of episodic details improves accuracy, and it organizes the models around the construct of efficiency. Accordingly, subjects adopt strategies that they believe will produce a desired level of accuracy in the shortest amount of time. Several models derived from this framework are shown to account the accuracy, latency, and confidence with which the various recognition tasks are performed.

  3. Neurophysiological indices of perceptual object priming in the absence of explicit recognition memory.

    Science.gov (United States)

    Harris, Jill D; Cutmore, Tim R H; O'Gorman, John; Finnigan, Simon; Shum, David

    2009-02-01

    The aim of this study was to identify ERP correlates of perceptual object priming that are insensitive to factors affecting explicit, episodic memory. EEG was recorded from 21 participants while they performed a visual object recognition test on a combination of unstudied items and old items that were previously encountered during either a 'deep' or 'shallow' levels-of-processing (LOP) study task. The results demonstrated a midline P150 old/new effect which was sensitive only to objects' old/new status and not to the accuracy of recognition responses to old items, or to the LOP manipulation. Similar outcomes were observed for the subsequent P200 and N400 effects, the former of which had a parietal scalp maximum and the latter, a broadly distributed topography. In addition an LPC old/new effect typical of those reported in past ERP recognition studies was observed. These outcomes support the proposal that the P150 effect is reflective of perceptual object priming and moreover, provide novel evidence that this and the P200 effect are independent of explicit recognition memory process(es).

  4. Tracing Cultural Memory

    DEFF Research Database (Denmark)

    Wiegand, Frauke Katharina

    by their encounters – to address a question that thirty years of ground - breaking research into memory has not yet sufficiently answered: What can we learn about the dynamics of cultural memory by examining mundane accounts of touristic encounters with sites of memory? From Blaavand Beach in Western Denmark......We encounter, relate to and make use of our past and that of others in multifarious and increasingly mobile ways. Tourism is one of the main paths for encountering sites of memory. This thesis examines tourists’ creative appropriations of sites of memory – the objects and future memories inspired...... of memory. They highlight the role of mundane uses of the past and indicate the need for cross - disciplinary research on the visual and on memory...

  5. Dual-Process Theory and Signal-Detection Theory of Recognition Memory

    Science.gov (United States)

    Wixted, John T.

    2007-01-01

    Two influential models of recognition memory, the unequal-variance signal-detection model and a dual-process threshold/detection model, accurately describe the receiver operating characteristic, but only the latter model can provide estimates of recollection and familiarity. Such estimates often accord with those provided by the remember-know…

  6. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    Science.gov (United States)

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hippocampal NMDA receptors are involved in rats' spontaneous object recognition only under high memory load condition.

    Science.gov (United States)

    Sugita, Manami; Yamada, Kazuo; Iguchi, Natsumi; Ichitani, Yukio

    2015-10-22

    The possible involvement of hippocampal N-methyl-D-aspartate (NMDA) receptors in spontaneous object recognition was investigated in rats under different memory load conditions. We first estimated rats' object memory span using 3-5 objects in "Different Objects Task (DOT)" in order to confirm the highest memory load condition in object recognition memory. Rats were allowed to explore a field in which 3 (3-DOT), 4 (4-DOT), or 5 (5-DOT) different objects were presented. After a delay period, they were placed again in the same field in which one of the sample objects was replaced by another object, and their object exploration behavior was analyzed. Rats could differentiate the novel object from the familiar ones in 3-DOT and 4-DOT but not in 5-DOT, suggesting that rats' object memory span was about 4. Then, we examined the effects of hippocampal AP5 infusion on performance in both 2-DOT (2 different objects were used) and 4-DOT. The drug treatment before the sample phase impaired performance only in 4-DOT. These results suggest that hippocampal NMDA receptors play a critical role in spontaneous object recognition only when the memory load is high. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The effects of a distracting N-back task on recognition memory are reduced by negative emotional intensity.

    Directory of Open Access Journals (Sweden)

    Luciano G Buratto

    Full Text Available Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated.

  9. The Effects of a Distracting N-Back Task on Recognition Memory Are Reduced by Negative Emotional Intensity

    Science.gov (United States)

    Buratto, Luciano G.; Pottage, Claire L.; Brown, Charity; Morrison, Catriona M.; Schaefer, Alexandre

    2014-01-01

    Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated. PMID:25330251

  10. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    Science.gov (United States)

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Does emotion modulate the efficacy of spaced learning in recognition memory?

    OpenAIRE

    Nicola Mammarella; Beth Fairfield; Alberto Di Domenico

    2014-01-01

    Memory for repeated items improves when presentations are spaced during study. Here, two experiments assessed the so-called spacing effect on a yes–no recognition memory task using affective and neutral words. In Experiment 1, a group of participants was asked to orient their attention to semantic features of target words (deep semantic analysis) that were consecutively repeated or spaced, while another group was engaged in a graphemic shallow analysis of words (Experiment 2). The depth of wo...

  12. Face Memory and Object Recognition in Children with High-Functioning Autism or Asperger Syndrome and in Their Parents

    Science.gov (United States)

    Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma

    2011-01-01

    Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…

  13. Memory loss versus memory distortion: the role of encoding and retrieval deficits in Korsakoff patients' false memories.

    Science.gov (United States)

    Van Damme, Ilse; d'Ydewalle, Gery

    2009-05-01

    Recent studies with the Deese/Roediger-McDermott (DRM) paradigm have revealed that Korsakoff patients show reduced levels of false recognition and different patterns of false recall compared to controls. The present experiment examined whether this could be attributed to an encoding deficit, or rather to problems with explicitly retrieving thematic information at test. In a variation on the DRM paradigm, both patients and controls were presented with associative as well as categorised word lists, with the order of recall and recognition tests manipulated between-subjects. The results point to an important role for the automatic/controlled retrieval distinction: Korsakoff patients' false memory was only diminished compared to controls' when automatic or short-term memory processes could not be used to fulfil the task at hand. Hence, the patients' explicit retrieval deficit appears to be crucial in explaining past and present data. Results are discussed in terms of fuzzy-trace and activation-monitoring theories.

  14. The relationship between recognition memory for emotion-laden words and white matter microstructure in normal older individuals.

    Science.gov (United States)

    Saarela, Carina; Karrasch, Mira; Ilvesmäki, Tero; Parkkola, Riitta; Rinne, Juha O; Laine, Matti

    2016-12-14

    Functional neuroimaging studies have shown age-related differences in brain activation and connectivity patterns for emotional memory. Previous studies with middle-aged and older adults have reported associations between episodic memory and white matter (WM) microstructure obtained from diffusion tensor imaging, but such studies on emotional memory remain few. To our knowledge, this is the first study to explore associations between WM microstructure as measured by fractional anisotropy (FA) and recognition memory for intentionally encoded positive, negative, and emotionally neutral words using tract-based spatial statistics applied to diffusion tensor imaging images in an elderly sample (44 cognitively intact adults aged 50-79 years). The use of tract-based spatial statistics enables the identification of WM tracts important to emotional memory without a priori assumptions required for region-of-interest approaches that have been used in previous work. The behavioral analyses showed a positivity bias, that is, a preference for positive words, in recognition memory. No statistically significant associations emerged between FA and memory for negative or neutral words. Controlling for age and memory performance for negative and neutral words, recognition memory for positive words was negatively associated with FA in several projection, association, and commissural tracts in the left hemisphere. This likely reflects the complex interplay between the mnemonic positivity bias, structural WM integrity, and functional brain compensatory mechanisms in older age. Also, the unexpected directionality of the results indicates that the WM microstructural correlates of emotional memory show unique characteristics in normal older individuals.

  15. Assessing the Dissociability of Recollection and Familiarity in Recognition Memory

    Science.gov (United States)

    Pratte, Michael S.; Rouder, Jeffrey N.

    2012-01-01

    Recognition memory is often modeled as constituting 2 separate processes, recollection and familiarity, rather than as constituting a single process mediated by a generic latent strength. One way of stating evidence for the more complex 2-process model is to show dissociations with select manipulations, in which one manipulation affects…

  16. Individual differences in holistic processing predict the own-race advantage in recognition memory.

    Science.gov (United States)

    Degutis, Joseph; Mercado, Rogelio J; Wilmer, Jeremy; Rosenblatt, Andrew

    2013-01-01

    Individuals are consistently better at recognizing own-race faces compared to other-race faces (other-race effect, ORE). One popular hypothesis is that this recognition memory ORE is caused by differential own- and other-race holistic processing, the simultaneous integration of part and configural face information into a coherent whole. Holistic processing may create a more rich, detailed memory representation of own-race faces compared to other-race faces. Despite several studies showing that own-race faces are processed more holistically than other-race faces, studies have yet to link the holistic processing ORE and the recognition memory ORE. In the current study, we sought to use a more valid method of analyzing individual differences in holistic processing by using regression to statistically remove the influence of the control condition (part trials in the part-whole task) from the condition of interest (whole trials in the part-whole task). We also employed regression to separately examine the two components of the ORE: own-race advantage (regressing other-race from own-race performance) and other-race decrement (regressing own-race from other-race performance). First, we demonstrated that own-race faces were processed more holistically than other-race faces, particularly the eye region. Notably, using regression, we showed a significant association between the own-race advantage in recognition memory and the own-race advantage in holistic processing and that these associations were weaker when examining the other-race decrement. We also demonstrated that performance on own- and other-race faces across all of our tasks was highly correlated, suggesting that the differences we found between own- and other-race faces are quantitative rather than qualitative. Together, this suggests that own- and other-race faces recruit largely similar mechanisms, that own-race faces more thoroughly engage holistic processing, and that this greater engagement of holistic

  17. Individual Differences in Holistic Processing Predict the Own-Race Advantage in Recognition Memory

    Science.gov (United States)

    DeGutis, Joseph; Mercado, Rogelio J.; Wilmer, Jeremy; Rosenblatt, Andrew

    2013-01-01

    Individuals are consistently better at recognizing own-race faces compared to other-race faces (other-race effect, ORE). One popular hypothesis is that this recognition memory ORE is caused by differential own- and other-race holistic processing, the simultaneous integration of part and configural face information into a coherent whole. Holistic processing may create a more rich, detailed memory representation of own-race faces compared to other-race faces. Despite several studies showing that own-race faces are processed more holistically than other-race faces, studies have yet to link the holistic processing ORE and the recognition memory ORE. In the current study, we sought to use a more valid method of analyzing individual differences in holistic processing by using regression to statistically remove the influence of the control condition (part trials in the part-whole task) from the condition of interest (whole trials in the part-whole task). We also employed regression to separately examine the two components of the ORE: own-race advantage (regressing other-race from own-race performance) and other-race decrement (regressing own-race from other-race performance). First, we demonstrated that own-race faces were processed more holistically than other-race faces, particularly the eye region. Notably, using regression, we showed a significant association between the own-race advantage in recognition memory and the own-race advantage in holistic processing and that these associations were weaker when examining the other-race decrement. We also demonstrated that performance on own- and other-race faces across all of our tasks was highly correlated, suggesting that the differences we found between own- and other-race faces are quantitative rather than qualitative. Together, this suggests that own- and other-race faces recruit largely similar mechanisms, that own-race faces more thoroughly engage holistic processing, and that this greater engagement of holistic

  18. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    Science.gov (United States)

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  19. Discrete-State and Continuous Models of Recognition Memory: Testing Core Properties under Minimal Assumptions

    Science.gov (United States)

    Kellen, David; Klauer, Karl Christoph

    2014-01-01

    A classic discussion in the recognition-memory literature concerns the question of whether recognition judgments are better described by continuous or discrete processes. These two hypotheses are instantiated by the signal detection theory model (SDT) and the 2-high-threshold model, respectively. Their comparison has almost invariably relied on…

  20. Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations.

    Science.gov (United States)

    Düzel, Emrah; Habib, Reza; Rotte, Michael; Guderian, Sebastian; Tulving, Endel; Heinze, Hans-Jochen

    2003-10-15

    Evidence from animal studies points to the importance of the parahippocampal region (PHR) [including entorhinal, perirhinal, and parahippocampal (PHC) cortices] for recognition of visual stimuli. Recent findings in animals suggest that PHR may also be involved in visual associative recognition memory for configurations of stimuli. Thus far, however, such involvement has not been demonstrated in humans. In fact, it has been argued that associative recognition in humans is critically dependent on the hippocampal formation (HF). To better understand the division of function between HF and PHR during recognition memory in humans, we measured the activity of both areas in healthy young adults during an associative recognition memory task using functional magnetic resonance imaging. To more precisely characterize the nature of the associations that might be coded by the HF and PHR during recognition, subjects were required to learn and were later tested for associations based on either the spatial arrangements of two stimuli or the identity of two stimuli (a face and a tool). An area in the PHC was found to be more active for recognized old configurations than new configurations in both the spatial and identity conditions. The HF, on the other hand, was more active for recognition of new configurations than old configurations and also more active in the spatial than the identity condition. These data highlight the involvement of PHR in the long-term coding of associative relationships between stimuli and help to clarify the nature of its functional distinction from the HF.

  1. The barista on the bus: cellular and synaptic mechanisms for visual recognition memory.

    Science.gov (United States)

    Barth, Alison L; Wheeler, Mark E

    2008-04-24

    Our ability to recognize that something is familiar, often referred to as visual recognition memory, has been correlated with a reduction in neural activity in the perirhinal cortex. In this issue of Neuron, Griffiths et al. now provide evidence that this form of memory requires AMPA receptor endocytosis and long-term depression of excitatory synapses in this brain area.

  2. Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated protein degradation in the prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    David S Reis

    2013-10-01

    Full Text Available The cellular mechanisms supporting plasticity during memory consolidation have been a subject of considerable interest. De novo protein and mRNA synthesis in several brain areas are critical, and more recently protein degradation, mediated by the ubiquitin-proteasome system (UPS, has been shown to be important. Previous work clearly establishes a relationship between protein synthesis and protein degradation in the amygdala, but it is unclear whether cortical mechanisms of memory consolidation are similar to those in the amygdala. Recent work demonstrating a critical role for prefrontal cortex (PFC in the acquisition and consolidation of fear memory allows us to address this question. Here we use a PFC-dependent fear conditioning protocol to determine whether UPS mediated protein degradation is necessary for memory consolidation in PFC. Groups of rats were trained with auditory delay or trace fear conditioning and sacrificed 60 min after training. PFC tissue was then analyzed to quantify the amount of polyubiquinated protein. Other animals were trained with similar procedures but were infused with either a proteasome inhibitor (clasto-lactacystin β-lactone or a translation inhibitor (anisomycin in the PFC immediately after training. Our results show increased UPS-mediated protein degradation in the PFC following trace but not delay fear conditioning. Additionally, post-training proteasome or translation inhibition significantly impaired trace but not delay fear memory when tested the next day. Our results further support the idea that the PFC is critical for trace but not delay fear conditioning highlight the role of UPS-mediated degradation as critical for synaptic plasticity.

  3. Blockade of intracellular Zn2+ signaling in the dentate gyrus erases recognition memory via impairment of maintained LTP.

    Science.gov (United States)

    Tamano, Haruna; Minamino, Tatsuya; Fujii, Hiroaki; Takada, Shunsuke; Nakamura, Masatoshi; Ando, Masaki; Takeda, Atsushi

    2015-08-01

    There is no evidence on the precise role of synaptic Zn2+ signaling on the retention and recall of recognition memory. On the basis of the findings that intracellular Zn2+ signaling in the dentate gyrus is required for object recognition, short-term memory, the present study deals with the effect of spatiotemporally blocking Zn2+ signaling in the dentate gyrus after LTP induction and learning. Three-day-maintained LTP was impaired 1 day after injection of clioquinol into the dentate gyrus, which transiently reduced intracellular Zn2+ signaling in the dentate gyrus. The irreversible impairment was rescued not only by co-injection of ZnCl2 , which ameliorated the loss of Zn2+ signaling, but also by pre-injection of Jasplakinolide, a stabilizer of F-actin, prior to clioquinol injection. Simultaneously, 3-day-old space recognition memory was impaired 1 day after injection of clioquinol into the dentate gyrus, but not by pre-injection of Jasplakinolide. Jasplakinolide also rescued both impairments of 3-day-maintained LTP and 3-day-old memory after injection of ZnAF-2DA into the dentate gyrus, which blocked intracellular Zn2+ signaling in the dentate gyrus. The present paper indicates that the blockade and/or loss of intracellular Zn2+ signaling in the dentate gyrus coincidently impair maintained LTP and recognition memory. The mechanism maintaining LTP via intracellular Zn2+ signaling in dentate granule cells, which may be involved in the formation of F-actin, may retain space recognition memory. © 2015 Wiley Periodicals, Inc.

  4. Spontaneous Object Recognition Memory in Aged Rats: Complexity versus Similarity

    Science.gov (United States)

    Gamiz, Fernando; Gallo, Milagros

    2012-01-01

    Previous work on the effect of aging on spontaneous object recognition (SOR) memory tasks in rats has yielded controversial results. Although the results at long-retention intervals are consistent, conflicting results have been reported at shorter delays. We have assessed the potential relevance of the type of object used in the performance of…

  5. The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition.

    Science.gov (United States)

    Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A

    2016-05-01

    The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.

  6. Comparing single- and dual-process models of memory development.

    Science.gov (United States)

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  7. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    Science.gov (United States)

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights

  8. Semantic Memory Recognition Is Supported by Intrinsic Recollection-Like Processes: "The Butcher on the Bus" Revisited

    Science.gov (United States)

    Waidergoren, Shani; Segalowicz, Judith; Gilboa, Asaf

    2012-01-01

    Dual-process models suggest that recognition memory is independently supported by recollection and familiarity. Current theories attribute recollection solely to hippocampally mediated episodic memory (EM), and familiarity to both episodic and semantic memory (SM) supported by medial temporal lobe cortex (MTLC) and prefrontal cortex. We tested…

  9. Spatial recognition test: A novel cognition task for assessing topographical memory in mice.

    Science.gov (United States)

    Havolli, Enes; Hill, Mark Dw; Godley, Annie; Goetghebeur, Pascal Jd

    2017-06-01

    Dysfunction in topographical memory is a core feature of several neurological disorders. There is a large unmet medical need to address learning and memory deficits as a whole in central nervous system disease. There are considerable efforts to identify pro-cognitive compounds but current methods are either lengthy or labour intensive. Our test used a two chamber apparatus and is based on the preference of rodents to explore novel environments. It was used firstly to assess topographical memory in mice at different retention intervals (RI) and secondly to investigate the effect of three drugs reported to be beneficial for cognitive decline associated with Alzheimer's disease, namely: donepezil, memantine and levetiracetam. Animals show good memory performance at all RIs tested under four hours. At the four-hour RI, animals show a significantly poorer memory performance which can be rescued using donepezil, memantine and levetiracetam. Using this test we established and validated a spatial recognition paradigm to address topographical memory in mice by showing a decremental time-induced forgetting response and reversing this decrease in performance using pharmacological tools. The spatial recognition test differs from more commonly used visuospatial laboratory tests in both throughput capability and potentially neuroanatomical substrate. This test has the potential to be used to assess cognitive performance in transgenic animals, disease models and to screen putative cognitive enhancers or depressors.

  10. Binding neutral information to emotional contexts: Brain dynamics of long-term recognition memory.

    Science.gov (United States)

    Ventura-Bort, Carlos; Löw, Andreas; Wendt, Julia; Moltó, Javier; Poy, Rosario; Dolcos, Florin; Hamm, Alfons O; Weymar, Mathias

    2016-04-01

    There is abundant evidence in memory research that emotional stimuli are better remembered than neutral stimuli. However, effects of an emotionally charged context on memory for associated neutral elements is also important, particularly in trauma and stress-related disorders, where strong memories are often activated by neutral cues due to their emotional associations. In the present study, we used event-related potentials (ERPs) to investigate long-term recognition memory (1-week delay) for neutral objects that had been paired with emotionally arousing or neutral scenes during encoding. Context effects were clearly evident in the ERPs: An early frontal ERP old/new difference (300-500 ms) was enhanced for objects encoded in unpleasant compared to pleasant and neutral contexts; and a late central-parietal old/new difference (400-700 ms) was observed for objects paired with both pleasant and unpleasant contexts but not for items paired with neutral backgrounds. Interestingly, objects encoded in emotional contexts (and novel objects) also prompted an enhanced frontal early (180-220 ms) positivity compared to objects paired with neutral scenes indicating early perceptual significance. The present data suggest that emotional--particularly unpleasant--backgrounds strengthen memory for items encountered within these contexts and engage automatic and explicit recognition processes. These results could help in understanding binding mechanisms involved in the activation of trauma-related memories by neutral cues.

  11. Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man?

    Science.gov (United States)

    Näätänen, R; Paavilainen, P; Reinikainen, K

    1989-12-15

    Sequences of identical acoustic stimuli were presented to normal subjects reading a book while event-related brain potentials (ERP) elicited by these stimuli were recorded. Occasional irrelevant decreases and increases in stimulus duration elicited an ERP component called the mismatch negativity (MMN). This component was larger over the right hemisphere irrespective of the ear stimulated. These data implicate memory representations which develop automatically and represent the physical features of the repetitive stimulus accurately. Further, when an input does not match with such a trace the MMN is generated. The memory traces involved appear to be those of the acoustic sensory memory, the 'echoic' memory.

  12. An ERP study of recognition memory for concrete and abstract pictures in school-aged children.

    Science.gov (United States)

    Boucher, Olivier; Chouinard-Leclaire, Christine; Muckle, Gina; Westerlund, Alissa; Burden, Matthew J; Jacobson, Sandra W; Jacobson, Joseph L

    2016-08-01

    Recognition memory for concrete, nameable pictures is typically faster and more accurate than for abstract pictures. A dual-coding account for these findings suggests that concrete pictures are processed into verbal and image codes, whereas abstract pictures are encoded in image codes only. Recognition memory relies on two successive and distinct processes, namely familiarity and recollection. Whether these two processes are similarly or differently affected by stimulus concreteness remains unknown. This study examined the effect of picture concreteness on visual recognition memory processes using event-related potentials (ERPs). In a sample of children involved in a longitudinal study, participants (N=96; mean age=11.3years) were assessed on a continuous visual recognition memory task in which half the pictures were easily nameable, everyday concrete objects, and the other half were three-dimensional abstract, sculpture-like objects. Behavioral performance and ERP correlates of familiarity and recollection (respectively, the FN400 and P600 repetition effects) were measured. Behavioral results indicated faster and more accurate identification of concrete pictures as "new" or "old" (i.e., previously displayed) compared to abstract pictures. ERPs were characterized by a larger repetition effect, on the P600 amplitude, for concrete than for abstract images, suggesting a graded recollection process dependent on the type of material to be recollected. Topographic differences were observed within the FN400 latency interval, especially over anterior-inferior electrodes, with the repetition effect more pronounced and localized over the left hemisphere for concrete stimuli, potentially reflecting different neural processes underlying early processing of verbal/semantic and visual material in memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Ciproxifan, an H3 receptor antagonist, improves short-term recognition memory impaired by isoflurane anesthesia.

    Science.gov (United States)

    Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao

    2016-08-01

    Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.

  14. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    Science.gov (United States)

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Long-term odor recognition memory in unipolar major depression and Alzheimer׳s disease.

    Science.gov (United States)

    Naudin, Marine; Mondon, Karl; El-Hage, Wissam; Desmidt, Thomas; Jaafari, Nematollah; Belzung, Catherine; Gaillard, Philippe; Hommet, Caroline; Atanasova, Boriana

    2014-12-30

    Major depression and Alzheimer׳s disease (AD) are often observed in the elderly. The identification of specific markers for these diseases could improve their screening. The aim of this study was to investigate long-term odor recognition memory in depressed and AD patients, with a view to identifying olfactory markers of these diseases. We included 20 patients with unipolar major depressive episodes (MDE), 20 patients with mild to moderate AD and 24 healthy subjects. We investigated the cognitive profile and olfactory memory capacities (ability to recognize familiar and unfamiliar odors) of these subjects. Olfactory memory test results showed that AD and depressed patients were characterized by significantly less correct responses and more wrong responses than healthy controls. Detection index did not differ significantly between patients with major depression and those with AD when the results were analyzed for all odors. However, MDE patients displayed an impairment of olfactory memory for both familiar and unfamiliar odors, whereas AD subjects were impaired only in the recognition of unfamiliar odors, with respect to healthy subjects. If preservation of olfactory memory for familiar stimuli in patients with mild to moderate AD is confirmed, this test could be used in clinical practice as a complementary tool for diagnosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    Science.gov (United States)

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Oxytocin eliminates the own-race bias in face recognition memory.

    Science.gov (United States)

    Blandón-Gitlin, Iris; Pezdek, Kathy; Saldivar, Sesar; Steelman, Erin

    2014-09-11

    The neuropeptide Oxytocin influences a number of social behaviors, including processing of faces. We examined whether Oxytocin facilitates the processing of out-group faces and reduce the own-race bias (ORB). The ORB is a robust phenomenon characterized by poor recognition memory of other-race faces compared to the same-race faces. In Experiment 1, participants received intranasal solutions of Oxytocin or placebo prior to viewing White and Black faces. On a subsequent recognition test, whereas in the placebo condition the same-race faces were better recognized than other-race faces, in the Oxytocin condition Black and White faces were equally well recognized, effectively eliminating the ORB. In Experiment 2, Oxytocin was administered after the study phase. The ORB resulted, but Oxytocin did not significantly reduce the effect. This study is the first to show that Oxytocin can enhance face memory of out-group members and underscore the importance of social encoding mechanisms underlying the own-race bias. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Loss of hfe function reverses impaired recognition memory caused by olfactory manganese exposure in mice.

    Science.gov (United States)

    Ye, Qi; Kim, Jonghan

    2015-03-01

    Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe (-/-)) and wild-type (Hfe (+/+)) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe (+/+) mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe (-/-) mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe (+/+) mice, but not in Hfe (-/-) mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of

  19. Long Short-Term Memory Projection Recurrent Neural Network Architectures for Piano’s Continuous Note Recognition

    Directory of Open Access Journals (Sweden)

    YuKang Jia

    2017-01-01

    Full Text Available Long Short-Term Memory (LSTM is a kind of Recurrent Neural Networks (RNN relating to time series, which has achieved good performance in speech recogniton and image recognition. Long Short-Term Memory Projection (LSTMP is a variant of LSTM to further optimize speed and performance of LSTM by adding a projection layer. As LSTM and LSTMP have performed well in pattern recognition, in this paper, we combine them with Connectionist Temporal Classification (CTC to study piano’s continuous note recognition for robotics. Based on the Beijing Forestry University music library, we conduct experiments to show recognition rates and numbers of iterations of LSTM with a single layer, LSTMP with a single layer, and Deep LSTM (DLSTM, LSTM with multilayers. As a result, the single layer LSTMP proves performing much better than the single layer LSTM in both time and the recognition rate; that is, LSTMP has fewer parameters and therefore reduces the training time, and, moreover, benefiting from the projection layer, LSTMP has better performance, too. The best recognition rate of LSTMP is 99.8%. As for DLSTM, the recognition rate can reach 100% because of the effectiveness of the deep structure, but compared with the single layer LSTMP, DLSTM needs more training time.

  20. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study

    Directory of Open Access Journals (Sweden)

    Carol L. Cheatham

    2015-11-01

    Full Text Available The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70–30 oddball paradigm in a high-density 128-lead event-related potential (ERP paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p < 0.05 and p < 0.001; respectively. Higher choline levels with higher lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p < 0.01; p < 0.001; p < 0.05 respectively. Higher choline with higher DHA was related to better recognition memory. Interactions between human milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations.

  1. Blockade of intracellular Zn2+ signaling in the basolateral amygdala affects object recognition memory via attenuation of dentate gyrus LTP.

    Science.gov (United States)

    Fujise, Yuki; Kubota, Mitsuyasu; Suzuki, Miki; Tamano, Haruna; Takeda, Atsushi

    2017-09-01

    Hippocampus-dependent memory is modulated by the amygdala. However, it is unknown whether intracellular Zn 2+ signaling in the amygdala is involved in hippocampus-dependent memory. On the basis of the evidence that intracellular Zn 2+ signaling in dentate granule cells (DGC) is necessary for object recognition memory via LTP at medial perforant pathway (PP)-DGC synapses, the present study examined whether intracellular Zn 2+ signaling in the amygdala influences object recognition memory via modulation of LTP at medial PP-DGC synapses. When ZnAF-2DA (100 μM, 2 μl) was injected into the basolateral amygdala (BLA), intracellular ZnAF-2 locally chelated intracellular Zn 2+ in the amygdala. Recognition memory was affected when training of object recognition test was performed 20 min after ZnAF-2DA injection into the BLA. Twenty minutes after injection of ZnAF-2DA into the BLA, LTP induction at medial PP-DGC synapses was attenuated, while LTP induction at PP-BLA synapses was potentiated and LTP induction at BLA-DGC synapses was attenuated. These results suggest that intracellular Zn 2+ signaling in the BLA is involved in BLA-associated LTP and modulates LTP at medial PP-DGC synapses, followed by modulation of object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Activation and Binding in Verbal Working Memory: A Dual-Process Model for the Recognition of Nonwords

    Science.gov (United States)

    Oberauer, Klauss; Lange, Elke B.

    2009-01-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…

  3. Odour recognition memory and odour identification in patients with mild and severe major depressive disorders.

    Science.gov (United States)

    Zucco, Gesualdo M; Bollini, Fabiola

    2011-12-30

    Olfactory deficits, in detection, recognition and identification of odorants have been documented in ageing and in several neurodegenerative and psychiatric conditions. However, olfactory abilities in Major Depressive Disorder (MDD) have been less investigated, and available studies have provided inconsistent results. The present study assessed odour recognition memory and odour identification in two groups of 12 mild MDD patients (M age 41.3, range 25-57) and 12 severe MDD patients (M age, 41.9, range 23-58) diagnosed according to DSM-IV criteria and matched for age and gender to 12 healthy normal controls. The suitability of olfactory identification and recognition memory tasks as predictors of the progression of MDD was also addressed. Data analyses revealed that Severe MDD patients performed significantly worse than Mild MDD patients and Normal controls on both tasks, with these last groups not differing significantly from one another. The present outcomes are consistent with previous studies in other domains which have shown reliable, although not conclusive, impairments in cognitive function, including memory, in patients with MDD, and highlight the role of olfactory identification and recognition tasks as an important additional tool to discriminate between patients characterised by different levels of severity of MDD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The Cambridge Face Memory Test for Children (CFMT-C): a new tool for measuring face recognition skills in childhood.

    Science.gov (United States)

    Croydon, Abigail; Pimperton, Hannah; Ewing, Louise; Duchaine, Brad C; Pellicano, Elizabeth

    2014-09-01

    Face recognition ability follows a lengthy developmental course, not reaching maturity until well into adulthood. Valid and reliable assessments of face recognition memory ability are necessary to examine patterns of ability and disability in face processing, yet there is a dearth of such assessments for children. We modified a well-known test of face memory in adults, the Cambridge Face Memory Test (Duchaine & Nakayama, 2006, Neuropsychologia, 44, 576-585), to make it developmentally appropriate for children. To establish its utility, we administered either the upright or inverted versions of the computerised Cambridge Face Memory Test - Children (CFMT-C) to 401 children aged between 5 and 12 years. Our results show that the CFMT-C is sufficiently sensitive to demonstrate age-related gains in the recognition of unfamiliar upright and inverted faces, does not suffer from ceiling or floor effects, generates robust inversion effects, and is capable of detecting difficulties in face memory in children diagnosed with autism. Together, these findings indicate that the CFMT-C constitutes a new valid assessment tool for children's face recognition skills. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/B receptors.

    Science.gov (United States)

    Jiang, Jinhong; Peng, Yali; He, Zhen; Wei, Lijuan; Jin, Weidong; Wang, Xiaoli; Chang, Min

    2017-07-01

    Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, is primarily localized within the cortex and hippocampus. In the hippocampus, CST-14 inhibits CA1 neuronal pyramidal cell firing and co-exists with GABA. However, its role in cognitive is still not clarified. The first aim of our study was to elucidate the role of CST-14 signaling in consolidation and reconsolidation of recognition memory in mice, using novel object recognition task. The results showed that central CST-14 induced in impairment of long-term and short-term recognition memory, indicating memory consolidation impairment effect. Similarly, we found that CST-14 did not impaired long-term and short-term reconsolidation recognition memory. To further investigate the underlying mechanisms of CST-14 in memory process, we used cyclosomatostatin (c-SOM, a selective sst 1-5 receptor antagonist), cyanamid154806 (a selective sst 2 receptor antagonist), ODN-8 (a high affinity and selectivity compound for sst 3 receptor), [d-Lys 3 ]GHRP-6 (a selective ghrelin receptor antagonist), picrotoxin (PTX, a GABA A receptor antagonist), and sacolfen (a GABA B receptor antagonist) to research its effects in recognition. Our results firstly indicated that the memory-impairing effects of CST-14 were significantly reversed by c-SOM, cyanamid154806, [d-Lys 3 ]GHRP-6, PTX and sacolfen, but not ODN-8, suggesting that the blockage of recognition memory consolidation induced by CST-14 involves sst 2 , ghrelin and GABA system. The present study provides a potential strategy to regulate memory processes, providing new evidence that reconsolidation is not a simple reiteration of consolidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  7. Primate Auditory Recognition Memory Performance Varies With Sound Type

    OpenAIRE

    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba

    2009-01-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  8. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; /Fermilab; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  9. Protein synthesis underlies post-retrieval memory consolidation to a restricted degree only when updated information is obtained

    OpenAIRE

    Rodriguez-Ortiz, Carlos J.; De la Cruz, Vanesa; Gutiérrez, Ranier; Bermudez-Rattoni, Federico

    2005-01-01

    Consolidation theory proposes that through the synthesis of new proteins recently acquired memories are strengthened over time into a stable long-term memory trace. However, evidence has accumulated suggesting that retrieved memory is susceptible to disruption, seeming to consolidate again (reconsolidate) to be retained in long-term storage. Here we show that intracortical blockade of protein synthesis in the gustatory cortex after retrieval of taste-recognition memory disrupts previously con...

  10. Effects of heavy particle irradiation and diet on object recognition memory in rats

    Science.gov (United States)

    Rabin, Bernard M.; Carrihill-Knoll, Kirsty; Hinchman, Marie; Shukitt-Hale, Barbara; Joseph, James A.; Foster, Brian C.

    2009-04-01

    On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.

  11. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    Science.gov (United States)

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  12. Further dissociating the processes involved in recognition memory: an FMRI study.

    Science.gov (United States)

    Henson, Richard N A; Hornberger, Michael; Rugg, Michael D

    2005-07-01

    Based on an event-related potential study by Rugg et al. [Dissociation of the neural correlates of implicit and explicit memory. Nature, 392, 595-598, 1998], we attempted to isolate the hemodynamic correlates of recollection, familiarity, and implicit memory within a single verbal recognition memory task using event-related fMRI. Words were randomly cued for either deep or shallow processing, and then intermixed with new words for yes/no recognition. The number of studied words was such that, whereas most were recognized ("hits"), an appreciable number of shallow-studied words were not ("misses"). Comparison of deep hits versus shallow hits at test revealed activations in regions including the left inferior parietal gyrus. Comparison of shallow hits versus shallow misses revealed activations in regions including the bilateral intraparietal sulci, the left posterior middle frontal gyrus, and the left frontopolar cortex. Comparison of hits versus correct rejections revealed a relative deactivation in an anterior left medial-temporal region (most likely the perirhinal cortex). Comparison of shallow misses versus correct rejections did not reveal response decreases in any regions expected on the basis of previous imaging studies of priming. Given these and previous data, we associate the left inferior parietal activation with recollection, the left anterior medial-temporal deactivation with familiarity, and the intraparietal and prefrontal responses with target detection. The absence of differences between shallow misses and correct rejections means that the hemodynamic correlates of implicit memory remain unclear.

  13. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    International Nuclear Information System (INIS)

    Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E.; Wu, Jin-Yuan; Yarema, R.; Shochet, M.; Tang, F.; Demarteau, M.

    2011-01-01

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern recognition

  14. Neural correlates of memory encoding and recognition for own-race and other-race faces in an associative-memory task.

    Science.gov (United States)

    Herzmann, Grit; Minor, Greta; Adkins, Makenzie

    2017-01-15

    The ability to recognize faces of family members, friends, and acquaintances plays an important role in our daily interactions. The other-race effect is the reduced ability to recognize other-race faces as compared to own-race faces. Previous studies showed different patterns of event-related potentials (ERPs) associated with recollection and familiarity during memory encoding (i.e., Dm) and recognition (i.e., parietal old/new effect) for own-race and other-race faces in a subjective-recollection task (remember-know judgments). The present study investigated the same neural correlates of the other-race effect in an associative-memory task, in which Caucasian and East Asian participants learned and recognized own-race and other-race faces along with background colors. Participants made more false alarms for other-race faces indicating lower memory performance. During the study phase, subsequently recognized other-race faces (with and without correct background information) elicited more positive mean amplitudes than own-race faces, suggesting increased neural activation during encoding of other-race faces. During the test phase, recollection-related old/new effects dissociated between own-race and other-race faces. Old/new effects were significant only for own-race but not for other-race faces, indicating that recognition only of own-race faces was supported by recollection and led to more detailed memory retrieval. Most of these results replicated previous studies that used a subjective-recollection task. Our study also showed that the increased demand on memory encoding during an associative-memory task led to Dm patterns that indicated similarly deep memory encoding for own-race and other-race faces. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Individual recognition of social rank and social memory performance depends on a functional circadian system.

    Science.gov (United States)

    Müller, L; Weinert, D

    2016-11-01

    In a natural environment, social abilities of an animal are important for its survival. Particularly, it must recognize its own social rank and the social rank of a conspecific and have a good social memory. While the role of the circadian system for object and spatial recognition and memory is well known, the impact of the social rank and circadian disruptions on social recognition and memory were not investigated so far. In the present study, individual recognition of social rank and social memory performance of Djungarian hamsters revealing different circadian phenotypes were investigated. Wild type (WT) animals show a clear and well-synchronized daily activity rhythm, whereas in arrhythmic (AR) hamsters, the suprachiasmatic nuclei (SCN) do not generate a circadian signal. The aim of the study was to investigate putative consequences of these deteriorations in the circadian system for animalś cognitive abilities. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14l/10 D lighting regimen. Experimental animals were assigned to different groups (WT and AR) according to their activity pattern obtained by means of infrared motion sensors. Before the experiments, the animals were given to develop a dominant-subordinate relationship in a dyadic encounter. Experiment 1 dealt with individual recognition of social rank. Subordinate and dominant hamsters were tested in an open arena for their behavioral responses towards a familiar (known from the agonistic encounters) or an unfamiliar hamster (from another agonistic encounter) which had the same or an opposite social rank. The investigation time depended on the social rank of the WT subject hamster and its familiarity with the stimulus animal. Both subordinate and dominant WT hamsters preferred an unfamiliar subordinate stimulus animal. In contrast, neither subordinate nor dominant AR hamsters preferred any of the stimulus animals. Thus, disruptions in circadian

  16. Reversing the picture superiority effect: a speed-accuracy trade-off study of recognition memory.

    Science.gov (United States)

    Boldini, Angela; Russo, Riccardo; Punia, Sahiba; Avons, S E

    2007-01-01

    Speed-accuracy trade-off methods have been used to contrast single- and dual-process accounts of recognition memory. With these procedures, subjects are presented with individual test items and required to make recognition decisions under various time constraints. In three experiments, we presented words and pictures to be intentionally learned; test stimuli were always visually presented words. At test, we manipulated the interval between the presentation of each test stimulus and that of a response signal, thus controlling the amount of time available to retrieve target information. The standard picture superiority effect was significant in long response deadline conditions (i.e., > or = 2,000 msec). Conversely, a significant reverse picture superiority effect emerged at short response-signal deadlines (< 200 msec). The results are congruent with views suggesting that both fast familiarity and slower recollection processes contribute to recognition memory. Alternative accounts are also discussed.

  17. Dual influences of early-life maternal deprivation on histone deacetylase activity and recognition memory in rats.

    Science.gov (United States)

    Albuquerque Filho, Manoel Osório; de Freitas, Betânia Souza; Garcia, Rebeca Carvalho Lacerda; Crivelaro, Pedro Castilhos de Freitas; Schröder, Nadja; de Lima, Maria Noêmia Martins

    2017-03-06

    Exposure to stress early in life may negatively impact nervous system functioning, including increasing the proneness to learning and memory impairments later in life. Maternal deprivation, a model of early-life stress, hinders memory in adult rats and lessens brain-derived neurotrophic factor (BDNF) levels in the hippocampus in a very heterogeneous way among individuals. The main goal of the present study was to investigate the possible epigenetic modulation underlying recognition memory impairment and reduced BDNF levels in the hippocampus of adult maternally deprived rats. We also evaluated the potential ameliorating properties of the histone deacetylase (HDAC) inhibitor, sodium butyrate, on memory deficits and BDNF changes related to maternal deprivation. Maternally deprived animals were categorized as 'inferior learners' and 'superior learners' according to their performance in object recognition memory task in comparison to controls. Results indicated that HDAC activity was higher in individuals submitted to maternal deprivation with the worst cognitive performance (inferior learners). Acute administration of sodium butyrate increased histone H3 acetylation and BDNF levels, and restored recognition memory in maternally deprived animals with the worst cognitive performance. Moreover, we also showed that there is a positive correlation between BDNF levels and memory performance. Taken together, the results indicated that HDAC inhibitors could be considered as a possible therapeutic agent to improve cognitive performance in inferior learners. Further studies need to be conducted for a better comprehension of the mechanisms related to persistent alterations observed in adult life induced by early stressful circumstances and those leading to resilience. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans

    Directory of Open Access Journals (Sweden)

    Anne-Lise eSaive

    2014-06-01

    Full Text Available We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What positioned at three specific locations (Where within a visual context (Which context. During the retrieval test, which occurred 24 to 72 hours after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors.

  19. A unique memory process modulated by emotion underpins successful odor recognition and episodic retrieval in humans

    Science.gov (United States)

    Saive, Anne-Lise; Royet, Jean-Pierre; Ravel, Nadine; Thévenet, Marc; Garcia, Samuel; Plailly, Jane

    2014-01-01

    We behaviorally explore the link between olfaction, emotion and memory by testing the hypothesis that the emotion carried by odors facilitates the memory of specific unique events. To investigate this idea, we used a novel behavioral approach inspired by a paradigm developed by our team to study episodic memory in a controlled and as ecological as possible way in humans. The participants freely explored three unique and rich laboratory episodes; each episode consisted of three unfamiliar odors (What) positioned at three specific locations (Where) within a visual context (Which context). During the retrieval test, which occurred 24–72 h after the encoding, odors were used to trigger the retrieval of the complex episodes. The participants were proficient in recognizing the target odors among distractors and retrieving the visuospatial context in which they were encountered. The episodic nature of the task generated high and stable memory performances, which were accompanied by faster responses and slower and deeper breathing. Successful odor recognition and episodic memory were not related to differences in odor investigation at encoding. However, memory performances were influenced by the emotional content of the odors, regardless of odor valence, with both pleasant and unpleasant odors generating higher recognition and episodic retrieval than neutral odors. Finally, the present study also suggested that when the binding between the odors and the spatio-contextual features of the episode was successful, the odor recognition and the episodic retrieval collapsed into a unique memory process that began as soon as the participants smelled the odors. PMID:24936176

  20. The impact of beliefs about face recognition ability on memory retrieval processes in young and older adults.

    Science.gov (United States)

    Humphries, Joyce E; Flowe, Heather D; Hall, Louise C; Williams, Louise C; Ryder, Hannah L

    2016-01-01

    This study examined whether beliefs about face recognition ability differentially influence memory retrieval in older compared to young adults. Participants evaluated their ability to recognise faces and were also given information about their ability to perceive and recognise faces. The information was ostensibly based on an objective measure of their ability, but in actuality, participants had been randomly assigned the information they received (high ability, low ability or no information control). Following this information, face recognition accuracy for a set of previously studied faces was measured using a remember-know memory paradigm. Older adults rated their ability to recognise faces as poorer compared to young adults. Additionally, negative information about face recognition ability improved only older adults' ability to recognise a previously seen face. Older adults were also found to engage in more familiarity than item-specific processing than young adults, but information about their face recognition ability did not affect face processing style. The role that older adults' memory beliefs have in the meta-cognitive strategies they employ is discussed.

  1. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  2. Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: an MEG study.

    Science.gov (United States)

    Recasens, Marc; Leung, Sumie; Grimm, Sabine; Nowak, Rafal; Escera, Carles

    2015-03-01

    The formation of echoic memory traces has traditionally been inferred from the enhanced responses to its deviations. The mismatch negativity (MMN), an auditory event-related potential (ERP) elicited between 100 and 250ms after sound deviation is an indirect index of regularity encoding that reflects a memory-based comparison process. Recently, repetition positivity (RP) has been described as a candidate ERP correlate of direct memory trace formation. RP consists of repetition suppression and enhancement effects occurring in different auditory components between 50 and 250ms after sound onset. However, the neuronal generators engaged in the encoding of repeated stimulus features have received little interest. This study intends to investigate the neuronal sources underlying the formation and strengthening of new memory traces by employing a roving-standard paradigm, where trains of different frequencies and different lengths are presented randomly. Source generators of repetition enhanced (RE) and suppressed (RS) activity were modeled using magnetoencephalography (MEG) in healthy subjects. Our results show that, in line with RP findings, N1m (~95-150ms) activity is suppressed with stimulus repetition. In addition, we observed the emergence of a sustained field (~230-270ms) that showed RE. Source analysis revealed neuronal generators of RS and RE located in both auditory and non-auditory areas, like the medial parietal cortex and frontal areas. The different timing and location of neural generators involved in RS and RE points to the existence of functionally separated mechanisms devoted to acoustic memory-trace formation in different auditory processing stages of the human brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The effectiveness of music as a mnemonic device on recognition memory for people with multiple sclerosis.

    Science.gov (United States)

    Moore, Kimberly Sena; Peterson, David A; O'Shea, Geoffrey; McIntosh, Gerald C; Thaut, Michael H

    2008-01-01

    Research shows that people with multiple sclerosis exhibit learning and memory difficulties and that music can be used successfully as a mnemonic device to aid in learning and memory. However, there is currently no research investigating the effectiveness of music mnemonics as a compensatory learning strategy for people with multiple sclerosis. Participants with clinically definitive multiple sclerosis (N = 38) were given a verbal learning and memory test. Results from a recognition memory task were analyzed that compared learning through music (n = 20) versus learning through speech (n = 18). Preliminary baseline neuropsychological data were collected that measured executive functioning skills, learning and memory abilities, sustained attention, and level of disability. An independent samples t test showed no significant difference between groups on baseline neuropsychological functioning or on recognition task measures. Correlation analyses suggest that music mnemonics may facilitate learning for people who are less impaired by the disease. Implications for future research are discussed.

  4. Bidirectional Long Short-Term Memory Network for Vehicle Behavior Recognition

    Directory of Open Access Journals (Sweden)

    Jiasong Zhu

    2018-06-01

    Full Text Available Vehicle behavior recognition is an attractive research field which is useful for many computer vision and intelligent traffic analysis tasks. This paper presents an all-in-one behavior recognition framework for moving vehicles based on the latest deep learning techniques. Unlike traditional traffic analysis methods which rely on low-resolution videos captured by road cameras, we capture 4K ( 3840 × 2178 traffic videos at a busy road intersection of a modern megacity by flying a unmanned aerial vehicle (UAV during the rush hours. We then manually annotate locations and types of road vehicles. The proposed method consists of the following three steps: (1 vehicle detection and type recognition based on deep neural networks; (2 vehicle tracking by data association and vehicle trajectory modeling; (3 vehicle behavior recognition by nearest neighbor search and by bidirectional long short-term memory network, respectively. This paper also presents experimental results of the proposed framework in comparison with state-of-the-art approaches on the 4K testing traffic video, which demonstrated the effectiveness and superiority of the proposed method.

  5. Aberrant neural networks for the recognition memory of socially relevant information in patients with schizophrenia.

    Science.gov (United States)

    Oh, Jooyoung; Chun, Ji-Won; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin

    2017-01-01

    Patients with schizophrenia exhibit several cognitive deficits, including memory impairment. Problems with recognition memory can hinder socially adaptive behavior. Previous investigations have suggested that altered activation of the frontotemporal area plays an important role in recognition memory impairment. However, the cerebral networks related to these deficits are not known. The aim of this study was to elucidate the brain networks required for recognizing socially relevant information in patients with schizophrenia performing an old-new recognition task. Sixteen patients with schizophrenia and 16 controls participated in this study. First, the subjects performed the theme-identification task during functional magnetic resonance imaging. In this task, pictures depicting social situations were presented with three words, and the subjects were asked to select the best theme word for each picture. The subjects then performed an old-new recognition task in which they were asked to discriminate whether the presented words were old or new. Task performance and neural responses in the old-new recognition task were compared between the subject groups. An independent component analysis of the functional connectivity was performed. The patients with schizophrenia exhibited decreased discriminability and increased activation of the right superior temporal gyrus compared with the controls during correct responses. Furthermore, aberrant network activities were found in the frontopolar and language comprehension networks in the patients. The functional connectivity analysis showed aberrant connectivity in the frontopolar and language comprehension networks in the patients with schizophrenia, and these aberrations possibly contribute to their low recognition performance and social dysfunction. These results suggest that the frontopolar and language comprehension networks are potential therapeutic targets in patients with schizophrenia.

  6. Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression

    Science.gov (United States)

    Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi

    2011-01-01

    Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half…

  7. Anisomycin administered in the olfactory bulb and dorsal hippocampus impaired social recognition memory consolidation in different time-points.

    Science.gov (United States)

    Pena, R R; Pereira-Caixeta, A R; Moraes, M F D; Pereira, G S

    2014-10-01

    To identify an individual as familiar, rodents form a specific type of memory named social recognition memory. The olfactory bulb (OB) is an important structure for social recognition memory, while the hippocampus recruitment is still controversial. The present study was designed to elucidate the OB and the dorsal hippocampus contribution to the consolidation of social memory. For that purpose, we tested the effect of anisomycin (ANI), which one of the effects is the inhibition of protein synthesis, on the consolidation of social recognition memory. Swiss adult mice with cannulae implanted into the CA1 region of the dorsal hippocampus or into the OB were exposed to a juvenile during 5 min (training session; TR), and once again 1.5 h or 24 h later to test social short-term memory (S-STM) or social long-term memory (S-LTM), respectively. To study S-LTM consolidation, mice received intra-OB or intra-CA1 infusion of saline or ANI immediately, 3, 6 or 18 h after TR. ANI impaired S-LTM consolidation in the OB, when administered immediately or 6h after TR. In the dorsal hippocampus, ANI was amnesic only if administered 3 h after TR. Furthermore, the infusion of ANI in either OB or CA1, immediately after training, did not affect S-STM. Moreover, ANI administered into the OB did not alter the animal's performance in the buried food-finding task. Altogether, our results suggest the consolidation of S-LTM requires both OB and hippocampus participation, although in different time points. This study may help shedding light on the specific roles of the OB and dorsal hippocampus in social recognition memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Unilateral lateral entorhinal inactivation impairs memory expression in trace eyeblink conditioning.

    Directory of Open Access Journals (Sweden)

    Stephanie E Tanninen

    Full Text Available Memory in trace eyeblink conditioning is mediated by an inter-connected network that involves the hippocampus (HPC, several neocortical regions, and the cerebellum. This network reorganizes after learning as the center of the network shifts from the HPC to the medial prefrontal cortex (mPFC. Despite the network reorganization, the lateral entorhinal cortex (LEC plays a stable role in expressing recently acquired HPC-dependent memory as well as remotely acquired mPFC-dependent memory. Entorhinal involvement in recent memory expression may be attributed to its previously proposed interactions with the HPC. In contrast, it remains unknown how the LEC participates in memory expression after the network disengages from the HPC. The present study tested the possibility that the LEC and mPFC functionally interact during remote memory expression by examining the impact of pharmacological inactivation of the LEC in one hemisphere and the mPFC in the contralateral hemisphere on memory expression in rats. Memory expression one day and one month after learning was significantly impaired after LEC-mPFC inactivation; however, the degree of impairment was comparable to that after unilateral LEC inactivation. Unilateral mPFC inactivation had no effect on recent or remote memory expression. These results suggest that the integrity of the LEC in both hemispheres is necessary for memory expression. Functional interactions between the LEC and mPFC should therefore be tested with an alternative design.

  9. Research on improving image recognition robustness by combining multiple features with associative memory

    Science.gov (United States)

    Guo, Dongwei; Wang, Zhe

    2018-05-01

    Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.

  10. Effects of level of processing but not of task enactment on recognition memory in a case of developmental amnesia.

    Science.gov (United States)

    Gardiner, John M; Brandt, Karen R; Vargha-Khadem, Faraneh; Baddeley, Alan; Mishkin, Mortimer

    2006-09-01

    We report the performance in four recognition memory experiments of Jon, a young adult with early-onset developmental amnesia whose episodic memory is gravely impaired in tests of recall, but seems relatively preserved in tests of recognition, and who has developed normal levels of performance in tests of intelligence and general knowledge. Jon's recognition performance was enhanced by deeper levels of processing in comparing a more meaningful study task with a less meaningful one, but not by task enactment in comparing performance of an action with reading an action phrase. Both of these variables normally enhance episodic remembering, which Jon claimed to experience. But Jon was unable to support that claim by recollecting what it was that he remembered. Taken altogether, the findings strongly imply that Jon's recognition performance entailed little genuine episodic remembering and that the levels-of-processing effects in Jon reflected semantic, not episodic, memory.

  11. Get the gist? The effects of processing depth on false recognition in short-term and long-term memory.

    Science.gov (United States)

    Flegal, Kristin E; Reuter-Lorenz, Patricia A

    2014-07-01

    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.

  12. Advances in the behavioural testing and network imaging of rodent recognition memory

    Science.gov (United States)

    Kinnavane, Lisa; Albasser, Mathieu M.; Aggleton, John P.

    2015-01-01

    Research into object recognition memory has been galvanised by the introduction of spontaneous preference tests for rodents. The standard task, however, contains a number of inherent shortcomings that reduce its power. Particular issues include the problem that individual trials are time consuming, so limiting the total number of trials in any condition. In addition, the spontaneous nature of the behaviour and the variability between test objects add unwanted noise. To combat these issues, the ‘bow-tie maze’ was introduced. Although still based on the spontaneous preference of novel over familiar stimuli, the ability to give multiple trials within a session without handling the rodents, as well as using the same objects as both novel and familiar samples on different trials, overcomes key limitations in the standard task. Giving multiple trials within a single session also creates new opportunities for functional imaging of object recognition memory. A series of studies are described that examine the expression of the immediate-early gene, c-fos. Object recognition memory is associated with increases in perirhinal cortex and area Te2 c-fos activity. When rats explore novel objects the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to the dentate gyrus and CA3, is engaged. In contrast, when familiar objects are explored the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to CA1, takes precedence. The switch to the perforant pathway (novel stimuli) from the temporoammonic pathway (familiar stimuli) may assist the enhanced associative learning promoted by novel stimuli. PMID:25106740

  13. Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats.

    Science.gov (United States)

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Balvardi, Mahboubeh; Rabani, Tahereh

    2012-08-01

    This research study was conducted to evaluate the efficacy of chronic cyanidin-3-glucoside (C3G) on alleviation of learning and memory deficits in diabetic rats as a result of the observed antidiabetic and antioxidant activity of C3G. Male Wistar rats were divided into control, diabetic, C3G-treated-control and -diabetic groups. The C3G was administered i.p. at a dose of 10 mg/kg on alternate days for eight weeks. For evaluation of learning and memory, initial latency (IL) and step-through latency (STL) were determined at the end of study using passive avoidance test. Meanwhile, spatial recognition memory was assessed as alternation in the Y-maze task. Oxidative stress markers in brain tissue were also measured. It was found that the alternation score of the diabetic rats was lower than that of control (p chronic C3G could improve short-term spatial recognition memory disturbance in the Y-maze test but not retention and recall capability in passive avoidance test in STZ-diabetic rats. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Aging, recall and recognition: a study on the sensitivity of the University of Southern California Repeatable Episodic Memory Test (USC-REMT).

    Science.gov (United States)

    Parker, Elizabeth S; Landau, Susan M; Whipple, Stephen C; Schwartz, Barbara L

    2004-05-01

    This study examines the sensitivity of the University of Southern California Repeatable Episodic Memory Test (USC-REMT) to the effects of aging in a sample of 112 men and women from 18 to 93 years old. Two new recognition measures, yes-no and forced-choice, were developed to supplement the original USC-REMT which measured only free-recall. Free-recall, yes-no recognition and forced-choice recognition were sensitive to age effects, with free-recall being the most sensitive. The seven recall and recognition lists can be used interchangeably. The data indicate that the USC-REMT is worthy of consideration when there is a need for a brief, screening tool of various memory functions, particularly when there is interest in memory changes over time and repeated assessments.

  15. Influence of emotional expression on memory recognition bias in schizophrenia as revealed by fMRI.

    Science.gov (United States)

    Sergerie, Karine; Armony, Jorge L; Menear, Matthew; Sutton, Hazel; Lepage, Martin

    2010-07-01

    We recently showed that, in healthy individuals, emotional expression influences memory for faces both in terms of accuracy and, critically, in memory response bias (tendency to classify stimuli as previously seen or not, regardless of whether this was the case). Although schizophrenia has been shown to be associated with deficit in episodic memory and emotional processing, the relation between these processes in this population remains unclear. Here, we used our previously validated paradigm to directly investigate the modulation of emotion on memory recognition. Twenty patients with schizophrenia and matched healthy controls completed functional magnetic resonance imaging (fMRI) study of recognition memory of happy, sad, and neutral faces. Brain activity associated with the response bias was obtained by correlating this measure with the contrast subjective old (ie, hits and false alarms) minus subjective new (misses and correct rejections) for sad and happy expressions. Although patients exhibited an overall lower memory performance than controls, they showed the same effects of emotion on memory, both in terms of accuracy and bias. For sad faces, the similar behavioral pattern between groups was mirrored by a largely overlapping neural network, mostly involved in familiarity-based judgments (eg, parahippocampal gyrus). In contrast, controls activated a much larger set of regions for happy faces, including areas thought to underlie recollection-based memory retrieval (eg, superior frontal gyrus and hippocampus) and in novelty detection (eg, amygdala). This study demonstrates that, despite an overall lower memory accuracy, emotional memory is intact in schizophrenia, although emotion-specific differences in brain activation exist, possibly reflecting different strategies.

  16. The activation of visual face memory and explicit face recognition are delayed in developmental prosopagnosia.

    Science.gov (United States)

    Parketny, Joanna; Towler, John; Eimer, Martin

    2015-08-01

    Individuals with developmental prosopagnosia (DP) are strongly impaired in recognizing faces, but the causes of this deficit are not well understood. We employed event-related brain potentials (ERPs) to study the time-course of neural processes involved in the recognition of previously unfamiliar faces in DPs and in age-matched control participants with normal face recognition abilities. Faces of different individuals were presented sequentially in one of three possible views, and participants had to detect a specific Target Face ("Joe"). EEG was recorded during task performance to Target Faces, Nontarget Faces, or the participants' Own Face (which had to be ignored). The N250 component was measured as a marker of the match between a seen face and a stored representation in visual face memory. The subsequent P600f was measured as an index of attentional processes associated with the conscious awareness and recognition of a particular face. Target Faces elicited reliable N250 and P600f in the DP group, but both of these components emerged later in DPs than in control participants. This shows that the activation of visual face memory for previously unknown learned faces and the subsequent attentional processing and conscious recognition of these faces are delayed in DP. N250 and P600f components to Own Faces did not differ between the two groups, indicating that the processing of long-term familiar faces is less affected in DP. However, P600f components to Own Faces were absent in two participants with DP who failed to recognize their Own Face during the experiment. These results provide new evidence that face recognition deficits in DP may be linked to a delayed activation of visual face memory and explicit identity recognition mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    Directory of Open Access Journals (Sweden)

    James Bigelow

    Full Text Available Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s. However, at longer retention intervals (8-32 s, accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  18. Achilles’ Ear? Inferior Human Short-Term and Recognition Memory in the Auditory Modality

    Science.gov (United States)

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects’ retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1–4 s). However, at longer retention intervals (8–32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices. PMID:24587119

  19. Individual Differences in Holistic Processing Predict the Own-Race Advantage in Recognition Memory

    OpenAIRE

    DeGutis, Joseph; Mercado, Rogelio J.; Wilmer, Jeremy; Rosenblatt, Andrew

    2013-01-01

    Individuals are consistently better at recognizing own-race faces compared to other-race faces (other-race effect, ORE). One popular hypothesis is that this recognition memory ORE is caused by differential own- and other-race holistic processing, the simultaneous integration of part and configural face information into a coherent whole. Holistic processing may create a more rich, detailed memory representation of own-race faces compared to other-race faces. Despite several studies showing tha...

  20. Recognition of dance-like actions: memory for static posture or dynamic movement?

    Science.gov (United States)

    Vicary, Staci A; Robbins, Rachel A; Calvo-Merino, Beatriz; Stevens, Catherine J

    2014-07-01

    Dance-like actions are complex visual stimuli involving multiple changes in body posture across time and space. Visual perception research has demonstrated a difference between the processing of dynamic body movement and the processing of static body posture. Yet, it is unclear whether this processing dissociation continues during the retention of body movement and body form in visual working memory (VWM). When observing a dance-like action, it is likely that static snapshot images of body posture will be retained alongside dynamic images of the complete motion. Therefore, we hypothesized that, as in perception, posture and movement would differ in VWM. Additionally, if body posture and body movement are separable in VWM, as form- and motion-based items, respectively, then differential interference from intervening form and motion tasks should occur during recognition. In two experiments, we examined these hypotheses. In Experiment 1, the recognition of postures and movements was tested in conditions in which the formats of the study and test stimuli matched (movement-study to movement-test, posture-study to posture-test) or mismatched (movement-study to posture-test, posture-study to movement-test). In Experiment 2, the recognition of postures and movements was compared after intervening form and motion tasks. These results indicated that (1) the recognition of body movement based only on posture is possible, but it is significantly poorer than recognition based on the entire movement stimulus, and (2) form-based interference does not impair memory for movements, although motion-based interference does. We concluded that, whereas static posture information is encoded during the observation of dance-like actions, body movement and body posture differ in VWM.

  1. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study.

    Science.gov (United States)

    Cheatham, Carol L; Sheppard, Kelly Will

    2015-11-03

    The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA) with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70-30 oddball paradigm in a high-density 128-lead event-related potential (ERP) paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal) for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations.

  2. Evaluating Recall and Recognition Memory Using the Montreal Cognitive Assessment: Applicability for Alzheimer's and Huntington's Diseases.

    Science.gov (United States)

    Van Liew, Charles; Santoro, Maya S; Goldstein, Jody; Gluhm, Shea; Gilbert, Paul E; Corey-Bloom, Jody

    2016-12-01

    We sought to investigate whether the Montreal Cognitive Assessment (MoCA) could provide a brief assessment of recall and recognition using Huntington disease (HD) and Alzheimer disease (AD) as disorders characterized by different memory deficits. This study included 80 participants with HD, 64 participants with AD, and 183 community-dwelling control participants. Random-effects hierarchical logistic regressions were performed to assess the relative performance of the normal control (NC), participants with HD, and participants with AD on verbal free recall, cued recall, and multiple-choice recognition on the MoCA. The NC participants performed significantly better than participants with AD at all the 3 levels of assessment. No difference existed between participants with HD and NC for cued recall, but NC participants performed significantly better than participants with HD on free recall and recognition. The participants with HD performed significantly better than participants with AD at all the 3 levels of assessment. The MoCA appears to be a valuable, brief cognitive assessment capable of identifying specific memory deficits consistent with known differences in memory profiles. © The Author(s) 2016.

  3. Changing the criterion for memory conformity in free recall and recognition.

    Science.gov (United States)

    Wright, Daniel B; Gabbert, Fiona; Memon, Amina; London, Kamala

    2008-02-01

    People's responses during memory studies are affected by what other people say. This memory conformity effect has been shown in both free recall and recognition. Here we examine whether accurate, inaccurate, and suggested answers are affected similarly when the response criterion is varied. In the first study, participants saw four pictures of detailed scenes and then discussed the content of these scenes with another participant who saw the same scenes, but with a couple of details changed. Participants were either told to recall everything they could and not to worry about making mistakes (lenient), or only to recall items if they were sure that they were accurate (strict). The strict instructions reduced the amount of inaccurate information reported that the other person suggested, but also reduced the number of accurate details recalled. In the second study, participants were shown a large set of faces and then their memory recognition was tested with a confederate on these and fillers. Here also, the criterion manipulation shifted both accurate and inaccurate responses, and those suggested by the confederate. The results are largely consistent with a shift in response criterion affecting accurate, inaccurate, and suggested information. In addition we varied the level of secrecy in the participants' responses. The effects of secrecy were complex and depended on the level of response criterion. Implications for interviewing eyewitnesses and line-ups are discussed.

  4. Yes/No Versus Forced-Choice Recognition Memory in Mild Cognitive Impairment and Alzheimer’s Disease: Patterns of Impairment and Associations with Dementia Severity

    Science.gov (United States)

    Clark, Lindsay R.; Stricker, Nikki H.; Libon, David J.; Delano-Wood, Lisa; Salmon, David P.; Delis, Dean C.; Bondi, Mark W.

    2012-01-01

    Memory tests are sensitive to early identification of Alzheimer’s disease (AD) but less useful as the disease advances. However, assessing particular types of recognition memory may better characterize dementia severity in later stages of AD. We sought to examine patterns of recognition memory deficits in individuals with AD and mild cognitive impairment (MCI). Memory performance and global cognition data were collected from participants with AD (n=37), MCI (n=37), and cognitively intact older adults (normal controls, NC; n=35). One-way analyses of variance (ANOVAs) examined differences between groups on yes/no and forced-choice recognition measures. Individuals with amnestic MCI performed worse than NC and nonamnestic MCI participants on yes/no recognition, but were comparable on forced-choice recognition. AD patients were more impaired across yes/no and forced-choice recognition tasks. Individuals with mild AD (≥120 Dementia Rating Scale, DRS) performed better than those with moderate-to-severe AD (recognition, but were equally impaired on yes/no recognition. There were differences in the relationships between learning, recall, and recognition performance across groups. Although yes/no recognition testing may be sensitive to MCI, forced-choice procedures may provide utility in assessing severity of anterograde amnesia in later stages of AD. Implications for assessment of insufficient effort and malingering are also discussed. PMID:23030301

  5. Dissociation of Recognition and Recency Memory Judgments After Anterior Thalamic Nuclei Lesions in Rats

    Science.gov (United States)

    Dumont, Julie R.; Aggleton, John P.

    2013-01-01

    The anterior thalamic nuclei form part of a network for episodic memory in humans. The importance of these nuclei for recognition and recency judgments remains, however, unclear. Rats with anterior thalamic nuclei lesions and their controls were tested on object recognition, along with two types of recency judgment. The spontaneous discrimination of a novel object or a novel odor from a familiar counterpart (recognition memory) was not affected by anterior thalamic lesions when tested after retention delays of 1 and 60 min. To measure recency memory, rats were shown two familiar objects, one of which had been explored more recently. In one condition, rats were presented with two lists (List A, List B) of objects separated by a delay, thereby creating two distinct blocks of stimuli. After an additional delay, rats were presented with pairs of objects, one from List A and one from List B (between-block recency). No lesion-induced deficit was apparent for recency discriminations between objects from different lists, despite using three different levels of task difficulty. In contrast, rats with anterior thalamic lesions were significantly impaired when presented with a continuous list of objects and then tested on their ability to distinguish between those items early and late in the same list (within-block recency). The contrasting effects on recognition and recency support the notion that interlinked hippocampal–anterior thalamic interconnections support aspects of both spatial and nonspatial learning, although the role of the anterior thalamic nuclei may be restricted to a subclass of recency judgments (within-block). PMID:23731076

  6. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    OpenAIRE

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague-Dawley rats were exposed to two identical objects in one context for either 3 ...

  7. A new concept of vertically integrated pattern recognition associative memory

    International Nuclear Information System (INIS)

    Liu, Ted; Hoff, Jim; Deptuch, Grzegorz; Yarema, Ray

    2011-01-01

    Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing fast pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Scaling of current technologies is unlikely to satisfy the scientific needs of the future, and investments in transformational new technologies need to be made. In this paper, we will discuss a new concept of using the emerging 3D vertical integration technology to significantly advance the state-of-the-art for fast pattern recognition within and outside HEP. A generic R and D proposal based on this new concept, with a few institutions involved, has recently been submitted to DOE with the goal to design and perform the ASIC engineering necessary to realize a prototype device. The progress of this R and D project will be reported in the future. Here we will only focus on the concept of this new approach.

  8. Three regularities of recognition memory: the role of bias.

    Science.gov (United States)

    Hilford, Andrew; Maloney, Laurence T; Glanzer, Murray; Kim, Kisok

    2015-12-01

    A basic assumption of Signal Detection Theory is that decisions are made on the basis of likelihood ratios. In a preceding paper, Glanzer, Hilford, and Maloney (Psychonomic Bulletin & Review, 16, 431-455, 2009) showed that the likelihood ratio assumption implies that three regularities will occur in recognition memory: (1) the Mirror Effect, (2) the Variance Effect, (3) the normalized Receiver Operating Characteristic (z-ROC) Length Effect. The paper offered formal proofs and computational demonstrations that decisions based on likelihood ratios produce the three regularities. A survey of data based on group ROCs from 36 studies validated the likelihood ratio assumption by showing that its three implied regularities are ubiquitous. The study noted, however, that bias, another basic factor in Signal Detection Theory, can obscure the Mirror Effect. In this paper we examine how bias affects the regularities at the theoretical level. The theoretical analysis shows: (1) how bias obscures the Mirror Effect, not the other two regularities, and (2) four ways to counter that obscuring. We then report the results of five experiments that support the theoretical analysis. The analyses and the experimental results also demonstrate: (1) that the three regularities govern individual, as well as group, performance, (2) alternative explanations of the regularities are ruled out, and (3) that Signal Detection Theory, correctly applied, gives a simple and unified explanation of recognition memory data.

  9. Modulation of recognition memory performance by light requires both melanopsin and classical photoreceptors

    Science.gov (United States)

    Tam, Shu K. E.; Hasan, Sibah; Hughes, Steven; Hankins, Mark W.; Foster, Russell G.; Bannerman, David M.

    2016-01-01

    Acute light exposure exerts various effects on physiology and behaviour. Although the effects of light on brain network activity in humans are well demonstrated, the effects of light on cognitive performance are inconclusive, with the size, as well as direction, of the effect depending on the nature of the task. Similarly, in nocturnal rodents, bright light can either facilitate or disrupt performance depending on the type of task employed. Crucially, it is unclear whether the effects of light on behavioural performance are mediated via the classical image-forming rods and cones or the melanopsin-expressing photosensitive retinal ganglion cells. Here, we investigate the modulatory effects of light on memory performance in mice using the spontaneous object recognition task. Importantly, we examine which photoreceptors are required to mediate the effects of light on memory performance. By using a cross-over design, we show that object recognition memory is disrupted when the test phase is conducted under a bright light (350 lux), regardless of the light level in the sample phase (10 or 350 lux), demonstrating that exposure to a bright light at the time of test, rather than at the time of encoding, impairs performance. Strikingly, the modulatory effect of light on memory performance is completely abolished in both melanopsin-deficient and rodless–coneless mice. Our findings provide direct evidence that melanopsin-driven and rod/cone-driven photoresponses are integrated in order to mediate the effect of light on memory performance. PMID:28003454

  10. Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory.

    Science.gov (United States)

    Eacret, Darrell; Grafe, Laura A; Dobkin, Jane; Gotter, Anthony L; Rengerb, John J; Winrow, Christopher J; Bhatnagar, Seema

    2018-06-11

    Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors. Specifically, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to stimulate orexins prior to each of five consecutive days of social defeat stress in adult male rats. Additionally, we determined the role of the orexin 2 receptor in these behaviors by using a selective orexin 2 receptor antagonist (MK-1064) administered prior to each social defeat. Following the 5 day social defeat conditioning period, rats were evaluated in social interaction and novel object recognition paradigms to assess anxiety-like behavior and recognition memory, respectively. Activation of orexin neurons by DREADDs prior to each social defeat decreased the average latency to become defeated across 5 days, indicative of a passive coping strategy that we have previously linked to a stress vulnerable phenotype. Moreover, stimulation of orexin signaling during defeat conditioning decreased subsequent social interaction and performance in the novel object recognition test indicating increased subsequent anxiety-like behavior and reduced working memory. Blocking the orexin 2 receptor during repeated defeat did not alter these effects. Together, our results suggest that orexin neuron activation produces a passive coping phenotype during social defeat leading to subsequent anxiety-like behaviors and memory deficits. Copyright © 2018. Published by Elsevier B.V.

  11. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2015-10-01

    Full Text Available A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  12. A new pattern associative memory model for image recognition based on Hebb rules and dot product

    Science.gov (United States)

    Gao, Mingyue; Deng, Limiao; Wang, Yanjiang

    2018-04-01

    A great number of associative memory models have been proposed to realize information storage and retrieval inspired by human brain in the last few years. However, there is still much room for improvement for those models. In this paper, we extend a binary pattern associative memory model to accomplish real-world image recognition. The learning process is based on the fundamental Hebb rules and the retrieval is implemented by a normalized dot product operation. Our proposed model can not only fulfill rapid memory storage and retrieval for visual information but also have the ability on incremental learning without destroying the previous learned information. Experimental results demonstrate that our model outperforms the existing Self-Organizing Incremental Neural Network (SOINN) and Back Propagation Neuron Network (BPNN) on recognition accuracy and time efficiency.

  13. Effects of oxytocin on behavioral and ERP measures of recognition memory for own-race and other-race faces in women and men.

    Science.gov (United States)

    Herzmann, Grit; Bird, Christopher W; Freeman, Megan; Curran, Tim

    2013-10-01

    Oxytocin has been shown to affect human social information processing including recognition memory for faces. Here we investigated the neural processes underlying the effect of oxytocin on memorizing own-race and other-race faces in men and women. In a placebo-controlled, double-blind, between-subject study, participants received either oxytocin or placebo before studying own-race and other-race faces. We recorded event-related potentials (ERPs) during both the study and recognition phase to investigate neural correlates of oxytocin's effect on memory encoding, memory retrieval, and perception. Oxytocin increased the accuracy of familiarity judgments in the recognition test. Neural correlates for this effect were found in ERPs related to memory encoding and retrieval but not perception. In contrast to its facilitating effects on familiarity, oxytocin impaired recollection judgments, but in men only. Oxytocin did not differentially affect own-race and other-race faces. This study shows that oxytocin influences memory, but not perceptual processes, in a face recognition task and is the first to reveal sex differences in the effect of oxytocin on face memory. Contrary to recent findings in oxytocin and moral decision making, oxytocin did not preferentially improve memory for own-race faces. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mental Subtraction in High- and Lower Skilled Arithmetic Problem Solvers: Verbal Report versus Operand-Recognition Paradigms

    Science.gov (United States)

    Thevenot, Catherine; Castel, Caroline; Fanget, Muriel; Fayol, Michel

    2010-01-01

    The authors used the operand-recognition paradigm (C. Thevenot, M. Fanget, & M. Fayol, 2007) in order to study the strategies used by adults to solve subtraction problems. This paradigm capitalizes on the fact that algorithmic procedures degrade the memory traces of the operands. Therefore, greater difficulty in recognizing them is expected…

  15. Perception and recognition memory of words and werds: two-way mirror effects.

    Science.gov (United States)

    Becker, D Vaughn; Goldinger, Stephen D; Stone, Gregory O

    2006-10-01

    We examined associative priming of words (e.g., TOAD) and pseudohomophones of those words (e.g., TODE) in lexical decision. In addition to word frequency effects, reliable base-word frequency effects were observed for pseudohomophones: Those based on high-frequency words elicited faster and more accurate correct rejections. Associative priming had disparate effects on high- and low-frequency items. Whereas priming improved performance to high-frequency pseudohomophones, it impaired performance to low-frequency pseudohomophones. The results suggested a resonance process, wherein phonologic identity and semantic priming combine to undermine the veridical perception of infrequent items. We tested this hypothesis in another experiment by administering a surprise recognition memory test after lexical decision. When asked to identify words that were spelled correctly during lexical decision, the participants often misremembered pseudohomophones as correctly spelled items. Patterns of false memory, however, were jointly affected by base-word frequencies and their original responses during lexical decision. Taken together, the results are consistent with resonance accounts of word recognition, wherein bottom-up and top-down information sources coalesce into correct, and sometimes illusory, perception. The results are also consistent with a recent lexical decision model, REM-LD, that emphasizes memory retrieval and top-down matching processes in lexical decision.

  16. Neural Correlates of Individual Differences in Infant Visual Attention and Recognition Memory

    Science.gov (United States)

    Reynolds, Greg D.; Guy, Maggie W.; Zhang, Dantong

    2011-01-01

    Past studies have identified individual differences in infant visual attention based upon peak look duration during initial exposure to a stimulus. Colombo and colleagues found that infants that demonstrate brief visual fixations (i.e., short lookers) during familiarization are more likely to demonstrate evidence of recognition memory during…

  17. The effects of stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks.

    Science.gov (United States)

    Wilson, F A; Rolls, E T

    1993-01-01

    The function of the amygdala in behavioural responses to novel stimuli and its possible function in recognition memory were investigated by recording the responses of 659 amygdaloid neurons in monkeys performing recognition memory and visual discrimination tasks. The aim was to determine the contribution of the amygdala in the encoding of familiarity and therefore its role in supporting memory-related neuronal mechanisms in the basal forebrain. The responses of three groups of neurons reflected different forms of memory. One group (n = 10) responded maximally to novel stimuli and significantly less so to the same stimuli when they were familiar. The calculated memory spans of these neurons were in the range of 2-10 intervening trials, and this short-term retention of information may reflect the operation of a neural mechanism encoding memory for the recency of stimulus presentation. Two other groups responded to the sight of particular categories of familiar stimuli: to foods (n = 6) or to faces (n = 10). The responses of some of these stimulus-selective neurons declined with repeated presentations of foods (3/4 tests) and faces (2/6 tests). The activity of these latter two groups of neurons may be involved in behavioural responses to familiar visual stimuli, particularly when such stimuli have affective or motivational significance. We conclude that the neurophysiological data provide evidence of amygdaloid mechanisms for the recognition of recently seen visual stimuli. However, these amygdaloid mechanisms do not appear to be sufficient to support the performance of long-term recognition memory tasks without additional and complementary functions carried out by other ventromedial temporal, prefrontal and diencephalic structures which also project to the basal forebrain.

  18. Effects of acute psychosocial stress on neural activity to emotional and neutral faces in a face recognition memory paradigm.

    Science.gov (United States)

    Li, Shijia; Weerda, Riklef; Milde, Christopher; Wolf, Oliver T; Thiel, Christiane M

    2014-12-01

    Previous studies have shown that acute psychosocial stress impairs recognition of declarative memory and that emotional material is especially sensitive to this effect. Animal studies suggest a central role of the amygdala which modulates memory processes in hippocampus, prefrontal cortex and other brain areas. We used functional magnetic resonance imaging (fMRI) to investigate neural correlates of stress-induced modulation of emotional recognition memory in humans. Twenty-seven healthy, right-handed, non-smoker male volunteers performed an emotional face recognition task. During encoding, participants were presented with 50 fearful and 50 neutral faces. One hour later, they underwent either a stress (Trier Social Stress Test) or a control procedure outside the scanner which was followed immediately by the recognition session inside the scanner, where participants had to discriminate between 100 old and 50 new faces. Stress increased salivary cortisol, blood pressure and pulse, and decreased the mood of participants but did not impact recognition memory. BOLD data during recognition revealed a stress condition by emotion interaction in the left inferior frontal gyrus and right hippocampus which was due to a stress-induced increase of neural activity to fearful and a decrease to neutral faces. Functional connectivity analyses revealed a stress-induced increase in coupling between the right amygdala and the right fusiform gyrus, when processing fearful as compared to neutral faces. Our results provide evidence that acute psychosocial stress affects medial temporal and frontal brain areas differentially for neutral and emotional items, with a stress-induced privileged processing of emotional stimuli.

  19. Auditory recognition memory is inferior to visual recognition memory.

    Science.gov (United States)

    Cohen, Michael A; Horowitz, Todd S; Wolfe, Jeremy M

    2009-04-07

    Visual memory for scenes is surprisingly robust. We wished to examine whether an analogous ability exists in the auditory domain. Participants listened to a variety of sound clips and were tested on their ability to distinguish old from new clips. Stimuli ranged from complex auditory scenes (e.g., talking in a pool hall) to isolated auditory objects (e.g., a dog barking) to music. In some conditions, additional information was provided to help participants with encoding. In every situation, however, auditory memory proved to be systematically inferior to visual memory. This suggests that there exists either a fundamental difference between auditory and visual stimuli, or, more plausibly, an asymmetry between auditory and visual processing.

  20. Stress enhances reconsolidation of declarative memory.

    Science.gov (United States)

    Bos, Marieke G N; Schuijer, Jantien; Lodestijn, Fleur; Beckers, Tom; Kindt, Merel

    2014-08-01

    Retrieval of negative emotional memories is often accompanied by the experience of stress. Upon retrieval, a memory trace can temporarily return into a labile state, where it is vulnerable to change. An unresolved question is whether post-retrieval stress may affect the strength of declarative memory in humans by modulating the reconsolidation process. Here, we tested in two experiments whether post-reactivation stress may affect the strength of declarative memory in humans. In both experiments, participants were instructed to learn neutral, positive and negative words. Approximately 24h later, participants received a reminder of the word list followed by exposure to the social evaluative cold pressor task (reactivation/stress group, nexp1=20; nexp2=18) or control task (reactivation/no-stress group, nexp1=23; nexp2=18). An additional control group was solely exposed to the stress task, without memory reactivation (no-reactivation/stress group, nexp1=23; nexp2=21). The next day, memory performance was tested using a free recall and a recognition task. In the first experiment we showed that participants in the reactivation/stress group recalled more words than participants in the reactivation/no-stress and no-reactivation/stress group, irrespective of valence of the word stimuli. Furthermore, participants in the reactivation/stress group made more false recognition errors. In the second experiment we replicated our observations on the free recall task for a new set of word stimuli, but we did not find any differences in false recognition. The current findings indicate that post-reactivation stress can improve declarative memory performance by modulating the process of reconsolidation. This finding contributes to our understanding why some memories are more persistent than others. Copyright © 2014. Published by Elsevier Ltd.

  1. Emotion strengthens high-priority memory traces but weakens low-priority memory traces.

    Science.gov (United States)

    Sakaki, Michiko; Fryer, Kellie; Mather, Mara

    2014-02-01

    When people encounter emotional events, their memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotionally arousing image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by both negative and positive pictures showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation.

  2. Advances in the behavioural testing and network imaging of rodent recognition memory.

    Science.gov (United States)

    Kinnavane, Lisa; Albasser, Mathieu M; Aggleton, John P

    2015-05-15

    Research into object recognition memory has been galvanised by the introduction of spontaneous preference tests for rodents. The standard task, however, contains a number of inherent shortcomings that reduce its power. Particular issues include the problem that individual trials are time consuming, so limiting the total number of trials in any condition. In addition, the spontaneous nature of the behaviour and the variability between test objects add unwanted noise. To combat these issues, the 'bow-tie maze' was introduced. Although still based on the spontaneous preference of novel over familiar stimuli, the ability to give multiple trials within a session without handling the rodents, as well as using the same objects as both novel and familiar samples on different trials, overcomes key limitations in the standard task. Giving multiple trials within a single session also creates new opportunities for functional imaging of object recognition memory. A series of studies are described that examine the expression of the immediate-early gene, c-fos. Object recognition memory is associated with increases in perirhinal cortex and area Te2 c-fos activity. When rats explore novel objects the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to the dentate gyrus and CA3, is engaged. In contrast, when familiar objects are explored the pathway from the perirhinal cortex to lateral entorhinal cortex, and then to CA1, takes precedence. The switch to the perforant pathway (novel stimuli) from the temporoammonic pathway (familiar stimuli) may assist the enhanced associative learning promoted by novel stimuli. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report.

    Science.gov (United States)

    Poth, Christian H; Schneider, Werner X

    2016-01-01

    Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.

  4. Episodic Short-Term Recognition Requires Encoding into Visual Working Memory: Evidence from Probe Recognition after Letter Report

    Directory of Open Access Journals (Sweden)

    Christian H. Poth

    2016-09-01

    Full Text Available Human vision is organized in discrete processing episodes (e.g. eye fixations or task-steps. Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM, which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of ten letters and reported as many as possible after a retention interval (whole report. Next, participants viewed a probe letter and indicated whether it had been one of the ten letters (probe recognition. In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters compared with non-encoded letters (non-reported letters. Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2 participants reported only one of ten letters (partial report and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.

  5. Intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Ogawa, Taisuke; Takada, Shunsuke; Nakamura, Masatoshi; Fujii, Hiroaki; Ando, Masaki

    2014-11-01

    The role of perforant pathway-dentate granule cell synapses in cognitive behavior was examined focusing on synaptic Zn(2+) signaling in the dentate gyrus. Object recognition memory was transiently impaired when extracellular Zn(2+) levels were decreased by injection of clioquinol and N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylendediamine. To pursue the effect of the loss and/or blockade of Zn(2+) signaling in dentate granule cells, ZnAF-2DA (100 pmol, 0.1 mM/1 µl), an intracellular Zn(2+) chelator, was locally injected into the dentate molecular layer of rats. ZnAF-2DA injection, which was estimated to chelate intracellular Zn(2+) signaling only in the dentate gyrus, affected object recognition memory 1 h after training without affecting intracellular Ca(2+) signaling in the dentate molecular layer. In vivo dentate gyrus long-term potentiation (LTP) was affected under the local perfusion of the recording region (the dentate granule cell layer) with 0.1 mM ZnAF-2DA, but not with 1-10 mM CaEDTA, an extracellular Zn(2+) chelator, suggesting that the blockade of intracellular Zn(2+) signaling in dentate granule cells affects dentate gyrus LTP. The present study demonstrates that intracellular Zn(2+) signaling in the dentate gyrus is required for object recognition memory, probably via dentate gyrus LTP expression. Copyright © 2014 Wiley Periodicals, Inc.

  6. Working Memory Load Affects Processing Time in Spoken Word Recognition: Evidence from Eye-Movements

    Science.gov (United States)

    Hadar, Britt; Skrzypek, Joshua E.; Wingfield, Arthur; Ben-David, Boaz M.

    2016-01-01

    In daily life, speech perception is usually accompanied by other tasks that tap into working memory capacity. However, the role of working memory on speech processing is not clear. The goal of this study was to examine how working memory load affects the timeline for spoken word recognition in ideal listening conditions. We used the “visual world” eye-tracking paradigm. The task consisted of spoken instructions referring to one of four objects depicted on a computer monitor (e.g., “point at the candle”). Half of the trials presented a phonological competitor to the target word that either overlapped in the initial syllable (onset) or at the last syllable (offset). Eye movements captured listeners' ability to differentiate the target noun from its depicted phonological competitor (e.g., candy or sandal). We manipulated working memory load by using a digit pre-load task, where participants had to retain either one (low-load) or four (high-load) spoken digits for the duration of a spoken word recognition trial. The data show that the high-load condition delayed real-time target discrimination. Specifically, a four-digit load was sufficient to delay the point of discrimination between the spoken target word and its phonological competitor. Our results emphasize the important role working memory plays in speech perception, even when performed by young adults in ideal listening conditions. PMID:27242424

  7. Misremembering what you see or hear: Dissociable effects of modality on short- and long-term false recognition.

    Science.gov (United States)

    Olszewska, Justyna M; Reuter-Lorenz, Patricia A; Munier, Emily; Bendler, Sara A

    2015-09-01

    False working memories readily emerge using a visual item-recognition variant of the converging associates task. Two experiments, manipulating study and test modality, extended prior working memory results by demonstrating a reliable false recognition effect (more false alarms to associatively related lures than to unrelated lures) within seconds of encoding in either the visual or auditory modality. However, false memories were nearly twice as frequent when study lists were seen than when they were heard, regardless of test modality, although study-test modality mismatch was generally disadvantageous (consistent with encoding specificity). A final experiment that varied study-test modality using a hybrid short- and long-term memory test (Flegal, Atkins & Reuter-Lorenz, 2010) replicated the auditory advantage in the short term but revealed a reversal in the long term: The false memory effect was greater in the auditory study-test condition than in the visual study-test condition. Thus, the same encoding conditions gave rise to an opposite modality advantage depending on whether recognition was tested under short-term or long-term memory conditions. Although demonstrating continuity in associative processing across delay, the results indicate that delay condition affects the availability of modality-dependent features of the memory trace and, thus, distinctiveness, leading to dissociable patterns of short- and long-term memory performance. (c) 2015 APA, all rights reserved).

  8. Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.

    2015-02-01

    An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking, in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.

  9. Familiar Person Recognition: Is Autonoetic Consciousness More Likely to Accompany Face Recognition Than Voice Recognition?

    Science.gov (United States)

    Barsics, Catherine; Brédart, Serge

    2010-11-01

    Autonoetic consciousness is a fundamental property of human memory, enabling us to experience mental time travel, to recollect past events with a feeling of self-involvement, and to project ourselves in the future. Autonoetic consciousness is a characteristic of episodic memory. By contrast, awareness of the past associated with a mere feeling of familiarity or knowing relies on noetic consciousness, depending on semantic memory integrity. Present research was aimed at evaluating whether conscious recollection of episodic memories is more likely to occur following the recognition of a familiar face than following the recognition of a familiar voice. Recall of semantic information (biographical information) was also assessed. Previous studies that investigated the recall of biographical information following person recognition used faces and voices of famous people as stimuli. In this study, the participants were presented with personally familiar people's voices and faces, thus avoiding the presence of identity cues in the spoken extracts and allowing a stricter control of frequency exposure with both types of stimuli (voices and faces). In the present study, the rate of retrieved episodic memories, associated with autonoetic awareness, was significantly higher from familiar faces than familiar voices even though the level of overall recognition was similar for both these stimuli domains. The same pattern was observed regarding semantic information retrieval. These results and their implications for current Interactive Activation and Competition person recognition models are discussed.

  10. genetic overexpression of NR2B subunit enhances social recognition memory for different strains and species.

    Science.gov (United States)

    Jacobs, Stephanie A; Tsien, Joe Z

    2012-01-01

    The ability to learn and remember conspecifics is essential for the establishment and maintenance of social groups. Many animals, including humans, primates and rodents, depend on stable social relationships for survival. Social learning and social recognition have become emerging areas of interest for neuroscientists but are still not well understood. It has been established that several hormones play a role in the modulation of social recognition including estrogen, oxytocin and arginine vasopression. Relatively few studies have investigated how social recognition might be improved or enhanced. In this study, we investigate the role of the NMDA receptor in social recognition memory, specifically the consequences of altering the ratio of the NR2B:NR2A subunits in the forebrain regions in social behavior. We produced transgenic mice in which the NR2B subunit of the NMDA receptor was overexpressed postnatally in the excitatory neurons of the forebrain areas including the cortex, amygdala and hippocampus. We investigated the ability of both our transgenic animals and their wild-type littermate to learn and remember juvenile conspecifics using both 1-hr and 24-hr memory tests. Our experiments show that the wild-type animals and NR2B transgenic mice preformed similarly in the 1-hr test. However, transgenic mice showed better performances in 24-hr tests of recognizing animals of a different strain or animals of a different species. We conclude that NR2B overexpression in the forebrain enhances social recognition memory for different strains and animal species.

  11. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    Science.gov (United States)

    Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552

  12. The role of decision criterion in the Deese-Roediger-McDermott (DRM) false recognition memory: False memory falls and rises as a function of restriction on criterion setting.

    Science.gov (United States)

    Jou, Jerwen; Escamilla, Eric E; Arredondo, Mario L; Pena, Liann; Zuniga, Richard; Perez, Martin; Garcia, Clarissa

    2018-02-01

    How much of the Deese-Roediger-McDermott (DRM) false memory is attributable to decision criterion is so far a controversial issue. Previous studies typically used explicit warnings against accepting the critical lure to investigate this issue. The assumption is that if the false memory results from using a liberally biased criterion, it should be greatly reduced or eliminated by an explicit warning against accepting the critical lure. Results showed that warning was generally ineffective. We asked the question of whether subjects can substantially reduce false recognition without being warned when the test forces them to make a distinction between true and false memories. Using a two-alternative forced choice in which criterion plays a relatively smaller role, we showed that subjects could indeed greatly reduce the rate of false recognition. However, when the forced-choice restriction was removed from the two-item choice test, the rate of false recognition rebounded to that of the hit for studied list words, indicating the role of criterion in false recognition.

  13. An exemplar-familiarity model predicts short-term and long-term probe recognition across diverse forms of memory search.

    Science.gov (United States)

    Nosofsky, Robert M; Cox, Gregory E; Cao, Rui; Shiffrin, Richard M

    2014-11-01

    Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across diverse conditions that manipulated relations between targets and foils across trials. Subjects saw lists of from 1 to 16 items followed by a single item recognition probe. In a varied-mapping condition, targets and foils could switch roles across trials; in a consistent-mapping condition, targets and foils never switched roles; and in an all-new condition, on each trial a completely new set of items formed the memory set. In the varied-mapping and all-new conditions, mean correct response times (RTs) and error proportions were curvilinear increasing functions of memory set size, with the RT results closely resembling ones from hybrid visual-memory search experiments reported by Wolfe (2012). In the consistent-mapping condition, new-probe RTs were invariant with set size, whereas old-probe RTs increased slightly with increasing study-test lag. With appropriate choice of psychologically interpretable free parameters, the model accounted well for the complete set of results. The work provides support for the hypothesis that a common set of processes involving exemplar-based familiarity may govern long-term and short-term probe recognition across wide varieties of memory- search conditions. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Distinct anatomical correlates of discriminability and criterion setting in verbal recognition memory revealed by lesion-symptom mapping

    NARCIS (Netherlands)

    Biesbroek, J Matthijs; van Zandvoort, Martine J E; Kappelle, L Jaap; Schoo, Linda; Kuijf, Hugo J; Velthuis, Birgitta K; Biessels, Geert Jan; Postma, Albert

    2014-01-01

    Recognition memory, that is, the ability to judge whether an item has been previously encountered in a particular context, depends on two factors: discriminability and criterion setting. Discriminability draws on memory processes while criterion setting (i.e., the application of a threshold

  15. Distinct anatomical correlates of discriminability and criterion setting in verbal recognition memory revealed by lesion-symptom mapping

    NARCIS (Netherlands)

    Biesbroek, J. Matthijs; van Zandvoort, Martine J E; Kappelle, L. Jaap; Schoo, Linda; Kuijf, Hugo J.; Velthuis, BK; Biessels, Geert Jan; Postma, Albert

    2015-01-01

    Recognition memory, that is, the ability to judge whether an item has been previously encountered in a particular context, depends on two factors: discriminability and criterion setting. Discriminability draws on memory processes while criterion setting (i.e., the application of a threshold

  16. False Memory for Orthographically versus Semantically Similar Words in Adolescents with Dyslexia: A Fuzzy-Trace Theory Perspective

    Science.gov (United States)

    Obidzinski, Michal; Nieznanski, Marek

    2017-01-01

    The presented research was conducted in order to investigate the connections between developmental dyslexia and the functioning of verbatim and gist memory traces--assumed in the fuzzy-trace theory. The participants were 71 high school students (33 with dyslexia and 38 without learning difficulties). The modified procedure and multinomial model of…

  17. Evaluating the developmental trajectory of the episodic buffer component of working memory and its relation to word recognition in children.

    Science.gov (United States)

    Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En

    2015-05-01

    The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. A benefit of context reinstatement to recognition memory in aging: the role of familiarity processes.

    Science.gov (United States)

    Ward, Emma V; Maylor, Elizabeth A; Poirier, Marie; Korko, Malgorzata; Ruud, Jens C M

    2017-11-01

    Reinstatement of encoding context facilitates memory for targets in young and older individuals (e.g., a word studied on a particular background scene is more likely to be remembered later if it is presented on the same rather than a different scene or no scene), yet older adults are typically inferior at recalling and recognizing target-context pairings. This study examined the mechanisms of the context effect in normal aging. Age differences in word recognition by context condition (original, switched, none, new), and the ability to explicitly remember target-context pairings were investigated using word-scene pairs (Experiment 1) and word-word pairs (Experiment 2). Both age groups benefited from context reinstatement in item recognition, although older adults were significantly worse than young adults at identifying original pairings and at discriminating between original and switched pairings. In Experiment 3, participants were given a three-alternative forced-choice recognition task that allowed older individuals to draw upon intact familiarity processes in selecting original pairings. Performance was age equivalent. Findings suggest that heightened familiarity associated with context reinstatement is useful for boosting recognition memory in aging.

  19. The Effects of Environmental Context on Recognition Memory and Claims of Remembering

    Science.gov (United States)

    Hockley, William E.

    2008-01-01

    Recognition memory for words was tested in same or different contexts using the remember/know response procedure. Context was manipulated by presenting words in different screen colors and locations and by presenting words against real-world photographs. Overall hit and false-alarm rates were higher for tests presented in an old context compared…

  20. Word recognition memory in adults with attention-deficit/hyperactivity disorder as reflected by event-related potentials

    Directory of Open Access Journals (Sweden)

    Vanessa Prox-Vagedes

    2011-03-01

    Full Text Available Objective: Attention-deficit/hyperactivity disorder (ADHD is increasingly diagnosed in adults. In this study we address the question whether there are impairments in recognition memory. Methods: In the present study 13 adults diagnosed with ADHD according to DSM-IV and 13 healthy controls were examined with respect to event-related potentials (ERPs in a visual continuous word recognition paradigm to gain information about recognition memory effects in these patients. Results: The amplitude of one attention-related ERP-component, the N1, was significantly increased for the ADHD adults compared with the healthy controls in the occipital electrodes. The ERPs for the second presentation were significantly more positive than the ERPs for the first presentation. This effect did not significantly differ between groups. Conclusion: Neuronal activity related to an early attentional mechanism appears to be enhanced in ADHD patients. Concerning the early or the late part of the old/new effect ADHD patients show no difference which suggests that there are no differences with respect to recollection and familiarity based recognition processes.

  1. When Does a Good Working Memory Counteract Proactive Interference? Surprising Evidence from a Probe Recognition Task

    Science.gov (United States)

    Cowan, Nelson; Saults, J. Scott

    2013-01-01

    It is often proposed that individuals with high working memory span overcome proactive interference (PI) from previous trials, saving working memory for task-relevant items. We examined this hypothesis in word-list probe recognition. We found no difference in PI related to span. Instead, ex-Gaussian analysis of reaction time showed speed…

  2. Serotonin 2a Receptor and serotonin 1a receptor interact within the medial prefrontal cortex during recognition memory in mice

    Directory of Open Access Journals (Sweden)

    Juan Facundo Morici

    2015-12-01

    Full Text Available Episodic memory, can be defined as the memory for unique events. The serotonergic system one of the main neuromodulatory systems in the brain appears to play a role in it. The serotonin 2a receptor (5-HT2aR one of the principal post-synaptic receptors for 5-HT in the brain, is involved in neuropsychiatric and neurological disorders associated with memory deficits. Recognition memory can be defined as the ability to recognize if a particular event or item was previously encountered and is thus considered, under certain conditions, a form of episodic memory. As human data suggest that a constitutively decrease of 5-HT2A signaling might affect episodic memory performance we decided to compare the performance of mice with disrupted 5-HT2aR signaling (htr2a -/- with wild type (htr2a+/+ littermates in different recognition memory and working memory tasks that differed in the level of proactive interference. We found that ablation of 5-HT2aR signaling throughout development produces a deficit in tasks that cannot be solved by single item strategy suggesting that 5-HT2aR signaling is involved in interference resolution. We also found that in the absence of 5-HT2aR signaling serotonin has a deleterious effect on recognition memory retrieval through the activation of 5-HT1aR in the medial prefrontal cortex.

  3. [Explicit memory for type font of words in source monitoring and recognition tasks].

    Science.gov (United States)

    Hatanaka, Yoshiko; Fujita, Tetsuya

    2004-02-01

    We investigated whether people can consciously remember type fonts of words by methods of examining explicit memory; source-monitoring and old/new-recognition. We set matched, non-matched, and non-studied conditions between the study and the test words using two kinds of type fonts; Gothic and MARU. After studying words in one way of encoding, semantic or physical, subjects in a source-monitoring task made a three way discrimination between new words, Gothic words, and MARU words (Exp. 1). Subjects in an old/new-recognition task indicated whether test words were previously presented or not (Exp. 2). We compared the source judgments with old/new recognition data. As a result, these data showed conscious recollection for type font of words on the source monitoring task and dissociation between source monitoring and old/new recognition performance.

  4. Effect of dietary iron loading on recognition memory in growing rats.

    Directory of Open Access Journals (Sweden)

    Murui Han

    Full Text Available While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet or iron-adequate control diet (50 mg/kg for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value than control rats (12% increase; P=0.047. Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002. Furthermore, levels of glutamate receptors (both NMDA and AMPA and nicotinic acetylcholine receptor (nAChR were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR. Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the

  5. A spatially-supported forced-choice recognition test reveals children’s long-term memory for newly learned word forms

    Directory of Open Access Journals (Sweden)

    Katherine R. Gordon

    2014-03-01

    Full Text Available Children’s memories for the link between a newly trained word and its referent have been the focus of extensive past research. However, memory for the word form itself is rarely assessed among preschool-age children. When it is, children are typically asked to verbally recall the forms, and they generally perform at floor on such tests. To better measure children’s memory for word forms, we aimed to design a more sensitive test that required recognition rather than recall, provided spatial cues to off-set the phonological memory demands of the test, and allowed pointing rather than verbal responses. We taught 12 novel word-referent pairs via ostensive naming to sixteen 4-to-6-year-olds and measured their memory for the word forms after a week-long retention interval using the new spatially-supported form recognition test. We also measured their memory for the word-referent links and the generalization of the links to untrained referents with commonly used recognition tests. Children demonstrated memory for word forms at above chance levels; however, their memory for forms was poorer than their memory for trained or generalized word-referent links. When in error, children were no more likely to select a foil that was a close neighbor to the target form than a maximally different foil. Additionally, they more often selected correct forms that were among the first six than the last six to be trained. Overall, these findings suggest that children are able to remember word forms after a limited number of ostensive exposures and a long-term delay. However, word forms remain more difficult to learn than word-referent links and there is an upper limit on the number of forms that can be learned within a given period of time.

  6. Tet1 Oxidase Regulates Neuronal Gene Transcription, Active DNA Hydroxy-methylation, Object Location Memory, and Threat Recognition Memory.

    Science.gov (United States)

    Kumar, Dinesh; Aggarwal, Milan; Kaas, Garrett A; Lewis, John; Wang, Jing; Ross, Daniel L; Zhong, Chun; Kennedy, Andrew; Song, Hongjun; Sweatt, J David

    2015-10-01

    A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the CNS. In this study, we used Tet1 gene knockout (Tet1KO) mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to: altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning) and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  7. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Science.gov (United States)

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats.

    Science.gov (United States)

    Malin, David H; Lee, David R; Goyarzu, Pilar; Chang, Yu-Hsuan; Ennis, Lalanya J; Beckett, Elizabeth; Shukitt-Hale, Barbara; Joseph, James A

    2011-03-01

    Previously, 4 mo of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aging rats. Experiment 1 determined whether 1- and 2-mo BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the diets. Experiment 2 determined whether a 1-mo BB diet could subsequently reverse existing object memory impairment in aging rats. In experiment 1, Fischer-344 rats were maintained on an appropriate control diet or on 1 or 2 mo of the BB diet before testing object memory at 19 mo postnatally. In experiment 2, rats were tested for object recognition memory at 19 mo and again at 20 mo after 1 mo of maintenance on a 2% BB or control diet. In experiment 1, the control group performed no better than chance, whereas the 1- and 2-mo BB diet groups performed similarly and significantly better than controls. The 2-mo BB-diet group, but not the 1-mo group, maintained its performance over a subsequent month on a standard laboratory diet. In experiment 2, the 19-mo-old rats performed near chance. At 20 mo of age, the rats subsequently maintained on the BB diet significantly increased their object memory scores, whereas the control diet group exhibited a non-significant decline. The change in object memory scores differed significantly between the two diet groups. These results suggest that a considerable degree of age-related object memory decline can be prevented and reversed by brief maintenance on BB diets. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  10. Recollection is a continuous process: implications for dual-process theories of recognition memory.

    Science.gov (United States)

    Mickes, Laura; Wais, Peter E; Wixted, John T

    2009-04-01

    Dual-process theory, which holds that recognition decisions can be based on recollection or familiarity, has long seemed incompatible with signal detection theory, which holds that recognition decisions are based on a singular, continuous memory-strength variable. Formal dual-process models typically regard familiarity as a continuous process (i.e., familiarity comes in degrees), but they construe recollection as a categorical process (i.e., recollection either occurs or does not occur). A continuous process is characterized by a graded relationship between confidence and accuracy, whereas a categorical process is characterized by a binary relationship such that high confidence is associated with high accuracy but all lower degrees of confidence are associated with chance accuracy. Using a source-memory procedure, we found that the relationship between confidence and source-recollection accuracy was graded. Because recollection, like familiarity, is a continuous process, dual-process theory is more compatible with signal detection theory than previously thought.

  11. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    Science.gov (United States)

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Test-Enhanced Learning of Natural Concepts: Effects on Recognition Memory, Classification, and Metacognition

    Science.gov (United States)

    Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.

    2010-01-01

    Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…

  13. Investigating strength and frequency effects in recognition memory using type-2 signal detection theory.

    Science.gov (United States)

    Higham, Philip A; Perfect, Timothy J; Bruno, Davide

    2009-01-01

    Criterion- versus distribution-shift accounts of frequency and strength effects in recognition memory were investigated with Type-2 signal detection receiver operating characteristic (ROC) analysis, which provides a measure of metacognitive monitoring. Experiment 1 demonstrated a frequency-based mirror effect, with a higher hit rate and lower false alarm rate, for low frequency words compared with high frequency words. In Experiment 2, the authors manipulated item strength with repetition, which showed an increased hit rate but no effect on the false alarm rate. Whereas Type-1 indices were ambiguous as to whether these effects were based on a criterion- or distribution-shift model, the two models predict opposite effects on Type-2 distractor monitoring under some assumptions. Hence, Type-2 ROC analysis discriminated between potential models of recognition that could not be discriminated using Type-1 indices alone. In Experiment 3, the authors manipulated Type-1 response bias by varying the number of old versus new response categories to confirm the assumptions made in Experiments 1 and 2. The authors conclude that Type-2 analyses are a useful tool for investigating recognition memory when used in conjunction with more traditional Type-1 analyses.

  14. A Temporally Distinct Role for Group I and Group II Metabotropic Glutamate Receptors in Object Recognition Memory

    Science.gov (United States)

    Brown, Malcolm Watson; Warburton, Elizabeth Clea; Barker, Gareth Robert Isaac; Bashir, Zafar Iqbal

    2006-01-01

    Recognition memory, involving the ability to discriminate between a novel and familiar object, depends on the integrity of the perirhinal cortex (PRH). Glutamate, the main excitatory neurotransmitter in the cortex, is essential for many types of memory processes. Of the subtypes of glutamate receptor, metabotropic receptors (mGluRs) have received…

  15. The impact of emotion intensity on recognition memory: Valence polarity matters.

    Science.gov (United States)

    Meng, Xianxin; Zhang, Ling; Liu, Wenwen; Ding, XinSheng; Li, Hong; Yang, Jiemin; Yuan, JiaJin

    2017-06-01

    Although the effects of emotion of different emotional intensity on memory have been investigated, it remain unclear whether the influence of emotional intensity on memory varies depending on the stimulus valence polarity (i.e., positive or negative). To address this, event-related potentials were recorded when subjects performed a continuous old/new discrimination task, for highly negative (HN), mildly negative (MN) and neutral pictures in the negative session; and for highly positive (HP), mildly positive (MP) and neutral pictures in the positive session. The results showed that relative to neutral stimuli, both HN and MN stimuli showed increased memory discrimination scores, and enhanced old/new effect in early FN400 (Frontal Negativity), but not late positive component (LPC) amplitudes. By contrast, relative to MP stimuli, HP and neutral stimuli showed increased memory discrimination scores and enhanced old/new effect in LPC but not FN400 amplitudes. Additionally, we observed a significant positive correlation between the memory discrimination score and the old/new effect in the amplitudes of the FN400 and LPC, respectively. These results indicate that both HN and MN stimuli were remembered better than neutral stimuli; whereas the recognition was worse for MP stimuli than Neutral and HP stimuli. In conclusion, in the present study, we observed that the effect of emotion intensity on memory depends on the stimulus valence polarity. Copyright © 2017. Published by Elsevier B.V.

  16. Contrasting Networks for Recognition Memory and Recency Memory Revealed by Immediate-Early Gene Imaging in the Rat

    Science.gov (United States)

    2014-01-01

    The expression of the immediate-early gene c-fos was used to compare networks of activity associated with recency memory (temporal order memory) and recognition memory. In Experiment 1, rats were first familiarized with sets of objects and then given pairs of different, familiar objects to explore. For the recency test group, each object in a pair was separated by 110 min in the time between their previous presentations. For the recency control test, each object in a pair was separated by less than a 1 min between their prior presentations. Temporal discrimination of the objects correlated with c-fos activity in the recency test group in several sites, including area Te2, the perirhinal cortex, lateral entorhinal cortex, as well as the dentate gyrus, hippocampal fields CA3 and CA1. For both the test and control conditions, network models were derived using structural equation modeling. The recency test model emphasized serial connections from the perirhinal cortex to lateral entorhinal cortex and then to the CA1 subfield. The recency control condition involved more parallel pathways, but again highlighted CA1 within the hippocampus. Both models contrasted with those derived from tests of object recognition (Experiment 2), because stimulus novelty was associated with pathways from the perirhinal cortex to lateral entorhinal cortex that then involved both the dentate gyrus (and CA3) and CA1 in parallel. The present findings implicate CA1 for the processing of familiar stimuli, including recency discriminations, while the dentate gyrus and CA3 pathways are recruited when the perirhinal cortex signals novel stimuli. PMID:24933661

  17. Dynamic relation between working memory capacity and speech recognition in noise during the first 6 months of hearing aid use.

    Science.gov (United States)

    Ng, Elaine H N; Classon, Elisabet; Larsby, Birgitta; Arlinger, Stig; Lunner, Thomas; Rudner, Mary; Rönnberg, Jerker

    2014-11-23

    The present study aimed to investigate the changing relationship between aided speech recognition and cognitive function during the first 6 months of hearing aid use. Twenty-seven first-time hearing aid users with symmetrical mild to moderate sensorineural hearing loss were recruited. Aided speech recognition thresholds in noise were obtained in the hearing aid fitting session as well as at 3 and 6 months postfitting. Cognitive abilities were assessed using a reading span test, which is a measure of working memory capacity, and a cognitive test battery. Results showed a significant correlation between reading span and speech reception threshold during the hearing aid fitting session. This relation was significantly weakened over the first 6 months of hearing aid use. Multiple regression analysis showed that reading span was the main predictor of speech recognition thresholds in noise when hearing aids were first fitted, but that the pure-tone average hearing threshold was the main predictor 6 months later. One way of explaining the results is that working memory capacity plays a more important role in speech recognition in noise initially rather than after 6 months of use. We propose that new hearing aid users engage working memory capacity to recognize unfamiliar processed speech signals because the phonological form of these signals cannot be automatically matched to phonological representations in long-term memory. As familiarization proceeds, the mismatch effect is alleviated, and the engagement of working memory capacity is reduced. © The Author(s) 2014.

  18. The role of the thalamic nuclei in recognition memory accompanied by recall during encoding and retrieval: an fMRI study.

    Science.gov (United States)

    Pergola, Giulio; Ranft, Alexander; Mathias, Klaus; Suchan, Boris

    2013-07-01

    The present functional imaging study aimed at investigating the contribution of the mediodorsal nucleus and the anterior nuclei of the thalamus with their related cortical networks to recognition memory and recall. Eighteen subjects performed associative picture encoding followed by a single item recognition test during the functional magnetic resonance imaging session. After scanning, subjects performed a cued recall test using the formerly recognized pictures as cues. This post-scanning test served to classify recognition trials according to subsequent recall performance. In general, single item recognition accompanied by successful recall of the associations elicited stronger activation in the mediodorsal nucleus of the thalamus and in the prefrontal cortices both during encoding and retrieval compared to recognition without recall. In contrast, the anterior nuclei of the thalamus were selectively active during the retrieval phase of recognition followed by recall. A correlational analysis showed that activation of the anterior thalamus during retrieval as assessed by measuring the percent signal changes predicted lower rates of recognition without recall. These findings show that the thalamus is critical for recognition accompanied by recall, and provide the first evidence of a functional segregation of the thalamic nuclei with respect to the memory retrieval phase. In particular, the mediodorsal thalamic-prefrontal cortical network is activated during successful encoding and retrieval of associations, which suggests a role of this system in recall and recollection. The activity of the anterior thalamic-temporal network selectively during retrieval predicts better memory performances across subjects and this confirms the paramount role of this network in recall and recollection. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Gregory [Fermilab; Hoff, James [Fermilab; Jindariani, Sergo [Fermilab; Liu, Tiehui [Fermilab; Olsen, Jamieson [Fermilab; Tran, Nhan [Fermilab; Joshi, Siddhartha [Northwestern U.; Li, Dawei [Northwestern U.; Ogrenci-Memik, Seda [Northwestern U.

    2017-09-24

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The first step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.

  20. Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory.

    Science.gov (United States)

    Lukowski, Angela F; Koss, Marlene; Burden, Matthew J; Jonides, John; Nelson, Charles A; Kaciroti, Niko; Jimenez, Elias; Lozoff, Betsy

    2010-04-01

    Iron deficiency in infancy negatively impacts a variety of neurodevelopmental processes at the time of nutrient insufficiency, with persistent central nervous system alterations and deficits in behavioral functioning, despite iron therapy. In rodent models, early iron deficiency impairs the hippocampus and the dopamine system. We examined the possibility that young adults who had experienced chronic, severe, iron deficiency as infants would exhibit deficits on neurocognitive tests with documented frontostriatal (Trail Making Test, Intra-/Extra-dimensional Shift, Stockings of Cambridge, Spatial Working Memory, Rapid Visual Information Processing) and hippocampal specificity (Pattern Recognition Memory, Spatial Recognition Memory). Participants with chronic, severe iron deficiency in infancy performed less well on frontostriatal-mediated executive functions, including inhibitory control, set-shifting, and planning. Participants also exhibited impairment on a hippocampus-based recognition memory task. We suggest that these deficits may result from the long-term effects of early iron deficiency on the dopamine system, the hippocampus, and their interaction.

  1. Face memory and face recognition in children and adolescents with attention deficit hyperactivity disorder: A systematic review.

    Science.gov (United States)

    Romani, Maria; Vigliante, Miriam; Faedda, Noemi; Rossetti, Serena; Pezzuti, Lina; Guidetti, Vincenzo; Cardona, Francesco

    2018-06-01

    This review focuses on facial recognition abilities in children and adolescents with attention deficit hyperactivity disorder (ADHD). A systematic review, using PRISMA guidelines, was conducted to identify original articles published prior to May 2017 pertaining to memory, face recognition, affect recognition, facial expression recognition and recall of faces in children and adolescents with ADHD. The qualitative synthesis based on different studies shows a particular focus of the research on facial affect recognition without paying similar attention to the structural encoding of facial recognition. In this review, we further investigate facial recognition abilities in children and adolescents with ADHD, providing synthesis of the results observed in the literature, while detecting face recognition tasks used on face processing abilities in ADHD and identifying aspects not yet explored. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory

    OpenAIRE

    Hall, Jessica H.; Wiseman, Frances K.; Fisher, Elizabeth M.C.; Tybulewicz, Victor L.J.; Harwood, John L.; Good, Mark A.

    2016-01-01

    The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mi...

  3. The Ebb and Flow of Infant Attentional Preferences: Evidence for Long-Term Recognition Memory in 3-Month-Olds.

    Science.gov (United States)

    Courage, Mary L.; Howe, Mark L.

    1998-01-01

    Two experiments used paired-comparisons to investigate 3-month olds' recognition of dynamic visual events after various retention intervals. Results indicated a changing pattern of attentional preferences over time consistent with models of infant recognition memory in which novelty, familiarity, and null preferences are considered conjointly and…

  4. Spontaneous object recognition: a promising approach to the comparative study of memory

    Directory of Open Access Journals (Sweden)

    Rachel eBlaser

    2015-07-01

    Full Text Available Spontaneous recognition of a novel object is a popular measure of exploratory behavior, perception and recognition memory in rodent models. Because of its relative simplicity and speed of testing, the variety of stimuli that can be used, and its ecological validity across species, it is also an attractive task for comparative research. To date, variants of this test have been used with vertebrate and invertebrate species, but the methods have seldom been sufficiently standardized to allow cross-species comparison. Here, we review the methods necessary for the study of novel object recognition in mammalian and non-mammalian models, as well as the results of these experiments. Critical to the use of this test is an understanding of the organism’s initial response to a novel object, the modulation of exploration by context, and species differences in object perception and exploratory behaviors. We argue that with appropriate consideration of species differences in perception, object affordances, and natural exploratory behaviors, the spontaneous object recognition test can be a valid and versatile tool for translational research with non-mammalian models.

  5. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    Directory of Open Access Journals (Sweden)

    Areg eBarsegyan

    2014-05-01

    Full Text Available Noradrenergic activation of the basolateral complex of the amygdala (BLA is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague–Dawley rats were exposed to two identical objects in one context for either 3 or 10 min, immediately followed by exposure to two other identical objects in a distinctly different context. Immediately after the training they received bilateral intra-BLA infusions of norepinephrine (0.3, 1.0 or 3.0 μg or the β-adrenoceptor antagonist propranolol (0.1, 0.3 or 1.0 μg. On the 24-h retention test, rats were placed back into one of the training contexts with one copy of each of the two training objects. Thus, although both objects were familiar, one of the objects had not previously been encountered in this particular test context. Hence, if the animal generated a long-term memory for the association between an object and its context, it would spend significantly more time exploring the object that was not previously experienced in this context. Saline-infused control rats exhibited poor 24-h retention when given 3 min of training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object-in-context training induced a dose-dependent memory enhancement, whereas propranolol administered after 10 min of training produced memory impairment. These findings provide evidence that posttraining noradrenergic activation of the BLA also enhances the consolidation of memory of object-in-context recognition training, enabling accuracy of episodic-like memories.

  6. How does the sparse memory "engram" neurons encode the memory of a spatial-temporal event?

    Directory of Open Access Journals (Sweden)

    Ji-Song Guan

    2016-08-01

    Full Text Available Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  7. An Event Related Potentials Study of the Effects of Age, Load and Maintenance Duration on Working Memory Recognition.

    Science.gov (United States)

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes--with no effects on perceptual processes--and a posterior to anterior shift in the recruitment of neural resources.

  8. An Event Related Potentials Study of the Effects of Age, Load and Maintenance Duration on Working Memory Recognition.

    Directory of Open Access Journals (Sweden)

    Diego Pinal

    Full Text Available Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes--with no effects on perceptual processes--and a posterior to anterior shift in the recruitment of neural resources.

  9. An Event Related Potentials Study of the Effects of Age, Load and Maintenance Duration on Working Memory Recognition

    Science.gov (United States)

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando

    2015-01-01

    Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes -with no effects on perceptual processes- and a posterior to anterior shift in the recruitment of neural resources. PMID:26569113

  10. Development of the Word Auditory Recognition and Recall Measure: A Working Memory Test for Use in Rehabilitative Audiology.

    Science.gov (United States)

    Smith, Sherri L; Pichora-Fuller, M Kathleen; Alexander, Genevieve

    The purpose of this study was to develop the Word Auditory Recognition and Recall Measure (WARRM) and to conduct the inaugural evaluation of the performance of younger adults with normal hearing, older adults with normal to near-normal hearing, and older adults with pure-tone hearing loss on the WARRM. The WARRM is a new test designed for concurrently assessing word recognition and auditory working memory performance in adults who may have pure-tone hearing loss. The test consists of 100 monosyllabic words based on widely used speech-recognition test materials. The 100 words are presented in recall set sizes of 2, 3, 4, 5, and 6 items, with 5 trials in each set size. The WARRM yields a word-recognition score and a recall score. The WARRM was administered to all participants in three listener groups under two processing conditions in a mixed model (between-subjects, repeated measures) design. The between-subjects factor was group, with 48 younger listeners with normal audiometric thresholds (younger listeners with normal hearing [YNH]), 48 older listeners with normal thresholds through 3000 Hz (older listeners with normal hearing [ONH]), and 48 older listeners with sensorineural hearing loss (older listeners with hearing loss [OHL]). The within-subjects factor was WARRM processing condition (no additional task or with an alphabet judgment task). The associations between results on the WARRM test and results on a battery of other auditory and memory measures were examined. Word-recognition performance on the WARRM was not affected by processing condition or set size and was near ceiling for the YNH and ONH listeners (99 and 98%, respectively) with both groups performing significantly better than the OHL listeners (83%). The recall results were significantly better for the YNH, ONH, and OHL groups with no processing (93, 84, and 75%, respectively) than with the alphabet processing (86, 77, and 70%). In both processing conditions, recall was best for YNH, followed by

  11. Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice.

    Science.gov (United States)

    Botton, Paulo Henrique; Costa, Marcelo S; Ardais, Ana Paula; Mioranzza, Sabrina; Souza, Diogo O; da Rocha, João Batista Teixeira; Porciúncula, Lisiane O

    2010-12-25

    Caffeine is a psychostimulant with positive effects on cognition. Recent studies have suggested the participation of the cholinergic system in the effects of caffeine on wakefulness. However, there are few studies assessing the contribution of cholinergic system in the cognitive enhancer properties of caffeine. In the present study, the effects of a dose and schedule of administration of caffeine that improved memory recognition were investigated on scopolamine-induced impairment of memory in adult mice. Inhibitory avoidance and novel object recognition tasks were used to assess learning and memory. Caffeine (10mg/kg, i.p.) was administered during 4 consecutive days, and the treatment was interrupted 24h before scopolamine administration (2mg/kg, i.p.). Scopolamine was administered prior to or immediately after training. Short-term and long-term memory was evaluated in both tasks. In the novel object recognition task, pre treatment with caffeine prevented the disruption of short- and long-term memory by scopolamine. In the inhibitory avoidance task, caffeine prevented short- but not long-term memory disruption by pre training administration of scopolamine. Caffeine prevented short- and long-term memory disruption by post training administration of scopolamine. Both treatments did not affect locomotor activity of the animals. These findings suggest that acute treatment with caffeine followed by its withdrawal may be effective against cholinergic-induced disruption of memory assessed in an aversive and non-aversive task. Finally, our results revealed that the cholinergic system is involved in the positive effects of caffeine on cognitive functions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Are There Multiple Kinds of Episodic Memory? An fMRI Investigation Comparing Autobiographical and Recognition Memory Tasks.

    Science.gov (United States)

    Chen, Hung-Yu; Gilmore, Adrian W; Nelson, Steven M; McDermott, Kathleen B

    2017-03-08

    What brain regions underlie retrieval from episodic memory? The bulk of research addressing this question with fMRI has relied upon recognition memory for materials encoded within the laboratory. Another, less dominant tradition has used autobiographical methods, whereby people recall events from their lifetime, often after being cued with words or pictures. The current study addresses how the neural substrates of successful memory retrieval differed as a function of the targeted memory when the experimental parameters were held constant in the two conditions (except for instructions). Human participants studied a set of scenes and then took two types of memory test while undergoing fMRI scanning. In one condition (the picture memory test), participants reported for each scene (32 studied, 64 nonstudied) whether it was recollected from the prior study episode. In a second condition (the life memory test), participants reported for each scene (32 studied, 64 nonstudied) whether it reminded them of a specific event from their preexperimental lifetime. An examination of successful retrieval (yes responses) for recently studied scenes for the two test types revealed pronounced differences; that is, autobiographical retrieval instantiated with the life memory test preferentially activated the default mode network, whereas hits in the picture memory test preferentially engaged the parietal memory network as well as portions of the frontoparietal control network. When experimental cueing parameters are held constant, the neural underpinnings of successful memory retrieval differ when remembering life events and recently learned events. SIGNIFICANCE STATEMENT Episodic memory is often discussed as a solitary construct. However, experimental traditions examining episodic memory use very different approaches, and these are rarely compared to one another. When the neural correlates associated with each approach have been directly contrasted, results have varied considerably

  13. When Does Modality Matter? Perceptual versus Conceptual Fluency-Based Illusions in Recognition Memory

    Science.gov (United States)

    Miller, Jeremy K.; Lloyd, Marianne E.; Westerman, Deanne L.

    2008-01-01

    Previous research has shown that illusions of recognition memory based on enhanced perceptual fluency are sensitive to the perceptual match between the study and test phases of an experiment. The results of the current study strengthen that conclusion, as they show that participants will not interpret enhanced perceptual fluency as a sign of…

  14. Hippocampal Activation of Rac1 Regulates the Forgetting of Object Recognition Memory.

    Science.gov (United States)

    Liu, Yunlong; Du, Shuwen; Lv, Li; Lei, Bo; Shi, Wei; Tang, Yikai; Wang, Lianzhang; Zhong, Yi

    2016-09-12

    Forgetting is a universal feature for most types of memories. The best-defined and extensively characterized behaviors that depict forgetting are natural memory decay and interference-based forgetting [1, 2]. Molecular mechanisms underlying the active forgetting remain to be determined for memories in vertebrates. Recent progress has begun to unravel such mechanisms underlying the active forgetting [3-11] that is induced through the behavior-dependent activation of intracellular signaling pathways. In Drosophila, training-induced activation of the small G protein Rac1 mediates natural memory decay and interference-based forgetting of aversive conditioning memory [3]. In mice, the activation of photoactivable-Rac1 in recently potentiated spines in a motor learning task erases the motor memory [12]. These lines of evidence prompted us to investigate a role for Rac1 in time-based natural memory decay and interference-based forgetting in mice. The inhibition of Rac1 activity in hippocampal neurons through targeted expression of a dominant-negative Rac1 form extended object recognition memory from less than 72 hr to over 72 hr, whereas Rac1 activation accelerated memory decay within 24 hr. Interference-induced forgetting of this memory was correlated with Rac1 activation and was completely blocked by inhibition of Rac1 activity. Electrophysiological recordings of long-term potentiation provided independent evidence that further supported a role for Rac1 activation in forgetting. Thus, Rac1-dependent forgetting is evolutionarily conserved from invertebrates to vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Meaningful Memory in Acute Anorexia Nervosa Patients-Comparing Recall, Learning, and Recognition of Semantically Related and Semantically Unrelated Word Stimuli.

    Science.gov (United States)

    Terhoeven, Valentin; Kallen, Ursula; Ingenerf, Katrin; Aschenbrenner, Steffen; Weisbrod, Matthias; Herzog, Wolfgang; Brockmeyer, Timo; Friederich, Hans-Christoph; Nikendei, Christoph

    2017-03-01

    It is unclear whether observed memory impairment in anorexia nervosa (AN) depends on the semantic structure (categorized words) of material to be encoded. We aimed to investigate the processing of semantically related information in AN. Memory performance was assessed in a recall, learning, and recognition test in 27 adult women with AN (19 restricting, 8 binge-eating/purging subtype; average disease duration: 9.32 years) and 30 healthy controls using an extended version of the Rey Auditory Verbal Learning Test, applying semantically related and unrelated word stimuli. Short-term memory (immediate recall, learning), regardless of semantics of the words, was significantly worse in AN patients, whereas long-term memory (delayed recall, recognition) did not differ between AN patients and controls. Semantics of stimuli do not have a better effect on memory recall in AN compared to CO. Impaired short-term versus long-term memory is discussed in relation to dysfunctional working memory in AN. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  16. Excess influx of Zn(2+) into dentate granule cells affects object recognition memory via attenuated LTP.

    Science.gov (United States)

    Suzuki, Miki; Fujise, Yuki; Tsuchiya, Yuka; Tamano, Haruna; Takeda, Atsushi

    2015-08-01

    The influx of extracellular Zn(2+) into dentate granule cells is nonessential for dentate gyrus long-term potentiation (LTP) and the physiological significance of extracellular Zn(2+) dynamics is unknown in the dentate gyrus. Excess increase in extracellular Zn(2+) in the hippocampal CA1, which is induced with excitation of zincergic neurons, induces memory deficit via excess influx of Zn(2+) into CA1 pyramidal cells. In the present study, it was examined whether extracellular Zn(2+) induces object recognition memory deficit via excess influx of Zn(2+) into dentate granule cells. KCl (100 mM, 2 µl) was locally injected into the dentate gyrus. The increase in intracellular Zn(2+) in dentate granule cells induced with high K(+) was blocked by co-injection of CaEDTA and CNQX, an extracellular Zn(2+) chelator and an AMPA receptor antagonist, respectively, suggesting that high K(+) increases the influx of Zn(2+) into dentate granule cells via AMPA receptor activation. Dentate gyrus LTP induction was attenuated 1 h after KCl injection into the dentate gyrus and also attenuated when KCl was injected 5 min after the induction. Memory deficit was induced when training of object recognition test was performed 1 h after KCl injection into the dentate gyrus and also induced when KCl was injected 5 min after the training. High K(+)-induced impairments of LTP and memory were rescued by co-injection of CaEDTA. These results indicate that excess influx of Zn(2+) into dentate granule cells via AMPA receptor activation affects object recognition memory via attenuated LTP induction. Even in the dentate gyrus where is scarcely innervated by zincergic neurons, it is likely that extracellular Zn(2+) homeostasis is strictly regulated for cognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Electrophysiological signals associated with fluency of different levels of processing reveal multiple contributions to recognition memory.

    Science.gov (United States)

    Li, Bingbing; Taylor, Jason R; Wang, Wei; Gao, Chuanji; Guo, Chunyan

    2017-08-01

    Processing fluency appears to influence recognition memory judgements, and the manipulation of fluency, if misattributed to an effect of prior exposure, can result in illusory memory. Although it is well established that fluency induced by masked repetition priming leads to increased familiarity, manipulations of conceptual fluency have produced conflicting results, variously affecting familiarity or recollection. Some recent studies have found that masked conceptual priming increases correct recollection (Taylor & Henson, 2012), and the magnitude of this behavioural effect correlates with analogous fMRI BOLD priming effects in brain regions associated with recollection (Taylor, Buratto, & Henson, 2013). However, the neural correlates and time-courses of masked repetition and conceptual priming were not compared directly in previous studies. The present study used event-related potentials (ERPs) to identify and compare the electrophysiological correlates of masked repetition and conceptual priming and investigate how they contribute to recognition memory. Behavioural results were consistent with previous studies: Repetition primes increased familiarity, whereas conceptual primes increased correct recollection. Masked repetition and conceptual priming also decreased the latency of late parietal component (LPC). Masked repetition priming was associated with an early P200 effect and a later parietal maximum N400 effect, whereas masked conceptual priming was only associated with a central-parietal maximum N400 effect. In addition, the topographic distributions of the N400 repetition priming and conceptual priming effects were different. These results suggest that fluency at different levels of processing is associated with different ERP components, and contributes differentially to subjective recognition memory experiences. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A Direct Test of the Differentiation Mechanism: REM, BCDMEM, and the Strength-Based Mirror Effect in Recognition Memory

    Science.gov (United States)

    Starns, Jeffrey J.; White, Corey N.; Ratcliff, Roger

    2010-01-01

    We explore competing explanations for the reduction in false alarm rate observed when studied items are strengthened. Some models, such as Retrieving Effectively from Memory (REM; Shiffrin & Steyvers, 1997), attribute the false alarm rate reduction to differentiation, a process in which strengthening memory traces at study directly reduces the…

  19. Evaluating the contributions of task expectancy in the testing and guessing benefits on recognition memory.

    Science.gov (United States)

    Huff, Mark J; Yates, Tyler J; Balota, David A

    2018-05-03

    Recently, we have shown that two types of initial testing (recall of a list or guessing of critical items repeated over 12 study/test cycles) improved final recognition of related and unrelated word lists relative to restudy. These benefits were eliminated, however, when test instructions were manipulated within subjects and presented after study of each list, procedures designed to minimise expectancy of a specific type of upcoming test [Huff, Balota, & Hutchison, 2016. The costs and benefits of testing and guessing on recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 1559-1572. doi: 10.1037/xlm0000269 ], suggesting that testing and guessing effects may be influenced by encoding strategies specific for the type of upcoming task. We follow-up these experiments by examining test-expectancy processes in guessing and testing. Testing and guessing benefits over restudy were not found when test instructions were presented either after (Experiment 1) or before (Experiment 2) a single study/task cycle was completed, nor were benefits found when instructions were presented before study/task cycles and the task was repeated three times (Experiment 3). Testing and guessing benefits emerged only when instructions were presented before a study/task cycle and the task was repeated six times (Experiments 4A and 4B). These experiments demonstrate that initial testing and guessing can produce memory benefits in recognition, but only following substantial task repetitions which likely promote task-expectancy processes.

  20. Effects of physical exercise on object recognition memory in adult rats of postnatal isoflurane exposures

    Directory of Open Access Journals (Sweden)

    Xiao-yan FANG

    2017-08-01

    Full Text Available Objective To investigate effects of physical exercise (PE on object recognition memory in adult rats of postnatal isoflurane (Iso exposures. Methods One hundred and ten postnatal 7-day SD rats (P7 were randomly divided into four groups: normal control group (Naive, Naive+PE group (received physical exercise in P21: a treadmill exercise 30min each day, 5 times/week, for 6 weeks, Iso group (three times of 2-hour Iso exposure in P7, P9, and P11, and Iso+PE group (received PE in P21 after postnatal Iso exposures. In P67, behavioral testing was conducted including open field and object recognition task (ORT, recording the time (Discrimination Ratios, DR that rats spent on exploring each object, evaluating effects of PE on object recognition memory. Results There was no significant difference in influence of PE on open field testing in all of the groups (P>0.05. Compared with Naive, there was no group difference in DR (P>0.05 for all groups, but the DR of Iso male rats was significantly higher than that of Naive female rats in P67, with significant difference (P=0.034. Compared with non-PE groups, whether or not postnatal Iso exposures, the DR of PE male groups was significantly higher (compared with Naive and Iso group: P67, P=0.050, P=0.017; P95, P=0.037, P=0.019; in female rats, the DR for ISO+PE group was lower than that of Iso group in P67 (P=0.036, but the DR of Naive+PE group was higher than that of Naive group in P95 (P=0.004. Compared with male rats, the DR of non-PE female rats was significantly higher in P67 (vis. Naive and Iso group: P=0.022, P=0.011; but in P95, the DR of non- Iso female groups was significantly higher than that of male groups (vis. Naive and Naive+PE: P=0.008, P=0.017. Conclusions There is no obvious impact of postnatal Iso exposures on object recognition memory of adult rats. These results also indicate that postnatal PE could improve object recognition memory of non-spatial learning in adult rats. In addition, exercise

  1. Investigating Strength and Frequency Effects in Recognition Memory Using Type-2 Signal Detection Theory

    Science.gov (United States)

    Higham, Philip A.; Perfect, Timothy J.; Bruno, Davide

    2009-01-01

    Criterion- versus distribution-shift accounts of frequency and strength effects in recognition memory were investigated with Type-2 signal detection receiver operating characteristic (ROC) analysis, which provides a measure of metacognitive monitoring. Experiment 1 demonstrated a frequency-based mirror effect, with a higher hit rate and lower…

  2. SPARED RECOGNITION CAPACITY IN ELDERLY AND CLOSED-HEAD-INJURY SUBJECTS WITH CLINICAL MEMORY DEFICITS

    NARCIS (Netherlands)

    Spikman, J.M.; Berg, I.J.; Deelman, B.G.

    This study describes the performance of three groups of subjects on a pictorial forced-recognition task, the Hundred Pictures Test. The aim was to determine whether subjects with memory deficits (elderly and closed-head-injured subjects) would perform as well as healthy young subjects, both on

  3. An Exemplar-Familiarity Model Predicts Short-Term and Long-Term Probe Recognition across Diverse Forms of Memory Search

    Science.gov (United States)

    Nosofsky, Robert M.; Cox, Gregory E.; Cao, Rui; Shiffrin, Richard M.

    2014-01-01

    Experiments were conducted to test a modern exemplar-familiarity model on its ability to account for both short-term and long-term probe recognition within the same memory-search paradigm. Also, making connections to the literature on attention and visual search, the model was used to interpret differences in probe-recognition performance across…

  4. Reward disrupts reactivated human skill memory.

    Science.gov (United States)

    Dayan, Eran; Laor-Maayany, Rony; Censor, Nitzan

    2016-06-16

    Accumulating evidence across species and memory domains shows that when an existing memory is reactivated, it becomes susceptible to modifications. However, the potential role of reward signals in these mechanisms underlying human memory dynamics is unknown. Leaning on a wealth of findings on the role of reward in reinforcing memory, we tested the impact of reinforcing a skill memory trace with monetary reward following memory reactivation, on strengthening of the memory trace. Reinforcing reactivated memories did not strengthen the memory, but rather led to disruption of the memory trace, breaking down the link between memory reactivation and subsequent memory strength. Statistical modeling further revealed a strong mediating role for memory reactivation in linking between memory encoding and subsequent memory strength only when the memory was replayed without reinforcement. We suggest that, rather than reinforcing the existing memory trace, reward creates a competing memory trace, impairing expression of the original reward-free memory. This mechanism sheds light on the processes underlying skill acquisition, having wide translational implications.

  5. Syllabic Length Effect in Visual Word Recognition

    Directory of Open Access Journals (Sweden)

    Roya Ranjbar Mohammadi

    2014-07-01

    Full Text Available Studies on visual word recognition have resulted in different and sometimes contradictory proposals as Multi-Trace Memory Model (MTM, Dual-Route Cascaded Model (DRC, and Parallel Distribution Processing Model (PDP. The role of the number of syllables in word recognition was examined by the use of five groups of English words and non-words. The reaction time of the participants to these words was measured using reaction time measuring software. The results indicated that there was syllabic effect on recognition of both high and low frequency words. The pattern was incremental in terms of syllable number. This pattern prevailed in high and low frequency words and non-words except in one syllable words. In general, the results are in line with the PDP model which claims that a single processing mechanism is used in both words and non-words recognition. In other words, the findings suggest that lexical items are mainly processed via a lexical route.  A pedagogical implication of the findings would be that reading in English as a foreign language involves analytical processing of the syllable of the words.

  6. A SEMantic and EPisodic Memory Test (SEMEP) Developed within the Embodied Cognition Framework: Application to Normal Aging, Alzheimer's Disease and Semantic Dementia.

    Science.gov (United States)

    Vallet, Guillaume T; Hudon, Carol; Bier, Nathalie; Macoir, Joël; Versace, Rémy; Simard, Martine

    2017-01-01

    Embodiment has highlighted the importance of sensory-motor components in cognition. Perception and memory are thus very tightly bound together, and episodic and semantic memories should rely on the same grounded memory traces. Reduced perception should then directly reduce the ability to encode and retrieve an episodic memory, as in normal aging. Multimodal integration deficits, as in Alzheimer's disease, should lead to more severe episodic memory impairment. The present study introduces a new memory test developed to take into account these assumptions. The SEMEP (SEMantic-Episodic) memory test proposes to assess conjointly semantic and episodic knowledge across multiple tasks: semantic matching, naming, free recall, and recognition. The performance of young adults is compared to healthy elderly adults (HE), patients with Alzheimer's disease (AD), and patients with semantic dementia (SD). The results show specific patterns of performance between the groups. HE commit memory errors only for presented but not to be remembered items. AD patients present the worst episodic memory performance associated with intrusion errors (recall or recognition of items never presented). They were the only group to not benefit from a visual isolation (addition of a yellow background), a method known to increase the distinctiveness of the memory traces. Finally, SD patients suffer from the most severe semantic impairment. To conclude, confusion errors are common across all the elderly groups, whereas AD was the only group to exhibit regular intrusion errors and SD patients to show severe semantic impairment.

  7. A SEMantic and EPisodic Memory Test (SEMEP Developed within the Embodied Cognition Framework: Application to Normal Aging, Alzheimer's Disease and Semantic Dementia

    Directory of Open Access Journals (Sweden)

    Guillaume T. Vallet

    2017-09-01

    Full Text Available Embodiment has highlighted the importance of sensory-motor components in cognition. Perception and memory are thus very tightly bound together, and episodic and semantic memories should rely on the same grounded memory traces. Reduced perception should then directly reduce the ability to encode and retrieve an episodic memory, as in normal aging. Multimodal integration deficits, as in Alzheimer's disease, should lead to more severe episodic memory impairment. The present study introduces a new memory test developed to take into account these assumptions. The SEMEP (SEMantic-Episodic memory test proposes to assess conjointly semantic and episodic knowledge across multiple tasks: semantic matching, naming, free recall, and recognition. The performance of young adults is compared to healthy elderly adults (HE, patients with Alzheimer's disease (AD, and patients with semantic dementia (SD. The results show specific patterns of performance between the groups. HE commit memory errors only for presented but not to be remembered items. AD patients present the worst episodic memory performance associated with intrusion errors (recall or recognition of items never presented. They were the only group to not benefit from a visual isolation (addition of a yellow background, a method known to increase the distinctiveness of the memory traces. Finally, SD patients suffer from the most severe semantic impairment. To conclude, confusion errors are common across all the elderly groups, whereas AD was the only group to exhibit regular intrusion errors and SD patients to show severe semantic impairment.

  8. Estradiol-Induced Object Recognition Memory Consolidation Is Dependent on Activation of mTOR Signaling in the Dorsal Hippocampus

    Science.gov (United States)

    Fortress, Ashley M.; Fan, Lu; Orr, Patrick T.; Zhao, Zaorui; Frick, Karyn M.

    2013-01-01

    The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17[Beta]-estradiol (E[subscript 2]) is dependent on mTOR…

  9. Urtica dioica modulates hippocampal insulin signaling and recognition memory deficit in streptozotocin induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Gupta, Sahil; Udayabanu, Malairaman

    2016-06-01

    Diabetes mellitus has been associated with functional abnormalities in the hippocampus and performance of cognitive function. Urtica dioica (UD) has been used in the treatment of diabetes. In our previous report we observed that UD extract attenuate diabetes mediated associative and spatial memory dysfunction. The present study aimed to evaluate the effect of UD extract on mouse model of diabetes-induced recognition memory deficit and explore the possible mechanism behind it. Streptozotocin (STZ) (50 mg/kg, i.p. consecutively for 5 days) was used to induce diabetes followed by UD extract (50 mg/kg, oral) or rosiglitazone (ROSI) (5 mg/kg, oral) administration for 8 weeks. STZ induced diabetic mice showed significant decrease in hippocampal insulin signaling and translocation of glucose transporter type 4 (GLUT4) to neuronal membrane resulting in cognitive dysfunction and hypolocomotion. UD treatment effectively improved hippocampal insulin signaling, glucose tolerance and recognition memory performance in diabetic mice, which was comparable to ROSI. Further, diabetes mediated oxidative stress and inflammation was reversed by chronic UD or ROSI administration. UD leaves extract acts via insulin signaling pathway and might prove to be effective for the diabetes mediated central nervous system complications.

  10. Maternal separation induces hippocampal changes in cadherin-1 (CDH-1) mRNA and recognition memory impairment in adolescent mice.

    Science.gov (United States)

    de Azeredo, Lucas Araújo; Wearick-Silva, Luis Eduardo; Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Centeno-Silva, Anderson; Orso, Rodrigo; Schröder, Nadja; Bredy, Timothy William; Grassi-Oliveira, Rodrigo

    2017-05-01

    In rodents, disruption of mother-infant attachment induced by maternal separation (MS) is associated with recognition memory impairment and long-term neurobiological consequences. Particularly stress-induced modifications have been associated to disruption of cadherin (CDH) adhesion function, which plays an important role in remodeling of neuronal connection and synaptic plasticity. This study investigated the sex-dependent effect of MS on recognition memory and mRNA levels of classical type I and type II CDH and the related β -catenin (β -Cat) in the hippocampus and prefrontal cortex of late adolescent mice. We provided evidence that the BALB/c mice exposed to MS present deficit in recognition memory, especially females. Postnatal MS induced higher hippocampal CDH-2 and CDH-8 mRNA levels, as well as an upregulation of CDH-1 in the prefrontal cortex in both males and females. MS-reared female mice presented lower CDH-1 mRNA levels in the hippocampus. In addition, hippocampal CDH-1 mRNA levels were positively correlated with recognition memory performance in females. MS-reared male mice exhibited higher β -Cat mRNA levels in the hippocampus. Considering sex-specific effects on CDH mRNA levels, it has been demonstrated mRNA changes in CDH-1, β -Cat, and CDH-6 in the hippocampus, as well as CDH-1, CDH-8 and CDH-11 in the prefrontal cortex. Overall, these findings suggest a complex interplay among MS, CDH mRNA expression, and sex differences in the PFC and hippocampus of adolescent mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Timing of presentation and nature of stimuli determine retroactive interference with social recognition memory in mice.

    Science.gov (United States)

    Perna, Judith Camats; Wotjak, Carsten T; Stork, Oliver; Engelmann, Mario

    2015-05-01

    The present study was designed to further investigate the nature of stimuli and the timing of their presentation, which can induce retroactive interference with social recognition memory in mice. In accordance with our previous observations, confrontation with an unfamiliar conspecific juvenile 3h and 6h, but not 22 h, after the initial learning session resulted in retroactive interference. The same effect was observed with the exposure to both enantiomers of the monomolecular odour carvone, and with a novel object. Exposure to a loud tone (12 KHz, 90 dB) caused retroactive interference at 6h, but not 3h and 22 h, after sampling. Our data show that retroactive interference of social recognition memory can be induced by exposing the experimental subjects to the defined stimuli presented <22 h after learning in their home cage. The distinct interference triggered by the tone presentation at 6h after sampling may be linked to the intrinsic aversiveness of the loud tone and suggests that at this time point memory consolidation is particularly sensitive to stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Storage and retrieval properties of dual codes for pictures and words in recognition memory.

    Science.gov (United States)

    Snodgrass, J G; McClure, P

    1975-09-01

    Storage and retrieval properties of pictures and words were studied within a recognition memory paradigm. Storage was manipulated by instructing subjects either to image or to verbalize to both picture and word stimuli during the study sequence. Retrieval was manipulated by representing a proportion of the old picture and word items in their opposite form during the recognition test (i.e., some old pictures were tested with their corresponding words and vice versa). Recognition performance for pictures was identical under the two instructional conditions, whereas recognition performance for words was markedly superior under the imagery instruction condition. It was suggested that subjects may engage in dual coding of simple pictures naturally, regardless of instructions, whereas dual coding of words may occur only under imagery instructions. The form of the test item had no effect on recognition performance for either type of stimulus and under either instructional condition. However, change of form of the test item markedly reduced item-by-item correlations between the two instructional conditions. It is tentatively proposed that retrieval is required in recognition, but that the effect of a form change is simply to make the retrieval process less consistent, not less efficient.

  13. Tracing a Route and Finding a Shortcut: The Working Memory, Motivational, and Personality Factors Involved

    Directory of Open Access Journals (Sweden)

    Francesca Pazzaglia

    2018-05-01

    Full Text Available Wayfinding (WF is the ability to move around efficiently and find the way from a starting point to a destination. It is a component of spatial navigation, a coordinate and goal-directed movement of one’s self through the environment. In the present study, the relationship between WF tasks (route tracing and shortcut finding and individual factors were explored with the hypothesis that WF tasks would be predicted by different types of cognitive, affective, motivational variables, and personality factors. A group of 116 university students (88 F. were conducted along a route in a virtual environment and then asked first to trace the same route again, and then to find a shortcut between the start and end points. Several instruments assessing visuospatial working memory, mental rotation ability, self-efficacy, spatial anxiety, positive attitude to exploring, and personality traits were administered. The results showed that a latent spatial ability factor (measured with the visuospatial working memory and mental rotations tests – controlled for gender – predicted route-tracing performance, while self-report measures of anxiety, efficacy, and pleasure in exploring, and some personality traits were more likely to predict shortcut-finding performance. We concluded that both personality and cognitive abilities affect WF performance, but differently, depending on the requirements of the task.

  14. Interaction between mode of learning and subjective experience: translation effects in long-term memory.

    Science.gov (United States)

    Rackie, James M; Brandt, Karen R; Eysenck, Michael W

    2015-01-01

    It has been suggested that writing auditorily presented words at encoding involves distinctive translation processes between visual and auditory domains, leading to the formation of distinctive memory traces at retrieval. This translation effect leads to higher levels of recognition than the writing of visually presented words, a non-translation effect. The present research investigated whether writing and the other translation effect of vocalisation (vocalising visually presented words) would be present in tests of recall, recognition memory and whether these effects are based on the subjective experience of remembering or knowing. Experiment 1 found a translation effect in the auditory domain in recall, as the translation effect of writing yielded higher recall than both non-translation effects of vocalisation and silently hearing. Experiment 2 found a translation effect in the visual domain in recognition, as the translation effect of vocalisation yielded higher recognition than both non-translation effects of writing and silently reading. This translation effect was attributable to the subjective experience of remembering rather than knowing. The present research therefore demonstrates the beneficial effect of translation in both recall and recognition, with the effect of vocalisation in recognition being based on rich episodic remembering.

  15. High-Fidelity Visual Long-Term Memory within an Unattended Blink of an Eye.

    Science.gov (United States)

    Kuhbandner, Christof; Rosas-Corona, Elizabeth A; Spachtholz, Philipp

    2017-01-01

    What is stored in long-term memory from current sensations is a question that has attracted considerable interest. Over time, several prominent theories have consistently proposed that only attended sensory information leaves a durable memory trace whereas unattended information is not stored beyond the current moment, an assumption that seems to be supported by abundant empirical evidence. Here we show, by using a more sensitive memory test than in previous studies, that this is actually not true. Observers viewed a rapid stream of real-world object pictures overlapped by words (presentation duration per stimulus: 500 ms, interstimulus interval: 200 ms), with the instruction to attend to the words and detect word repetitions, without knowing that their memory would be tested later. In a surprise two-alternative forced-choice recognition test, memory for the unattended object pictures was tested. Memory performance was substantially above chance, even when detailed feature knowledge was necessary for correct recognition, even when tested 24 h later, and even although participants reported that they do not have any memories. These findings suggests that humans have the ability to store at high speed detailed copies of current visual stimulations in long-term memory independently of current intentions and the current attentional focus.

  16. High-Fidelity Visual Long-Term Memory within an Unattended Blink of an Eye

    Directory of Open Access Journals (Sweden)

    Christof Kuhbandner

    2017-10-01

    Full Text Available What is stored in long-term memory from current sensations is a question that has attracted considerable interest. Over time, several prominent theories have consistently proposed that only attended sensory information leaves a durable memory trace whereas unattended information is not stored beyond the current moment, an assumption that seems to be supported by abundant empirical evidence. Here we show, by using a more sensitive memory test than in previous studies, that this is actually not true. Observers viewed a rapid stream of real-world object pictures overlapped by words (presentation duration per stimulus: 500 ms, interstimulus interval: 200 ms, with the instruction to attend to the words and detect word repetitions, without knowing that their memory would be tested later. In a surprise two-alternative forced-choice recognition test, memory for the unattended object pictures was tested. Memory performance was substantially above chance, even when detailed feature knowledge was necessary for correct recognition, even when tested 24 h later, and even although participants reported that they do not have any memories. These findings suggests that humans have the ability to store at high speed detailed copies of current visual stimulations in long-term memory independently of current intentions and the current attentional focus.

  17. Music, memory, and Alzheimer's disease: is music recognition spared in dementia, and how can it be assessed?

    Science.gov (United States)

    Cuddy, Lola L; Duffin, Jacalyn

    2005-01-01

    Despite intriguing and suggestive clinical observations, no formal research has assessed the possible sparing of musical recognition and memory in Alzheimer's dementia (AD). A case study is presented of an 84-year old woman with severe cognitive impairment implicating AD, but for whom music recognition and memory, according to her caregivers, appeared to be spared. The hypotheses addressed were, first, that memory for familiar music may be spared in dementia, and second, that musical recognition and memory may be reliably assessed with existing tests if behavioral observation is employed to overcome the problem of verbal or written communication. Our hypotheses were stimulated by the patient EN, for whom diagnosis of AD became probable in 2000. With severe problems in memory, language, and cognition, she now has a mini-mental status score of 8 (out of 30) and is unable to understand or recall standard instructions. In order to assess her music recognition abilities, three tests from the previous literature were adapted for behavioral observation. Two tests involved the discrimination of familiar melodies from unfamiliar melodies. The third involved the detection of distortions ("wrong" notes) in familiar melodies and discrimination of distorted melodies from melodies correctly reproduced. Test melodies were presented to EN on a CD player and her responses were observed by two test administrators. EN responded to familiar melodies by singing along, usually with the words, and often continuing to sing after the stimulus had stopped. She never responded to the unfamiliar melodies. She responded to distorted melodies with facial expressions - surprise, laughter, a frown, or an exclamation, "Oh, dear!"; she never responded in this way to the undistorted melodies. Allowing these responses as indicators of detection, the results for EN were in the normal or near normal range of scores for elderly controls. As well, lyrics to familiar melodies, spoken in a conversational

  18. WAY 267,464, a non-peptide oxytocin receptor agonist, impairs social recognition memory in rats through a vasopressin 1A receptor antagonist action.

    Science.gov (United States)

    Hicks, Callum; Ramos, Linnet; Reekie, Tristan A; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    2015-08-01

    Recent in vitro studies suggest that the oxytocin receptor (OTR) agonist WAY 267,464 has vasopressin 1A receptor (V1AR) antagonist effects. This might limit its therapeutic potential due to the positive involvement of the V1AR in social behavior. The objective of this study was to assess functional V1AR antagonist-like effects of WAY 267,464 in vivo using a test of social recognition memory. Adult experimental rats were tested for their recognition of a juvenile conspecific rat that they had briefly met 30 or 120 min previously. The modulatory effects of vasopressin (AVP), the selective V1AR antagonist SR49059, and WAY 267,464 were examined together with those of the selective OTR antagonist Compound 25 (C25). Drugs were administered immediately after the first meeting. Control rats showed recognition of juveniles at a 30 min, but not a 120 min retention interval. AVP (0.005, but not 0.001 mg/kg intraperitoneal (i.p.)) improved memory such that recognition was evident after 120 min. This was prevented by pretreatment with SR49059 (1 mg/kg) and WAY 267,464 (10, 30, and 100 mg/kg). Given alone, SR49059 (1 mg/kg) and WAY 267,464 (30 and 100 mg/kg) impaired memory at a 30 min retention interval. The impairment with WAY 267,464 was not prevented by C25 (5 mg/kg), suggesting V1AR rather than OTR mediation of the effect. Given alone, C25 also impaired memory. These results highlight a tonic role for endogenous AVP (and oxytocin) in social recognition memory and indicate that WAY 267,464 functions in vivo as a V1AR antagonist to prevent the memory-enhancing effects of AVP.

  19. Novelty-induced emotional arousal modulates cannabinoid effects on recognition memory and adrenocortical activity.

    Science.gov (United States)

    Campolongo, Patrizia; Morena, Maria; Scaccianoce, Sergio; Trezza, Viviana; Chiarotti, Flavia; Schelling, Gustav; Cuomo, Vincenzo; Roozendaal, Benno

    2013-06-01

    Although it is well established that cannabinoid drugs can influence cognitive performance, the findings-describing both enhancing and impairing effects-have been ambiguous. Here, we investigated the effects of posttraining systemic administration of the synthetic cannabinoid agonist WIN55,212-2 (0.1, 0.3, or 1.0 mg/kg) on short- and long-term retention of object recognition memory under two conditions that differed in their training-associated arousal level. In male Sprague-Dawley rats that were not previously habituated to the experimental context, WIN55,212-2 administered immediately after a 3-min training trial, biphasically impaired retention performance at a 1-h interval. In contrast, WIN55,212-2 enhanced 1-h retention of rats that had received extensive prior habituation to the experimental context. Interestingly, immediate posttraining administration of WIN55,212-2 to non-habituated rats, in doses that impaired 1-h retention, enhanced object recognition performance at a 24-h interval. Posttraining WIN55,212-2 administration to habituated rats did not significantly affect 24-h retention. In light of intimate interactions between cannabinoids and the hypothalamic-pituitary-adrenal axis, we further investigated whether cannabinoid administration might differently influence training-induced glucocorticoid activity in rats in these two habituation conditions. WIN55,212-2 administered after object recognition training elevated plasma corticosterone levels in non-habituated rats whereas it decreased corticosterone levels in habituated rats. Most importantly, following pretreatment with the corticosterone-synthesis inhibitor metyrapone, WIN55,212-2 effects on 1- and 24-h retention of non-habituated rats became similar to those seen in the low-aroused habituated animals, indicating that cannabinoid-induced regulation of adrenocortical activity contributes to the environmentally sensitive effects of systemically administered cannabinoids on short- and long

  20. Effects of selective activation of M1 and M4 muscarinic receptors on object recognition memory performance in rats.

    Science.gov (United States)

    Galloway, Claire R; Lebois, Evan P; Shagarabi, Shezza L; Hernandez, Norma A; Manns, Joseph R

    2014-01-01

    Acetylcholine signaling through muscarinic receptors has been shown to benefit memory performance in some conditions, but pan-muscarinic activation also frequently leads to peripheral side effects. Drug therapies that selectively target M1 or M4 muscarinic receptors could potentially improve memory while minimizing side effects mediated by the other muscarinic receptor subtypes. The ability of three recently developed drugs that selectively activate M1 or M4 receptors to improve recognition memory was tested by giving Long-Evans rats subcutaneous injections of three different doses of the M1 agonist VU0364572, the M1 positive allosteric modulator BQCA or the M4 positive allosteric modulator VU0152100 before performing an object recognition memory task. VU0364572 at 0.1 mg/kg, BQCA at 1.0 mg/kg and VU0152100 at 3.0 and 30.0 mg/kg improved the memory performance of rats that performed poorly at baseline, yet the improvements in memory performance were the most statistically robust for VU0152100 at 3.0 mg/kg. The results suggested that selective M1 and M4 receptor activation each improved memory but that the likelihood of obtaining behavioral efficacy at a given dose might vary between subjects even in healthy groups depending on baseline performance. These results also highlighted the potential of drug therapies that selectively target M1 or M4 receptors to improve memory performance in individuals with impaired memory.

  1. Not sensitive, yet less biased: A signal detection theory perspective on mindfulness, attention, and recognition memory.

    Science.gov (United States)

    Rosenstreich, Eyal; Ruderman, Lital

    2016-07-01

    The practice of mindfulness has been argued to increase attention control and improve memory performance. However, it was recently suggested that the effect of mindfulness on memory may be due to a shift in response-bias, rather than to an increase in memory-sensitivity. The present study examined the mindfulness-attention-memory triad. Participants filled in the five-facets of mindfulness questionnaire, and completed two recognition blocks; in the first attention was full, whereas in the second attention was divided during the encoding of information. It was found that the facet of non-judging (NJ) moderated the impact of attention on memory, such that responses of high NJ participants were less biased and remained constant even when attention was divided. Facets of mindfulness were not associated with memory sensitivity. These findings suggest that mindfulness may affect memory through decision making processes, rather than through directing attentional resources to the encoding of information. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Talker and background noise specificity in spoken word recognition memory

    Directory of Open Access Journals (Sweden)

    Angela Cooper

    2017-11-01

    Full Text Available Prior research has demonstrated that listeners are sensitive to changes in the indexical (talker-specific characteristics of speech input, suggesting that these signal-intrinsic features are integrally encoded in memory for spoken words. Given that listeners frequently must contend with concurrent environmental noise, to what extent do they also encode signal-extrinsic details? Native English listeners’ explicit memory for spoken English monosyllabic and disyllabic words was assessed as a function of consistency versus variation in the talker’s voice (talker condition and background noise (noise condition using a delayed recognition memory paradigm. The speech and noise signals were spectrally-separated, such that changes in a simultaneously presented non-speech signal (background noise from exposure to test would not be accompanied by concomitant changes in the target speech signal. The results revealed that listeners can encode both signal-intrinsic talker and signal-extrinsic noise information into integrated cognitive representations, critically even when the two auditory streams are spectrally non-overlapping. However, the extent to which extra-linguistic episodic information is encoded alongside linguistic information appears to be modulated by syllabic characteristics, with specificity effects found only for monosyllabic items. These findings suggest that encoding and retrieval of episodic information during spoken word processing may be modulated by lexical characteristics.

  3. Emotional Memory Persists Longer than Event Memory

    Science.gov (United States)

    Kuriyama, Kenichi; Soshi, Takahiro; Fujii, Takeshi; Kim, Yoshiharu

    2010-01-01

    The interaction between amygdala-driven and hippocampus-driven activities is expected to explain why emotion enhances episodic memory recognition. However, overwhelming behavioral evidence regarding the emotion-induced enhancement of immediate and delayed episodic memory recognition has not been obtained in humans. We found that the recognition…

  4. Sleep Strengthens but does Not Reorganize Memory Traces in a Verbal Creativity Task.

    Science.gov (United States)

    Landmann, Nina; Kuhn, Marion; Maier, Jonathan-Gabriel; Feige, Bernd; Spiegelhalder, Kai; Riemann, Dieter; Nissen, Christoph

    2016-03-01

    Sleep after learning promotes the quantitative strengthening of new memories. Less is known about the impact of sleep on the qualitative reorganization of memory content. This study tested the hypothesis that sleep facilitates both memory strengthening and reorganization as indexed by a verbal creativity task. Sixty healthy university students (30 female, 30 male, 20-30 years) were investigated in a randomized, controlled parallel-group study with three experimental groups (sleep, sleep deprivation, daytime wakefulness). At baseline, 60 items of the Compound Remote Associate (CRA) task were presented. At retest after the experimental conditions, the same items were presented again together with 20 new control items to disentangle off-line incubation from online performance effects. Sleep significantly strengthened formerly encoded memories in comparison to both wake conditions (improvement in speed of correctly resolved items). Offline reorganization was not enhanced following sleep, but was enhanced following sleep-deprivation in comparison to sleep and daytime wakefulness (solution time of previously incubated, newly solved items). Online performance did not differ between the groups (solution time of new control items). The results support the notion that sleep promotes the strengthening, but not the reorganization, of newly encoded memory traces in a verbal creativity task. Future studies are needed to further determine the impact of sleep on different types of memory reorganization, such as associative thinking, creativity and emotional memory processing, and potential clinical translations, such as the augmentation of psychotherapy through sleep interventions. © 2016 Associated Professional Sleep Societies, LLC.

  5. Eye position effects on the remapped memory trace of visual motion in cortical area MST.

    Science.gov (United States)

    Inaba, Naoko; Kawano, Kenji

    2016-02-23

    After a saccade, most MST neurons respond to moving visual stimuli that had existed in their post-saccadic receptive fields and turned off before the saccade ("trans-saccadic memory remapping"). Neuronal responses in higher visual processing areas are known to be modulated in relation to gaze angle to represent image location in spatiotopic coordinates. In the present study, we investigated the eye position effects after saccades and found that the gaze angle modulated the visual sensitivity of MST neurons after saccades both to the actually existing visual stimuli and to the visual memory traces remapped by the saccades. We suggest that two mechanisms, trans-saccadic memory remapping and gaze modulation, work cooperatively in individual MST neurons to represent a continuous visual world.

  6. Where vision meets memory: prefrontal-posterior networks for visual object constancy during categorization and recognition.

    Science.gov (United States)

    Schendan, Haline E; Stern, Chantal E

    2008-07-01

    Objects seen from unusual relative to more canonical views require more time to categorize and recognize, and, according to object model verification theories, additionally recruit prefrontal processes for cognitive control that interact with parietal processes for mental rotation. To test this using functional magnetic resonance imaging, people categorized and recognized known objects from unusual and canonical views. Canonical views activated some components of a default network more on categorization than recognition. Activation to unusual views showed that both ventral and dorsal visual pathways, and prefrontal cortex, have key roles in visual object constancy. Unusual views activated object-sensitive and mental rotation (and not saccade) regions in ventrocaudal intraparietal, transverse occipital, and inferotemporal sulci, and ventral premotor cortex for verification processes of model testing on any task. A collateral-lingual sulci "place" area activated for mental rotation, working memory, and unusual views on correct recognition and categorization trials to accomplish detailed spatial matching. Ventrolateral prefrontal cortex and object-sensitive lateral occipital sulcus activated for mental rotation and unusual views on categorization more than recognition, supporting verification processes of model prediction. This visual knowledge framework integrates vision and memory theories to explain how distinct prefrontal-posterior networks enable meaningful interactions with objects in diverse situations.

  7. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    Science.gov (United States)

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  8. Psychoactive drugs and false memory: comparison of dextroamphetamine and delta-9-tetrahydrocannabinol on false recognition

    Science.gov (United States)

    Ballard, Michael E.; Gallo, David A.; de Wit, Harriet

    2014-01-01

    Rationale Several psychoactive drugs are known to influence episodic memory. However, these drugs’ effects on false memory, or the tendency to incorrectly remember nonstudied information, remain poorly understood. Objectives Here, we examined the effects of two commonly used psychoactive drugs, one with memory-enhancing properties (dextroamphetamine; AMP), and another with memory-impairing properties (Δ9-tetrahydrocannabinol; THC), on false memory using the Deese/Roediger–McDermott (DRM) illusion. Methods Two parallel studies were conducted in which healthy volunteers received either AMP (0, 10, and 20 mg) or THC (0, 7.5, and 15 mg) in within-subjects, randomized, double-blind designs. Participants studied DRM word lists under the influence of the drugs, and their recognition memory for the studied words was tested 2 days later, under sober conditions. Results As expected, AMP increased memory of studied words relative to placebo, and THC reduced memory of studied words. Although neither drug significantly affected false memory relative to placebo, AMP increased false memory relative to THC. Across participants, both drugs’ effects on true memory were positively correlated with their effects on false memory. Conclusions Our results indicate that AMP and THC have opposing effects on true memory, and these effects appear to correspond to similar, albeit more subtle, effects on false memory. These findings are consistent with previous research using the DRM illusion and provide further evidence that psychoactive drugs can affect the encoding processes that ultimately result in the creation of false memories. PMID:21647577

  9. Psychoactive drugs and false memory: comparison of dextroamphetamine and δ-9-tetrahydrocannabinol on false recognition.

    Science.gov (United States)

    Ballard, Michael E; Gallo, David A; de Wit, Harriet

    2012-01-01

    Several psychoactive drugs are known to influence episodic memory. However, these drugs' effects on false memory, or the tendency to incorrectly remember nonstudied information, remain poorly understood. Here, we examined the effects of two commonly used psychoactive drugs, one with memory-enhancing properties (dextroamphetamine; AMP), and another with memory-impairing properties (Δ(9)-tetrahydrocannabinol; THC), on false memory using the Deese/Roediger-McDermott (DRM) illusion. Two parallel studies were conducted in which healthy volunteers received either AMP (0, 10, and 20 mg) or THC (0, 7.5, and 15 mg) in within-subjects, randomized, double-blind designs. Participants studied DRM word lists under the influence of the drugs, and their recognition memory for the studied words was tested 2 days later, under sober conditions. As expected, AMP increased memory of studied words relative to placebo, and THC reduced memory of studied words. Although neither drug significantly affected false memory relative to placebo, AMP increased false memory relative to THC. Across participants, both drugs' effects on true memory were positively correlated with their effects on false memory. Our results indicate that AMP and THC have opposing effects on true memory, and these effects appear to correspond to similar, albeit more subtle, effects on false memory. These findings are consistent with previous research using the DRM illusion and provide further evidence that psychoactive drugs can affect the encoding processes that ultimately result in the creation of false memories.

  10. The effects of a subpsychotic dose of ketamine on recognition and source memory for agency: implications for pharmacological modelling of core symptoms of schizophrenia.

    Science.gov (United States)

    Honey, Garry D; O'loughlin, Chris; Turner, Danielle C; Pomarol-Clotet, Edith; Corlett, Philip R; Fletcher, Paul C

    2006-02-01

    Ketamine is increasingly used to model the cognitive deficits and symptoms of schizophrenia. We investigated the extent to which ketamine administration in healthy volunteers reproduces the deficits in episodic recognition memory and agency source monitoring reported in schizophrenia. Intravenous infusions of placebo or 100 ng/ml ketamine were administered to 12 healthy volunteers in a double-blind, placebo-controlled, randomized, within-subjects study. In response to presented words, the subject or experimenter performed a deep or shallow encoding task, providing a 2(drug) x 2(depth of processing) x 2(agency) factorial design. At test, subjects discriminated old/new words, and recalled the sources (task and agent). Data were analyzed using multinomial modelling to identify item recognition, source memory for agency and task, and guessing biases. Under ketamine, item recognition and cued recall of deeply encoded items were impaired, replicating previous findings. In contrast to schizophrenia, there was a reduced tendency to externalize agency source guessing biases under ketamine. While the recognition memory deficit observed with ketamine is consistent with previous work and with schizophrenia, the changes in source memory differ from those reported in schizophrenic patients. This difference may account for the pattern of psychopathology induced by ketamine.

  11. Face recognition performance of individuals with Asperger syndrome on the Cambridge Face Memory Test.

    Science.gov (United States)

    Hedley, Darren; Brewer, Neil; Young, Robyn

    2011-12-01

    Although face recognition deficits in individuals with Autism Spectrum Disorder (ASD), including Asperger syndrome (AS), are widely acknowledged, the empirical evidence is mixed. This in part reflects the failure to use standardized and psychometrically sound tests. We contrasted standardized face recognition scores on the Cambridge Face Memory Test (CFMT) for 34 individuals with AS with those for 42, IQ-matched non-ASD individuals, and age-standardized scores from a large Australian cohort. We also examined the influence of IQ, autistic traits, and negative affect on face recognition performance. Overall, participants with AS performed significantly worse on the CFMT than the non-ASD participants and when evaluated against standardized test norms. However, while 24% of participants with AS presented with severe face recognition impairment (>2 SDs below the mean), many individuals performed at or above the typical level for their age: 53% scored within +/- 1 SD of the mean and 9% demonstrated superior performance (>1 SD above the mean). Regression analysis provided no evidence that IQ, autistic traits, or negative affect significantly influenced face recognition: diagnostic group membership was the only significant predictor of face recognition performance. In sum, face recognition performance in ASD is on a continuum, but with average levels significantly below non-ASD levels of performance. Copyright © 2011, International Society for Autism Research, Wiley-Liss, Inc.

  12. Beyond the Memory Mechanism: Person-Selective and Nonselective Processes in Recognition of Personally Familiar Faces

    Science.gov (United States)

    Sugiura, Motoaki; Mano, Yoko; Sasaki, Akihiro; Sadato, Norihiro

    2011-01-01

    Special processes recruited during the recognition of personally familiar people have been assumed to reflect the rich episodic and semantic information that selectively represents each person. However, the processes may also include person nonselective ones, which may require interpretation in terms beyond the memory mechanism. To examine this…

  13. On the Measurement of Criterion Noise in Signal Detection Theory: The Case of Recognition Memory

    Science.gov (United States)

    Kellen, David; Klauer, Karl Christoph; Singmann, Henrik

    2012-01-01

    Traditional approaches within the framework of signal detection theory (SDT; Green & Swets, 1966), especially in the field of recognition memory, assume that the positioning of response criteria is not a noisy process. Recent work (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008) has challenged this assumption, arguing not only…

  14. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory.

    Science.gov (United States)

    Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario

    2010-11-01

    When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Visual Sharpness Contingency in Recognition Memory for Orientation: Mnemonic Illusion Suppressed by Sensory Signature

    Science.gov (United States)

    Martin, Maryanne; Jones, Gregory V.

    2006-01-01

    A striking finding about human memory is that people's level of accuracy in remembering the orientation of heads on coins is often not simply at the chance level but significantly below it. However, S. W. Kelly, A. M. Burton, T. Kato, and S. Akamatsu (2001) reported that this is not so when two-alternative forced-choice visual recognition is…

  16. Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers.

    Science.gov (United States)

    Maza, Francisco Javier; Sztarker, Julieta; Shkedy, Avishag; Peszano, Valeria Natacha; Locatelli, Fernando Federico; Delorenzi, Alejandro

    2016-12-06

    The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods' higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods' high-order memory centers.

  17. Recognition and the Fleeting Glimpse of Intimacy: Tracing the Chaplain's Response to Ungrieved Death.

    Science.gov (United States)

    Coble, Richard

    2015-03-01

    The article traces the response of the hospital chaplain witnessing ungrieved death. Linking grief with cultural recognition, the article analyzes the absence of grief on the occasion of death within outcast social spheres. It then outlines the ways chaplains both participate in the cultural norms that render lives ungrievable and, conversely, in the solidarity of God, who cares for every life and death. The article closes by situating the chaplain as a liminal figure and proposing liminality itself as an opportunity for solidarity. © The Author(s) 2015 Reprints and permissions:sagepub.co.uk/journalsPermissions.nav.

  18. The role of relational binding in item memory: evidence from face recognition in a case of developmental amnesia.

    Science.gov (United States)

    Olsen, Rosanna K; Lee, Yunjo; Kube, Jana; Rosenbaum, R Shayna; Grady, Cheryl L; Moscovitch, Morris; Ryan, Jennifer D

    2015-04-01

    Current theories state that the hippocampus is responsible for the formation of memory representations regarding relations, whereas extrahippocampal cortical regions support representations for single items. However, findings of impaired item memory in hippocampal amnesics suggest a more nuanced role for the hippocampus in item memory. The hippocampus may be necessary when the item elements need to be bound within and across episodes to form a lasting representation that can be used flexibly. The current investigation was designed to test this hypothesis in face recognition. H.C., an individual who developed with a compromised hippocampal system, and control participants incidentally studied individual faces that either varied in presentation viewpoint across study repetitions or remained in a fixed viewpoint across the study repetitions. Eye movements were recorded during encoding and participants then completed a surprise recognition memory test. H.C. demonstrated altered face viewing during encoding. Although the overall number of fixations made by H.C. was not significantly different from that of controls, the distribution of her viewing was primarily directed to the eye region. Critically, H.C. was significantly impaired in her ability to subsequently recognize faces studied from variable viewpoints, but demonstrated spared performance in recognizing faces she encoded from a fixed viewpoint, implicating a relationship between eye movement behavior in the service of a hippocampal binding function. These findings suggest that a compromised hippocampal system disrupts the ability to bind item features within and across study repetitions, ultimately disrupting recognition when it requires access to flexible relational representations. Copyright © 2015 the authors 0270-6474/15/355342-09$15.00/0.

  19. Effect of General Anesthesia in Infancy on Long-Term Recognition Memory in Humans and Rats

    Science.gov (United States)

    Stratmann, Greg; Lee, Joshua; Sall, Jeffrey W; Lee, Bradley H; Alvi, Rehan S; Shih, Jennifer; Rowe, Allison M; Ramage, Tatiana M; Chang, Flora L; Alexander, Terri G; Lempert, David K; Lin, Nan; Siu, Kasey H; Elphick, Sophie A; Wong, Alice; Schnair, Caitlin I; Vu, Alexander F; Chan, John T; Zai, Huizhen; Wong, Michelle K; Anthony, Amanda M; Barbour, Kyle C; Ben-Tzur, Dana; Kazarian, Natalie E; Lee, Joyce YY; Shen, Jay R; Liu, Eric; Behniwal, Gurbir S; Lammers, Cathy R; Quinones, Zoel; Aggarwal, Anuj; Cedars, Elizabeth; Yonelinas, Andrew P; Ghetti, Simona

    2014-01-01

    Anesthesia in infancy impairs performance in recognition memory tasks in mammalian animals, but it is unknown if this occurs in humans. Successful recognition can be based on stimulus familiarity or recollection of event details. Several brain structures involved in recollection are affected by anesthesia-induced neurodegeneration in animals. Therefore, we hypothesized that anesthesia in infancy impairs recollection later in life in humans and rats. Twenty eight children ages 6–11 who had undergone a procedure requiring general anesthesia before age 1 were compared with 28 age- and gender-matched children who had not undergone anesthesia. Recollection and familiarity were assessed in an object recognition memory test using receiver operator characteristic analysis. In addition, IQ and Child Behavior Checklist scores were assessed. In parallel, thirty three 7-day-old rats were randomized to receive anesthesia or sham anesthesia. Over 10 months, recollection and familiarity were assessed using an odor recognition test. We found that anesthetized children had significantly lower recollection scores and were impaired at recollecting associative information compared with controls. Familiarity, IQ, and Child Behavior Checklist scores were not different between groups. In rats, anesthetized subjects had significantly lower recollection scores than controls while familiarity was unaffected. Rats that had undergone tissue injury during anesthesia had similar recollection indices as rats that had been anesthetized without tissue injury. These findings suggest that general anesthesia in infancy impairs recollection later in life in humans and rats. In rats, this effect is independent of underlying disease or tissue injury. PMID:24910347

  20. Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice.

    Science.gov (United States)

    Costa, M S; Botton, P H; Mioranzza, S; Souza, D O; Porciúncula, L O

    2008-06-02

    The beneficial effects of caffeine on cognition are controversial in humans, whereas its benefit in rodents had been well characterized. However, most studies were performed with acute administration of caffeine and the tasks used to evaluate cognition had aversive components. Here, we evaluated adulthood administration of caffeine up to old age on recognition memory in mice using the object recognition task (ORT) and on brain-derived neurotrophic factor (BNDF) and tyrosine kinase receptor (TrkB) immunocontent in the hippocampus. Adult mice (6 months old) received either drinking water or caffeine (1 mg/mL) during 12 months. At 18 months of age both groups were tested for ORT. Our results showed that aged mice exhibited lower performance in the recognition memory compared with adults (6 months old). Furthermore, caffeine-treated mice showed similar performance to adult mice in the ORT and an improvement compared with their age-matched control mice. Caffeine also counteracted the age-related increase in BDNF and TrkB immunocontent. Our results corroborate with other studies and reinforce that caffeine consumed in adulthood may prevent recognition memory decline with aging. This preventive effect may involve a decrease in the hippocampal BDNF and TrkB immunocontent.