WorldWideScience

Sample records for recirculating sand filters

  1. Recirculating electric air filter for use in confined spaces

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.; Kuhl, W.

    1985-01-01

    We have developed recirculating electric air filters for use in confined spaces where the existing ventilation system is not adequate for removing suspended particles. Two experimental filters were built and evaluated, both of which consisted of a cylindrical cartridge filter fitted over an air blower. In one design the cylindrical cartridge is a disposable unit with the electrodes and filter medium built as an integrated unit. The second design has a cylindrical cartridge that can be easily disassembled to allow replacement of the filter medium. Both designs were evaluated in a 354-ft 3 test cell using NaCl aerosols. The second design was installed and evaluated in a chamber where highly radioactive 238 PuO 2 powder is formed into pellets. We have derived equations that describe the theory of recirculating air filters. The predicted performance compares well with experimental measurements under controlled conditions. 2 refs., 7 figs., 1 tab. (DT)

  2. Evaluation of multistage filtration to reduce sand filter exhaust activity

    International Nuclear Information System (INIS)

    Zippler, D.B.

    1975-01-01

    Air from the Savannah River Plant Fuel Reprocessing facilities is filtered through deep bed sand filters consisting of 8 1 / 2 feet of gravel and sand. These filters have performed satisfactorily for the past 18 years in maintaining radioactive release levels to a minimum. The apparent filter efficiency has been determined for many years by measurements of the quantity of radioactivity in the air stream before and after the filter. Such tests have indicated efficiencies of 99.9 percent or better. Even with sand filter efficiency approaching a single stage HEPA filter, new emphasis on further reduction in release of plutonium activity to the environment prompted a study to determine what value backup HEPA filtration could provide. To evaluate the specific effect additional HEPA filtration would have on the removal of Pu from the existing sand filter exhaust stream, a test was conducted by passing a sidestream of sand-filtered air through a standard 24 x 24 x 11 1 / 2 in. HEPA filter. Isokinetic air samples were withdrawn upstream and downstream of the HEPA filter and counted for alpha activity. Efficiency calculations indicated that backup HEPA filtration could be expected to provide an additional 99 percent removal of the Pu activity from the present sand-filter exhaust. (U.S.)

  3. The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry

    DEFF Research Database (Denmark)

    Fadeyi, M.O.; Weschler, Charles J.; Tham, K.W.

    2009-01-01

    This study examined the impact of recirculation rates (7 and 14 h(-1)), ventilation rates (1 and 2 h(-1)), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling......, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35...

  4. K West Basin Sand Filter Backwash Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smoot, Margaret R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    A sand filter is used to help maintain water clarity at the K West Basin where highly radioactive sludge is stored. Eventually that sand filter will require disposal. The radionuclide content of the solids trapped in the sand filter will affect the selection of the sand filter disposal pathway. The Pacific Northwest National Laboratory (PNNL) was contracted by the K Basin Operations & Plateau Remediation Project (operations contractor CH2M Hill) to analyze the radionuclide content of the solids collected from the backwash of the K West Basin sand filter. The radionuclide composition in the sand filter backwash solids will be used by CH2M Hill to determine if the sand filter media and retained sludge solids will be designated as transuranic waste for disposal purposes or can be processed through less expensive means. On October 19, 2015, K Basin Operations & Plateau Remediation Project staff backwashed the sand filter into the North Load-Out Pit (NLOP) and immediately collected sample slurry from a sampling tube positioned 24 in. above the NLOP floor. The 764 g sand filter backwash slurry sample, KW-105 SFBW-001, was submitted to PNNL for analysis on October 20, 2015. Solids from the slurry sample were consolidated into two samples (i.e., a primary and a duplicate sample) by centrifuging and measured for mass (0.82 g combined – wet centrifuged solids basis) and volume (0.80 mL combined). The solids were a dark brown/orange color, consistent with iron oxide/hydroxide. The solids were dried; the combined dry solids mass was 0.1113 g, corresponding to 0.0146 weight percent (wt%) solids in the original submitted sample slurry. The solids were acid-digested using nitric and hydrochloric acids. Insoluble solids developed upon dilution with 0.5 M HNO3, corresponding to an average 6.5 wt% of the initial dry solids content. The acid digestate and insoluble solids were analyzed separately by gamma spectrometry. Nominally, 7.7% of the 60Co was present

  5. Evaluate of head loss, sediment value and copper removal in sand media (rapid sand filter

    Directory of Open Access Journals (Sweden)

    Daneshi Navab

    2014-06-01

    Full Text Available Along with the technology development and increasing consumption of water resources, we are experiencing low qualities in the mentioned resources. Copper brings about serious environment al pollution, threatening human health and ecosystem. This metal found variously in water resources and industrial activities. Therefore, it needs to treat the water resources from these excessive amounts. Different methods have used for this reason but the most used method during recent years has been the absorption by economic absorbers such as sand. Rapid sand filters usually used in water and wastewater treatment plants for water clarification. In this research, a single layer gravity rapid sand filter has used to reduce different concentrations of copper. sediment value and head loss arising in filter media is simulated by using combination of Carman-Kozeny, Rose and Gregory models in different discharges of rapid sand filter. Results have shown that with increasing in discharge and decreasing in input copper concentration, arriving time to given head loss, is increasing. In addition, results demonstrated that with increasing in copper concentration in influent, removal efficiency is decreasing somewhat. Results of this research can applied in an appropriate design of rapid sand filter to copper removal, a prediction of rapid sand filter ability to copper removal and an estimation of arising head loss during filter work thus evaluating of time interval backwash. DOI: http://dx.doi.org/10.3126/ije.v3i2.10641 International Journal of the Environment Vol.3(2 2014: 276-286

  6. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters.

    Science.gov (United States)

    Haig, Sarah-Jane; Quince, Christopher; Davies, Robert L; Dorea, Caetano C; Collins, Gavin

    2014-09-15

    Previous laboratory-scale studies to characterise the functional microbial ecology of slow sand filters have suffered from methodological limitations that could compromise their relevance to full-scale systems. Therefore, to ascertain if laboratory-scale slow sand filters (L-SSFs) can replicate the microbial community and water quality production of industrially operated full-scale slow sand filters (I-SSFs), eight cylindrical L-SSFs were constructed and were used to treat water from the same source as the I-SSFs. Half of the L-SSFs sand beds were composed of sterilized sand (sterile) from the industrial filters and the other half with sand taken directly from the same industrial filter (non-sterile). All filters were operated for 10 weeks, with the microbial community and water quality parameters sampled and analysed weekly. To characterize the microbial community phyla-specific qPCR assays and 454 pyrosequencing of the 16S rRNA gene were used in conjunction with an array of statistical techniques. The results demonstrate that it is possible to mimic both the water quality production and the structure of the microbial community of full-scale filters in the laboratory - at all levels of taxonomic classification except OTU - thus allowing comparison of LSSF experiments with full-scale units. Further, it was found that the sand type composing the filter bed (non-sterile or sterile), the water quality produced, the age of the filters and the depth of sand samples were all significant factors in explaining observed differences in the structure of the microbial consortia. This study is the first to the authors' knowledge that demonstrates that scaled-down slow sand filters can accurately reproduce the water quality and microbial consortia of full-scale slow sand filters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Aircraft Recirculation Filter for Air-Quality and Incident Assessment.

    Science.gov (United States)

    Eckels, Steven J; Jones, Byron; Mann, Garrett; Mohan, Krishnan R; Weisel, Clifford P

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters.

  8. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    Science.gov (United States)

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  9. Penggunaan Unit Slow Sand Filter, Ozon Generator dan Rapid Sand Filter Skala Rumah Tangga Untuk Meningkatkan Kualitas Air Sumur Dangkal Menjadi Air Layak Minum (Parameter Zat Organik dan Deterjen

    Directory of Open Access Journals (Sweden)

    Anindya Prawita Sari

    2014-09-01

    Full Text Available Air sumur merupakan air tanah yang sering kali digunakan masyarakat untuk aktivitas sehari-hari. Air sumur dengan kadar organik dan deterjen tinggi tidak layak dikonsumsi masyarakat karena dapat menyebabkan berbagai macam penyakit. Selain itu, adanya zat organik dan deterjen mempengaruhi warna dan bau air sumur sehingga tidak layak konsumsi. Slow sand filter merupakan unit pengolahan yang mampu meremoval zat organik pada air. Slow sand filter dan rapid sand filter tidak menggunakan bahan kimia dalam proses pengolahan sehingga lebih ekonomis dan efektif. Sedangkan ozon, efektif digunakan untuk meremoval zat organik yang ada dalam air dengan mengubah rantai zat organik menjadi lebih sederhana. Tujuan penelitian ini adalah untuk mengetahui keefektifan penggunaan slow sand filter, ozon generator dan rapid sand filter dalam menyisihkan beban deterjen dan zat organik pada air sumur. Hasil penelitian menunjukkan bahwa efisiensi removal pada unit slow sand filter untuk beban organik dan deterjen sebesar 57,6% dan 60,5 %, pada unit ozonasi sebesar 47,4% dan 17,5%, dan pada unit rapid sand filter sebesar 50,0% dan 50,9 %.

  10. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters.

    Science.gov (United States)

    Li, Zhen; Aly Hassan, Ashraf; Sahle-Demessie, Endalkachew; Sorial, George A

    2013-11-01

    This article characterizes, experimentally and theoretically, the transport and retention of engineered nanoparticles (NP) through sand filters at drinking water treatment plants (DWTPs) under realistic conditions. The transport of four commonly used NPs (ZnO, CeO2, TiO2, and Ag, with bare surfaces and coating agents) through filter beds filled with sands from either acid washed and calcined, freshly acquired filter media, and used filter media from active filter media, were investigated. The study was conducted using water obtained upstream of the sand filter at DWTP. The results have shown that capping agents have a determinant importance in the colloidal stability and transport of NPs through the different filter media. The presence of the biofilm in used filter media increased adsorption of NPs but its effects in retaining capped NPs was less significant. The data was used to build a mathematical model based on the advection-dispersion equation. The model was used to simulate the performance of a scale-up sand filter and the effects on filtration cycle of traditional sand filtration system used in DWTPs. Published by Elsevier Ltd.

  11. Submerged Pond Sand Filter-A Novel Approach to Rural Water Supply

    DEFF Research Database (Denmark)

    Øhlenschlæger, Mia; Christensen, Sarah Christine Boesgaard; Bregnhøj, Henrik

    2016-01-01

    This study describes the new design and function of a modified version of a traditional slow sand filter. The Submerged Pond Sand Filter is built inside a pond and has a vertical as well as a horizontal flow of water through a sloped filter opening. The filter provides treated drinking water...... to a rural Indian village. The filter has functioned with minimal maintenance for five years without being subject to the typical scraping off and changing of sand as needed in traditional slow sand filters every few months. This five-year study showed bacterial removal efficiency of 97% on average...... to 10 CFU/100 mL on average compared to shorter pumping intervals (5 min). Though the treated water did not comply with the World Health Organization standards of 0 CFU/100 mL, the filter significantly improved water quality and provided one of the best sources of drinkable water in a water...

  12. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Arvin, Erik; Corfitzen, Charlotte B.

    2014-01-01

    and secondary rapid sand filters. Water quality parameters were measured throughout the waterworks, and they behaved as designed for. MCPP was removed in secondary rapid sand filters — removal was the greatest in the sand filters in the filter line with the highest contact time (63min). In these secondary sand...... in the full-scale system. Therefore, microcosms were set up with filter sand, water and 14C-labelled MCPP at an initial concentration of 0.2μg/L. After 24h, 79–86% of the initial concentration of MCPP was removed. Sorption removed 11–15%, while the remaining part was removed by microbial processes, leading...... to a complete mineralisation of 13–18%. Microbial removal in the filter sand was similar at different depths of the rapid sand filter, while the amount of MCPP which adsorbed to the filter sand after 48h decreased with depth from 21% of the initial MCPP in the top layer to 7% in the bottom layer...

  13. Stratification of nitrification activity in rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Musovic, Sanin

    2013-01-01

    Rapid sand filters used in groundwater treatment remove ammonium, iron and manganese from the water. Ammonium is removed biologically by nitrifying microorganisms attached on the sand surface. Nitrification kinetics and activity is strongly affected by filter design and operation, which are the key...... and maximum nitrification capacity are derived and used to quantify nitrification activity. Nitrification activity was concentrated at the top 10 cm of filter depth, and maximum nitrification capacity was 7 g NH4+-N/ m3 sand/h compared with 0.8-0.4 g NH4+-N/ m3 sand/h in the middle and bottom layers. A water...... of this study is to investigate nitrification activity in a rapid sand filter, with focus on its homogeneity and how it relates to filter performance. Two groundwater treatment plants in Denmark were selected for the experimental investigations. Plant 1 operates a single line of pre and after filters and has...

  14. Removal method of radium in mine water by filter sand

    International Nuclear Information System (INIS)

    Taki, Tomihiro; Naganuma, Masaki

    2003-01-01

    Trace radium is contained in mine water from the old mine road in Ningyo-Toge Environmental Engineering Center, JNC. We observed that filter sand with hydrated manganese oxide adsorbed radium in the mine water safely for long time. The removal method of radium by filter sand cladding with hydrated manganese oxide was studied. The results showed that radium was removed continuously and last for a long time from mine water with sodium hypochlorite solution by passing through the filter sand cladding with hydrated manganese. Only sodium hypochlorite solution was used. When excess of it was added, residue chlorine was used as chlorine disinfection. Filter sand cladding with hydrated manganese on the market can remove radium in the mine water. The removal efficiency of radium is the same as the radium coprecipitation method added with barium chloride. The cost is much lower than the ordinary methods. Amount of waste decreased to about 1/20 of the coprecipitation method. (S.Y.)

  15. Sand filter clogging by septic tank effluent.

    Science.gov (United States)

    Spychała, M; Błazejewski, R

    2003-01-01

    The aim of this study was to characterise conditions and factors affecting fine sand clogging by septic tank effluent on the basis of physical modelling. The physical model consisted of 12 sand columns dosed with sewage from one household (5 persons), preliminary treated in a septic tank. Hydraulic loadings of the sand filters were equal to 82 mm/d. The mean discharge from sand columns, measured as the effluent volume collected during 10 minutes, decreased significantly over the experiment period from 34 cm3/min in August 2000 to 20 cm3/min in August 2001 at the same temperature of about 20 degrees C. First the columns clogged almost completely after 480 days in December 2001, however six columns had remained unclogged till the end of the experiment (March 2002). The temperature had a significant impact on hydraulic conductivity. A vertical distribution of accumulated mass and biomass was investigated in partly clogged sand. Microscopic survey of the clogging layer showed a presence of live micro-organisms, residuals of dead micro-organisms, particularly pieces of small animal armour and many fibres. These particles accelerated the accumulation of solids in the upper clogging layer. The study indicated that temperature impact on the filter hydraulic conductivity was more significant for biological activity, than for sewage viscosity.

  16. Microbial pesticide removal in rapid sand filters for drinking water treatment – Potential and kinetics

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    2014-01-01

    Filter sand samples, taken from aerobic rapid sand filters used for treating groundwater at three Danish waterworks, were investigated for their pesticide removal potential and to assess the kinetics of the removal process. Microcosms were set up with filter sand, treated water, and the pesticides...... or metabolites mecoprop (MCPP), bentazone, glyphosate and p-nitrophenol were applied in initial concentrations of 0.03–2.4 μg/L. In all the investigated waterworks the concentration of pesticides in the water decreased – MCPP decreased to 42–85%, bentazone to 15–35%, glyphosate to 7–14% and p-nitrophenol 1....../L) increased from 0.21%/g filter sand to 0.75%/g filter sand, when oxygen availability was increased from 0.28 mg O2/g filter sand to 1.09 mg O2/g filter sand. Bentazone was initially cleaved in the removal process. A metabolite, which contained the carbonyl group, was removed rapidly from the water phase...

  17. A Simple Slow-Sand Filter for Drinking Water Purification

    Directory of Open Access Journals (Sweden)

    K. O. Yusuf

    2017-04-01

    Full Text Available Water-borne diseases are commonly encountered when pathogen-contaminated water is consumed. In rural areas, water is usually obtained from ponds, open shallow wells, streams and rain water during rainy season. Rain water is often contaminated by pathogens due to unhygienic of physical and chemical conditions of the roofs thereby making it unsafe for consumption. A simple slow sand filter mechanism was designed and fabricated for purification of water in rural areas where electricity is not available to power water purification devices. Rain water samples were collected from aluminum roof, galvanized roof and thatched roof. The waters samples were allowed to flow through the slow sand filter. The values of turbidity, total dissolved solids, calcium, nitrite, faecal coliform and total coliform from unfiltered water through thatched roof were 0.92 NTU, 27.23 mg/l, 6 mg/l, 0.16 mg/l, 5cfu/100ml and 6.0 cfu/100ml, respectively while the corresponding values for slow sand filter from thatched roof were 0.01 NTU, 0.23 mg/l, 2.5 mg/l, 0.1 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values of turbidity, total dissolved solid, nitrite, calcium, faecal coliform and total coliform from unfiltered water for aluminum roof were 0.82 NTU, 23.68 mg/l, 2.70 mg/l, 1.0 mg/l, 4 cfu/100ml and 4cfu/100ml, respectively while the corresponding values for slow sand filter were 0.01 NTU, 0.16 mg/l, 0.57 mg/l, 0.2 mg/l, 0 cfu/100ml and 0 cfu/100ml, respectively. The values obtained for galvanized roof were also satisfactory. The slow sand filter is recommended for used in rural areas for water purification to prevent risk of water-borne diseases.

  18. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    OpenAIRE

    Phuong, NguyenThi; Andisetiawan, Anugrah; Van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-01-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has be...

  19. Sorption and desorption of arsenic to ferrihydrite in a sand filter.

    Science.gov (United States)

    Jessen, Soren; Larsen, Flemming; Koch, Christian Bender; Arvin, Erik

    2005-10-15

    Elevated arsenic concentrations in drinking water occur in many places around the world. Arsenic is deleterious to humans, and consequently, As water treatment techniques are sought. To optimize arsenic removal, sorption and desorption processes were studied at a drinking water treatment plant with aeration and sand filtration of ferrous iron rich groundwater at Elmevej Water Works, Fensmark, Denmark. Filter sand and pore water were sampled along depth profiles in the filters. The sand was coated with a 100-300 microm thick layer of porous Si-Ca-As-contaning iron oxide (As/Fe = 0.17) with locally some manganese oxide. The iron oxide was identified as a Si-stabilized abiotically formed two-line ferrihydrite with a magnetic hyperfine field of 45.8 T at 5 K. The raw water has an As concentration of 25 microg/L, predominantly as As(II). As the water passes through the filters, As(III) is oxidized to As(V) and the total concentrations drop asymptotically to a approximately 15 microg/L equilibrium concentration. Mn is released to the pore water, indicating the existence of reactive manganese oxides within the oxide coating, which probably play a role for the rapid As(III) oxidation. The As removal in the sand filters appears controlled by sorption equilibrium onto the ferrihydrite. By addition of ferrous chloride (3.65 mg of Fe(II)/L) to the water stream between two serially connected filters, a 3 microg/L As concentration is created in the water that infiltrates into the second sand filter. However, as water flow is reestablished through the second filter, As desorbs from the ferrihydrite and increases until the 15 microg/L equilibrium concentration. Sequential chemical extractions and geometrical estimates of the fraction of surface-associated As suggest that up to 40% of the total As can be remobilized in response to changes in the water chemistry in the sand filter.

  20. Application of Self Cleaning Rapid Sand Filter in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2005-08-01

    Full Text Available Rapid sand filter is one of the most important units in the water treatment plants. It has some difficulties in operation such as backwashing. For the solving of this problem a rapid sand filter has designed and built with the self-cleaning backwashing system. This system consist of 3 main constituents; one galvanized siphon and two galvanized steel tanks. One of them is used for filtration and the other used for the storage of filtrated water in elevation for backwashing the system. Water enter from upside of the filter through the inlet pipe, and collected from the under drainage pipe. Then filter water conduct to the storage tank and exit from outlet pipe. In the beginning, the head loss was low, but because of bed clogging by suspended solids, it increases gradually to the designed head loss (1.2m. Then the system is outed of the service automatically and the backwash is began. The main data for the design of system selected from the hydraulic rules of siphons and rapid sand filter criteria. After essential calculations it was constructed and was started operation. For the hydraulic studies a known volume of storage tank was selected and the time needed for the fill (in filtration stage and empty (in backwash stage of water volume with volumetric method were measured. In hydraulic studies the filter surface rate (SOR was selected about 5-7.5m3/m2/hr (1.39-2.08 lit/sec and the flow of water in siphon, during the backwashing was measured 8.7 lit/sec. It can be seen that the siphon passes 4-6 times the inlet raw water thus a negative pressure will created in the siphon which causes the water above the sand bed to be discharged automatically and rinse water from elevated tank flow under the sand bed and back wash it. So according to this study self cleaning rapid sand filter is very useful for water filtration, especially in small population community. The construction of system is rapid, simple and economic.

  1. Processes of microbial pesticide degradation in rapid sand filters for treatment of drinking water

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    Aerobic rapid sand filters for treatment of groundwater at waterworks were investigated for the ability to remove pesticides. The potential, kinetics and mechanisms of microbial pesticide removal was investigated in microcosms consisting of filter sand, treated water and pesticides in initial...... concentrations of 0.04-2.4 μg/L. The pesticides were removed from the water in microcosms with filter sand from all three investigated sand filters. Within the experimental periode of six to 13 days, 65-85% of the bentazone, 86-93% of the glyphosate, 97-99% of the p-nitrophenol was removed from the water phase...

  2. Microbial degradation of pesticides in rapid sand filters for treatment of drinking water

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Albrechtsen, Hans-Jørgen

    2014-01-01

    In Denmark drinking water supply is based on groundwater which is treated by aeration followed by filtration in rapid sand filters. Unfortunately pesticide contamination of the groundwater poses a threat to the water supply, since the simple treatment process at the waterworks is not considered...... to remove pesticides from the water phase and pesticides are detected in 24% of the active Danish waterworks wells. This study aimed at investigating the potential of microbial pesticide removal in rapid sand filters for drinking water treatment. Removal of the pesticides MCPP, bentazone, glyphosate...... and the degradation compound p-nitrophenol was investigated in the rapid sand filters at Islevbro and Sjælsø waterworks plant I and II. Microcosms were set up with sand from rapid sand filters, water and an initial pesticide concentration of 0.03-0.38 μg/L. In all the investigated waterworks the concentration...

  3. Optimizing nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Smets, Barth F.; Lee, Carson Odell

    Addition of phosphate or trace metals or better management e.g. in terms of anmonium load can improve the nitrification rate and efficiency in biological rapid sand filters.......Addition of phosphate or trace metals or better management e.g. in terms of anmonium load can improve the nitrification rate and efficiency in biological rapid sand filters....

  4. Biodegradation of gasoline compounds (BTEX) in a water works sand filter

    DEFF Research Database (Denmark)

    Arvin, Erik; Engelsen, P.; Sebber, U.

    2004-01-01

    Various chemical compounds including aromatic gasoline compounds frequently contaminate drinking water wells in urban areas. Because ground water treatment is simple, usually consisting of aeration/stripping and sand-filtration, it is of significant interest to know the ability of the conventional...... treatment to remove the chemical contaminants. The removal of gasoline compounds was investigated in a two-stage pilot scale sand filter, each with a filter depth of 0.8-1 m and with a filtration rate of 7.6 m/h. The concentrations of aromatic compounds were in the range 7-15 mu g/L, which are realistically...... sand grains). Influent iron concentrations in the range 0-4 mg/L and backwashing did not adversely affect the biodegradation of hydrocarbons. This study has shown that a conventional biological active sand filter can act as an efficient barrier against gasoline compounds, thereby saving the consumer...

  5. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.

    Science.gov (United States)

    Nitzsche, Katja Sonja; Lan, Vi Mai; Trang, Pham Thi Kim; Viet, Pham Hung; Berg, Michael; Voegelin, Andreas; Planer-Friedrich, Britta; Zahoransky, Jan; Müller, Stefanie-Katharina; Byrne, James Martin; Schröder, Christian; Behrens, Sebastian; Kappler, Andreas

    2015-01-01

    Household sand filters are applied to treat arsenic- and iron-containing anoxic groundwater that is used as drinking water in rural areas of North Vietnam. These filters immobilize poisonous arsenic (As) via co-oxidation with Fe(II) and sorption to or co-precipitation with the formed Fe(III) (oxyhydr)oxides. However, information is lacking regarding the effect of the frequency and duration of filter use as well as of filter sand replacement on the residual As concentrations in the filtered water and on the presence of potentially pathogenic bacteria in the filtered and stored water. We therefore scrutinized a household sand filter with respect to As removal efficiency and the presence of fecal indicator bacteria in treated water as a function of filter operation before and after sand replacement. Quantification of As in the filtered water showed that periods of intense daily use followed by periods of non-use and even sand replacement did not significantly (psand replacement, CFUs of Escherichia coli of sand filters regarding As removal, but indicate a potential risk for human health arising from the enrichment of coliform bacteria during filtration and from E. coli cells that are introduced by sand replacement. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Removal of heavy metals using a microbial active, continuously operated sand filter

    International Nuclear Information System (INIS)

    Ebner, C.

    2001-01-01

    Heavy metals play an important role within the spectrum of the various pollutants, emitted into the environment via human activities. In contrast to most organic pollutants, heavy metal can not be degraded. Many soils, lakes and rivers show a high contamination with heavy metals due to the enrichment of these pollutants. In addition to existing chemical-physical and biological technologies for the treatment of heavy metal containing waste waters a demand for new, efficient and low-cost cleaning technologies exists, particularly for high volumes of weakly contaminated waters. Such a technology was developed within the framework of a scientific project of the European Union. The approach makes use of a continuously operated, moving-bed Astrasand filter, which has been operated as a continuous biofilm reactor. By inoculation of the reactor with bacteria providing different, defined mechanisms of metal immobilization, and by continuous supply of suitable nutrients, a metal-immobilizing biofilm is built up and regenerated continuously. Metal-enriched biomass is removed continuously from the system, and the contained metals can be recycled by pyrometallurgical treatment of the biomass. The subjects of the present work were the optimization of the nutrient supply for the process of metal removal, the investigation of the toxicity of different waste waters, the optimization of inoculation and biofilm formation, set-up and operation of a lab scale sand filter and the operation of a pilot scale sand filter treating rinsing water of a chemical nickel plating plant. First, basic parameters like toxicity of heavy metal-containing waste waters and the influence of the nutrition of bacteria on biosorption and total metal removal were examined, using freely suspended bacteria in batch culture. Concerning toxicity great differences could be found within the spectrum of heavy metal-containing waste waters tested. Some waters completely inhibited growth, while others did not

  7. Discovery and description of complete ammonium oxidizers in groundwater-fed rapid sand filters

    DEFF Research Database (Denmark)

    Palomo, Alejandro

    as biological filtration has long been acknowledged and recently been investigated. Biological filtration technology is widely used around the world and is especially important in Denmark as groundwater is the main source water for drinking water production. Because the groundwater has a relative high-quality......, aeration followed by biological filtration is the only required treatment before distribution. In the last years, the microbial communities in rapid gravity sand filters, the typical biological filter used in Denmark, have been characterized, but little knowledge had been required about their physiological...... activity and roles in compound removal from the source water. This PhD project focused on a comprehensive investigation of the microbial communities in rapid sand filters beyond their purely taxonomical identification. For this purpose, samples collected from a rapid sand filter were subjected...

  8. Performance of sand filters for the separations areas at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Orth, D.A.; Sykes, G.H.; McKibben, J.M.

    1981-01-01

    Two new large sand filters, 30.5 by 100 m, were constructed and put into service at the Savannah River Plant (SRP) in 1975 and 1976. These units were designed to provide final filtration of process air - one for each of the two separations areas. Eventual flow will be 4950 m 3 /min (205,000 scfm) on each unit when all facilities are connected. They were built as replacements for the original sand filters that began operation in 1954 and 1955. The new filters have been operated in parallel with the old units following partial failure of the old units from acid attack and erosion of the concrete support structure for the sand beds. The design of the new units was based on extensive tests at SRP on characteristics of different sands. The performance of the new filters meets criteria for pressure drop, flow capacity, and efficiency. The efficiencies measured by DOP test are greater than 99.98%. Parallel operation reduces air velocity through the beds, which increases efficiency. A characteristic of sand filter performance has been low apparent efficiency at low input; efficiency increases as the activity input rises. This is attributed to a small entrainment release from the large amount of activity already sorbed on the filter; this release controls and lowers the calculated efficiency at low input. An analysis of efficiency as a function of input activity projects efficiencies greater than 99.99% for large inputs that might be characteristic of large internal accidents. The data indicate that DOP efficiencies can be used in hazards analyses to determine accident consequences. Routine evaluation of filter releases can be used for surveillance to establish that performance is normal at other times

  9. Hydrodynamic calculation of a filter sand bed type used in the containment venting systems

    International Nuclear Information System (INIS)

    Cuevas V, D.; Sainz M, E.; Ortiz V, J.

    2015-09-01

    The filtered venting of the containment has been adopted in European countries to mitigate the consequences of excess pressure containment during a severe accident. When venting has taken place, the fission products are released directly into the environment, unless a filter on the same path is placed, so that various types of filters are used to trap the fission products. The venting filters of the containment currently installed use different filtration technologies that involve more than one medium. Those using water as the first stage of filtration are called wet systems and are equipped with additional steps to remove water drops and fine aerosols emissions. And even they may also be equipped with an element containing certain absorption means for the filtration of gaseous iodine species. Other designs based on filtration of deep bed as the primary retention step; called dry filters, use filtration media of metal fiber, ceramic or sand to trap aerosols. This paper evaluates the hydraulic characteristics of the filter sand bed type designed by EDF as a candidate to be installed in the containment of BWR Mark II (type of primary containment of the nuclear power plant of Laguna Verde). The evaluation of filter sand bed type was performed using the software package of open source OpenFOAM. Models of each zone of the filtered device were generated and through a series of parametric calculations of computational fluid mechanics relevant hydrodynamic characteristics of the device were obtained, such as pressure drops against mass flow rate and pressure fields and speed at different operating conditions. On the other hand, the model validation of the sand bed filter when comparing the results of experimental tests on a sand column of PITEAS program (1985-1986) against OpenFOAM simulation was realized. The results are very close to those obtained experimentally. (Author)

  10. INFLUENCE OF SLUDGE RECIRCULATION ON NUTRIENT REMOVAL IN SUBMERGED MEMBRANE BIOREACTORS

    Directory of Open Access Journals (Sweden)

    María Casamitjanaa Causa

    2015-06-01

    Full Text Available Membrane bioreactors (MBR technology is a well-developed wastewater treatment process; however, the integrated operation between biological reactions and physical filtration has been poorly studied. Among other operational parameters, optimal control of sludge recirculation can enhance nitrogen and phosphorous removal processes, but the effects on sludge filterability is not clear. In this paper, different recirculation flow rates were tested to evaluate consequences on sludge filterability and nutrient removal in a MBR-UCT pilot plant treating real municipal wastewater. Three distinct sludge recirculation flows were studied during 10 weeks [external recirculation (from the membrane tank to the anoxic reactor, anoxic recirculation (from the aerobic to the anoxic reactor and anaerobic recirculation (from the anoxic to the anaerobic reactor]. The obtained results have shown that anaerobic recirculation affected nutrient removal in an inversely proportional way, whereas anoxic recirculation had a directly proportional effect. Referring sludge characteristics, filterability and capillarity suction time (CST remained independent of sludge recirculation, whereas CST is proportional to transmembrane pressure (TMP, which seems to depend on external and anoxic sludge recirculation.

  11. NEW APPROACH TO MODELLING OF SAND FILTER CLOGGING BY SEPTIC TANK EFFLUENT

    Directory of Open Access Journals (Sweden)

    Jakub Nieć

    2016-04-01

    Full Text Available The deep bed filtration model elaborated by Iwasaki has many applications, e.g. solids removal from wastewater. Its main parameter, filter coefficient, is directly related to removal efficiency and depends on filter depth and time of operation. In this paper the authors have proposed a new approach to modelling, describing dry organic mass from septic tank effluent and biomass distribution in a sand filter. In this approach the variable filter coefficient value was used as affected by depth and time of operation and the live biomass concentration distribution was approximated by a logistic function. Relatively stable biomass contents in deeper beds compartments were observed in empirical studies. The Iwasaki equations associated with the logistic function can predict volatile suspended solids deposition and biomass content in sand filters. The comparison between the model and empirical data for filtration lasting 10 and 20 days showed a relatively good agreement.

  12. Post-accident recirculation filters for fission product removal from the containment atmosphere

    International Nuclear Information System (INIS)

    Dillmann, H.G.; Pasler, H.

    1975-01-01

    The prototype post-accident recirculation filters have been subjected to further tests made under various conditions. The filter system exposed to hot air of 160 0 C and to saturated steam up to 1 atm and temperatures between 108 0 C and 160 0 C yielded for residence times of 0.2 sec after 18 days of permanent operation removal efficiencies > 99.98% for CH 3 J with a flow of 1,200 m 3 /h. Induced by previous experimental results the adsorber material was examined for transportation of the impregnation by the air-steam mixture. No measurable transportation was found (detection limit 0.6 x 10 -6 g Ag when 32 g of sorption material were used) under different conditions up to temperatures of 200 0 C in superheated steam over a duration of the experiment of 48 h. (orig.) [de

  13. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Boe-Hansen, Rasmus; Musovic, Sanin

    2014-01-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification...... operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal...... rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot...

  14. Numerical modelling of the erosion and deposition of sand inside a filter layer

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; van Gent, Marcel R. A.; Fredsøe, Jørgen

    2017-01-01

    This paper treats the numerical modelling of the behaviour of a sand core covered by rocks and exposed to waves. The associated displacement of the rock is also studied. A design that allows for erosion and deposition of the sand core beneath a rock layer in a coastal structure requires an accurate...... prediction method to assure that the amount of erosion remains within acceptable limits. This work presents a numerical model that is capable of describing the erosion and deposition patterns inside of an open filter of rock on top of sand. The hydraulic loading is that of incident irregular waves...... and the open filters are surface piercing. Due to the few experimental data sets on sediment transport inside of rock layers, a sediment transport formulation has been proposed based on a matching between the numerical model and experimental data on the profile deformation inside an open filter. The rock layer...

  15. Comparing Mixed-Media and Conventional Slow-Sand Filters for Arsenic Removal from Groundwater

    Directory of Open Access Journals (Sweden)

    Karolina M. Śmiech

    2018-01-01

    Full Text Available Arsenic contamination of groundwater is a major public health concern worldwide. The problem has been reported mainly in southern Asia and, especially, in Bangladesh. Slow-sand filters (SSF augmented with iron were proven to be a simple, low-cost and decentralized technique for the treatment of arsenic-contaminated sources. In this research, three pilot-scale SSF (flowrate 6 L·h−1 were tested regarding their capability of removing arsenic from groundwater in conditions similar to those found in countries like Bangladesh (70 µg As(III L−1, 26 °C. From the three, two filters were prepared with mixed media, i.e., sand mixed with corrosive iron matter (CIM filter and iron-coated sand (ICS filter, and a third conventional SSF was used as a reference. The results obtained showed that the CIM filter could remove arsenic below the World Health Organization (WHO guideline concentration of 10 µg·L−1, even for inlet concentrations above 150 µg·L−1. After 230 days of continuous operation the arsenic concentration in the effluent started increasing, indicating depletion or saturation of the CIM layer. The effluent arsenic concentration, however, never exceeded the Bangladeshi standard of 50 µg·L−1 throughout the whole duration of the experiments.

  16. Nano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates

    Science.gov (United States)

    Phuong, Nguyenthi; Andisetiawan, Anugrah; van Lam, Do; Kim, Jeong Hwan; Choi, Doo-Sun; Whang, Kyung-Hyun; Nham, Jeasun; Lee, Yun Jung; Yoo, Yeong-Eun; Yoon, Jae Sung

    2016-11-01

    Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can be considered as effective pores in nanoscale dimension. Anodic aluminum oxide (AAO) membrane has been used as the working template, and the nanoparticles have been injected and embedded within the pores of the AAO template. Nanoparticles with multiple sizes have been used in order to obtain smaller voids. Moreover, the nanoparticles have been functionalized, or electrically charged, with arginine/phenylalanine (RF) peptide group. In this way, filtration performance for charged particles or molecules, such as methylene blue, has been enhanced. Consequently, this study is expected to provide a new principle for fabrication of nano voids, or nano pores, and for filtration in nanoscale dimension.

  17. Drawer compacted sand filter: a new and innovative method for on-site grey water treatment.

    Science.gov (United States)

    Assayed, Almoayied; Chenoweth, Jonathan; Pedley, Steven

    2014-01-01

    In this paper, results ofa new sand filter design were presented. The drawer compacted sand filter (DCSF) is a modified design for a sand filter in which the sand layer is broken down into several layers, each of which is 10 cm high and placed in a movable drawer separated by a 10 cm space. A lab-scale DCSF was designed and operated for 330 days fed by synthetic grey water. The response of drawer sand filters to variable hydraulic and organic loading rates (HLR and OLR) in terms of biological oxygen demand (BODs), chemical oxygen demand (COD), total suspended solids (TSS), pH, electrical conductivity and Escherichia coli reductions were evaluated. The HLR was studied by increasing from 72 to 142 L m(-2) day(-1) and OLR was studied by increasing it from 23 to 30 g BOD5 m(-2) day(-1) while keeping the HLR constant at 142 L m(-2) day(-1). Each loading regime was applied for 110 days. Results showed that DCSF was able to remove >90% of organic matter and total suspended solids for all doses. No significant difference was noticed in terms of overall filter efficiency between different loads for all parameters. Significant reduction in BOD5 and COD (P water was drained through the third drawer in all tested loads. The paper concludes that DCSF would be appropriate for use in dense urban areas as its footprint is small and is appropriate for a wide range of users because of its convenience and low maintenance requirements.

  18. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential...... enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium...... to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent concentrations of below 0.01 mg NH4-N L-1, and had a long-term effect on nitrification performance....

  19. Recirculating electric air filter

    Science.gov (United States)

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  20. Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems.

    Science.gov (United States)

    Sabiri, N E; Castaing, J B; Massé, A; Jaouen, P

    2012-01-01

    In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater. Removal efficiency and capture mechanisms for a fixed superficial velocity (3.5 m/h) were evaluated in relation to size distribution and mean diameter of the sand. Various sands (average diameter ranging between 200 microm and 600 microm) were characterized and used as porous media. The structural parameters of the fixed beds were evaluated for each medium using experimental measurements of pressure drop as a function of superficial velocity over a range of Reynolds numbers covering Darcy's regime and the inertial regime. For a filtration cycle of six hours, the best efficiency (E = 90%) was obtained with the following sand characteristics: sieved sand with a range of grain diameter of 100 and 300 microm and a mean grain diameter equal to 256 microm. Results obtained show the influence of the size distribution of sand on the quality of retention of the micro-algae studied.

  1. Microbial degradation of pesticides in rapid sand filters used for drinking water treatment

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen

    significantly with the maximum methane concentration in the raw water and did not correlate with other water quality parameters, such as the ammonium concentration. Furthermore, the connection between bentazone degradation and methane oxidation in filter sand was demonstrated by inhibition experiments, in which...... sustainable methods to remove pesticides from polluted water sources. Aeration of anaerobic groundwater, followed by biological rapid sand filtration is a widespread technology in drinking water treatment. Even though these systems are not designed for removal of trace contaminants, they have shown potential...... for microbial degradation of pesticides and their degradation products. If pesticides can be removed in rapid sand filters, it is of large commercial interest due to the importance in maintaining a simple, sustainable water treatment. To take advantage of the microbial pesticide degradation and identify...

  2. Different depth intermittent sand filters for laboratory treatment of synthetic wastewater with concentrations close to measured septic tank effluent.

    Science.gov (United States)

    Rodgers, M; Walsh, G; Healy, M G

    2011-01-01

    The objective of this study was to apply hydraulic and chemical oxygen demand (COD) loading rates at the upper limits of the design criteria for buried sand filters to test the sand filter depth design criteria. Over a 274-day study duration, synthetic effluent with a strength of domestic wastewater was intermittently dosed onto two sand filters of 0.2 m diameter, with depths of 0.3 and 0.4 m. Hydraulic and organic carbon loading rates of 105 L m(-2) d(-1) and 40 g COD m(-2) d(-1), respectively, were applied to the filters. The filters did not clog and had good effluent removal capabilities for 274 and 190 days, respectively. However, the 0.3 m-deep filter did experience a reduced performance towards the end of the study period. In the 0.3 and 0.4 m-deep filters, the effluent COD and SS concentrations were less than 86 and 31 mg L(-1), respectively, and nitrification was nearly complete in both these columns. Ortho-phosphorus (PO(4)-P) removal in fine sand and laterite 'upflow' filters, receiving effluent from the 0.3 m-deep filter, was 10% and 44%, respectively.

  3. Managing Vegetation on Peat-Sand Filter Beds for Wastewater Disposal

    Science.gov (United States)

    Arthur E. Elling

    1985-01-01

    Five species of grass, one sedge, and cattail were grown on a peat-sand filter bed irrigated with sewage effluent. Yields, uptake of nitrogen and phosphorus, and lodging problems were determined for all species when grown to various heights ranging from 5 to 75 cm.

  4. Technical review of WSRC-TR-93-614 criticality safety evaluation for disassembly basin sand filter

    International Nuclear Information System (INIS)

    Reed, R.L.

    1994-01-01

    The study documented in WSRC-TR-93-614 performed an evaluation of the criticality potential associated with the Disassembly Basin Sand Filter for K and L Areas. The document reviewed incorporated results of calculations documented in the engineering calculation N-CLC-K-00151. Analyses of the contents of disassembly basin sludge has indicated that the sludge contains fissile material in excess of subcritical mass limits as specified in ANSI/ANS standards. Previous studies had determined that the fissile material can not collect into a critical configuration in the basin. Since the sand filter is intended to remove suspended particles from the basin water and could serve as a mechanism to collect the fissile material into a critical configuration, the study examined conditions under which criticality could occur in the sand filter. The study shows that criticality is not considered possible in the sand filter. This review emphasized the technical accuracy and presentation of the evaluation. The evaluation was also examined for the elements required for NCSEs. The review was performed in accordance with the NRTSC technical review requirements and procedures and the E7 Manual technical review requirements. The technical review (per the E7 manual) of the engineering calculation (N-CLC-K-0 1 5 1) was previously performed by this reviewer

  5. Experimental research on accelerated consolidation using filter jackets in fine oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Tol van, F.; Yao, Y.; Paaseen van, L.; Everts, B. [Delft Univ. of Technology, Delft (Netherlands). Dept. of Geotechnology

    2010-07-01

    This PowerPoint presentation discussed prefabricated vertical drains used to enhance the dewatering of fine oil sand tailings. Filtration tests conducted with thickened tailings on standard PVD jackets were presented. Potential clogging mechanisms included clogging of the filter jacket by particles, blinding of the jackets by filter cake, the decreased permeability of consolidated tailings around the drain, and the clogging of the filter jacket with bitumen. Polypropylene and polyester geotextiles were tested in a set-up that replicated conditions observed at 5 to 10 meters below mud level in an oil sand tailings pond. A finite strain consolidation model was used to interpret results obtained in the experimental study. The relationship between the void ratio and hydraulic conductivity was investigated. Results of the study showed that neither the bitumen nor the fines in the sludge cause serious blinding of the filter jackets during the 40 day test period. The consolidation process was adequately simulated with the finite strain consolidation model. tabs., figs.

  6. Analysis of the implementation of a sand bed type filter for the venting of a nuclear power plant

    International Nuclear Information System (INIS)

    Cuevas V, D.; Sainz M, E.; Ortiz V, J.

    2017-09-01

    The filtered venting of the containment has been adopted in European countries to mitigate the consequences derived from the excess pressure of the containment during a severe accident. When venting has taken place, the fission products are released directly into the environment, unless a filter is placed in the path of the same, so various types of filters are used to trap the fission products. The containment venting filters currently installed use different filtering technologies that involve more than one medium. Those who use water as the first stage of filtration are called wet systems, are equipped with additional stages to eliminate water drops and emissions of fine aerosols, and may even be equipped with an element that contains certain means of absorption for the gaseous iodine species filtration. Other designs, based on deep bed filtration as the main retention stage, called dry filters; use metal fiber, ceramic or sand filtration media to trap aerosols. The present work evaluates the hydraulic characteristics of the sand bed type filter designed by EDF as a candidate to be installed in the containment of the BWR Mark II (primary containment type of the Laguna Verde nuclear power plant). The evaluation of the sand bed filter was performed using the OpenFOAM open source software package. Models of each zone of the filtering device were generated and by means of a series of parametric calculations of computational fluid mechanics, the relevant hydrodynamic characteristics of the device were obtained, such as pressure drops against mass flow and pressure fields and velocity under different operating conditions. On the other hand, the validation of the sand bed filter model was made when comparing the results of experimental tests carried out in a sand column of the PITEAS program (1985-1986) against the simulation in OpenFOAM. The results obtained are very close to those obtained experimentally. (Author)

  7. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter.

    Science.gov (United States)

    Pümpel, Thomas; Macaskie, Lynne E; Finlay, John A; Diels, Ludo; Tsezos, Marios

    2003-12-01

    Efficient removal of dissolved nickel was observed in a biologically active moving-bed 'MERESAFIN' sand filter treating rinsing water from an electroless nickel plating plant. Although nickel is fully soluble in this waste water, its passage through the sand filter promoted rapid removal of approximately 1 mg Ni/l. The speciation of Ni in the waste water was modelled; the most probable precipitates forming under the conditions in the filter were predicted using PHREEQC. Analyses of the Ni-containing biosludge using chemical, electron microscopical and X-ray spectroscopic techniques confirmed crystallisation of nickel phosphate as arupite (Ni3(PO4)2 x 8H2O), together with hydroxyapatite within the bacterial biofilm on the filter sand grains. Biosorption contributed less than 1% of the overall sequestered nickel. Metabolising bacteria are essential for the process; the definitive role of specific components of the mixed population is undefined but the increase in pH promoted by metabolic activity of some microbial components is likely to promote nickel desolubilisation by others.

  8. Heterogeneity of Rapid Sand Filters and Its Effect on Contaminant Transport and Nitrification Performance

    DEFF Research Database (Denmark)

    Lopato, Laure Rose; Galaj, Zofia; Delpont, Sébastien

    2011-01-01

    Laboratory and full-scale experiments were conducted to investigate the development and effect of heterogeneity caused by filter media nonuniformity, biofilm, particles, precipitates, and gas bubbles in rapid sand filters used for drinking-water treatment. Salt tracer experiments were conducted...

  9. Interactions between microbial activity and distribution and mineral coatings on sand grains from rapid sand filters treating groundwater

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    Rapid sand filtration is a traditional and widespread technology for drinking water purification which combines biological, chemical and physical processes together. Granular media, especially sand, is a common filter material that allows several oxidized compounds to accumulate on its surface....... Preliminarily, we detected a strong relation between the amount of DNA and mineral coating mass. We hypothesized that the accumulated mineral coatings have a positive effect on amount of bacterial biomass, its spatial distribution and substrate removal rates. In this study, we combined molecular, microscopic...

  10. Sodium fire aerosol loading capacity of several sand and gravel filters

    International Nuclear Information System (INIS)

    Barreca, J.R.; McCormack, J.D.

    1980-04-01

    Improved specific loading capacity for sodium fire aerosols was the objective of a sand and gravel test series. The aerosol capacity and related differential pressure of eight aggregate filters is presented. A maximum specific aerosol capacity, for dry aerosol, of 2.4 kg (Na) m -2 was obtained. This filter was loaded to a final differential pressure of 2.6 kPa. The average superficial face velocity was 0.5 cm/s and the average efficiency was 99.8%. The test results indicate that filter capacity increases with aerosol moisture content and with decreasing superficial velocity

  11. Application of a Low Cost Ceramic Filter for Recycling Sand Filter Backwash Water

    Directory of Open Access Journals (Sweden)

    Md Shafiquzzaman

    2018-02-01

    Full Text Available The aim of this study is to examine the application of a low cost ceramic filter for the treatment of sand filter backwash water (SFBW. The treatment process is comprised of pre-coagulation of SFBW with aluminum sulfate (Alum followed by continuous filtration usinga low cost ceramic filter at different trans-membrane pressures (TMPs. Jar test results showed that 20 mg/L of alum is the optimum dose for maximum removal of turbidity, Fe, and Mn from SFBW. The filter can be operated at a TMP between 0.6 and 3 kPa as well as a corresponding flux of 480–2000 L/m2/d without any flux declination. Significant removal, up to 99%, was observed forturbidity, iron (Fe, and manganese (Mn. The flux started to decline at 4.5 kPa TMP (corresponding flux 3280 L/m2/d, thus indicated fouling of the filter. The complete pore blocking model was found as the most appropriate model to explain the insight mechanism of flux decline. The optimum operating pressure and the permeate flux were found to be 3 kPa and 2000 L/m2/d, respectively. Treated SFBW by a low cost ceramic filter was found to be suitable to recycle back to the water treatment plant. The ceramic filtration process would be a low cost and efficient option to recycle the SFBW.

  12. Conversion of sand filters into activated carbon filters at the La Presa (Valencia) water works; Conversion de filtros de arena porcarbon activo en la ETAP de La Presa (Valencia)

    Energy Technology Data Exchange (ETDEWEB)

    Macian Cervera, V. J.; Monforte Monleon, L.; Ribera Orts, R.; Suris Jorda, J. I.; Klee, J. M.

    2007-07-01

    To improve the water quality at potable water treatment plant of La P esa (Valencia), the sand filters have been replaced for activated carbon filters. In the following review the results and conclusions of the direct sand filter conversion into activated carbon filters will be presented. The leads to a simple and fast solution to odour and taste removal, as well as dissolved organic matter, without investments in works at the water works. (Author)

  13. Importance of copper for nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt

    When anoxic groundwater is treated to produce drinking water, ammonium is commonly removed through nitrification in rapid sand filters. Nitrification is a biological process, and is mediated by chemoautotrophic microorganisms. Ammonia oxidizing bacteria (AOB) and archaea (AOA) oxidize ammonium...... to remove ammonium to below the national drinking water quality standard of 0.05 mg NH4+/L. A better process understanding of nitrifying biofilters is needed to optimize treatment performance, remediate existing filters, and to prevent future nitrification problems. The frequent incidents of insufficient...... in the oxidation of ammonia to hydroxylamine. Thus, slow and incomplete nitrification could be caused by a lack of sufficient amounts of copper. The overall aim of this PhD project was therefore to determine whether copper supplementation could enhance nitrification in rapid sand filters with incomplete...

  14. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater‐fed rapid sand filter communities

    DEFF Research Database (Denmark)

    Fowler, Susan Jane; Palomo, Alejandro; Dechesne, Arnaud

    2018-01-01

    quantification and diversity assessement of both comammox Nitrospira clades. The primers cover a wide range of comammox diversity, spanning all available high quality sequences. We applied these primers to 12 groundwater‐fed rapid sand filters, and found comammox Nitrospira to be abundant in all filters. Clade B...

  15. Performance Study of Ceramic Filter Module in Recirculated Aquaculture System (RAS)

    Science.gov (United States)

    Ng, L. Y.; Ng, C. Y.

    2017-06-01

    The growth of world population has led to significant increase in seafood demand over the world. Aquaculture has been widely accepted by many countries to increase the seafood production owing to the decline of natural seafood resources. The aquaculture productivity, however, is directly linked to the pond water quality. In this study, attempts were made to employ ceramic micro-filter to improve the pond water quality through filtration processes. There were two batches of filtration processes, short term (1 hour) and long term (48 hours). Significant improvements on real pond water quality were recorded through the short term microfiltration process, which reduced turbidity (96%), total suspended solids (TSS) (80%), biochemical oxygen demand (BOD) (72%), chemical oxygen demand (COD) (55%), ammonia (60%), nitrate (96%) and phosphorus (83%). The long term filtration process also showed high efficiency in the removal of solid particle and organic matters. The results showed that all of the parameters were successfully reduced to acceptable ranges (turbidityfiltered pond water. Current study showed that the microfiltration using ceramic micro-filter has high potential to be used in recirculating aquaculture system throughout the aquaculture activities in order to maintain the pond water quality, thus, increase the survival rate of cultured species.

  16. Mechanical properties of chemically bonded sand core materials dipped in sol-gel coating impregnated with filter

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2012-01-01

    A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force-...... of the chemically bonded sand core materials, a combination of flexural and compression tests is suggested for improving the casting quality. © 2012 W. S. Maney & Son Ltd.......A novel sol-gel coating impregnated with filter dust was applied on chemically bonded sand core materials by dipping. After curing, the strengths of the core materials were measured under uniaxial loading using a new strength testing machine (STM). The STM presents the loading history as a force...... the strengths were increased under compression. The mode of fracture of the chemically bonded sand core materials was observed to be intergranular through the binder. The stiffness of the chemically bonded sand core materials was determined. For better understanding of the mechanical properties...

  17. Heterogeneous Nitrification in a Full Scale Rapid Sand Filter Treating Groundwater

    DEFF Research Database (Denmark)

    Lopato, Laure; Röttgers, Nina; Binning, Philip John

    2013-01-01

    Experiments were conducted to determine ammonium removal kinetics in an operating biologically active sand filter at a waterworks treating anaerobic groundwater. The ammonium load varied between 0.7 and 3 g N/h/m2 (concentration ranged from 0.23 to 0.78 mg N/l) and the inlet water flux varied...... nitrification rate constant was closely related to the water pore velocity which implies that the rate is strongly determined by the resistance to mass transport in the diffusion boundary layer around the sand grains. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EE.1943-7870.0000653...

  18. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure.

    Science.gov (United States)

    Lee, Eric; Oki, Lorence R

    2013-09-15

    Slow sand filtration has been shown to effectively reduce Phytophthora zoospores in irrigation water. This experiment tested the reduction of Phytophthora colony forming units (CFUs) by slow sand filtration systems after switching the pathogen contaminating plant leachate from Fusarium to Phytophthora and the resilience of the system to a short period without water, as might be caused by a pump failure. The slow sand filtration system greatly reduced Phytophthora CFUs and transmission after switching the pathogens. In addition, Phytophthora reduction by the slow sand filter was equally effective before and after the simulated pump failure. Reduction of Fusarium was not seen by the SSFs, before or after the simulated pump failure. The results suggest that slow sand filters are effective at reducing larger organisms, such as Phytophthora zoospores, even after a pump failure or a change in pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Daily micro particle distribution of an experimental recirculating aquaculture system – A case study

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2014-01-01

    The particle size distribution (PSD) in a recirculating aquaculture system (RAS) was investigated duringa 24-h cycle. PSD was analyzed in water sampled at several locations in a recirculation loop containing a60-m drum filter, a submerged fixed-bed biofilter and a trickling filter.In relation...

  20. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11 prokaryotes per gram in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90% dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+ and As(3+, might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  1. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Science.gov (United States)

    Bai, Yaohui; Liu, Ruiping; Liang, Jinsong; Qu, Jiuhui

    2013-01-01

    While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic) and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11) prokaryotes per gram) in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90%) dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+) and As(3+), might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  2. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous...

  3. Oxygen profile and clogging in vertical flow sand filters for on-site wastewater treatment.

    Science.gov (United States)

    Petitjean, A; Forquet, N; Boutin, C

    2016-04-01

    13 million people (about 20% of the population) use on-site wastewater treatment in France. Buried vertical sand filters are often built, especially when the soil permeability is not sufficient for septic tank effluent infiltration in undisturbed soil. Clogging is one of the main problems deteriorating the operation of vertical flow filters for wastewater treatment. The extent of clogging is not easily assessed, especially in buried vertical flow sand filters. We suggest examining two possible ways of detecting early clogging: (1) NH4-N/NO3-N outlet concentration ratio, and (2) oxygen measurement within the porous media. Two pilot-scale filters were equipped with probes for oxygen concentration measurements and samples were taken at different depths for pollutant characterization. Influent and effluent grab-samples were taken three times a week. The systems were operated using batch-feeding of septic tank effluent. Qualitative description of oxygen transfer processes under unclogged and clogged conditions is presented. NH4-N outlet concentration appears to be useless for early clogging detection. However, NO3-N outlet concentration and oxygen content allows us to diagnose the early clogging of the system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2013-01-01

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled...

  5. Comparing mixed-media and conventional slow-sand filters for arsenic removal from groundwater

    NARCIS (Netherlands)

    Śmiech, Karolina M.; Tolsma, Aize; Kovács, Tímea; Dalbosco, Vlade; Yasadi, Kamuran; Groendijk, Leo; Agostinho, Luewton L.F.

    2018-01-01

    Arsenic contamination of groundwater is a major public health concern worldwide. The problem has been reported mainly in southern Asia and, especially, in Bangladesh. Slow-sand filters (SSF) augmented with iron were proven to be a simple, low-cost and decentralized technique for the treatment of

  6. Comparison between Removal Efficiency of Slag, zeolite, and Conventional media in slow sand Filter for Removal of Lead and Cadmium from Water Resources

    Directory of Open Access Journals (Sweden)

    A Ebrahimi

    2016-03-01

    Full Text Available Introduction: Heavy metals owing to their health hazards and high toxicity in low concentration for human and environment have very concern and attention. Slow sand filter is one of the simple and cost-effective for removal of these pollutants. In this method, media play an important role for removal of pollutant. Therefore, the aim of this study was investigation of different media like slag, zeolite, and conventional media in slow sand filter for removal of lead and cadmium. Methods: In this research there are three beds filter include typical filter bed, slag and zeolite that used in pilot plant for investigation of lead and cadmium removal at three concentration of 0.1T 1 and 10 ppm. Each of filters has an internal diameter of 8 cm and a height of 120 cm with Plexiglas, which have a continuous flow operation. Results: The removal efficiency of turbidity by three typical filter bed, slag, and zeolite with initial turbidity of 13 NTU was 46%, 77%, and 89% respectively. Removal efficiency of lead without turbidity was 70.3%, 79%, and 59.8% respectively for 0.1 ppm lead. For 1 ppm, concentration of lead removal efficiency was 51.8%, 52.7% and 52.6% respectively and for 10 ppm it was 53.4%, 57.8%, and 59.8% respectively. Cadmium removal for these media was 23.4%, 37.5%, and 59.4% respectively at 0.1 ppm cadmium. At 1 ppm of cadmium concentration, it was 37.9%, 45% and 41.3% respectively and at 10 ppm concentration of cadmium it was 68.3%, 68.6% and 67% respectively. Conclusion: Slag and zeolite beds are more efficiently than the conventional sand beds in the slow sand filter, so it can be used instead of the usual sand for removing lead and cadmium from resources water.

  7. Radium desorption, manganese and iron dissolution from sand filters of a conventional ground water treatment plant under reductive conditions

    International Nuclear Information System (INIS)

    Al-Hobaib, A.S.; Al-Sulaiman, K.M.; Al-Dhayan, D.M.; Al-Suhybani, A.A.

    2006-01-01

    Sand filters are used as a filter bed in many ground water treatment plants to remove the physical contaminants and oxidation products. A build-up of radioactivity may take place on the granules, where iron and manganese oxides are deposited and form thin films on the surface of sand filter. The oxides of iron and manganese play an important role in adsorbing radium from ground water. The disposal of those granules makes a significant problem. A batch technique is used for solubilization of radium from sand filters in the presence of some organic acids, which act as reducing agents. These acids are formic acid, acetic acid, benzoic acid, succinic acid, oxalic acid, phthalic acid, and adipic acid. The data were obtained as a function of acidity, temperature, contact time and liquid/solid ratio particle size and shaking speed. It was found that oxalic acid was the best for radium removal. The effectiveness of these acids on radium removal was as follows: oxalic acid > phthalic acid > adipic acid > succinic acid > formic acid > acetic acid. The maximum removal obtained was 69.9% at 1M oxalic acid at 8 ml/g ratio. Reaction kinetics and mechanism parameters of the dissolution process were studied and compared with other published data. (author)

  8. Phosphate limitation in biological rapid sand filters used to remove ammonium from drinking water

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    2013-01-01

    Removing ammonium from drinking water is important for maintaining biological stability in distribution systems. This is especially important in regions that do not use disinfectants in the treatment process or keep a disinfectant residual in the distribution system. Problems with nitrification c...... a pilot scale sand column which initial analysis confirmed performed similarly to the full scale filters. Long term increased ammonium loads were applied to the pilot filter both with and without phosphate addition. Phosphate was added at a concentration of 0.5 mg PO4-P/L to ensure...

  9. Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Deliniere, Hélène; Prasse, Carsten

    2018-01-01

    from 58 to 158, well within the range for methanotrophic co-metabolic degradation of trace contaminants calculated from the literature, with normalized substrate preferences varying from 3 to 400. High-resolution mass spectrometry revealed formation of the transformation products (TPs) 6-OH, 8-OH......The herbicide bentazone is recalcitrant in aquifers and is therefore frequently detected in wells used for drinking water production. However, bentazone degradation has been observed in filter sand from a rapid sand filter at a waterworks with methane-rich groundwater. Here, the association between...... and bentazone at concentrations below 2 mg/L showed methanotrophic co-metabolic bentazone transformation: The culture removed 53% of the bentazone in 21 days in presence of 5 mg/L of methane, while only 31% was removed in absence of methane. Addition of acetylene inhibited methane oxidation and stopped...

  10. Evaluation of the MF/UF Performance for the Reuse of Sand Filter Backwash Water from Drinking Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Neda Shirzadi

    2015-05-01

    Full Text Available The aim of this study was to investigate the application of micro-filtration and ultra-filtration membrane systems in order to improve the physical and microbial quality and the reuse of backwash water from the sand filter units in water treatment plants. The backwash water from filters makes up for 3 to 5 percent of the total water treated, which is disposed in most WTPs. However, the treatment and reuse of the backwash water is more admissible from technical and economic viewpoints, especially in view of the present water scarcity. For the purposes of this study, use was made of membrane modules of micro- and ultra-filters on a pilot scale. The micro-filter employed consisted of a polypropylene membrane module with a porosity of 1 micron in size and a fiberglass module with a porosity of 5 microns. The ultra-filter was made of PVC hollow fiber with a molecular weight of 100,000 Dalton. In order to feed the two pilots, backwash water from a sand filter was collected from one of the WTPs in Tehran. After samples were taken from the backwash water, the physical and microbial removal efficiency was periodically evaluated based on the standard method and the micro-filtration, ultra-filtration, and combined MF/UF processes were compared with respect to their performance. The results indicate that the combined MF/UF process is able to decrease turbidity, MPN, COD, TSS, and Fe with efficiency values of 99.9, 100, 61.5, 99.9 and 98.8 percent, respectively. Overall, the findings confirmed the technical capabilities of this method for the recovery and reuse of the effluent produced in the backwashing mechanism of sand filters in WTPs.

  11. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater

    DEFF Research Database (Denmark)

    Albers, Christian Nyrop; Ellegaard-Jensen, Lea; Hansen, Lars Hestbjerg

    2018-01-01

    . It is shown that nitrifying communities could be enriched by microbiomes from well-functioning rapid sand filters in waterworks and that the enriched nitrifying consortium could be used to inoculate fresh filters, significantly shortening the time taken for the nitrification process to start. The key...

  12. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters

    International Nuclear Information System (INIS)

    Hassan, Ashraf Aly; Li, Zhen; Sahle-Demessie, Endalkachew; Sorial, George A.

    2013-01-01

    Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO 2 , breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT ® based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing

  13. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ashraf Aly [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Li, Zhen [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States); Sahle-Demessie, Endalkachew, E-mail: sahle-demessie.endalkachew@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Sorial, George A. [School of Energy, Environmental, Biological, and Medical Engineering, Environmental Engineering Program, University of Cincinnati, Cincinnati, OH (United States)

    2013-01-15

    Highlights: ► Breakthrough curves used to study fate of NPs in slow sand filters (SSF). ► CFD simulate transport, attachment/detachment of NPs in SSFs. ► CFD predicted spatial and temporal changes for transient concentrations of NPs. ► CFD predicts low concentrations and steady NP influx would not be retained by SSFs. ► Pulse input is retained with outlet concentration of 0.2% of the inlet. -- Abstract: Experimental and computational investigation of the transport parameters of nanoparticles (NPs) flowing through porous media has been made. This work intends to develop a simulation applicable to the transport and retention of NPs in saturated porous media for investigating the effect of process conditions and operating parameters such, as ion strength, and filtration efficiency. Experimental data obtained from tracer and nano-ceria, CeO{sub 2}, breakthrough studies were used to characterize dispersion of nanoparticle with the flow and their interaction with sand packed columns with different heights. Nanoparticle transport and concentration dynamics were solved using the Eulerian computational fluid dynamics (CFD) solver ANSYS/FLUENT{sup ®} based on a scaled down flow model. A numerical study using the Navier–Stokes equation with second order interaction terms was used to simulate the process. Parameters were estimated by fitting tracer, experimental NP transport data, and interaction of NP with the sand media. The model considers different concentrations of steady state inflow of NPs and different amounts of spike concentrations. Results suggest that steady state flow of dispersant-coated NPs would not be retained by a sand filter, while spike concentrations could be dampened effectively. Unlike analytical solutions, the CFD allows estimating flow profiles for structures with complex irregular geometry and uneven packing.

  14. KE basin recirculation/skimmer/IX systems restart acceptance test report

    International Nuclear Information System (INIS)

    Derosa, D.C.

    1996-01-01

    The 105 KE Basin Recirculation System and Skimmer Loop have been upgraded to provide the flexibility to run the Ion Exchange Modules on either system to support spent fuel removal for the Spent Nuclear Fuel Project. This Acceptance Test Report Provides the documentation of the leak Testing for the construction work associated with the IXM inlet and outlet piping, places the cartridge filters back in service and provides the functional testing of the IXM's on the recirculation and skimmer systems

  15. Bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus

    for degradation performances in flow-through sand columns, with the aim of identifying a suitable inoculant strain for future environmental applications. Another aim was to identify a suitable genetic marker to monitor phenoxy acid degradation in strain Sphingobium sp. PM2. We were not able to link motility...... and biofilm formation to the strains´ ability to adhere to sand. Nevertheless, a correlation was found between cell surface hydrophobicity and adhesion and overall degradation performances in flow-through sand columns. We identified S phingobium sp. PM2 as a promising inoculant strain, displaying efficient...... MCPA degradation for prolonged periods in flow-through sand columns. In an expression study of catabolic genes with putative roles in phenoxy acid degradation, we observed a marked upregulation of catabolic genes cadA and tfdC upon exposure to MCPA, 2,4-D, dichlorprop and mecoprop in strain PM2, which...

  16. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2018-01-01

    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  17. Helmint eggs elimination performance during lammelar settling and sand filters in Beniel WWTP (Murcia, Spain)

    International Nuclear Information System (INIS)

    Simon Andreu, P. J.; Cardin Mifsut, C.; Pacheco Ballarin, S.; Martinez Muro, M. A.; Vicente Gonzalez, J. A.; Llosar Llacer, C.

    2010-01-01

    With this study, it was observed Ascaris suum eggs elimination yield of tertiary treatment in Beniel wastewater treatment plant (WWTP) in Murcia Region (Spain). It was inoculated a sample of Ascaris suum eggs in the treatment in maximum flow conditions and it was calculated the retention yield of the lamellar settling and sand filters. (Author) 3 refs.

  18. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp

    DEFF Research Database (Denmark)

    Tatari, Karolina; Musovic, Sanin; Gülay, Arda

    2017-01-01

    distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities......We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial...

  19. Internal Porosity of Mineral Coating Supports Microbial Activity in Rapid Sand Filters for Groundwater Treatment

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    2014-01-01

    of the filter material. The volumetric NH4+ removal rate also increased with the degree of mineral coating. Consistently, bacterial 16S rRNA and amoA abundances positively correlated with increased mineral coating levels. Microbial colonization could be visualized mainly within the outer periphery (60.6 ± 35......, and abundance of microbiota. This study reveals that a mineral coating can positively affect the colonization and activity of microbial communities in rapid sand filters. To understand this effect, we investigated the abundance, spatial distribution, colonization, and diversity of all and of nitrifying...... prokaryotes in filter material with various degrees of mineral coating. We also examined the physical and chemical characteristics of the mineral coating. The amount of mineral coating correlated positively with the internal porosity, the packed bulk density, and the biologically available surface area...

  20. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System.

    Science.gov (United States)

    Peters, Thomas M; Sawvel, Russell A; Park, Jae Hong; Anthony, T Renée

    2015-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a

  1. Development and optimization of a solid-phase microextraction gas chromatography-tandem mass spectrometry methodology to analyse ultraviolet filters in beach sand.

    Science.gov (United States)

    Vila, Marlene; Llompart, Maria; Garcia-Jares, Carmen; Homem, Vera; Dagnac, Thierry

    2018-06-06

    A methodology based on solid-phase microextraction (SPME) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of eleven multiclass ultraviolet (UV) filters in beach sand. To the best of our knowledge, this is the first time that this extraction technique is applied to the analysis of UV filters in sand samples, and in other kind of environmental solid samples. Main extraction parameters such as the fibre coating, the amount of sample, the addition of salt, the volume of water added to the sand, and the temperature were optimized. An experimental design approach was implemented in order to find out the most favourable conditions. The final conditions consisted of adding 1 mL of water to 1 g of sample followed by the headspace SPME for 20 min at 100 °C, using PDMS/DVB as fibre coating. The SPME-GC-MS/MS method was validated in terms of linearity, accuracy, limits of detection and quantification, and precision. Recovery studies were also performed at three concentration levels in real Atlantic and Mediterranean sand samples. The recoveries were generally above 85% and relative standard deviations below 11%. The limits of detection were in the pg g -1 level. The validated methodology was successfully applied to the analysis of real sand samples collected from Atlantic Ocean beaches in the Northwest coast of Spain and Portugal, Canary Islands (Spain), and from Mediterranean Sea beaches in Mallorca Island (Spain). The most frequently found UV filters were ethylhexyl salicylate (EHS), homosalate (HMS), 4-methylbenzylidene camphor (4MBC), 2-ethylhexyl methoxycinnamate (2EHMC) and octocrylene (OCR), with concentrations up to 670 ng g -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Loading capacity of various filters for lithium fire generated aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Barreca, J.R.

    1980-01-01

    The lithium aerosol loading capacity of a prefilter, HEPA filters and a sand and gravel bed filter was determined. The test aerosol was characterized and was generated by burning lithium in an unlimited air atmosphere. Correlation to sodium aerosol loading capacities were made to relate existing data to lithium aerosol loadings under varying conditions. This work is being conducted in support of the fusion reactor safety program. The lithium aerosol was generated by burning lithium pools, up to 45 kgs, in a 340 m 3 low humidity air atmosphere to supply aerosol to recirculating filter test loops. The aerosol was sampled to determine particle size, mass concentrations and chemical species. The dew point and gas concentrations were monitored throughout the tests. Loop inlet aerosol mass concentrations ranged up to 5 gr/m 3 . Chemical compounds analyzed to be present in the aerosol include Li 2 O, LiOH, and Li 2 CO 3 . HEPA filters with and without separators and a prefilter and HEPA filter in series were loaded with 7.8 to 11.1 kg/m 2 of aerosol at a flow rate of 1.31 m/sec and 5 kPa pressure drop. The HEPA filter loading capacity was determined to be greater at a lower flow rate. The loading capacity increased from 0.4 to 2.8 kg by decreasing the flow rate from 1.31 to 0.26 m/sec for a pressure drop of 0.11 kPa due to aerosol buildup. The prefilter tested in series with a HEPA did not increase the total loading capacity significantly for the same total pressure drop. Separators in the HEPA had only minor effect on loading capacity. The sand and gravel bed filter loaded to 0.50 kg/m 2 at an aerosol flow rate of 0.069 m/sec and final pressure drop of 6.2 kPa. These loading capacities and their dependence on test variables are similar to those reported for sodium aerosols except for the lithium aerosol HEPA loading capacity dependence upon flow rate

  3. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  4. Performance evaluation and modelling studies of gravel--coir fibre--sand multimedia stormwater filter.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Tamilmani, D; Mathew, A C

    2012-09-01

    A horizontal flow multimedia stormwater filter was developed and tested for hydraulic efficiency and pollutant removal efficiency. Gravel, coconut (Cocos nucifera) fibre and sand were selected as the media and filled in 1:1:1 proportion. A fabric screen made up of woven sisal hemp was used to separate the media. The adsorption behaviour of coir fibre was determined in a series of column and batch studies and the corresponding isotherms were developed. The hydraulic efficiency of the filter showed a diminishing trend as the sediment level in inflow increased. The filter exhibited 100% sediment removal at lower sediment concentrations in inflow water (>6 g L(-1)). The filter could remove NO3(-), SO4(2-) and total solids (TS) effectively. Removal percentages of Mg(2+) and Na(+) were also found to be good. Similar results were obtained from a field evaluation study. Studies were also conducted to determine the pattern of silt and sediment deposition inside the filter body. The effects of residence time and rate of flow on removal percentages of NO3(-) and TS were also investigated out. In addition, a multiple regression equation that mathematically represents the filtration process was developed. Based on estimated annual costs and returns, all financial viability criteria (internal rate of return, net present value and benefit-cost ratio) were found favourable and affordable to farmers for investment in the developed filtration system. The model MUSIC was calibrated and validated for field conditions with respect to the developed stormwater filter.

  5. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  6. A method for limiting sand production in wells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L M

    1983-09-01

    A method is patented which makes it possible to substantially limit sand falling into a well of an operational stratum which is made up of weakly cemented rocks. The presently known methods for controlling sand carry away into a well in the majority of cases provide for the installation in its bottom hole of a special filter. The winding of a sand and gravel filter is the most common. Serious problems associated with the difficulty in testing the winding process must be dealt with in this, as well as the use of additional equipment. The patented method lies in installing a specially made pipe filter in the bottom hole. The filtering element is the walls of the filter itself, which are made of a porous material. An important characteristic of the filter is the size of its pores which causes the filtration purity. The size of the pipe filter may be from 10 to 200 meters depending on the exploitation conditions.

  7. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous......-flow lab-scale assay. NH4 + removal capacity, estimated from short term loading up-shifts, was at least 10 times higher in the top than in the middle and bottom filter layers, consistent with the stratification of Ammonium Oxidizing Bacteria (AOB). AOB density increased consistently with the NH4 + removal...... rate, indicating their primarily role in nitrification under the imposed experimental conditions. The maximum AOB cell specific NH4 + removal rate observed at the bottom was at least 3 times lower compared to the top and middle layers. Additionally, a significant up-shift capacity (4.6 and 3.5 times...

  8. Hydrodynamic calculation of a filter sand bed type used in the containment venting systems; Calculo hidrodinamico de un filtro tipo lecho de arena usado en los sistemas de venteo de la contencion

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, D.; Sainz M, E.; Ortiz V, J., E-mail: delfy.cu@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The filtered venting of the containment has been adopted in European countries to mitigate the consequences of excess pressure containment during a severe accident. When venting has taken place, the fission products are released directly into the environment, unless a filter on the same path is placed, so that various types of filters are used to trap the fission products. The venting filters of the containment currently installed use different filtration technologies that involve more than one medium. Those using water as the first stage of filtration are called wet systems and are equipped with additional steps to remove water drops and fine aerosols emissions. And even they may also be equipped with an element containing certain absorption means for the filtration of gaseous iodine species. Other designs based on filtration of deep bed as the primary retention step; called dry filters, use filtration media of metal fiber, ceramic or sand to trap aerosols. This paper evaluates the hydraulic characteristics of the filter sand bed type designed by EDF as a candidate to be installed in the containment of BWR Mark II (type of primary containment of the nuclear power plant of Laguna Verde). The evaluation of filter sand bed type was performed using the software package of open source OpenFOAM. Models of each zone of the filtered device were generated and through a series of parametric calculations of computational fluid mechanics relevant hydrodynamic characteristics of the device were obtained, such as pressure drops against mass flow rate and pressure fields and speed at different operating conditions. On the other hand, the model validation of the sand bed filter when comparing the results of experimental tests on a sand column of PITEAS program (1985-1986) against OpenFOAM simulation was realized. The results are very close to those obtained experimentally. (Author)

  9. Removal of nitrogen by Algal Turf Scrubber Technology in recirculating aquaculture system

    NARCIS (Netherlands)

    Valeta, J.; Verdegem, M.C.J.

    2015-01-01

    Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to

  10. Study on Modified Sand Filtration Towards Water Quality of Wet Market Waste Water

    Directory of Open Access Journals (Sweden)

    Saad F.N.M.

    2016-01-01

    Full Text Available Investigation on the potential of sand filter as a pre-treatment of waste water was done in Kangar wet market, Perlis. Besides, the best composition of filter in order to treat wastewater based on BOD, COD, SS, AN, turbidity and pH levels are further examined. In this study, there are four types of sand filter composition which the medias consist of fine sand and coarse sand while the modified sand filter are consist of sand, course sand and activated carbon prepared from rice husk and coconut shells. After 10 weeks of treatment, the results show that the concentration of BOD, COD, SS, AN, turbidity and pH were reduced up to 86%, 84%, 63%, 88%, 73%, respectively while pH nearly to neutral with 6.83. Moreover, the result also revealed that the sand filter added with rice husk almost complied with Standard B of Malaysia Environmental Quality (Sewage Regulations 2009 as well as gives the highest number of WQI with 36.81. Overall, WQI obtained in this study are ranged from 12.77 to 36.81.

  11. Retention of radium from thermal waters on sand filters and adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Elejalde, C. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain)]. E-mail: inpelsac@bi.ehu.es; Herranz, M. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Legarda, F. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Romero, F. [Dpto. de Ingenieria Quimica y del Medio Ambiente, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Baeza, A. [Dpto. de Fisica, Facultad de Veterinaria, Universidad de Extremadura, Avda. Universidad s/n, 10071 Caceres (Spain)

    2007-06-18

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  12. Retention of radium from thermal waters on sand filters and adsorbents

    International Nuclear Information System (INIS)

    Elejalde, C.; Herranz, M.; Idoeta, R.; Legarda, F.; Romero, F.; Baeza, A.

    2007-01-01

    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research

  13. Field evaluation of prototype electrofibrous filters

    International Nuclear Information System (INIS)

    Kuhl, W.D.; Bergman, W.; Biermann, A.H.; Lum, B.Y.

    1982-01-01

    New prototype electrofibrous filters were designed, built and evaluated in laboratory tests and in field installations. Two prototypes were designed for use in nuclear ventilation ducts as prefilters to HEPA filters. One prototype is designed to be a permanent component of the ventilation system while the other is a disposable unit. The disposable electrofibrous prefilter was installed in the exhaust stream of a glove box in which barrels of uranium turnings are burned. Preliminary tests show the disposal prefilter is effectively prolonging the HEPA filter life. An earlier prototype of the rolling prefilter was upgraded to meet the increased requirements for installation in a nuclear facility. This upgraded prototype was evaluated in the fire test facility at LLNL and shown to be effective in protecting HEPA filters from plugging under the most severe smoke conditions. The last prototype described in this report is a recirculating air filter. After demonstrating a high performance in laboratory tests the unit was shipped to Savannah River where it is awaiting installation in a Pu fuel fabrication facility. An analysis of the particulate problem in Savannah River indicates that four recirculating air filter will save $172,000 per year in maintenance costs

  14. Diel coral reef acidification driven by porewater advection in permeable sands, Heron Island, Great Barrier Reef

    DEFF Research Database (Denmark)

    Santos, Isaac R.; Glud, Ronnie N.; Maher, Damien

    2011-01-01

    Little is known about how biogeochemical processes in permeable sediments affect the pH of coastal waters. We demonstrate that seawater recirculation in permeable sands can play a major role in proton (H+) cycling in a coral reef lagoon. The diel pH range (up to 0.75 units) in the Heron Island...... lagoon was the broadest ever reported for reef waters, and the night‐time pH (7.69) was comparable to worst‐case scenario predictions for seawater pH in 2100. The net contribution of coarse carbonate sands to the whole system H+ fluxes was only 9% during the day, but approached 100% at night when small...... scale (i.e., flow and topography‐induced pressure gradients) and large scale (i.e., tidal pumping as traced by radon) seawater recirculation processes were synergistic. Reef lagoon sands were a net sink for H+, and the sink strength was a function of porewater flushing rate. Our observations suggest...

  15. Analysis of the implementation of a sand bed type filter for the venting of a nuclear power plant; Analisis de la implementacion de un filtro tipo lecho de arena para el venteo de una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Cuevas V, D.; Sainz M, E.; Ortiz V, J., E-mail: delfy.cu@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The filtered venting of the containment has been adopted in European countries to mitigate the consequences derived from the excess pressure of the containment during a severe accident. When venting has taken place, the fission products are released directly into the environment, unless a filter is placed in the path of the same, so various types of filters are used to trap the fission products. The containment venting filters currently installed use different filtering technologies that involve more than one medium. Those who use water as the first stage of filtration are called wet systems, are equipped with additional stages to eliminate water drops and emissions of fine aerosols, and may even be equipped with an element that contains certain means of absorption for the gaseous iodine species filtration. Other designs, based on deep bed filtration as the main retention stage, called dry filters; use metal fiber, ceramic or sand filtration media to trap aerosols. The present work evaluates the hydraulic characteristics of the sand bed type filter designed by EDF as a candidate to be installed in the containment of the BWR Mark II (primary containment type of the Laguna Verde nuclear power plant). The evaluation of the sand bed filter was performed using the OpenFOAM open source software package. Models of each zone of the filtering device were generated and by means of a series of parametric calculations of computational fluid mechanics, the relevant hydrodynamic characteristics of the device were obtained, such as pressure drops against mass flow and pressure fields and velocity under different operating conditions. On the other hand, the validation of the sand bed filter model was made when comparing the results of experimental tests carried out in a sand column of the PITEAS program (1985-1986) against the simulation in OpenFOAM. The results obtained are very close to those obtained experimentally. (Author)

  16. Geo synthetics in hydraulic and coastal engineering: Filters, revetments and sand filled structures

    International Nuclear Information System (INIS)

    Bezuijen, A.; Pilarczyk, K. W.

    2014-01-01

    The paper deals with 2 applications of geo textiles in coastal and hydraulic engineering: Geo textiles in filters and revetments; and geo textiles in sand filled structure. Geo textiles are often replacing granular filters. However, they have different properties than a granular filter. For the application of geo textiles in revetments, the consequences of the different properties will be shown: how permeability is influenced by a geo textile and what can be the consequences of the weight differences between granular and geo textile filters. In the other application, the filter properties of geo textiles are only secondary. In geo textile tubes and containers the geo textile is used as wrapping material to create large unties that will not erode during wave attach. the structures with geo textile tubes and containers serve as an alternative for rock based structures. The first of these structures were more or less constructed by trial and error, but research on the shape of the structures, the stability under wave attach and the durability of the used of the used material has given the possibility to use design tools for these structures. Recently also the morphological aspects of these structures have been investigated. This is of importance because regularly structures with geo textile tubes fail due to insufficient toe protection against the scour hole that that develops in front of the structure, leading to undermining of the structure. Recent research in the Dealt Flume of Deltares and the Large Wave Flume in Hannover has led to better understanding what mechanisms determine the stability under wave attach. It is shown that also the degree of filling is of importance and the position of the water level with respect to the tube has a large influence. (Author)

  17. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  18. Mathematical modelling of nutrient balance of a goldfish (Carassius auratus Linn. recirculating aquaculture system (GRAS

    Directory of Open Access Journals (Sweden)

    Sudeep Puthravilakom Sadasivan Nair

    2010-08-01

    Full Text Available In the present study, a goldfish (Carassius auratus Linn. recirculating aquaculture system (GRAS has been developed. The GRAS consisted of a culture tank, a screen filter and a foam fractionator for removal of particulate and dissolved solids and a trickling filter for conversion of ammonium- and nitrite-nitrogen to relatively harmless nitrate-nitrogen. The culture of goldfish at a stocking density of 1.08 kg/m3 was continued for a period of two and half months. Based on mass balance analysis of ammonium- and nitrate-nitrogen and assuming the trickling filter to be a plug flow reactor, a model was formulated to determine the necessary recirculation flow rate at different times of culture for maintaining the major nutrients, viz., ammonium- and nitrate-nitrogen below their permissible limits. The model was calibrated and validated using the real time data obtained from the experimental run. The high values of coefficient of determination and low values of root mean square error show the effectiveness of the model.

  19. Sensory source strength of used ventilation filters

    DEFF Research Database (Denmark)

    Clausen, Geo; Alm, Ole Martin; Fanger, Povl Ole

    2002-01-01

    A two-year-old filter was placed in a ventilation system recirculating the air in an experimental space. Via glass tubes supplied with a small fan it was possible to extract air upstream and downstream of the filter to an adjacent room. A panel could thus perform sensory assessments of the air fr...

  20. Submerged Pond Sand Filter—A Novel Approach to Rural Water Supply

    Directory of Open Access Journals (Sweden)

    Mia Øhlenschlæger

    2016-06-01

    Full Text Available This study describes the new design and function of a modified version of a traditional slow sand filter. The Submerged Pond Sand Filter is built inside a pond and has a vertical as well as a horizontal flow of water through a sloped filter opening. The filter provides treated drinking water to a rural Indian village. The filter has functioned with minimal maintenance for five years without being subject to the typical scraping off and changing of sand as needed in traditional slow sand filters every few months. This five-year study showed bacterial removal efficiency of 97% on average with a level of faecal coliforms of 2 ± 2 colony forming units (CFU/100 mL measured in the treated water. Turbidity was visibly removed during treatment. When water was retrieved from the filter through a manual pump for long consistent time intervals (60 min, faecal coliform counts increased from four to 10 CFU/100 mL on average compared to shorter pumping intervals (5 min. Though the treated water did not comply with the World Health Organization standards of 0 CFU/100 mL, the filter significantly improved water quality and provided one of the best sources of drinkable water in a water-depleted area, where only surface water was available. Furthermore, it is a sustainable treatment method due to low maintenance requirements.

  1. Designing metallic iron based water filters: Light from methylene blue discoloration.

    Science.gov (United States)

    Btatkeu-K, B D; Tchatchueng, J B; Noubactep, C; Caré, S

    2016-01-15

    Available water filtration systems containing metallic iron (Fe(0) filters) are pragmatically designed. There is a lack of sound design criteria to exploit the full potential of Fe(0) filters. A science-based design relies on valuable information on processes within a Fe(0) filter, including chemical reactions, hydrodynamics and their relation to the performance of the filter. The aim of this study was to establish a simple method to evaluate the initial performance of Fe(0) filters. The differential adsorptive affinity of methylene blue (MB) onto sand and iron oxide is exploited to characterize the evolution of a Fe(0)/sand system using the pure sand system as operational reference. Five systems were investigated for more than 70 days: pure sand, pure Fe(0), Fe(0)/sand, Fe(0)/pumice and Fe(0)/sand/pumice. Individual systems were characterized by the extent of changes in pH value, iron breakthrough, MB breakthrough and hydraulic conductivity. Results showed that for MB discoloration (i) pure sand was the most efficient system, (ii) hybrid systems were more sustainable than the pure Fe(0) system, and (iii) the pores of used pumice are poorly interconnected. Characterizing the initial reactivity of Fe(0) filters using MB discoloration has introduced a powerful tool for the exploration of various aspects of filter design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Braun, H. E.; Dollard, W. J.; Tower, S. N.

    1980-01-01

    A recirculation system for use in pressurized water nuclear reactors to increase the output temperature of the reactor coolant, thereby achieving a significant improvement in plant efficiency without exceeding current core design limits. A portion of the hot outlet coolant is recirculated to the inlets of the peripheral fuel assemblies which operate at relatively low power levels. The outlet temperature from these peripheral fuel assemblies is increased to a temperature above that of the average core outlet. The recirculation system uses external pumps and introduces the hot recirculation coolant to the free space between the core barrel and the core baffle, where it flows downward and inward to the inlets of the peripheral fuel assemblies. In the unlikely event of a loss of coolant accident, the recirculation system flow path through the free space and to the inlets of the fuel assemblies is utilized for the injection of emergency coolant to the lower vessel and core. During emergency coolant injection, the emergency coolant is prevented from bypassing the core through the recirculation system by check valves inserted into the recirculation system piping

  3. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  4. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  5. Processo da retrolavagem em filtros de areia usados na irrigação localizada Backwash process in sand filters used in localized irrigation

    Directory of Open Access Journals (Sweden)

    Juan C Salcedo

    2011-12-01

    Full Text Available O processo da retrolavagem consiste na passagem da água através do filtro em sentido contrário ao fluxo de filtragem com o objetivo de remover partículas orgânicas e inorgânicas retidas no meio filtrante. O projeto de filtros de areia com configurações ineficientes e a ocorrência de condições operacionais inadequadas contribuem para limitar o desempenho desse processo, causando deficiências na limpeza dos meios filtrantes e comprometendo o funcionamento dos sistemas de irrigação localizada. O objetivo do presente trabalho é proporcionar uma revisão sobre os conceitos associados ao processo da retrolavagem nos filtros de areia, relacionando informações existentes na literatura com experiências de laboratório. Foi gerado um texto básico com informações técnico-científicas sobre o tema, visando a criar um momento de reflexão sobre o processo de retrolavagem e a contribuir para a melhoria do desempenho desses equipamentos na irrigação localizada.The backwash process consists of water passing through the filter in the opposite direction of the filtering flow to remove organic and inorganic particles of media filter. Inefficient sand filters designs and the occurrence of inadequate operating conditions contribute to restrict the process performance, causing deficiencies in the filter cleaning and compromise the operation of localized irrigation systems. The objective of this study is to provide a review about concepts associated with the backwash process in sand filters, relating literature information with laboratory experiments. A basic documentation was produced with technical and scientific information on this subject to create a reflection about the backwash process and contribute to the improvement of the equipment performance in the localized irrigation.

  6. Sand Transport under Highly Turbulent Airflow on a Beach Surface

    Science.gov (United States)

    Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.

    2012-04-01

    The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity

  7. Study of Slow Sand Filtration in Removing Total Coliforms and E.Coli

    Directory of Open Access Journals (Sweden)

    Ekha Yogafanny

    2015-08-01

    Full Text Available This study was aimed to evaluate the performance of SSF in removing bacteria (Total Coliforms and E. Coli in regard to grain size distribution and grain shape intermittently. Two methodological approaches used in this reasearch were literature review and laboratory work. Bacteria removal was analyzed considering two different filter media (Rhine sand-spherical shape and Lava sand-angular shape with three different grain size distributions. The best performance was attained by filter column F4 which consisted of Lava sand and had the configuration C2 (d10 = 0.07 mm; Cu = 4.2. This filter column achieved 4.7log-units removal of Total Coliforms and 5.0log-units removal of E. coli. The results show that a smaller grain size and an angular shape of sand grain lead to an increase in bacteria removal.

  8. High ratio recirculating gas compressor

    Science.gov (United States)

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  9. Removal of nitrate, ammonia and phosphate from aqueous solutions in packed bed filter using biochar augmented sand media

    Directory of Open Access Journals (Sweden)

    El Hanandeh Ali

    2017-01-01

    Full Text Available Nutrients from wastewater are a major source of pollution because they can cause significant impact on the ecosystem. Accordingly, it is important that the nutrient concentrations are kept to admissible levels to the receiving environment. Often regulatory limits are set on the maximum allowable concentrations in the effluent. Therefore, wastewater must be treated to meet safe levels of discharge. In this study, laboratory investigation of the efficiency of packed bed filters to remove nitrate, ammonium and phosphate from aqueous solutions were conducted. Sand and sand augmented with hydrochloric acid treated biochar (SBC were used as packing media. Synthetic wastewater solution was prepared with PO43−, NO3−, NH4+ concentrations 20, 10, 50 mg/L, respectively. Each experiment ran for a period of five days; samples from the effluent were collected on alternate days. All experiments were duplicated. Over the experiment period, the average removal efficiency of PO43−, NO3−, NH4+ were 99.2%, 72.9%, 96.7% in the sand packed columns and 99.2%, 82.3%, 97.4% in the SBC packed columns, respectively. Although, the presence of biochar in the packing media had little effect on phosphate and ammonium removal, it significantly improved nitrate removal.

  10. Assessment of crushed-recycled glass as filter media for drinking water treatment

    International Nuclear Information System (INIS)

    Rutledge, S.O.; Fahie, C.; Gagnon, G.A.

    2002-01-01

    The objective of this project was to evaluate the performance of a pressure filter utilizing crushed glass as the filter media. The performance of the crushed glass filter was compared to that of a sand filter. The research was conducted in Orangedale, Nova Scotia, which is a small community of with a population of approximately 500. Orangedale is located on the south shore of Bras d'Or Lakes and feeds into Miller Pond, which serves as the source the of drinking water. The Orangedale treatment plant produces an average daily flow of 35 m3/d (6.4-gpm). The treatment plant consists of coagulation (sodium aluminate and polyaluminum chloride), flocculation, dissolved air flotation (DAF), disinfection with sodium hypochlorite and dual-media filtration with anthracite and sand. In general, the particle removal capabilities of the crushed glass filter were slightly poorer than that of a sand filter, as quantified in a field application in the community of Orangedale, Nova Scotia. It was found that the crushed glass used in this project had a higher angularity and slightly higher uniformity coefficient. During initial start-up the performance of the crushed glass filter was more variable and appeared to improve as the glass began to wear. After six-months of use the crushed glass filter was able to produce a very consistent filter effluent that was only slightly greater than the silica sand filter. After six-months of use, the sand filter achieved a 1.6 log-removal of particles with diameters greater than 2 μm; whereas the crushed glass filter achieved a 1.4 log removal for the similar particle size range. The observed removal performance was particularly encouraging given that the sand used had properties that were consistent with the standards set by the American Water Works Association. The crushed glass filter media was initially sieved and washed, but had no other pre-treatment preparation. Thus the application of crushed glass shows considerable promise as filter

  11. Onsite Systems - Wastewater

    Science.gov (United States)

    water quality, and sustain the environment in small and rural communities. This resource was formed to responsible for applying quality research into engineering issues affecting public health and promoting the technologies, such as aerobic treatment, recirculating sand filters, and mound systems. Survey Software powered

  12. Performance of water filters towards the removal of selected ...

    African Journals Online (AJOL)

    Organic matter removal was found to be 47%, 43%, 53%, 43.4% for bio-sand, slow sand, ceramic and membrane purifier respectively, while, fluoride removal was found to be 95.5% for bone char filter. Furthermore, filters were also assessed in terms of media availability, buying costs, operation, benefits/ effectiveness ...

  13. Use of cross-flow membrane filtration in a recirculating hydroponic system to suppress root disease in pepper caused by Pythium myriotylum.

    Science.gov (United States)

    Schuerger, Andrew C; Hammer, William

    2009-05-01

    Zoosporic pathogens in the genera Pythium and Phytophthora cause extensive root disease epiphytotics in recirculating hydroponic vegetable-production greenhouses. Zoospore cysts of Pythium myriotylum Drechsler were used to evaluate the effectiveness of cross-flow membrane filters to control pythiaceous pathogens in recirculating hydroponic systems. Four membrane filter brands (Honeycomb, Polypure, Polymate, and Absolife) were tested alone or in combination to determine which filters would effectively remove infective propagules of P. myriotylum from solutions and reduce disease incidence and severity. Zoospore cysts of P. myriotylum generally measured 8 to 10 microm, and it was hypothesized that filters with pore-sizespepper plants from root infection. Single-filter assays with Honeycomb and Polypure brands removed 85 to 95% of zoospore cysts when pore sizes were rated at 1, 5, 10, 20, or 30 microm. Single-filter assays of Polymate and Absolife brands were more effective, exhibiting apparently 100% removal of zoospore cysts from nutrient solutions on filters rated at 1 to 10 microm. However, plant bioassays with Honeycomb and Polymate single filters failed to give long-term protection of pepper plants. Double-filter assays with 1- and 0.5-microm Polymate filters significantly increased the protection of pepper plants grown in nutrient film technique systems but, eventually, root disease and plant wilt could be observed. Insect transmissions by shore flies were not factors in disease development. Scanning electron microscopy images of zoospore cysts entrapped on Polymate filters revealed zoospore cysts that were either fully encysted, partially encysted, or of unusually small size (3 microm in diameter). It was concluded that either the atypically small or pliable pleomorphic zoospore cysts were able to penetrate filter membranes that theoretically should have captured them.

  14. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters

    Science.gov (United States)

    Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.

    2008-01-01

    Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.

  15. Toward an Optimal Position for IVC Filters: Computational Modeling of the Impact of Renal Vein Inflow

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S L; Singer, M A

    2009-07-13

    The purpose of this report is to evaluate the hemodynamic effects of renal vein inflow and filter position on unoccluded and partially occluded IVC filters using three-dimensional computational fluid dynamics. Three-dimensional models of the TrapEase and Gunther Celect IVC filters, spherical thrombi, and an IVC with renal veins were constructed. Hemodynamics of steady-state flow was examined for unoccluded and partially occluded TrapEase and Gunther Celect IVC filters in varying proximity to the renal veins. Flow past the unoccluded filters demonstrated minimal disruption. Natural regions of stagnant/recirculating flow in the IVC are observed superior to the bilateral renal vein inflows, and high flow velocities and elevated shear stresses are observed in the vicinity of renal inflow. Spherical thrombi induce stagnant and/or recirculating flow downstream of the thrombus. Placement of the TrapEase filter in the suprarenal vein position resulted in a large area of low shear stress/stagnant flow within the filter just downstream of thrombus trapped in the upstream trapping position. Filter position with respect to renal vein inflow influences the hemodynamics of filter trapping. Placement of the TrapEase filter in a suprarenal location may be thrombogenic with redundant areas of stagnant/recirculating flow and low shear stress along the caval wall due to the upstream trapping position and the naturally occurring region of stagnant flow from the renal veins. Infrarenal vein placement of IVC filters in a near juxtarenal position with the downstream cone near the renal vein inflow likely confers increased levels of mechanical lysis of trapped thrombi due to increased shear stress from renal vein inflow.

  16. Continuous adsorption of Pb(II) and methylene blue by engineered graphite oxide coated sand in fixed-bed column

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Ji-Lai, E-mail: jilaigong@gmail.com [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zhang, Yong-Liang; Jiang, Yan [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Zeng, Guang-Ming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Cui, Zhi-Hui; Liu, Ke; Deng, Can-Hui; Niu, Qiu-Ya; Deng, Jiu-Hua [College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha 410082 (China); Huan, Shuang-Yan [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2015-03-01

    Highlights: • GO-sand was prepared by coating GO on the surface of sand. • Pb(II) and MB were efficiently removed by GO-sand filter in column. • The removal of MB was enhanced with the presence of Pb(II). • GO-sand is low-cost and convenient for its application as packed bed filter. - Abstract: The mixture of several effluents, caused by the improper handling and management of effluents, generated multi-component wastewater containing both metals and dyes, leading to the complicated treatment process. In this study, a continuous adsorption of Pb(II) and methylene blue (MB) has been studied in single and binary solutions by using graphite oxide coated sand (GO-sand) as an adsorbent in a fixed-bed column. GO-sand was analyzed by X-ray photoelectron spectroscopy before and after analyte adsorption. Compared with sand filter, adsorption quantity and capacity for Pb(II) and MB by GO-sand filter were greatly increased. In Pb(II) and MB single solutions, the experimental parameters were investigated in detail including initial concentration, flow rate, bed depth and pH. Exhaustion time decreased with increasing initial concentration and flow rate, and increased with increasing bed depth and pH. In the Pb(II)-MB binary solution, exhaustion time significantly decreased for Pb(II) adsorption, but increased for MB adsorption. The reason was explained that the more favorable adsorption for MB onto the surface of GO-sand than that for Pb(II), which was derived from π–π interaction between MB and GO on sand surface in packed filter. The Yoon–Nelson model was applied at different concentration of Pb(II) and MB to predict the breakthrough curves. The experimental data were well fit with the model indicating that it was suitable for this column design.

  17. Recirculating induction accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Deadrick, F.; Bangerter, R.O.

    1993-01-01

    We have recently completed a two-year study of recirculating induction heavy-ion accelerators (recirculators) as low-cost drivers for inertial-fusion-energy power plants. We present here a summary of that study and other recent work on recirculators

  18. Dust filtration on a panel bed of sand

    International Nuclear Information System (INIS)

    Goossens, W.R.A.; Francesconi, A.; Dumont, G.; Harnie, R.

    1976-01-01

    The development of a panel bed of sand as dust filter is described. The results obtained in a technical set-up with a filtering area of 1 m 2 are given. The data of a 2 4 factorial design experimental campaign are presented in the form of the resulting statistical equation

  19. Potential of simple filters to improve microbial quality of irrigation water used in urban vegetable farming in Ghana

    DEFF Research Database (Denmark)

    Keraita, Bernard; Drechsel, Pay; Konradsen, Flemming

    2008-01-01

    . As part of a larger study on possible interventions for health risk reduction, the potential of simple interventions was explored. Column slow sand filters with three levels of sand depths (0.5 m, 0.75 m and 1 m) and fabric filters made of nylon, cotton and netting were assessed. More than 600 water...... samples were analyzed for helminth eggs and thermotolerant coliforms. Flow rates were also measured. From slow sand filters, 71-96% of helminths and 2 log units (from 7 to 5 log units) of thermotolerant coliforms were removed. Sand depths had no significant influence in the removal. Lower removal rates...... were achieved by fabric filters, with an average removal of 12-62% for helminth eggs and 1 log unit for thermotolerant coliforms. Nylon filters had higher removal rates especially for helminth eggs (58%). Average flow rates for sand filters were 3 m per day and fabric filters had steady flows of about...

  20. Fractal solutions of recirculation tubular chemical reactors

    International Nuclear Information System (INIS)

    Berezowski, Marek

    2003-01-01

    Three kinds of fractal solutions of model of recirculation non-adiabatic tubular chemical reactors are presented. The first kind concerns the structure of Feigenbaum's diagram on the limit of chaos. The second kind and the third one concern the effect of initial conditions on the dynamic solutions of models. In the course of computations two types of recirculation were considered, viz. the recirculation of mass (return of a part of products' stream) and recirculation of heat (heat exchange in the external heat exchanger)

  1. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Henshaw, W D; Wang, S L

    2008-02-04

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flow in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating

  2. Preliminary analysis on the water quality index (WQI) of irradiated basic filter elements

    Science.gov (United States)

    Arif Abu Bakar, Asyraf; Muhamad Pauzi, Anas; Aziz Mohamed, Abdul; Syima Sharifuddin, Syazrin; Mohamad Idris, Faridah

    2018-01-01

    Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.

  3. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  4. Treatment of municipal wastewater in full-scale on-site sand filter reduces BOD efficiently but does not reach requirements for nitrogen and phosphorus removal.

    Science.gov (United States)

    Laaksonen, Petteri; Sinkkonen, Aki; Zaitsev, Gennadi; Mäkinen, Esa; Grönroos, Timo; Romantschuk, Martin

    2017-04-01

    A traditional sand filter for treatment of household wastewater was constructed in the fall of 2012 at Biolinja 12, Turku, Finland. Construction work was led and monitored by an authorized wastewater treatment consultant. The filter was placed on a field bordered by open ditches from all sides in order to collect excess rain and snowmelt waters. The filter was constructed and insulated from the environment so that all outflowing water was accounted for. Untreated, mainly municipal, wastewater from Varissuo suburb was pumped from a sewer separately via three septic tanks (volume = 1 m 3 each) into the filters. Normally, wastewater was distributed to ground filters automatically according to pre-programmed schedule. Initially, the daily flow was 1200 L day -1 to reflect the average organic load of a household of five persons (load: ca 237 g day -1 BOD; 73 g day -1 total N; and 10.4 g day -1 total P). Later in the test, the flow rate was decreased first to 900 and then to 600 L day -1 to better reflect the average volume produced by five persons. Volumes of inlet wastewater as well as treated water were monitored by magnetic flow meters. Samples were withdrawn from the inlet water, from the water entering the filters after the third septic tank, and from the outflowing water. After an initial adaption time, the reductions in BOD and chemical oxygen demand were constantly between 92 and 98%, showing that the biological degradation process in the filters functioned optimally and clearly comply with the national and EU standards. The reduction in total nitrogen and total phosphorus, however, reached required levels only during the first months of testing, apparently when buildup of microbial biomass was still ongoing. After this initial period of 3 months showing satisfactory reduction levels, the reduction of total nitrogen varied between 5 and 25% and total phosphorus mostly between 50 and 65%. Nitrification was efficient in the filter, but as indicated

  5. Cost/benefit evaluation of electrofibrous air filters

    International Nuclear Information System (INIS)

    Bergman, W.; Kuhl, W.; Biermann, A.; Lum, B.

    1986-01-01

    Experimental electric air filters based on the principle of superimposing an electric field over conventional fibrous air filters have been developed. The different experimental electric filters described in this report include prefilters for use in glove boxes and in ventilation systems, re-circulating air filters, electric HEPA filters, and high efficiency, high temperature air filters. In each case the large improvement in filter efficiency that occurs when a mechanical filter is electrified is demonstrated. Also a significant increase in the particle loading capacity of filters in many of our evaluations is demonstrated. Both laboratory and field test results are presented. This paper also demonstrates that the performance of all of our electric filter designs, except one, can be matched by conventional mechanical air filters and usually at a lower cost. The one exception is the high temperature, high efficiency electric air filter. In that case there is no mechanical filter media that can match the performance of the electric air filter. Our findings show that electric air filters are only cost effective compared to mechanical air filters when the performance of the mechanical air filter cannot be further improved by mechanical means. (author)

  6. Performance comparison of sand and fine sawdust vermifilters in treating concentrated grey water for urban poor.

    Science.gov (United States)

    Adugna, Amare T; Andrianisa, Harinaivo A; Konate, Yacouba; Ndiaye, Awa; Maiga, Amadou H

    2015-01-01

    A comparative investigation was conducted for 10 months with sand and fine sawdust vermifilters and a control unit to treat concentrated grey water generated from a poor urban household in Ouagadougou, Burkina Faso. Each of the filters was made up of cylindrical DN200-PVC pipes and filled with 10 cm of gravel at the bottom. On top of the gravel layer, filter 1 (fully sand, F1) was completed with 40 cm of sand and 10 cm of fine sawdust, filter 2 (partially sand, F2) with 20 cm of sand and 30 cm of fine sawdust, respectively, and filter 3 (fully sawdust, F3) and 4 (control, F4) with 50 cm of fine sawdust only. Two hundred Eudrilus eugeniae earthworms were inoculated in each of the vermifilters. The vermifiltration system was supplied with grey water four times per day at a hydraulic loading rate of 64 L/m(2)/day on a batch basis. The removal efficiencies of biological oxygen demand, total chemical oxygen demand, and dissolved chemical oxygen demand (dCOD) by the vermifilters were 25-30% higher than the control, but little differences were observed in terms of total suspended solids and coliform removal efficiencies. Though there was no significant difference in the performance of the three vermifilters (p > 0.05), except for dCOD removal efficiency, the lifespan of F2 and F3 was longer than that of F1. Therefore, fine sawdust can substitute sand as a filter medium in vermifilters.

  7. An evaluation of debris mobility within a PWR reactor coolant system during the recirculation mode

    International Nuclear Information System (INIS)

    Andreychek, T.S.

    1987-01-01

    To provide for the long-term cooling of the nuclear core of a Pressurized Water Rector (PWR) following a hypothetical Loss-of-Coolant Accidnet (LOCA), water is drawn from the containment sump and pumped into the reactor coolant system (RCS). It has been postulated that debris from the containment, such as dirt, sand, and paint from containment walls and in-containment equipment, could be carried into the containment sump due to the action of the RCS coolant that escapes from the breach in the piping and then flows to the sump. Once in the sump, this debris could be pumped into the Safety Injection System (SIS) and ultimately the RCS itself, causing the performance of the SIS to be degraded. Of particular interest is the potential for core blockage that may occur due to debris transport into the core region by the recirculating flow. This paper presents a method of evaluating the potential for debris from the sump to form core blockages under recirculating flow conditions following a hypothetical LOCA for a PWR

  8. Water Quality of Trickling Biological Periwinkle Shells Filter for ...

    African Journals Online (AJOL)

    Studies were carried on the design, efficiency and economics of trickling biological periwinkle shells filter in recirculating aquaculture systems for catfish production. The designed biofilter and other system components were constructed, assembled and commissioned for pilot catfish production. The system with the designed ...

  9. Aerosol generation and filter behaviour in sodium fires. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, L; Jordan, S

    1975-11-01

    In the scope of a long-term program (a) aerosol-formation rates during Na fires, (b) the behavior of Na aerosols in a closed system, and (c) the filtration of Na aerosols were investigated. These experiments in the ABRAUS facility should simulate the behaviour of Na aerosols after an accident in the inner and outer containment of the sodium-cooled fast Reactor SNR 300. At the conditions of the inner-containment (0.7% oxygen content in the atmosphere) aerosol-concentrations by Na - 0/sub 2/ reactions of 1 - 10 g/m/sup 3/ are possible. At the conditions of the outer-containment (21% 0/sub 2/-content) aerosol-concentrations at Na fires of 10 - 50 g/m/sup 3/ have been measured. The aerosol-formation rates are proportional to the 0/sub 2/-concentration: the rate at 21% 0/sub 2/-concentration is about 10-times higher than the rate at 0.7% 0/sub 2/. The aerosol formation rate was determined to 20 kgNa/m/sup 2/h at 21% 0/sub 2/. The behaviour of sand-bed-filters was investigated. A sand-bed-filter arrangement was developed which is better than HEPA-standard of fiberglas-filters concerning efficiency (better than 99.99) and load capacity (about 500 g Na/sub 2/0/sub 2//m/sup 2/). Beyond that sand-bed-filters resist high pressure- and temperature-peaks. Liquid Na aerosols are filtered with an efficiency better than 99.9%. A physical model was evaluated to explain pressure increase at the sand-bed-filter during load and penetration of the filter. The calculated values were in good agreement with experimental results.

  10. Hybrid Active-Passive Microwave Photonic Filter with High Quality Factor

    International Nuclear Information System (INIS)

    En-Ming, Xu; Xin-Liang, Zhang; Li-Na, Zhou; Yu, Zhang; De-Xiu, Huang

    2009-01-01

    A hybrid high quality factor (Q-factor) microwave photonic filter with a cascaded active filter and a passive filter is presented and experimentally demonstrated. The active infinite impulse response filter is realized by a recirculating delay line loop with a semiconductor optical amplifier, and a much narrower 3 dB bandwidth of response peaks can be achieved. A passive finite impulse response filter is realized by an unbalance Mach–Zehnder interferometer, and it is cascaded to select the desired filter frequencies and to suppress the intermediate peaks. Compared with the purely active filter scheme, the free spectrum range and the Q-factor of the hybrid structure can be doubled. Stable operation and a high Q-factor of 362 are experimentally demonstrated

  11. Using one filter stage of unsaturated/saturated vertical flow filters for nitrogen removal and footprint reduction of constructed wetlands.

    Science.gov (United States)

    Morvannou, Ania; Troesch, Stéphane; Esser, Dirk; Forquet, Nicolas; Petitjean, Alain; Molle, Pascal

    2017-07-01

    French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m 2 /P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter ® is one of the solutions developed in France by Epur Nature. Biho-Filter ® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter ® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter ® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO 3 -N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.

  12. Tratamento de esgoto e produção de água de reúso com o emprego de filtros de areia Wastewater treatment and reuse water production using sand filters

    Directory of Open Access Journals (Sweden)

    Adriano Luiz Tonetti

    2012-09-01

    Full Text Available Nesta pesquisa estudou-se um sistema composto pela combinação de filtro anaeróbio com filtro de areia para o tratamento de esgoto. Para isso, foram avaliados três filtros anaeróbios operados com tempo de detenção hidráulica de nove horas, que tinham o efluente disposto sobre quatro filtros de areia em distintas taxas de aplicações. No primeiro filtro de areia aplicaram-se 50 L.m-2 uma vez por dia. No segundo, terceiro e quarto filtros, essa mesma carga foi disposta em dois, três e quatro horários, espaçadas entre às 9:00 e às 16:00 horas. O sistema apresentou um efluente final com qualidade que atendia os padrões para reúso e demanda bioquímica de oxigênio abaixo do limite para o lançamento em corpos hídricos (Decreto de Paulista nº 8.468/1976, indicando a viabilidade de disposição de taxas superiores às sugeridas pela NBR 13969/1997, a qual orienta os aspectos construtivos para esta forma de tratamento.In this research it was studied a system composed by the anaerobic filter combined with a sand filter for the wastewater treatment. For this, three anaerobic filters were operated with hydraulic detention time of nine hours which had the effluent disposed over four sand filters in different frequencies of application. On the first sand filter, 50 L.m-2 were applied once a day. On the second, the third and the fourth filters, the same load was disposed in twice, three and four times a day, distributed between 9 a.m. and 4 p.m. The system presented a final effluent suitable for the COD and BOD legislation maximum limit to be discharged into water body (Decreto Paulista nº 8,468/1976, showing the viability of dispose a higher quantity of effluent then the one suggested by NBR 13969/1997, which guides the constructive aspects for this kind of treatment.

  13. Evaluation of an Intergrated / Biocoagulant-sand filter Drum for ...

    African Journals Online (AJOL)

    User

    2015-03-18

    Mar 18, 2015 ... to adopt simple sand filtration for water treatment is exigent. ... Moringa oleifera, a vegetable plant found across Africa have been noted ... leachate samples from waste dumps within the city of Bamenda .... Total solids mg/dm3.

  14. Characterization and removal of natural organic matter from slow sand filter effluent followed by alum coagulation

    Science.gov (United States)

    Hidayah, Euis Nurul; Chou, Yung-Chen; Yeh, Hsuan-Hsien

    2018-03-01

    Characterization and removal of natural organic matter, which is contained in the effluent of slow sand filters, was observed by alum coagulation under various dosages. In addition to non-purgedable dissolved organic carbon (NPDOC), trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAFP) measurement, high-performance size-exclusion chromatography (HPSEC) with ultraviolet/visible and dissolved organic carbon (DOC) detectors was used to characterize the various organic fractions contained in the water before and after coagulation. The results show that alum coagulation could effectively remove hydrophobic aromatic, which forms mainly humic substances. The reduction in THMFP was found to be higher than that of NPDOC and HAAFP under specific alum dosage, and the former was also found to be proportional to the corresponding reduction in the area of hydrophobic aromatic fraction, mostly humic subtances, as obtained from HPSEC chromatogram with peak-fitting.

  15. Reduction of indoor particles concentration using re-circulating filtration units in Danish dwellings

    DEFF Research Database (Denmark)

    Spilak, Michal; Frederiksen, Marie; Karottki, Gabriela D.

    2012-01-01

    air was recirculated through the unit during two weeks in a randomized and double blinded design. The measurements included concentration of PM2.5 and ultrafine particles (UPC), carbon dioxide, temperature and relative humidity, ventilation, air flow through the unit, allergen and fungal levels....... Additional information was collected through questionnaires. Several medical tests were made, however the results are not included in this paper. Preliminary results showed significant decrease in PM2.5 concentration during the filtered period compared to placebo period. Likewise was UPC significantly lower...

  16. The bio-ethanol production with the thin stillage recirculation

    Directory of Open Access Journals (Sweden)

    M. Rakin

    2009-01-01

    Full Text Available In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin stillage, the bioethanol yield increased and was above 100 %. Higher bioethanol yield than 100 % can be explained by the fact that the thin stillage contains carbohydrates, amino acids and yeast cells degradation products. The bioethanol yield increased with the increased number of thin stillage recirculation cycles. Dry matter content in fermenting slurry increased with the increased thin stillage quantity and the number of the thin stillage recirculation cycles (8.04 % for the first and 9.40 % for the sixth cycle. Dry matter content in thin stillage increased with the increased thin stillage quantity and the number of thin stillage recirculation cycles. Based on the obtained results it can be concluded that thin stillage recirculation increased the bioethanol yield. The highest bioethanol yields were obtained with recirculation of 10% thin stillage.

  17. NGL recovery increase through natural gasoline recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rivas M., M.; Bracho, J.L.; Murray, J. [Lagoven S.A., Maracaibo (Venezuela). Western Div.

    1997-12-31

    Given that the gas being processed in the compression plants Tia Juana 2 (PCTJ-2) and Tia Juana 3 (PCTJ-3) of Lagoven, S.A., an operating affiliate of Petroleos de Venezuela, S.A. has become learner through time, current production of natural gas liquids (NGL) and plant efficiency are significantly lower, compared to design and first obtained values. In this sense and aimed at increasing propane production, an optimization study on condensate stream recirculation and absorber installation was carried out to affect the process equilibrium constants thereby obtaining deeper extraction. Recirculation streams options were recirculation of natural gasoline obtained from the downstream fractionation process and recirculation of a conditioned, unfractionated, deethanized condensate stream. From the study, the natural gasoline recirculation scheme was determined to be the most efficient NGL recovery process. Accordingly, Lagoven, S.A. has undertaken a project to carry out this optimization scheme in PCTJ-2 and PCTJ-3. Construction stages are currently underway with completion scheduled at the end of 1997.

  18. Recirculating ventilation system for radioactive laboratories

    International Nuclear Information System (INIS)

    Kotrappa, P.; Menon, V.B.; Dingankar, M.V.; Chandramoleshwar, K.; Bhargava, B.L.

    1980-01-01

    Radioactive laboratories designed to handle toxic substances such as plutonium are required to have ''once through'' ventilation scheme. This is an expensive proposition particularly when conditioned air is required. A recent approach is to have recirculatory system with exhausted air passing through absolute (HEPA) filters. This scheme not only drastically reduces capital costs but also substantially cuts down maintenance and running costs. Experiments emplyoing aerosol clearance techniques were conducted to specifically establish that this new scheme meets all the health physics safety stipulations laid down for such installations. It is shown that the ''once through'' system is three times more expensive compared to the recirculation system adopted in Purnima Laboratories. Further a saving of 70% is also achieved in running and operating costs. Therefore the new approach deserves serious consideration in future planning of similar projects, particularly in view of the fact that the considerable savings achievable both in terms of money and energy are without in any way compromising on safety. (auth.)

  19. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  20. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  1. Dataset on the cost estimation for spent filter backwash water (SFBW treatment

    Directory of Open Access Journals (Sweden)

    Afshin Ebrahimi

    2017-12-01

    Full Text Available The dataset presented in this article are related to the research article entitled “Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment” (Ebrahimi et al., 2017 [1]. This article reports the cost estimation for treating produced spent filter backwash water (SFBW during water treatment in Isfahan- Iran by various methods including primary sedimentation, coagulation & flocculation, second clarification, ultra filtration (UF and recirculation of settled SFBW to water treatment plant (WTP entrance. Coagulation conducted by PAFCl and FeCl3 as pre polymerized and traditional coagulants. Cost estimation showed that contrary to expectations, the recirculation of settled SFBW to WTP entrance is more expensive than other method and it costs about $ 37,814,817.6. Versus the cheapest option related to separate primary sedimentation, coagulation & flocculation in WTP. This option cost about $ 4,757,200 and $ 950,213 when FeCl3 and PAFCl used as coagulant, respectively. Keywords: Spent filter backwash water, Water treatment, Coat estimation, Water reuse

  2. Engineering development for a small-scale recirculator experiment

    International Nuclear Information System (INIS)

    Newton, M.A.; Deadrick, F.J.; Hanks, R.L.; Hawkins, S.A.; Holm, K.A.; Kirbie, H.C.; Karpenko, V.P.; Nattrass, L.A.; Longinotti, D.B.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) is evaluating the physics and technology of recirculating induction accelerators for heavy-ion inertial-fusion drivers. As part of this evaluation, the authors are building a small-scale recirculator to demonstrate the concept and to use as a test bed for the development of recirculator technologies. System designs have been completed and components are presently being designed and developed for the small-scale recirculator. This paper discusses results of the design and development activities that are presently being conducted to implement the small-scale recirculator experiments. An, overview of the system design is presented along with a discussion of the implications of this design on the mechanical and electrical hardware. The paper focuses primarily on discussions of the development and design of the half-lattice period hardware and the advanced solid-state modulator

  3. The bio-ethanol production with the thin stillage recirculation

    OpenAIRE

    M. Rakin; J. Pejin; O. Grujić; Lj. Mojović; D. Pejin

    2009-01-01

    In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield) was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin still...

  4. NGL recovery being hiked by natural-gasoline recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rivas M, M.; Bracho, J.L. [Lagoven S.A., Maracaibo (Venezuela); Murray, J.E. [Murray (James E.), Corpus Christi, TX (United States)

    1997-07-07

    Construction will be completed later this year at two compression plants operated by Lagoven, S.A., to install natural-gasoline recirculation to improve NGL recovery. The project is the result of a study of condensate-stream recirculation and absorber operations at the compression plants Tia Juana 2 (PCTJ-2) and Tia Juana 3 (PCTJ-3), offshore Lake Maracaibo in western Venezuela. The PCTJ-2 and PCTJ-3 gas compression plants have two systems: gas compression and NGL extraction. Previous analysis of the NGL extraction and fractionation processes of Lagoven determined that there are two practical and attractive alternatives for the recirculation of the condensate streams in PCTJ-2 and 3: recirculation of natural gasoline from the Ule LPG plant; recirculation of a conditioned condensate from the de-ethanizer tower of each plant. Both alternatives are discussed. Also described are fractionation capacity, and modifications for adding absorption and fractionation.

  5. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  6. The radon daughter radiation hazard in controlled recirculation systems

    International Nuclear Information System (INIS)

    Rolle, R.; Burton, R.C.

    1987-01-01

    In deep South African gold mines, controlled recirculation systems with air cooling are being used to an increasing extent to improve the thermal environment. Recirculation causes some air to reside in the working area for a longer time than would have occurred without recirculation. Since radon daughters grow spontaneously from radon there is some concern that, with the extended residence time, the potential radiation hazard could increase to an unacceptable level. This paper describes the results obtained from a theoretical model of a controlled recirculation system. Guidelines for the design of recirculation systems to control the radon daughter radiation, and to keep it within acceptable limits are provided. 3 refs., 5 figs

  7. Phosphorus retention in a 20-year-old septic system filter bed.

    Science.gov (United States)

    Robertson, W D

    2012-01-01

    Septic systems in lakeshore environments often occur where thin soils overlie bedrock and, consequently, filter beds may be constructed of imported filter sand. The objective of this study was to assess the mobility of wastewater phosphorus (P) in such a potentially vulnerable setting by examining a 20-yr-old domestic septic system located near Parry Sound, ON, Canada, where the filter bed is constructed of imported noncalcareous sand. The groundwater plume is acidic (pH 6.0) and has a zone of elevated PO-P (up to 3.1 ± 1.7 mg L) below the tile lines but no elevated PO-P is present beyond 5 m from the tile lines. Elevated concentrations of desorbable P (up to 137 mg kg) and acid-extractable P (up to 3210 mg kg) occur in the filter sand within 1 m below four of seven tile lines present and the total mass of excess acid-extractable P (39 kg) is similar to the estimated total lifetime P loading to the system (33 kg). Microprobe images reveal abundant Fe and Al-rich authigenic mineral coatings on the sand grains that are increasingly P rich (up to 10% w/w P) near the tile lines. Additionally, 6 yr of monitoring data show that groundwater PO concentrations are not increasing. This indicates that mineral precipitation, not adsorption, dominates P immobilization at this site. This example of robust long-term P retention opens up the possibility of improving P removal in on-site treatment systems by prescribing specific sand types for filter bed construction. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Technology development for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Kirbie, H.C.

    1993-01-01

    The open-quotes recirculator,close quotes a recirculating heavy-ion accelerator has been identified as a promising approach for an inertial fusion driver. System studies have been conducted to evaluate the recirculator on the basis of feasibility and cost. The recirculator has been shown to have significant cost advantages over other potential driver schemes, but some of the performance requirements exceed the capabilities of present technology. The system studies identified the high leverage areas where advances in technology will significantly impact the cost and performance of a recirculator. One of the high leverage areas is the modulator system which generates the acceleration potentials in the induction cells. The modulator system must be capable of generating the acceleration potentials at peak repetition rates in excess of 100 kHz with variable pulse widths. LLNL is developing a modulator technology capable of driving induction cells using the latest in solid state MOSFET technology. A small scale modulator has been built and tested to prove the concept and the next version is presently being designed. The objective is to demonstrate a modulator operating at 5 kV, 1 kA, with 0.2--1 μs pulse widths while driving an induction cell at >100 kHz within the next year. This paper describes the recirculator, the technology requirements necessary to implement it and the modulator system development that is being pursued to meet these requirements

  9. Off-gas filter system of the SNR-300

    International Nuclear Information System (INIS)

    Boehm, L.; Jordan, S.; Schikarski, W.

    1975-01-01

    The Reventing-Exventing-System of the German Liquid Metal Fast Breeder Prototype SNR-300 is described. After an accident with major damage to the core the ventilation valves are quickly closed. At the same time the blower of the reventing system evacuates the reventing gap up to a pressure difference of 2 mbar between the containment and the outer atmosphere. This pressure difference prevents a leakage from the containment to the outside. The revented gas is recirculated into the outer-containment. Leaks from the atmosphere and possibly from the inner containment into the reventing gap increase the pressure in the outer-containment. Therefore depending on the pressure build-up which is determined by the course of the accident, it is necessary to exvent the containment after several days. The exvented gas is filtered by a filter combination consisting of pre-filters, charcoal-filters and HEPA-filters. Because accidental sodium fires produce high concentrations of sodium oxide-aerosols this filter system must resist chemical aggressive aerosols. (U.S.)

  10. BWR recirculation pump diagnostic expert system

    International Nuclear Information System (INIS)

    Chiang, S.C.; Morimoto, C.N.; Torres, M.R.

    2004-01-01

    At General Electric (GE), an on-line expert system to support maintenance decisions for BWR recirculation pumps for nuclear power plants has been developed. This diagnostic expert system is an interactive on-line system that furnishes diagnostic information concerning BWR recirculation pump operational problems. It effectively provides the recirculation pump diagnostic expertise in the plant control room continuously 24 hours a day. The expert system is interfaced to an on-line monitoring system, which uses existing plant sensors to acquire non-safety related data in real time. The expert system correlates and evaluates process data and vibration data by applying expert rules to determine the condition of a BWR recirculation pump system by applying knowledge based rules. Any diagnosis will be automatically displayed, indicating which pump may have a problem, the category of the problem, and the degree of concern expressed by the validity index and color hierarchy. The rules incorporate the expert knowledge from various technical sources such as plant experience, engineering principles, and published reports. These rules are installed in IF-THEN formats and the resulting truth values are also expressed in fuzzy terms and a certainty factor called a validity index. This GE Recirculation Pump Expert System uses industry-standard software, hardware, and network access to provide flexible interfaces with other possible data acquisition systems. Gensym G2 Real-Time Expert System is used for the expert shell and provides the graphical user interface, knowledge base, and inference engine capabilities. (author)

  11. Selection of Clostridium spp. in biological sand filters neutralizing synthetic acid mine drainage.

    Science.gov (United States)

    Ramond, Jean-Baptiste; Welz, Pamela J; Le Roes-Hill, Marilize; Tuffin, Marla I; Burton, Stephanie G; Cowan, Don A

    2014-03-01

    In this study, three biological sand filter (BSF) were contaminated with a synthetic iron- [1500 mg L⁻¹ Fe(II), 500 mg L⁻¹ Fe(III)] and sulphate-rich (6000 mg L⁻¹ SO₄²⁻) acid mine drainage (AMD) (pH = 2), for 24 days, to assess the remediation capacity and the evolution of autochthonous bacterial communities (monitored by T-RFLP and 16S rRNA gene clone libraries). To stimulate BSF bioremediation involving sulphate-reducing bacteria, a readily degradable carbon source (glucose, 8000 mg L⁻¹) was incorporated into the influent AMD. Complete neutralization and average removal efficiencies of 81.5 (±5.6)%, 95.8 (±1.2)% and 32.8 (±14.0)% for Fe(II), Fe(III) and sulphate were observed, respectively. Our results suggest that microbial iron reduction and sulphate reduction associated with iron precipitation were the main processes contributing to AMD neutralization. The effect of AMD on BSF sediment bacterial communities was highly reproducible. There was a decrease in diversity, and notably a single dominant operational taxonomic unit (OTU), closely related to Clostridium beijerinckii, which represented up to 65% of the total community at the end of the study period. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment.

    Science.gov (United States)

    Healy, M G; Burke, P; Rodgers, M

    2010-10-01

    The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.

  13. Recirculating induction accelerators for inertial fusion: Prospects and status

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1995-01-01

    The US is developing the physics and technology of induction accelerators for heavy-ion beam-driven inertial fusion. The recirculating induction accelerator repeatedly passes beams through the same set of accelerating and focusing elements, thereby reducing both the length and gradient of the accelerator structure. This promises an attractive driver cost, if the technical challenges associated with recirculation can be met. Point designs for recirculator drivers were developed in a multi-year study by LLNL, LBNL, and FM Technologies, and that work is briefly reviewed here. To validate major elements of the recirculator concept, we are developing a small (4-5-m diameter) prototype recirculator which will accelerate a space-charge-dominated beam of K + ions through 15 laps, from 80 to 320 keV and from 2 to 8 mA. Transverse beam confinement is effected via permanent-magnet quadrupoles; bending is via electric dipoles. This ''Small Recirculator'' is being developed in a build-and-test sequence of experiments. An injector, matching section, and linear magnetic channel using seven half-lattice periods of permanent-magnet quadrupole lenses are operational. A prototype recirculator half-lattice period is being fabricated. This paper outlines the research program, and presents initial experimental results

  14. Device for controlling a recirculation flow in a reactor

    International Nuclear Information System (INIS)

    Shida, Toichi; Tohei, Kazushige; Hirose, Masao; Nakamura, Hideo.

    1976-01-01

    Object: To provide an emergency cut-off valve in a recirculation system in a reactor to control the recirculation at the time of turbine trip or load cut-off, thereby relieving excessive increase in heat output of fuel. Structure: A recirculation pump is driven through a recirculation pump motor by an AC generator, which is driven by a driving motor through a fluid coupling, so that reactor water passes the emergency cut-off valve and recirculation flow stop valve and then passes a jet pump into the core. At the time of turbine trip or load cut-off, the emergency cut-off valve is closed by a hydraulic circuit, whereby core flow is merely decreased by 20 to 30% in a short period of time to restrain excessive increase in heat output. (Yoshino, Y.)

  15. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, L., E-mail: lidia.paredes@usc.es; Fernandez-Fontaina, E., E-mail: eduardo.fernandez.fontaina@usc.es; Lema, J.M., E-mail: juan.lema@usc.es; Omil, F., E-mail: francisco.omil@usc.es; Carballa, M., E-mail: marta.carballa@usc.es

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2 d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. - Highlights: • OMP removal was comparatively assessed in sand and GAC biofilters. • The contribution of adsorption and biotransformation in OMP removal was identified. • The filtering material did not affect the biological activities in biofilters. • There is no direct correlation between EBCT and OMP removal in biofilters. • The type of secondary effluent determines the lifespan of filtering

  16. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems

    International Nuclear Information System (INIS)

    Paredes, L.; Fernandez-Fontaina, E.; Lema, J.M.; Omil, F.; Carballa, M.

    2016-01-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2 d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. - Highlights: • OMP removal was comparatively assessed in sand and GAC biofilters. • The contribution of adsorption and biotransformation in OMP removal was identified. • The filtering material did not affect the biological activities in biofilters. • There is no direct correlation between EBCT and OMP removal in biofilters. • The type of secondary effluent determines the lifespan of filtering

  17. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    the last barrier against disinfection resistant protozoan pathogens and this has led to increased regulation of the filtration process. To be able to produce high-quality filtrate in a constant and reliable manner while meeting stricter drinking water guideline values, it is important to be able......Rapid granular filters are the most commonly used filters in drinking water treatment plants and are the focus of this PhD study. They are usually constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and have filtration rates ranging from 3 to 15 m/h. Filters are often...... options prescribed. The diagnostic tools are then used again to verify the efficiency of the solution applied. If the problem is not solved the whole process starts again. These tools are of significant interest for the development of the Water Safety Plans recommended by WHO to monitor filters...

  18. Synergistic Effects of Micro-electrolysis-Photocatalysis on Water Treatment and Fish Performance in Saline Recirculating Aquaculture System

    OpenAIRE

    Ye, Zhangying; Wang, Shuo; Gao, Weishan; Li, Haijun; Pei, Luowei; Shen, Mingwei; Zhu, Songming

    2017-01-01

    A new physico-chemical process for TAN (total ammonia nitrogen) removal and disinfection is introduced in saline recirculating aquaculture system (RAS), in which the biofilter is replaced with an integrated electrolysis cell and an activated carbon filter. The electrolysis cell which is based on micro current electrolysis combined with UV-light was self-designed. After the fundamental research, a small pilot scale RAS was operated for 30 days to verify the technical feasibility. The system wa...

  19. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Ozkaya, Bestamin

    2007-01-01

    In this study, the effect of leachate recirculation on aerobic and anaerobic degradation of municipal solid wastes is determined by four laboratory-scale landfill reactors. The options studied and compared with the traditional anaerobic landfill are: leachate recirculation, landfill aeration, and aeration with leachate recirculation. Leachate quality is regularly monitored by the means of pH, alkalinity, total dissolved solids, conductivity, oxidation-reduction potential, chloride, chemical oxygen demand, ammonia, and total Kjeldahl nitrogen, in addition to generated leachate quantity. Aerobic leachate recirculated landfill appears to be the most effective option in the removal of organic matter and ammonia. The main difference between aerobic recirculated and non-recirculated landfill options is determined at leachate quantity. Recirculation is more effective on anaerobic degradation of solid waste than aerobic degradation. Further studies are going on to determine the optimum operational conditions for aeration and leachate recirculation rates, also with the operational costs of aeration and recirculation

  20. Engine with pulse-suppressed dedicated exhaust gas recirculation

    Science.gov (United States)

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  1. A kinetic study of biological Cr(VI) reduction in trickling filters with different filter media types

    International Nuclear Information System (INIS)

    Dermou, E.; Vayenas, D.V.

    2007-01-01

    Two pilot-scale trickling filters were used in order to estimate Cr(VI) reduction through biological mechanisms in biofilm reactors operated in SBR mode with recirculation using different filter media types, i.e. plastic media and calcitic gravel. The feed concentrations of Cr(VI) examined were about 5, 10, 20, 30, 50 and 100 mg/l, while the concentration of the organic carbon was constant at 400 mg/l, in order to avoid carbon limitations in the bulk liquid. Maximum reduction rates of 4.8 and 4.7 g Cr(VI)/d were observed for feed Cr(VI) concentration of about 5 mg Cr(VI)/l, for the filters with the plastic support material and the gravel media, respectively. The reduction rates were significantly affected by the feed Cr(VI) concentration in both bioreactors. A dual-enzyme kinetic model was used in order to describe Cr(VI) reduction by aerobically grown mixed cultures. Model predictions were found to correspond very closely to experimental quantitative observations of Cr(VI) reduction at both pilot-scale trickling filters used

  2. Design and full scale test of a sand bed filter

    International Nuclear Information System (INIS)

    Kaercher, M.

    1991-01-01

    All French pressurized water reactor plants are equipped with a containment venting system. this system is designed and implemented by Electricite de France with the technical support of safety authorities (Institute of Protection and Nuclear Safety of Atomic Energy Commission). This paper covers the following items: main assumptions, sizing and design requirements; basic design of the filter resulting from PITEAS R and D program carried out between 1983 and 1989 at Cadarache nuclear center; full scale tests performed in 1990 on FUCHIA loop at Cadarache including description of the loop using plasma torches to generate CsOH aerosols in a steam - air flow, and preliminary results concerning thermohydraulic and thermic behavior under residual power simulated filtration efficiency with CsOH aerosols and iodine; complementary design, including hydrogen risk during condensation period, radiological shieldings of the filter, and heat removal after the filter closure; and conclusion on the validation of the filter

  3. Engineering systems designs for a recirculating heavy ion induction accelerator

    International Nuclear Information System (INIS)

    Newton, M.A.; Barnard, J.J.; Reginato, L.L.; Yu, S.S.

    1991-05-01

    Recirculating heavy ion induction accelerators are being investigated as possible drivers for heavy ion fusion. Part of this investigation has included the generation of a conceptual design for a recirculator system. This paper will describe the overall engineering conceptual design of this recirculator, including discussions of the dipole magnet system, the superconducting quadrupole system and the beam acceleration system. Major engineering issues, evaluation of feasibility, and cost tradeoffs of the complete recirculator system will be presented and discussed. 5 refs., 4 figs

  4. Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters

    DEFF Research Database (Denmark)

    Samuelsen, Elin Djurhuus; Badawi, Nora; Nybroe, Ole

    2017-01-01

    (Sphingomonas sp. PM2, Sphingomonas sp. ERG5, Burkholderia sp. TFD34, Cupriavidus sp. TFD38) were characterised with regard to their motility, cell surface hydrophobicity, biofilm formation, adhesion behaviour and ability to mineralise MCPA. Strains PM2 and ERG5 were non-motile and hydrophobic, whilst strains...... TFD34 and TFD38 were motile and less hydrophobic. All the strains except ERG5 showed low biofilm formation on polystyrene, although it was significantly higher on glass. PM2 was the most efficient MCPA degrader as it displayed no lag phase and reached >50 % mineralisation at all concentrations (0.......0016-25 mg L(-1)). PM2 adhered significantly better to sand than the other strains. No link was found between motility, biofilm formation and the ability to adhere to sand. PM2 completely removed MCPA for 14 days when inoculated in sand columns with a constant inlet of 1 mg L(-1) MCPA. These results...

  5. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study.

    Science.gov (United States)

    Neumann, Anke; Kaegi, Ralf; Voegelin, Andreas; Hussam, Abul; Munir, Abul K M; Hug, Stephan J

    2013-05-07

    The main arsenic mitigation measures in Bangladesh, well-switching and deep tube wells, have reduced As exposure, but water treatment is important where As-free water is not available. Zero-valent iron (ZVI) based SONO household filters, developed in Bangladesh, remove As by corrosion of locally available inexpensive surplus iron and sand filtration in two buckets. We investigated As removal in SONO filters in the field and laboratory, covering a range of typical groundwater concentrations (in mg/L) of As (0.14-0.96), Fe (0-17), P (0-4.4), Ca (45-162), and Mn (0-2.8). Depending on influent Fe(II) concentrations, 20-80% As was removed in the top sand layer, but As removal to safe levels occurred in the ZVI-layer of the first bucket. Residual As, Fe, and Mn were removed after re-aeration in the sand of the second bucket. New and over 8-year-old filters removed As to iron matrix (CIM) of newer filters and predominantly magnetite in older filters. As mass balances indicated that users filtered less than reported volumes of water, pointing to the need for more educational efforts. All tested SONO filters provided safe drinking water without replacement for up to over 8 years of use.

  6. Beam breakup in a multi-section recirculating linac

    International Nuclear Information System (INIS)

    Gluckstern, R.L.

    1986-01-01

    It has long been recognized that recirculating a beam through a linac cavity in order to provide a more efficient acceleration can also lead to an instability in which the transverse displacement on successive recirculations can excite modes which further deflect the initial beam. The effect is of particular concern for superconducting rf cavities where the high Q (or order 10 9 ) implied low starting currents for the instability. Previous work has addressed this effect by calculating the beam trajectory in a single cavity, and its effect on excitation of unwanted modes. The analysis of Gluckstern, Cooper and Channel is extended to the case of recirculation of a CW beam, and the starting current for a multi-cavity structure with several recirculations is computed. Each of the cavities is assumed to provide a simple impulse to the beam proportional to the transverse displacement in that cavity

  7. Investigation of induced recirculation during planned ventilation system maintenance

    Science.gov (United States)

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter

  8. The Suitability of Pozzolan as Admixing Aggregate for Fe0-Based Filters

    Directory of Open Access Journals (Sweden)

    Arnaud Igor Ndé-Tchoupé

    2018-04-01

    Full Text Available Continuous gravity-fed column experiments using the methylene blue (MB discoloration method were performed to characterize the suitability of a pozzolan (PZ specimen as alternative admixing aggregate for metallic iron filters (Fe0-filters. Investigated systems were: (i pure sand, (ii pure PZ, (iii pure Fe0, (iv Fe0/sand, (v Fe0/PZ, and (vi Fe0/sand/PZ. The volumetric proportion of Fe0 was 25%. The volumetric proportions of the Fe0/sand/PZ system was 25/45/30. The initial MB concentration was 2.0 mg·L−1, 6.0 g of Fe0 was used, and the experiments lasted for 46 days. The individual systems were fed with 3.9 to 8.4 L (7.80 to 16.69 mg of MB and were characterized by the time-dependent changes of: (i the pH value, (ii the iron breakthrough, (iii the MB breakthrough, and (iv the hydraulic conductivity. Results showed that the Fe0/sand/PZ system was the most efficient. This ternary system was also the most permeable and therefore the most sustainable. The suitability of MB as a powerful operative indicator for the characterization of processes in the Fe0/H2O system was confirmed. The tested PZ is recommended as an alternative material for efficient but sustainable Fe0 filters.

  9. Modeling and simulation of the bioprocess with recirculation

    Directory of Open Access Journals (Sweden)

    Žerajić Stanko

    2007-01-01

    Full Text Available The bioprocess models with recirculation present an integration of the model of continuous bioreaction system and the model of separation system. The reaction bioprocess is integrated with separation the biomass, formed product, no consumed substrate or inhibitory substance. In this paper the simulation model of recirculation bioprocess was developed, which may be applied for increasing the biomass productivity and product biosynthesis increasing the conversion of a substrate-to-product, mixing efficiency and secondary C02 separation. The goal of the work is optimal bioprocess configuration, which is determined by simulation optimization. The optimal hemostat state was used as referent. Step-by-step simulation method is necessary because the initial bioprocess state is changing with recirculation in each step. The simulation experiment confirms that at the recirculation ratio a. = 0.275 and the concentration factor C = 4 the maximum glucose conversion to ethanol and at a dilution rate ten times larger.

  10. Recirculating steam generator operation at very low power

    International Nuclear Information System (INIS)

    Holcblat, A.

    2001-01-01

    The behaviour of recirculating SG's at very low power has been thoroughly investigated by laboratory and on-site tests as well as numerical simulations. A special experimental program dedicated to recirculation threshold determination has been performed on the Freon SG mock-up CLOTAIRE. These laboratory data are completed with transients of feedwater injections at hot stand-by on two instrumented SG's, one boiler type SG and one economizer type SG. The phenomena are different on both types. In boiler SG's, the SG behaves like a U-tube and recirculation stops around 2% load at stand-by temperature and water level. In economizer SG's, the presence of 2 separate down-comers and a divider plate inside the tube bundle allows a recirculation loop by-passing the separators. The mixing of saturated and cold water induced by this loop limits down-comer cooling and thus alleviates the thermal load on the tube sheet. These tests were used to validate the SG transient analysis 1-D code ANETH. (author)

  11. Indoor spread of respiratory infection by recirculation of air: a controllable hazard

    International Nuclear Information System (INIS)

    Riley, R.L.

    1980-01-01

    The overall health benefit to be derived from disinfecting air before recirculation is difficult to predict, but as more and more buildings recirculate air without disinfection, the problem of spreading infection increases. Since the cost of disinfection with uv radiation is small and the cost of morbidity from airborne infections immense, the cost-benefit ratio for disinfecting recirculated air may be attractive, even though the protection of occupants would be limited. Recirculation of air in buildings is a relatively new technology that conserves energy. Like most new technologies, it brings new hazards. Disinfection of recirculated air is an appropriate additional technique with which to counter some of the hazards of air recirculation

  12. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    Science.gov (United States)

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  13. Flue gas recirculation to pellets burner

    International Nuclear Information System (INIS)

    Loefgren, B.E.; Blohm, T.

    1999-05-01

    The aim of this project has been to study the influence of flue gas recirculation on the combustion results. Primarily regarding the turbulence, stability and air surplus of the flame, but also the influence on environmental factors (CO and unburnt hydrocarbons). Also studied was the possibility of automatic control of the mixing of recirculating flue gases in the combustion process through the use of a λ-sond and O 2 control Project report from the program: Small scale combustion of biofuels. 9 figs, 8 tabs

  14. A biocoagulant slow sand filtration for disinfection of Toxoplasma ...

    African Journals Online (AJOL)

    An integrated low-tech biocoagulant-sand filter drum for disinfection of oocysts of Toxoplasma gondii targeted for developing countries was evaluated. Dirty and turbid water (130.3 NTU) from Mezam River and leachates from dump sites and stagnant water in Bamenda, Cameroon, was analyzed microscopically after ...

  15. Optimizing nitrification in biological rapid sand filters: Diagnosing and supplementing micronutrients needed for proper filter performance

    DEFF Research Database (Denmark)

    Lee, Carson Odell; Wagner, Florian Benedikt; Boe-Hansen, Rasmus

    Nitrification is an important biological process commonly used in biological drinking water filters to remove ammonium from drinking water. Recent research has shown that a lack of micronutrients could be limiting the performance of these filters. Because nitrification is a biological process, ca...... to be an important diagnostic tool that could decrease regulatory hurdles, and save time and money....

  16. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    Science.gov (United States)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  17. Further studies on beam breakup growth reduction by cavity cross-couplings in recirculating accelerators: Effects of long pulse length and multiturn recirculation

    International Nuclear Information System (INIS)

    Colombant, D.; Lau, Y.Y.

    1992-01-01

    Cavity cross-coupling was recently found to reduce beam breakup (BBU) growth in a recirculating accelerator known as the Spiral Line Induction Accelerator (SLIA). Here, we extend the analysis in two prespects: ong beam pulse lengths and a SLIA upgrade geometry which accelerates a 10 kA, 35 ns beam to 25 MeV via a 70 cavity, 7 turn recirculation. We found that when the beam pulse length τ exceeds the beam's transit time τ' between cross-coupled cavities, BBU growth may be worsened as a result of the cross-coupling among cavities. This situation is not unlike other long pulse recirculating accelerators where beam recirculation leads to beam breakup of a regenerative type. Thus, the advantage of BBU reduction by cavity cross-coupling is restricted primarily to beams with τ<τ', a condition envisioned for all SLIA geometries. For the 70 gap, 7 turn SLIA upgrade, we found that cavity cross-coupling may reduce BBU growth up to factors of a thousand when the quality factor Q of the deflecting modes are relatively high (like 100). In these high Q cases, the amount of growth reduction depends on the arrangement and sequence of beam recirculation. For Q < or approx. 20, BBU growth reduction by factors of hundreds is observed, but this reduction is insensitive to the sequence of beam recirculation. The above conclusions were based on simple models of cavity coupling that have been used in conventional microwave literature. Not addressed is the detail design consideration that leads to the desired degree of cavity coupling. (orig.)

  18. Dust deposit in recirculation regions

    International Nuclear Information System (INIS)

    Griemert, R.

    1985-03-01

    The present report shows investigations, which have been carried out in a closed duct at forward and backward facing steps. Distribution of fluid velocity and fluid fluctuations in and normal to main flow direction as well as the distribution of Reynolds shear stress have been measured. The mass transfer downstream of a backward facing step has been investigated as well. By using graphite-, copper-, tin- and rubber dust, conditions of deposition have been defined experimentally. A serie of photos shows the filling of a recirculation region downstream of a backward facing step with graphite dust. The present investigations allow to avoid deposition of dust in recirculation regions by selecting the fluid numbers in an appropriate way. (orig.) [de

  19. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  20. Design and operation of nitrifying trickling filters in recirculating aquaculture: a review

    NARCIS (Netherlands)

    Eding, E.H.; Kamstra, A.; Verreth, J.A.J.; Huisman, E.A.; Klapwijk, A.

    2006-01-01

    This review deals with the main mechanisms and parameters affecting design and performance of trickling filters in aquaculture. Relationships between nitrification rates and easily accessible process parameters, like bulk phase concentration of TAN, O2, organic matter (COD), nitrite, temperature,

  1. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    Sulphur recirculation is a new technology for reducing boiler corrosion and dioxin formation, which was demonstrated in full-scale tests performed at the Renova Waste to Energy plant at Saevenaes in Goeteborg (Sweden). Sulphur is recirculated from the flue gas cleaning back to the boiler, which reduces the chloride content of the deposits, which in turn reduces boiler corrosion and dioxin formation. Sulphur dioxide was separated from the flue gas in a wet scrubber by adding hydrogen peroxide, producing sulphuric acid. The sulphuric acid was injected into the furnace using nozzles with atomization air, surrounded by recirculated flue gas for improved mixing. By recirculating the sulphur, the sulphur dioxide concentration was increased in the boiler. Each sulphur atom passed the boiler several times and no external sulphur had to be added. Dioxin, ash, deposits and particle samplings together with 1000 h corrosion probe measurements were performed for normal operation (reference) and with sulphur recirculation respectively. During spring 2009, reference measurements were made and the recirculation system was installed and tested. During autumn 2009, a long term test with sulphur recirculation was made. An SO{sub 2} concentration of approximately 800 mg/m3 (n, d.g.) was maintained in the boiler by the system except during a period of extremely low sulphur content in the waste. The sulphur dioxide stack concentrations have been far below the emission limit. Sulphuric acid dew point measurements have shown that the sulphuric acid dosage did not lead to elevated SO{sub 3} concentrations, which may otherwise lead to low temperature corrosion. The chlorine content of both fly ash and boiler ash decreased and the sulphur content increased during the sulphur recirculation tests. The molar chlorine/sulphur ratio (Cl/S) decreased by two thirds in the fly ash as well as in the boiler ash, except for one sample. With sulphur recirculation in operation, the deposit growth was

  2. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems.

    Science.gov (United States)

    Auffret, Marc; Pilote, Alexandre; Proulx, Emilie; Proulx, Daniel; Vandenberg, Grant; Villemur, Richard

    2011-12-15

    Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Thermophysical fundamentals of cyclonic recirculating heating devices

    Science.gov (United States)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  5. Influence green sand system by core sand additions

    Directory of Open Access Journals (Sweden)

    N. Špirutová

    2012-01-01

    Full Text Available Today, about two thirds of iron alloys casting (especially for graphitizing alloys of iron are produced into green sand systems with usually organically bonded cores. Separation of core sands from the green sand mixture is very difficult, after pouring. The core sand concentration increase due to circulation of green sand mixture in a closed circulation system. Furthermore in some foundries, core sands have been adding to green sand systems as a replacement for new sands. The goal of this contribution is: “How the green sand systems are influenced by core sands?”This effect is considered by determination of selected technological properties and degree of green sand system re-bonding. From the studies, which have been published yet, there is not consistent opinion on influence of core sand dilution on green sand system properties. In order to simulation of the effect of core sands on the technological properties of green sands, there were applied the most common used technologies of cores production, which are based on bonding with phenolic resin. Core sand concentration added to green sand system, was up to 50 %. Influence of core sand dilution on basic properties of green sand systems was determined by evaluation of basic industrial properties: moisture, green compression strength and splitting strength, wet tensile strength, mixture stability against staling and physical-chemistry properties (pH, conductivity, and loss of ignition. Ratio of active betonite by Methylene blue test was also determined.

  6. Monitoring for shaft cracks on reactor recirculation pumps

    International Nuclear Information System (INIS)

    Kowal, M.G.; O'Brien, J.T. Jr.

    1989-01-01

    The article discusses the vibration characteristics associated with a boiling water reactor (BWR) recirculation pump. It also describes the application of diagnostic techniques and shaft crack theory to an on-line diagnostic monitoring system for reactor recirculation pumps employed at Philadelphia Electric Company's Peach Bottom Atomic Power Station. Specific emphasis is placed on the unique monitoring techniques associated with these variable speed vertical pumps

  7. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    Science.gov (United States)

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu

  8. Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Visser, Ate; Schijven, J.F.; Bonné, P.; Medema, Gerriet Jan

    2004-01-01

    The decimal elimination capacity (DEC) of slow sand filters (SSF) for viruses, bacteria and oocysts of Cryptosporidium has been assessed from full-scale data and pilot plant and laboratory experiments. DEC for viruses calculated from experimental data with MS2-bacteriophages in the pilot plant

  9. Modelling of a sand bed filter in the cell exhaust air pathway

    International Nuclear Information System (INIS)

    Schmid, M.

    1983-01-01

    Sandbed filters are appropriate incident filters for zircaloy fires, dissolver fires, and explosions. The alternative treatment of these incidents with and without SBF can thus also quantify the safety gain if an SBF is used. The SBF is considered to be a pure incident filter and according to a planning the SBF is by-passed during normal operation. In case of a temperature rise in the cell the by-pass is blocked by a fire protection valve. (orig./DG) [de

  10. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    Science.gov (United States)

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  11. Volume reduction and material recirculation by freon decontamination

    International Nuclear Information System (INIS)

    Berners, O.; Buhmann, D.; Yamashita, Y.; Yoshiaki, M.

    1989-01-01

    This paper discusses the use of freon in a large variety of decontamination in the nuclear and non-nuclear fields. As far as the contamination is loose or smerable, surfaces of nearly all materials can be decontaminated. Freon is electrically non-conductive, chemically neutral and has a low surface tension. So it is capable of creeping under the contaminant and loosening or dissolving it. Used freon can be collected, cleaned and recirculated. Its cleaning can be done easily by evaporation at its lower vapor point of about 48 degrees C (104 degrees F). Good decontamination results could be achieved, expensive materials, tools and equipment could be recirculated. Big volumes of materials could get separated from their contaminants, which is the real radioactive waste. Freon decontamination is an effective, overall economical and approved technology to volume reduction and material recirculation

  12. Metal oxide/hydroxide-coated dual-media filter for simultaneous removal of bacteria and heavy metals from natural waters.

    Science.gov (United States)

    Ahammed, M Mansoor; Meera, V

    2010-09-15

    The present study was conducted to compare the performance of a dual-media filter consisting of manganese oxide-coated (MOCS) and iron hydroxide-coated sand (IOCS) with that of IOCS filter and uncoated sand filter in treating water contaminated by microorganisms, heavy metals and turbidity with a view to its use in simple household water purification devices in developing countries. Long-duration column tests were conducted using two natural waters namely, roof-harvested rainwater and canal water. Performance of the filters showed that dual-media filter was more efficient in removing bacteria and heavy metals compared to IOCS filter, while uncoated sand filter showed very poor performance. The average effluent levels for dual-media filter when tested with rainwater were: turbidity 1.0+/-0.1 NTU; total coliforms 3+/-2 MPN/100 mL; heterotrophic plate count 170+/-20 CFU/mL; zinc 0.06+/-0.01 mg/L, while that for IOCS filter were: turbidity 1.0+/-0.1 NTU; total coliforms 4+/-2 MPN/100 mL; heterotrophic plate count 181+/-37 CFU/mL; zinc 0.20+/-0.07 mg/L. Similar results were obtained for canal water also. Up to 900 bed volumes (BV) could be treated without affecting the efficiency in the case of rainwater, while the filter operation had to be terminated after 500 BV due to excessive headloss in the case of canal water. The study thus showed the potential of the dual-media for use in low-cost household water filters for purification of natural waters. Copyright 2010 Elsevier B.V. All rights reserved.

  13. DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS

    International Nuclear Information System (INIS)

    BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.

    2001-01-01

    Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective

  14. Modelling the removal of p-TSA (para-toluenesulfonamide) during rapid sand filtration used for drinking water treatment.

    Science.gov (United States)

    Meffe, Raffaella; Kohfahl, Claus; Holzbecher, Ekkehard; Massmann, Gudrun; Richter, Doreen; Dünnbier, Uwe; Pekdeger, Asaf

    2010-01-01

    A finite element model was set-up to determine degradation rate constants for p-TSA during rapid sand filtration (RSF). Data used for the model originated from a column experiment carried out in the filter hall of a drinking water treatment plant in Berlin (Germany). Aerated abstracted groundwater was passed through a 1.6m long column-shaped experimental sand filter applying infiltration rates from 2 to 6mh(-1). Model results were fitted to measured profiles and breakthrough curves of p-TSA for different infiltration rates using both first-order reaction kinetics and Michaelis-Menten kinetics. Both approaches showed that degradation rates varied both in space and time. Higher degradation rates were observed in the upper part of the column, probably related to higher microbial activity in this zone. Measured and simulated breakthrough curves revealed an adaption phase with lower degradation rates after infiltration rates were changed, followed by an adapted phase with more elevated degradation rates. Irrespective of the mathematical approach and the infiltration rate, degradation rates were very high, probably owing to the fact that filter sands have been in operation for decades, receiving high p-TSA concentrations with the raw water.

  15. Mechanical design of recirculating accelerator experiments for heavy-ion fusion

    International Nuclear Information System (INIS)

    Karpenko, V.

    1995-01-01

    Recirculating induction accelerators have been studied as a potential low cost driver for inertial fusion energy. At LLNL, we are developing a small (4.5-m diameter), scaled, experimental machine which will demonstrate many of the engineering solutions of a full scale driver. The small recirculator will accelerate singly ionized potassium ions from 80 to 320 keV and 2 to 8 mA, using electric dipoles for bending and permanent magnet quadrupoles for focusing in a compact periodic lattice. While very compact, and low cost, this design allows the investigation of most of the critical physics issues associated with space-charge-dominated beams in future IFE power plant drivers. This report describes the recirculator, its mechanical design, its vacuum design, and the process for aligning it. Additionally, a straight magnetic transport experiment is being carried out to test diagnostics and magnetic transport in preparation for the recirculator

  16. Vortex dynamics in a pipe T-junction: Recirculation and sensitivity

    Science.gov (United States)

    Chen, Kevin K.; Rowley, Clarence W.; Stone, Howard A.

    2015-03-01

    In the last few years, many researchers have noted that regions of recirculating flow often exhibit particularly high sensitivity to spatially localized feedback. We explore the flow through a T-shaped pipe bifurcation—a simple and ubiquitous, but generally poorly understood flow configuration—and provide a complex example of the relation between recirculation and sensitivity. When Re ≥ 320, a phenomenon resembling vortex breakdown occurs in four locations in the junction, with internal stagnation points appearing on vortex axes and causing flow reversal. The structure of the recirculation is similar to the traditional bubble-type breakdown. These recirculation regions are highly sensitive to spatially localized feedback in the linearized Navier-Stokes operator. The flow separation at the corners of the "T," however, does not exhibit this kind of sensitivity. We focus our analysis on the Reynolds number of 560, near the first Hopf bifurcation of the flow.

  17. Compositional Signatures in Acoustic Backscatter Over Vegetated and Unvegetated Mixed Sand-Gravel Riverbeds

    Science.gov (United States)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2017-10-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  18. Compositional signatures in acoustic backscatter over vegetated and unvegetated mixed sand-gravel riverbeds

    Science.gov (United States)

    Buscombe, Daniel; Grams, Paul E.; Kaplinski, Matt A.

    2017-01-01

    Multibeam acoustic backscatter has considerable utility for remote characterization of spatially heterogeneous bed sediment composition over vegetated and unvegetated riverbeds of mixed sand and gravel. However, the use of high-frequency, decimeter-resolution acoustic backscatter for sediment classification in shallow water is hampered by significant topographic contamination of the signal. In mixed sand-gravel riverbeds, changes in the abiotic composition of sediment (such as homogeneous sand to homogeneous gravel) tend to occur over larger spatial scales than is characteristic of small-scale bedform topography (ripples, dunes, and bars) or biota (such as vascular plants and periphyton). A two-stage method is proposed to filter out the morphological contributions to acoustic backscatter. First, the residual supragrain-scale topographic effects in acoustic backscatter with small instantaneous insonified areas, caused by ambiguity in the local (beam-to-beam) bed-sonar geometry, are removed. Then, coherent scales between high-resolution topography and backscatter are identified using cospectra, which are used to design a frequency domain filter that decomposes backscatter into the (unwanted) high-pass component associated with bedform topography (ripples, dunes, and sand waves) and vegetation, and the (desired) low-frequency component associated with the composition of sediment patches superimposed on the topography. This process strengthens relationships between backscatter and sediment composition. A probabilistic framework is presented for classifying vegetated and unvegetated substrates based on acoustic backscatter at decimeter resolution. This capability is demonstrated using data collected from diverse settings within a 386 km reach of a canyon river whose bed varies among sand, gravel, cobbles, boulders, and submerged vegetation.

  19. Assessment of the capacity of slow sand filtration to eliminate Cryptosporidium oocysts

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Dullemont, Y.J.; Bosklopper, K.T.G.J.; Schijven, J.F.; Medema, Gerriet Jan

    2006-01-01

    Decimal Elimination Capacity (DEC) of the slow sand filters of the Dutch drinking water Companies was assessed; first by literature review, followed by evaluation of the removal of environmental spores of sulphite-reducing clostridia (SSRC) and small-sized centric diatoms (SSCD) as surrogates.

  20. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  1. Small scale recirculating vertical flow constructed wetland (RVFCW) for the treatment and reuse of wastewater.

    Science.gov (United States)

    Gross, A; Sklarz, M Y; Yakirevich, A; Soares, M I M

    2008-01-01

    The quantity of freshwater available worldwide is declining, revealing a pressing need for its more efficient use. Moreover, in many developing countries and lightly populated areas, raw wastewater is discarded into the environment posing serious ecological and health problems. Unfortunately, this situation will persist unless low-cost, effective and simple technologies are brought in. The aim of this study is to present such a treatment method, a novel setup which is termed recirculating vertical flow constructed wetland (RVFCW). The RVFCW is composed of two components: (i) a three-layer bed consisting of planted organic soil over an upper layer of filtering media (i.e. tuff or beads) and a lower layer of limestone pebbles, and (ii) a reservoir located beneath the bed. Wastewater flows directly into the plant root zone and trickles down through the three-layer bed into the reservoir, allowing passive aeration. From the reservoir the water is recirculated back to the bed, several times, until the desired purification is achieved. The results obtained show that the RVFCW is an effective and convenient strategy to treat (domestic, grey and agro) wastewater for re-use in irrigation. The system performance is expected to be further improved once current optimization experiments and mathematical modeling studies are concluded. IWA Publishing 2008.

  2. Criticality safety evaluation report for K Basin filter cartridges

    International Nuclear Information System (INIS)

    Schwinkendorf, K.N.

    1995-01-01

    A criticality safety evaluation of the K Basin filter cartridge assemblies has been completed to support operations without a criticality alarm system. The results show that for normal operation, the filter cartridge assembly is far below the safety limit of k eff = 0.95, which is applied to plutonium systems at the Hanford Site. During normal operating conditions, uranium, plutonium, and fission and corrosion products in solution are continually accumulating in the available void spaces inside the filter cartridge medium. Currently, filter cartridge assemblies are scheduled to be replaced at six month intervals in KE Basin, and at one year intervals in KW Basin. According to available plutonium concentration data for KE Basin and data for the U/Pu ratio, it will take many times the six-month replacement time for sufficient fissionable material accumulation to take place to exceed the safety limit of k eff = 0.95, especially given the conservative assumption that the presence of fission and corrosion products is ignored. Accumulation of sludge with a composition typical of that measured in the sand filter backwash pit will not lead to a k eff = 0.95 value. For off-normal scenarios, it would require at least two unlikely, independent, and concurrent events to take place before the k eff = 0.95 limit was exceeded. Contingencies considered include failure to replace the filter cartridge assemblies at the scheduled time resulting in additional buildup of fissionable material, the loss of geometry control from the filter cartridge assembly breaking apart and releasing the individual filter cartridges into an optimal configuration, and concentrations of plutonium at U/Pu ratios less than measured data for KE Basin, typically close to 400 according to extensive measurements in the sand filter backwash pit and plutonium production information

  3. Modeling Flow Past a Tilted Vena Cava Filter

    Energy Technology Data Exchange (ETDEWEB)

    Singer, M A; Wang, S L

    2009-06-29

    Inferior vena cava filters are medical devices used to prevent pulmonary embolism (PE) from deep vein thrombosis. In particular, retrievable filters are well-suited for patients who are unresponsive to anticoagulation therapy and whose risk of PE decreased with time. The goal of this work is to use computational fluid dynamics to evaluate the flow past an unoccluded and partially occluded Celect inferior vena cava filter. In particular, the hemodynamic response to thrombus volume and filter tilt is examined, and the results are compared with flow conditions that are known to be thrombogenic. A computer model of the filter inside a model vena cava is constructed using high resolution digital photographs and methods of computer aided design. The models are parameterized using the Overture software framework, and a collection of overlapping grids is constructed to discretize the flow domain. The incompressible Navier-Stokes equations are solved, and the characteristics of the flow (i.e., velocity contours and wall shear stresses) are computed. The volume of stagnant and recirculating flow increases with thrombus volume. In addition, as the filter increases tilt, the cava wall adjacent to the tilted filter is subjected to low velocity flow that gives rise to regions of low wall shear stress. The results demonstrate the ease of IVC filter modeling with the Overture software framework. Flow conditions caused by the tilted Celect filter may elevate the risk of intrafilter thrombosis and facilitate vascular remodeling. This latter condition also increases the risk of penetration and potential incorporation of the hook of the filter into the vena caval wall, thereby complicating filter retrieval. Consequently, severe tilt at the time of filter deployment may warrant early clinical intervention.

  4. Recirculation nursery systems for bivalves

    NARCIS (Netherlands)

    Kamermans, P.; Blanco Garcia, A.; Joaquim, Sandra; Matias, Domitilia; Magnesen, Thorolf; Nicolas, J.; Petten, Bruno; Robert, Rene

    2016-01-01

    n order to increase production of bivalves in hatcheries and nurseries, the development of new technology and its integration into commercial bivalve hatcheries is important. Recirculation aquaculture systems (RASs) have several advantages: high densities of the species can be cultured resulting in

  5. Re-circulating linac vacuum system

    International Nuclear Information System (INIS)

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-01-01

    The vacuum system for a proposed 2.5 GeV, 10ΜA recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10ΜA average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing

  6. Impact of capillary rise and recirculation on simulated crop yields

    NARCIS (Netherlands)

    Kroes, J.G.; Supit, I.; Dam, van J.C.; Walsum, van P.E.V.; Mulder, H.M.

    2018-01-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge.

  7. A Randomized Controlled Trial of the Plastic-Housing BioSand Filter and Its Impact on Diarrheal Disease in Copan, Honduras

    Science.gov (United States)

    Fabiszewski de Aceituno, Anna M.; Stauber, Christine E.; Walters, Adam R.; Meza Sanchez, Rony E.; Sobsey, Mark D.

    2012-01-01

    Point of use drinking water treatment with the BioSand filter (BSF) allows people to treat their water in the home. The purpose of this research was to document the ability of the Hydraid plastic-housing BSF to reduce diarrheal disease in households who received a BSF in a randomized controlled trial. The trial of the Hydraid plastic-housing BSF was carried out in rural, mountainous communities in Copan, Honduras during April of 2008 to February of 2009. A logistic regression adjusting for clustering showed that the incidence of diarrheal disease in children under 5 years was reduced by approximately 45% (odds ratio = 0.55, 95% confidence interval = 0.28, 1.10) in households that had a BSF compared with those households without a BSF, but this finding fluctuated depending on season and was not statistically significant. Households with a BSF had significantly better drinking water quality regardless of water source or season. PMID:22665593

  8. Food irradiation dosimetry using thermoluminescence of quartz sand

    International Nuclear Information System (INIS)

    Khan, H.M.; Ehlermann, D.A.E.

    1993-01-01

    Thermoluminescence of quartz sand, which is inert and concomitant to several food materials, has been investigated for applications in food irradiation dosimetry and detection of irradiated foods. The glow curves consist of at least three overlapping peaks from 100 to 420 C. The peak at lower temperature is not stable and decays quickly at room temperature. However, the peaks at higher temperature are stable and more useful for dosimetry work. The intensity of the peak at 360 C, measured using different optical filters, shows a linear response in the range of 0.05 to 23 kGy. Stability of these signals at different annealing temperatures has been investigated. Thermoluminescence from adhering minerals and contaminating dust in different food materials has been found useful for the detection of irradiation treatment. Since quartz is frequently one of these minerals, further computerized deconvolution of individual glow peaks from the complex glow curves of quartz sand was carried out which improves the dosimetric results. Possible applications of thermoluminescence of quartz sand in food irradiation dosimetry and detection of irradiated foods have been discussed. (orig.)

  9. Treatment of vinasses - recirculation

    Directory of Open Access Journals (Sweden)

    Germán Andrés Castro Moreno

    2009-08-01

    Full Text Available The purpose of this minireview is to give an overview of treatments that have been applied on the vinasse, residue from the alcoholic fermentation; appoint some of its advantages and disadvantages, and then submit recirculation, as one of the best options from an economic point of view and easy implementation, for those who are not interested in the ethanol byproducts.

  10. Domestic manufacturing and reliability improvement of reactor water recirculation equipment

    International Nuclear Information System (INIS)

    Kobayashi, Hidekazu; Oi, Masao; Shida, Toichi; Yokomori, Takashi

    1982-01-01

    The reactor coolant recirculation system is one of the important systems to control the reactor output in BWR nuclear power plants. Its components require high reliability and maintainability as well as controllability. For many Japanese nuclear power plants, recirculation pumps, fluid couplings and others have been imported so far. Hitachi Ltd. has established a domestic manufacturing organization through the development and test of these equipment. The fundamental design conditions for these equipment are the improvement of the rate of utilization of plant facility, the capability to follow load, and output power stability. In this paper, the specifications, the investigation of moment of inertia and the design features of recirculation pumps, driving motors and variable frequency power supply systems are described. The paper also reports on the combination test implemented to evaluate the recirculation system. The combination test includes the test using water rheostat for the power source facility and the loading test for a recirculation pump. The application of those system equipment to an actual plant was analyzed and evaluated on a basis of the test data obtained. The result showed that the equipment can achieve the rate of change of reactor power of 30%/min. Those equipment have been employed for No. 2 reactor plant of the Fukushima No. 2 Nuclear Power Station, the Tokyo Electric Power Co., Inc. (Wakatsuki, Y.)

  11. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  12. Low Load Model of a Once-through Boiler with Recirculation

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    2006-01-01

    A dynamic simulation model of a once-through boiler in low to medium load is developed. When the system is in low load, water from the evaporator is recirculated through a bottle. This recirculation system is included in the model, which is then shown to fit closed-loop data from a real plant...

  13. Helmint eggs elimination performance during lammelar settling and sand filters in Beniel WWTP (Murcia, Spain); Rendimiento en la eliminacion de huevos de helminto en la decantacion lamelar y filtracion por arena en la EDAR de Beniel (Murcia)

    Energy Technology Data Exchange (ETDEWEB)

    Simon Andreu, P. J.; Cardin Mifsut, C.; Pacheco Ballarin, S.; Martinez Muro, M. A.; Vicente Gonzalez, J. A.; Llosar Llacer, C.

    2010-07-01

    With this study, it was observed Ascaris suum eggs elimination yield of tertiary treatment in Beniel wastewater treatment plant (WWTP) in Murcia Region (Spain). It was inoculated a sample of Ascaris suum eggs in the treatment in maximum flow conditions and it was calculated the retention yield of the lamellar settling and sand filters. (Author) 3 refs.

  14. Transport and error sensitivity in a heavy-ion recirculator

    International Nuclear Information System (INIS)

    Sharp, W.M.; Barnard, J.J.; Yu, S.S.

    1991-05-01

    An envelope code has been developed to facilitate the design of a recirculating accelerator for a heavy-ion fusion reactor. A novel feature of the model is the treatment of the beam charge density as a Lagrangian fluid in the axial direction. Transport results for a preliminary recirculator design are presented, and sensitivity of the transport to errors in the magnet strength is discussed. 4 refs., 4 figs

  15. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia; Levy, Ilan; Dayan, Uri; Jerez, Sonia; Mendes, Manuel; Trigo, Ricardo

    2016-06-01

    Coastal zones are under increasing development and experience air pollution episodes regularly. These episodes are often related to peaks in local emissions from industry or transportation, but can also be associated with regional transport from neighbour urban areas influenced by land-sea breeze recirculation. This study intends to analyze the relation between circulation weather patterns, air mass recirculation and pollution levels in three coastal airsheds of Portugal (Lisbon, Porto and Sines) based on the application of an objective quantitative measure of potential recirculation. Although ventilation events have a dominant presence throughout the studied 9-yrs period on all the three airsheds, recirculation and stagnation conditions occur frequently. The association between NO2, SO2 and O3 levels and recirculation potential is evident during summer months. Under high average recirculation potential and high variability, NO2 and SO2 levels are higher for the three airsheds, whilst for O3 each airshed responds differently. This indicates a high heterogeneity among the three airsheds in (1) the type of emission - traffic or industry - prevailing for each contaminant, and (2) the response to the various circulation weather patterns and recirculation situations. Irrespectively of that, the proposed methodology, based on iterative K-means clustering, allows to identify which prevailing patterns are associated with high recirculation potential, having the advantage of being applicable to any geographical location.

  16. The benefits of flue gas recirculation in waste incineration.

    Science.gov (United States)

    Liuzzo, Giuseppe; Verdone, Nicola; Bravi, Marco

    2007-01-01

    Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.

  17. In-line Kevlar filters for microfiltration of transuranic-containing liquid streams.

    Science.gov (United States)

    Gonzales, G J; Beddingfield, D H; Lieberman, J L; Curtis, J M; Ficklin, A C

    1992-06-01

    The Department of Energy Rocky Flats Plant has numerous ongoing efforts to minimize the generation of residue and waste and to improve safety and health. Spent polypropylene liquid filters held for plutonium recovery, known as "residue," or as transuranic mixed waste contribute to storage capacity problems and create radiation safety and health considerations. An in-line process-liquid filter made of Kevlar polymer fiber has been evaluated for its potential to: (1) minimize filter residue, (2) recover economically viable quantities of plutonium, (3) minimize liquid storage tank and process-stream radioactivity, and (4) reduce potential personnel radiation exposure associated with these sources. Kevlar filters were rated to less than or equal to 1 mu nominal filtration and are capable of reducing undissolved plutonium particles to more than 10 times below the economic discard limit, however produced high back-pressures and are not yet acid resistant. Kevlar filters performed independent of loaded particles serving as a sieve. Polypropylene filters removed molybdenum particles at efficiencies equal to Kevlar filters only after loading molybdenum during recirculation events. Kevlars' high-efficiency microfiltration of process-liquid streams for the removal of actinides has the potential to reduce personnel radiation exposure by a factor of 6 or greater, while simultaneously achieving a reduction in the generation of filter residue and waste by a factor of 7. Insoluble plutonium may be recoverable from Kevlar filters by incineration.

  18. Integration of sand and membrane filtration systems for iron and pesticide removal without chemical addition

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2013-01-01

    the content of key foulants, the techniques can be used as a pre-treatment for nanofiltration and low pressure reverse osmosis that has proved to be capable of removing pesticides. It was found that a lower fouling potential could be obtained by using the membranes, but that sand filter was better at removing......Pilot plant investigations of sand and membrane filtration (MF/UF/NF/LPRO) have been performed to treat groundwater polluted with pesticides. The results show that simple treatment, with use of aeration and sand filtration or MF/UF membranes, does not remove pesticides. However, by reducing...... manganese and dissolved organic matter. The results indicate that combining aeration; sand filtration and membrane techniques might be a good option for pesticide removal without any addition of chemicals and minimized membrane maintenance....

  19. In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotrophic microbial filter

    International Nuclear Information System (INIS)

    Taylor, R.T.; Duba, A.G.; Durham, W.B.; Hanna, M.L.; Jackson, K.J.; Jovanovich, M.C.; Knapp, R.B.; Knezovich, J.P.; Shah, N.N.; Shonnard, D.R.; Wijesinghe, A.M.

    1992-10-01

    The Lawrence Livermore National Laboratory is testing and developing an in situ microbial filter technology for remediating migrating subsurface plumes contaminated with low concentrations of trichloroethylene (TCE). Their current focus is the establishment of a replenishable bioactive zone (catalytic filter) along expanding plume boundaries by the Injection of a representative methanotrophic bacterium, Methylosinus trichosporium OB3b. We have successfully demonstrated this microbial filter strategy using emplaced, attached resting cells (no methane additions) in a 1.1-m flow-through test bed loaded with water-saturated sand. Two separate 24 h pulses of TCE (109 ppb and 85 ppb), one week apart, were pumped through the system at a flow velocity of 1.5 cm/h; no TCE (<0.5 ppb) was detected on the downstream side of the microbial filter. Subsequent excavation of the wet sand confirmed the existence of a TCE-bioactive zone 19 days after it had been created. An enhanced longevity of the cellular, soluble-form methane monooxygenase produced by this methanotroph Is a result of our laboratory bioreactor culturing conditions. Additional experiments with cells in sealed vials and emplaced in the 1.1-m test bed yielded a high resting-cell finite TCE biotransformation capacity of ∼ 0.25 mg per mg of bacteria; this is suitable for a planned sand-filled trench field demonstration at a Lawrence Livermore National Laboratory site

  20. Performance Comparison of Various Filters Media in

    Directory of Open Access Journals (Sweden)

    Lilyan Yaqup Matti

    2013-05-01

    Full Text Available   In this research, a bench-scale filter is designed and constructed in order to compare the performance of different media namely, sand, crushed marble stone and crushed red brick. The filters are operated under various operating conditions such as filter depth, raw water turbidity, pretreatment, effective size and uniformity coefficient.          These filters are operated under conventional and direct filtration modes with different doses of alum. Statistical methods had been used to determine the best media using  Duncan multiple range test.     The result showed the superiority of crushed red brick media in the  removal of turbidity and total bacteria. The results also indicated that filters operated under direct filtration mode show better performance than that operated under conventional filtration mode. The pH of treated water show slight increase for the two modes of filtration.

  1. Geo synthetics in hydraulic and coastal engineering: Filters, revetments and sand filled structures; Geosinteticos en ingenieria hidraulica y costera: filtros, revestimientos y estructuras llenas de arena

    Energy Technology Data Exchange (ETDEWEB)

    Bezuijen, A.; Pilarczyk, K. W.

    2014-02-01

    The paper deals with 2 applications of geo textiles in coastal and hydraulic engineering: Geo textiles in filters and revetments; and geo textiles in sand filled structure. Geo textiles are often replacing granular filters. However, they have different properties than a granular filter. For the application of geo textiles in revetments, the consequences of the different properties will be shown: how permeability is influenced by a geo textile and what can be the consequences of the weight differences between granular and geo textile filters. In the other application, the filter properties of geo textiles are only secondary. In geo textile tubes and containers the geo textile is used as wrapping material to create large unties that will not erode during wave attach. the structures with geo textile tubes and containers serve as an alternative for rock based structures. The first of these structures were more or less constructed by trial and error, but research on the shape of the structures, the stability under wave attach and the durability of the used of the used material has given the possibility to use design tools for these structures. Recently also the morphological aspects of these structures have been investigated. This is of importance because regularly structures with geo textile tubes fail due to insufficient toe protection against the scour hole that that develops in front of the structure, leading to undermining of the structure. Recent research in the Dealt Flume of Deltares and the Large Wave Flume in Hannover has led to better understanding what mechanisms determine the stability under wave attach. It is shown that also the degree of filling is of importance and the position of the water level with respect to the tube has a large influence. (Author)

  2. Discussion of the effects of recirculating exhaust air on performance and efficiency of a typical microturbine

    International Nuclear Information System (INIS)

    De Paepe, Ward; Delattin, Frank; Bram, Svend; De Ruyck, Jacques

    2012-01-01

    This paper reports on a specific phenomenon, noticed during steam injection experiments on a microturbine. During the considered experiments, measurements indicated an unsteady inlet air temperature of the compressor, resulting in unstable operation of the microturbine. Non-continuous exhaust air recirculation was a possible explanation for the observed behaviour of the microturbine. The aim of this paper is to investigate and demonstrate the effects of exhaust recirculation on a microgasturbine. Depending on wind direction, exhaust air re-entered the engine, resulting in changing inlet conditions which affects the operating regime of the microturbine. For this paper, a series of experiments were performed in the wind tunnel. These series of experiments allowed investigation of the effect of the wind direction on flue gasses flow. Next to the experiments, steady-state simulations of exhaust recirculation were performed in order to study the effect of exhaust recirculation on thermodynamic performance of the microturbine. Dynamic simulations of the non-continuous recirculation revealed the effects of frequency and amplitude on average performance and stability. Results from simulations supported the important impact of exhaust recirculation. Wind tunnel tests demonstrated the influence of the wind direction on recirculation and revealed the necessity to heighten the stack, thus preventing exhaust recirculation. -- Highlights: ► Unstable operation of a T100 microturbine during steam injection tests was noticed, caused by exhaust gas recirculation. ► Wind tunnel tests were performed to study the effect of the wind direction on the recirculation process. ► Steady-state simulations to investigate the effect of exhaust gas recirculation on thermodynamic performance. ► Dynamic simulations to reveal effects of frequency and amplitude on average performance and stability. ► Wind tunnel tests revealed the necessity to heighten the stack to prevent exhaust

  3. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  4. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  5. The Addition of Simple Biological Filters of Different Capacity to Semi‑Recirculating Fish Rearing System and Its Effects

    Directory of Open Access Journals (Sweden)

    Štěpán Lang

    2017-01-01

    Full Text Available Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50 % of the world’s food fish production. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a source of protein for human consumption. The integration of a biological filtration (BF into a semi-recirculating fish rearing system can increase its carrying capacity and increase system efficiency compared to its’ energy consumption with minimum changes of system composition and minimal costs. Question is the capacity of the BF installed to a system and how it affects water quality. Two different amounts of BF media (surface added to semi-recirculating rearing system compared with the same system without BF were tested in case of this study. The results have shown that if the BF capacity is insufficient, BF can have negative effects to the quality of water environment. The insufficient amount of BF media caused 4 times reduction of ammonia nitrogen (N-NH4+ in system with BF compared to non BF system so it increased the system capacity for feed load 4 times. On the other hand it also increased nitrite nitrogen concentrations permanently more than 5.8 times for BF system compared to non BF system and increased rearing costs because the need of adding chlorides to the system to protect fish from nitrites toxicity. When the BF was dimensioned properly (next year there were almost no N-NH4+ in a system (0.10 mg.l−1 and the concentration of N-NO2− was kept at low levels too (0.150 mg .l−1. The nitrates (N‑NO3− concentration reached the level of 5.37 and 8.65 mg.l−1 in 2012 and 2013 respectively.

  6. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    International Nuclear Information System (INIS)

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-01-01

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator

  7. Contribuição da estrutura interna na perda de carga de filtros de areia utilizados na irrigação Contribution of the internal structure in the sand filters head loss used in irrigation

    Directory of Open Access Journals (Sweden)

    Marcio Mesquita

    2012-02-01

    Full Text Available A dinâmica de operação dos filtros de areia afeta o desempenho hidráulico do sistema de irrigação, elevando a perda de carga e alterando a altura manométrica total do sistema. Buscando entender parte dessa dinâmica, o objetivo deste trabalho foi determinar o efeito da estrutura interna de filtros de areia na perda de carga de três modelos de equipamentos fabricados no Brasil, sem a presença do elemento filtrante e utilizando água limpa. Adicionalmente, com o ajuste do modelo matemático exponencial aos dados experimentais, procurou-se estabelecer comparações entre os tipos de estrutura dos filtros avaliados. Os ensaios foram realizados em um módulo experimental construído no Laboratório de Hidráulica e Irrigação da FEAGRI/UNICAMP. Os resultados mostraram que a estrutura hidráulica interna dos filtros determinou comportamentos hidráulicos diferenciados e que os tipos de estruturas (placa difusora e drenos alteraram o padrão de operação dos modelos ensaiados. A função matemática proposta representou, significativamente, o fenômeno físico de perda de carga para as condições do experimento.The dynamic of operation of sand filters affect the hydraulic performance of irrigation systems, increasing the head loss and changing the total dynamic head of the system. Trying to understand part of this dynamic, the objective of this research was to determine the effect of internal hydraulic structures in the head loss of three sand filters of commercial models, manufactured in Brazil and operating without the filter layer and with clean water. In addition, using an exponential mathematical model adjusted to the experimental data, comparisons among types of structure of each evaluated filter were performed. The trails were accomplished in the experimental module developed in the Laboratory of Hydraulics and Irrigation of FEAGRI / UNICAMP. The results showed that the filters structures determined differentiate hydraulic behaviors

  8. Study of Water Quality of Recirculated Water in Aquaponic Systems: Study of speciation of selected metals and characterization of the properties of natural organic matter

    OpenAIRE

    Gjesteland, Ingrid

    2013-01-01

    This thesis describes an extensive study on how water quality changes over time in a small scale recirculating system where waste water from smolt production was used to grow lettuce for commercial use. The treatment effect of lettuce on different solutions was tested and corresponding lettuce yield was evaluated. In order to enhance the treatment effect a rock wool filter was used on certain solutions. Important water quality parameters were measured every day, and the element concentration ...

  9. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  10. Environmental Impacts of Sand Exploitation. Analysis of Sand Market

    Directory of Open Access Journals (Sweden)

    Marius Dan Gavriletea

    2017-06-01

    Full Text Available Sand is an indispensable natural resource for any society. Despite society’s increasing dependence on sand, there are major challenges that this industry needs to deal with: limited sand resources, illegal mining, and environmental impact of sand mining. The purpose of this paper is twofold: to present an overview of the sand market, highlighting the main trends and actors for production, export and import, and to review the main environmental impacts associated with sand exploitation process. Based on these findings, we recommend different measures to be followed to reduce negative impacts. Sand mining should be done in a way that limits environmental damage during exploitation and restores the land after mining operations are completed.

  11. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  12. Production of cobia in recirculating systems

    Science.gov (United States)

    Only limited information exists with respect to rearing juvenile cobia Rachycentron canadum to stocker and marketable sizes using recirculating aquaculture systems (RAS). To investigate this topic, two rearing trials were conducted using commercial scale RAS. In Trial 1, juvenile cobia (29 g) we...

  13. Recirculation of Chilean copper smelting dust with high impurities contents to the smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Fujisawa, T. [Nagoya Univ., Nagoya (Japan). EcoTopia Science Inst.; Montenegro, V. [Nagoya Univ., Nagoya (Japan). Dept. of Materials Science and Engineering

    2007-07-01

    Dust generated during the copper smelting process is generally stabilized using hydrometallurgical methods as it contains high concentrations of arsenic. In this laboratory study, dust was recirculated during the smelting process in order to recover more copper and decrease dust emissions while recovering more copper. The behaviour of impurities and their influence on matte quality was also investigated. Industrial matte, flue dust, slag, and copper concentrates from a Chilean smelter were used as test materials. Dust recirculation tests were conducted in a simulated electric furnace. Off-gases were collected in a reaction tube, and the condensed volatile matter, slag, and matte phases were analyzed for their elemental content by inductively coupled plasma atomic emission spectrometry. The distribution of arsenic (As); antimony (Sb), bismuth (Bi), lead (Pb), and zinc (Zn) were investigated by varying the amounts of dust recirculating to the smelting stage with 21 per cent of the oxygen. Results showed that distributions of all analyzed elements increased with recirculation. It was concluded that copper can be recovered using the dust recirculation technique. However, impurities may limit the efficacy of the dust recirculation process. 6 refs., 3 tabs., 4 figs.

  14. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    Science.gov (United States)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected

  15. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    Directory of Open Access Journals (Sweden)

    C. Phillips-Smith

    2017-08-01

    Full Text Available The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010–November 2012 at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013, hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow

  16. Investigation of Microbunching Instabilities in Modern Recirculating Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Cheng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-05-21

    Particle accelerators are machines to accelerate and store charged particles, such as electrons or protons, to the energy levels for various scientific applications. A collection of charged particles usually forms a particle beam. There are three basic types of particle accelerators: linear accelerators (linac), storage-ring (or circular) accelerators, and recirculating accelerators. In a linac, particles are accelerated and pass through once along a linear or straight beamline. Storage-ring accelerators propel particles around a circular track and repetitively append the energy to the stored beam. The third type, also the most recent one in chronology, the recirculating accelerator, is designed to accelerate the particle beam in a short section of linac, circulate the beam, and then either continue to accelerate for energy boost or decelerate it for energy recovery. The beam properties of a linac machine are set at best by the initial particle sources. For storage rings, the beam equilibria are instead determined by the overall machine design. The modern recirculating machines share with linacs the advantages to both accelerate and preserve the beam with high beam quality, as well as efficiently reuse the accelerating components. The beamline design in such a machine configuration can however be much more complicated than that of linacs. As modern accelerators push toward the high-brightness or high-intensity frontier by demanding particles in a highly charged bunch (about nano-Coulomb per bunch) to concentrate in an ever-decreasing beam phase space (transverse normalized emittance about 1 μm and relative energy spread of the order of 10^-5 in GeV beam energy), the interaction amongst particles via their self-generated electromagnetic fields can potentially lead to coherent instabilities of the beam and thus pose significant challenges to the machine design and operation. In the past decade and a half, microbunching instability (MBI) has been one of the most

  17. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  18. Performance evaluation of a dual-flow recharge filter for improving groundwater quality.

    Science.gov (United States)

    Samuel, Manoj P; Senthilvel, S; Mathew, Abraham C

    2014-07-01

    A dual-flow multimedia stormwater filter integrated with a groundwater recharge system was developed and tested for hydraulic efficiency and pollutant removal efficiency. The influent stormwater first flows horizontally through the circular layers of planted grass and biofibers. Subsequently, the flow direction changes to a vertical direction so that water moves through layers of pebbles and sand and finally gets recharged to the deep aquifers. The media in the sequence of vegetative medium:biofiber to pebble:sand were filled in nine proportions and tested for the best performing combination. Three grass species, viz., Typha (Typha angustifolia), Vetiver (Chrysopogon zizanioides), and St. Augustine grass (Stenotaphrum secundatum), were tested as the best performing vegetative medium. The adsorption behavior of Coconut (Cocos nucifera) fiber, which was filled in the middle layer, was determined by a series of column and batch studies.The dual-flow filter showed an increasing trend in hydraulic efficiency with an increase in flowrate. The chemical removal efficiency of the recharge dual-flow filter was found to be very high in case of K+ (81.6%) and Na+ (77.55%). The pH normalizing efficiency and electrical conductivity reduction efficiency were also recorded as high. The average removal percentage of Ca2+ was moderate, while that of Mg2+ was very low. The filter proportions of 1:1 to 1:2 (plant:fiber to pebble:sand) showed a superior performance compared to all other proportions. Based on the estimated annual costs and returns, all the financial viability criteria (internal rate of return, net present value, and benefit-cost ratio) were found to be favorable and affordable to farmers in terms of investing in the developed filtration system.

  19. The effectiveness of the use of filter on the tilapia growth performance, number of Nitrosomonas sp., and water quality in aquaponics systems

    OpenAIRE

    Yuli Andriani; , Zahidah; Yayat Dhahiyat; Ujang Subhan; Irfan Zidni; Rusky Intan Pratama; Nadia Purnamasari Gumay

    2018-01-01

    ABSTRACT This study aims to determine the most effective type of living filter media for the bacteria Nitrosomonas sp. in order to improve water quality in aquaponics systems. The method used in this study was completely randomized design, consisting of five treatments and each was repeated three times. The treatments were: A (without addition of filter media), B (addition of palm fibers, silica sand, and activated carbon), C (addition of palm fibers, silica sand, gravel, and activated carbon...

  20. Theoretical analysis of recirculation zone and buffer zone in the ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Pan, Chang-zhao; Tong, Jian-fei; Lu, Wen-qiang

    2015-01-01

    Highlights: • Height of recirculation zone is very important in windowless target design. • A theoretical formula for the height is derived based on the Bernoulli equation. • Numerical simulation for the LBE is performed and the height of recirculation zone is also obtained. • The theoretically-derived simulation-predicted recirculation zone heights agree with each other very well and the theoretical derivation is proved to be correct. - Abstract: The thermo-hydraulic analysis including reduction of the height of recirculation zone and stability of the free surface is very important in the design and optimization of ADS windowless spallation targets. In the present study, the Bernoulli equation is used to analyze the entire flow process in the target. Formulae for the height of the recirculation zone and the buffer zone are both obtained explicitly. Furthermore, numerical simulation for the heavy metal lead–bismuth eutectic liquid and vapor with cavitation phase change is also performed, and a novel method to calculate the height of the recirculation zone is put forward. By comparison of the theoretical formulae and numerical results, it is clearly shown that they agree with each other very well, and the heights predicted by the two methods are both determined by their own upstream flow parameters

  1. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  2. A new depositional model for sand-rich loess on the Buckley Flats outwash plain, northwestern Lower Michigan

    Science.gov (United States)

    Nyland, Kelsey E.; Schaetzl, Randall J.; Ignatov, Anthony; Miller, Bradley A.

    2018-04-01

    Loess was first studied in Michigan on the Buckley Flats, where outwash, overlain by ≈70 cm of loamy sediment, was originally interpreted as loess mixed with underlying sands. This paper re-evaluates this landscape through a spatial analysis of data from auger samples and soil pits. To better estimate the loamy sediment's initial textures, we utilized "filtered" laser diffraction data, which remove much of the coarser sand data. Textures of filtered silt data for the loamy sediment are similar to loess. The siltiest soils are found in the low-relief, central part of the Flats. Spatial analyses revealed that many silt fractions are nearly uniformly distributed, suggesting that the loess was not derived from a single source. The previous depositional model for the loamy mantle relied on loessfall followed by pedoturbation, but does not explain (1) the variation in sand contents across the Flats, or (2) the abrupt contact below the loamy mantle. This contact suggests that the outwash was frozen when the sediments above were deposited. Deep gullies at the western margins of the Flats were likely cut as permafrost facilitated runoff. Our new model for the origin of the loamy mantle suggests that the sands on the uplands were generated from eroding gullies and saltated onto the uplands along with loess that fell more widely. Sands saltating to the west of the Flats may have entrained some silts, facilitating loessfall downwind. At most sites, the loamy mantle gets increasingly silty near the surface, suggesting that saltation ended before loess deposition.

  3. Hydraulic fracture considerations in oil sand overburden dams

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R.; Madden, B.; Danku, M. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2008-07-01

    This paper discussed hydraulic fracture potential in the dry-filled temporary dams used in the oil sands industry. Hydraulic fractures can occur when reservoir fluid pressures are greater than the minimum stresses in a dam. Stress and strain conditions are influenced by pore pressures, levels of compaction in adjacent fills as well as by underlying pit floor and abutment conditions. Propagation pressure and crack initiation pressures must also be considered in order to provide improved hydraulic fracture protection to dams. Hydraulic fractures typically result in piping failures. Three cases of hydraulic fracture at oil sands operations in Alberta were presented. The study showed that hydraulic fracture failure modes must be considered in dam designs, particularly when thin compacted lift of dry fill are used to replace wetted clay cores. The risk of hydraulic fractures can be reduced by eliminating in situ bedrock irregularities and abutments. Overpressure heights, abutment sloping, and the sloping of fills above abutments, as well as the dam's width and base conditions must also be considered in relation to potential hydraulic fractures. It was concluded that upstream sand beaches and internal filters can help to prevent hydraulic fractures in dams in compacted control zones. 5 refs., 16 figs.

  4. Sand transportation and reverse patterns over leeward face of sand dune

    Science.gov (United States)

    Jiang, Hong; Dun, Hongchao; Tong, Ding; Huang, Ning

    2017-04-01

    Sand saltation has complex interactions with turbulent flow and dune form. Most models of wind-blown sand consider ideal circumstances such as steady wind velocity and a flat surface, and the bulk of data on wind flow and sand transport over an individual dune has focused mostly on the influence of dune shape or inter-dune space on the wind flow, neglecting the effect of morphology on sand saltation, particularly airflow and sand transportation over the leeward slope. Wind flow structures over the leeward slope of sand dunes have a fundamental influence on the organization of sand dunes. In order to understand sand dune dynamics, lee face airflow and sediment transportation should be paid more attention. Previous field observations could not measure turbulent flow structure well because of the limited observation points and the influence of experiment structure on wind field. In addition, the reverse sand particles over leeward face could not be collected by sand trap in field. Numerous field observations could not measure turbulent flow structure because of the limited observation points and the influence of experimental structures on the wind field. In addition, the reverse transport of sand particles over leeward face could not be collected by sand traps in field. Therefore, this paper aims to investigate the turbulent flow structure and sand transport pattern over the leeward slope. A numerical model of sand saltation over slope terrain is constructed, which also considers the coupling effects between air flow and sand particles. The large eddy simulation method is used to model turbulent flow. Sand transport is simulated by tracking the trajectory of each sand particle. The results show that terrain significantly alters the turbulent air flow structure and wind-blown sand movement, especially over the leeward slope. Here, mass flux increases initially and then decreases with height in the reversed flow region in the direction of wind flow, and the mass flux

  5. A recirculating stream aquarium for ecological studies.

    Science.gov (United States)

    Gordon H. Reeves; Fred H. Everest; Carl E. McLemore

    1983-01-01

    Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.

  6. Sinks of containment of NPP. Trillo I. Civil actions associated with the changing filter system and implementation backwash

    International Nuclear Information System (INIS)

    Blas Gordo, A. de; Asensio Vega, J.; Font Hadinger, I.

    2014-01-01

    Compliance with a technical instruction issued by the Security Council Nuclear the 12/09/11, involves the modification of the system of filtering of containment sumps of the C.N. Trillo I, in order to rule out surround way phenomena of potential obstruction by accumulation of residues that may affect the cooling capacity of the core in a post accident scenario. Similarly, it implies the creation of a procedure operating in emergency that includes the necessary maneuvers for the limitation of the pressure differential between the two sides of the filter grids, guaranteeing the function of recirculation post-LOCA. (Author)

  7. Prediction of flow recirculation in a blanket assembly under worst-case natural-convection conditions

    International Nuclear Information System (INIS)

    Khan, E.U.; Rector, D.R.

    1982-01-01

    Reactor fuel and blanket assemblies within a Liquid Metal Fast Breeder Reactor (LMFBR) can be subjected to severe radial heat flux gradients. At low-flow conditions, with power-to-flow ratios of nearly the same magnitude as design conditions, buoyancy forces cause flow redistribution to the side of a bundle with the higher heat generation rate. Recirculation of fluid within a rod bundle can occur during a natural convection transient because of the combined effect of flow coastdown and buoyancy-induced redistribution. An important concern is whether recirculation leads to high coolant temperatures. For this reason, the COBRA-WC code was developed with the capability of modeling recirculating flows. Experiments have been conducted in a 2 x 6 rod bundle for flow and power transients to study recirculation in the mixed-convection (forced cooled) and natural-convection regimes. The data base developed was used to validate the recirculation module in the COBRA-WC code. COBRA-WC code calculations were made to predict flow and temperature distributions in a typical LMFBR blanket assembly for the worst-case, natural-circulation transient

  8. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  9. Two-phase flow phenomena in broken recirculation line of BWR

    International Nuclear Information System (INIS)

    Kato, Masami; Arai, Kenji; Narabayashi, Tadashi; Amano, Osamu.

    1986-01-01

    When a primary recirculation line of BWR is ruptured, a primary recirculation pump may be subjected to very high velocity two-phase flow and its speed may be accelerated by this flow. It is important for safety evaluation to estimate the pump behavior during blowdown. There are two problems involved in analyzing this behavior. One problem concerns the pump characteristics under two-phase flow. The other involves the two-phase conditions at the pump inlet. If the rupture occurs at a suction side of the pump, choking is considered to occur at a broken jet pump nozzle. Then, a void fraction becomes larger downstream from the jet pump nozzle and volumetric flow through the pump will be very high. However, there is little experimental data available on two-phase flow downstream from a choking plane. Blowdown tests were performed using a simulated broken recirculation line and measured data were analyzed by TRAC-PlA. Analytical results agreed with measured data. (author)

  10. Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors

    Science.gov (United States)

    Tun, Min Thaw; Sakaguchi, Daisaku

    2016-06-01

    High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.

  11. Three dimensional computational fluid dynamic analysis of debris transport under emergency cooling water recirculation

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2010-01-01

    This paper provides a computational fluid dynamic (CFD) analysis method on the evaluation of debris transport under emergency recirculation mode after loss of coolant accident of a nuclear power plant. Three dimensional reactor building floor geometrical model is constructed including flow obstacles larger than 6 inches such as mechanical components and equipments and considering various inlet flow paths from the upper reactor building such as break and spray flow. In the modeling of the inlet flows from the upper floors, effect of gravitational force was also reflected. For the precision of the analysis, 3 millions of tetrahedral-shaped meshes were generated. Reference calculation showed physically reasonable results. Sensitivity studies for mesh type and turbulence model showed very similar results to the reference case. This study provides useful information on the application of CFD to the evaluation of debris transport fraction for the design of new emergency sump filters. (orig.)

  12. A qualitative assessment of desertification change in the Tarfaya basin (Morocco using panchromatic data of Landsat ETM+ and oli: sand encroachment approach

    Directory of Open Access Journals (Sweden)

    Aydda Ali

    2017-01-01

    Full Text Available The purpose of the present work is to assess desertification change in the Tarfaya basin (Morocco based on quantifying sand dunes mass change at the corridor scale using two Panchromatic bands of Landsat ETM+ and OLI with 15 m of resolution covering the study area for ten years (2005–2016. In this work, the sand dunes quantification is qualitative and is based on automatic extraction and classification of sand dunes shape using co-occurence texture filters and Support Vector Machine (SVM classifier. The statistical results show that the area covered by sand was increased during the last ten years, which reveal that desertification becomes more intense.

  13. Pelletron-based MeV-range electron beam recirculation

    CERN Document Server

    Crawford, A C; Sharapa, A N; Shemyakin, A

    1999-01-01

    In this paper we describe the successful recirculation of a DC electron beam at energies 1-1.5 MeV and currents up to 0.7 A with typical relative losses of 5-20x10 sup - sup 6. Currents of 200 mA were maintained for periods of up to five hours without a single breakdown. We found that the aperture-limiting diaphragm in the gun anode significantly increased the stability of the recirculation. We also found that the stability depended strongly on vacuum pressure in the beamline. The performance of the collector with transverse magnetic fields was found to be adequate for beam currents up to 0.6 A, which is in agreement with our low-energy bench test results. (author)

  14. A portable gas recirculation unit for gaseous detectors

    Science.gov (United States)

    Guida, R.; Mandelli, B.

    2017-10-01

    The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

  15. CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.

    Science.gov (United States)

    Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng

    2018-02-01

    The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T  = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6  kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.

  16. Further development of the V-code for recirculating linear accelerator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt (Germany); Eichhorn, Ralf; Hug, Florian; Kleinmann, Michaela; Platz, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2011-07-01

    The Superconducting Darmstaedter LINear Accelerator (S-DALINAC) installed at the institute of nuclear physics (IKP) at TU Darmstadt is designed as a recirculating linear accelerator. The beam is first accelerated up to 10 MeV in the injector beam line. Then it is deflected by 180 degrees into the main linac. The linac section with eight superconducting cavities is passed up to three times, providing a maximal energy gain of 40 MeV on each passage. Due to this recirculating layout it is complicated to find an accurate setup for the various beam line elements. Fast online beam dynamics simulations can advantageously assist the operators because they provide a more detailed insight into the actual machine status. In this contribution further developments of the moment based simulation tool V-code which enables to simulate recirculating machines are presented together with simulation results.

  17. Assessment of temporal and spatial evolution of bacterial communities in a biological sand filter mesocosm treating winery wastewater.

    Science.gov (United States)

    Ramond, J-B; Welz, P J; Tuffin, M I; Burton, S G; Cowan, D A

    2013-07-01

    To assess the impact of winery wastewater (WW) on biological sand filter (BSF) bacterial community structures, and to evaluate whether BSFs can constitute alternative and valuable treatment- processes to remediate WW. During 112 days, WW was used to contaminate a BSF mesocosm (length 173 cm/width 106 cm/depth 30 cm). The effect of WW on bacterial communities of four BSF microenvironments (surface/deep, inlet/outlet) was investigated using terminal-restriction fragment length polymorphism (T-RFLP). BSF achieved high Na (95·1%), complete Cl and almost complete chemical oxygen demand (COD) (98·0%) and phenolic (99·2%) removals. T-RFLP analysis combined with anosim revealed that WW significantly modified the surface and deep BSF bacterial communities. BSF provided high COD, phenolic and salt removals throughout the experiment. WW-selected bacterial communities were thus able to tolerate and/or degrade WW, suggesting that community composition does not alter BSF performances. However, biomass increased significantly in the WW-impacted surface sediments, which could later lead to system clogging and should thus be monitored. BSFs constitute alternatives to constructed wetlands to treat agri effluents such as WW. To our knowledge, this study is the first unravelling the responses of BSF bacterial communities to contamination and suggests that WW-selected BSF communities maintained high removal performances. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  18. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  19. Reclaimability of the spent sand mixture – sand with bentonite – sand with furfuryl resin

    Directory of Open Access Journals (Sweden)

    J. Dańko

    2011-04-01

    Full Text Available Introduction of new binding materials and new technologies of their hardening in casting moulds and cores production requires theapplication of reclamation methods adequate to their properties as well as special devices realizing tasks. The spent sands circulationsystem containing the same kind of moulding and core sands is optimal from the point of view of the expected reclamation results.However, in the face of a significant variability of applied technologies and related to them various reclamation methods, the need - of theobtained reclamation products assessment on the grounds of systematic criteria and uniform bases – arises, with a tendency of indicatingwhich criteria are the most important for the given sand system. The reclaimability results of the mixture of the spent moulding sand withGeko S bentonite and the spent core sand with the Kaltharz 404U resin hardened by acidic hardener 100 T3, are presented in the paper.Investigations were performed with regard to the estimation of an influence of core sands additions (10 –25% on the reclaimed materialquality. Dusts and clay content in the reclaim, its chemical reaction (pH and ignition loss were estimated. The verification of the reclaiminstrumental assessment was performed on the basis of the technological properties estimation of moulding sand with bentonite, where the reclaimed material was used as a matrix.

  20. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Strayer, R. F.; Finger, B. W.; Wheeler, R. M.

    1996-01-01

    This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.

  1. Impact of capillary rise and recirculation on simulated crop yields

    Science.gov (United States)

    Kroes, Joop; Supit, Iwan; van Dam, Jos; van Walsum, Paul; Mulder, Martin

    2018-05-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands), where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the accuracy of the

  2. Assessing environmental risk of the retired filter bed area, Battelle West Jefferson

    International Nuclear Information System (INIS)

    Miller, S.F.; Thompson, M.D.; Glennon, M.A.

    1997-04-01

    Initial investigations conducted by the U.S. Department of Energy, Chicago Operations Office, and by Argonne National Laboratory used seismic refraction profiling, electrical resistivity depth sounding, conductivity profiling, magnetic gradiometry, and ground-penetrating radar to study environmental geophysics in the area of the Battelle West Jefferson site's radiologically contaminated retired filter beds. The investigators used a combination of nonintrusive technologies and innovative drilling techniques to assess environmental risk at the filter beds and to improve understanding of the geology of the Big Darby Creek floodplain. The geophysical investigation, which showed that the preferred groundwater pathway is associated with a laterally extensive deposit of silty sand to sand that is less than 12 ft deep in the floodplain area, also guided the location of cone penetrometer test sites and piezometer installation. Cone penetrometer testing was useful for comparing continuous logging data with surface geophysical data in establishing correlations among unconsolidated materials

  3. Removal of dissolved heavy metals from pre-settled stormwater runoff by iron-oxide coated sand (IOCS)

    DEFF Research Database (Denmark)

    Møller, J.; Ledin, Anna; Mikkelsen, Peter Steen

    2002-01-01

    (Pb=20, Cu=40, Zn=110, and Cr=15 ppb). Column experiments were conducted to test the influence of the infiltration rate (1 or 3 m/h) and the type of iron(hydr)oxide mineral (amorphous ferrihydrite and goethite coated sand). The results show that at least 90% of lead, copper and zinc can be removed......Sorption to iron-oxide coated sand (IOCS) is a promosing technology for removal of the dissolved heavy metal fraction in stormwater runoff. The development of a new technology is necessary since studies of stormwater runoff from traffic areas indicate that an oil separator and detention pond may...... by IOCS after 480 pore volumes. Control columns with uncoated filter sand show that lead, copper and zinc were removed with >95%, 35% and 5%, respectively. The removal of the negative metaloxy-ion, CrO4-3 was insignificant in both IOCS and sand columns at pH=7.7. Destruction of the columns after...

  4. Development of FET-switched induction accelerator cells for heavy-ion fusion recirculators

    International Nuclear Information System (INIS)

    Newton, M.A.; Cravey, W.R.; Hawkins, S.A.; Kirbie, H.C.; Ollis, C.W.

    1993-01-01

    The ''recirculator,'' a recirculating heavy-ion induction accelerator, has been identified as a promising approach for an inertial fusion driver. One of the technical challenges to building a recirculator is the requirement for a modulator that can drive the induction accelerator cells at repetition rates ≥ 100 kHz with variable pulse width and pulse repetition rate capability. A high repetition rate modulator and cell is presently being developed for use on a proposed heavy-ion recirculator. The goal is to develop an array of field-effect transistors to switch 5 kV, 1 μs pulses onto a Metglas induction core at pulse rates exceeding 100 kHz. Each transistor in the array is driven by a fiber-optic isolated gate signal that is powered by a dc/dc converter. The circuit architecture provides for core reset between pulses and produces bursts of pulses that are variable in pulse width and prf. The transistor switching array, energy storage capacitors, reset circuit and cell core are all combined into a single compact, low-impedance package. Progress of this development work will be presented with supporting data

  5. Effect of gas recirculation in a pilot-scale cow-dung digester

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, B N; Kulkarni, D N; Dave, J M; Mohanrao, G J

    1965-01-01

    Laboratory experiments showed that if, during anaerobic digestion of cow manure, the contents of the digestion vessel are mixed by recirculating gas, nearly twice as much gas is produced, and there is less variation in the temperature of the digesting liquor, the pH value, the carbon-dioxide content of the gas, and the reduction in volatile matter. Results of experiments during which gas was recirculated for periods ranging from 0 to 4 hours are tabulated.

  6. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control

    KAUST Repository

    Qu, Youpeng

    2012-02-01

    A recirculation microbial desalination cell (rMDC) was designed and operated to allow recirculation of solutions between the anode and cathode chambers. This recirculation avoided pH imbalances that could inhibit bacterial metabolism. The maximum power density was 931±29mW/m 2 with a 50mM phosphate buffer solution (PBS) and 776±30mW/m 2 with 25mM PBS. These power densities were higher than those obtained without recirculation of 698±10mW/m 2 (50mM PBS) and 508±11mW/m 2 (25mM PBS). The salt solution (20g/L NaCl) was reduced in salinity by 34±1% (50mM) and 37±2% (25mM) with recirculation (rMDC), and by 39±1% (50mM) and 25±3% (25mM) without recirculation (MDC). These results show that electrolyte recirculation using an rMDC is an effective method to increase power and achieve efficient desalination by eliminating pH imbalances. © 2011 Elsevier Ltd.

  7. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  8. Transport of 152Eu colloids in a system of fine sand and water containing humic substances

    International Nuclear Information System (INIS)

    Klotz, D.

    1995-01-01

    The migration of 152 Eu in a system of fine sand and water containing humic substances was investigated in a flow column system under realistic conditions. In this system, the trivalent Eu forms colloids with the water. These Eu humates are transported without retardation at recovery rates significantly below 100 per cent. Recovery is more or less a measure of the physical process of filtration of Eu bonded to particulates. In the range of natural filtering rates, the recovery rates decrease with decreasing filtering rate. (orig.) [de

  9. Characterization and removal of specific organic constituents in an UASB-trickling-filter system treating domestic wastewater.

    Science.gov (United States)

    Pontes, Patrícia Procópio; Chernicharo, Carlos Augusto de Lemos

    2011-01-01

    This paper presents the characterization of specific organic constituents (carbohydrates, proteins and lipids) in raw sewage and in the anaerobic and aerobic effluents of a demo-scale (500 inhabitants) UASB- trickling-filter system. The evaluation of such parameters was carried out for two operating conditions, either without sludge recirculation (experiment I) from the trickling filter to the UASB reactor or with sludge recirculation (experiment II), for sludge thickening and stabilization, in the anaerobic reactor. The results showed that the contribution of acetic acid, carbohydrates, proteins and lipids amounted for approximately 70% of the total COD fed to the UASB during experiment I, whereas during experiment II these constituents amounted for only around 40% of the total COD. Although very high BOD and COD overall removal efficiencies were observed for the treatment system (around 90% and 80%, respectively), it was possible to infer that these efficiencies were mainly related to the removal of carbohydrates and lipids (around 80% removal), and of other non-identified constituents. The removal of proteins was much lower (around 50% removal), and the relative contribution of proteins to the total COD increased along the treatment course, being responsible for most of the residual COD of the treatment units. In the present system configuration, the UASB reactor played a major role in the removal of carbohydrates, whereas the trickling filter was very effective in the removal of lipids. The return of aerobic sludge for thickening and stabilization in the UASB reactor did not affect its performance.

  10. Eastern Scheldt Sand, Baskarp Sand No. 15

    DEFF Research Database (Denmark)

    Andersen, A. T; Madsen, E. B.; Schaarup-Jensen, A. L.

    The present data report contains data from 13 drained triaxial tests, performed on two different sand types in the Soil Mechanics Laboratory at Aalborg University in March, 1997. Two tests have been performed on Baskarp Sand No. 15, which has already ken extensively tested in the Soil Mechanics...... Laboratory. The remaining 11 triaxial tests have ben performed on Eastern Scheldt Sand, which is a material not yet investigated at the Soil Mechanics Laboratory. In the first pari of this data report, the characteristics of the two sand types in question will be presented. Next, a description...... will described. In this connection, the procedure for preparation of the soil specimens will be presented, and the actual performance of the tests will be briefly outlined. Finally, the procedure for processing of the measurements from the laboratory in order to obtain usable data will be described. The final...

  11. Evaluation of a rainbow trout (Oncorhynchus mikyss culture water recirculating system

    Directory of Open Access Journals (Sweden)

    Iván Sánchez O.

    2014-09-01

    Full Text Available Objective. To evaluate a water recirculation system for rainbow trout fish cultures at the recirculating laboratory of the Aquaculture Engineering Production Program of University of Nariño. Materials and Methods. 324 rainbow trout (Oncorhynchus mikyss fries were cultured in 12 plastic tanks with a capacity of 250 L in an aquaculture recirculating system the treatment system of which was made up by a conventional sedimentation tank, a fixed stand upflow biofilter with recycled PVC tube pieces and a natural degassing system; the sedimentation unit effluent was pumped up to a reservoir tank using a 2 HP centrifugal pump after being subject to gravity through the biofilter and to be then distributed to the 12 culture units to which a constant amount of air from a blower was injected. Results. The water treatment system removed 31% of total suspended solids, 9.5% of total ammonia nitrogen, and increased dissolved oxygen to the final effluent in 6.5%. An increase of 305% in biomass was calculated during 75 days, the mortality percentage registered throughout the study period was 4.9%. Conclusions. The water treatment system maintained the physicochemical water quality parameters within the values recommended for the species. The increase in weight and size, food conversion, mortality and biomass production reported normal values for rainbow trout fish culture in recirculating systems.

  12. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water

    DEFF Research Database (Denmark)

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott

    2009-01-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis......) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS...

  13. Removal of Gross Air Embolization from Cardiopulmonary Bypass Circuits with Integrated Arterial Line Filters: A Comparison of Circuit Designs.

    Science.gov (United States)

    Reagor, James A; Holt, David W

    2016-03-01

    Advances in technology, the desire to minimize blood product transfusions, and concerns relating to inflammatory mediators have lead many practitioners and manufacturers to minimize cardiopulmonary bypass (CBP) circuit designs. The oxygenator and arterial line filter (ALF) have been integrated into one device as a method of attaining a reduction in prime volume and surface area. The instructions for use of a currently available oxygenator with integrated ALF recommends incorporating a recirculation line distal to the oxygenator. However, according to an unscientific survey, 70% of respondents utilize CPB circuits incorporating integrated ALFs without a path of recirculation distal to the oxygenator outlet. Considering this circuit design, the ability to quickly remove a gross air bolus in the blood path distal to the oxygenator may be compromised. This in vitro study was designed to determine if the time required to remove a gross air bolus from a CPB circuit without a path of recirculation distal to the oxygenator will be significantly longer than that of a circuit with a path of recirculation distal to the oxygenator. A significant difference was found in the mean time required to remove a gross air bolus between the circuit designs (p = .0003). Additionally, There was found to be a statistically significant difference in the mean time required to remove a gross air bolus between Trial 1 and Trials 4 (p = .015) and 5 (p =.014) irrespective of the circuit design. Under the parameters of this study, a recirculation line distal to an oxygenator with an integrated ALF significantly decreases the time it takes to remove an air bolus from the CPB circuit and may be safer for clinical use than the same circuit without a recirculation line.

  14. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  15. The recovery of rare earth elements (REE) from beach sands

    International Nuclear Information System (INIS)

    Petrache, Cristina A.; Santos, Gabriel P. Jr.; Fernandez, Lourdes G.; Castillo, Marilyn K.; Tabora, Estrellita U; Intoy, Socorro P.; Reyes, Rolando Y.

    2005-01-01

    This preliminary study describes a metallurgical process that will extract, recover and produce REE oxides from beach sands obtained from Ombo, San Vicente, northern Palawan. The beach sands contain REE minerals of allanite and small amounts of monazite. Allanite is a sorosilicate mineral containing rare earths, thorium and uranium. Monazite is the anhydrous phosphate of cerium and the lanthanum group of rare earths with thorium commonly present in replacement for cerium and lanthanum. Collected beach sand were first pan-concentrated in-situ to produce heavy mineral concentrates. Screening using a 32 mesh (0.500 mm) sieve was done at the Nuclear Materials Research Laboratory to remove oversize sand particles. The -32 mesh fraction was treated with bromoform (sp. gr. 2.89) to separate the heavy minerals from siliceous gangue. Grinding to -325 mesh size (0.044mm) followed to liberate the minerals prior to leaching. Two acids leachants were used - concentrated HCl for the first trial and a mixture of concentrated HCl and HNO 3 (10:1 volume ratio) for the second trial. Both leaching trials were carried out at 180 o C for 7 hours or until dry. The resulting leached residues were re-dissolved in concentrated HCl and filtered. Ionquest R 801, an organophosphorous extractant, was added to the filtrate to separate the radioactive thorium from REE. Sodium hydroxide was added to the aqueous phase to precipitate the REE. After filtering the precipitate, it was dissolved in HCl. The acid solution was repeatedly extracted three (3) times with Ionquest R 801 to remove iron and other contaminants. Ammonium hydroxide was added to the final solution to precipitate the REE, which was then dried in the oven. The precipitate was calcined/roasted in the furnace at two different temperatures for different periods of time to burn off the organic matter and to form oxides. Results of the XRD analysis showed peaks of the calcined precipitate matching with the peaks of lanthanum oxide

  16. Microbial community structure and a core microbiome in biological rapid sand filters at Danish waterworks

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration is a traditional and common technology for drinking water purification from groundwater. Despite its wide scale and long-term use, the diversity and characterization of microbial communities in these engineered systems have remained unexplored and their roles in removal perf...

  17. Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling.

    Science.gov (United States)

    Jenkins, Marion W; Tiwari, Sangam K; Darby, Jeannie

    2011-11-15

    A two-factor three-block experimental design was developed to permit rigorous evaluation and modeling of the main effects and interactions of sand size (d(10) of 0.17 and 0.52 mm) and hydraulic head (10, 20, and 30 cm) on removal of fecal coliform (FC) bacteria, MS2 bacteriophage virus, and turbidity, under two batch operating modes ('long' and 'short') in intermittent slow sand filters (ISSFs). Long operation involved an overnight pause time between feeding of two successive 20 L batches (16 h average batch residence time (RT)). Short operation involved no pause between two 20 L batch feeds (5h average batch RT). Conditions tested were representative of those encountered in developing country field settings. Over a ten week period, the 18 experimental filters were fed river water augmented with wastewater (influent turbidity of 5.4-58.6 NTU) and maintained with the wet harrowing method. Linear mixed modeling allowed systematic estimates of the independent marginal effects of each independent variable on each performance outcome of interest while controlling for the effects of variations in a batch's actual residence time, days since maintenance, and influent turbidity. This is the first study in which simultaneous measurement of bacteria, viruses and turbidity removal at the batch level over an extended duration has been undertaken with a large number of replicate units to permit rigorous modeling of ISSF performance variability within and across a range of likely filter design configurations and operating conditions. On average, the experimental filters removed 1.40 log fecal coliform CFU (SD 0.40 log, N=249), 0.54 log MS2 PFU (SD 0.42 log, N=245) and 89.0 percent turbidity (SD 6.9 percent, N=263). Effluent turbidity averaged 1.24 NTU (SD 0.53 NTU, N=263) and always remained below 3 NTU. Under the best performing design configuration and operating mode (fine sand, 10 cm head, long operation, initial HLR of 0.01-0.03 m/h), mean 1.82 log removal of bacteria (98

  18. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  19. Investigation of flashing de-aeration with and without recirculation

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Toecksberg, B.

    1977-06-01

    A series of experiments with flashing de-areation has been carried out at the institute of Thermal Energytechnology of the Royal Institute of Technology in Stockholm. The results of the experiments with flashing de-areation without recirculation of the condensate show very low contents of dissolved oxygen in the de-aerated water. The results indicate that the de-aeration process is independent of the pressure. De-aeration efficiencies over 99 percent were measured. The continued experiments with recirculation of the condensate show a considerably deteriorated de-aeration performance together with a marked pressure dependency. A simple theoretical model has been formulated which explains these results. Comparisons between the experimental data and calculations with this model indicate that a conservative estimation of the oxygen content of the outgoing water can be obtained if the oxygen content of the recirculated condensate is calculated for the partial pressure of noncondensible gases equal to the total pressure in the condensor. It seems also possible to estimate a lower limit for the oxygen content of the outgoing water. The range of oxygen content between those limits is about a factor of 10 for the conditions investigated. Further studies of the uptake of oxygen during condensation seem necessary if a more accurate prediction is desired

  20. Thermodynamic Model for Updraft Gasifier with External Recirculation of Pyrolysis Gas

    Directory of Open Access Journals (Sweden)

    Fajri Vidian

    2016-01-01

    Full Text Available Most of the thermodynamic modeling of gasification for updraft gasifier uses one process of decomposition (decomposition of fuel. In the present study, a thermodynamic model which uses two processes of decomposition (decomposition of fuel and char is used. The model is implemented in modification of updraft gasifier with external recirculation of pyrolysis gas to the combustion zone and the gas flowing out from the side stream (reduction zone in the updraft gasifier. The goal of the model obtains the influences of amount of recirculation pyrolysis gas fraction to combustion zone on combustible gas and tar. The significant results of modification updraft are that the increases amount of recirculation of pyrolysis gas will increase the composition of H2 and reduce the composition of tar; then the composition of CO and CH4 is dependent on equivalence ratio. The results of the model for combustible gas composition are compared with previous study.

  1. Understanding AL-PAM assisted oil sands tailings treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, L.; Maham, Y.; Masliyah, J.; Xu, Z. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2010-07-01

    Technologies currently used to treat oil sands tailings include the composite tailings (CT) process and the thickened tailings (TT) or paste technology process. This PowerPoint presentation discussed a flocculation and filtration method used to produce stackable tailings deposits. Magnafloc 1011 and AL-PAM additions were used as part of the filtration technique to produce very dry filter cakes. The effect of AL-PAM molecular weight and aluminum content on tailings treatments was investigated as well as the effect of tailings characteristics on the performance of flocculant-assisted tailings filtration processes. The AL-PAM molecular structure was studied. An experimental study was conducted to determine the effect of various polymer additions on fresh tailings from an oil sands plant. The study showed that the optimum dosage for settling and filtration was lower for higher molecular weight AL-PAM. A higher aluminum content was beneficial for settling. Increases in the aluminum content did not improve filtration rates, but reduced optimal dosages. Step-by-step details of the supernatant filtration process were provided, as well as photographs of the laboratory study. tabs., figs.

  2. Dedicated exhaust gas recirculation control systems and methods

    Science.gov (United States)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    2018-05-01

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.

  3. Anaerobic degradation of dairy wastewater in intermittent UASB reactors: influence of effluent recirculation.

    Science.gov (United States)

    Couras, C S; Louros, V L; Gameiro, T; Alves, N; Silva, A; Capela, M I; Arroja, L M; Nadais, H

    2015-01-01

    This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads.

  4. THE GROWTH OF PATIN Pangasiodon hypophthalmus IN A CLOSE SYSTEM TANK

    Directory of Open Access Journals (Sweden)

    Taufik Ahmad

    2007-06-01

    Full Text Available This experiment aimed to evaluate the possibility of using integrated recirculation production system for patin grow-out. Each of twelve concrete 2.5 m x 4.0 m x 1.0 m tanks filled to 0.73 m depth was stocked with 100 juvenile patin, 9-10g body weight. Six tanks were equipped with sand and palm (Arenga pinata fibre filters planted with vegetables, lettuce and kangkoong. A submersible pump was installed in each tank to assure continuous water recirculation at the rate of 0.4 L sec-1. The filtered water flowed into the tank at the surface (SC treatment, or at the bottom (BC treatment. In the other 6 tanks, the water flowed continuously from a concrete canal in an open culture system at a similar rate and with similar water entrance positions (SO and BO treatments. The experiment was arranged in a completely randomized design with three replicates. The fish were fed dry pelleted feed to satiation and sampled every other week for growth observation. After 90 days, the average individual weight of the fish attained the range of 80-100 g. The fish grew significantly faster (P0.05 among treatment, ranging from 99% to 100%. In terms of water usage, the closed system tanks produced fish weighing 202.38–220.05 g m-3, much more efficiently than did the open system tanks, 1.87–1.89 g/m3. The vegetables, either lettuce or water spinach, grew well on the filter. These results suggest that the integrated recirculation tank system is suitable for patin culture.

  5. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-01-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  6. Impact of Mars sand on dust on the design of space suits and life support equipment: A technology assessment

    Science.gov (United States)

    Simonds, Charles H.

    1991-05-01

    Space suits and life support equipment will come in intimate contact with Martian soil as aerosols, wind blown particles and material thrown up by men and equipment on the Martian surface. For purposes of this discussion the soil is assumed to consist of a mixture of cominuted feldspar, pyroxene, olivine, quartz, titanomagnetite and other anhydrous and hydrous iron bearing oxides, clay minerals, scapolite and water soluble chlorides and sulfates. The soil may have photoactivated surfaces that acts as a strong oxidizer with behavior similar to hydrogen peroxide. The existing data about the Mars soil suggests that the dust and sand will require designs analogous to those uses on equipment exposed to salty air and blowing sand and dust. The major design challenges are in developing high performance radiators which can be cleaned after each EVA without degradation, designing seals that are readily cleaned and possibly in selecting materials which will not be degraded by any strong oxidants in the soil. The magnitude of the dust filtration challenge needs careful evaluation in terms of the trade off between fine-particle dust filters with low pressure drop that are either physically large and heavy, like filter baghouses require frequent replacement of filter elements, of low volume high pressure thus power consumption approaches, or washable filters. In the latter, filter elements are cleaned with water, as could the outsides of the space suits in the airlock.

  7. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems.

    Science.gov (United States)

    Paredes, L; Fernandez-Fontaina, E; Lema, J M; Omil, F; Carballa, M

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Impact of capillary rise and recirculation on simulated crop yields

    Directory of Open Access Journals (Sweden)

    J. Kroes

    2018-05-01

    Full Text Available Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands, where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the

  9. Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon.

    Science.gov (United States)

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    The removal of pharmaceutically active compounds by powdered activated carbon (PAC) in municipal wastewater is a promising solution to the problem of polluted recipient waters. Today, an efficient design strategy is however lacking with regard to high-level overall, and specific, substance removal in the large scale. The performance of PAC-based removal of pharmaceuticals was studied in pilot-scale with respect to the critical parameters; contact time and PAC dose using one PAC product selected by screening in bench-scale. The goal was a minimum of 95% removal of the pharmaceuticals present in the evaluated municipal wastewater. A set of 21 pharmaceuticals was selected from an initial 100 due to their high occurrence in the effluent water of two selected wastewater treatment plants (WWTPs) in Sweden, whereof candidates discussed for future EU regulation directives were included. By using recirculation of PAC over a treatment system using three sequential contact tanks, a combination of the benefits of powdered and granular carbon performance was achieved. The treatment system was designed so that recirculation could be introduced to any of the three tanks to investigate the effect of recirculation on the adsorption performance. This was compared to use of the setup, but without recirculation. A higher degree of pharmaceutical removal was achieved in all recirculation setups, both overall and with respect to specific substances, as compared to without recirculation. Recirculation was tested with nominal contact times of 30, 60 and 120 min and the goal of 95% removal could be achieved already at the shortest contact times at a PAC dose of 10-15 mg/L. In particular, the overall removal could be increased even to 97% and 99%, at 60 and 120 min, respectively, when the recirculation point was the first tank. Recirculation of PAC to either the first or the second contact tank proved to be comparable, while a slightly lower performance was observed with recirculation to

  10. Submarine sand ridges and sand waves in the eastern part of the China Sea

    Science.gov (United States)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  11. Treatment of synthetic urban runoff using manganese oxide-coated sand in the presence of magnetic field

    Directory of Open Access Journals (Sweden)

    Maryam Foroughi

    2013-01-01

    Conclusion: Manganese oxide-coated sand filter in the presence of magnetic field improve the quality of urban runoff significantly. Authors believe that this approach is simple, economical and efficient as in comparison to other existing methods. This could be a promising treatment technology that can enhance quality of urban runoff and industrial wastewaters.

  12. Long-term field-scale experiment on using lime filters in an agricultural catchment.

    Science.gov (United States)

    Kirkkala, Teija; Ventelä, Anne-Mari; Tarvainen, Marjo

    2012-01-01

    The River Yläneenjoki catchment in southwest Finland is an area with a high agricultural nutrient load. We report here on the nutrient removal performance of three on-site lime-sand filters (F1, F2, and F3), established within or on the edge of the buffer zones. The filters contain burnt lime (CaO) or spent lime [CaO, Ca(OH), and CaCO]. Easily soluble lime results in a high pH level (>11) and leads to an efficient precipitation of soluble phosphorus (P) from the runoff. Water samples were taken from the inflow and outflow of each site in different hydrological situations. The length of the monitoring period was 4 yr for F1, 6 yr for F2, and 1.5 yr for F3. F1 and F2 significantly reduced the suspended solids (SS), total P (PTOT), and dissolved reactive P (DRP) in the treated water. The proportional reduction (%) varied but was usually clearly positive. Filter F3 was divided into two equal parts, one containing burnt lime and the other spent lime. Both filter parts removed PTOT and SS efficiently from the water; the burnt-lime part also removed DRP. The mixed-lime part removed DRP for a year, but then the efficiency decreased. The effect of filters on nitrogen compounds varied. We conclude that sand filters incorporating lime can be used together with buffer zones to reduce both P and SS load to watercourses. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Analysis of heat recovery from a spray dryer by recirculation of exhaust air

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    Highlights: • We study a spray dryer with heat recovery by partial recirculation of exhaust air. • We examine effects of process parameters on energy efficiency and energy savings. • Decreasing drying air temperature and flow rate will increase energy efficiency. • Increasing recirculation ratio and slurry feed rate will increase energy efficiency. - Abstract: Model simulations were employed to investigate the influences of process parameters on the energy recovery in spray drying process that partially recycle the exhaust drying gas. The energy efficiency and energy saving were studied for various values of recirculation ratios with respect to the temperature and flow rate of the drying air, slurry feed rate and concentration of slurry in spray drying of advanced ceramic materials. As a result, significant gains in energy efficiency and energy saving were obtained for a spray drying system with high recirculation ratio of exhaust air. The high slurry feed rate and the low slurry concentration, inlet drying air temperature and drying air flow rate enhanced the energy efficiency of spray drying system. However, the high energy saving was obtained in spray dryers operating at low slurry feed rate and high slurry concentration

  14. Effect of self recirculation casing treatment on the performance of a turbocharger centrifugal compressor

    Science.gov (United States)

    Gancedo, Matthieu

    Increase in emission regulations in the transport industry brings the need to have more efficient engines. A path followed by the automobile industry is to downsize the size of the internal combustion engine and increase the air density at the intake to keep the engine power when needed. Typically a centrifugal compressor is used to force the air into the engine, it can be powered from the engine shaft (superchargers) or extracting energy contained into the hot exhaust gases with a turbine (turbochargers). The flow range of the compressor needs to match the one of the engine. However compressors mass flow operating range is limited by choke on the high end and surge on the low end. In order to extend the operation at low mass flow rates, the use of passive devices for turbocharger centrifugal compressors was explored since the late 80's. Hence, casing treatments including flow recirculation from the inducer part of the compressor have been shown to move the surge limit to lower flows. Yet, the working mechanisms are still not well understood and thus, to optimize the design of this by-pass system, it is necessary to determine the nature of the changes induced by the device both on the dynamic stability of the pressure delivery and on the flow at the inlet. The compressor studied here features a self-recirculating casing treatment at the inlet. The recirculation passage could be blocked to carry a direct comparison between the cases with and without the flow feature. To grasp the effect on compressor stability, pressure measurements were taken in the different constituting elements of the compressor. The study of the mean pressure variations across the operating map showed that the tongue region is a limiting element. Dynamic pressure measurements revealed that the instabilities generated near the inducer when the recirculation is blocked increase the overall instability levels at the compressor outlet and propagating pressure waves starting at the tongue occurred

  15. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    Science.gov (United States)

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Campbell, Laura; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains approximately 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All non-recirculating resident memory T cells (TRM) expressed CD69, but the majority were CD4+, CD103− and located in the dermis, in contrast to studies in mice. Both CD4+ and CD8+ CD103+ TRM were enriched in the epidermis, had potent effector functions and had a limited proliferative capacity compared to CD103− TRM. TRM of both types had more potent effector functions than recirculating T cells. Induction of CD103 on human T cells was enhanced by keratinocyte contact, depended on TGFβ and was independent of T cell keratinocyte adhesive interactions. We observed two distinct populations of recirculating T cells, CCR7+/L-selectin+ central memory T cells (TCM) and CCR7+/L-selectin− T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions and TMM were depleted more slowly from skin after alemtuzumab, suggesting TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. PMID:25787765

  16. Experimental investigation on the influences of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance

    International Nuclear Information System (INIS)

    Fu, Jianqin; Zhu, Guohui; Zhou, Feng; Liu, Jingping; Xia, Yan; Wang, Shuqian

    2016-01-01

    Highlights: • In-cylinder residual gas fraction almost increases linearly with exhaust gas recirculation rate. • Heat transfer loss and exhaust gas energy loss decrease with exhaust gas recirculation rate. • Engine indicated thermal efficiency can be increased by 4.29% at 1600 r/min and 2.94 bar. • The effective range of exhaust gas recirculation rate can be extended by intake tumble. - Abstract: To improve the economy and emission performance of gasoline engine under part load, the approach of exhaust gas recirculation coupling with intake tumble was investigated by bench testing. Based on a naturally aspirated gasoline engine, the sweeping test of exhaust gas recirculation rate was conducted in two intake modes (with/without intake tumble), and the parameters related to engine heat-work conversion process and emission performance were measured. Through comparing and analyzing the measured data, the effects of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance were revealed. The results show that pumping loss decreases gradually while in-cylinder residual gas fraction increases linearly with the exhaust gas recirculation rate increasing; the high-pressure cycle efficiency ascends with exhaust gas recirculation rate increasing due to the decrease of heat transfer loss and exhaust gas energy loss. Thus, the improvement of indicated thermal efficiency is the superposition of double benefits of low-pressure cycle and high-pressure cycle. At 1600 r/min and 2.94 bar, the indicated thermal efficiency can be increased by 4.29%. With the increase of exhaust gas recirculation rate, nitrogen oxide emissions almost fall linearly, but hydrocarbon and carbonic oxide emissions have no obvious change in the effective range of exhaust gas recirculation rate. The biggest advantage of intake tumble is that it can extend the effective range of exhaust gas recirculation rate. As a result, the potential of energy

  17. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: nauty@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Gao, Lei [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Lu, Wen-qiang [School of Physics, University of Chinese Academy of Sciences, Beijing (China)

    2014-09-15

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target.

  18. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Gao, Lei; Yang, Lei; Lu, Wen-qiang

    2014-01-01

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target

  19. Polymer aids for settling and filtration of oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Energy Resources Conservation Board, Calgary, AB (Canada). Oil Sands Section; Xu, Z.; Masliyah, J.H. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Oil sand tailings are segregated into coarse and fine tailings. High volumes of toxic fluids and tailings are created in the process. Tailings ponds are an environmental risk with high operating and maintenance costs. Current commercial technologies uses chemical additions to create recycled water and composite tailings (CT). Researchers are now investigating centrifuged and dry mature fine tailings (MFT). Filtration processes with flocculants are used to separate the tailings into warm recycle water and dried cakes that can be used in reclamation processes. Studies are being conducted to find a polymer than can effectively flocculate and filter whole oil sands tailings. The filtration procedure uses pressure to produce released water. Polymers include magnafloc and Al-PAM polymer concentrations are used in slurry masses. Tests have been conducted to determine the settling rates of the polymers. The tests showed that Al-PAM filtered the tailings effectively. Paraffinic froth treatment tests have also been conducted to determine settling rates. A cake produced with froth treatment tailings of Al-PAM 400 ppm had a water content 42.5 wt per cent. The tests showed that while Magnafloc 1011 is a good settling aid, but a poor filtration addition. Al-PAM aided in both the flocculation and filtration processes. Higher Al-PAM dosages are needed for froth treatment tailings processes. It was concluded that dry cakes are produced with the addition of Al-PAM. tabs., figs.

  20. Nutrient fate in aquacultural systems for waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Dontje, J.H.; Clanton, C.J.

    1999-08-01

    Twelve small, recirculating aquacultural systems were operated for livestock waste treatment to determine nutrient fate. Each system consisted of a 730-L fish tank coupled in a recirculating loop with three sand beds (serving as biofilters) in parallel. Fish (Tilapia species) were grown in the tanks while cattails, reed canary grass, and tomatoes were grown in separate sand beds. Swine waste was added to the fish tanks every other day at average rates of 50, 72, 95, and 118 kg-COD/ha/day of fish tank surface (three replications of each loading rate). Water from the fish tanks was filtered through the sand beds three times per day with 20% of the tank volume passing through the sand each day. The systems were operated in a greenhouse for eight months (21 July to 8 March). Aboveground plant matter was harvested at eight-week intervals. The fish were removed after four months and the tanks were restocked with fingerlings. Initial and final nitrogen (N), phosphorus (P), and potassium (K) contents of the system components, as well as that of the harvested plants and fish, were determined. Nutrient balance calculations revealed that 30 to 68% of added N was lost from the systems, probably via denitrification. Nutrient removal by plants was 6 to 18% for N, 8 to 21% for P, and 25 to 71% for K, with tomatoes (foliage and fruit) accounting for the majority of the removal. Plant growth was limited by growing conditions (particularly day length), not be nutrient availability. Fish growth was limited by temperature; thus nutrient extraction by the fish was minimal. Under the conditions of this experiment, the system required supplemental aeration.

  1. Investigation of Water Holding Capacity of Sugarcane Mulch for Sand Dune Stabilization in Ahvaz

    Directory of Open Access Journals (Sweden)

    T. Jamili

    2017-01-01

    Full Text Available Introduction: Wind erosion is one of the most serious problems in southwest Iran. Fine-grained structure of sand dunes with not enough strong composition and their low moisture retention property make them susceptible to wind erosion. They lack organic matter and are considered inherently of low fertility (Ahmadi, 2002. Studies have shown that non-erodible materials which include bentonite clay (Diouf et al., 1990, ureamelamine formaldehyde and urea–formaldehyde with 0.25% sodium chloride (Lahalih and Ahmed, 1998, acids, enzymes, lignosulfonates, polymers, tree resins (Santoni et al., 2001, waterborne polymer emulsion (Al-Khanbashi and Abdalla, 2006, polyvinyl alcohol and a polyvinyl acetate emulsion (Newman et al., 2005; Han et al., 2007, ash and polyacrylamide (Yang and Zejun, 2012.have significant potential in reducing wind erosion The area under farming of sugarcane in Khuzestan, Iran, is more than 130,000, ha. Vinasse and Filter Kike are two organic ingredients of sugarcane residues which are generated as byproduct materials insugarcane processing. In recent years these residues have been released into the environment and cause it regarded as water pollutant. Over 800,000 m3 of Vinasse is annually stored in each agro-industry. Vinasse also is rich in K, Ca, and Mg with moderate amounts of P and N,and non toxic complexes or heavy metals. Filter Kike is another residue produced in huge amounts by the agro-industry that is composed of cellulosic substances, CaCO3, N, P, K, organic matter, and clay. Therefore, the objective of this research is to investigate the effect of sugarcane mulch on water holding capacity in soil. This study is performed to evaluate the feasibility of using sugarcane residues inproduce of ecofriendly mulches for environmental use. In order of achieving these goals, Vinase, Filter Cake, and clay soil from near the sand dunes were used as sugarcane mulches. Further comparison between traditional oil mulches and

  2. Modeling Tar Recirculation in Biomass Fluidized Bed Gasification

    NARCIS (Netherlands)

    Heineken, Wolfram; De la Cuesta de Cal, Daniel; Zobel, Nico

    2016-01-01

    A biomass gasification model is proposed and applied to investigate the benefits of tar recirculation within a gasification plant. In the model, tar is represented by the four species phenol, toluene, naphthalene, and benzene. The model is spatially one-dimensional, assuming plug flow for the

  3. Comammox Nitrospira are key nitrifiers in diverse groundwater-fed drinking water filters

    DEFF Research Database (Denmark)

    Fowler, Jane; Palomo, Alejandro; Smets, Barth F.

    Nitrification is a dominant process in groundwater-fed rapid sand filters (RSFs) used for drinking water purification. Near complete removal of ammonium and nitrite is required in the EU and Denmark due to strict regulatory limits that enable high water stability in the distribution system. RSFs...... this work provides a new assay for the simultaneous detection of clade A and B comammox Nitrospira and expands our current knowledge of the diversity of comammox Nitrospira, while attempting to explain the success of comammox Nitrospira in these groundwater-fed filters....

  4. Effect of recirculation and regional counting rate on reliability of noninvasive bicompartmental CBF measurements

    International Nuclear Information System (INIS)

    Herholz, K.

    1985-01-01

    Based on data from routine intravenous Xe133-rCBF studies in 50 patients, using Obrist's algorithm the effect of counting rate statistics and amount of recirculating activity on reproducibility of results was investigated at five simulated counting rate levels. Dependence of the standard deviation of compartmental and noncompartmental flow parameters on recirculation and counting rate was determined by multiple linear regression analysis. Those regression equations permit determination of the optimum accuracy that may be expected from individual flow measurements. Mainly due to a delay of the start-of-fit time an exponential increase in standard deviation of flow measurements was observed as recirculation increased. At constant start-of-fit, however, a linear increase in standard deviation of compartmental flow parameters only was found, while noncompartmental results remained constant. Therefore, and in regard to other studies of potential sources of error, an upper limit of 2.5 min for the start-of-fit time and usage of noncompartmental flow parameters for measurements affected by high recirculation are suggested

  5. Fontainebleau Sand

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane

    2006-01-01

    The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand.......The report is a summary of results from laboratory tests in the geotechncial research group on Fontainebleau sand....

  6. DNA accumulation on ventilation system filters in university buildings in Singapore.

    Science.gov (United States)

    Luhung, Irvan; Wu, Yan; Xu, Siyu; Yamamoto, Naomichi; Chang, Victor Wei-Chung; Nazaroff, William W

    2017-01-01

    Biological particles deposit on air handling system filters as they process air. This study reports and interprets abundance and diversity information regarding biomass accumulation on ordinarily used filters acquired from several locations in a university environment. DNA-based analysis was applied both to quantify (via DNA fluorometry and qPCR) and to characterize (via high-throughput sequencing) the microbial material on filters, which mainly processed recirculated indoor air. Results were interpreted in relation to building occupancy and ventilation system operational parameters. Based on accumulated biomass, average DNA concentrations per AHU filter surface area across nine indoor locations after twelve weeks of filter use were in the respective ranges 1.1 to 41 ng per cm2 for total DNA, 0.02 to 3.3 ng per cm2 for bacterial DNA and 0.2 to 2.0 ng DNA per cm2 for fungal DNA. The most abundant genera detected on the AHU filter samples were Clostridium, Streptophyta, Bacillus, Acinetobacter and Ktedonobacter for bacteria and Aspergillus, Cladosporium, Nigrospora, Rigidoporus and Lentinus for fungi. Conditional indoor airborne DNA concentrations (median (range)) were estimated to be 13 (2.6-107) pg/m3 for total DNA, 0.4 (0.05-8.4) pg/m3 for bacterial DNA and 2.3 (1.0-5.1) pg/m3 for fungal DNA. Conditional airborne concentrations and the relative abundances of selected groups of genera correlate well with occupancy level. Bacterial DNA was found to be more responsive than fungal DNA to differences in occupancy level and indoor environmental conditions.

  7. The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C.

    Science.gov (United States)

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Li, Weiguang; Buisman, Cees J N

    2012-01-01

    The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH₄-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system.

  8. Removal of COD and TSS From Dye Solution Using Sand Filtration and Adsorption

    Directory of Open Access Journals (Sweden)

    Heny Juniar

    2016-11-01

    Full Text Available This research was conducted in order to obtain proper compositions and the standard condition for the simple filtration equipments and optimum operational conditions in adsorption column. The research was carried out by analyzing parameters COD and TSS. The result showed that the process was able to reduced parameters observed from filtration step until the process in adsorptions column. The optimum conditions for sand filter equipment were 10 cm sand height, at least 7 cm fibers, 3-4 cm gravel. In the adsorption column, the optimum conditions for green waste water were flow rate at 40 ml/min 60 min adsorptions time, and 60 cm bed height. While purple for waste water; 20 mL/min of flowrate, 60 min of adsorption time, and the 60 cm of bed height

  9. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    Science.gov (United States)

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  10. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  11. Combined production of fish and plants in recirculating water

    Energy Technology Data Exchange (ETDEWEB)

    Naegel, L.C.A.

    1977-01-01

    A pilot plant of ca 2000 l of recirculating fresh water for intensive fish production was constructed in a controlled-environment greenhouse. The feasibility was examined of using nutrients from fish wastewater, mainly oxidized nitrogenous compounds, for plant production, combined with an activated sludge system for water purification. The reduction of nitrates, formed during the extended aeration process by nitrifying bacteria, was not sufficient by higher plants and unicellular algae alone to reduce the nitrate concentration in our system significantly. An additional microbial denitrification step had to be included to effect maximal decrease in nitrogenous compounds. For fish culture in the pilot plant Tilapia mossambica and Cyprinus carpio were chosen as experimental fishes. Both fish species showed significant weight increases during the course of the experiment. Ice-lettuce and tomatoes were tested both in recirculating water and in batch culture. The unicellular algae Scenedesmus spp. were grown in a non-sterile batch culture. All plants grew well in the wastewater without additional nutrients. Determination of the physical and chemical parameters for optimum water purification, the most suitable ratio of denitrification by plants and by microorganisms, and the most favourable fish and plant species for combined culture in recirculating water are important and of current interest in view of the increasing demand for clean, fresh water, and the pressing need to find new ways of producing protein for human nutrition under prevailing conditions of an exponentially expanding world population.

  12. Study of Black Sand Particles from Sand Dunes in Badr, Saudi Arabia Using Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Haider Abbas Khwaja

    2015-08-01

    Full Text Available Particulate air pollution is a health concern. This study determines the microscopic make-up of different varieties of sand particles collected at a sand dune site in Badr, Saudi Arabia in 2012. Three categories of sand were studied: black sand, white sand, and volcanic sand. The study used multiple high resolution electron microscopies to study the morphologies, emission source types, size, and elemental composition of the particles, and to evaluate the presence of surface “coatings or contaminants” deposited or transported by the black sand particles. White sand was comprised of natural coarse particles linked to wind-blown releases from crustal surfaces, weathering of igneous/metamorphic rock sources, and volcanic activities. Black sand particles exhibited different morphologies and microstructures (surface roughness compared with the white sand and volcanic sand. Morphological Scanning Electron Microscopy (SEM and Laser Scanning Microscopy (LSM analyses revealed that the black sand contained fine and ultrafine particles (50 to 500 nm ranges and was strongly magnetic, indicating the mineral magnetite or elemental iron. Aqueous extracts of black sands were acidic (pH = 5.0. Fe, C, O, Ti, Si, V, and S dominated the composition of black sand. Results suggest that carbon and other contaminant fine particles were produced by fossil-fuel combustion and industrial emissions in heavily industrialized areas of Haifa and Yanbu, and transported as cloud condensation nuclei to Douf Mountain. The suite of techniques used in this study has yielded an in-depth characterization of sand particles. Such information will be needed in future environmental, toxicological, epidemiological, and source apportionment studies.

  13. Cold climate performance analysis of on-site domestic wastewater treatment systems.

    Science.gov (United States)

    Williamson, Eric

    2010-06-01

    Household on-site septic systems with secondary wastewater treatment in Anchorage, Alaska, were sampled and analyzed for performance parameters during the winter to spring months. System types included intermittent dosing sand filters (ISF), three types of recirculating trickling filters (RTF), and suspended-growth aeration tanks. Total nitrogen from the trickling filter and aeration tank effluent was fairly uniform, at approximately 30 mg/L. Total suspended solids (TSS) means were mostly less than 15 mg/L. The 5-day biochemical oxygen demand (BODs) showed considerable variability, with means ranging from 9.2 mg/ L for ISFs up to 39.5 mg/L for one type of RTF, even though this type has shown excellent results in several test programs. The data suggested that effluent temperature within the sample range had almost no effect on effluent concentrations of BOD5 or TSS and only a small effect on the removal of total nitrogen. Non-climatic factors were probably of equal importance to treatment results.

  14. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2013-06-01

    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  15. Seabed Filter Feasibility Study of Om Almisk Island

    KAUST Repository

    Sesler, Kathryn

    2012-06-01

    Freshwater access has always been and is continuing to be a severe problem in desert coastal regions, despite the fact that they have an unlimited supply of easily accessible saline water. Water desalination plants are well established and heavily relied upon throughout the Middle East, Saudi Arabia in particular. However, water desalination tends to be a very expensive and energy intensive solution to the problem. The transition from using open water intake systems and all of the pretreatment processes that they require, to using seabed water filters as an intake, would potentially reduce the lifetime costs, energy consumption, and environmental impacts commonly associated with water desalination. This is because the filtration process that the seabed filter generates, serves as sufficient pretreatment for seawater as well as eliminating any risk of entrainment or impingement of marine organisms. The main objective of this research is to conduct a feasibility study on Om Almisk Island, an island off the coast of King Abdullah University of Science and Technology (KAUST), to determine if it would be a suitable location to construct a seabed water filter as a replacement for the current open water intake. The Om Almisk Island site was evaluated through collection of sand samples over a radial grid around Om Almisk Island and sample analysis using grain size distribution, porosity, and hydraulic conductivity. The lack of mud, high hydraulic conductivity, proximity to KAUST, and the shallow waters of the sandy apron surrounding Om Almisk Island make this an ideal location for a seabed water filter to be used as an intake and pretreatment for the KAUST desalination plant. This location also has low tide change and the presence of benthic macrofauna to create bioturbation in the sediments, which could inhibit the growth of a schmutzdecke. If this biological layer forms, it could drastically reduce the hydraulic conductivity of the system. Due to the high hydraulic

  16. Hyperthermia induced after recirculation triggers chronic neurodegeneration in the penumbra zone of focal ischemia in the rat brain

    Directory of Open Access Journals (Sweden)

    L.A. Favero-Filho

    2008-11-01

    Full Text Available Chronic neurodegenerative processes have been identified in the rat forebrain after prolonged survival following hyperthermia (HT initiated a few hours after transient global ischemia. Since transient global ischemia and ischemic penumbra share pathophysiological similarities, this study addressed the effects of HT induced after recirculation of focal brain ischemia on infarct size during long survival times. Adult male Wistar rats underwent intra-luminal occlusion of the left middle cerebral artery for 60 min followed by HT (39.0-39.5°C or normothermia. Control procedures included none and sham surgery with and without HT, and middle cerebral artery occlusion alone. Part I: 6-h HT induced at recirculation. Part II: 2-h HT induced at 2-, 6-, or 24-h recirculation. Part III: 2-h HT initiated at recirculation or 6-h HT initiated at 2-, 6- or 24-h recirculation. Survival periods were 7 days, 2 or 6 months. The effects of post-ischemic HT on cortex and striatum were evaluated histopathologically by measuring the area of remaining tissue in the infarcted hemisphere at -0.30 mm from bregma. Six-hour HT initiated from 6-h recirculation caused a significant decrease in the remaining cortical tissue between 7-day (N = 8 and 2-month (N = 8 survivals (98.46 ± 1.14 to 73.62 ± 8.99%, respectively. When induced from 24-h recirculation, 6-h HT caused a significant reduction of the remaining cortical tissue between 2- (N = 8 and 6-month (N = 9 survivals (94.97 ± 5.02 vs 63.26 ± 11.97%, respectively. These data indicate that post-ischemic HT triggers chronic neurodegenerative processes in ischemic penumbra, suggesting that similar fever-triggered effects may annul the benefit of early recirculation in stroke patients over the long-term.

  17. Modeling the Performance of Biological Rapid Sand Filters Used to Remove Ammonium, Iron, and Manganese From Drinking Water

    DEFF Research Database (Denmark)

    Lee, Carson; Albrechtsen, Hans-Jørgen; Smets, Barth F.

    activated carbon and are often used following ozonation to remove additional biodegradable organics created during ozonation. In Europe, biological filters are also used to remove ammonium and reduced forms of iron and manganese. These compounds can cause biological instability in the distribution system...... tracer, are performed during an operational cycle of a filter to examine how the filter flow changes with time. The data is used to validate a mathematical model that can both predict process performance and to gain an understanding of how dynamic conditions can influence filter performance....... The mathematical model developed is intended to assist in the design of new filters, set up of pilot plant studies, and as a tool to troubleshoot existing problems in full scale filters. Unlike previous models, the model developed accounts for the effects of particle/precipitate accumulation and its effects...

  18. A replacement LH2 recirculation line before installation in Discovery

    Science.gov (United States)

    1999-01-01

    A spare four-inch diameter LH2 recirculation line (shown in photo) will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  19. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jinwook [R& D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-dong, Youngtong-gu, Suwon, Gyeonggi-do 443-823 (Korea, Republic of); Kim, Seungjin; Baek, Seungcheon [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Nam-Hoon [Department of Environmental & Energy Engineering, Anyang University, 22 Samdeok-ro, 37 Beon-gil, Manan-gu, Anyang, Gyeonggi-do 430-714 (Korea, Republic of); Park, Seongjun; Lee, Junghun; Lee, Heechang [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of)

    2015-03-21

    Highlights: • To solve the drawbacks (NH{sub 4}{sup +} accumulation) of leachate recirculation, ex-situ SBR was applied. • Produced NO{sub 2}{sup −} was recirculated and denitrified to N{sub 2} in landfill with insufficient carbon source. • Despite the inhibition of methanogenesis by DO and nitrate, CH{sub 4} fraction eventually increased. - Abstract: Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  20. Design considerations for long-pulse, high-repetition-rate modulators for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Reginato, L.L.; Yu, S.S.

    1991-06-01

    Heavy-ion accelerators are considered to be one of the promising driver alternatives for inertial fusion. In an inertial fusion driver, multiple beams of heavy-ions are accelerated to kinetic energies consistent with the fusion target requirements. During acceleration, the beams of heavy ions are compressed in time from an initial pulse duration that range from 10's to 100's of microseconds to a final pulse duration of approximately 10 nanoseconds. The compressed beam of heavy ions is then focused on the target in a reactor chamber where the energy released from the fusion reaction is converted to thermal energy and eventually to electricity. A recirculator is an induction accelerator which accelerates the particles and bends them in a closed path with pulsed dipole magnets. A single beam traverses the same accelerating cavities many times (50--100) to acquire its final energy. The primary motivation to evaluate recirculators is the potential for low cost that results from re-using many of the most expensive accelerator components, such as the induction cells, pulsers, and focusing magnets, during an acceleration sequence. One of the areas of technology that is critical to the feasibility of a recirculator is the modulator system required to accelerate the ion beams. This system greatly impacts the overall design of the recirculating accelerator. System studies have been conducted to evaluate the cost and efficiency of several recirculator configurations as function of various parameters. These system studies have helped identify desirable induction cell driver characteristics. These characteristics and the trade-offs that were evaluated will be presented and discussed

  1. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  2. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  3. Freshwater Institute: Focused on improving recirculating aquaculture system technology

    Science.gov (United States)

    Recirculating aquaculture system (RAS) technologies help to overcome barriers to domestic aquaculture expansion and enhance the sustainability of the modern fish farming industry through reduction in environmental impacts. With RAS, fish farm expansion is no longer highly constrained by competition ...

  4. STUDIES REGARDING THE PRESENCE OF THE PATHOGENS BACTERIA INTO A RECIRCULATING SYSTEM OF BELUGA STURGEON INTENSIVE REARING

    Directory of Open Access Journals (Sweden)

    ANGELICA DOCAN

    2008-10-01

    Full Text Available Recirculating aquaculture offers good potential for successful fish farming since is often independent of environmental conditions. Maintaining healthy fish in a recirculating system involves establishing adequate dissolved oxygen levels, removal of solid wastes, and sufficient ammonia nitrification to assure optimal rearing conditions. Neglecting these, the fish immune system will depress, the facultative pathogen germs will be able to provoke important disease outbreaks into cultured biomass, as was happened in our recirculating pilot system. In this study are presented the pathological aspects registered to the beluga sturgeon of 1 year, reared into our recirculating pilot system, pathological aspects generated by a haemorrhagic bacterial septicaemia which was manifested in the conditions of low concentrations of DO. The disease was diagnosed to the affected fish through anatomopathological and clinical exam, haematological exam and microbiological exam.

  5. New generation expandable sand screens

    OpenAIRE

    Syltøy, Christer

    2014-01-01

    Master's thesis in Petroleum engineering This thesis aims to give a general insight into sand control and various sorts of sand control measures and applications of sand control tools. Special focus will be given to expandable sand screens – a technology which came about in the late 1990’s through the use of flexible, expandable tubulars as base pipe in sand screens. More specifically Darcy’s Hydraulic Endurance Screens, a compliant sand screen system using hydraulic activation, and the fu...

  6. Boiler recirculation pumps for nuclear power stations - present state of development. Directions for planning, operational experience

    International Nuclear Information System (INIS)

    Mattias, H.B.

    1976-01-01

    Boiler recirculation pumps are important components of modern power stations. The development of large recirculation pumps up to a driving power of 1,500 kW was faced with some problems in meeting the plant requirements. In this paper, the present state of development is dealt with. The development problems in the fields of hydrodynamics, cavitation, corrosion and erosion are dealt with as well as the problems of the design of the casing with regard to thermodynamics and strength. Finally, operational experience with the boiler recirculation pump for 600 MW power stations will be reported on. (orig./AK) [de

  7. Saltation of non-spherical sand particles.

    Directory of Open Access Journals (Sweden)

    Zhengshi Wang

    Full Text Available Saltation is an important geological process and the primary source of atmospheric mineral dust aerosols. Unfortunately, no studies to date have been able to precisely reproduce the saltation process because of the simplified theoretical models used. For example, sand particles in most of the existing wind sand movement models are considered to be spherical, the effects of the sand shape on the structure of the wind sand flow are rarely studied, and the effect of mid-air collision is usually neglected. In fact, sand grains are rarely round in natural environments. In this paper, we first analyzed the drag coefficients, drag forces, and starting friction wind speeds of sand grains with different shapes in the saltation process, then established a sand saltation model that considers the coupling effect between wind and the sand grains, the effect of the mid-air collision of sand grains, and the effect of the sand grain shape. Based on this model, the saltation process and sand transport rate of non-spherical sand particles were simulated. The results show that the sand shape has a significant impact on the saltation process; for the same wind speed, the sand transport rates varied for different shapes of sand grains by as much as several-fold. Therefore, sand shape is one of the important factors affecting wind-sand movement.

  8. The effectiveness of the use of filter on the tilapia growth performance, number of Nitrosomonas sp., and water quality in aquaponics systems

    Directory of Open Access Journals (Sweden)

    Yuli Andriani

    2018-01-01

    Full Text Available ABSTRACT This study aims to determine the most effective type of living filter media for the bacteria Nitrosomonas sp. in order to improve water quality in aquaponics systems. The method used in this study was completely randomized design, consisting of five treatments and each was repeated three times. The treatments were: A (without addition of filter media, B (addition of palm fibers, silica sand, and activated carbon, C (addition of palm fibers, silica sand, gravel, and activated carbon, D (addition of palm fibers, silica sand, rocks, and activated carbon, and E (addition of palm fibers, silica sand, bioball, and activated carbon. Parameters measured were: 1 the number of Nitrosomonas bacteria, 2 water quality (ammonia, nitrate, and phosphate; and, 3 productivity of fish and Chinese spinach. Data were analyzed using a descriptive method. The findings show that the highest number of bacteria was found in treatment E, 9.29×105 CFU/mL on the bioball filter media and 4.43×105 CFU/mL in rearing tanks. The best water quality was in treatment B, with a concentration of ammonia of 0.17 mg/L, nitrate of 0.33 mg/L, and phosphate of 0.54 mg/L. Plant productivity was the best in treatment B in which the average length and weight reach 48.1 cm and 11.1 grams of plant/week, respectively. The best fish growth was seen in treatment C with an absolute growth rate of 4.4 grams and a specific growth rate of 1.9%/day. The recommended filter was made of Arenga pinnata fibers, silica sand, gravels, and active carbon of about 2 cm thick each.The results showed that the type of filter on the aquaponic system had an effect on the amount of Nitrosomonas sp. in water, water quality, and the productivity of Chinese spinach.Keywords: aquaponics, filter, water quality, Nitrosomonas sp.ABSTRAKPenelitian ini bertujuan untuk menentukan jenis filter yang paling efektif sebagai media hidup bakteri Nitrosomonas sp. sehingga menghasilkan kualitas air yang baik dalam sistem

  9. Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems

    International Nuclear Information System (INIS)

    Zhu Yinhai; Li Yanzhong; Cai Wenjian

    2011-01-01

    A one-equation model is proposed for fuel ejector in anode gas recirculation solid oxide fuel cell (SOFC) system. Firstly, the fundamental governing equations are established by employing the thermodynamic, fluid dynamic principles and chemical constraints inside the ejector; secondly, the one-equation model is derived by using the parameter analysis and lumped-parameter method. Finally, the computational fluid dynamics (CFD) technique is employed to obtain the source data for determining the model parameters. The effectiveness of the model is studied under a wide range of operation conditions. The effect of ejector performance on the anode gas recirculation SOFC system is also discussed. The presented model, which only contains four constant parameters, is useful in real-time control and optimization of fuel ejector in the anode gas recirculation SOFC system.

  10. Effect of recirculation rate on methane production and SEBAR system performance using active stage digester.

    Science.gov (United States)

    Tubtong, Cheevanuch; Towprayoon, Sirintornthep; Connor, Michael Anthony; Chaiprasert, Pawinee; Nopharatana, Annop

    2010-09-01

    A project was undertaken to examine the feasibility of treating organic wastes from Thai fruit and vegetable markets using the sequential batch anaerobic digester (SEBAR) approach. A key feature of the SEBAR system is the regular interchanging, or recirculation, of portions of leachate between each freshly filled digester and a support digester to which it is coupled until it is ready to operate independently. Leachate transfer from this support digester to the fresh waste digester provides additional alkalinity to help counteract the effects of early high acid release rates; it also helps build a balanced microbial population in the fresh waste digester. To optimize the leachate recirculation process, the effect of varying the quantities of leachate interchanged between freshly filled waste digesters and the still highly active support digesters to which they were coupled was studied. It was found that increasing the recirculation rate accelerated the onset of both waste degradation and methane production. The increasing of recirculation rate from 10% to 20% and 10% to 30% could reduce the SEBAR cycle period by approximately 7% and 22% without significant reduction in the amount of methane obtained from the systems. The methane yields were 0.0063, 0.0068 and 0.0077 l g(-1) VS added in the NEW digester per day using leachate recirculation rates of 10%, 20% and 30%, respectively. This finding has potentially important practical and economic implications for those using the SEBAR system to add value to market waste.

  11. Liquefaction resistance of calcareous sands

    International Nuclear Information System (INIS)

    Sandoval Vallejo, Eimar

    2012-01-01

    Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  12. Economic Feasibility of Recirculating Aquaculture Systems in Pangasius Farming

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.C.; Verreth, J.A.J.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2016-01-01

    This study aims to analyze the economic feasibility of recirculating aquaculture systems (RAS) in pangasius farming in Vietnam. The study uses a capital budgeting approach and accounts for uncertainty in key parameters. Stochastic simulation is used to simulate the economic performance of medium and

  13. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    International Nuclear Information System (INIS)

    Burjorjee, D.; Gan, B.

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops

  14. A dented LH2 recirculation line is removed from Discovery

    Science.gov (United States)

    1999-01-01

    In the Payload Changeout Room, Launch Pad 39B, United Space Alliance and NASA workers look at the replacement main propulsion system liquid hydrogen recirculation line (left) to be installed in Shuttle Discovery's aft compartment. At right is the dented line that has been removed. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  15. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  16. Assessment of the irrigation feasibility of low-cost filtered municipal wastewater for red amaranth (Amaranthus tricolor L cv. Surma

    Directory of Open Access Journals (Sweden)

    Gokul Chandra Biswas

    2015-09-01

    Full Text Available Because of the scarcity of clean water, treated wastewater potentially provides an alternative source for irrigation. In the present experiment, the feasibility of using low-cost filtered municipal wastewater in the irrigation of red amaranth (Amaranthus tricolor L cv. Surma cultivation was assessed. The collected municipal wastewater from fish markets, hospitals, clinics, sewage, and kitchens of households in Sylhet City, Bangladesh were mixed and filtered with nylon mesh. Six filtration methods were applied using the following materials: sand (T1; sand and wood charcoal consecutively (T2; sand, wood charcoal and rice husks consecutively (T3; sand, wood charcoal, rice husks and sawdust consecutively (T4; sand, wood charcoal, rice husks, sawdust and brick chips consecutively (T5; and sand, wood charcoal, rice husks, sawdust, brick chips and gravel consecutively (T6. The water from ponds and rivers was considered as the control treatment (To. The chemical properties and heavy metals content of the water were determined before and after the low cost filtering, and the effects of the wastewater on seed germination, plant growth and the accumulation rate of heavy metals by plants were assessed. After filtration, the pH, EC and TDS ranged from 5.87 to 9.17, 292 to 691 µS cm−1 and 267 to 729 mg L−1, respectively. The EC and TDS were in an acceptable level for use in irrigation, satisfying the recommendations of the FAO. However, select pH values were unsuitable for irrigation. The metal concentrations decreased after applying each treatment. The reduction of Fe, Mn, Pb, Cu, As and Zn were 73.23%, 92.69%, 45.51%, 69.57%, 75.47% and 95.06%, respectively. When we considered the individual filtering material, the maximum amount of As and Pb was absorbed by sawdust; Cu and Zn by wood charcoal; Mn and Cu by sand and Fe by gravel. Among the six filtration treatments, T5 showed the highest seed germination (67.14%, similar to the control T0 (77

  17. Experimental evaluation of drainage filters sealing in peat soils

    Directory of Open Access Journals (Sweden)

    Nevzorov Aleksandr Leonidovich

    2014-02-01

    Full Text Available The article deals with research results of the sealing of pores in drainage filters by organic particles. Permeability tests were carried out with the constant gradient 1.5. The water flow through the sample of soil was top-down.The tests were carried out with 2 types of samples: the first part of samples had layers (from up to down 300 mm peat and 2 layers of geotextile, the second part consisted of 250 mm peat, 200 mm fine sand and 2 layers of geotextile. Well decomposed peatsamples were used. Peat had the following characteristics: density is 1,05...1,06 g/cm3, specific density — 1,53...1,56 g/cm3, void ratio — 12,0...12,5. The duration of each test was 15 days. During testing the hydraulic conductivity of samples was decreased by 1.3...1.9.After completing the tests the hydraulic conductivity of sand and geotextile were measured. The content of organic matter in geotextile and fine sand was determined as well. Dry mass of organic matter in the first layer of geotextile in the first type of samples were 1,0…1,3 g per 75 cm2. The organic matter in the second layer of geotextile in the first type of samples and in the first layer of geotextile in the second type wasn’t exposed. Fine sands protected the drainage geotextile as a result of sealing of pore space of sands by organic matter.

  18. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Science.gov (United States)

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined...

  19. Investigation of a combined gas-steam system with flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Chmielniak Tadeusz

    2016-06-01

    Full Text Available This article presents changes in the operating parameters of a combined gas-steam cycle with a CO2 capture installation and flue gas recirculation. Parametric equations are solved in a purpose-built mathematical model of the system using the Ebsilon Professional code. Recirculated flue gases from the heat recovery boiler outlet, after being cooled and dried, are fed together with primary air into the mixer and then into the gas turbine compressor. This leads to an increase in carbon dioxide concentration in the flue gases fed into the CO2 capture installation from 7.12 to 15.7%. As a consequence, there is a reduction in the demand for heat in the form of steam extracted from the turbine for the amine solution regeneration in the CO2 capture reactor. In addition, the flue gas recirculation involves a rise in the flue gas temperature (by 18 K at the heat recovery boiler inlet and makes it possible to produce more steam. These changes contribute to an increase in net electricity generation efficiency by 1%. The proposed model and the obtained results of numerical simulations are useful in the analysis of combined gas-steam cycles integrated with carbon dioxide separation from flue gases.

  20. MECHANICAL REGENERATION OF SAND WASTE

    Directory of Open Access Journals (Sweden)

    D. I. Gnir

    2005-01-01

    Full Text Available The experimental activation of the sand regenerator of the firm SINTO is carried out at ОАО “MZOO". It is shown that sand grains are cleared from films of binding agents, that allows to use the treated sand for preparation of agglutinant and core sands.

  1. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2014-07-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  2. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    International Nuclear Information System (INIS)

    Loenhout, Gerard van; Hurni, Juerg

    2014-01-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  3. Crushed rock sand – An economical and ecological alternative to natural sand to optimize concrete mix

    Directory of Open Access Journals (Sweden)

    Sanjay Mundra

    2016-09-01

    Full Text Available The study investigates the use of crushed rock sand as viable alternative to Natural River sand that is being conventionally used as fine aggregate in cement concrete. Various mix designs were developed for different grades of concrete based on IS, ACI and British codes using Natural River sand and crushed rock sand. In each case, the cube compressive strength test, and beam flexure tests were conducted. The results of the study show that, the strength properties of concrete using crushed rock sand are nearly similar to the conventional concrete. The study has shown that crushed stone sand can be used as economic and readily available alternative to river sand and can therefore help to arrest the detrimental effects on the environment caused due to excessive mining of river sand.

  4. Thermodynamics of premixed combustion in a heat recirculating micro combustor

    International Nuclear Information System (INIS)

    Rana, Uttam; Chakraborty, Suman; Som, S.K.

    2014-01-01

    A thermodynamic model has been developed to evaluate exergy transfer and its destruction in the process of premixed combustion in a heat recirculating micro combustor. Exergy destruction caused by process irreversibilities is characterized by entropy generation in the process. The entropy transport equation along with the solution of temperature and species concentration fields in the wake of flame sheet assumptions have been used to determine the different components of entropy generation. The role of thermal conductivity and thickness of combustor wall, and Peclet number on transfer and destruction rate of exergy is depicted in the process of flame stabilization via heat recirculation. The entropy generations due to gas phase heat conduction and chemical reaction are identified as the major sources of exergy destruction. The total irreversibility in pre-flame region is confined only within a small distance upstream of the flame. It has been observed that the local volumetric entropy generation is higher near the axis than that near the combustor wall. The second law efficiency is almost invariant with heat loss from the combustor, Peclet number, and thermal conductivity and thickness of combustor wall. - Highlights: • Irreversibility in the combustor is mainly due to conduction and chemical reaction. • Entropy generation near the axis is higher compared to that near the wall. • Heat recirculation and process irreversibility decrease with heat loss. • The second law efficiency is almost independent of Peclet number. • Second law efficiency is almost independent of wall thermal conductivity

  5. Constrained control of a once-through boiler with recirculation

    DEFF Research Database (Denmark)

    Trangbæk, K

    2008-01-01

    There is an increasing need to operate power plants at low load for longer periods of time. When a once-through boiler operates at a sufficiently low load, recirculation is introduced, significantly altering the control structure. This paper illustrates the possibilities for using constrained con...

  6. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    Science.gov (United States)

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  7. Rheological Characterization of Green Sand Flow

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Spangenberg, Jon; Hovad, Emil

    2016-01-01

    The main aim of this paper is to characterize experimentally the flow behaviour of the green sand that is used for casting of sand moulds. After the sand casting process is performed, the sand moulds are used for metal castings. The rheological properties of the green sand is important to quantif...

  8. Filtration of aerosols produced by a sodium fire

    International Nuclear Information System (INIS)

    Duverger de Cuy, G.; Colome, J.

    1977-01-01

    The containment system of the Super Phenix reactor takes account of the possibility of contaminated sodium fires, particularly in the vicinity of the fuel storage drum. It is thus necessary to contain the emitted radioactivity associated with a quantity of sodium aerosols of the order of some 10 g/m 3 . Investigations previously carried out had shown that the retention capacity of high-efficiency asbestos filters was clearly insufficient. A new research programme on the filtration of sodium aerosols has thus been worked out with the aim of: gaining a better understanding of the granulometry of the aerosols produced by the fire; checking the efficiency of the new glass-fibre media of which high-efficiency filters are composed; selecting a prefiltering system which, in conjunction with the high-efficiency filter, would ensure a suitable retention capacity for the whole unit. The following prefilters are under investigation: agglomerating cyclones; fabric prefilters (dense filter media - variable density filters - bag filters); water prefilters; sand prefilters. The experimental equipment on which this programme has been based is presented. Results have so far been obtained for agglomerating cyclones (recirculating loop with a cyclone of 95% efficiency), for a number of textile prefilters and for the retention capacity of high-efficiency filters

  9. Enhanced Column Filtration for Arsenic Removal from Water: Polymer-Templated Iron Oxide Nanoparticles Immobilized on Sand via Layer-by-Layer Deposition

    Science.gov (United States)

    Cheng, Calvin Chia-Hung

    Arsenic is ubiquitous in water sources around the world and is highly toxic. While precipitation and membrane filtration techniques are successfully implemented in developed cities, they are unsuitable for rural and low-resource settings lacking centralized facilities. This thesis presents the use of ultra-small iron oxide (Fe2O3) nanoparticles functionalized on sand granules for use as a house-hold scale adsorption filter. Water-stable alpha-Fe2O3 (hematite) nanoparticles (arsenic adsorption, with 147 +/- 2 mg As(III) per g Fe2O3 and 91 +/- 10 mg As(V) per g Fe2O3. The platform was also used to synthesize iron-based composites, including magnetite (Fe 3O4) and Fe-Cu oxide nanoparticles. For use as a column filter, Fe2O3-PAA nanoparticles were functionalized on sand granules using a layer-by-layer deposition method, with the nanoparticles embedded in the negative layer. The removal of As(III) by the Fe2O 3-PAA functionalized column was described by reversible 1st order kinetics where the forward and reverse rate constants were 0.31 hr -1 and 0.097 hr-1, respectively. Implemented as a passive water filter with 30 x 30 x 50 cm3 dimensions, the filter has an expected lifetime in the order of many years. By controlling the flow rate of the column depending on contamination levels, the filter effectively removes arsenic down to the safety limit of 0.01 mg/L. In a parallel project, the layer-by-layer deposition of Poly(diallydimethyl ammonium chloride) (PDDA) and poly(sodium 5-styrenesulfonate) (PSS) was exploited for a highly practical synthesis of discrete gradient surfaces. By independently controlling the concentration of NaCl in PDDA and PSS deposition solutions, a 2-dimensional matrix of surfaces was created in 96-well microtiter plates. Distinct non-monotonic dye adsorption patterns on the gradient surfaces was observed. Practical knowledge from this project was also used to enhance the nanoparticle surface functionalization described above. In all, a practical

  10. The Alberta oil sands story

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    This report serves as a detailed introduction to the Alberta oil sands and their development. It includes a description of the oil sands deposits, an outline of crude bitumen recovery and upgrading processes, the role of Alberta Energy Company in oil sands development, environmental aspects, manpower requirements for oil sands development, research needs, and further oil sands projects. Presently proven recoverable reserves in the oil sands amount to 26.5 billion bbl of synthetic crude. Production from the Syncrude plant (125,000 bbl/d capacity) is expected to begin in 1977, followed by a Shell Canada operation around 1980. The provincial government will participate in the oil sand industry through its joint venture participation in Syncrude and its 50% share in Alberta Energy Company; the latter company participates in related aspects of the Syncrude project, such as pipelines. The result of Alberta's participation in the industry will mean that, directly or indirectly, the province will realize 60% of the total profits. The job creation potential of oil sands projects is estimated to be extensive, with a direct and indirect work force supported by oil sands activities possibly reaching 180,000 persons by the year 2000. Research needs have been identified, particularly in the area of in-situ thermal recovery technology, and the creation of the Alberta Oil Sands Technology and Research Authority has been authorized in order to meet these needs. Although current reserves are sufficient to support 20-30 synthetic crude plants, a number of factors will limit expansion of the industry. 8 figs., 5 tabs.

  11. Designing Programme Implementation Strategies to Increase the Adoption and Use of Biosand Water Filters in Rural India

    OpenAIRE

    Tommy K.K. Ngai; Richard A. Fenner

    2014-01-01

    Low-cost household water treatment systems are innovations designed to improve the quality of drinking water at the point of use. This study investigates how an NGO can design appropriate programme strategies in order to increase the adoption and sustained use of household sand filters in rural India. A system dynamics computer model was developed and used to assess 18 potential programme strategies for their effectiveness in increasing filter use at two and ten years into the future, under s...

  12. Air-cleaning devices for vented filtered LMFBR containment

    International Nuclear Information System (INIS)

    Muhlestein, L.D.; Hilliard, R.K.

    1982-07-01

    An effort lasting several years is summarized which evaluated, developed and tested air cleaning devices for potential use in breeder reactor containment venting applications. State-of-technology evaluations were completed for both a hypothetical head release accident and a primary vessel melt-through accident. Commercially available systems or components were tested which included HEPA filters, sand and gravel beds, and aqueous scrubbers. Large-scale demonstration tests were completed and results are presented for two- and three-stage conventional aqueous scrubber systems; and for a newly developed passive, submerged gravel scrubber

  13. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Science.gov (United States)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  14. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  15. Treatment of groundwater containing Mn(II), Fe(II), As(III) and Sb(III) by bioaugmented quartz-sand filters.

    Science.gov (United States)

    Bai, Yaohui; Chang, Yangyang; Liang, Jinsong; Chen, Chen; Qu, Jiuhui

    2016-12-01

    High concentrations of iron (Fe(II)) and manganese (Mn(II)) often occur simultaneously in groundwater. Previously, we demonstrated that Fe(II) and Mn(II) could be oxidized to biogenic Fe-Mn oxides (BFMO) via aeration and microbial oxidation, and the formed BFMO could further oxidize and adsorb other pollutants (e.g., arsenic (As(III)) and antimony (Sb(III))). To apply this finding to groundwater remediation, we established four quartz-sand columns for treating groundwater containing Fe(II), Mn(II), As(III), and Sb(III). A Mn-oxidizing bacterium (Pseudomonas sp. QJX-1) was inoculated into two parallel bioaugmented columns. Long-term treatment (120 d) showed that bioaugmentation accelerated the formation of Fe-Mn oxides, resulting in an increase in As and Sb removal. The bioaugmented columns also exhibited higher overall treatment effect and anti-shock load capacity than that of the non-bioaugmented columns. To clarify the causal relationship between the microbial community and treatment effect, we compared the biomass of active bacteria (reverse-transcribed real-time PCR), bacterial community composition (Miseq 16S rRNA sequencing) and community function (metagenomic sequencing) between the bioaugmented and non-bioaugmented columns. Results indicated that the QJX1 strain grew steadily and attached onto the filter material surface in the bioaugmented columns. In general, the inoculated strain did not significantly alter the composition of the indigenous bacterial community, but did improve the relative abundances of xenobiotic metabolism genes and Mn oxidation gene. Thus, bioaugmentation intensified microbial degradation/utilization for the direct removal of pollutants and increased the formation of Fe-Mn oxides for the indirect removal of pollutants. Our study provides an alternative method for the treatment of groundwater containing high Fe(II), Mn(II) and As/Sb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    Science.gov (United States)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  17. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  18. Preoperational test report, recirculation ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  19. Preoperational test report, recirculation ventilation systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  20. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    Science.gov (United States)

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  1. Study of atmospheric stagnation, recirculation, and ventilation potential at Narora Atomic Power Station site

    International Nuclear Information System (INIS)

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Rao, K.S.; Kumar, Jaivender; Ravi, P.M.

    2011-01-01

    Atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. Estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This article describes the meteorological characteristics of Narora Atomic Power Station (NAPS) site by using the integral parameters developed by Allwine and Whiteman. Meteorological data measured during the period 2006-2010 were analyzed. The integral quantities related to the occurrence of stagnation, recirculation, and ventilation characteristics were studied for NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation, and ventilation characteristics during 2006-2010 at NAPS site is observed to be 33.8% of the time, 19.5% of the time, and 34.7% of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1% and 44.3%) and recirculation (32.6% of the summer season). The presence of light winds and more dispersed winds during prewinter season with predominant wind directions W and WNW results in more stagnation (59.7% of the prewinter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent releases from any nuclear industry. (author)

  2. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp

    DEFF Research Database (Denmark)

    Palomo, Alejandro; Fowler, Jane; Gülay, Arda

    2016-01-01

    Rapid gravity sand filtration is a drinking water production technology widely used around the world. Microbially catalyzed processes dominate the oxidative transformation of ammonia, reduced manganese and iron, methane and hydrogen sulfide, which may all be present at millimolar concentrations...... of their genetic content, a metabolic and geochemical model was proposed. The organisms represented by draft genomes had the capability to oxidize ammonium, nitrite, hydrogen sulfide, methane, potentially iron and manganese as well as to assimilate organic compounds. A composite Nitrospira genome was recovered...

  3. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    NARCIS (Netherlands)

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Scott, Laura L.; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher P.; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in

  4. FROZEN ASH BERRIES PROCESSING IN THE DEVICE WITH A NOZZLE CONTINUOUS VIBRATION, EQUIPPED WITH AN EXTERNAL RECIRCULATION LOOP

    Directory of Open Access Journals (Sweden)

    P. P. Ivanov

    2015-01-01

    Full Text Available An external recirculation loop was used as the method of increasing the concentration of dry soluble substances in the obtained extract. The objective of the research is to determine the value of the external recirculation index (KR, which provides the optimal conditions for the process carrying out. The results of the conducted research show the increase in the concentration of dry soluble substances in the extract if the external recirculation index increases. It is conditioned by the extension of the interaction between the processed raw mate-rial and the extract, as well as by the decrease in the surface tension of the extracting agent, which results in improving the conditions of its penetration into the pores of particles. Such an opposite property of recirculation as the decrease in mass transfer rate was also ob-served. It causes the significant rise of dry soluble substances losses while discharging extraction cake, which leads to the performance degradation. According to the analytical evaluation of the obtained results, the maximum process results are observed if KR = 1 (without recirculation and KR = 2, the values of the optimality criterion are 5.02∙10-3 and 4.92∙10-3 % mass/W respectively. At the same time the operation of the apparatus with the recirculation loop at KR = 2 is characterized by 62%-increase in dry soluble substances concentration in the extract as compared to a pure extracting agent. The efficiency of recirculation at KR = 2 is proved by the saving of energy con-sumed on the evaporation of the extract obtained. The energy costs calculation for the production of 60l of 12 % mass dry soluble sub-stances concentration extract showed that if the initial dry soluble substances concentration is raised to 6 % mass (KR = 2, the amount of consumed saturated vapor is 104.1 kg less, which is 281685 kJ if the vapor specific enthalpy is 2706.29 kJ/kg.

  5. Numerical analysis and control of the recirculation bubble strength ...

    African Journals Online (AJOL)

    Numerical investigation of the turbulent jet flows, both central and annular type of jets has been carried out with the introduction of swirl at the inlet using the modified κ −ε model. It was observed that the recirculation bubble generated by the central jet without swirl diminishes in size due to increase in swirl number, while in ...

  6. Cost Characteristics of the African Catfish Culture in Recirculating ...

    African Journals Online (AJOL)

    Cost Characteristics of the African Catfish Culture in Recirculating Production Facilities in Ibadan, Oyo State, Nigeria. ... Food Conversion Ratio also ranged from 0.60–0.78 for fingerlings, 1.01-‐ 2.08 for juveniles and 1.15-‐1.68 for grow out system. In all cases, variable cost accounts for more than 75% of total cost.

  7. NUTRIENTS DYNIMIC IN AN AQUAPONIC RECIRCULATING SYSTEM FOR STURGEON AND LETTUCE (LACTUCA SATIVA PRODUCTION

    Directory of Open Access Journals (Sweden)

    LORENA SFETCU

    2008-10-01

    Full Text Available Aquaponics are modern production systems, which integrate the aquaculture technology with hydroponic systems (vegetable production without soil with a goal of fructification of residual nutrients resulted from metabolic activity of fish biomass as high quality vegetable biomass sealable as ecological products. In the present study, as a first step in aquaponic recirculating systems evaluation, the authors aim to compare two types of recirculating systems: classical (hereby noted with RAS and integrated/aquaponic (RAS_A regarding water quality parameters generally, and TAN (total ammonia nitrogen production and transformation, particularly.

  8. Particle capture by turbulent recirculation zones measured using long-time Lagrangian particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Y.W. [Hong Kong Securities Institute, Department of Professional Education and Training, Central (China); Taylor, A.M.K.P. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom)

    2011-07-15

    We have measured the trajectories of particles into, and around, the recirculation zone formed in water flowing through a sudden pipe expansion with radius ratio 1:3.7, at Reynolds numbers between 5,960 and 41,700 over a range of particle Stokes number (here defined as St=(T{sub f})/({tau} p), where T{sub f} is an appropriate mean or turbulent timescale of the fluid flow and a particle relaxation time, {tau}{sub p},) between 6.2 and 51 and drift parameter between 0.3 and 2.8. The particles were thus weakly inertial but nevertheless heavy with a diameter about an order of magnitude larger than the Kolmogorov scale. Trajectories of particles, released individually into the flow, were taken in a Lagrangian framework by a three-dimensional particle tracking velocimeter using a single 25 Hz framing rate intensified CCD camera. Trajectories are quantified by the axial distribution of the locations of particle axial velocity component reversal and the probability distributions of trajectory angle and curvature. The effect of increasing the drift parameter was to reduce the tendency for particles to enter the recirculation zone. For centreline release, the proportion of particles entering the recirculation zone and acquiring a negative velocity decreased from about 80% to none and from about 66% to none, respectively, as the drift parameter increased from 0.3 to 2.8. Almost half of the particles experienced a relatively large change of direction corresponding to a radius of curvature of their trajectory comparable to, or smaller than, the radius of the downstream pipe. This was due to the interaction between these particles and eddies of this size in the downstream pipe and provides experimental evidence that particles are swept by large eddies into the recirculation zone over 1.0 < Z{sup *} < 2.5, where Z{sup *} is axial distance from the expansion plane normalized by the downstream pipe diameter, which was well upstream of the reattachment point at the wall (Z

  9. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  10. On Pluvial Compaction of Sand

    DEFF Research Database (Denmark)

    Jacobsen, Moust

    At the Institute of Civil Engineering in Aalborg model tests on dry sand specimens have been carried out during the last five years. To reduce deviations in test results, the sand laying technique has been carefully studied, and the sand mass spreader constructed. Preliminary results have been...

  11. MORPHOMETRIC CHARACTERIZATION OF THE SAND FRACTION IN A SAND GRAIN IMAGE CAPTURE SYSTEM1

    Directory of Open Access Journals (Sweden)

    Lucimar Arruda Viana

    Full Text Available ABSTRACT Morphology studies assume significant importance in analysis of phenomena of granular systems packaging, in particular with a view to the use of the technique of soil stabilization named particle size correction in forest roads. In this context, this study aimed to develop and operationalize a Sand Grain Image Capture System and, hereby, determine the morphological indices of the sand fractions of two sandy soils called João Pinheiro (JP and Cachoeira da Prata (CP. Soil samples, air-dried, were sieved (2.0 mm nominal mesh size for removal of gravels. The materials that passed through the sieve were subjected to dispersion, washing in 0.053 mm nominal mesh size sieve, removal of organic matter and iron oxides to obtain the clean sand fractions. Subsequently, each soil sample was sieved for separation into twelve classes, between the diameters of 0.149 mm and 1.190 mm, using a Rotap shaker. Next, tests were carried out to characterize the morphometric attributes of the twelve classes of sand fractions of the soils studied. For validation of the performance of the Sand Grain Image Capture System, the results were compared to those obtained using a standard procedure for image analysis. The analysis of the results led to the following conclusions: (i the sand fraction of the JP soil presented higher values for the morphometric indices roundness, elongation and compactness compared to sand fraction of the CP soil; and (ii the Sand Grain Image Capture System worked properly, with practicality.

  12. Efficacy of reactive mineral-based sorbents for phosphate, bacteria, nitrogen and TOC removal--column experiment in recirculation batch mode.

    Science.gov (United States)

    Nilsson, Charlotte; Lakshmanan, Ramnath; Renman, Gunno; Rajarao, Gunaratna Kuttuva

    2013-09-15

    Two mineral-based materials (Polonite and Sorbulite) intended for filter wells in on-site wastewater treatment were compared in terms of removal of phosphate (PO4-P), total inorganic nitrogen (TIN), total organic carbon (TOC) and faecal indicator bacteria (Escherichia coli and Enterococci). Using an innovative, recirculating system, septic tank effluent was pumped at a hydraulic loading rate of 3000 L m(2) d(-1) into triplicate bench-scale columns of each material over a 90-day period. The results showed that Polonite performed better with respect to removal of PO4-P, retaining on average 80% compared with 75% in Sorbulite. This difference was attributed to higher CaO content in Polonite and its faster dissolution. Polonite also performed better in terms of removal of bacteria because of its higher pH value. The total average reduction in E. coli was 60% in Polonite and 45% in Sorbulite, while for Enterococci the corresponding value was 56% in Polonite and 34% in Sorbulite. Sorbulite removed TIN more effectively, with a removal rate of 23%, while Polonite removed 11% of TIN, as well as TOC. Organic matter (measured as TOC) was accumulated in the filter materials but was also released periodically. The results showed that Sorbulite could meet the demand in removing phosphate and nitrogen with reduced microbial release from the wastewater treatment process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Technology unlocks tar sands energy

    Energy Technology Data Exchange (ETDEWEB)

    Law, C

    1967-09-25

    Tar sand processing technology has been developed primarily in the categories of extraction techniques and in-situ processing. In October, a $235 million venture into tar sand processing will be inspected by visitors from many points on the globe. A synthetic crude of premium quality will be flowing through a 16-in. pipeline from the Tar Island plant site of Great Canadian Oil Sands to Edmonton. This processing plant uses an extractive mining technique. The tar sand pay zone in this area averages approximately 150 ft in thickness with a 50-ft overburden. It has been estimated that the tar sands cannot be exploited when the formation thickness is less than 100 ft and overburden exceeds the same amount. This indicates that extraction techniques can only be used to recover approximately 15% of the tar sand deposits. An in-situ recovery technique developed by Shell of Canada is discussed in detail. In essence it is selective hydraulic fracturing, followed by the injection of emulsifying chemicals and steam.

  14. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  15. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation

    DEFF Research Database (Denmark)

    Pedersen, Thomas H.; Grigoras, Ionela F.; Hoffmann, Julia

    2016-01-01

    heating value of 34.3 MJ/kg. The volatile fraction of the biocrude consisted mostly of compounds having number of carbon atoms in the C6–C12 range similar to gasoline. In terms of process feasibility, it was revealed that total organic carbon (TOC) and ash significantly accumulated in the water phase when...... such is recirculated for the proceeding batch. After four batches the TOC and the ash mass fraction of the water phase were 136.2 [g/L] and 12.6 [%], respectively. Water phase recirculation showed a slight increase in the biocrude quality in terms on an effective hydrogen-to-carbon ratio, but it showed no effects...

  16. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy

    DEFF Research Database (Denmark)

    Hambly, Adam; Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs...

  17. Control methodologies based on geothermal recirculating aquaculture system

    International Nuclear Information System (INIS)

    Farghally, Hanaa M.; Atia, Doaa M.; El-madany, Hanaa T.; Fahmy, Faten H.

    2014-01-01

    One of the most common uses of geothermal heat is in RAS (recirculation aquaculture systems) where the water temperature is accurately controlled for optimum growing conditions for sustainable and intensive rearing of marine and freshwater fish. This paper presents a design for RAS rearing tank and plate type heat exchanger to be used with geothermal energy as a source of heating water. A well at Umm Huweitat on the Red Sea is used as a source of geothermal energy. The heat losses from the RAS tank are calculated using Geo Heat Center Software. Then a plate type heat exchanger is designed using the epsilon–NTU (number of transfer units) analysis method. For optimal growth and abundance of production, a different techniques of control system are applied to control the water temperature. The total system is built in MATLAB/SIMULINK to study the overall performance of control unit. Finally, a comparison between PI, Fuzzy-PID, and Fuzzy Logic Control has been done. - Highlights: • Design recirculating aquaculture system using geothermal energy. • Design a PI controller for water temperature control. • Design a Fuzzy logic controller for water temperature control. • Design a Fuzzy-PID controller for water temperature control. • Comparison between different control systems

  18. Bituminous sands : tax issues

    International Nuclear Information System (INIS)

    Patel, B.

    2004-01-01

    This paper examined some of the tax issues associated with the production of bitumen or synthetic crude oil from oil sands. The oil sands deposits in Alberta are gaining more attention as the supplies of conventional oil in Canada decline. The oil sands reserves located in the Athabasca, Cold Lake and Peace River areas contain about 2.5 trillion barrels of highly viscous hydrocarbons called bitumen, of which nearly 315 billion barrels are recoverable with current technology. The extraction method varies for each geographic area, and even within zones and reservoirs. The two most common extraction methods are surface mining and in-situ extraction such as cyclic steam stimulation (CSS); low pressure steam flood; pressure cycle steam drive; steam assisted gravity drainage (SAGD); hot water flooding; and, fire flood. This paper also discussed the following general tax issues: bituminous sands definition; bituminous sands leases and Canadian development expense versus Canadian oil and gas property expense (COGPE); Canadian exploration expense (CEE) for surface mining versus in-situ methods; additional capital cost allowance; and, scientific research and experimental development (SR and ED). 15 refs

  19. Oil sands tax expenditures

    International Nuclear Information System (INIS)

    Ketchum, K; Lavigne, R.; Plummer, R.

    2001-01-01

    The oil sands are a strategic Canadian resource for which federal and provincial governments provide financial incentives to develop and exploit. This report describes the Oil Sands Tax Expenditure Model (OSTEM) developed to estimate the size of the federal income tax expenditure attributed to the oil sands industry. Tax expenditures are tax concessions which are used as alternatives to direct government spending for achieving government policy objectives. The OSTEM was developed within the business Income Tax Division of Canada's Department of Finance. Data inputs for the model were obtained from oil sands developers and Natural Resources Canada. OSTEM calculates annual revenues, royalties and federal taxes at project levels using project-level projections of capital investment, operating expenses and production. OSTEM calculates tax expenditures by comparing taxes paid under different tax regimes. The model also estimates the foregone revenue as a percentage of capital investment. Total tax expenditures associated with investment in the oil sands are projected to total $820 million for the period from 1986 to 2030, representing 4.6 per cent of the total investment. 10 refs., 2 tabs., 7 figs

  20. Biological filters and their use in potable water filtration systems in spaceflight conditions

    Science.gov (United States)

    Thornhill, Starla G.; Kumar, Manish

    2018-05-01

    Providing drinking water to space missions such as the International Space Station (ISS) is a costly requirement for human habitation. To limit the costs of water transport, wastewater is collected and purified using a variety of physical and chemical means. To date, sand-based biofilters have been designed to function against gravity, and biofilms have been shown to form in microgravity conditions. Development of a universal silver-recycling biological filter system that is able to function in both microgravity and full gravity conditions would reduce the costs incurred in removing organic contaminants from wastewater by limiting the energy and chemical inputs required. This paper aims to propose the use of a sand-substrate biofilter to replace chemical means of water purification on manned spaceflights.

  1. Assessment of offshore New Jersey sources of Beach replenishment sand by diversified application of geologic and geophysical methods

    Science.gov (United States)

    Waldner, J.S.; Hall, D.W.; Uptegrove, J.; Sheridan, R.E.; Ashley, G.M.; Esker, D.

    1999-01-01

    Beach replenishment serves the dual purpose of maintaining a source of tourism and recreation while protecting life and property. For New Jersey, sources for beach sand supply are increasingly found offshore. To meet present and future needs, geologic and geophysical techniques can be used to improve the identification, volume estimation, and determination of suitability, thereby making the mining and managing of this resource more effective. Current research has improved both data collection and interpretation of seismic surveys and vibracore analysis for projects investigating sand ridges offshore of New Jersey. The New Jersey Geological Survey in cooperation with Rutgers University is evaluating the capabilities of digital seismic data (in addition to analog data) to analyze sand ridges. The printing density of analog systems limits the dynamic range to about 24 dB. Digital acquisition systems with dynamic ranges above 100 dB can permit enhanced seismic profiles by trace static correction, deconvolution, automatic gain scaling, horizontal stacking and digital filtering. Problems common to analog data, such as wave-motion effects of surface sources, water-bottom reverberation, and bubble-pulse-width can be addressed by processing. More than 160 line miles of digital high-resolution continuous profiling seismic data have been collected at sand ridges off Avalon, Beach Haven, and Barnegat Inlet. Digital multichannel data collection has recently been employed to map sand resources within the Port of New York/New Jersey expanded dredge-spoil site located 3 mi offshore of Sandy Hook, New Jersey. Multichannel data processing can reduce multiples, improve signal-to-noise calculations, enable source deconvolution, and generate sediment acoustic velocities and acoustic impedance analysis. Synthetic seismograms based on empirical relationships among grain size distribution, density, and velocity from vibracores are used to calculate proxy values for density and velocity

  2. Pulsed-focusing recirculating linacs for muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  3. Singing Sand Dunes

    Indian Academy of Sciences (India)

    ble low-frequency (s. 75–105 Hz), that can some- times be heard up to 10 km away. Scientific in- vestigations suggest that the sustained low fre- quency sound of sand dunes that resembles a pure note from a musical instrument, is due to the synchronized motion of well-sorted dry sand grains when they spontaneously ...

  4. PTR-MS Assessment of Photocatalytic and Sorption-Based Purification of Recirculated Cabin Air during Simulated 7-h Flights with High Passenger Density

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Strøm-Tejsen, Peter; Fang, Lei

    2007-01-01

    Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefil-ter; and a two-stage sorptionbased air filter...... (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h...... flights with 17 occupants. Protontransfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was effi-ciently reduced by all three units. The photocatalytic units...

  5. Influence of recirculation rate on the performance of a combined ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate a combined anaerobic-aerobic upflow fixed-bed reactor with liquid phase recirculation for the removal of nitrogen and organic matter from poultry slaughterhouse wastewater. The reactor performance was evaluated with a hydraulic retention time (HRT) of 11 h and three different ...

  6. Preliminary design study of pebble bed reactor HTR-PM base using once-through-then-out fuel recirculation

    International Nuclear Information System (INIS)

    Topan Setiadipura; Jupiter S Pane; Zuhair

    2016-01-01

    Pebble Bed Reactor (PBR) is one of the advanced reactor type implementing strong passive safety feature. In this type of design has the potential to do a cogeneration useful for the treatment of various minerals in various islands in Indonesia. The operation of the PBR can be simplified by implementing once-through-then-out (OTTO) fuel recirculation scheme in which pebble fuel only pass the core once time. The purpose of this research is to understand quantitative influence of the changing of fuel element recirculation on the PBR core performance and to find preliminary optimization design of PBR type reactor with OTTO recirculation scheme. PEBBED software was used to find PBR equilibrium core. The calculation result gives quantitative data on the impact of implementing a different fuel recirculation, especially using OTTO scheme. Furthermore, an early optimized PBR design based on HTR-PM using OTTO scheme was obtained where the power must be downgraded into 115 MWt in order to preserve the safety feature. The simplicity of the reactor operation and the reduction of reactor component with OTTO scheme still make this early optimized design an interesting alternative design, despite its power reduction from the reference design. (author)

  7. Resolution of issues related to alternative RCS injection in the absence of containment sump recirculation

    International Nuclear Information System (INIS)

    Charles L Kling; Stephen S Barshay; Mathew C Jacob; Michael J Friedman

    2005-01-01

    Full text of publication follows: On June 9, 2003 the US NRC issued Bulletin No. 2003-01 that deals with the potential impact of debris blockage on containment sump recirculation at PWRs during a Loss-of-Coolant Accident (LOCA). In response to the bulletin, the Omaha Public Power District (OPPD) is in the process of developing procedural and operational strategies for their Fort Calhoun Station (FCS) to address the issues raised. Westinghouse provided engineering support to OPPD in identifying and resolving issues related to alternative means of supplying safety injection water to the reactor coolant system (RCS) in the absence of containment sump recirculation. Nuclear power plants are designed to protect the core following a LOCA by providing a continuous supply of cooling water to the core. In the long term, the Refueling Water Storage Tank (RWST) inventory will be depleted and core heat removal accomplished via recirculation of water previously injected into the Reactor Coolant System (RCS) and collected in the containment sump. Debris generated within the containment as a result of the impingement of fluid jets in the Zone of Influence (ZOI) of the RCS break and containment wash down may find its way into the containment sump. As the safety injection pumps take suction from the sump, in the recirculation mode of operation, the debris suspended in the sump water could begin to accumulate in the sump screen that is located in the recirculation path. Should sufficient debris accumulate on the sump screen, a flow blockage could potentially develop. This would result in insufficient safety injection pump NPSH, thereby impairing the recirculation mode of injection into RCS. Potential debris blockage and prevention of sump recirculation may be addressed by refilling the RWST with water and injecting this water directly into the core. This paper identifies and attempts to resolve several issues related to this alternative mode of RCS injection. In particular, the

  8. Molecular Adsorbent Recirculating System Can Reduce Short-Term Mortality Among Patients With Acute-on-Chronic Liver Failure-A Retrospective Analysis.

    Science.gov (United States)

    Gerth, Hans U; Pohlen, Michele; Thölking, Gerold; Pavenstädt, Hermann; Brand, Marcus; Hüsing-Kabar, Anna; Wilms, Christian; Maschmeier, Miriam; Kabar, Iyad; Torner, Josep; Pavesi, Marco; Arroyo, Vicente; Banares, Rafael; Schmidt, Hartmut H J

    2017-10-01

    Acute-on-chronic liver failure is associated with numerous consecutive organ failures and a high short-term mortality rate. Molecular adsorbent recirculating system therapy has demonstrated beneficial effects on the distinct symptoms, but the associated mortality data remain controversial. Retrospective analysis of acute-on-chronic liver failure patients receiving either standard medical treatment or standard medical treatment and molecular adsorbent recirculating system. Secondary analysis of data from the prospective randomized Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial by applying the recently introduced Chronic Liver Failure-criteria. Medical Departments of University Hospital Muenster (Germany). This analysis was conducted in two parts. First, 101 patients with acute-on-chronic liver failure grades 1-3 and Chronic Liver Failure-C-Organ Failure liver subscore equals to 3 but stable pulmonary function were identified and received either standard medical treatment (standard medical treatment, n = 54) or standard medical treatment and molecular adsorbent recirculating system (n = 47) at the University Hospital Muenster. Second, the results of this retrospective analysis were tested against the Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial. Standard medical treatment and molecular adsorbent recirculating system. Additionally to improved laboratory variables (bilirubin and creatinine), the short-term mortality (up to day 14) of the molecular adsorbent recirculating system group was significantly reduced compared with standard medical treatment. A reduced 14-day mortality rate was observed in the molecular adsorbent recirculating system group (9.5% vs 50.0% with standard medical treatment; p = 0.004), especially in patients with multiple organ failure (acute-on-chronic liver failure grade 2-3). Concerning the

  9. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam

    DEFF Research Database (Denmark)

    Trang, N.T.D.; Brix, Hans

    2014-01-01

    The feasibility of using planted biofilters for purification of recirculated aquaculture water in the Mekong Delta of Vietnam was assessed. The plant trenches were able to clean tilapia aquaculture water and to maintain good water quality in the fish tanks without renewal of the water. NH4-N was ...... rates of 725 kg N and 234 kg P ha-1 year-1. This research demonstrates that integrated recirculating aquaculture-hydroponics (aquaponics) systems provide significant water savings and nutrient recycling as compared with traditional fish ponds....

  10. The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio

    NARCIS (Netherlands)

    Martins, C.I.; Pristin, M.G.; Ende, S.S.W.; Eding, E.H.; Verreth, J.A.J.

    2009-01-01

    The accumulation of substances in Recirculating Aquaculture Systems (RAS) may impair the growth and welfare of fish. To test the severity of contaminants accumulated in RAS, early-life stages of fish were used. Ultrafiltered water from two Recirculating Aquaculture Systems (RAS), one RAS with a high

  11. Linear fixed-field multipass arcs for recirculating linear accelerators

    Directory of Open Access Journals (Sweden)

    V. S. Morozov

    2012-06-01

    Full Text Available Recirculating linear accelerators (RLA’s provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dogbone RLA capable of transporting two beam passes with momenta different by a factor of 2. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dogbone RLA.

  12. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  13. Adoption of Recirculating Aquaculture Systems in Pangasius Farms: A Choice Experiment

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.T.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2015-01-01

    A growing number of European customers’ demands certified pangasius such as ASC in order to ensure sustainable production. Implementing Recirculating Aquaculture Systems (RAS) contributes to an improved water quality, a key issue in achieving ASC certification. This study uses a choice experiment to

  14. Steroids accumulate in the rearing water of commercial recirculating aquaculture systems

    NARCIS (Netherlands)

    Mota, V.C.; Martins, C.I.; Eding, E.H.; Canário, A.V.M.; Verreth, J.A.J.

    2014-01-01

    Little information is available on steroid concentrations in the rearing water of aquaculture systems and whether they accumulate in recirculating aquaculture systems (RAS). Therefore this study aimed at determining (1) the concentrations and variation of cortisol and sex steroids in RAS, (2) the

  15. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  16. Experimental studies of impact of exhaust gas recirculation on the ...

    African Journals Online (AJOL)

    This paper considers the problem of reducing the nitrogen oxides emissions in exhaust gases (EG) of diesel engine by exhaust gas recirculation (EGR). Based on the carried out study the influence of EGR on technical-and-economic and environmental performance of a diesel engine was found as well as main directions of ...

  17. Dietary carbohydrates and denitrification in recirculating aquaculture systems

    OpenAIRE

    Meriac, A.

    2014-01-01

    Due to overfishing of global fish stocks and increasing fish meal prices, plant ingredients are being increasingly used as an alternative source of protein in fish feeds. However, the inclusion of unpurified plant ingredients will also increase the content of fibers in feeds. Fibers are nearly indigestible and will therefore increase solid waste production in aquaculture. This solid waste can be used to as a carbon source for denitrification to control nitrate levels in recirculating aquacul...

  18. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  19. A New Eulerian Model for Turbulent Evaporating Sprays in Recirculating Flows

    NARCIS (Netherlands)

    Wittig, S.; Hallmann, M.; Scheurlen, M.; Schmehl, R.

    1993-01-01

    A new Eulerian model for the computation of turbulent evaporating sprays in recirculating flows is derived. It comprises droplet heating and evaporation processes by solving separate transport equations for the droplet's temperature and diameter. Full coupling of the droplet and the gaseous phase is

  20. Continuous hydroponic wheat production using a recirculating system

    Science.gov (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  1. Field test on sand compaction pile method with copper slag sand; Dosuisai slag wo mochiita SCP koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Matsui, H.; Naruse, E.; Kitazume, M. [Port and Harbour Research Inst., Kanagawa (Japan)

    1997-09-20

    This paper describes the sand compaction pile (SCP) method using copper slag sand. The SCP method is a method by which sand compaction piles are constructed in the ground, and improvement can be obtained in a short period. This method has been widely used even in the port areas for enhancing the bearing power of soft clay ground and the lateral resistance of sheet pile. A great deal of sand is required as a material. The sand requires high permeability, proper size distribution with less fine particle fraction content, easy compaction property with enough strength, and easy discharging property from the casing of construction machines as required properties. Recently, it becomes hard to secure proper sand materials. The copper slag sand is obtained from refining process of copper as a by-product which is quenched in water flow and crushed in water. The copper slag sand has higher particle density than that of sand, excellent permeability, and similar size distribution to that of sand. From compaction drainage triaxial compression test and permeability test, it was found that the mechanical properties of copper slag sand did not change by the crushing of grains with keeping excellent permeability. Through the test construction, applicability of the copper slag sand to the SCP method could be confirmed as an alternate material of sand. 17 refs., 9 figs., 4 tabs.

  2. Stability of the particle transverse motion in an electron linear accelerator with beam recirculation

    International Nuclear Information System (INIS)

    Volodin, V.A.

    1979-01-01

    Conditions, under which beam transverse instabilities appear in the electron linear accelerator (ELA) with a double particle acceleration due to excitation of asymmetric stray waves in the accelerating waveguide, and their peculiarities have been investigated. It is shown that in the ELA with beam recirculation the conditions under which the beam transverse instability appears can be determined with the help of the ''interaction function'' which depends on both the accelerating structure and the focusing in the beam transport channel. Comparison is made with characteristics of this phenomenon in conventional ELA, and possible reasons for the decrease of a starting current in ELA with recirculation are shown

  3. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2015-05-15

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core by feeding into multiple stationary jet pumps inside the vessel. Together with the jet pumps, they allow station operators to vary coolant flow and variable pump speed provides the best and most stable reactor power control. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. This article describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motor-generator set. This article will also discuss the 2,500 hour laboratory test results conducted under reactor recirculation pump sealing conditions using a newly developed seal face technology recently implemented to overcome challenges when sealing neutral, ultra-pure water. In addition, the article will describe the elaborate shaft grounding arrangement and the preliminary measurement results achieved in order to eliminate potential damages to both pump and mechanical seal.

  4. Parametric Effects of Debris Source, Environments, and Design Options on the Overall Performance of ECCS Recirculation Sump

    International Nuclear Information System (INIS)

    Park, Jong Woon; Kim, Chang Hyun

    2006-01-01

    A primary safety issue regarding long-term recirculation core cooling following a LOCA (Loss of Coolant Accident) is that LOCA-generated debris may be transported to the recirculation sump screen, resulting in adverse blockage on the sump screen and deterioration of available NPSH (Net Positive Suction Head) of ECCS (Emergency Core Cooling System). USNRC identified this as Generic Safety Issue (GSI) 191 and issued the Generic Letter 04-02 to resolve the issue. The GL required that all PWR owners perform an engineering assessment of their containment recirculation sumps to ensure they will not suffer from excessive blockage. The guidance report (GR) for PWR sump performance evaluation has been developed by NEI (Nuclear Energy Institute) and approved by the USNRC. In Korea, Korea Hydro and Nuclear Power Company (KHNP) is performing the assessment of Kori unit 1 and planning for remaining plants in the near future. The objective of the assessment is to derive required plant modifications including insulation, sump screen, etc. To derive the cost-effective modification items, we have to get insight on the parametric effects of plant conditions and design. Therefore, the general effects of debris source, containment environments and debris interceptor on the performance of ECCS recirculation sump with respect to head loss are parametrically investigated

  5. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two......-stroke marine diesel engine. A turbocharger model together with a blower, a pre-scrubber and a cooler for the exhaust gas recirculation line, are included. The steam turbine, depending on the configuration, is modeled as either a dual or triple pressure level turbine. The condensation and pre-heating process...

  6. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    Science.gov (United States)

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Galveston Island, Texas, Sand Management Strategies

    Science.gov (United States)

    2016-07-01

    billion m3 of beach quality sand . However, Texas projects to date have not utilized these sources because of transportation costs. The lack of nearby...estimate that the San Luis Pass flood shoal contains approximately 11.8 million yd3 of beach quality sand . However, it is expected that if permits...a source of beach- quality sand . 2. Sand could be intercepted before it reaches the present dry beach. ERDC/CHL TR-16-13 55 3. The volume of

  8. Identification of causes of oil sands coke leachate toxicity

    International Nuclear Information System (INIS)

    Puttaswamy, N.; Liber, K.

    2010-01-01

    The potential causes of oil sands coke leachate toxicity were investigated. Chronic 7-day toxicity tests were conducted to demonstrate that oil sands coke leachates (CL) are acutely toxic to Ceriodaphnia dubia (C. dubia). CLs were generated in a laboratory to perform toxicity identification evaluation (TIE) tests in order to investigate the causes of the CL toxicity. The coke was subjected to a 15-day batch leaching process at 5.5 and 9.5 pH values. The leachates were then filtered and used for chemical and toxicological characterization. The 7-day estimates for the C. dubia survival were 6.3 for a pH of 5.5 and 28.7 per cent for the 9.5 CLs. The addition of EDTA significantly improved survival and reproduction in a pH of 5.5 CL, but not in a pH of 9.5 CL. The toxicity of the pH 5.5 CL was removed with a cationic resin treatment. The toxicity of the 9.5 pH LC was removed using an anion resin treatment. Toxicity re-appeared when nickel (Ni) and vanadium (V) were added back to the resin-treated CLs. Results of the study suggested that Ni and V were acting as primary toxicants in the pH 5.5 CL, while V was the primary cause of toxicity in the pH 9.5 CL.

  9. Maintenance of reactor recirculation pumps [Paper No.: II-1

    International Nuclear Information System (INIS)

    Ansari, M.A.; Bhat, K.P.

    1981-01-01

    At Tarapur Atomic Power Station (TAPS), two reactor recirculation pumps are provided, one each for the two reactor units. The performance of pumps has been uniformly good; however, leakage through the cartridge type, two stage, mechanical seals which are installed on these pumps was encountered on few occasions. The paper describes the leakage problems, identification of certain design deficiencies and rectification carried out at TAPS for overcoming these problems. (author)

  10. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  11. Numerical simulation of aeolian sand ripples

    International Nuclear Information System (INIS)

    Kang Liqiang; Guo Liejin

    2004-01-01

    With a new horizontal saltation displacement vector, a model is implemented to simulate the initiation and evolution of aeolian sand ripples. In the model, saltation distance considers the effects of surface height and slope. A linear stability analysis is also carried out for formation of sand ripples. The results show that, the model can be able to successfully reproduce sand ripples which can increase in scale by merging of small ripples. The linear stability analysis indicates that sand ripples appear when the relaxation rate parameter is below a threshold value and wind strength parameter is larger than a critical value. The results also verified that the formation of sand ripples is a self-organization process

  12. Japan's involvement in oil sands development

    International Nuclear Information System (INIS)

    Sugiura, T.

    1994-01-01

    According to Japanese national policy, exploration and development by Japanese companies in overseas countries are promoted in order to ensure stable oil supplies. Japan Canada Oil Sands Limited (JACOS), part of the JAPEX group, was established during the 1978 world oil crisis to explore and develop Canadian oil sand resources in accordance with Japan's national policy. The JAPEX group, including JACOS, has invested $123 million in oil sands projects in Alberta. JAPEX's first involvement in oil sands was in the Primrose Project operated by Norcen in the Cold Lake area. Five years of cyclic steam stimulation pilot tests did not produce sufficiently good results to justify further operation. The second involvement was the PCEJ Project, a joint effort by four companies that are participating in a bitumen recovery test project in the Athabasca Deposit. JACOS holds 2,452 km 2 of oil sands leases in Alberta. Tests conducted since 1978 in the PCEJ Project include multiwell steam injection pilot tests, some of which showed promise. JACOS is also participating in steam assisted gravity drainage projects and in federal/provincial research programs. Obstacles identified in developing Alberta oil sands are the lack of a bitumen pipeline to Edmonton and the insufficient length of oil sands leases (currently 10 years), given the difficulties of oil sand development. 10 figs

  13. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. MouldingSandDB – a modern database storing moulding sands properties research results

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-01-01

    Full Text Available The complexity of foundry processes requires the use of modern, advanced IT tools for optimization, storage and analysis of t echnicaldata. Properties of moulding and core sands that are collected in research laboratories, manufacturers, and finally in the foundries, are not in use later on. It seems important to create a database that will allow to use the results stored, along with the possibility of searching according to set criteria, adjusted to casting practice. This paper presents part of the database named „MouldingSandDB”, which allows to collect and search data for synthetic moulding sands.

  15. Monitoring of Leachate Recirculation in a Bioreactor Using Electrical Resistivity

    Science.gov (United States)

    Grellier, S.; Bureau, N.; Robain, H.; Tabbagh, A.; Camerlynck, C.; Guerin, R.

    2004-05-01

    The bioreactor is a concept of waste landfill management consisting in speeding up the biodegradation by optimizing the moisture content through leachate recirculation. Electrical resistivity tomography (ERT) is carried out with fast resistivity-meter (Syscal Pro, IRIS Instruments, developed in the framework of the research project CERBERE 01V0665-69, funded by the French Research Ministry) to monitor leachate recirculation. During a recirculation period waste moisture increases, so that electrical resistivity may decrease, but at the same time temperature and mineralization of both waste and leachate become intermixed. If waste temperature is much higher than leachate temperature electrical resistivity will not decrease as much as if the temperature difference was smaller. If leachate mineralization (i.e. leachate conductivity) is higher than that of wet waste in the landfill, electrical resistivity will tend to decrease. Otherwise for example after an addition of rain water into the leachate storage or in case of very wet waste, the resistivities of each medium (leachate and wet waste) can be almost the same, so that leachate mineralization will not have a great influence on waste resistivity. Resistivity measurements were performed during 85 minutes injection trials (with a discharge of 20 m3 h-1) where leachate was injected through a vertical borehole perforated between 1.85 and 4.15 m. Three first measurements are made during the injection (3, 30 and 60 minutes from the beginning of the injection) and the two other after the injection period (8 and 72 minutes after the end of the injection). Apparent and interpreted resistivity variations that occurred during injection trials, expressed as the relative differences (in %) between apparent, respectively interpreted, resistivity during injection and apparent, respectively interpreted, resistivity before injection (reference measurement) show the formation of a plume (a negative anomaly: resistivity decreases with

  16. Assessment of recycled PET properties for application on oil wells as sand control agents; Avaliacao de propriedades de PET reciclado para aplicacao em pocos de petroleo como agente de contencao de areia

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Alexandre Zacarias Ignacio [PETROBRAS, Rio de Janeiro, RJ (Brazil); Delpech, Marcia Cerqueira [Universidade do Estado do Rio de Janeiro (IQ/UERJ), RJ (Brazil). Inst. de Quimica], e-mail: mcd@uerj.br

    2008-07-01

    The Sand Control is fundamental for oil production in unconsolidated sandstone formations. It consists of the installation of a filter made of stainless steel screens and grained materials (sand control agents) which are, normally, high density inorganic substances (sand, ceramic, bauxite). Shallow formations, near to the sea bed, are more sensitive and need different kinds of sand control agents with low density. The objective of this work was the evaluation of recycled poly(ethylene terephthalate), PET, as sand control agent for oil wells. Pack permeability and thermal stability tests results, after up to six months of exposure to sea water and crude oil, have indicated that the recycled PET kept the necessary characteristics for the proposed application. Also, it was observed that the PET grain pack did not presented significant property modifications in the exposure conditions, when compared to the non-exposed samples. (author)

  17. Policy Analysis of the Canadian Oil Sands Experience

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-09-01

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  18. A study of global sand seas

    Science.gov (United States)

    McKee, Edwin D.

    1979-01-01

    The birth of the idea that led to this publication on "Global Sand Seas" dates back to the late 1920's. At that time I was engaged in a study of the Coconino Sandstone of Arizona's Grand Canyon. Considerable controversy existed then as to whether this sandstone was a subaqueous deposit or was composed of wind-formed dunes. It became apparent that definitive literature was sparse or lacking on types of dunes, global distribution of these types, the mechanics of their development, the precise nature of their internal structure of cross-stratificiation, and the relation of wind systems to these sand forms. Especially lacking were data on criteria that could confidently be used in the recognition of ancient dunes. The common denominator in this publication is eolian sand bodies. Although the book is concerned primarily with desert sand seas, the subject matter is not restricted to deserts; it includes many references to deposits of coastal sand and to sand bodies in humid climates. Nor does the book deal exclusively with dunes, which, according to most definitions, involve mounds or hills. Many references are made to sand sheets, sand stringers, and other types of sand deposits that have no prominent topographic expression. All sand bodies accumulated by the action of wind are discussed. Chapters A-J of this publication are primarily topical. Chapters cover the grain texture, the color, and the structure of modern dunes and other eolian sands. Special treatment is given to the relation of wind data to dune interpretation, the evolution of form in current-deposited sand bodies as determined from experimental studies, and the discriminant analysis technique for differentiating between coastal and inland desert sands. This topical part of the publication also includes an analysis of criteria used in ancient deposits to interpret their eolian genesis and a consideration of economic application of the principles described, including a discussion of potentials and problems

  19. Water cortisol and testosterone in Nile tilapia (Oreochromis niloticus) recirculating aquaculture systems

    NARCIS (Netherlands)

    Mota, Vasco C.; Martins, Catarina I.M.; Eding, Ep H.; Canário, Adelino V.M.; Verreth, Johan A.J.

    2017-01-01

    The accumulation of steroids released by fish in recirculating aquaculture systems (RAS) may potentially influence their physiology and behavior. The present study examined the release rate of cortisol and testosterone by Nile tilapia, Oreochromis niloticus, and their accumulation in six identical

  20. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture

    International Nuclear Information System (INIS)

    Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.

    2003-01-01

    Constructed wetlands improved water qualities and consequently increased the shrimp growth and survival in a recirculating system. - A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD 5 , 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO 2 -N, 90%) and nitrate nitrogen (NO 3 -N, 68%). Phosphate (PO 4 -P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO 3 -N in the culture tank water in RAS were significantly (P≤0.05) lower than those in a control aquaculture system (CAS) that simulated static pond culture without wetland treatment. However, no significant difference (P≤0.05) in BOD 5 , TAN and NO 2 -N was found between the two systems. At the end of the study, the harvest results showed that shrimp weight and survival rate in the RAS (3.8±1.8 g/shrimp and 90%) significantly (P≤0.01) exceeded those in the CAS (2.3±1.5 g/shrimp and 71%). This study concludes that constructed wetlands can improve the water quality and provide a good culture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system

  1. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y

    2003-05-01

    Constructed wetlands improved water qualities and consequently increased the shrimp growth and survival in a recirculating system. - A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD{sub 5}, 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO{sub 2}-N, 90%) and nitrate nitrogen (NO{sub 3}-N, 68%). Phosphate (PO{sub 4}-P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO{sub 3}-N in the culture tank water in RAS were significantly (P{<=}0.05) lower than those in a control aquaculture system (CAS) that simulated static pond culture without wetland treatment. However, no significant difference (P{<=}0.05) in BOD{sub 5}, TAN and NO{sub 2}-N was found between the two systems. At the end of the study, the harvest results showed that shrimp weight and survival rate in the RAS (3.8{+-}1.8 g/shrimp and 90%) significantly (P{<=}0.01) exceeded those in the CAS (2.3{+-}1.5 g/shrimp and 71%). This study concludes that constructed wetlands can improve the water quality and provide a good culture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system.

  2. Numerical simulation of wind-sand movement in the reversed flow region of a sand dune with a bridge built downstream.

    Science.gov (United States)

    He, Wei; Huang, Ning; Xu, Bin; Wang, Wenbo

    2018-04-23

    A bridge built inside the reversed flow region of a sand dune will change the characteristics of wind-sand movement in this region. The Reynolds-averaged Navier-Stokes simulation and discrete particle tracing are used to simulate the wind-sand movement around a sand dune with a bridge built inside the reversed region. Three cases with different bridge positions are studied. The results show that 1) compared with the isolated dune case, a tall bridge built at the leeward toe leads to an increase in the deposition rate on the leeward slope and a longer reversed flow region downstream of the sand dune; meanwhile, the high speed of crosswind on the bridge indicates that some measures should be taken to protect trains from strong crosswind; 2) a low bridge at the leeward toe has little effect on the sand deposition and reversed flow region of the dune; however, low sand transport rate and crosswind speed on the bridge show that anti-crosswind/sand measures should be taken according to the actual situation and 3) a low bridge on the leeward slope has little effect on the length of reversed flow region, however, high crosswind speed and sand flux on the bridge reveal the need of anti-crosswind/sand measures on the bridge. Moreover, the bridges in the reversed flow region increase the sand flux near the leeward crest; as a result, the moving patterns of the sand dune are changed.

  3. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    Science.gov (United States)

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  4. Sand dune tracking from satellite laser altimetry

    Science.gov (United States)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  5. Optics of beam recirculation in the CEBAF [Continuous Electron Beam Accelerator Facility] cw linac

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1986-01-01

    The use of recirculation in linear accelerator designs requires beam transport systems that will not degrade beam quality. We present a design for the transport lines to be used during recirculation in the CEBAF accelerator. These beam lines are designed to avoid beam degradation through synchrotron radiation excitation or betatron motion mismatch, are insensitive to errors commonly encountered during beam transport, and are optimized for electron beams with energies of 0.5 to 6.0 GeV. Optically, they are linearly isochronous second order achromats based on a ''missing magnet'' FODO structure. We give lattice specifications for, and results of analytic estimates and numerical simulations of the performance of, the beam transport system

  6. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  7. Adoption of Recirculating Aquaculture Systems in Large Pangasius Farms: A Choice Experiment

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.C.; Verreth, J.A.J.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2016-01-01

    A growing number of European customers’ demands certified pangasius such as ASC in order to ensure sustainable production. Implementing Recirculating Aquaculture Systems (RAS) contributes to an improved water quality, a key issue in achieving ASC certification. This study uses a choice experiment to

  8. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1992-01-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. Based on a comprehensive literature study concerning this theme, it has been attempted to identify the individual stages of the activity build-up and to classify their importance. The following areas are discussed in detail: The origins of the corrosion products and of cobalt-59 in the reactor feedwaters; the consolidation of the cobalt in the fuel pins deposits (activation); the release and transport of cobalt-60; the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarized. 90 refs, figs and tabs

  9. Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow.

    Science.gov (United States)

    De Sanctis, Marco; Beccari, Mario; Di Iaconi, Claudio; Majone, Mauro; Rossetti, Simona; Tandoi, Valter

    2013-02-01

    The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied. Both the microbial components of the granules, and their main metabolic activities were evaluated (heterotrophic oxidation, nitrification, denitrification, fermentation, sulphate reduction and methanogenesis). The results indicate that despite reduced recirculation, the SBBGR system maintained many of its advantageous characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Experiments investigating the effects of the accelerating gap voltage pulse on the ion focused (IFR) high current electron recirculators

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R. Turnman, B.N.; Prestwich, K.R.; Wells, J.

    1991-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for an open-ended, spiral recirculating electron linear accelerator. It dictates the number of allowable beam recirculations through the gap. In the case of a racetrack configuration, its is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. It was established that pulsing the accelerating gap perturbs the IFR channel. However, for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition, cusp fields positioned upstream and downstream from the gap prevent it from perturbing the IFR channel

  11. An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)

    International Nuclear Information System (INIS)

    Lee, Chang-Eon; Yu, Byeonghun; Lee, Seungro

    2015-01-01

    This study presents fundamental research on the development of a new boiler that is expected to have a higher efficiency and lower emissions than existing boilers. The thermodynamic efficiency of exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB) was calculated using thermodynamic analysis and was compared with other boilers. The results show the possibility of obtaining a high efficiency when the temperature of the exhaust gas is controlled within 50–60 °C because water in the exhaust gas is condensed within this temperature range. In addition, the enthalpy emitted by the exhaust gas for the new boiler is smaller because the amount of condensed water is increased by the high dew-point temperature and the low exhaust gas temperature. Thus, the new boiler can obtain a higher efficiency than can older boilers. The efficiency of the EGR-CWR-WHR CB proposed in this study is 93.91%, which is 7.04% higher than that of existing CB that is currently used frequently. - Highlights: • The study presents the development of a new boiler expected to have a high efficiency. • Thermodynamic efficiency of EGR-CWR-WHR condensing boiler was calculated. • Efficiency of EGR-CWR-WHR CB is 93.91%, which is 7.04% higher than existing CB

  12. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  13. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  14. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    International Nuclear Information System (INIS)

    Morozov, V.S.; Bogacz, S.A.; Roblin, Y.R.; Beard, K.B.

    2012-01-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  15. bentonite-sand mixture as new backfill/buffer material

    International Nuclear Information System (INIS)

    Cui Suli; Liu Jisheng; Zhang Huyuan; Liang Jian

    2008-01-01

    The mixture of bentonite and quartz sand is suggested as a new backfill/buffer material for geological disposal of HLW. To improve the further design of underground laboratory and in-situ industrial construction test, the optimization of sand addition to bentonite is focused at present research stage. Based on summarizing the research results abroad, laboratory tests were conducted on the mixture of GMZ001 bentonite and quartz sand, such as compaction test and swelling tests etc. Test data shows that GMZ bentonite-sand mixture exhibits a favorite compaction with a 30% sand addition, a highest swelling pressure with a 20% sand addition, and a decreasing plasticity with increases in sand addition and pore liquid concentration. (authors)

  16. Sistem Resirkulasi Air Terkendali pada Pembenihan ikan Patin (Pangasius hypophthalmus

    Directory of Open Access Journals (Sweden)

    Umi Hanifah

    2007-06-01

    Full Text Available This research was conducted to design a controlled fish hatchery system. This research dealt win 1 Designs of water recirculation and filtration system, 2 Water level control system, and 3 Tests of recirculation end filtration system for fish hatchery. Recirculation system was built in an insulated room with dimension of 6 x 4 x 3 m, used six aquariums, a sedimentation tank, a filtration unit, a water supply tank, a submersible pump and pipe with 1.25 cm in diameter. Multilayer horizontal filtration unit was used. The system consisted of mechanical filter layer, biological filter layer, and chemical filter layer. On-off controller was designed to control the pump. Pressure sensor model HTVN-100KP was used to detect the water level. The water level controller could control filtration process successfully. This water recirculation system was appropriated for practical uses. This system could decrease water use and saved energy considerably.

  17. Comparison between predicted and observed sand waves and sand banks in the North Sea

    NARCIS (Netherlands)

    Hulscher, Suzanne J.M.H.; van den Brink, G.M.

    2001-01-01

    For the first time a prediction model of regular morphological patterns on the seabed was tested against observations of sand wave and sand bank occurrence in the entire North Sea. The model, which originates from first physical principles, predicts this occurrence via two dimensionless parameters

  18. Critical State of Sand Matrix Soils

    Science.gov (United States)

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  19. Production and global transport of Titan's sand particles

    Science.gov (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  20. High temperature thermal energy storage in moving sand

    Science.gov (United States)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  1. Arsenic in drinking water wells on the Bolivian high plain: field monitoring and effect of salinity on removal efficiency of iron-oxides-containing filters

    OpenAIRE

    Van den Bergh, Kenneth; Du Laing, Gijs; Montoya, Juan; De Deckere, E; Tack, Filip

    2010-01-01

    In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. ...

  2. REDUCTION OF SOIL INFILTRATION AREA THANKS TO THE WASTEWATER SECONDARY TREATMENT FILTERS

    Directory of Open Access Journals (Sweden)

    Marcin Spychała

    2016-05-01

    Full Text Available The aim of the article was to determine the feasibility and advisability of the use of secondary filters applied before discharge of wastewater into the ground in the context of the fulfillment of the conditions of the current Regulation of the Minister of Environment of 18 November 2014 on the conditions to be met during the discharge of wastewater into the water or the ground and on substances particularly harmful to the aquatic environment. Due to expected in practice, an application and popularity, as compared variants, reactors having a very simple construction were used. The average values of removal of BOD5, COD and total suspended solids for three secondary filters technologies: biological trickling filter with natural ventilation, sand filter and nonwoven filter were compared. Additionally, as a fourth option a simple mathematical model has been presented. This model allows to estimate of BOD5 at the outflow from biological trickling filter and to verify the empirical data. Despite a large usefulness, it is rarely used in our country. It has been found the possibility of reduction of the infiltration area (surface area after reduction is 38–63% of the initial value due to the application of secondary filters. In the case of a high initial demand of the terrain area for drainage localization the benefit in costs resulting from the reduction (several thousand of PLN or may even significantly exceed the cost of buying and installing a cheap secondary filter. In addition, reduction the occupied area of the lot (in extreme cases up to 100 m2 by using the secondary filter allows to use the unoccupied space for other purposes, and thus gives additional economic advantage.

  3. Sand to Root Transfer of PAHs and PCBs by Carrots Grown on Sand with Pure Substances and Biosolids Amended Sand

    OpenAIRE

    Sablayrolles, Caroline; Montréjaud-Vignoles, Mireille; Silvestre, Jérôme; Patria, Lucie

    2006-01-01

    A study on behaviour of trace organic compounds (Polycyclic Aromatic Hydrocarbons, PAH, and Polychlorinated Biphenyls, PCB) in a sand-plant system has been carried out, with the reclamation of wastewater treatment plant biosolids for agriculture in mind. Carrot plants (Daucus carota) were grown on soilless culture (sand), to provide optimal transfer conditions, in plant containers inside a temperature regulated greenhouse. There were two types of experiment. The trace organic compounds have i...

  4. Predation and transport of persistent pathogens in GAC and slow sand filters: a threat to drinking water safety?

    Science.gov (United States)

    Bichai, Françoise; Dullemont, Yolanda; Hijnen, Wim; Barbeau, Benoit

    2014-11-01

    Zooplankton has been shown to transport internalized pathogens throughout engineered drinking water systems. In this study, experimental measurements from GAC and SSF filtration tests using high influent concentrations of Cryptosporidium (1.3 × 10(6) and 3.3 × 10(4) oocysts L(-1)) and Giardia (4.8 × 10(4) cysts L(-1)) are presented and compared. A predation and transport conceptual model was developed to extrapolate these results to environmental conditions of typical (oo)cyst concentrations in surface water in order to predict concentrations of internalized (oo)cysts in filtered water. Pilot test results were used to estimate transport and survival ratios of internalized (oo)cysts following predation by rotifers in the filter beds. Preliminary indications of lower transport and survival ratios in SSF were found as compared with GAC filters. A probability of infection due to internalized (oo)cysts in filtered water was calculated under likeliest environmental conditions and under a worst-case scenario. Estimated risks under the likeliest environmental scenario were found to fall below the tolerable risk target of 10(-4) infections per person per year. A discussion is presented on the health significance of persistent pathogens that are internalized by zooplankton during granular filtration processes and released into treated water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Comparative analysis of the simulation of the instantaneous closing of the discharge valve of a recirculation loop of a BWR with a model of recirculation loop with 2 jet pumps and another model with 20 jet pumps using RELAP5/SCDAPSIM Mod. 3.4

    International Nuclear Information System (INIS)

    Araiza M, E.; Ortiz V, J.; Martinez C, E.; Amador G, R.; Castillo D, R.

    2016-09-01

    This work presents the results of the simulation of the instantaneous closing of the water hammer, of a recirculation loop using two different arrangements in the loops. One of these arrangements corresponds to the traditional model that uses only two jet pumps to simulate the twenty pumps of the two recirculation loops of a BWR. The second nodalization models each of the ten jet pumps of each recirculation loop. The results obtained from the execution of both models are compared, using important variables such as pressures and mass costs for the same components of both models. In addition, the maximum pressure value generated on the pipe located upstream of the water hammer, relative to the design pressure of the pipe, is compared for each arrangement. (Author)

  6. Experiments investigating the effects of the accelerating gap voltage pulse on the ion focused (IFR) high current electron recirculators

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.

    1991-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for an open-ended, spiral recirculating electron linear accelerator. It dictates the number of allowable beam recirculations through the gap. In the case of a racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. It was established that pulsing the accelerating gap perturbs the IFR channel. However, for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition, cusp fields positioned upstream and downstream from the gap prevent it from perturbing the IFR channel. 4 refs., 5 figs., 1 tab

  7. Recirculating induction accelerator as a low-cost driver for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Shay, H.D.; Yu, S.S.

    1991-09-01

    As a fusion driver, a heavy ion accelerator offers the advantages of efficient target coupling, high reliability, and long stand-off focusing. While the projected cost of conventional heavy ion fusion (HIF) drivers based on multiple beam induction linacs are quite competitive with other inertial driver options, a driver solution which reduces the cost by a factor of two or more will make the case for HIF truly compelling. The recirculating induction accelerator has the potential of large cost reductions. For this reason, an intensive study of the recirculator concept was performed by a team from LLNL and LBL over the past year. We have constructed a concrete point design example of a 4 MJ driver with a projected efficiency of 35% and projected cost of less than 500 million dollars. A detailed report of our findings during this year of intensive studies has been recently completed. 3 refs., 2 figs., 2 tabs

  8. On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Legrand, M.; Rodriguez-Hidalgo, M.C.

    2010-01-01

    This paper presents a numerical model of single-effect absorption cycles with ammonia-lithium nitrate solution as the working pair and incorporating an adiabatic absorber. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers and it assumes an approach factor to adiabatic equilibrium. The results are offered as a function of external temperatures. A loop circuit with a heat exchanger upstream the absorber produces subcooling for facilitating absorption process. The effect of the mass flow rate recirculated through the absorber is studied. Results show a diminishing return effect. The value at which the recirculation mass flow yields a reasonable performance is between 4 and 6 times the solution mass flow. With a heat transfer area 6 times smaller than with a conventional diabatic shell-and-tube type absorber, the adiabatic absorber configured with a plate heat exchanger yields a 2% smaller maximum COP and a 15-20% smaller cooling power.

  9. Recirculating aquaculture production systems : an overview of different components, management, economics and technology

    NARCIS (Netherlands)

    Kals, J.

    2004-01-01

    Report of a literature study on Recirculating aquaculture production systems executed within the MRG ercirculation program. The report gives an overview of different components, management, economics and technology and is made by the Netherlands Institute for Fisheries Research (RIVO).

  10. Sinks of containment of NPP. Trillo I. Civil actions associated with the changing filter system and implementation backwash; Sumideros de contencion de CN Trillo I. Actuaciones civiles asociadas a la modificacion del sistema de filtrado e implantacion de retrolavado

    Energy Technology Data Exchange (ETDEWEB)

    Blas Gordo, A. de; Asensio Vega, J.; Font Hadinger, I.

    2014-07-01

    Compliance with a technical instruction issued by the Security Council Nuclear the 12/09/11, involves the modification of the system of filtering of containment sumps of the C.N. Trillo I, in order to rule out surround way phenomena of potential obstruction by accumulation of residues that may affect the cooling capacity of the core in a post accident scenario. Similarly, it implies the creation of a procedure operating in emergency that includes the necessary maneuvers for the limitation of the pressure differential between the two sides of the filter grids, guaranteeing the function of recirculation post-LOCA. (Author)

  11. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  12. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  13. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  14. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  15. Analysis of wind-blown sand movement over transverse dunes.

    Science.gov (United States)

    Jiang, Hong; Huang, Ning; Zhu, Yuanjian

    2014-12-01

    Wind-blown sand movement often occurs in a very complicated desert environment where sand dunes and ripples are the basic forms. However, most current studies on the theoretic and numerical models of wind-blown sand movement only consider ideal conditions such as steady wind velocity, flat sand surface, etc. In fact, the windward slope gradient plays a great role in the lift-off and sand particle saltation. In this paper, we propose a numerical model for the coupling effect between wind flow and saltating sand particles to simulate wind-blown sand movement over the slope surface and use the SIMPLE algorithm to calculate wind flow and simulate sands transport by tracking sand particle trajectories. We furthermore compare the result of numerical simulation with wind tunnel experiments. These results prove that sand particles have obvious effect on wind flow, especially that over the leeward slope. This study is a preliminary study on windblown sand movement in a complex terrain, and is of significance in the control of dust storms and land desertification.

  16. Sand consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Spain, H H

    1965-01-21

    In a sand consolidation method in which there is injected a mixture of resin-forming liquids comprising an aryl-hydroxy low molecular weight compound, a water- soluble aldehyde, and a catalyst, an improvement is claimed which comprises diluting the resin-forming liquids with a diluent and with water so that the yield of the resin is sufficient to consolidate the sand particles with the minimum desirable pressure. The diluent may be mutually soluble in water and in the resin-forming liquids, and does not affect the setting time of the polymer. The aldehyde and the aryl-hydroxy compound may be in ratio of 5:1, and the diluent, methyl alcohol, is present in a ratio of 2:1 with reference to the water.

  17. Anaerobic digestion of food waste - Effect of recirculation and temperature on performance and microbiology.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Hagen, Live H; Svensson, Kine; Linjordet, Roar; Horn, Svein J

    2016-06-01

    Recirculation of digestate was investigated as a strategy to dilute the food waste before feeding to anaerobic digesters, and its effects on microbial community structure and performance were studied. Two anaerobic digesters with digestate recirculation were operated at 37 °C (MD + R) and 55 °C (TD + R) and compared to two additional digesters without digestate recirculation operated at the same temperatures (MD and TD). The MD + R digester demonstrated quite stable and similar performance to the MD digester in terms of the methane yield (around 480 mL CH4 per gVSadded). In both MD and MD + R Methanosaeta was the dominant archaea. However, the bacterial community structure was significantly different in the two digesters. Firmicutes dominated in the MD + R, while Chloroflexi was the dominant phylum in the MD. Regarding the thermophilic digesters, the TD + R showed the lowest methane yield (401 mL CH4 per gVSadded) and accumulation of VFAs. In contrast to the mesophilic digesters, the microbial communities in the thermophilic digesters were rather similar, consisting mainly of the phyla Firmicutes, Thermotoga, Synergistetes and the hydrogenotrophic methanogen Methanothermobacter. The impact of ammonia inhibition was different depending on the digesters configurations and operating temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  19. Data quality objectives summary report for the 107-N Basin recirculation building liquid/sediment

    International Nuclear Information System (INIS)

    Nossardi, O.A.; Miller, M.S.; Carlson, D.

    1997-01-01

    The scope of the 107-N Basin Recirculation Facility Liquid/Sediment Data Quality Objectives (DQO) exclusively involves the determination of sampling and analytical requirements during the deactivation period. The sampling requirements are primarily directed at sample characterization for comparison to decontamination and decommissioning (D and D) endpoint acceptance criteria in preparation for turnover of the facilities (listed below) to D and D organization. If determined to be waste, the sample characterization is also used for comparison with the waste acceptance criteria (WAC) of the receiving facilities for selection of the appropriate disposition. Additionally, the data generated from the characterization will be used to support the selection of available disposition options. The primary media within the scope of this DQO includes the following: Accumulated liquids and sediment contained in tanks, vessels, pump wells, sumps, associated piping, and valve pit floors; and Limited solid debris (anticipated to be discovered). Although the title of this report refers only to the 107-N Basin Recirculation Building, this DQO encompasses the following four 100-N Buildings/areas: 1310-N valve pit area inside the Radioactive Chemical Waste Treatment Pump House (silo); 1314-N Waste Pump (Overflow) Tank at the Liquid Waste Disposal Station; 105-N Lift Station pump well and valve pit areas inside the 105-N Reactor Building; and 107-N Basin Recirculation Building

  20. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  1. The future of water quality and the regulatory environment for the oil sands and coalbed methane development

    International Nuclear Information System (INIS)

    Kasperski, K.; Mikula, R.

    2004-01-01

    The use of consolidated tailings in recent years for the surface mined oil sands bitumen extraction process has resulted in major improvements in water consumption because materials are transported more efficiently in a slurry form. Water storage requirements will be reduced as the cost of handling tailings in the conventional manner becomes clearer. Future improvements may be in the form of mine face sand rejection, more advanced tailings treatment, or the use of clays for continuous reclamation. Sand filtering or stacking technologies can improve tailings properties and reduce the amount of water needed per unit of bitumen. It was noted that although the technologies will minimize land disturbance and fresh water consumption, water chemistries will be driven to the point where extraction recovery is impaired and water treatment will be required. The volumes and quality of water that is pumped out to produce coalbed methane (CBM) was also discussed with reference to the origin of water in coal beds, water resource depletion, water disposal, direct land applications, and surface evaporation. The Alberta Energy and Utilities Board and Alberta Environment are responsible for regulating CBM water issues in the province, including water disposal from CBM production. 41 refs., 6 tabs., 8 figs

  2. Off-gas recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Eppler, M.; Lade, H.J.

    1975-01-01

    According to the invention, it is suggested to provide a buffer vessel in the ring main of the off-gas recirculation system for off-gases of a nuclear reactor to which all chambers or vessels which may contain radioactively contaminated gases are connected, within the connection line to outside air. This is to prevent the immediate release of an appreciable amount of gas to the outside air due to pressure variations conditioned by the sequence of operations - e.g. on the filling of the coolant storage. After the improvement, the released gas may be reduced to the amount of gas corresponding to the leakage gas flow entering the ring mains system. (TK) [de

  3. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Heitbrink, William A. [LMK OSH Consulting LLC (United States); Lo, Li-Ming, E-mail: LLo@cdc.gov [Centers for Disease Control and Prevention (CDC), Division of Applied Research and Technology, National Institute for Occupational Safety and Health (NIOSH) (United States)

    2015-08-15

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 10{sup 8} and 2.8 × 10{sup 6} fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC.

  4. Effect of carbon nanotubes upon emissions from cutting and sanding carbon fiber-epoxy composites

    International Nuclear Information System (INIS)

    Heitbrink, William A.; Lo, Li-Ming

    2015-01-01

    Carbon nanotubes (CNTs) are being incorporated into structural composites to enhance material strength. During fabrication or repair activities, machining nanocomposites may release CNTs into the workplace air. An experimental study was conducted to evaluate the emissions generated by cutting and sanding on three types of epoxy-composite panels: Panel A containing graphite fibers, Panel B containing graphite fibers and carbon-based mat, and Panel C containing graphite fibers, carbon-based mat, and multi-walled CNTs. Aerosol sampling was conducted with direct-reading instruments, and filter samples were collected for measuring elemental carbon (EC) and fiber concentrations. Our study results showed that cutting Panel C with a band saw did not generate detectable emissions of fibers inspected by transmission electron microscopy but did increase the particle mass, number, and EC emission concentrations by 20–80 % compared to Panels A and B. Sanding operation performed on two Panel C resulted in fiber emission rates of 1.9 × 10 8 and 2.8 × 10 6 fibers per second (f/s), while no free aerosol fibers were detected from sanding Panels A and B containing no CNTs. These free CNT fibers may be a health concern. However, the analysis of particle and EC concentrations from these same samples cannot clearly indicate the presence of CNTs, because extraneous aerosol generation from machining the composite epoxy material increased the mass concentrations of the EC

  5. Direct Chlorination of Zircon Sand

    International Nuclear Information System (INIS)

    Dwiretnani Sudjoko; Budi Sulistyo; Pristi Hartati; Sunardjo

    2002-01-01

    It was investigated the direct chlorination of zircon sand in a unit chlorination equipment. The process was in semi batch. The product gas was scrubbed in aqueous NaOH. It was search the influence of time, ratio of reactant and size of particle sand to the concentration of Zr and Si in the product. From these research it was found that as the times, ratio of reactant increased, the concentration of Zr increased, but the concentration of Si decreased, while as grain size of zircon sand decreased the concentration of Zr decreased, but the concentration of Si increased. (author)

  6. Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study

    International Nuclear Information System (INIS)

    Sjerić, Momir; Taritaš, Ivan; Tomić, Rudolf; Blažić, Mislav; Kozarac, Darko; Lulić, Zoran

    2016-01-01

    Highlights: • A cylinder model was calibrated according to experimental results. • A full cycle simulation model of turbocharged spark-ignition engine was made. • Engine performance with high pressure exhaust gas recirculation was studied. • Cooled exhaust gas recirculation lowers exhaust temperature and knock occurrence. • Leaner mixtures enable fuel consumption improvement of up to 11.2%. - Abstract: The numerical analysis of performance of a four cylinder highly boosted spark-ignition engine at full load is described in this paper, with the research focused on introducing high pressure exhaust gas recirculation for control of engine limiting factors such as knock, turbine inlet temperature and cyclic variability. For this analysis the cycle-simulation model which includes modeling of the entire engine flow path, early flame kernel growth, mixture stratification, turbulent combustion, in-cylinder turbulence, knock and cyclic variability was applied. The cylinder sub-models such as ignition, turbulence and combustion were validated by using the experimental results of a naturally aspirated multi cylinder spark-ignition engine. The high load operation, which served as a benchmark value, was obtained by a standard procedure used in calibration of engines, i.e. operation with fuel enrichment and without exhaust gas recirculation. By introducing exhaust gas recirculation and by optimizing other engine operating parameters, the influence of exhaust gas recirculation on engine performance is obtained. The optimum operating parameters, such as spark advance, intake pressure, air to fuel ratio, were found to meet the imposed requirements in terms of fuel consumption, knock occurrence, exhaust gas temperature and variation of indicated mean effective pressure. By comparing the results of the base point with the results that used exhaust gas recirculation the improvement in fuel consumption of 8.7%, 11.2% and 1.5% at engine speeds of 2000 rpm, 3500 rpm and 5000

  7. Flow Control by Slot Position and Noise Baffle in a Self-Recirculation Casing Treatment on an Axial Fan-Rotor

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2017-01-01

    Full Text Available To address the situations where the casing treatment needs to be used to stabilize axial compressors through strong recirculation, this paper initiated a CFD study to investigate how the flow could be suitably controlled in the casing treatment to minimize the efficiency penalty and increase the flow range. A counter-swirl self-recirculation casing treatment was first designed on a low speed axial fan rotor as a baseline case. Then three different slot positions and the influence of including the noise baffle were numerically studied. Based on the understanding of their coeffects, the shorter noise baffle was considered and it was found that the highest efficiency was achieved in the case of the upstream slot when the length of baffle was suitably adjusted to balance the incoming flow and recirculation. The largest flow range was achieved by locating the slot at the most downstream position and using a 50% length baffle since it suitably controlled the recirculating flow and relieved the separation at the low-span region. An optimization study showed that the optimum length of the baffle for efficiency was always larger than for the flow range. Both of the two optimum values reduce as the slot moves downstream.

  8. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling

    Directory of Open Access Journals (Sweden)

    Georg H. Hoffstaetter

    2007-04-01

    Full Text Available Here we will derive the general theory of the beam-breakup (BBU instability in recirculating linear accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not have to be at the same radio-frequency phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs where beam currents become very large and coupled optics are used on purpose to increase the threshold current. This theory can be used for the analysis of phase errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. General formulas are then analyzed for several analytically solvable problems: (a Why can different higher order modes (HOM in one cavity couple and why can they then not be considered individually, even when their frequencies are separated by much more than the resonance widths of the HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated threshold current is then far above the design current of this accelerator. To justify that the simulation can represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited number of modes is reasonable. (b How does the x-y coupling in the particle optics determine when modes can be considered separately? (c How much of an increase in threshold current can be obtained by coupled optics and why does the threshold current for polarized modes diminish roughly with the square root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled optics increase the threshold current more effectively for cavities that have rather large HOM quality factors, e.g. those without very

  9. Thermal Conductivity of Polymer Composite poypropilene-Sand

    International Nuclear Information System (INIS)

    Betha; Mashuri; Sudirman; Karo Karo, Aloma

    2001-01-01

    Thermal conductivity composite materials polypropylene (PP)-sand have been investigated. PP composite with sand to increase thermal conductivity from the polymer. The composite in this observation is done by mixing matrix (PP melt flow 2/10)and filler sand)by means tool labo plastomil. The result of thermal conductivity is composite of PP-sand which is obtained increase and followed by the raising of filler particle volume fraction. The analysis of thermal conductivity based on the model Cheng and Vachon, model Lewis and Nielsen where this model has the function to support experiment finding. It is proved that Lewis' and Nielsen's model almost approach experiment result. And then thermal conductivity raising will be analyzed by the model of pararel-series conductive with the two (2)phases system. It is showed that sand in PP MF 2 composite have the big role to increase the thermal conductivity than sand in PP MF 10 composition, but it is not easy to shape conductive medium

  10. Final report on Thermally Modified Sand demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-23

    The use of salt and salt/sand mixtures on icy roadway surfaces has dramatically increased during the past 30 years. Despite extensive documentation on salt related damage to the roadway improvements, vehicles and the environment, road maintenance departments have continued to rely on this practice. Road maintenance departments in northern climate areas have long recognized the safety benefits for public mobility on icy roadways from the use of sand. As an abrasive material, the sand improves the surface traction that results in more drivable and less hazardous road conditions during the winter months. Stockpiles of pure sand stored during the winter months oftentimes freeze into large unworkable, monolithic piles. To maintain a free-flowing condition, it has been found to be necessary to add salt to the sand. The addition of salt in amounts ranging from 5 to 10 percent to that of sand, is usually sufficient to provide relatively free-flowing abrasive material that could be stored in stockpiles and applied to icy road surfaces with conventional sand spreading trucks. Another alternative for winter storage of pure sand to maintain a free-flowing condition is in humidity-controlled, heated buildings. As would be expected, this method has high capital and operating costs. and not cost effective for general highway maintenance use. The invention demonstrated herein is a method of thermally modifying pure sand that will remain in a free-flowing state throughout the winter season without the need for the salt additive. The thermally modified sand provides an abrasive material that when applied to icy roads does not cause environmental and corrosive damage as done by the application of sand with salt. By employing a very simple process of freezing screened sand particles by forced air convection under subfreezing conditions, the invention creates a product that has significant value in terms of economic and environmental benefits.

  11. A new mechanism for periodic bursting of the recirculation region in the flow through a sudden expansion in a circular pipe

    Science.gov (United States)

    Lebon, Benoit; Nguyen, Minh Quan; Peixinho, Jorge; Shadloo, Mostafa Safdari; Hadjadj, Abdellah

    2018-03-01

    We report the results of a combined experimental and numerical study of specific finite-amplitude disturbances for transition to turbulence in the flow through a circular pipe with a sudden expansion. The critical amplitude thresholds for localized turbulent patch downstream of the expansion scale with the Reynolds number with a power law exponent of -2.3 for experiments and -2.8 for simulations. A new mechanism for the periodic bursting of the recirculation region is uncovered where the asymmetric recirculation flow develops a periodic dynamics: a secondary recirculation breaks the symmetry along the pipe wall and bursts into localized turbulence, which travels downstream and relaminarises. Flow visualizations show a simple flow pattern of three waves forming, growing, and bursting.

  12. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  13. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    Science.gov (United States)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  14. Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades

    Science.gov (United States)

    Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris; hide

    2017-01-01

    Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed

  15. The effectiveness of recirculating flue gasses on a gas-fuel oil boiler unit with hearth burners

    Energy Technology Data Exchange (ETDEWEB)

    Eremeev, V V; Kovalenko, A L; Kozlov, V G

    1981-01-01

    The results of investigating the effect of recirculating flue gasses on a TP-87 boiler (D = 420 tons per hour, 14 MPa, 560 C) with a hearth composition of four gas-fuel oil burners are presented. The heat-release rate of the volume of the furnace is 136 Kw per m/sup 3/; that if a cross section of the combustion chamber is 3.2 MW/m/sup 2/. The hot air temperature is 420 C. The tests were carried out during the combustion of M-100 petroleum oil which has a moisture content of 3 / 4% and a sulfur content of 2.4%. The pressure of the oil against the mechanical sprayers is 2.9-3.0 MPa at the rated load; the temperature is 125-130 C. The recirculation of the flue gasses was organized in order to expand the regulatory stress range and decrease the discharge of nitric oxides into the atmosphere. Moreover, flue gasses with a temperature of 330-370/sup 0/C were removed from a first-degree BE gas conduit, and, using two BGD-15.5 type exhaust fans, were fed into the annular channels around the burners. The calculated velocity of the gasses at the output of the burner is equal to 35 M/s; the air velocity is 64 M/s. It is shown that the TP-87 furnace--with fuel oil hearth burners and recirculation to obtain flue gasses into independent burner ducts--makes it possible to obtain a useful stress range during almost complete fuel oil combustion with minimal air exceses by maintaining the calculated temperature of the superheated vapor. Recirculating flue gasses in a duct around the burners constitutes an effective means of decreasing the discharge of nitric oxides, and of decreasing local heat stress on the screens. However, increasing the recirculation coefficient to 0.17 causes a 0.35% increase in the loss of heat with the departing gasses (the temperature of which increases by 7 C), and a 0.15% decrease in the heat flow rate for SN, which leads to an overall drop of approx. 0.5% in the efficiency coefficient of the boiler.

  16. Retorting of bituminous sands

    Energy Technology Data Exchange (ETDEWEB)

    Chaney, P E; Ince, R W; Mason, C M

    1872-09-26

    This method of recovering oil from mined tar sands involves forming compacted tar sands pieces by special conditioning treatment that provides low internal permeability. The compacted pieces are then retorted in fixed bed form. The conditioning treatment can involve rolling of preformed pellets, compaction in a mold or pressure extrusion. Substantial collapsing of the bed during retorting is avoided. (9 claims) (Abstract only - original article not available from T.U.)

  17. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability

    NARCIS (Netherlands)

    Martins, C.I.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Roque dÓrbcastel, E.; Verreth, J.A.J.

    2010-01-01

    The dual objective of sustainable aquaculture, i.e., to produce food while sustaining natural resources is achieved only when production systems with a minimum ecological impact are used. Recirculating aquaculture systems (RASs) provide opportunities to reduce water usage and to improve waste

  18. Use of sand wave habitats by silver hake

    Science.gov (United States)

    Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.

    2003-01-01

    Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.

  19. Tidal dynamics in the sand motor lagoon

    NARCIS (Netherlands)

    De Vries, S.; Radermacher, M.; De Schipper, M.A.; Stive, M.J.F.

    2015-01-01

    The Sand Motor is a mega-nourishment characterized by a very large sand volume of around 20 million m3 placed along the Dutch coast. The Sand Motor is a pilot project to evaluate the performance of an alternative nourishment strategy with respect to different functions of the coastal system. Within

  20. Numerical simulation of flow and compression of green sand

    DEFF Research Database (Denmark)

    Hovad, Emil

    The focus of the industrial PhD project was concentrated on the production of the sand mold (green sand) which gives the cast component its final geometrical shape. In order to ensure a high quality of the cast component, it is important to control the manufacturing process of the mold itself so...... that it is homogeneous and stable. Therefore gaining a basic understanding of how the flow and deposition of green sand should be characterized and modelled was important, so that it could be used for simulation of the manufacturing process of the sand mold. The flowability of the green sand is important when the sand...... flows down through the hopper filling the chamber with sand during the sand shot. The flowability of green sand is mostly governed by the amount of water and bentonite which both decrease it. The flowability and the internal forces thus control how well you can fill a complex mold geom-etry in which...

  1. Design of ventilation and air cleaning systems for the new Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Mitchell, R.; DeField, J.; Stafford, R.; McNeese, W.; Eberhardt, W.; Laushkin, N.

    1975-01-01

    The Los Alamos Scientific Laboratory's new plutonium facility will conform to AECM Appendix 6301-Part II, Section H-Minimum Design Criteria for New Plutonium Facilities. The glove box process exhaust air is filtered through three or four stages of HEPA filters. The design of this multi-stage filter installation is shown with a method of in-place testing of each stage individually. A glove box filter holder and the in-place test procedure is described. General room air from plutonium work areas is recirculated at the rate of eight air changes per hour with a 10 percent fresh air make-up. The filter plenums for the recirculated air are designed to permit in-place testing of each of the two filter stages. (U.S.)

  2. Sand wave fields beneath the Loop Current, Gulf of Mexico: Reworking of fan sands

    Science.gov (United States)

    Kenyon, Neil H.; Akhmetzhanov, A.M.; Twichell, D.C.

    2002-01-01

    Extensive fields of large barchan-like sand waves and longitudinal sand ribbons have been mapped by deep-towed SeaMARC IA sidescan sonar on part of the middle and lower Mississippi Fan that lies in about 3200 m of water. The area is beneath the strongly flowing Loop Current. The bedforms have not been adequately sampled but probably consist of winnowed siliciclastic-foraminiferal sands. The size (about 200 m from wingtip to wingtip) and shape of the large barchans is consistent with a previously observed peak current speed of 30 cm/s, measured 25 m above the seabed. The types of small-scale bedforms and the scoured surfaces of chemical crusts, seen on nearby bottom photographs, indicate that near-bed currents in excess of 30 cm/s may sometimes occur. At the time of the survey the sand transport direction was to the northwest, in the opposite direction to the Loop Current but consistent with there being a deep boundary current along the foot of the Florida Escarpment. Some reworking of the underlying sandy turbidites and debris flow deposits is apparent on the sidescan sonar records. Reworking by deep-sea currents, resulting in erosion and in deposits characterised by coarsening upwards structures and cross-bedding, is a process that has been proposed for sand found in cores in shallower parts of the Gulf of Mexico. This process is more widespread than hitherto supposed. 

  3. Oil sands and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, R. [Shell Canada Ltd., Calgary, AB (Canada). Calgary Research Centre

    2004-07-01

    Oil sands are a significant resource for Alberta and Canada with continuing growth opportunity. There is a need to ensure sustainable development of the oil sands resources from a social, economic and environmental perspective. The industry has succeeded in terms of proven reserves, technology advancements, reduced operating costs, reliability and market accessibility. Some of the major challenges facing the industry include high capital cost, infrastructure, social services and keeping pace with growth. This presentation outlined the proactive measures that the oil sands industry has taken to manage environmental issues such as sulphur dioxide and nitrogen oxide emissions, greenhouse gases, water management and land reclamation. tabs., figs.

  4. Alberta oil sands royalty regime

    International Nuclear Information System (INIS)

    Asgarpour, S.

    2004-01-01

    The long term objective of the Oil Sands Business Unit of Alberta Energy is to pave the way for Alberta's bitumen production to reach 3 million barrels per day by 2020. This presentation described the national government's role in resource development. It was emphasized that since the Crown is the owner of the oil sands resource, it would benefit by providing strategic leadership and by generating a larger royalty base. The oil sands fiscal regime was described with reference to generic royalty, risk sharing, investment, and project economics. Business rule principles were also outlined along with criteria for project expansions. Both upstream and downstream challenges and opportunities were listed. 4 figs

  5. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    Directory of Open Access Journals (Sweden)

    Nirmala D.B.

    2016-06-01

    Full Text Available This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37 Orthogonal Arrays (OA with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering “Nominal the better” situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.

  6. Experimental study of optimal self compacting concrete with spent foundry sand as partial replacement for M-sand using Taguchi approach

    Science.gov (United States)

    Nirmala, D. B.; Raviraj, S.

    2016-06-01

    This paper presents the application of Taguchi approach to obtain optimal mix proportion for Self Compacting Concrete (SCC) containing spent foundry sand and M-sand. Spent foundry sand is used as a partial replacement for M-sand. The SCC mix has seven control factors namely, Coarse aggregate, M-sand with Spent Foundry sand, Cement, Fly ash, Water, Super plasticizer and Viscosity modifying agent. Modified Nan Su method is used to proportion the initial SCC mix. L18 (21×37) Orthogonal Arrays (OA) with the seven control factors having 3 levels is used in Taguchi approach which resulted in 18 SCC mix proportions. All mixtures are extensively tested both in fresh and hardened states to verify whether they meet the practical and technical requirements of SCC. The quality characteristics considering "Nominal the better" situation is applied to the test results to arrive at the optimal SCC mix proportion. Test results indicate that the optimal mix satisfies the requirements of fresh and hardened properties of SCC. The study reveals the feasibility of using spent foundry sand as a partial replacement of M-sand in SCC and also that Taguchi method is a reliable tool to arrive at optimal mix proportion of SCC.

  7. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    Science.gov (United States)

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Science.gov (United States)

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  9. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  10. Leachate recirculation: moisture content assessment by means of a geophysical technique.

    Science.gov (United States)

    Guérin, Roger; Munoz, Marie Laure; Aran, Christophe; Laperrelle, Claire; Hidra, Mustapha; Drouart, Eric; Grellier, Solenne

    2004-01-01

    Bioreactor technology is a waste treatment concept consisting in speeding up the biodegradation of landfilled waste by optimizing its moisture content through leachate recirculation. The measurement of variations in waste moisture content is critical in the design and control of bioreactors. Conventional methods such as direct physical sampling of waste reach their limits due to the interference with the waste matrix. This paper reviews geophysical measurements such as electrical direct current and electromagnetic slingram methods for measuring the electrical conductivity. Electrical conductivity is a property, which is linked to both moisture and temperature and can provide useful indications on the biodegradation environment in the waste mass. The study reviews three site experiments: a first experimentation shows the advantages (correlation between conductive anomaly and water seepage) but also the limits of geophysical interpretation; the two other sites allow the leachate recirculation to be tracked by studying the relative resistivity variation versus time from electrical 2D imaging. Even if some improvements are necessary to consider geophysical measurements as a real bioreactor monitoring tool, results are promising and could lead to the use of electrical 2D imaging in bioreactor designing.

  11. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oil sands tailings management project

    Energy Technology Data Exchange (ETDEWEB)

    Godwalt, C. [Alberta WaterSMART, Calgary, AB (Canada); Kotecha, P. [Suncor Energy Inc, Calgary, AB (Canada); Aumann, C. [Alberta Innovates - Technology Futures, Alberta Governement, AB (Canada)

    2010-11-15

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  13. Oil sands tailings management project

    International Nuclear Information System (INIS)

    Godwalt, C.; Kotecha, P.; Aumann, C.

    2010-11-01

    The Oil sands leadership initiative (OSLI) works with the Government of Alberta on the development of the oil sands industry, considering environmental, economical and social aspects. Water management was identified as one of most important areas to focus on. Alberta WaterSMART was requested to support the development and the management of projects resulting from the work done or underway in this field. The development of a regional water management solution stood out as the most interesting solution to obtain significant results. In the Athabasca Region, oil sands producers work independently on their water sourcing and disposal with particular attention to fresh water conservation and economics. The Athabasca River represents a source for mines and distant saline aquifers are the target of steam assisted gravity drainage (SAGD) operators. As part of a four-phase project aiming to study the environmental and economic footprint (EEF) benefit of alternatives for Athabasca oil sands production water supply and disposal, the purpose of the tailings water management project was to identify tailings treatment technologies that are ready to be implemented, and to design and evaluate solutions in order to improve regional oil sands production water sourcing and disposal. Alternatives were evaluated based on their total EEF, applying a lifecycle assessment methodology with a particular attention on the quantification of important performance indicators. 25 refs., 8 tabs., 40 figs.

  14. Invasive plants on disturbed Korean sand dunes

    Science.gov (United States)

    Kim, Kee Dae

    2005-01-01

    The sand dunes in coastal regions of South Korea are important ecosystems because of their small size, the rare species found in this habitat, and the beautiful landscapes they create. This study investigated the current vegetative status of sand dunes on three representative coasts of the Korean peninsula, and on the coasts of Cheju Island, and assessed the conditions caused by invasive plants. The relationships between the degree of invasion and 14 environmental variables were studied. Plots of sand dunes along line transects perpendicular to the coastal lines were established to estimate vegetative species coverage. TWINSPAN (Two-Way Indicator Species Analysis), CCA (Canonical Correspondence Analysis), and DCCA (Detrended Canonical Correspondence Analysis) were performed to classify communities on sand dunes and assess species composition variation. Carex kobomugi, Elymus mollis, and Vitex rotundifolia were found to be the dominant species plotted on the east, the west, and the peripheral coasts of Cheju Island, respectively. Vegetation on the south coast was totally extinct. The 19 communities, including representative C. kobomugi, C. kobomugi- Ixeris repens, C. kobomugi- Oenothera biennis, E. mollis, Lolium multiflorum- Calystegia soldanella, and V. rotundifolia- C. kobomugi, were all classified according to TWINSPAN. Oenothera biennis and L. multiflorum were exotics observed within these native communities. CCA showed that invasive native and exotic species distribution was segregated significantly, according to disturbance level, exotic species number, gravel, sand and silt contents, as well as vegetation size. It further revealed that human disturbance can strongly favor the settlement of invasive and exotic species. Restoration options to reduce exotic plants in the South Korean sand dune areas were found to be the introduction of native plant species from one sand dune into other sand dune areas, prohibition of building and the introduction of exotic

  15. Characteristics of SCC with Fly Ash and Manufactured Sand

    Science.gov (United States)

    Praveen Kumar, K.; Radhakrishna

    2016-09-01

    Self compacting concrete (SCC) of M40 grade was designed. The binder in SCC consists of OPC and fly ash in the ratio of 65:35. River sand was replaced by manufactured sand (M-sand) at replacement levels of 20,40,60,80 and 100%. An attempt was made to evaluate the workability and strength characteristics of self compacting concrete with river sand and manufactured sand as fine aggregates. For each replacement level, constant workability was maintained by varying the dosage of superplasticizer. T50 flow time, V Funnel time, V-funnel T5 time as well as compressive, split tensile and flexural strength of SCC were found at each replacement level of M-sand. They were compared to SCC with river sand. Results indicate favourable use of M-sand in preparation of Self Compacting Concrete.

  16. Properties of dune sand concrete containing coffee waste

    Directory of Open Access Journals (Sweden)

    Mohamed Guendouz

    2018-01-01

    Full Text Available In the last years, an increase of coffee beverages consumption has been observed all over the world; and its consumption increases the waste coffee grounds which will become an environmental problems. Recycling of this waste to produce new materials like sand concrete appears as one of the best solutions for reduces the problem of pollution. This work aims to study the possibility of recycling waste coffee grounds (Spent Coffee Grounds (SCG as a fine aggregate by replacing the sand in the manufacturing of dune sand concrete. For this; sand concrete mixes were prepared with substitution of sand with the spent coffee grounds waste at different percentage (0%, 5%, 10%, 15% and 20% by volume of the sand in order to study the influence of this wastes on physical (Workability, bulk density and porosity, mechanical (compressive and flexural strength and Thermal (Thermal conductivity and thermal diffusivity properties of dune sand concrete. The results showed that the use of spent coffee grounds waste as partial replacement of natural sand contributes to reduce workability, bulk density and mechanical strength of sand concrete mixes with an increase on its porosity. However, the thermal characteristics are improved and especially for a level of 15% and 20% of substitution. So, it is possible to obtain an insulating material which can be used in the various types of structural components. This study ensures that reusing of waste coffee grounds in dune sand concrete gives a positive approach to reduce the cost of materials and solve some environmental problems.

  17. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1989-09-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. The following areas are discussed in detail: - the origins of the corrosion products and of cobalt-59 in the reactor feedwaters, - the consolidation of the cobalt in the fuel pin deposits (activation), - the release and transport of cobalt-60, - the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarised. Corrosion chemistry aspects of the cobalt build-up in the primary circuit have already been studied on a broad basis and are continuing to be researched in a number of centers. The crystal chemistry of chromium-nickel steel corrosion products poses a number of yet unanswered questions. There are major loopholes associated with the understanding of activation processes of cobalt deposited on the fuel pins and in the mass transfer of cobalt-60. For these processes, the most important influence stems from factors associated with colloid chemistry. Accumulation of data from different BWRs contributes little to the understanding of the activity build-up. However, there are examples that the problem of activity build-up can be kept under control. Although many details for a quantitative understanding are still missing, the most important correlations are visible. The activity build-up in the BWR recirculation systems cannot be kept low by a single measure. Rather a whole series of measures is necessary, which influences not only cobalt-60 deposition but also plant and operation costs. (author) 26 figs., 13 tabs., 90 refs

  18. Documenting the global impacts of beach sand mining

    Science.gov (United States)

    Young, R.; Griffith, A.

    2009-04-01

    For centuries, beach sand has been mined for use as aggregate in concrete, for heavy minerals, and for construction fill. The global extent and impact of this phenomenon has gone relatively unnoticed by academics, NGOs, and major news sources. Most reports of sand mining activities are found at the very local scale (if the mining is ever documented at all). Yet, sand mining in many localities has resulted in the complete destruction of beach (and related) ecosystems along with severe impacts to coastal protection and tourism. The Program for the Study of Developed Shorelines at Western Carolina University and Beachcare.org have initiated the construction of a global database of beach sand mining activities. The database is being built through a combination of site visits and through the data mining of media resources, peer reviewed papers, and reports from private and governmental entities. Currently, we have documented sand mining in 35 countries on 6 continents representing the removal of millions of cubic meters of sand. Problems extend from Asia where critical infrastructure has been disrupted by sand mining to the Caribbean where policy reform has swiftly followed a highly publicized theft of sand. The Program for the Study of Developed Shorelines recently observed extensive sand mining in Morocco at the regional scale. Tens of kilometers of beach have been stripped of sand and the mining continues southward reducing hope of a thriving tourism-based economy. Problems caused by beach sand mining include: destruction of natural beaches and the ecosystems they protect (e.g. dunes, wetlands), habitat loss for globally important species (e.g. turtles, shorebirds), destruction of nearshore marine ecosystems, increased shoreline erosion rates, reduced protection from storms, tsunamis, and wave events, and economic losses through tourist abandonment and loss of coastal aesthetics. The threats posed by sand mining are made even more critical given the prospect of a

  19. Studies on various characteristics of concrete structures using crushed sand

    International Nuclear Information System (INIS)

    Mimatsu, Makoto; Sugita, Hideaki; Yonemura, Masataka.

    1985-01-01

    With the recent advances of construction industry, the demands for concrete, hence for aggregate, are rising. The sand as such is in extreme shortage due to the exhaustion of river sand. Under the situation, the recent trends are for the use of crushed sand, i.e. the artificial sand obtained by crushing rocks, which have advantages of stabilized quality and adequate supplies. In building of nuclear power plants requiring large amounts of concrete, the usage of crushed sand is now unavoidable. The following are described : the situation of aggregate in Kyushu. production method of crushed sand and the quality standards, rocks used for crushed stone and sand and the properties, quality survey on crushed sand and the basic tests, characteristic tests of crushed-stone and -sand mixed concrete, the application of crushed sand in structures of the Sendai Nuclear Power Station. (Mori, K.)

  20. Gun and optics calculations for the Fermilab recirculation experiment

    International Nuclear Information System (INIS)

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes