WorldWideScience

Sample records for recirculating ion induction

  1. Recirculating induction accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Deadrick, F.; Bangerter, R.O.

    1993-01-01

    We have recently completed a two-year study of recirculating induction heavy-ion accelerators (recirculators) as low-cost drivers for inertial-fusion-energy power plants. We present here a summary of that study and other recent work on recirculators

  2. Engineering systems designs for a recirculating heavy ion induction accelerator

    International Nuclear Information System (INIS)

    Newton, M.A.; Barnard, J.J.; Reginato, L.L.; Yu, S.S.

    1991-05-01

    Recirculating heavy ion induction accelerators are being investigated as possible drivers for heavy ion fusion. Part of this investigation has included the generation of a conceptual design for a recirculator system. This paper will describe the overall engineering conceptual design of this recirculator, including discussions of the dipole magnet system, the superconducting quadrupole system and the beam acceleration system. Major engineering issues, evaluation of feasibility, and cost tradeoffs of the complete recirculator system will be presented and discussed. 5 refs., 4 figs

  3. Development of FET-switched induction accelerator cells for heavy-ion fusion recirculators

    International Nuclear Information System (INIS)

    Newton, M.A.; Cravey, W.R.; Hawkins, S.A.; Kirbie, H.C.; Ollis, C.W.

    1993-01-01

    The ''recirculator,'' a recirculating heavy-ion induction accelerator, has been identified as a promising approach for an inertial fusion driver. One of the technical challenges to building a recirculator is the requirement for a modulator that can drive the induction accelerator cells at repetition rates ≥ 100 kHz with variable pulse width and pulse repetition rate capability. A high repetition rate modulator and cell is presently being developed for use on a proposed heavy-ion recirculator. The goal is to develop an array of field-effect transistors to switch 5 kV, 1 μs pulses onto a Metglas induction core at pulse rates exceeding 100 kHz. Each transistor in the array is driven by a fiber-optic isolated gate signal that is powered by a dc/dc converter. The circuit architecture provides for core reset between pulses and produces bursts of pulses that are variable in pulse width and prf. The transistor switching array, energy storage capacitors, reset circuit and cell core are all combined into a single compact, low-impedance package. Progress of this development work will be presented with supporting data

  4. Recirculating induction accelerator as a low-cost driver for heavy ion fusion

    International Nuclear Information System (INIS)

    Barnard, J.J.; Newton, M.A.; Reginato, L.L.; Sharp, W.M.; Shay, H.D.; Yu, S.S.

    1991-09-01

    As a fusion driver, a heavy ion accelerator offers the advantages of efficient target coupling, high reliability, and long stand-off focusing. While the projected cost of conventional heavy ion fusion (HIF) drivers based on multiple beam induction linacs are quite competitive with other inertial driver options, a driver solution which reduces the cost by a factor of two or more will make the case for HIF truly compelling. The recirculating induction accelerator has the potential of large cost reductions. For this reason, an intensive study of the recirculator concept was performed by a team from LLNL and LBL over the past year. We have constructed a concrete point design example of a 4 MJ driver with a projected efficiency of 35% and projected cost of less than 500 million dollars. A detailed report of our findings during this year of intensive studies has been recently completed. 3 refs., 2 figs., 2 tabs

  5. Recirculating induction accelerators for inertial fusion: Prospects and status

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cable, M.D.

    1995-01-01

    The US is developing the physics and technology of induction accelerators for heavy-ion beam-driven inertial fusion. The recirculating induction accelerator repeatedly passes beams through the same set of accelerating and focusing elements, thereby reducing both the length and gradient of the accelerator structure. This promises an attractive driver cost, if the technical challenges associated with recirculation can be met. Point designs for recirculator drivers were developed in a multi-year study by LLNL, LBNL, and FM Technologies, and that work is briefly reviewed here. To validate major elements of the recirculator concept, we are developing a small (4-5-m diameter) prototype recirculator which will accelerate a space-charge-dominated beam of K + ions through 15 laps, from 80 to 320 keV and from 2 to 8 mA. Transverse beam confinement is effected via permanent-magnet quadrupoles; bending is via electric dipoles. This ''Small Recirculator'' is being developed in a build-and-test sequence of experiments. An injector, matching section, and linear magnetic channel using seven half-lattice periods of permanent-magnet quadrupole lenses are operational. A prototype recirculator half-lattice period is being fabricated. This paper outlines the research program, and presents initial experimental results

  6. Study of recirculating induction accelerator as drivers for heavy ion fusion

    International Nuclear Information System (INIS)

    Shay, H.D.; Barnard, J.J.; Brooks, A.L.; Coffield, F.; Deadrick, F.; Griffith, L.V.; Kirbie, H.C.; Neil, V.K.; Newton, M.A.; Paul, A.C.

    1993-01-01

    Two years ago, Lawrence Livermore National Laboratory (LLNL) began a study of the viability and relative utility of recirculating induction accelerators as drivers for Heavy Ion Fusion (HIF). The final draft of the report detailing the results in 284 pages was completed in September, 1991. As well as broadly involving the collaboration of many researchers from several groups at LLNL, it also benefited from contributions from several individuals in the HIF program at Lawrence Berkeley Laboratory and from others in the HIF community nationwide. This presentation summarizes the key findings given in that report

  7. Technology development for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Kirbie, H.C.

    1993-01-01

    The open-quotes recirculator,close quotes a recirculating heavy-ion accelerator has been identified as a promising approach for an inertial fusion driver. System studies have been conducted to evaluate the recirculator on the basis of feasibility and cost. The recirculator has been shown to have significant cost advantages over other potential driver schemes, but some of the performance requirements exceed the capabilities of present technology. The system studies identified the high leverage areas where advances in technology will significantly impact the cost and performance of a recirculator. One of the high leverage areas is the modulator system which generates the acceleration potentials in the induction cells. The modulator system must be capable of generating the acceleration potentials at peak repetition rates in excess of 100 kHz with variable pulse widths. LLNL is developing a modulator technology capable of driving induction cells using the latest in solid state MOSFET technology. A small scale modulator has been built and tested to prove the concept and the next version is presently being designed. The objective is to demonstrate a modulator operating at 5 kV, 1 kA, with 0.2--1 μs pulse widths while driving an induction cell at >100 kHz within the next year. This paper describes the recirculator, the technology requirements necessary to implement it and the modulator system development that is being pursued to meet these requirements

  8. Design considerations for long-pulse, high-repetition-rate modulators for recirculating heavy-ion accelerators

    International Nuclear Information System (INIS)

    Newton, M.A.; Reginato, L.L.; Yu, S.S.

    1991-06-01

    Heavy-ion accelerators are considered to be one of the promising driver alternatives for inertial fusion. In an inertial fusion driver, multiple beams of heavy-ions are accelerated to kinetic energies consistent with the fusion target requirements. During acceleration, the beams of heavy ions are compressed in time from an initial pulse duration that range from 10's to 100's of microseconds to a final pulse duration of approximately 10 nanoseconds. The compressed beam of heavy ions is then focused on the target in a reactor chamber where the energy released from the fusion reaction is converted to thermal energy and eventually to electricity. A recirculator is an induction accelerator which accelerates the particles and bends them in a closed path with pulsed dipole magnets. A single beam traverses the same accelerating cavities many times (50--100) to acquire its final energy. The primary motivation to evaluate recirculators is the potential for low cost that results from re-using many of the most expensive accelerator components, such as the induction cells, pulsers, and focusing magnets, during an acceleration sequence. One of the areas of technology that is critical to the feasibility of a recirculator is the modulator system required to accelerate the ion beams. This system greatly impacts the overall design of the recirculating accelerator. System studies have been conducted to evaluate the cost and efficiency of several recirculator configurations as function of various parameters. These system studies have helped identify desirable induction cell driver characteristics. These characteristics and the trade-offs that were evaluated will be presented and discussed

  9. Mechanical design of recirculating accelerator experiments for heavy-ion fusion

    International Nuclear Information System (INIS)

    Karpenko, V.

    1995-01-01

    Recirculating induction accelerators have been studied as a potential low cost driver for inertial fusion energy. At LLNL, we are developing a small (4.5-m diameter), scaled, experimental machine which will demonstrate many of the engineering solutions of a full scale driver. The small recirculator will accelerate singly ionized potassium ions from 80 to 320 keV and 2 to 8 mA, using electric dipoles for bending and permanent magnet quadrupoles for focusing in a compact periodic lattice. While very compact, and low cost, this design allows the investigation of most of the critical physics issues associated with space-charge-dominated beams in future IFE power plant drivers. This report describes the recirculator, its mechanical design, its vacuum design, and the process for aligning it. Additionally, a straight magnetic transport experiment is being carried out to test diagnostics and magnetic transport in preparation for the recirculator

  10. Physics design and scaling of recirculating induction accelerators: from benchtop prototypes to drivers

    International Nuclear Information System (INIS)

    Barnard, J.J.; Cable, M.D.; Callahan, D.A.

    1996-01-01

    Recirculating induction accelerators (recirculators) have been investigated as possible drivers for inertial fusion energy production because of their potential cost advantage over linear induction accelerators. Point designs were obtained and many of the critical physics and technology issues that would need to be addressed were detailed. A collaboration involving Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory researchers is now developing a small prototype recirculator in order to demonstrate an understanding of nearly all of the critical beam dynamics issues that have been raised. We review the design equations for recirculators and demonstrate how, by keeping crucial dimensionless quantities constant, a small prototype recirculator was designed which will simulate the essential beam physics of a driver. We further show how important physical quantities such as the sensitivity to errors of optical elements (in both field strength and placement), insertion/extraction, vacuum requirements, and emittance growth, scale from small-prototype to driver-size accelerator

  11. Transport and error sensitivity in a heavy-ion recirculator

    International Nuclear Information System (INIS)

    Sharp, W.M.; Barnard, J.J.; Yu, S.S.

    1991-05-01

    An envelope code has been developed to facilitate the design of a recirculating accelerator for a heavy-ion fusion reactor. A novel feature of the model is the treatment of the beam charge density as a Lagrangian fluid in the axial direction. Transport results for a preliminary recirculator design are presented, and sensitivity of the transport to errors in the magnet strength is discussed. 4 refs., 4 figs

  12. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  13. Engineering development for a small-scale recirculator experiment

    International Nuclear Information System (INIS)

    Newton, M.A.; Deadrick, F.J.; Hanks, R.L.; Hawkins, S.A.; Holm, K.A.; Kirbie, H.C.; Karpenko, V.P.; Nattrass, L.A.; Longinotti, D.B.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) is evaluating the physics and technology of recirculating induction accelerators for heavy-ion inertial-fusion drivers. As part of this evaluation, the authors are building a small-scale recirculator to demonstrate the concept and to use as a test bed for the development of recirculator technologies. System designs have been completed and components are presently being designed and developed for the small-scale recirculator. This paper discusses results of the design and development activities that are presently being conducted to implement the small-scale recirculator experiments. An, overview of the system design is presented along with a discussion of the implications of this design on the mechanical and electrical hardware. The paper focuses primarily on discussions of the development and design of the half-lattice period hardware and the advanced solid-state modulator

  14. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1994-01-01

    Heavy-ion induction accelerators are being developed as fusion drivers for ICF power production in the US Inertial Fusion Energy (IFE) program, in the Office of Fusion Energy of the US Department of Energy. In addition, they represent an attractive driver option for a high-yield microfusion facility for defense research. This paper describes recent progress in induction drivers for Heavy-Ion Fusion (HIF), and plans for future work. It presents research aimed at developing drivers having reduced cost and size, specifically advanced induction linacs and recirculating induction accelerators (recirculators). The goals and design of the Elise accelerator being built at Lawrence Berkeley Laboratory (LBL), as the first stage of the ILSE (Induction Linac Systems Experiments) program, are described. Elise will accelerate, for the first time, space-charge-dominated ion beams which are of full driver scale in line-charge density and diameter. Elise will be a platform on which the critical beam manipulations of the induction approach can be explored. An experimental program at Lawrence Livermore National Laboratory (LLNL) exploring the recirculator principle on a small scale is described in some detail; it is expected that these studies will result ultimately in an operational prototype recirculating induction accelerator. In addition, other elements of the US HIF program are described

  15. Experiments investigating the effects of the accelerating gap voltage pulse on the ion focused (IFR) high current electron recirculators

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R. Turnman, B.N.; Prestwich, K.R.; Wells, J.

    1991-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for an open-ended, spiral recirculating electron linear accelerator. It dictates the number of allowable beam recirculations through the gap. In the case of a racetrack configuration, its is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. It was established that pulsing the accelerating gap perturbs the IFR channel. However, for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition, cusp fields positioned upstream and downstream from the gap prevent it from perturbing the IFR channel

  16. Experiments investigating the effects of the accelerating gap voltage pulse on the ion focused (IFR) high current electron recirculators

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.

    1991-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for an open-ended, spiral recirculating electron linear accelerator. It dictates the number of allowable beam recirculations through the gap. In the case of a racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. It was established that pulsing the accelerating gap perturbs the IFR channel. However, for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition, cusp fields positioned upstream and downstream from the gap prevent it from perturbing the IFR channel. 4 refs., 5 figs., 1 tab

  17. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  18. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  19. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  20. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1995-01-01

    This document deals with heavy-ion induction accelerators developed as fusion drivers for Inertial Confinement Fusion power. It presents the results of research aimed at developing drivers having reduced cost and size as well as the Elise accelerator being built at Lawrence Berkeley Laboratory. An experimental program at Lawrence Livermore National Laboratory concerning recirculating induction accelerators is also presented. Eventually, the document provides some information on other elements of the U.S. Heavy-Ion Fusion (HIF) research program: the experimental study of beam merging, a magnetic quadrupole development program and a study of plasma lenses. (TEC). 28 refs., 6 figs

  1. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    Science.gov (United States)

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystron-like interaction with the accelerating cavities leading to enhanced momentum spread. In this paper, the author describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  3. High power switches for ion induction linacs

    International Nuclear Information System (INIS)

    Humphries, S.; Savage, M.; Saylor, W.B.

    1985-01-01

    The success of linear induction ion accelerators for accelerator inertial fusion (AIF) applications depends largely on innovations in pulsed power technology. There are tight constraints on the accuracy of accelerating voltage waveforms to maintain a low momentum spread. Furthermore, the non-relativistic ion beams may be subject to a klystronlike interaction with the accelerating cavities, leading to enhanced momentum spread. In this paper, we describe a novel high power switch with a demonstrated ability to interrupt 300 A at 20 kV in less than 60 ns. The switch may allow the replacement of pulse modulators in linear induction accelerators with hard tube pulsers. A power system based on a hard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The problem of longitudinal beam control in ion induction linacs is reviewed in Section 2. Section 3 describes the principles of the plasma flow switch. Experimental results are summarized in Section 4

  4. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  5. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  6. Mutation induction by heavy ions

    Science.gov (United States)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  7. Induction linac drivers for commercial heavy-ion beam fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-11-01

    This paper discusses induction linac drivers necessary to accelerate heavy ions at inertial fusion targets. Topics discussed are: driver configurations, the current-amplifying induction linac, high current beam behavior and emittance growth, new considerations for driver design, the heavy ion fusion systems study, and future studies. 13 refs., 6 figs., 1 tab

  8. Mutation induction in yeast by very heavy ions

    Science.gov (United States)

    Kiefer, J.

    1994-10-01

    Resistance to canavanine was studied in haploid yeast after exposure to heavy ions (argon to uranium) of energies between 1 and 10 MeV/u covering a LET-range up to about 10000 keV/μm. Mutations were found in all instances but the induction cross sections increased with ion energy. This is taken to mean that the contribution of penumbra electrons plays an important role. The probability to recover surviving mutants is highest if the cell is not directly hit by the particle. The experiments demonstrate that the geometrical dimensions of the target cell nucleus as well as its sensitivity in terms of survival have a critical influence on mutation induction with very heavy ions.

  9. Concept for high-charge-state ion induction accelerators

    International Nuclear Information System (INIS)

    Logan, B.G.; Perry, M.D.; Caporaso, G.J.

    1996-01-01

    This work describes a particular concept for ion induction linac accelerators using high-charge-state ions produced by an intense, short pulse laser, and compares the costs of a modular driver system producing 6.5 MJ for a variety of ion masses and charge states using a simple but consistent cost model

  10. Acceleration ion focusing (IFR) and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Puokey, J.W.; Bennett, L.F.; Wagner, J.S.; Olson, W.R.; George, M.; Turman, B.N.; Prestwich, K.R.; Struve, K.W.

    1992-01-01

    The focusing and transport of intense relativistic electron beams in the Sandia Laboratories Recirculating Linear Accelerator (RLA) is accomplished with the aid of an ion focusing channel (IFR). We report here experiments evaluating the beam generation in the injector and its subsequent acceleration and transport through the first post-accelerating cavity. Two injectors and one type of post-accelerating cavity were studied. Beams of 6-20 kA current were injected and successfully transported and accelerated through the cavity. The transport efficiencies were 90% - 100%, and the beam Gaussian profile (4 MeV injector) and radius (5 mm) remained the same through acceleration. We describe the RLA, present the experimental results and compare them with numerical simulations. (Author) 3 refs., 7 figs

  11. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  12. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  13. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  14. Ion sources for induction linac driven heavy ion fusion

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1994-01-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma-types and the porous plug and hot alumino--silicate surface source are the thermal types. The hot alumino--silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented

  15. Mutation induction by ion beams in arabidopsis

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    1999-01-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M 1 lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by γirradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and γ-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  16. Mutation induction by ion beams in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1999-07-01

    An investigation was made on characteristics of ion beams for the biological effects and the induction of mutation using Arabidopsis plant as a model plant for the molecular genetics. Here, the characteristics of mutation at the molecular level as well as new mutants induced by ion beams were described. The ast and sep1 were obtained from the offspring of 1488 carbon ion-irradiated seeds respectively. The uvi1-uvi4 mutants were also induced from 1280 M{sub 1} lines. Thus, ion beams can induce not only known mutants such as tt, gl and hy but also novel mutants with high frequency. Even in the tt phenotype, two new mutant loci other than known loci were found. In chrysanthemum, several kinds of single, complex or stripped flower-color mutants that have been never induced by {gamma}irradiation, indicating that ion beams could produce a variety of mutants with the same phenotype. In conclusion, ion beams for the mutation induction are characterized by 1) to induce mutants with high frequency, 2) to show broad mutation spectrum and 3) to produce novel mutants. For these reasons, chemical mutagens such as EMS and low LET ionizing radiation such as X-rays and {gamma}-rays will predominantly induce many but small modifications or DNA damages on the DNA strands. As the result, several point mutations will be produced on the genome. On the contrary, ion beams as a high LET ionizing radiation will not cause so many but large and irreparable DNA damage locally, resulting in production of limited number of null mutation. (M.N.)

  17. Beam dynamics in heavy ion induction LINACS

    International Nuclear Information System (INIS)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed

  18. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  19. Further studies on beam breakup growth reduction by cavity cross-couplings in recirculating accelerators: Effects of long pulse length and multiturn recirculation

    International Nuclear Information System (INIS)

    Colombant, D.; Lau, Y.Y.

    1992-01-01

    Cavity cross-coupling was recently found to reduce beam breakup (BBU) growth in a recirculating accelerator known as the Spiral Line Induction Accelerator (SLIA). Here, we extend the analysis in two prespects: ong beam pulse lengths and a SLIA upgrade geometry which accelerates a 10 kA, 35 ns beam to 25 MeV via a 70 cavity, 7 turn recirculation. We found that when the beam pulse length τ exceeds the beam's transit time τ' between cross-coupled cavities, BBU growth may be worsened as a result of the cross-coupling among cavities. This situation is not unlike other long pulse recirculating accelerators where beam recirculation leads to beam breakup of a regenerative type. Thus, the advantage of BBU reduction by cavity cross-coupling is restricted primarily to beams with τ<τ', a condition envisioned for all SLIA geometries. For the 70 gap, 7 turn SLIA upgrade, we found that cavity cross-coupling may reduce BBU growth up to factors of a thousand when the quality factor Q of the deflecting modes are relatively high (like 100). In these high Q cases, the amount of growth reduction depends on the arrangement and sequence of beam recirculation. For Q < or approx. 20, BBU growth reduction by factors of hundreds is observed, but this reduction is insensitive to the sequence of beam recirculation. The above conclusions were based on simple models of cavity coupling that have been used in conventional microwave literature. Not addressed is the detail design consideration that leads to the desired degree of cavity coupling. (orig.)

  20. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  1. Mutation induction in spores of Bacillus subtilis by accelerated very heavy ions

    International Nuclear Information System (INIS)

    Baltschukat, K.; Horneck, G.; Buecker, H.; Facius, R.; Schaefer, M.

    1986-01-01

    Mutation induction (resistance to sodium azide) in spores of Bacillus subtilis was investigated after irradiation with heavy ions from Neon to Uranium with specific particle energies between 0.17 and 18.6 MeV/u. A strong dependence of the mutation induction cross section on particle charge and energy was observed. From the results it was concluded that mutation induction in bacterial spores by very heavy ions is mainly caused by secondary electrons. (orig.)

  2. KE basin recirculation/skimmer/IX systems restart acceptance test report

    International Nuclear Information System (INIS)

    Derosa, D.C.

    1996-01-01

    The 105 KE Basin Recirculation System and Skimmer Loop have been upgraded to provide the flexibility to run the Ion Exchange Modules on either system to support spent fuel removal for the Spent Nuclear Fuel Project. This Acceptance Test Report Provides the documentation of the leak Testing for the construction work associated with the IXM inlet and outlet piping, places the cartridge filters back in service and provides the functional testing of the IXM's on the recirculation and skimmer systems

  3. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    International Nuclear Information System (INIS)

    Friedman, A.

    1996-01-01

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as open-quotes driversclose quotes for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a open-quotes taxonomyclose quotes of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area

  4. Ion deposition by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hu, K.; Houk, R.S.

    1996-01-01

    An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of 165 Ho + at 5x10 12 ions s -1 . The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. copyright 1996 American Vacuum Society

  5. Recirculation of Chilean copper smelting dust with high impurities contents to the smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Sano, H.; Fujisawa, T. [Nagoya Univ., Nagoya (Japan). EcoTopia Science Inst.; Montenegro, V. [Nagoya Univ., Nagoya (Japan). Dept. of Materials Science and Engineering

    2007-07-01

    Dust generated during the copper smelting process is generally stabilized using hydrometallurgical methods as it contains high concentrations of arsenic. In this laboratory study, dust was recirculated during the smelting process in order to recover more copper and decrease dust emissions while recovering more copper. The behaviour of impurities and their influence on matte quality was also investigated. Industrial matte, flue dust, slag, and copper concentrates from a Chilean smelter were used as test materials. Dust recirculation tests were conducted in a simulated electric furnace. Off-gases were collected in a reaction tube, and the condensed volatile matter, slag, and matte phases were analyzed for their elemental content by inductively coupled plasma atomic emission spectrometry. The distribution of arsenic (As); antimony (Sb), bismuth (Bi), lead (Pb), and zinc (Zn) were investigated by varying the amounts of dust recirculating to the smelting stage with 21 per cent of the oxygen. Results showed that distributions of all analyzed elements increased with recirculation. It was concluded that copper can be recovered using the dust recirculation technique. However, impurities may limit the efficacy of the dust recirculation process. 6 refs., 3 tabs., 4 figs.

  6. Induction of HPRT- mutants in Chinese hamster V79 cells after heavy ion exposure

    International Nuclear Information System (INIS)

    Stoll, U.; Schneider, E.; Kranert, T.; Kiefer, J.

    1995-01-01

    The induction of resistance to 6-thioguanine by heavy ion exposure was investigated with various accelerated ions (oxygen-uranium) up to linear energy transfer (LET) values of about 15 000 keV/μm. Survival curves are exponential with fluence; mutation induction shows a linear dependence. Cross-sections (σ i : inactivation, σ m : mutation) were derived from the respective slopes. Generally, σ i rises over the whole LET range, but separates into different declining curves for single ions with LET values above 200 keV/μm. Similar behaviour is seen for σ m . The new SIS facility at GSI, Darmstadt, makes it possible to study the effects of ions with the same LET but very different energies and track structures. Experiments using nickel and oxygen ions (up to 400 MeV/u) showed that inactivation cross-sections do not depend very much on track structure, i.e. similar values are found with different ions at the same LET. This is not the case for mutation induction, where very energetic ions display considerably smaller induction cross-sections compared with low-energy ions of identical LET. Preliminary analyses using the polymerase chain reaction (PCR) demonstrate that even heavy ions cause ''small alterations'' (small deletions or base changes). The proportion of the total deletions seems to increase with LET. (orig.)

  7. Theory of mutation induction by accelerated very heavy ions in cells

    International Nuclear Information System (INIS)

    Kozubek, S.; Ryznar, L.

    1995-01-01

    Stochastic effects of ionising radiation in humans are related to mutation induction in cells. Therefore experimental data on mutation induction represents one of the endpoints used for the estimation of risk in radiation protection. Only very rough estimates can be made owing to the fact that a suitable theoretical approach does not exist. A simple method is proposed for the evaluation of the efficiency of mutation induction by accelerated very heavy ions in mammalian cells. The approach is based on the calculation of the fraction of energy deposited by accelerated particles in indirect collisions (hits) in the cells. Two different modes of particle mutagenic action can be distinguished. δ ray mutagenesis is related to those particles that preferentially kill the cells in direct hits. Track-core mutagenesis arises from direct hits and is observed for lighter ions or ions with very high energy (LET ≤ 500 keV.μm -1 ). Available experimental data agree reasonably well with the results based on theory. (author)

  8. Ion energy and angular distributions in inductively coupled Argon RF discharges

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10 12 /cm 3 electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased

  9. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    DEFF Research Database (Denmark)

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  10. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    There is considerable recent interest in the use of high energy heavy ions to irradiate deuterium-tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. This paper discusses how the technology of linear induction accelerators - well known to be matched to high current and short pulse length - may offer significant advantages for this application. (author)

  11. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    International Nuclear Information System (INIS)

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-01-01

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 (micro)s pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV

  12. Inductively coupled plasma and ion sources: History and state-of-the-art

    International Nuclear Information System (INIS)

    Hopwood, J.

    1994-01-01

    Over 100 years ago Hittorf first generated an electrodeless ''ring'' discharge by electromagnetic induction and began a 40 year controversy as to the true physical origin of such a discharge. Even Tesla advocated that these plasmas were merely the result of large electrostatic potential differences rather than electric fields induced by high frequency currents. Through clever experiments using crude spark gaps and leyden jars, the inductive nature of the discharge was confirmed in the late 1920's by MacKinnon, thus supporting the theories and experiments of Sir J.J. Thomson, perhaps the most staunch advocate of the induction mechanism. Today the authors routinely exploit the intense plasmas which are generated by induction. In this talk, the characteristics of inductively coupled plasma (ICP) and ion sources will be reviewed and future applications of intense plasma sources will be discussed. The inductively coupled plasma is Joule heated at moderate gas pressures, but the electromagnetic field penetration of these dense plasmas is limited by the plasma skin depth, typically a few millimeters to a few centimeters. The induction plasma is thus edge heated, a fact that constrains uniformity over large areas if helical induction coils are used. Flat, spiral coils may be used to improve uniformity by driving the plasma using a planar geometry. Issues of dimensional and frequency scaling will be discussed as they apply to large diameter sources. Ion beams extracted from ICPs are used for many applications including space propulsion, high power neutral beams, and materials processing. Broad ion beam (∼10 cm) current densities in excess of 100 mA-cm 2 at 100 keV are obtained in pulsed mode operation. Recently, however, more consumer-oriented applications of less intense ICPs are emerging

  13. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  14. Long-pulse induction acceleration of heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Firth, M.; Keefe, D.; Rosenblum, S.S.

    1983-03-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low-voltage trigger generators

  15. Long-pulse induction acceleration of heavy ions

    International Nuclear Information System (INIS)

    Faltons, A.; Firth, M.; Keefe, D.; Rosenblum, S.

    1983-01-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low voltage trigger generators

  16. Long-pulse induction acceleration of heavy-ions

    International Nuclear Information System (INIS)

    Faltens, A.; Firth, M.; Keefe, D.; Rosenblum, S.S.

    1983-01-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low voltage trigger generators

  17. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-09-01

    There is considerable recent interest in the use of high energy (γ = 1.1), heavy (A greater than or equal to 100) ions to irradiate deuterium--tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. A discussion is given of how the technology of Linear Induction Accelerators--well known to be matched to high current and short pulse length--may offer significant advantages for this application

  18. Transverse emittance studies of an induction accelerator of heavy ions

    International Nuclear Information System (INIS)

    Garvey, T.; Eylon, S.; Fessenden, T.J.; Hahn, K.; Henestroza, E.

    1991-01-01

    Current amplification of heavy ion beams is an integral feature of the induction linac approach to heavy ion fusion. As part of the Heavy Ion Fusion Accelerator Research program at LBL the authors have been studying the evolution of the transverse emittance of ion beams while they are undergoing current amplification, achieved by longitudinal bunch compression and acceleration. Experiments are conducted on MBE-4, a four beam Cs + induction linac. The space-charge dominated beams of MBE-4 are focused by electrostatic quadrupoles while they are accelerated from nominally 200 keV up to ∼ 1 MEV by 24 accelerating gaps. Initially the beams have currents of typically 4 mA to 10 mA per beam. Early experimental results showed a growth of the normalized emittance by a factor of 2 while the beam current was amplified by up to 9 times its initial value. The authors will discuss the results of recent experiments in which a mild bunch length compression rate, more typical of that required by a fusion driver, has shown that the normalized emittance can be maintained at its injection value (0.03 mm-mr) during acceleration

  19. Mutation induction of orchids by ion beams

    International Nuclear Information System (INIS)

    Affrida Abu Hassan; Zaiton Ahmad; Sakinah Ariffin; Oono, Yutaka; Hase, Yoshihiro; Shikazono; Naoya; Narumi, Issay; Tanaka, Atsushi

    2010-01-01

    Mutation induction using ionizing radiation provides an effective alternative means for improvement of orchids. In this study, ion beams were used because they have much higher linear energy transfer (LET) than X-rays or gamma rays, and subsequently lead to higher mutation frequency and broad mutation spectrum. The proto corm-like bodies (PLBs) of three orchid species (Dendrobium crumenatum, Dendrobium mirbellianum) were irradiated at various doses with 320 MeV 12 C 6+ ions accelerated by Azimuthally Varying Field (AVF) cyclotron at JAEAs Takasaki Ion Accelerators for Advanced Radiation Application (TIARA). The optimum irradiation condition and the effect of irradiation on each species were studied, particularly on flower colour and morphology, flowering habit and insect resistance. Dose effects on plantlet regeneration for each species were also obtained. Some morphological changes were observed in flowers of Dendrobium crumenatum, whilst one insect resistant mutant was obtained in Dendrobium mirbellianum. (author)

  20. Induction Linac Systems Experiments for heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Bangerter, R.O.

    1994-06-01

    The Lawrence Berkeley Laboratory and the Lawrence Livermore National Laboratory propose to build at LBL the Induction Linac Systems Experiments (ILSE), the next logical step toward the eventual goal of a heavy ion induction accelerator powerful enough to implode or drive inertial confinement fusion targets. Though much smaller than a driver, ILSE will be at full driver scale in several important parameters. Nearly all accelerator components and beam manipulations required for a driver will be tested. It is expected that ILSE will be built in stages as funds and technical progress allow. The first stage, called Elise will include all of the electrostatic quadrupole focused parts of ILSE

  1. High brightness K+ ion source for heavy ion fusion linear induction accelerators

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Chupp, W.; Rutkowski, H.

    1992-01-01

    Low emittance, high current, singly charged potassium thermionic ion sources are being developed for the Induction Linac System Experiment injector, ILSE. The ILSE, now in study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam considered is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated on a porous tungsten cup. The Single Beam Transport Experiment (SBTE) 120keV cesium source was redesigned and modified with the aid of an ion optics and gun design program (EGUN) to enable the evaluation of the K + source performance at high extraction currents of about 80mA from a one inch diameter source. The authors report on the source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, phase space distributions using the double slit scanning technique, and source emitting surface temperature dependence on heating power using a wire pyrometer

  2. An inductively heated hot cavity catcher laser ion source

    CERN Document Server

    Reponen, M; Pohjalainen, I; Rothe, S; Savonen, M; Sonnenschein, V; Voss, A

    2015-01-01

    An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Agisotopes. A proof-of-principle experiment has been realized by implanting primary 107Ag21+ ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z94Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusio...

  3. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  4. Recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Braun, H. E.; Dollard, W. J.; Tower, S. N.

    1980-01-01

    A recirculation system for use in pressurized water nuclear reactors to increase the output temperature of the reactor coolant, thereby achieving a significant improvement in plant efficiency without exceeding current core design limits. A portion of the hot outlet coolant is recirculated to the inlets of the peripheral fuel assemblies which operate at relatively low power levels. The outlet temperature from these peripheral fuel assemblies is increased to a temperature above that of the average core outlet. The recirculation system uses external pumps and introduces the hot recirculation coolant to the free space between the core barrel and the core baffle, where it flows downward and inward to the inlets of the peripheral fuel assemblies. In the unlikely event of a loss of coolant accident, the recirculation system flow path through the free space and to the inlets of the fuel assemblies is utilized for the injection of emergency coolant to the lower vessel and core. During emergency coolant injection, the emergency coolant is prevented from bypassing the core through the recirculation system by check valves inserted into the recirculation system piping

  5. Heavy ion fusion notes 94-1 through 94-9

    International Nuclear Information System (INIS)

    Judd, D.; Rintamaki, J.; Lund, S.

    1995-01-01

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms

  6. Heavy ion fusion notes 94-1 through 94-9

    Energy Technology Data Exchange (ETDEWEB)

    Judd, D.; Rintamaki, J.; Lund, S. [and others

    1995-03-13

    This report contains information on the following topics dealing with heavy ion fusion accelerators: steering errors and corrections in a small recirculator; evaluation of a capacitive beam position monitor diagnostic for use on the heavy ion recirculator; beam steering with dipole biased electrostatic quadrupoles; estimate of emittance growth; c-probes for the recirculator; analysis of the dipole plate shape and location; and generation of electric dipole waveforms.

  7. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Noh, I S; Kim, H R; Choi, Y J; Park, H S [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2007-04-15

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  8. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    International Nuclear Information System (INIS)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S.

    2007-04-01

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  9. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Kwan, J.W.; Ahle, L.; Beck, D.N.; Bieniosek, F. M.; Faltens, A.; Grote, D.P.; Halaxa, E.; Henestroza, E.; Herrmannsfeldt, W.B.; Karpenko, V.; Sangster, T.C.

    2000-01-01

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  10. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  11. Large aperture contact ionized Cs+1 ion source for an induction linac

    International Nuclear Information System (INIS)

    Abbott, S.; Chupp, W.; Faltens, A.; Herrmannsfeldt, W.; Hoyer, E.; Keefe, D.; Kim, C.H.; Rosenblum, S.; Shiloh, J.

    1979-03-01

    A 500 KeV one-ampere Cs +1 ion beam has been generated by contact ionization with a 30 cm dia. iridium hot plate. Reproducibility of space charge limited ion current wave forms at repetition rates up to 1 Hz has been verified. The beam is characterized to be very bright and suitable as an ion source for the induction linac based heavy ion fusion scheme. The hot anode plate was found to be reliable and self-cleaning during the operation

  12. Real-time control of ion density and ion energy in chlorine inductively coupled plasma etch processing

    International Nuclear Information System (INIS)

    Chang, C.-H.; Leou, K.-C.; Lin Chaung; Lin, T.-L.; Tseng, C.-W.; Tsai, C.-H.

    2003-01-01

    In this study, we have experimentally demonstrated the real-time closed-loop control of both ion density and ion energy in a chlorine inductively coupled plasma etcher. To measure positive ion density, the trace rare gases-optical emission spectroscopy is used to measure the chlorine positive ion density. An rf voltage probe is adopted to measure the root-mean-square rf voltage on the electrostatic chuck which is linearly dependent on sheath voltage. One actuator is a 13.56 MHz rf generator to drive the inductive coil seated on a ceramic window. The second actuator is also a 13.56 MHz rf generator to power the electrostatic chuck. The closed-loop controller is designed to compensate for process drift, process disturbance, and pilot wafer effect and to minimize steady-state error of plasma parameters. This controller has been used to control the etch process of unpatterned polysilicon. The experimental results showed that the closed-loop control had a better repeatability of plasma parameters compared with open-loop control. The closed-loop control can eliminate the process disturbance resulting from reflected power. In addition, experimental results also demonstrated that closed-loop control has a better reproducibility in etch rate as compared with open-loop control

  13. Longitudinal instability in heavy-ion-fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1993-05-01

    A induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls

  14. Electron and Negative Ion Densities in C2F6 and CHF3 Containing Inductively Coupled Discharges

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Electron and negative ion densities have been measured in inductively coupled discharges containing C 2 F 6 and CHF 3 . Line integrated electron density was determined using a microwave interferometer, negative ion densities were inferred using laser photodetachment spectroscopy, and electron temperature was determined using a Langmuir probe. For the range of induction powers, pressures and bias power investigated, the electron density peaked at 9 x 10 12 cm -2 (line-integrated) or approximately 9 x 10 11 cm -3 . The negative ion density peaked at approximately 1.3 x 10 11 cm -3 . A maximum in the negative ion density as a function of induction coil power was observed. The maximum is attributed to a power dependent change in the density of one or more of the potential negative ion precursor species since the electron temperature did not depend strongly on power. The variation of photodetachment with laser wavelength indicated that the dominant negative ion was F - . Measurement of the decay of the negative ion density in the afterglow of a pulse modulated discharge was used to determine the ion-ion recombination rate for CF 4 , C 2 F 6 and CHF 3 discharges

  15. Investigation of induction cells and modulator design for heavy ion accelerators

    International Nuclear Information System (INIS)

    Fong, C.G.; Reginato, L.R.

    1992-01-01

    The induction linear accelerator has been a leading candidate in the U.S. for the acceleration of high current heavy ion beams to initiate inertial confinement fusion (ICF). This paper describes the rather unique parameters derived from the accelerator beam dynamics, and addresses the design and development of accelerator induction cells and their modulators to be used in a near-term driver scaling experiment named the Induction Linac Systems Experiments (ILSE) planned for construction starting in 1994. Work is underway to develop the cells and their pulse modulators. Tradeoffs between the amorphous core material, pulse length, rise and fall time are made against efficiency, costs and technical risks are discussed

  16. High ratio recirculating gas compressor

    Science.gov (United States)

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  17. MBE-4: an induction linac experiment for heavy ion fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brodzik, D.A.

    1986-06-01

    The multiple-beam induction linac approach to a heavy ion fusion driver features continuous current amplification along the accelerator and a minimum of transverse beam manipulation from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. This driver approach exploits developments in electron induction linac technology that have occurred within the last 15 years at LBL, LLNL and NBS. MBE-4 is a four beam induction linac that models much of the accelerator physics of the electrostatically focused section of a considerably longer induction accelerator. Four parallel Cs + beams are electrostatically focussed and will be accelerated from 200 keV to approximately one MeV when the experiment is complete in the spring of 1987. The current in each of the four beams will increase from 10 to 40 mA due to both increase in beam speed and shortening of the bunch length. Results of experiments with the injector and first eight accelerating gaps are presented

  18. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    Science.gov (United States)

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Campbell, Laura; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains approximately 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All non-recirculating resident memory T cells (TRM) expressed CD69, but the majority were CD4+, CD103− and located in the dermis, in contrast to studies in mice. Both CD4+ and CD8+ CD103+ TRM were enriched in the epidermis, had potent effector functions and had a limited proliferative capacity compared to CD103− TRM. TRM of both types had more potent effector functions than recirculating T cells. Induction of CD103 on human T cells was enhanced by keratinocyte contact, depended on TGFβ and was independent of T cell keratinocyte adhesive interactions. We observed two distinct populations of recirculating T cells, CCR7+/L-selectin+ central memory T cells (TCM) and CCR7+/L-selectin− T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions and TMM were depleted more slowly from skin after alemtuzumab, suggesting TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. PMID:25787765

  19. DC plasma ion implantation in an inductively coupled RF plasma

    International Nuclear Information System (INIS)

    Silawatshananai, C.; Matan, N.; Pakpum, C.; Pussadee, N.; Srisantitam, P.; Davynov, S.; Vilaithong, T.

    2004-01-01

    Various modes of plasma ion implantation have been investigated in a small inductively coupled 13.6 MHz RF plasma source. Plasma ion implantation with HVDC(up to -10 kV bias) has been investigated in order to incorporate with the conventional implantation of diamond like carbon. In this preliminary work, nitrogen ions are implanted into the stainless steel sample with a dose of 5.5 x 10 -2 cm for a short implanting time of 7 minutes without target cooling. Surface properties such as microhardness, wear rate and the friction coefficient have been improved. X-ray and SEM analyses show distinct structural changes on the surface. A combination of sheath assisted implantation and thermal diffusion may be responsible for improvement in surface properties. (orig.)

  20. Linear induction accelerator requirements for ion fast ignition

    International Nuclear Information System (INIS)

    Logan, G.

    1998-01-01

    induction linacs, the purpose of this memo is to explore possible new features and characteristic parameters that induction linacs would need to meet the stringent requirements for beam quality and compression (sufficiently low longitudinal and transverse thermal spread) for ion driven fast ignition. Separately, Ed Lee at LBNL is looking at heavy-ion synchrotrons to meet similar fast ignition requirements. Parameters relating to cost (e.g, total beam-line length and transport quads, total core volt-seconds and power switching) have to be considered in addition to meeting the challenging beam quality requirements for fast ignition compared to conventional HIF. The aim of this preliminary study is to motivate, after critical debate, taking a next step to do more detailed designs, particle simulations, and experimental tests of the most critical accelerator elements and focusing optics, to further assess the feasibility of ion-driven fast ignition

  1. Diagnostic studies of ion beam formation in inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jenee L. [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  2. DNA damage on nano- and micrometer scales impacts dicentric induction: computer modelling of ion microbeam experiments

    Science.gov (United States)

    Friedland, Werner; Kundrat, Pavel; Schmitt, Elke

    2016-07-01

    Detailed understanding of the enhanced relative biological effectiveness (RBE) of ions, in particular at high linear energy transfer (LET) values, is needed to fully explore the radiation risk of manned space missions. It is generally accepted that the enhanced RBE of high-LET particles results from the DNA lesion patterns, in particular DNA double-strand breaks (DSB), due to the spatial clustering of energy deposits around their trajectories. In conventional experiments on biological effects of radiation types of diverse quality, however, clustering of energy deposition events on nanometer scale that is relevant for the induction and local complexity of DSB is inherently interlinked with regional (sub-)micrometer-scale DSB clustering along the particle tracks. Due to this limitation, the role of both (nano- and micrometer) scales on the induction of diverse biological endpoints cannot be frankly separated. To address this issue in a unique way, experiments at the ion microbeam SNAKE [1] and corresponding track-structure based model calculations of DSB induction and subsequent repair with the biophysical code PARTRAC [2] have been performed. In the experiments, hybrid human-hamster A_{L} cells were irradiated with 20 MeV (2.6 keV/μm) protons, 45 MeV (60 keV/μm) lithium ions or 55 MeV (310 keV/μm) carbon ions. The ions were either quasi-homogeneously distributed or focused to 0.5 x 1 μm^{2} spots on regular matrix patterns of 5.4 μm, 7.6 μm and 10.6 μm grid size, with pre-defined particle numbers per spot so as to deposit a mean dose of 1.7 Gy for all irradiation patterns. As expected, the induction of dicentrics by homogeneous irradiation increased with LET: lithium and carbon ions induced about two- and four-fold higher yields of dicentrics than protons. The induction of dicentrics is, however, affected by µm-scale, too: focusing 20 lithium ions or 451 protons per spot on a 10.6 μm grid induced two or three times more dicentrics, respectively, than a

  3. Polyatomic ions in inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ferguson, Jill Wisnewski; Dudley, Timothy J.; Sears, Kyle C.; McIntyre, Sally M.; Gordon, Mark S.; Houk, R.S.

    2009-01-01

    Several polyatomic ions in inductively coupled plasma-mass spectrometry are studied experimentally and by computational methods. Novel calculations based on spin-restricted open shell second order perturbation theory (ZAPT2) and coupled cluster (CCSD(T)) theory are performed to determine the energies, structures and partition functions of the ions. These values are combined with experimental data to evaluate a dissociation constant and gas kinetic temperature (T gas ) value. In our opinion, the resulting T gas value can sometimes be interpreted to deduce the location where the polyatomic ion of interest is generated. The dissociation of N 2 H + to N 2 + leads to a calculated T gas of 4550 to 4900 K, depending on the computational data used. The COH + to CO + system yields a similar temperature, which is not surprising considering the similar energies and structures of COH + and N 2 H + . The dissociation of H 2 CO + to HCO + leads to a much lower T gas ( 2 COH + to HCOH + generates a T gas value between those from the other H x CO + ions studied here. All of these measured T gas values correspond to formation of extra polyatomic ion in the interface or extraction region. The computations reveal the existence of isomers such as HCO + and COH + , and H 2 CO + and HCOH + , which have virtually the same m/z values and need to be considered in the interpretation of results.

  4. Asymptotic analysis of the longitudinal instability of a heavy ion induction linac

    International Nuclear Information System (INIS)

    Lee, E.P.; Smith, L.

    1990-09-01

    An Induction Linac accelerating high ion currents at sub-relativistic energies is predicted to exhibit unstable growth of current fluctuations at low frequencies. The instability is driven by the interaction between the beam and complex impedance of the induction modules. In general, the detailed form of the growing disturbance depends on the initial perturbation and ratio of pulse length to accelerator length, as well as the specific form of the impedance. An asymptotic analysis of the several regimes of interest is presented. 1 ref

  5. Fractal solutions of recirculation tubular chemical reactors

    International Nuclear Information System (INIS)

    Berezowski, Marek

    2003-01-01

    Three kinds of fractal solutions of model of recirculation non-adiabatic tubular chemical reactors are presented. The first kind concerns the structure of Feigenbaum's diagram on the limit of chaos. The second kind and the third one concern the effect of initial conditions on the dynamic solutions of models. In the course of computations two types of recirculation were considered, viz. the recirculation of mass (return of a part of products' stream) and recirculation of heat (heat exchange in the external heat exchanger)

  6. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  7. Beam transport physics issues for the recirculating linear accelerator

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1992-11-01

    The Recirculating Linear Accelerator (RLA) utilizes the Ion Focused Regime (IFR) of beam transport plus a ramped bending field to guide the beam around the curved sections. Several issues of beam transport are considered. Beam transverse perturbations that could result in growth of the ion hose instability are analyzed. It is found that transverse kicks due to bending field errors, energy mismatches and fringe fields are the most important. The scaling of these perturbations with beam and channel parameters is derived. The effect of ramping of the bending field on the preformed plasma channel is then considered. For RLA experimental parameters the effect is found to be very small. For high energies however, in addition to axial heating, it is found that ramping the field causes compression of the plasma channel along the radius of curvature. This compression results in a quasi-equilibrium plasma electron temperature along the field lines which leads to collisionless transport towards the walls. The analysis of compression is done in an approximate way using a single particle picture and the channel expansion is analyzed using an envelope solution which gives a simple expression for the expansion time. This solution is then verified by Buckshot simulations. For a bending field of 2 kG ramped in 2 μ-secs and an argon channel (RLA parameters) we estimate that the channel radius doubling time (along field lines) is of the order of 0.5 μ-secs. Finally the effect of electron impact ionization due to axially heated electrons by the action of the inductive field is estimated. It is found that in Argon gas the electron avalanche time could be as low as 0.5 μ-sec which is smaller than the field ramp time

  8. Dose response and mutation induction by ion beam irradiation in buckwheat

    International Nuclear Information System (INIS)

    Morishita, T.; Yamaguchi, H.; Degi, K.; Shikazono, N.; Hase, Y.; Tanaka, A.; Abe, T.

    2003-01-01

    The biological effects of ion beams were investigated to pursue the development of a method for breeding by mutation in buckwheat. Common buckwheat (Botansoba, Bot) and tartary buckwheat (Rotundatiem, Rot) seeds were exposed to various ions in linear energy transfer (LET) at 9-630 keV/μm. The lethal dose 50 (LD 50 ) of ion beams were 10-300 Gy (Bot) and 30-500 Gy (Rot). It was indicated that a penetrating depth in excess of 1.7 mm is necessary to thoroughly saturate the target, and ions with a penetrating depth of less than 2.2 mm were affected by the presence of hulls. The maximum values of the relative biological effectiveness were 17.7 (Rot) and 22.5 (Bot) at 305 keV/μm. The effective cross sections increased with the LET, and the maximum values were 2.7 (Rot) and 3.0 μm 2 (Bot). The mutation induction effects of He and C ions were higher than those of gamma rays

  9. The light ion pulsed power induction accelerator for ETF

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  10. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  11. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  12. The proof-of-concept experiment for the spiral line induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, S D; Bailey, V L; Smith, J; Lidestri, J; Thomas, H; Lackner, H; Nishimoto, H [Pulse Sciences, Inc., San Leandro, CA (United States)

    1997-12-31

    A proof-of-concept experiment (POCE) for the Spiral Line Induction Accelerator (SLIA) is underway at Pulse Sciences, Inc. to demonstrate a new compact high current ({>=} few kiloamperes) recirculating induction accelerator for high power ({>=} 100 kW) commercial processing and other applications. Hardware has been fabricated to generate 9.5 MeV electron beams at 2 and 10 kA by recirculating the beam for two passes through each of two 1.5 MeV accelerating units. Initial experiments have demonstrated acceleration of 2 and 10 kA beams to 5.5 MeV by transport around a complete turn with two passes through a single accelerating unit and work is currently in progress to complete the full POCE. Experimental results to date are reported. (author). 5 figs., 14 refs.

  13. Performance of Water Recirculation Loop Maintentance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  14. Performance of Water Recirculation Loop Maintenance Components for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin

    2014-01-01

    Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  15. Heavy ion induction linac drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Lee, E.P.; Hovingh, J.

    1988-10-01

    Intense beams of high energy heavy ions (e.g., 10 GeV Hg) are an attractive option for an ICF driver because of their favorable energy deposition characteristics. The accelerator systems to produce the beams at the required power level are a development from existing technologies of the induction linac, rf linac/storage ring, and synchrotron. The high repetition rate of the accelerator systems, and the high efficiency which can be realized at high current make this approach especially suitable for commercial ICF. The present report gives a summary of the main features of the induction linac driver system, which is the approach now pursued in the USA. The main subsystems, consisting of injector, multiple beam accelerator at low and high energy, transport and pulse compression lines, and final focus are described. Scale relations are given for the current limits and other features of these subsystems. 17 refs., 1 fig., 1 tab

  16. Preliminary results from MBE-4: A four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.; Warwick, P.b.A.I.

    1986-01-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  17. Preliminary results from MBE-4: a four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.

    1986-05-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  18. The bio-ethanol production with the thin stillage recirculation

    Directory of Open Access Journals (Sweden)

    M. Rakin

    2009-01-01

    Full Text Available In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin stillage, the bioethanol yield increased and was above 100 %. Higher bioethanol yield than 100 % can be explained by the fact that the thin stillage contains carbohydrates, amino acids and yeast cells degradation products. The bioethanol yield increased with the increased number of thin stillage recirculation cycles. Dry matter content in fermenting slurry increased with the increased thin stillage quantity and the number of the thin stillage recirculation cycles (8.04 % for the first and 9.40 % for the sixth cycle. Dry matter content in thin stillage increased with the increased thin stillage quantity and the number of thin stillage recirculation cycles. Based on the obtained results it can be concluded that thin stillage recirculation increased the bioethanol yield. The highest bioethanol yields were obtained with recirculation of 10% thin stillage.

  19. NGL recovery increase through natural gasoline recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rivas M., M.; Bracho, J.L.; Murray, J. [Lagoven S.A., Maracaibo (Venezuela). Western Div.

    1997-12-31

    Given that the gas being processed in the compression plants Tia Juana 2 (PCTJ-2) and Tia Juana 3 (PCTJ-3) of Lagoven, S.A., an operating affiliate of Petroleos de Venezuela, S.A. has become learner through time, current production of natural gas liquids (NGL) and plant efficiency are significantly lower, compared to design and first obtained values. In this sense and aimed at increasing propane production, an optimization study on condensate stream recirculation and absorber installation was carried out to affect the process equilibrium constants thereby obtaining deeper extraction. Recirculation streams options were recirculation of natural gasoline obtained from the downstream fractionation process and recirculation of a conditioned, unfractionated, deethanized condensate stream. From the study, the natural gasoline recirculation scheme was determined to be the most efficient NGL recovery process. Accordingly, Lagoven, S.A. has undertaken a project to carry out this optimization scheme in PCTJ-2 and PCTJ-3. Construction stages are currently underway with completion scheduled at the end of 1997.

  20. A detailed BWR recirculation loop model for RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Araiza-Martínez, Enrique, E-mail: enrique.araiza@inin.gob.mx; Ortiz-Villafuerte, Javier, E-mail: javier.ortiz@inin.gob.mx; Castillo-Durán, Rogelio, E-mail: rogelio.castillo@inin.gob.mx

    2017-01-15

    Highlights: • A new detailed BWR recirculation loop model was developed for RELAP. • All jet pumps, risers, manifold, suction and control valves, and recirculation pump are modeled. • Model is tested against data from partial blockage of two jet pumps. • For practical applications, simulation results showed good agreement with available data. - Abstract: A new detailed geometric model of the whole recirculation loop of a BWR has been developed for the code RELAP. This detailed model includes the 10 jet pumps, 5 risers, manifold, suction and control valves, and the recirculation pump, per recirculation loop. The model is tested against data from an event of partial blockage at the entrance nozzle of one jet pump in both recirculation loops. For practical applications, simulation results showed good agreement with data. Then, values of parameters considered as figure of merit (reactor power, dome pressure, core flow, among others) for this event are compared against those from the common 1 jet pump per loop model. The results show that new detailed model led to a closer prediction of the reported power change. The detailed recirculation loop model can provide more reliable boundary condition data to a CFD models for studies of, for example, flow induced vibration, wear, and crack initiation.

  1. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  2. Beam dynamics and longitudinal instabilities in heavy ion fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1992-08-01

    An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls

  3. Development of heavy ion induction linear accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Warwick, A.I.; Celata, C.; Faltens, A.; Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Meuth, H.

    1988-01-01

    This paper reports on a continuing study in the USA of the feasibility of an induction linac fusion driver, which would accelerate multiple heavy-ion beams through a sequence of pulsed transformers and amplify the beam current during acceleration. The driver cost could be $200/Joule or less and the cost of electricity in the range of .050-.055$/kWhr. As a next stage of development to assess the feasibility of this approach the authors propose an Induction Linac Systems Experiment. This will test some of the technology and multiple-beam manipulations necessary for a fusion driver

  4. Development of heavy ion induction linear accelerators as drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Warwick, A.I.; Celata, C.; Faltens, A.

    1988-06-01

    There is a continuing study in the USA of the feasibility of an induction linac fusion driver, which would accelerate multiple heavy-ion beams through a sequence of pulsed transformers and amplify the beam current during acceleration. The driver cost could be $200/Joule or less and the cost of electricity in the range of .050-.055$/kWhr. As a next stage of development to assess the feasibility of this approach we propose an ''Induction Linac Systems Experiment''. This will test some of the technology and multiple-beam manipulations necessary for a fusion driver. 7 refs., 1 fig

  5. INFLUENCE OF SLUDGE RECIRCULATION ON NUTRIENT REMOVAL IN SUBMERGED MEMBRANE BIOREACTORS

    Directory of Open Access Journals (Sweden)

    María Casamitjanaa Causa

    2015-06-01

    Full Text Available Membrane bioreactors (MBR technology is a well-developed wastewater treatment process; however, the integrated operation between biological reactions and physical filtration has been poorly studied. Among other operational parameters, optimal control of sludge recirculation can enhance nitrogen and phosphorous removal processes, but the effects on sludge filterability is not clear. In this paper, different recirculation flow rates were tested to evaluate consequences on sludge filterability and nutrient removal in a MBR-UCT pilot plant treating real municipal wastewater. Three distinct sludge recirculation flows were studied during 10 weeks [external recirculation (from the membrane tank to the anoxic reactor, anoxic recirculation (from the aerobic to the anoxic reactor and anaerobic recirculation (from the anoxic to the anaerobic reactor]. The obtained results have shown that anaerobic recirculation affected nutrient removal in an inversely proportional way, whereas anoxic recirculation had a directly proportional effect. Referring sludge characteristics, filterability and capillarity suction time (CST remained independent of sludge recirculation, whereas CST is proportional to transmembrane pressure (TMP, which seems to depend on external and anoxic sludge recirculation.

  6. The bio-ethanol production with the thin stillage recirculation

    OpenAIRE

    M. Rakin; J. Pejin; O. Grujić; Lj. Mojović; D. Pejin

    2009-01-01

    In this paper, the bioethanol production with the thin stillage recirculation in mashing was investigated. The mashing was performed with recirculation of: 0, 10, 20 and 30 % of the thin stillage. The thin stillage recirculation was repeated six times. In the experiment without the thin stillage, the recirculation bioethanol yield (compared to the theoretical yield) was 97.96 %, which implicates that the experiment conditions were chosen and performed well. With the addition of the thin still...

  7. NGL recovery being hiked by natural-gasoline recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Rivas M, M.; Bracho, J.L. [Lagoven S.A., Maracaibo (Venezuela); Murray, J.E. [Murray (James E.), Corpus Christi, TX (United States)

    1997-07-07

    Construction will be completed later this year at two compression plants operated by Lagoven, S.A., to install natural-gasoline recirculation to improve NGL recovery. The project is the result of a study of condensate-stream recirculation and absorber operations at the compression plants Tia Juana 2 (PCTJ-2) and Tia Juana 3 (PCTJ-3), offshore Lake Maracaibo in western Venezuela. The PCTJ-2 and PCTJ-3 gas compression plants have two systems: gas compression and NGL extraction. Previous analysis of the NGL extraction and fractionation processes of Lagoven determined that there are two practical and attractive alternatives for the recirculation of the condensate streams in PCTJ-2 and 3: recirculation of natural gasoline from the Ule LPG plant; recirculation of a conditioned condensate from the de-ethanizer tower of each plant. Both alternatives are discussed. Also described are fractionation capacity, and modifications for adding absorption and fractionation.

  8. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  9. The radon daughter radiation hazard in controlled recirculation systems

    International Nuclear Information System (INIS)

    Rolle, R.; Burton, R.C.

    1987-01-01

    In deep South African gold mines, controlled recirculation systems with air cooling are being used to an increasing extent to improve the thermal environment. Recirculation causes some air to reside in the working area for a longer time than would have occurred without recirculation. Since radon daughters grow spontaneously from radon there is some concern that, with the extended residence time, the potential radiation hazard could increase to an unacceptable level. This paper describes the results obtained from a theoretical model of a controlled recirculation system. Guidelines for the design of recirculation systems to control the radon daughter radiation, and to keep it within acceptable limits are provided. 3 refs., 5 figs

  10. Beam dynamics and longitudinal instabilities in heavy-ion-fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1992-01-01

    An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls. (Author) tab., 10 refs

  11. BWR recirculation pump diagnostic expert system

    International Nuclear Information System (INIS)

    Chiang, S.C.; Morimoto, C.N.; Torres, M.R.

    2004-01-01

    At General Electric (GE), an on-line expert system to support maintenance decisions for BWR recirculation pumps for nuclear power plants has been developed. This diagnostic expert system is an interactive on-line system that furnishes diagnostic information concerning BWR recirculation pump operational problems. It effectively provides the recirculation pump diagnostic expertise in the plant control room continuously 24 hours a day. The expert system is interfaced to an on-line monitoring system, which uses existing plant sensors to acquire non-safety related data in real time. The expert system correlates and evaluates process data and vibration data by applying expert rules to determine the condition of a BWR recirculation pump system by applying knowledge based rules. Any diagnosis will be automatically displayed, indicating which pump may have a problem, the category of the problem, and the degree of concern expressed by the validity index and color hierarchy. The rules incorporate the expert knowledge from various technical sources such as plant experience, engineering principles, and published reports. These rules are installed in IF-THEN formats and the resulting truth values are also expressed in fuzzy terms and a certainty factor called a validity index. This GE Recirculation Pump Expert System uses industry-standard software, hardware, and network access to provide flexible interfaces with other possible data acquisition systems. Gensym G2 Real-Time Expert System is used for the expert shell and provides the graphical user interface, knowledge base, and inference engine capabilities. (author)

  12. Predictions of ion energy distributions and radical fluxes in radio frequency biased inductively coupled plasma etching reactors

    Science.gov (United States)

    Hoekstra, Robert J.; Kushner, Mark J.

    1996-03-01

    Inductively coupled plasma (ICP) reactors are being developed for low gas pressure (radio frequency (rf) bias is applied to the substrate. One of the goals of these systems is to independently control the magnitude of the ion flux by the inductively coupled power deposition, and the acceleration of ions into the substrate by the rf bias. In high plasma density reactors the width of the sheath above the wafer may be sufficiently thin that ions are able to traverse it in approximately 1 rf cycle, even at 13.56 MHz. As a consequence, the ion energy distribution (IED) may have a shape typically associated with lower frequency operation in conventional reactive ion etching tools. In this paper, we present results from a computer model for the IED incident on the wafer in ICP etching reactors. We find that in the parameter space of interest, the shape of the IED depends both on the amplitude of the rf bias and on the ICP power. The former quantity determines the average energy of the IED. The latter quantity controls the width of the sheath, the transit time of ions across the sheath and hence the width of the IED. In general, high ICP powers (thinner sheaths) produce wider IEDs.

  13. Device for controlling a recirculation flow in a reactor

    International Nuclear Information System (INIS)

    Shida, Toichi; Tohei, Kazushige; Hirose, Masao; Nakamura, Hideo.

    1976-01-01

    Object: To provide an emergency cut-off valve in a recirculation system in a reactor to control the recirculation at the time of turbine trip or load cut-off, thereby relieving excessive increase in heat output of fuel. Structure: A recirculation pump is driven through a recirculation pump motor by an AC generator, which is driven by a driving motor through a fluid coupling, so that reactor water passes the emergency cut-off valve and recirculation flow stop valve and then passes a jet pump into the core. At the time of turbine trip or load cut-off, the emergency cut-off valve is closed by a hydraulic circuit, whereby core flow is merely decreased by 20 to 30% in a short period of time to restrain excessive increase in heat output. (Yoshino, Y.)

  14. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  15. Inductive plasma source for the ion treatment of AISI-304 SS

    International Nuclear Information System (INIS)

    Piedad-Beneitez, A de la; Lopez-Callejas, R; Granda-Gutierrez, E E; Rodriguez-Mendez, B G; Perez-Martinez, J A; Flores-Fuentes, A A; Valencia-Alvarado, R; Barocio, S R; Mercado-Cabrera, A; Pena-Eguiluz, R; Munoz-Castro, A E

    2008-01-01

    The design and construction of a simple inductive plasma source is described as constituted by an evacuated Pyrex glass cylinder reactor with 190 mm inner diameter and 500 mm length. This discharge vessel is coaxially surrounded by a cylindrically wound antenna, 240 mm in diameter, made of 3.2 mm wide copper wire. The antenna is supplied by a 13.56 MHz RF generator whose resulting electric field is able to create the plasma. When nitrogen is admitted to the vessel, the plasma generation takes place within the 0.1-50 Pa work pressure and 300-600 W RF power. The plasma density has been established by double Langmuir probes between 3.2 x 10 15 and 2.4 x 10 18 m -3 . This inductive plasma set up is meant to modify the surface of AISI-304 stainless steel by means of ion deposition, thanks to the sample bias provided by an external - 400 V dc supply, in order to improve the steel hardness without compromising its corrosion resistance. Once accelerated by the negative bias, the plasma ions impinge on the sample nitriding it by diffusion. The treated samples were characterized by x-ray diffraction (XRD) indicating the formation of the expanded gamma phase, by scanning electron microscopy (SEM) providing the atomic percentages of nitrogen, and by microhardness (HV) measurement.

  16. Particle recirculation in the ergodic divertor of Tore Supra

    International Nuclear Information System (INIS)

    Gunn, J.P.; Azeoual, A.; Becoulet, M.

    1999-01-01

    The present paper addresses the issue of particle recirculation in discharges where low energy flux to ergodic divertor target plates is achieved, in highly radiating detached ohmic plasmas. Plasma temperature and particle flux are measured by flush-mounted probes in the divertor plates, and by an upstream fast scanning Mach probe. The scalings with core density of the ion flux and electron temperature are well described by the simple two-point model used in axisymmetric poloidal divertors. The detachment signature is a pressure drop that occurs when the edge temperature falls below 10 eV. The parallel ion flux gradient is always positive, indicating that recombination is unlikely to play an important role in detachment. Visible spectroscopy of a neutralizer plate shows that attainment of cold detached plasmas near the density limit coincides with an abrupt increase of fueling for both deuterium and impurities. A feedback algorithm based on real time Langmuir probe measurements has been developed to monitor detachment and avoid disruptions. (authors)

  17. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Ozkaya, Bestamin

    2007-01-01

    In this study, the effect of leachate recirculation on aerobic and anaerobic degradation of municipal solid wastes is determined by four laboratory-scale landfill reactors. The options studied and compared with the traditional anaerobic landfill are: leachate recirculation, landfill aeration, and aeration with leachate recirculation. Leachate quality is regularly monitored by the means of pH, alkalinity, total dissolved solids, conductivity, oxidation-reduction potential, chloride, chemical oxygen demand, ammonia, and total Kjeldahl nitrogen, in addition to generated leachate quantity. Aerobic leachate recirculated landfill appears to be the most effective option in the removal of organic matter and ammonia. The main difference between aerobic recirculated and non-recirculated landfill options is determined at leachate quantity. Recirculation is more effective on anaerobic degradation of solid waste than aerobic degradation. Further studies are going on to determine the optimum operational conditions for aeration and leachate recirculation rates, also with the operational costs of aeration and recirculation

  18. Engine with pulse-suppressed dedicated exhaust gas recirculation

    Science.gov (United States)

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  19. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins.

    Science.gov (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki

    2018-01-01

    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Intense heavy-ion beam transport with electric and magnetic quadrupoles

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Hopkins, H.S.

    1995-08-01

    As part of the small induction recirculator development at LLNL, the authors are testing an injector and transport line that delivers 4 micros beams of potassium with repetition rates up to 10 Hz at a nominal current of 2 mA. The normalized K-V equivalent emittance of the beams is near 0.02 π mm-mrad and is mostly determined by the temperature of the source (0.1 eV). K + ions generated at 80 keV in a Pierce diode are matched to an alternating gradient transport line by seven electric quadrupoles. Two additional quads have been modified to serve as two-axis steerers. The matching section is followed by a transport section comprised of seven permanent magnet quadrupoles. Matching to this section is achieved by adjusting the voltages on the electric quadrupoles to voltages calculated by an envelope matching code. Measurements of beam envelope parameters are made at the matching section entrance and exit as well as at the end of the permanent magnet transport section. Beam current waveforms along the experiment are compared with results from a one-dimension longitudinal dynamics code. Initial experiments show particle loss occurring at the beam head as a result of overtaking. The apparatus is also being used for the development of non or minimally intercepting diagnostics for future recirculator experiments. These include capacitive monitors for determining beam line-charge density and position in the recirculator; flying wire scanners for beam position; and gated TV scanners for measuring beam profiles and emittance

  1. 225-B ion exchange piping design documentation

    International Nuclear Information System (INIS)

    Prather, M.C.

    1996-02-01

    This document describes the interface between the planned permanent ion exchange piping system and the planned portable ion exchange system. This is part of the Waste Encapsulation and Storage Facility (WESF). In order to decouple this WESF from B-Plant and to improve recovery from a capsule leak, contaminated pool cell water will be recirculated through a portable ion exchange resin system

  2. lambda. -prophage induction in repair-deficient and wild type E. coli strains by. gamma. -rays and heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bonev, M.N.; Kozubek, S.; Krasavin, E.A.; Amirtajev, K.G. (Joint Inst. for Nuclear Research, Dubna (USSR))

    1990-05-01

    {lambda}-prophage induction in repair-deficient and wild-type E. coli strains by heavy ions and {gamma}-rays was investigated. The dose dependence of the fraction of induced cells has been measured and its initial slope ({lambda}-induction potency) determined. Induction by {gamma}-rays was found to be more efficient in a polA-repair-deficient strain; the value of {lambda}-induction potency is zero in lexA{sup -} and recA{sup -} strains. The {lambda}-induction potency potency increased with LET for wild-type cells but remained constant in polA{sup -} mutant cells. It is suggested that DNA damage triggering the {lambda}-prophage induction in the case of ionizing radiation could be a type of DNA single-strand break with complex structures which cannot be repaired by fast repair processes, and requires a substantial level of energy deposition for induction in a DNA molecule. (author).

  3. Beam Dynamics Studies in Recirculating Machines

    CERN Document Server

    Pellegrini, Dario; Latina, A

    The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...

  4. Relative Biological Effectiveness of HZE Fe Ions for Induction ofMicro-Nuclei at Low Doses

    Energy Technology Data Exchange (ETDEWEB)

    Groesser, Torsten; Chun, Eugene; Rydberg, Bjorn

    2007-01-16

    Dose-response curves for induction of micro-nuclei (MN) was measured in Chinese hamster V79 and xrs6 (Ku80-) cells and in human mammary epithelial MCF10A cells in the dose range of 0.05-1 Gy. The Chinese Hamster cells were exposed to 1 GeV/u Fe ions, 600 MeV/u Fe ions, and 300 MeV/u Fe ions (LETs of 151, 176 and 235 keV/{micro}m respectively) as well as with 320 kVp X-rays as reference. Second-order polynomials were fitted to the induction curves and the initial slopes (the alpha values) were used to calculate RBE. For the repair proficient V79 cells the RBE at these low doses increased with LET. The values obtained were 3.1 (LET=151 keV/{micro}m), 4.3 (LET = 176 keV/{micro}m) and 5.7 (LET = 235 keV/{micro}m), while the RBE was close to 1 for the repair deficient xrs6 cells regardless of LET. For the MCF10A cells the RBE was determined for 1 GeV/u Fe ions and found to be 5.4, slightly higher than for V79 cells. To test the effect of shielding, the 1 GeV/u Fe ion beam was intercepted by various thickness of high-density polyethylene plastic absorbers, which resulted in energy loss and fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers decreased in proportion to the decrease in dose both before and after the Fe ion Bragg peak (excluding the area around the Fe-ion Bragg peak itself), indicating that RBE did not change significantly due to shielding. At the Bragg peak the effectiveness for MN formation per unit dose was decreased, indicating an 'overkill' effect by low-energy very high-LET Fe ions.

  5. Beam breakup in a multi-section recirculating linac

    International Nuclear Information System (INIS)

    Gluckstern, R.L.

    1986-01-01

    It has long been recognized that recirculating a beam through a linac cavity in order to provide a more efficient acceleration can also lead to an instability in which the transverse displacement on successive recirculations can excite modes which further deflect the initial beam. The effect is of particular concern for superconducting rf cavities where the high Q (or order 10 9 ) implied low starting currents for the instability. Previous work has addressed this effect by calculating the beam trajectory in a single cavity, and its effect on excitation of unwanted modes. The analysis of Gluckstern, Cooper and Channel is extended to the case of recirculation of a CW beam, and the starting current for a multi-cavity structure with several recirculations is computed. Each of the cavities is assumed to provide a simple impulse to the beam proportional to the transverse displacement in that cavity

  6. Measurements and effects of backstreaming ions produced at bremsstrahlung converter target in Dragon-I linear induction accelerator

    International Nuclear Information System (INIS)

    Yu Haijun; Zhu Jun; Chen Nan; Xie Yutong; Jiang Xiaoguo; Jian Cheng

    2010-01-01

    Positive ions released from x-ray converter target impacted by electron beam of millimeter spot size can be trapped and accelerated in the incident beam's potential well. As the ions move upstream, the beam will be pinched first and then defocused at the target. Four Faraday cups are used to collect backstreaming ions produced at the bremsstrahlung converter target in Dragon-I linear induction accelerator (LIA). Experimental and theoretical results show that the backstreaming positive ions density and velocity are about 10 21 /m 3 and 2-3 mm/μs, respectively. The theoretical and experimental results of electron beam envelope with ions and without ions are also presented. The discussions show that the backstreaming positive ions will not affect the electron beam focusing and envelope radius in Dragon-I LIA.

  7. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-01-01

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers

  8. Investigation of induced recirculation during planned ventilation system maintenance

    Science.gov (United States)

    Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.

    2015-01-01

    The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter

  9. Induction accelerator test module for HIF

    International Nuclear Information System (INIS)

    Faltens, A.

    1991-04-01

    An induction linac test module suitable for investigating the drive requirements and the longitudinal coupling impedance of a high-power ion induction linac has been constructed by the Heavy Ion Fusion (HIF) group at LBL. The induction linac heavy ion driver for inertial confinement fusion (ICF) as presently envisioned uses multiple parallel beams which are transported in separate focusing channels but accelerated together in the induction modules. The resulting induction modules consequently have large beam apertures-1--2 meters in diameter- and correspondingly large outside diameters. The module geometry is related to a low-frequency ''gap capacity'' and high-frequency structural resonances, which are affected by the magnetic core loading and the module pulser impedance. A description of the test module and preliminary results are presented. 3 figs

  10. Modeling and simulation of the bioprocess with recirculation

    Directory of Open Access Journals (Sweden)

    Žerajić Stanko

    2007-01-01

    Full Text Available The bioprocess models with recirculation present an integration of the model of continuous bioreaction system and the model of separation system. The reaction bioprocess is integrated with separation the biomass, formed product, no consumed substrate or inhibitory substance. In this paper the simulation model of recirculation bioprocess was developed, which may be applied for increasing the biomass productivity and product biosynthesis increasing the conversion of a substrate-to-product, mixing efficiency and secondary C02 separation. The goal of the work is optimal bioprocess configuration, which is determined by simulation optimization. The optimal hemostat state was used as referent. Step-by-step simulation method is necessary because the initial bioprocess state is changing with recirculation in each step. The simulation experiment confirms that at the recirculation ratio a. = 0.275 and the concentration factor C = 4 the maximum glucose conversion to ethanol and at a dilution rate ten times larger.

  11. Recirculating steam generator operation at very low power

    International Nuclear Information System (INIS)

    Holcblat, A.

    2001-01-01

    The behaviour of recirculating SG's at very low power has been thoroughly investigated by laboratory and on-site tests as well as numerical simulations. A special experimental program dedicated to recirculation threshold determination has been performed on the Freon SG mock-up CLOTAIRE. These laboratory data are completed with transients of feedwater injections at hot stand-by on two instrumented SG's, one boiler type SG and one economizer type SG. The phenomena are different on both types. In boiler SG's, the SG behaves like a U-tube and recirculation stops around 2% load at stand-by temperature and water level. In economizer SG's, the presence of 2 separate down-comers and a divider plate inside the tube bundle allows a recirculation loop by-passing the separators. The mixing of saturated and cold water induced by this loop limits down-comer cooling and thus alleviates the thermal load on the tube sheet. These tests were used to validate the SG transient analysis 1-D code ANETH. (author)

  12. Indoor spread of respiratory infection by recirculation of air: a controllable hazard

    International Nuclear Information System (INIS)

    Riley, R.L.

    1980-01-01

    The overall health benefit to be derived from disinfecting air before recirculation is difficult to predict, but as more and more buildings recirculate air without disinfection, the problem of spreading infection increases. Since the cost of disinfection with uv radiation is small and the cost of morbidity from airborne infections immense, the cost-benefit ratio for disinfecting recirculated air may be attractive, even though the protection of occupants would be limited. Recirculation of air in buildings is a relatively new technology that conserves energy. Like most new technologies, it brings new hazards. Disinfection of recirculated air is an appropriate additional technique with which to counter some of the hazards of air recirculation

  13. Retrofitting adjustable speed drives for large induction motors

    International Nuclear Information System (INIS)

    Wuestefeld, M.R.; Merriam, C.H.; Porter, N.S.

    2004-01-01

    Adjustable speed drives (ASDs) are used in many power plants to control process flow by varying the speed of synchronous and induction motors. In applications where the flow requirements vary significantly, ASDs reduce energy and maintenance requirements when compared with drag valves, dampers or other methods to control flow. Until recently, high horsepower ASDs were not available for induction motors. However, advances in power electronics technology have demonstrated the reliability and cost effectiveness of ASDs for large horsepower induction motors. Emphasis on reducing operation and maintenance costs and increasing the capacity factor of nuclear power plants has led some utilities to consider replacing flow control devices in systems powered by large induction motors with ASDs. ASDs provide a high degree of reliability and significant energy savings in situations where full flow operation is not needed for a substantial part of the time. This paper describes the basic adjustable speed drive technologies available for large induction motor applications, ASD operating experience and retrofitting ASDs to replace the existing GE Boiling Water Reactor recirculation flow control system

  14. Flue gas recirculation to pellets burner

    International Nuclear Information System (INIS)

    Loefgren, B.E.; Blohm, T.

    1999-05-01

    The aim of this project has been to study the influence of flue gas recirculation on the combustion results. Primarily regarding the turbulence, stability and air surplus of the flame, but also the influence on environmental factors (CO and unburnt hydrocarbons). Also studied was the possibility of automatic control of the mixing of recirculating flue gases in the combustion process through the use of a λ-sond and O 2 control Project report from the program: Small scale combustion of biofuels. 9 figs, 8 tabs

  15. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This

  16. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2012-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.

  17. Performance of a Water Recirculation Loop Maintenance Device and Process for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2013-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  18. Design and Evaluation of a Water Recirculation Loop Maintenance Device for the Advanced Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice

    2011-01-01

    A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.

  19. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  20. Is laser cooling for heavy-ion fusion feasible?

    International Nuclear Information System (INIS)

    Ho, D.D.-M.; Brandon, S.T.

    2010-01-01

    Heavy-ion beams, each with current in the kiloampere range and particle energy in the giga-electronvolt range, must be focused onto a millimetre-size spot to provide the power required for ignition of high-gain targets for inertial confinement fusion. However, the focal spot size is always enlarged by chromatic aberration generated by the thermal spread of the beam ions in the direction of beam propagation. Enlarged focal spot degrades the target performance. For high-current beams, the conventional remedy for chromatic aberration using sextupole magnets has been shown to be ineffective. If novel correction schemes can be found, then the spot size can be reduced to below that previously believed possible. Smaller spots can mean lower energy targets so that the heavy-ion fusion (HIF) scenario can look more attractive. Success in laser cooling of ion beams in storage rings has inspired us to explore the feasibility of applying laser cooling for HIF, and the recirculator configuration proposed for HIF appears to be well suited for this purpose. However, using particle-in-cell simulations and theoretical arguments, we demonstrate in this paper that although laser cooling of heavy-ion beams is feasible in principle, the rapid velocity-space diffusion of ions in the bump-in-tail distribution, set up by the cooling lasers, limits the velocity-space compressibility of the thermal spread along the beam. Consequently, laser cooling is impractical for high-current, heavy-ion beams for the proposed recirculator configuration. Nevertheless, if the recirculator architecture or the target requirement can reduce the beam current, then the cooling scheme described here would be useful. This scheme may also be applicable to the RF linac and storage ring approach to HIF.

  1. Investigation of Microbunching Instabilities in Modern Recirculating Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Cheng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-05-21

    mostly aim to linac-based accelerators and may not be practical to the recirculating accelerator facilities. Thus a set of conditions for suppression of CSR MBI was proposed and examined for example lattices from low (~100 MeV) to high (~1 GeV) energies. (6) Study of more aspects of microbunched structures in beam phase spaces For a cascaded amplifier in circuit electronics, the total amplification gain can be estimated as the product of individual gains. In a beam transport line of an accelerator, the (scalar) gain multiplication was examined and found to under-estimate the overall microbunching amplification. The concept of gain matrix was developed, which includes the density, energy and transverse-longitudinal modulations in a beam phase space, and used to analyze MBI for a proposed recirculating machine. Throughout the gain matrix approach, it reasonably gives the upper limit of spectral MBI gain curves. This extended analysis can be employed to study multi-pass recirculation. (7) Study of MBI for magnetized beams Driven by a recent energy-recovery-linac based cooler design for electron cooling at Jefferson Lab Electron-Ion Collider Project, the generalized theoretical formulation for MBI to a transversely coupled beam has been developed and applied to this study. A magnetized beam in general features non-zero canonical angular momentum, thus considered to be a transversely coupled beam. A novel idea of utilizing magnetized beam transport was proposed for improvement of cooling efficiency and possible mitigation of collective effects. A concern of MBI regarding this design was studied and excluded. The large transverse beam size associated with the beam magnetization is found to help suppress MBI via the transverse-longitudinal correlation.

  2. Investigation on inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet

    Science.gov (United States)

    Yang, Ce; Wang, Yingjun; Lao, Dazhong; Tong, Ding; Wei, Longyu; Liu, Yixiong

    2016-08-01

    The inlet recirculation characteristics of double suction centrifugal compressor with unsymmetrical inlet structures were studied in numerical method, mainly focused on three issues including the amounts and differences of the inlet recirculation in different working conditions, the circumferential non-uniform distributions of the inlet recirculation, the recirculation velocity distributions of the upstream slot of the rear impeller. The results show that there are some differences between the recirculation of the front impeller and that of the rear impeller in whole working conditions. In design speed, the recirculation flow rate of the rear impeller is larger than that of the front impeller in the large flow range, but in the small flow range, the recirculation flow rate of the rear impeller is smaller than that of the front impeller. In different working conditions, the recirculation velocity distributions of the front and rear impeller are non-uniform along the circumferential direction and their non-uniform extents are quite different. The circumferential non-uniform extent of the recirculation velocity varies with the working conditions change. The circumferential non-uniform extent of the recirculation velocity of front impeller and its distribution are determined by the static pressure distribution of the front impeller, but that of the rear impeller is decided by the coupling effects of the inlet flow distortion of the rear impeller, the circumferential unsymmetrical distribution of the upstream slot and the asymmetric structure of the volute. In the design flow and small flow conditions, the recirculation velocities at different circumferential positions of the mean line of the upstream slot cross-section of the rear impeller are quite different, and the recirculation velocities distribution forms at both sides of the mean line are different. The recirculation velocity distributions in the cross-section of the upstream slot depend on the static pressure

  3. Dust deposit in recirculation regions

    International Nuclear Information System (INIS)

    Griemert, R.

    1985-03-01

    The present report shows investigations, which have been carried out in a closed duct at forward and backward facing steps. Distribution of fluid velocity and fluid fluctuations in and normal to main flow direction as well as the distribution of Reynolds shear stress have been measured. The mass transfer downstream of a backward facing step has been investigated as well. By using graphite-, copper-, tin- and rubber dust, conditions of deposition have been defined experimentally. A serie of photos shows the filling of a recirculation region downstream of a backward facing step with graphite dust. The present investigations allow to avoid deposition of dust in recirculation regions by selecting the fluid numbers in an appropriate way. (orig.) [de

  4. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  5. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  6. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  7. Sulphur recirculation for reduced boiler corrosion; Minskad pannkorrosion med svavelrecirkulation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven; Karlsson, Martin (Goetaverken Miljoe AB, Goeteborg (Sweden)); Blomqvist, Evalena; Baefver, Linda; Claesson, Frida; Davidsson, Kent (SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)); Froitzheim, Jan; Pettersson, Jesper; Steenari, Britt-Marie (Chalmers Tekniska Hoegskola, Oorganisk miljoekemi, Goeteborg (Sweden))

    2010-03-15

    Sulphur recirculation is a new technology for reducing boiler corrosion and dioxin formation, which was demonstrated in full-scale tests performed at the Renova Waste to Energy plant at Saevenaes in Goeteborg (Sweden). Sulphur is recirculated from the flue gas cleaning back to the boiler, which reduces the chloride content of the deposits, which in turn reduces boiler corrosion and dioxin formation. Sulphur dioxide was separated from the flue gas in a wet scrubber by adding hydrogen peroxide, producing sulphuric acid. The sulphuric acid was injected into the furnace using nozzles with atomization air, surrounded by recirculated flue gas for improved mixing. By recirculating the sulphur, the sulphur dioxide concentration was increased in the boiler. Each sulphur atom passed the boiler several times and no external sulphur had to be added. Dioxin, ash, deposits and particle samplings together with 1000 h corrosion probe measurements were performed for normal operation (reference) and with sulphur recirculation respectively. During spring 2009, reference measurements were made and the recirculation system was installed and tested. During autumn 2009, a long term test with sulphur recirculation was made. An SO{sub 2} concentration of approximately 800 mg/m3 (n, d.g.) was maintained in the boiler by the system except during a period of extremely low sulphur content in the waste. The sulphur dioxide stack concentrations have been far below the emission limit. Sulphuric acid dew point measurements have shown that the sulphuric acid dosage did not lead to elevated SO{sub 3} concentrations, which may otherwise lead to low temperature corrosion. The chlorine content of both fly ash and boiler ash decreased and the sulphur content increased during the sulphur recirculation tests. The molar chlorine/sulphur ratio (Cl/S) decreased by two thirds in the fly ash as well as in the boiler ash, except for one sample. With sulphur recirculation in operation, the deposit growth was

  8. Sulfur recirculation for increased electricity production in Waste-to-Energy plants.

    Science.gov (United States)

    Andersson, Sven; Blomqvist, Evalena W; Bäfver, Linda; Jones, Frida; Davidsson, Kent; Froitzheim, Jan; Karlsson, Martin; Larsson, Erik; Liske, Jesper

    2014-01-01

    Sulfur recirculation is a new technology for reducing boiler corrosion and dioxin formation. It was demonstrated in full-scale tests at a Waste to Energy plant in Göteborg (Sweden) during nearly two months of operation. Sulfur was recirculated as sulfuric acid from the flue gas cleaning back to the boiler, thus creating a sulfur loop. The new technology was evaluated by extensive measurement campaigns during operation under normal conditions (reference case) and operation with sulfur recirculation. The chlorine content of both fly ash and boiler ash decreased and the sulfur content increased during the sulfur recirculation tests. The deposit growth and the particle concentration decreased with sulfur recirculation and the dioxin concentration (I-TEQ) of the flue gas was reduced by approximately 25%. Sulfuric acid dew point measurements showed that the sulfuric acid dosage did not lead to elevated SO3 concentrations, which may otherwise induce low temperature corrosion. In the sulfur recirculation corrosion probe exposures, the corrosion rate decreased for all tested materials (16Mo3, Sanicro 28 and Inconel 625) and material temperatures (450 °C and 525 °C) compared to the reference exposure. The corrosion rates were reduced by 60-90%. Sulfur recirculation prevented the formation of transition metal chlorides at the metal/oxide interface, formation of chromate and reduced the presence of zinc in the corrosion products. Furthermore, measured corrosion rates at 525 °C with sulfur recirculation in operation were similar or lower compared to those measured at 450 °C material temperature in reference conditions, which corresponds to normal operation at normal steam temperatures. This implies that sulfur recirculation allows for higher steam data and electricity production without increasing corrosion. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  10. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions

    International Nuclear Information System (INIS)

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-01-01

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/μm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to 137 Cs γ-rays. The mutation frequency increased up to 105 keV/μm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/μm showed all or partial deletions of exons, while among γ-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not

  11. Modeling of velocity field for vacuum induction melting process

    Institute of Scientific and Technical Information of China (English)

    CHEN Bo; JIANG Zhi-guo; LIU Kui; LI Yi-yi

    2005-01-01

    The numerical simulation for the recirculating flow of melting of an electromagnetically stirred alloy in a cylindrical induction furnace crucible was presented. Inductive currents and electromagnetic body forces in the alloy under three different solenoid frequencies and three different melting powers were calculated, and then the forces were adopted in the fluid flow equations to simulate the flow of the alloy and the behavior of the free surface. The relationship between the height of the electromagnetic stirring meniscus, melting power, and solenoid frequency was derived based on the law of mass conservation. The results show that the inductive currents and the electromagnetic forces vary with the frequency, melting power, and the physical properties of metal. The velocity and the height of the meniscus increase with the increase of the melting power and the decrease of the solenoid frequency.

  12. Thermophysical fundamentals of cyclonic recirculating heating devices

    Science.gov (United States)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  13. Channel-accelerating gap interaction and beam acceleration and transport experiments with the recirculating linear accelerator (RLA)

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Smith, D.L.; Poukey, J.W.; Wagner, J.S.; Bennett, L.F.; Olson, W.R.; Turman, B.N.; Prestwich, K.R.; Wells, J.; Struve, K.

    1992-01-01

    The lifetime of the Ion Focusing Regime (IFR) channel following the pulsing of the post-accelerating gaps is critical for open-ended low energy devices. It dictates the number of allowable beam recirculations through the gaps. In the case of a closed racetrack configuration, it is significant but not as critical, since the presence of the electron beam focuses the ions and lengthens the lifetime of the ion channel. The authors have experimentally established that pulsing an accelerating gap perturbs the IFR channel. However for the parameters studied, the lifetime is long enough to allow at least four beam recirculations in a spiral device. In addition transparent grids of cusp fields positioned upstream and downstream from the gaps prevent them from perturbing the IFR channel. Experiments were performed with and without injected electron beams. For the experiments investigating the IFR channel interaction with the accelerating gap, the injector was removed and the beam line was extended downstream and upstream from the accelerating cavity. Only the first straight section of the RLA with one accelerating cavity (ET-2) was utilized. The acceleration and transport experiments were performed utilizing two injectors: first the low energy 1.3-MV Isolated Blumlein (IB) injector and most recently the new 4-MV 20-kA injector. Beams of 6--20 kA current were produced and successfully transported and accelerated through the ET-2 post-accelerating gap. For both injectors an apertured non-immersed ion-focused foilless diode was selected among various options. It is the simplest and easiest to operate and can be adjusted to provide variable beam impedance loads to the injector. The transport efficiencies were 90% for the low energy injector and 100% for the new 4-MV injector. The beam Gaussian profile and radius (5 mm) remain the same through acceleration. Experimental results will be presented and compared with numerical simulations

  14. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  15. Monitoring for shaft cracks on reactor recirculation pumps

    International Nuclear Information System (INIS)

    Kowal, M.G.; O'Brien, J.T. Jr.

    1989-01-01

    The article discusses the vibration characteristics associated with a boiling water reactor (BWR) recirculation pump. It also describes the application of diagnostic techniques and shaft crack theory to an on-line diagnostic monitoring system for reactor recirculation pumps employed at Philadelphia Electric Company's Peach Bottom Atomic Power Station. Specific emphasis is placed on the unique monitoring techniques associated with these variable speed vertical pumps

  16. Comparison of recirculation configurations for biological nutrient removal in a membrane bioreactor.

    Science.gov (United States)

    Bekir Ersu, Cagatayhan; Ong, Say Kee; Arslankaya, Ertan; Brown, Patrick

    2008-03-01

    A 12-L lab-scale membrane bioreactor (MBR), consisting of an anaerobic and anoxic compartment followed by an oxic plate-frame membrane compartment, was evaluated for carbonaceous and nutrient removals by varying the recirculation of mixed liquor and permeate. The hydraulic retention times (HRTs) for the anaerobic, anoxic, and oxic compartments were 2, 2, and 8h, respectively. The solids residence time (SRT) for the oxic compartment was 25 days. Five different recirculation configurations were tested by recirculating mixed liquor and/or permeate recirculation equal to the influent flow rate (identified as 100%) into different locations of the anaerobic and anoxic compartments. Of the five configurations, the configuration with 100% mixed liquor recirculation to the anaerobic compartment and 100% permeate recirculation to the anoxic compartment gave the highest percentage removal with an average 92.3+/-0.5% soluble chemical oxygen demand (sCOD), 75.6+/-0.4% total nitrogen (TN), and 62.4+/-1.3% total phosphorus (TP) removal. When the mixed liquor and permeate recirculation rates were varied for the same configuration, the highest TP removal was obtained for 300% mixed liquor recirculation and 100% permeate recirculation (300%/100%) with a TP removal of 88.1+/-1.3% while the highest TN removal (90.3+/-0.3%) was obtained for 200%/300% recirculation. TN and TP concentrations as low as 4.2+/-0.1 and 1.4+/-0.2mg/L respectively were obtained. Mass loading rates were generally low in the range of 0.11-0.22kgCOD/kgMLSS/d due to high biomass concentrations within the oxic reactor (approx. 8000mg/L). The BioWin model was calibrated against one set of the experimental data and was found to predict the experimental data of effluent TN, TP, and NO(3)(-)-N but over-predicted sCOD and NH(3)-N for various recirculation rates. The anoxic heterotrophic yield for the calibrated model was 0.2kg biomass COD/kg COD utilized while the maximum growth rates were found to be 0.45day(-1) for mu

  17. Performance of MBE-4: An experimental multiple beam induction linear accelerator for heavy ions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Fessenden, T.J.; Keefe, D.; Kim, C.H.; Meuth, H.

    1988-06-01

    An experimental induction linac, called MBE-4, has been constructed to demonstrate acceleration and current amplification of multiple heavy ion beams. This work is part of a program to study the use of such an accelerator as a driver for heavy ion inertial fusion. MBE-4 is 16m long and accelerates four space-charge-dominated beams of singly-charged cesium ions, in this case from 200 keV to 700 keV, amplifying the current in each beam from 10mA by a factor of nine. Construction of the experiment was completed late in 1987 and we present the results of detailed measurements of the longitudinal beam dynamics. Of particular interest is the contribution of acceleration errors to the growth of current fluctuations and to the longitudinal emittance. The effectiveness of the longitudinal focusing, accomplished by means of the controlled time dependence of the accelerating fields, is also discussed. 4 refs., 5 figs., 1 tab

  18. Induction and characterization of Arabidopsis mutants by Ion beam

    International Nuclear Information System (INIS)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S.

    2008-03-01

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and γ-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  19. Induction and characterization of Arabidopsis mutants by Ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Y. H.; Choi, J. D.; Park, J. Y.; Lee, J. R.; Sohn, H. S. [Gyeongbuk Institute for Bio Industry, Andong (Korea, Republic of)

    2008-03-15

    This study was conducted to search the proper conditions and times for irradiating proton beam to seeds generally used for induction of mutant. Arabidopsis as model plants has good characters that is a short generation time, producing a lot of seeds, sequenced genome, developed maker. This points were the best materials for plant breeding for this study. The data of inducing mutants of Arabidopsis is used to be applicate to crops have more longer generation that is the final goals of this study. The goals of this project were to inducing and characterizing arabidopsis mutants by the proton ion beam and {gamma}-ray. As well as, the purpose of this study was securing more than 10 lines of arabidopsis mutants in this project and also to know the changed DNA structure of the mutants using the basic data for applying to the more study

  20. Mutation induction by ion beams in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-04-01

    This review mainly describes study results obtained in the Takasaki ion-beam (IB) irradiation facility (TIARA) on the mutation induction in higher plants. Biological effects like lethality and on budding of IBs (carbon, Ne and Ar) are discussed in relation with their linear energy transfer (LET), relative biological effectiveness and the developmental states in shepherd's-purse and tobacco. Induced mutation by IB are characterized by those findings that the mutation rate by C beam is 1.9 x 10{sup -6}, being 17 times higher than the electron beam, in the shepherd's-purse, that C beam induces larger structural changes than electron beam when examined by molecular mechanism of tt and gl gene mutations, and that mutation spectrum of IB is different from that of {gamma}-ray and is wider. Novel mutants are described on shepherd's-purse (pigment mutants, ultraviolet (UV)-resistant and sensitive ones, and flowering ones), disease-resistant rice, barley and tobacco plants, and flowering plants. IB mutation is possibly useful for solving the problems of environment and foods in future. (N.I.)

  1. Mineral and organic compounds in leachate from landfill with concentrate recirculation.

    Science.gov (United States)

    Talalaj, Izabela Anna

    2015-02-01

    The effect of a reverse osmosis concentrate recirculation on the mineral and organic compounds in a landfill leachate was investigated. Investigated was the quality of a leachate from two landfills operated for different periods (a 20-year-old Cell A and a 1-year-old Cell B), where the concentrate was recirculated. Examined were general parameters (conductivity, pH), organic compounds (biochemical oxygen demand (BOD), chemical oxygen demand (COD), total organic nitrogen, BOD/COD), and inorganic compounds (nitrogen ammonia, sulfite, sulfate, cyanide, boron, chloride, ferrous, zinc, chrome, copper). The findings from the first year of investigation showed that over the initial period of recirculation, the concentration of organic compounds (BOD, COD) increased, but after 6 months their values stabilized. It indicates that the concentrate recirculation accelerated organic decomposition, especially in the new landfill Cell. The analysis of inorganic parameters showed that recirculation landfills produce a leachate with a higher concentration of N-NH4, and Cl(-). In case of the old landfill Cell, an increase in B and Fe was also noticeable. These compounds are cyclically washed out from a waste dump and require an additional pretreatment in order to exclude them from recirculation cycle. The increased concentration of Cu, Zn, and Fe was noticed during the initial months of recirculation and in the season of intense atmospheric precipitation in the leachate from both Cells. Higher values of electro conductivity, Cl(-), N-NH4 (+), B, and Fe in the leachate from the old field indicate that the attenuation capacity of this landfill is close to exhaustion.

  2. Volume reduction and material recirculation by freon decontamination

    International Nuclear Information System (INIS)

    Berners, O.; Buhmann, D.; Yamashita, Y.; Yoshiaki, M.

    1989-01-01

    This paper discusses the use of freon in a large variety of decontamination in the nuclear and non-nuclear fields. As far as the contamination is loose or smerable, surfaces of nearly all materials can be decontaminated. Freon is electrically non-conductive, chemically neutral and has a low surface tension. So it is capable of creeping under the contaminant and loosening or dissolving it. Used freon can be collected, cleaned and recirculated. Its cleaning can be done easily by evaporation at its lower vapor point of about 48 degrees C (104 degrees F). Good decontamination results could be achieved, expensive materials, tools and equipment could be recirculated. Big volumes of materials could get separated from their contaminants, which is the real radioactive waste. Freon decontamination is an effective, overall economical and approved technology to volume reduction and material recirculation

  3. DOGBONE GEOMETRY FOR RECIRCULATING ACCELERATORS

    International Nuclear Information System (INIS)

    BERG, J.S.; JOHNSTONE, C.; SUMMERS, D.

    2001-01-01

    Most scenarios for accelerating muons require recirculating acceleration. A racetrack shape for the accelerator requires particles with lower energy in early passes to traverse almost the same length of arc as particles with the highest energy. This extra arc length may lead to excess decays and excess cost. Changing the geometry to a dogbone shape, where there is a single linac and the beam turns completely around at the end of the linac, returning to the same end of the linac from which it exited, addresses this problem. In this design, the arc lengths can be proportional to the particle's momentum. This paper proposes an approximate cost model for a recirculating accelerator, attempts to make cost-optimized designs for both racetrack and dogbone geometries, and demonstrates that the dogbone geometry does appear to be more cost effective

  4. Vortex dynamics in a pipe T-junction: Recirculation and sensitivity

    Science.gov (United States)

    Chen, Kevin K.; Rowley, Clarence W.; Stone, Howard A.

    2015-03-01

    In the last few years, many researchers have noted that regions of recirculating flow often exhibit particularly high sensitivity to spatially localized feedback. We explore the flow through a T-shaped pipe bifurcation—a simple and ubiquitous, but generally poorly understood flow configuration—and provide a complex example of the relation between recirculation and sensitivity. When Re ≥ 320, a phenomenon resembling vortex breakdown occurs in four locations in the junction, with internal stagnation points appearing on vortex axes and causing flow reversal. The structure of the recirculation is similar to the traditional bubble-type breakdown. These recirculation regions are highly sensitive to spatially localized feedback in the linearized Navier-Stokes operator. The flow separation at the corners of the "T," however, does not exhibit this kind of sensitivity. We focus our analysis on the Reynolds number of 560, near the first Hopf bifurcation of the flow.

  5. Power ion beam production in an accelerator with inductive microsecond storage and plasmaerosion switch

    International Nuclear Information System (INIS)

    Mesyats, G.A.; Didenko, A.N.; Abdullin, Eh.N.; Tomskij Politekhnicheskij Inst.

    1986-01-01

    Results of investigations into powerful ion beam (PIB) production in an accelerator with inductive microsecond storage and plasmaerosion switch (PES) are given. The storage consists of the 100 kJ high-voltage pulse generator, the inductive load as a vacuum coaxial line. Coaxial line was divided into two regions with PES plasma guns. Generation of converging PIB on switching of energy flux from the first region to the second was performed in the PES area itself as well as in an additional diode during its placing at different distances from PES. The investigations have shown that microsecond PES is an effective element providing PIB eneration with durations of an order of tens of nanoseconds. Total PIB energy contribution is in the range of 3-6 kJ which constitutes 40-50% of total energy release in PES

  6. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  7. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  8. Magnesium Ion Acts as a Signal for Capsule Induction in Cryptococcus neoformans.

    Science.gov (United States)

    Rathore, Sudarshan S; Raman, Thiagarajan; Ramakrishnan, Jayapradha

    2016-01-01

    Cryptococcal meningitis caused by Cryptococcus neoformans, is a common opportunistic neural infection in immunocompromised individuals. Cryptococcus meningitis is associated with fungal burden with larger capsule size in cerebrospinal fluid (CSF). To understand the role of CSF constituents in capsule enlargement, we have evaluated the effect of artificial CSF on capsule induction in comparison with various other capsule inducing media. Two different strains of C. neoformans, an environmental and a clinical isolates were used in the present study. While comparing the various capsule inducing media for the two different strains of C. neoformans, it was observed that the capsule growth was significantly increased when grown in artificial CSF at pH 5.5, temperature 34°C for ATCC C. neoformans and 37°C for Clinical C. neoformans and with an incubation period of 72 h. In addition, artificial CSF supports biofilm formation in C. neoformans. While investigating the individual components of artificial CSF, we found that Mg(2+) ions influence the capsule growth in both environmental and clinical strains of C. neoformans. To confirm our results we studied the expression of four major CAP genes namely, CAP10, CAP59, CAP60, and CAP64 in various capsule inducing media and in different concentrations of Mg(2+) and Ca(2+). Our results on gene expression suggest that, Mg(2+) does have an effect on CAP gene expression, which are important for capsule biosynthesis and virulence. Our findings on the role of Mg(2+) ion as a signal for capsule induction will promote a way to elucidate the control mechanisms for capsule biosynthesis in C. neoformans.

  9. Recirculation nursery systems for bivalves

    NARCIS (Netherlands)

    Kamermans, P.; Blanco Garcia, A.; Joaquim, Sandra; Matias, Domitilia; Magnesen, Thorolf; Nicolas, J.; Petten, Bruno; Robert, Rene

    2016-01-01

    n order to increase production of bivalves in hatcheries and nurseries, the development of new technology and its integration into commercial bivalve hatcheries is important. Recirculation aquaculture systems (RASs) have several advantages: high densities of the species can be cultured resulting in

  10. Re-circulating linac vacuum system

    International Nuclear Information System (INIS)

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-01-01

    The vacuum system for a proposed 2.5 GeV, 10ΜA recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10ΜA average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing

  11. Impact of capillary rise and recirculation on simulated crop yields

    NARCIS (Netherlands)

    Kroes, J.G.; Supit, I.; Dam, van J.C.; Walsum, van P.E.V.; Mulder, H.M.

    2018-01-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge.

  12. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    International Nuclear Information System (INIS)

    Draghici, M.; Stamate, E.

    2010-01-01

    Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF 6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive and negative ions are evaluated on silicon substrate for different Ar/SF 6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.

  13. Properties and etching rates of negative ions in inductively coupled plasmas and dc discharges produced in Ar/SF6

    DEFF Research Database (Denmark)

    Draghici, Mihai; Stamate, Eugen

    2010-01-01

    of negative ion to electron exceeded 300 in dc mode while it was below 100 in the ICP mode. The possibility to apply a large positive bias to an electrode without affecting the plasma potential and the transition from a negative sheath to anodic glow are also investigated. The etching rates by positive...... and negative ions are evaluated on silicon substrate for different Ar/SF6 gas ratios. The etching rate by negative ions was with less than 5% smaller than that by positive ions.......Negative ion production is investigated in a chamber with transversal magnetic filter operated in dc or inductively coupled plasma (ICP) modes in Ar/SF6 gas mixtures. Plasma parameters are evaluated by mass spectrometry and Langmuir probe for different discharge conditions. The density ratio...

  14. Treatment of vinasses - recirculation

    Directory of Open Access Journals (Sweden)

    Germán Andrés Castro Moreno

    2009-08-01

    Full Text Available The purpose of this minireview is to give an overview of treatments that have been applied on the vinasse, residue from the alcoholic fermentation; appoint some of its advantages and disadvantages, and then submit recirculation, as one of the best options from an economic point of view and easy implementation, for those who are not interested in the ethanol byproducts.

  15. Domestic manufacturing and reliability improvement of reactor water recirculation equipment

    International Nuclear Information System (INIS)

    Kobayashi, Hidekazu; Oi, Masao; Shida, Toichi; Yokomori, Takashi

    1982-01-01

    The reactor coolant recirculation system is one of the important systems to control the reactor output in BWR nuclear power plants. Its components require high reliability and maintainability as well as controllability. For many Japanese nuclear power plants, recirculation pumps, fluid couplings and others have been imported so far. Hitachi Ltd. has established a domestic manufacturing organization through the development and test of these equipment. The fundamental design conditions for these equipment are the improvement of the rate of utilization of plant facility, the capability to follow load, and output power stability. In this paper, the specifications, the investigation of moment of inertia and the design features of recirculation pumps, driving motors and variable frequency power supply systems are described. The paper also reports on the combination test implemented to evaluate the recirculation system. The combination test includes the test using water rheostat for the power source facility and the loading test for a recirculation pump. The application of those system equipment to an actual plant was analyzed and evaluated on a basis of the test data obtained. The result showed that the equipment can achieve the rate of change of reactor power of 30%/min. Those equipment have been employed for No. 2 reactor plant of the Fukushima No. 2 Nuclear Power Station, the Tokyo Electric Power Co., Inc. (Wakatsuki, Y.)

  16. Radionuclide buildup in BWR [boiling water reactor] reactor coolant recirculation piping

    International Nuclear Information System (INIS)

    Duce, S.W.; Marley, A.W.; Freeman, A.L.

    1989-12-01

    Since the spring of 1985, thermoluminescent dosimeter, dose rate, and gamma spectral data have been acquired on the contamination of boiling water reactor primary coolant recirculation systems as part of a Nuclear Regulatory Commission funded study. Data have been gathered for twelve facilities by taking direct measurements and/or obtaining plant and vendor data. The project titled, ''Effectiveness and Safety Aspects of Selected Decontamination Processes'' (October 1983) initially reviewed the application of chemical decontamination processes on primary coolant recirculation system piping. Recontamination of the system following pipe replacement or chemical decontamination was studied as a second thrust of this program. During the course of this study, recontamination measurements were made at eight different commercial boiling water reactors. At four of the reactors the primary coolant recirculation system piping was chemically decontaminated. At the other four the piping was replaced. Vendor data were obtained from two boiling water reactors that had replaced the primary coolant recirculation system piping. Contamination measurements were made at two newly operating boiling water reactors. This report discusses the results of these measurements as they apply to contamination and recontamination of boiling water reactor recirculation piping. 16 refs., 29 figs., 9 tabs

  17. Low Load Model of a Once-through Boiler with Recirculation

    DEFF Research Database (Denmark)

    Trangbæk, Klaus

    2006-01-01

    A dynamic simulation model of a once-through boiler in low to medium load is developed. When the system is in low load, water from the evaporator is recirculated through a bottle. This recirculation system is included in the model, which is then shown to fit closed-loop data from a real plant...

  18. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types

    Science.gov (United States)

    Russo, Ana; Gouveia, Célia; Levy, Ilan; Dayan, Uri; Jerez, Sonia; Mendes, Manuel; Trigo, Ricardo

    2016-06-01

    Coastal zones are under increasing development and experience air pollution episodes regularly. These episodes are often related to peaks in local emissions from industry or transportation, but can also be associated with regional transport from neighbour urban areas influenced by land-sea breeze recirculation. This study intends to analyze the relation between circulation weather patterns, air mass recirculation and pollution levels in three coastal airsheds of Portugal (Lisbon, Porto and Sines) based on the application of an objective quantitative measure of potential recirculation. Although ventilation events have a dominant presence throughout the studied 9-yrs period on all the three airsheds, recirculation and stagnation conditions occur frequently. The association between NO2, SO2 and O3 levels and recirculation potential is evident during summer months. Under high average recirculation potential and high variability, NO2 and SO2 levels are higher for the three airsheds, whilst for O3 each airshed responds differently. This indicates a high heterogeneity among the three airsheds in (1) the type of emission - traffic or industry - prevailing for each contaminant, and (2) the response to the various circulation weather patterns and recirculation situations. Irrespectively of that, the proposed methodology, based on iterative K-means clustering, allows to identify which prevailing patterns are associated with high recirculation potential, having the advantage of being applicable to any geographical location.

  19. The benefits of flue gas recirculation in waste incineration.

    Science.gov (United States)

    Liuzzo, Giuseppe; Verdone, Nicola; Bravi, Marco

    2007-01-01

    Flue gas recirculation in the incinerator combustion chamber is an operative technique that offers substantial benefits in managing waste incineration. The advantages that can be obtained are both economic and environmental and are determined by the low flow rate of fumes actually emitted if compared to the flue gas released when recirculation is not conducted. Simulations of two incineration processes, with and without flue gas recirculation, have been carried out by using a commercial flowsheeting simulator. The results of the simulations demonstrate that, from an economic point of view, the proposed technique permits a greater level of energy recovery (up to +3%) and, at the same time, lower investment costs as far as the equipment and machinery constituting the air pollution control section of the plant are concerned. At equal treatment system efficiencies, the environmental benefits stem from the decrease in the emission of atmospheric pollutants. Throughout the paper reference is made to the EC legislation in the field of environmental protection, thus ensuring the general validity in the EU of the foundations laid and conclusions drawn henceforth. A numerical example concerning mercury emission quantifies the reported considerations and illustrates that flue gas recirculation reduces emission of this pollutant by 50%.

  20. Induction of DNA double-strand breaks in hepatoma cell SMMC-7721 by accelerated carbon ion 12C6+

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jufang; Zhao Jing; Li Wenjian

    2004-01-01

    DNA lesions, especially DNA double-strand breaks (dsbs), are looked upon as the dominant molecular effect of radiation action. Dsbs mark the beginning of a cascade of cellular processes that either results in complete repair of the DNA damage or lead to deleterious stages such as mutation, transformation or even cell death. Changing the radiation quality can influence the radiosensitivity of cells in culture. Accelerated particles provide an excellent means of varying the ionization density of the test radiation. With ion beams, the molecular mechanisms underlying the biological consequences of high linear energy transfer (LET) irradiation can be studied and describing radiation action with biophysical models can be tested. In this paper, radiation-induced DNA double-strand breaks (dsbs) were measured in hepatoma SMMC-7721 cells by means of an experimental approach involving pulsed-field gel electrophoresis and densitometric scanning of ethidium bromide stained gels. With this set-up, the induction of dsbs was investigated in SMMC-7721 cells after irradiation with accelerated carbon ions with specific LET 70 keV/μm. The fraction of DNA retained was taken as quantitative measure to calculate absolute yields of induced DNA dsbs. Experimental data shows that the induction of DNA dsbs increasing with the dose of irradiation. Data are compared with published results on dsbs induction in mammalian cells by radiations of comparable LET

  1. Discussion of the effects of recirculating exhaust air on performance and efficiency of a typical microturbine

    International Nuclear Information System (INIS)

    De Paepe, Ward; Delattin, Frank; Bram, Svend; De Ruyck, Jacques

    2012-01-01

    This paper reports on a specific phenomenon, noticed during steam injection experiments on a microturbine. During the considered experiments, measurements indicated an unsteady inlet air temperature of the compressor, resulting in unstable operation of the microturbine. Non-continuous exhaust air recirculation was a possible explanation for the observed behaviour of the microturbine. The aim of this paper is to investigate and demonstrate the effects of exhaust recirculation on a microgasturbine. Depending on wind direction, exhaust air re-entered the engine, resulting in changing inlet conditions which affects the operating regime of the microturbine. For this paper, a series of experiments were performed in the wind tunnel. These series of experiments allowed investigation of the effect of the wind direction on flue gasses flow. Next to the experiments, steady-state simulations of exhaust recirculation were performed in order to study the effect of exhaust recirculation on thermodynamic performance of the microturbine. Dynamic simulations of the non-continuous recirculation revealed the effects of frequency and amplitude on average performance and stability. Results from simulations supported the important impact of exhaust recirculation. Wind tunnel tests demonstrated the influence of the wind direction on recirculation and revealed the necessity to heighten the stack, thus preventing exhaust recirculation. -- Highlights: ► Unstable operation of a T100 microturbine during steam injection tests was noticed, caused by exhaust gas recirculation. ► Wind tunnel tests were performed to study the effect of the wind direction on the recirculation process. ► Steady-state simulations to investigate the effect of exhaust gas recirculation on thermodynamic performance. ► Dynamic simulations to reveal effects of frequency and amplitude on average performance and stability. ► Wind tunnel tests revealed the necessity to heighten the stack to prevent exhaust

  2. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  3. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  4. Impact assessment of concentrate recirculation on the landfill gas production

    Directory of Open Access Journals (Sweden)

    Džolev Nikola M.

    2016-01-01

    Full Text Available This paper explores the impact of concentrate recirculation, as a product of leachate treated by reverse osmosis plant, on the production of landfill gas at the real-scale landfill for municipal solid waste. In an effort to come up with results experimental measurements were carried out at the landfill in Bijeljina. All measurements performed, were divided into 3 groups. The aims of two groups of measurement were to determine landfill gas and methane yield from concentrate and leachate in laboratory conditions (1st group and to find out concentrations of oxidizing matters (COD and BOD5 present in leachate and concentrate at different points of treatment as well as its variability over the time (2nd group which could be used to calculate the potential of landfill gas and methane generation from concentrate by recirculation, theoretically. 3rd group of measurements, carried out in parallel, have goal to determine the quality and quantity of the collected landfill gas at wells throughout the landfill. The results of analysis carried out in this experimental research show the clear evidence of concentrate recirculation impact on methane production by increasing the landfill gas flow, as well as its concentration within the landfill gas composition, at the nearby well. Although results indicated relatively high impact of concentrate recirculation on landfill gas production, comparing to its theoretical potential, the influence on the landfill at whole, is negligible, due to relatively low volumes in recirculation with respect to its size and objectively low potential given by organic matter present in concentrate.

  5. Elise - the next step in development of induction heavy ion drivers for inertial fusion energy

    International Nuclear Information System (INIS)

    Lee, E.; Bangerter, R.O.; Celata, C.; Faltens, A.; Fessenden, T.; Peters, C.; Pickrell, J.; Reginato, L.; Seidl, P.; Yu, S.

    1994-11-01

    LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or open-quotes driveclose quotes inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act

  6. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  7. Emittance variations in current-amplifying ion induction linacs

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1991-01-01

    Since 1985 the Heavy Ion Fusion Accelerator Research program at the Lawrence Berkeley Laboratory has been studying current amplification and emittance variations in MBE-4, a four-cesium-beam induction linac. This experiment models much of the accelerator physics of the electrostatically focused section of a fusion driver. Four space-charge dominated Cs + beams, initially about one meter in length at currents of 5-10 mA, are focused by electrostatic quadrupoles and accelerated in parallel from approximately 200 keV up to one MeV by 24 accelerating gaps. Final currents of 20-40 mA per beam are typical. Recent experiments with extremely low emittance beams (var-epsilon n =0.03 mm-mRad) have investigated variations of transverse and longitudinal normalized emittance for drifting and accelerating beams. These very strongly tune-depressed beams (σ 0 =72 degree, σ∼6 degree) are difficult to match to the accelerator so as to avoid emittance growth during acceleration. During transport strong emittance fluctuations are observed in good qualitative agreement with simulations. Warmer beams with less tune depression exhibit little to no emittance growth, show smaller emittance fluctuations, and are much easier to match. A summary of findings from the MBE-4 studies is presented

  8. Emittance variations in current-amplifying ion induction linacs

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1991-04-01

    Since 1985 the Heavy Ion Fusion Accelerator Research program at the Lawrence Berkeley Laboratory has been studying current amplification and emittance variations in MBE-4, a four-cesium-beam induction linac. This experiment models much of the accelerator physics of the electrostatically focused section of a fusion driver. Four space-charge dominated Cs + beams, initially about one meter in length at currents of 5--10 mA, are focused by electrostatic quadrupoles and accelerated in parallel from approximately 200 keV up to one MeV by 24 accelerating gaps. Final currents of 20--40 mA per beam are typical. Recent experiments with extremely low emittance beams (ε n = 0.03 mm-mRad) have investigated variations of transverse and longitudinal normalized emittance for drifting and accelerating beams. These very strongly tune-depressed beams (σ o = 72 degrees, σ∼6 degree) are difficult to match the accelerator so as to avoid emittance growth during acceleration. During transport strong emittance fluctuations are observed in good qualitative agreement with simulations. Warmer beams with less tune depression exhibit little to no emittance growth, show smaller emittance fluctuations, and are much easier to match. A summary of findings from the MBE-4 studies is presented. 12 refs., 8 figs

  9. Production of cobia in recirculating systems

    Science.gov (United States)

    Only limited information exists with respect to rearing juvenile cobia Rachycentron canadum to stocker and marketable sizes using recirculating aquaculture systems (RAS). To investigate this topic, two rearing trials were conducted using commercial scale RAS. In Trial 1, juvenile cobia (29 g) we...

  10. Diagnostics of a negative hydrogen ion source based on a planar-coil inductively-driven discharge

    International Nuclear Information System (INIS)

    Lishev, Stiliyan St.; Shivarova, Antonia P.; Iordanov, Dimitar I.; Todorov, Dimitar T.; Demerdzhiev, Angel P.

    2013-01-01

    Recent activity on a volume-production negative-hydrogen-ion source with the design of a matrix of small-radius discharges inductively driven by a planar coil is reported. A single discharge of the matrix has been studied by employing probe-and laser-photodetachment diagnostics. The measurements have been carried out in the first - small-size - chamber of a two-chamber discharge vessel, with rf power introduced by a planar coil positioned on its front wall. The measured profiles of the negative ion density show strong axial dependence, with two maxima located at the positions corresponding to the maxima of the dc potential, where the maxima of the electron density are also located. The first maximum is in the vicinity of the rf power input and the second one is close to the interface between the two chambers of the discharge vessel.

  11. Comparable Senescence Induction in Three-dimensional Human Cartilage Model by Exposure to Therapeutic Doses of X-rays or C-ions.

    Science.gov (United States)

    Hamdi, Dounia Houria; Chevalier, François; Groetz, Jean-Emmanuel; Durantel, Florent; Thuret, Jean-Yves; Mann, Carl; Saintigny, Yannick

    2016-05-01

    Particle therapy using carbon ions (C-ions) has been successfully used in the treatment of tumors resistant to conventional radiation therapy. However, the potential side effects to healthy cartilage exposed to lower linear energy transfer (LET) ions in the beam track before the tumor have not been evaluated. The aim of the present study was to assess the extent of damage after C-ion irradiation in a 3-dimensional (3D) cartilage model close to human homeostasis. Primary human articular chondrocytes from a healthy donor were cultured in a collagen scaffold to construct a physioxic 3D cartilage model. A 2-dimensional (2D) culture was used as a reference. The cells were irradiated with a single dose of a monoenergetic C-ion beam with a LET of approximatively 30 keV/μm. This LET corresponds to the entrance channel of C-ions in the shallow healthy tissues before the spread-out Bragg peak (∼100 keV/μm) during hadron therapy protocols. The same dose of X-rays was used as a reference. Survival, cell death, and senescence assays were performed. As expected, in the 2D culture, C-ions were more efficient than X-rays in reducing cell survival with a relative biological effectiveness of 2.6. This correlated with stronger radiation-induced senescence (two-fold) but not with higher cell death induction. This differential effect was not reflected in the 3D culture. Both ionizing radiation types induced a comparable rate of senescence induction in the 3D model. The greater biological effectiveness of C-ions compared with low LET radiation when evaluated in treatment planning systems might be misevaluated using 2D culture experiments. Radiation-induced senescence is an important factor of potential cartilage attrition. The present data should encourage the scientific community to use relevant models and beams to improve the use of charged particles with better safety for patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Fluorescence imaging of ion distributions in an inductively coupled plasma with laser ablation sample introduction

    International Nuclear Information System (INIS)

    Moses, Lance M.; Ellis, Wade C.; Jones, Derick D.; Farnsworth, Paul B.

    2015-01-01

    High-resolution images of the spatial distributions of Sc II, Ca II, and Ba II ion densities in the 10 mm upstream from the sampling cone in a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) were obtained using planar laser induced fluorescence. Images were obtained for each analyte as a function of the carrier gas flow rate with laser ablation (LA) sample introduction and compared to images with solution nebulization (SN) over the same range of flow rates. Additionally, images were obtained using LA at varying fluences and with varying amounts of helium added to a constant flow of argon gas. Ion profiles in SN images followed a pattern consistent with previous work: increasing gas flow caused a downstream shift in the ion profiles. When compared to SN, LA led to ion profiles that were much narrower radially and reached a maximum near the sampling cone at higher flow rates. Increasing the fluence led to ions formed in the ICP over greater axial and radial distances. The addition of He to the carrier gas prior to the ablation cell led to an upstream shift in the position of ionization and lower overall fluorescence intensities. - Highlights: • We map distributions of analytes in the ICP using laser ablation sample introduction. • We compare images from laser ablation with those from a pneumatic nebulizer. • We document the effects of water added to the laser ablation aerosol. • We compare distributions from a metal to those from crystalline solids. • We document the effect of laser fluence on ion distributions

  13. Improved planar radio frequency inductively coupled plasma configuration in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, D.L.; Fu, R.K.Y.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasmas with higher density and better uniformity are produced using an improved planar radio frequency (rf) inductively coupled plasma configuration in plasma immersion ion implantation (PIII). An axial magnetic field is produced by external electromagnetic coils outside the discharge chamber. The rf power can be effectively absorbed by the plasma in the vicinity of the electron gyrofrequency due to the enhanced resonant absorption of electromagnetic waves in the whistler wave range, which can propagate nearly along the magnetic field lines thus greatly increases the plasma density. The plasma is confined by a longitudinal multipolar cusp magnetic field made of permanent magnets outside the process chamber. It can improve the plasma uniformity without significantly affecting the ion density. The plasma density can be increased from 3x10 9 to 1x10 10 cm -3 employing an axial magnetic field of several Gauss at 1000 W rf power and 5x10 -4 Torr gas pressure. The nonuniformity of the plasma density is less than 10% and can be achieved in a process chamber with a diameter of 600 mm. Since the plasma generation and process chambers are separate, plasma extinction due to the plasma sheath touching the chamber wall in high-energy PIII can be avoided. Hence, low-pressure, high-energy, and high-uniformity ion implantation can be accomplished using this setup

  14. A feasibility study of a NBI photoneutralizer based on nonlinear gating laser recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Fassina, A., E-mail: alessandro.fassina@igi.cnr.it; Barbisan, M.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Pretato, F.; Giudicotti, L. [Dipartimento di Ingegneria Elettrica, Università degli Studi di Padova, Via 8 Febbraio 1848, 2, 35122 Padova (Italy)

    2016-02-15

    The neutralization efficiency of negative ion neutral beam injectors is a major issue for future fusion reactors. Photon neutralization might be a valid alternative to present gas neutralizers, but still with several challenges for a valid implementation. Some concepts have been presented so far but none has been validated yet. A novel photoneutralization concept is discussed here, based on an annular cavity and a duplicated frequency laser beam (recirculation injection by nonlinear gating). The choice of lithium triborate as the material for the second harmonic extractor is discussed and a possible cooling method via crystal slicing is presented; laser intensity enhancement within the cavity is evaluated in order to quantify the achievable neutralization rate. Mockups of the critical components are proposed as intermediate steps toward system realization.

  15. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, Denis

    1984-01-01

    The major emphasis of the U.S. program in Heavy Ion Fusion Accelerator Research is on developing and understanding induction-linac systems that employ multiple beams of high-current heavy ions. The culmination of the plan lies in building the High Temperature Experiment (HTE) which will involve an ion induction linac to deliver multiple high current beams, that can be focussed and overlapped on a two-millimeter diameter spot. A sequence of three major experimental activities are as follows. In the Single-Beam Transport Experiment (SBTE), the stability or otherwise transport of a high-current Cs +1 beam over a long distance is tested. In the Multiple-Beam Experiment (MBE), the experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE. (Mori, K.)

  16. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  17. Theoretical analysis of recirculation zone and buffer zone in the ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Pan, Chang-zhao; Tong, Jian-fei; Lu, Wen-qiang

    2015-01-01

    Highlights: • Height of recirculation zone is very important in windowless target design. • A theoretical formula for the height is derived based on the Bernoulli equation. • Numerical simulation for the LBE is performed and the height of recirculation zone is also obtained. • The theoretically-derived simulation-predicted recirculation zone heights agree with each other very well and the theoretical derivation is proved to be correct. - Abstract: The thermo-hydraulic analysis including reduction of the height of recirculation zone and stability of the free surface is very important in the design and optimization of ADS windowless spallation targets. In the present study, the Bernoulli equation is used to analyze the entire flow process in the target. Formulae for the height of the recirculation zone and the buffer zone are both obtained explicitly. Furthermore, numerical simulation for the heavy metal lead–bismuth eutectic liquid and vapor with cavitation phase change is also performed, and a novel method to calculate the height of the recirculation zone is put forward. By comparison of the theoretical formulae and numerical results, it is clearly shown that they agree with each other very well, and the heights predicted by the two methods are both determined by their own upstream flow parameters

  18. Maintenance experience on reactor recirculation pumps at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Singh, A.K.

    1995-01-01

    Reactor recirculation pumps at Tarapur Atomic Power Station (TAPS) are vertical, single stage centrifugal pumps having mechanical shaft seals and are driven by vertical mounted 3.3 kV, 3 phase, 1500 h.p. electric motors. During these years of operation TAPS has gained enough experience and expertise on the maintenance of reactor recirculation pumps which are dealt in this article. Failure of mechanical shaft seals, damage on pump carbon bearings, motor winding insulation failures and motor shaft damage have been the main areas of concern on recirculation pump. A detailed procedure step by step with component sketches has helped in eliminating errors during shaft seal assembly and installation. Pressure breakdown devices in seal assembly were rebuilt. Additional coolant water injection for shaft seal cooling was provided. These measures have helped in extending the reactor recirculation pump seal life. Pump bearing problems were mainly due to failure of anti-rotation pins and dowel pins of bearing assembly. These pins were redesigned and strengthened. Motor stator winding insulation failures were detected. Stator winding replacement program has been taken up on regular basis to avoid winding insulation failure due to aging. 3 refs., 2 tabs., 7 figs

  19. A recirculating stream aquarium for ecological studies.

    Science.gov (United States)

    Gordon H. Reeves; Fred H. Everest; Carl E. McLemore

    1983-01-01

    Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.

  20. Ion diode performance on a positive polarity inductive voltage adder with layered magnetically insulated transmission line flow

    International Nuclear Information System (INIS)

    Hinshelwood, D. D.; Schumer, J. W.; Allen, R. J.; Commisso, R. J.; Jackson, S. L.; Murphy, D. P.; Phipps, D.; Swanekamp, S. B.; Weber, B. V.; Ottinger, P. F.; Apruzese, J. P.; Cooperstein, G.; Young, F. C.

    2011-01-01

    A pinch-reflex ion diode is fielded on the pulsed-power machine Mercury (R. J. Allen, et al., 15th IEEE Intl. Pulsed Power Conf., Monterey, CA, 2005, p. 339), which has an inductive voltage adder (IVA) architecture and a magnetically insulated transmission line (MITL). Mercury is operated in positive polarity resulting in layered MITL flow as emitted electrons are born at a different potential in each of the adder cavities. The usual method for estimating the voltage by measuring the bound current in the cathode and anode of the MITL is not accurate with layered flow, and the interaction of the MITL flow with a pinched-beam ion diode load has not been studied previously. Other methods for determining the diode voltage are applied, ion diode performance is experimentally characterized and evaluated, and circuit and particle-in-cell (PIC) simulations are performed. Results indicate that the ion diode couples efficiently to the machine operating at a diode voltage of about 3.5 MV and a total current of about 325 kA, with an ion current of about 70 kA of which about 60 kA is proton current. It is also found that the layered flow impedance of the MITL is about half the vacuum impedance.

  1. Prediction of flow recirculation in a blanket assembly under worst-case natural-convection conditions

    International Nuclear Information System (INIS)

    Khan, E.U.; Rector, D.R.

    1982-01-01

    Reactor fuel and blanket assemblies within a Liquid Metal Fast Breeder Reactor (LMFBR) can be subjected to severe radial heat flux gradients. At low-flow conditions, with power-to-flow ratios of nearly the same magnitude as design conditions, buoyancy forces cause flow redistribution to the side of a bundle with the higher heat generation rate. Recirculation of fluid within a rod bundle can occur during a natural convection transient because of the combined effect of flow coastdown and buoyancy-induced redistribution. An important concern is whether recirculation leads to high coolant temperatures. For this reason, the COBRA-WC code was developed with the capability of modeling recirculating flows. Experiments have been conducted in a 2 x 6 rod bundle for flow and power transients to study recirculation in the mixed-convection (forced cooled) and natural-convection regimes. The data base developed was used to validate the recirculation module in the COBRA-WC code. COBRA-WC code calculations were made to predict flow and temperature distributions in a typical LMFBR blanket assembly for the worst-case, natural-circulation transient

  2. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    Science.gov (United States)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  3. Two-phase flow phenomena in broken recirculation line of BWR

    International Nuclear Information System (INIS)

    Kato, Masami; Arai, Kenji; Narabayashi, Tadashi; Amano, Osamu.

    1986-01-01

    When a primary recirculation line of BWR is ruptured, a primary recirculation pump may be subjected to very high velocity two-phase flow and its speed may be accelerated by this flow. It is important for safety evaluation to estimate the pump behavior during blowdown. There are two problems involved in analyzing this behavior. One problem concerns the pump characteristics under two-phase flow. The other involves the two-phase conditions at the pump inlet. If the rupture occurs at a suction side of the pump, choking is considered to occur at a broken jet pump nozzle. Then, a void fraction becomes larger downstream from the jet pump nozzle and volumetric flow through the pump will be very high. However, there is little experimental data available on two-phase flow downstream from a choking plane. Blowdown tests were performed using a simulated broken recirculation line and measured data were analyzed by TRAC-PlA. Analytical results agreed with measured data. (author)

  4. Multi-point optimization of recirculation flow type casing treatment in centrifugal compressors

    Science.gov (United States)

    Tun, Min Thaw; Sakaguchi, Daisaku

    2016-06-01

    High-pressure ratio and wide operating range are highly required for a turbocharger in diesel engines. A recirculation flow type casing treatment is effective for flow range enhancement of centrifugal compressors. Two ring grooves on a suction pipe and a shroud casing wall are connected by means of an annular passage and stable recirculation flow is formed at small flow rates from the downstream groove toward the upstream groove through the annular bypass. The shape of baseline recirculation flow type casing is modified and optimized by using a multi-point optimization code with a metamodel assisted evolutionary algorithm embedding a commercial CFD code CFX from ANSYS. The numerical optimization results give the optimized design of casing with improving adiabatic efficiency in wide operating flow rate range. Sensitivity analysis of design parameters as a function of efficiency has been performed. It is found that the optimized casing design provides optimized recirculation flow rate, in which an increment of entropy rise is minimized at grooves and passages of the rotating impeller.

  5. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Svec, H.J.; Fassel, V.A.

    1981-01-01

    Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures (T/sub ion/) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the radio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The T/sub ion/ values derived from measurement of Ar +2 /Ar + , Ba +2 /Ba + , Sr +2 /Sr + , and Cd + /I + are all greater than those expected from excitation temperatures measured by other workers. The latter three values for T/sub ion/ are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas

  6. Determination of acceleration and stabilization indicators for buried municipal wastes. Study of leachates recirculation impact on waste columns; Determination d'indicateurs d'acceleration et de stabilisation de dechets menagers enfouis. Etude de l'impact de la recirculation de lixiviats sur colonnes de dechets

    Energy Technology Data Exchange (ETDEWEB)

    Francois, V

    2004-05-15

    The main goal of this research work was to study the stabilisation processes of municipal solid waste (MSW). Representative parameters, which are required to evaluate the stabilization state of wastes, were applied to study the acceleration of the degradation processes in lab-scale landfill anaerobic bioreactors operated with leachate recirculation. The characterisation of the wastes solid phase (i.e., volatile solids, organic carbon, fines, paper-cardboard and degraded component contents) is necessary to assess its degradation state. However, additional parameters are required such as the characterisation of water extracted from the waste (i.e., Chemical Oxygen Content (COD), Dissolved Oxygen Content (DOC) and ions content) and biogas composition (methane potential). Those parameters are nevertheless complementary to conclude on its polluting feature. The analysis of more specific indicators such as the organic macromolecules content in leachates and the evaluation of the metal contamination level in solid waste and its potential remobilization was showed to be consistent for the evaluation of waste stabilisation state. The composition of leachates used during recirculation influences greatly the waste leaching behaviour. For instance, the recirculation of a stabilised leachate containing organic macromolecules can increase the release of pollutants (organics and minerals) if contacted with young waste or on the other hand the release of pollutant is reduced when the leachate composition is similar to the organic species, which are expected to be released by the wastes. Due to the experimental limits of the leaching tests, several lab-scale landfill anaerobic bioreactors containing different wastes types (height of 1 m and mass of waste varying from 28 kg to 65 kg) were operated to study the effects of recirculation on the waste degradation at flow rate of 540 mL per day. The speed-up of waste degradation was clearly established from global parameters measured on

  7. Pelletron-based MeV-range electron beam recirculation

    CERN Document Server

    Crawford, A C; Sharapa, A N; Shemyakin, A

    1999-01-01

    In this paper we describe the successful recirculation of a DC electron beam at energies 1-1.5 MeV and currents up to 0.7 A with typical relative losses of 5-20x10 sup - sup 6. Currents of 200 mA were maintained for periods of up to five hours without a single breakdown. We found that the aperture-limiting diaphragm in the gun anode significantly increased the stability of the recirculation. We also found that the stability depended strongly on vacuum pressure in the beamline. The performance of the collector with transverse magnetic fields was found to be adequate for beam currents up to 0.6 A, which is in agreement with our low-energy bench test results. (author)

  8. A portable gas recirculation unit for gaseous detectors

    Science.gov (United States)

    Guida, R.; Mandelli, B.

    2017-10-01

    The use of greenhouse gases (usually C2H2F4, CF4 and SF6) is sometimes necessary to achieve the required performance for some gaseous detectors. The consumption of these gases in the LHC systems is reduced by recycling the gas mixture thanks to a complex gas recirculation system. Beyond greenhouse gas consumption due to LHC systems, a considerable contribution is generated by setups used for LHC detector upgrade projects, R&D activities, detector quality assurance or longevity tests. In order to minimise this emission, a new flexible and portable gas recirculation unit has been developed. Thanks to its low price, flexibility and user-friendly operation it can be easily adapted for the different types of detector systems and set-ups.

  9. CFD modeling of hydro-biochemical behavior of MSW subjected to leachate recirculation.

    Science.gov (United States)

    Feng, Shi-Jin; Cao, Ben-Yi; Li, An-Zheng; Chen, Hong-Xin; Zheng, Qi-Teng

    2018-02-01

    The most commonly used method of operating landfills more sustainably is to promote rapid biodegradation and stabilization of municipal solid waste (MSW) by leachate recirculation. The present study is an application of computational fluid dynamics (CFD) to the 3D modeling of leachate recirculation in bioreactor landfills using vertical wells. The objective is to model and investigate the hydrodynamic and biochemical behavior of MSW subject to leachate recirculation. The results indicate that the maximum recirculated leachate volume can be reached when vertical wells are set at the upper middle part of a landfill (H W /H T  = 0.4), and increasing the screen length can be more helpful in enlarging the influence radius than increasing the well length (an increase in H S /H W from 0.4 to 0.6 results in an increase in influence radius from 6.5 to 7.7 m). The time to reach steady state of leachate recirculation decreases with the increase in pressure head; however, the time for leachate to drain away increases with the increase in pressure head. It also showed that methanogenic biomass inoculum of 1.0 kg/m 3 can accelerate the volatile fatty acid depletion and increase the peak depletion rate to 2.7 × 10 -6  kg/m 3 /s. The degradation-induced void change parameter exerts an influence on the processes of MSW biodegradation because a smaller parameter value results in a greater increase in void space.

  10. Further development of the V-code for recirculating linear accelerator simulations

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt (Germany); Eichhorn, Ralf; Hug, Florian; Kleinmann, Michaela; Platz, Markus [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)

    2011-07-01

    The Superconducting Darmstaedter LINear Accelerator (S-DALINAC) installed at the institute of nuclear physics (IKP) at TU Darmstadt is designed as a recirculating linear accelerator. The beam is first accelerated up to 10 MeV in the injector beam line. Then it is deflected by 180 degrees into the main linac. The linac section with eight superconducting cavities is passed up to three times, providing a maximal energy gain of 40 MeV on each passage. Due to this recirculating layout it is complicated to find an accurate setup for the various beam line elements. Fast online beam dynamics simulations can advantageously assist the operators because they provide a more detailed insight into the actual machine status. In this contribution further developments of the moment based simulation tool V-code which enables to simulate recirculating machines are presented together with simulation results.

  11. Seismic proving test of BWR primary loop recirculation system

    International Nuclear Information System (INIS)

    Sato, H.; Shigeta, M.; Karasawa, Y.

    1987-01-01

    The seismic proving test of BWR Primary Loop Recirculation system is the second test to use the large-scale, high-performance vibration table of Tadotsu Engineering Laboratory. The purpose of this test is to prove the seismic reliability of the primary loop recirculation system (PLR), one of the most important safety components in the BWR nuclear plants, and also to confirm the adequacy of seismic analysis method used in the current seismic design. To achieve the purpose, the test was conducted under conditions and scale as near as possible to actual systems. The strength proving test was carried out with the test model mounted on the vibration table in consideration of basic design earthquake ground motions and other conditions to confirm the soundness of structure and the strength against earthquakes. Detailed analysis and analytic evaluation of the data obtained from the test was conducted to confirm the adequacy of the seismic analysis method and earthquake response analysis method used in the current seismic design. Then, on the basis of the results obtained, the seismic safety and reliability of BWR primary loop recirculation of the actual plants was fully evaluated

  12. Automation of water supply and recirculation-filtration of water at a swimming pool using Zelio PLC

    Science.gov (United States)

    Diniş, C. M.; Popa, G. N.; Iagăr, A.

    2018-01-01

    The paper proposes the use of the Zelio PLC for the automation of the water supply and recirculation-filtration system of a swimming pool. To do this, the Zelio SR3B261BD - 24V DC with 10 digital inputs (24V DC) and 10 digital outputs (relay contacts) was used. The proposed application makes the control of the water supply pumps and the water recirculation-filtration from a swimming pool. The recirculation-filtration systems for pools and swimming pools are designed to ensure water cleaning and recirculation to achieve optimum quality and lasting service life. The water filtration process is one of the important steps in water treatment in polls and swimming pools. It consists in recirculation of the entire volume of water and begins by absorbing the water in the pool by means of a pump followed by the passing of water through the filter, disinfectant and pH dosing, and reintroducing the water back into the pool or swimming pool through the discharge holes. Filters must to work 24 hours a day to remove pollutants from pools or swimming pools users. Filtration removes suspension particles with different origins. All newly built pools and swimming pools must be fitted with water recirculation systems, and existing ones will be equipped with water recirculation and water treatment systems.

  13. Impact of capillary rise and recirculation on simulated crop yields

    Science.gov (United States)

    Kroes, Joop; Supit, Iwan; van Dam, Jos; van Walsum, Paul; Mulder, Martin

    2018-05-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands), where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the accuracy of the

  14. Effect of gas recirculation in a pilot-scale cow-dung digester

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, B N; Kulkarni, D N; Dave, J M; Mohanrao, G J

    1965-01-01

    Laboratory experiments showed that if, during anaerobic digestion of cow manure, the contents of the digestion vessel are mixed by recirculating gas, nearly twice as much gas is produced, and there is less variation in the temperature of the digesting liquor, the pH value, the carbon-dioxide content of the gas, and the reduction in volatile matter. Results of experiments during which gas was recirculated for periods ranging from 0 to 4 hours are tabulated.

  15. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control

    KAUST Repository

    Qu, Youpeng

    2012-02-01

    A recirculation microbial desalination cell (rMDC) was designed and operated to allow recirculation of solutions between the anode and cathode chambers. This recirculation avoided pH imbalances that could inhibit bacterial metabolism. The maximum power density was 931±29mW/m 2 with a 50mM phosphate buffer solution (PBS) and 776±30mW/m 2 with 25mM PBS. These power densities were higher than those obtained without recirculation of 698±10mW/m 2 (50mM PBS) and 508±11mW/m 2 (25mM PBS). The salt solution (20g/L NaCl) was reduced in salinity by 34±1% (50mM) and 37±2% (25mM) with recirculation (rMDC), and by 39±1% (50mM) and 25±3% (25mM) without recirculation (MDC). These results show that electrolyte recirculation using an rMDC is an effective method to increase power and achieve efficient desalination by eliminating pH imbalances. © 2011 Elsevier Ltd.

  16. Evaluation of power transfer efficiency for a high power inductively coupled radio-frequency hydrogen ion source

    Science.gov (United States)

    Jain, P.; Recchia, M.; Cavenago, M.; Fantz, U.; Gaio, E.; Kraus, W.; Maistrello, A.; Veltri, P.

    2018-04-01

    Neutral beam injection (NBI) for plasma heating and current drive is necessary for International Thermonuclear Experimental reactor (ITER) tokamak. Due to its various advantages, a radio frequency (RF) driven plasma source type was selected as a reference ion source for the ITER heating NBI. The ITER relevant RF negative ion sources are inductively coupled (IC) devices whose operational working frequency has been chosen to be 1 MHz and are characterized by high RF power density (˜9.4 W cm-3) and low operational pressure (around 0.3 Pa). The RF field is produced by a coil in a cylindrical chamber leading to a plasma generation followed by its expansion inside the chamber. This paper recalls different concepts based on which a methodology is developed to evaluate the efficiency of the RF power transfer to hydrogen plasma. This efficiency is then analyzed as a function of the working frequency and in dependence of other operating source and plasma parameters. The study is applied to a high power IC RF hydrogen ion source which is similar to one simplified driver of the ELISE source (half the size of the ITER NBI source).

  17. Comparable Senescence Induction in Three-dimensional Human Cartilage Model by Exposure to Therapeutic Doses of X-rays or C-ions

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Dounia Houria; Chevalier, François [Laboratoire d' Accueil et de Recherche avec les Ions Accélérés (LARIA), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), Direction de la Recherche Fondamentale - DRF, Commissariat à l' Energie Atomique et aux Energies Alternatives, Caen (France); Groetz, Jean-Emmanuel [UMR6249, Université de Franche-Comté, Besançon (France); Durantel, Florent [UMR6252, Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), Direction de la Recherche Fondamentale (DRF), Commissariat à l' Energie Atomique et aux Energies Alternatives, Caen (France); Thuret, Jean-Yves; Mann, Carl [FRE3377, Service de Biologie Intégrative et Génétique Moléculaire SBIGeM, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Direction de la Recherche Fondamentale (DRF), Commissariat à l' Energie Atomique et aux Energies Alternatives, Gif-sur-Yvette (France); Institut de Biologie Intégrative de la Cellule I2BC / Université Paris Saclay, Gif-sur-Yvette (France); and others

    2016-05-01

    Purpose: Particle therapy using carbon ions (C-ions) has been successfully used in the treatment of tumors resistant to conventional radiation therapy. However, the potential side effects to healthy cartilage exposed to lower linear energy transfer (LET) ions in the beam track before the tumor have not been evaluated. The aim of the present study was to assess the extent of damage after C-ion irradiation in a 3-dimensional (3D) cartilage model close to human homeostasis. Methods and Materials: Primary human articular chondrocytes from a healthy donor were cultured in a collagen scaffold to construct a physioxic 3D cartilage model. A 2-dimensional (2D) culture was used as a reference. The cells were irradiated with a single dose of a monoenergetic C-ion beam with a LET of approximatively 30 keV/μm. This LET corresponds to the entrance channel of C-ions in the shallow healthy tissues before the spread-out Bragg peak (∼100 keV/μm) during hadron therapy protocols. The same dose of X-rays was used as a reference. Survival, cell death, and senescence assays were performed. Results: As expected, in the 2D culture, C-ions were more efficient than X-rays in reducing cell survival with a relative biological effectiveness of 2.6. This correlated with stronger radiation-induced senescence (two-fold) but not with higher cell death induction. This differential effect was not reflected in the 3D culture. Both ionizing radiation types induced a comparable rate of senescence induction in the 3D model. Conclusions: The greater biological effectiveness of C-ions compared with low LET radiation when evaluated in treatment planning systems might be misevaluated using 2D culture experiments. Radiation-induced senescence is an important factor of potential cartilage attrition. The present data should encourage the scientific community to use relevant models and beams to improve the use of charged particles with better safety for patients.

  18. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  19. Evaluation of a rainbow trout (Oncorhynchus mikyss culture water recirculating system

    Directory of Open Access Journals (Sweden)

    Iván Sánchez O.

    2014-09-01

    Full Text Available Objective. To evaluate a water recirculation system for rainbow trout fish cultures at the recirculating laboratory of the Aquaculture Engineering Production Program of University of Nariño. Materials and Methods. 324 rainbow trout (Oncorhynchus mikyss fries were cultured in 12 plastic tanks with a capacity of 250 L in an aquaculture recirculating system the treatment system of which was made up by a conventional sedimentation tank, a fixed stand upflow biofilter with recycled PVC tube pieces and a natural degassing system; the sedimentation unit effluent was pumped up to a reservoir tank using a 2 HP centrifugal pump after being subject to gravity through the biofilter and to be then distributed to the 12 culture units to which a constant amount of air from a blower was injected. Results. The water treatment system removed 31% of total suspended solids, 9.5% of total ammonia nitrogen, and increased dissolved oxygen to the final effluent in 6.5%. An increase of 305% in biomass was calculated during 75 days, the mortality percentage registered throughout the study period was 4.9%. Conclusions. The water treatment system maintained the physicochemical water quality parameters within the values recommended for the species. The increase in weight and size, food conversion, mortality and biomass production reported normal values for rainbow trout fish culture in recirculating systems.

  20. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    International Nuclear Information System (INIS)

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  1. A concentrated solar cavity absorber with direct heat transfer through recirculating metallic particles

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi-6204 (Bangladesh)

    2016-07-12

    A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver with only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.

  2. Determination of selenite and selenate in human urine by ion chromatography and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jons, O.

    2000-01-01

    The selenium species selenite, selenate and selenomethionine were separated in aqueous solution by ion chromatography. The separation was performed on an IonPac AG11 in series with an AS11 anion exchange column by elution with 25 mM sodium hydroxide in 2% methanol. The Se-78 and Se-82 isotopes were...... monitored in the inductively coupled plasma mass spectrometry (ICP-MS) detector. When the chromatographic system was applied to analysis of urine samples diluted 1 + 1, the selenomethionine signal appeared in the front together with other unresolved selenium species, while the selenite and selenate signals...... and selenate, respectively, corresponding to absolute amounts of 8 and 16 pg, respectively. Calculations were based on peak height measurements of the Se-82 isotope. In 23 analysed urine samples, the concentration of selenite was in the range selenium...

  3. Investigation of flashing de-aeration with and without recirculation

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Toecksberg, B.

    1977-06-01

    A series of experiments with flashing de-areation has been carried out at the institute of Thermal Energytechnology of the Royal Institute of Technology in Stockholm. The results of the experiments with flashing de-areation without recirculation of the condensate show very low contents of dissolved oxygen in the de-aerated water. The results indicate that the de-aeration process is independent of the pressure. De-aeration efficiencies over 99 percent were measured. The continued experiments with recirculation of the condensate show a considerably deteriorated de-aeration performance together with a marked pressure dependency. A simple theoretical model has been formulated which explains these results. Comparisons between the experimental data and calculations with this model indicate that a conservative estimation of the oxygen content of the outgoing water can be obtained if the oxygen content of the recirculated condensate is calculated for the partial pressure of noncondensible gases equal to the total pressure in the condensor. It seems also possible to estimate a lower limit for the oxygen content of the outgoing water. The range of oxygen content between those limits is about a factor of 10 for the conditions investigated. Further studies of the uptake of oxygen during condensation seem necessary if a more accurate prediction is desired

  4. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ebert, Chris H.; Witte, Travis M.; Houk, R.S.

    2012-01-01

    The abundances of metal-argon polyatomic ions (MAr + ) are determined in inductively coupled plasma-mass spectrometry (ICP-MS). The ratios of MAr + abundance to that for M + ions are measured experimentally. These ratios are compared to expected values, calculated for typical plasma conditions using spectroscopic data. For all metals studied (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), the measured ratios are significantly lower than the calculated ratios. Increasing the plasma potential (and thereby increasing the ion kinetic energy) by means of a homemade guard electrode with a wide gap further reduces the MAr + /M + ratio. Implementing a skimmer cone designed for high transmission of light ions increases the MAr + abundance. Considering this evidence, the scarcity of MAr + ions is attributed to collision induced dissociation (CID), likely due to a shock wave at the tip of or in the throat of the skimmer cone. - Highlights: ► MAr + ions are less abundant in the mass spectrum than expected from the ICP. ► Increasing the plasma potential reduces their abundance further. ► The extraction lens voltage does not greatly affect the MAr + abundances. ► The weakly-bound MAr + ions are probably dissociated by collisions during extraction.

  5. Thermodynamic Model for Updraft Gasifier with External Recirculation of Pyrolysis Gas

    Directory of Open Access Journals (Sweden)

    Fajri Vidian

    2016-01-01

    Full Text Available Most of the thermodynamic modeling of gasification for updraft gasifier uses one process of decomposition (decomposition of fuel. In the present study, a thermodynamic model which uses two processes of decomposition (decomposition of fuel and char is used. The model is implemented in modification of updraft gasifier with external recirculation of pyrolysis gas to the combustion zone and the gas flowing out from the side stream (reduction zone in the updraft gasifier. The goal of the model obtains the influences of amount of recirculation pyrolysis gas fraction to combustion zone on combustible gas and tar. The significant results of modification updraft are that the increases amount of recirculation of pyrolysis gas will increase the composition of H2 and reduce the composition of tar; then the composition of CO and CH4 is dependent on equivalence ratio. The results of the model for combustible gas composition are compared with previous study.

  6. Ion energy distributions in a pulsed dual frequency inductively coupled discharge of Ar/CF4 and effect of duty ratio

    International Nuclear Information System (INIS)

    Mishra, Anurag; Seo, Jin Seok; Kim, Tae Hyung; Yeom, Geun Young

    2015-01-01

    Controlling time averaged ion energy distribution (IED) is becoming increasingly important in many plasma material processing applications for plasma etching and deposition. The present study reports the evolution of ion energy distributions with radio frequency (RF) powers in a pulsed dual frequency inductively discharge and also investigates the effect of duty ratio. The discharge has been sustained using two radio frequency, low (P 2 MHz  = 2 MHz) and high (P 13.56 MHz  = 13.56 MHz) at a pressure of 10 mTorr in argon (90%) and CF 4 (10%) environment. The low frequency RF powers have been varied from 100 to 600 W, whereas the high frequency powers from 200 to 1200 W. Typically, IEDs show bimodal structure and energy width (energy separation between the high and low energy peaks) increases with increasing P 13.56 MHz ; however, it shows opposite trends with P 2 MHz . It has been observed that IEDs bimodal structure tends to mono-modal structure and energy peaks shift towards low energy side as duty ratio increases, keeping pulse power owing to mode transition (capacitive to inductive) constant

  7. Proton induction linacs as high-intensity neutron sources

    International Nuclear Information System (INIS)

    Keefe, D.; Hoyer, E.

    1981-01-01

    Proton induction linacs are explored as high intensity neutron sources. The induction linac - concept, properties, experience with electrons, and possibilities - and its limitations for accelerating ions are reviewed. A number of proton induction linac designs are examined with the LIACEP program and general conclusions are given. Results suggest that a proton induction accelerator of the lowest voltage, consistent with good neutron flux, is preferred and could well be cost competitive with the usual rf linac/storage ring designs. (orig.)

  8. Effect of Pre-Gamma Irradiation Induction of Metallothionein on potentially Radiation-Induced Toxic Heavy Metals Ions In Rats

    International Nuclear Information System (INIS)

    El-Shamy, El.

    2004-01-01

    Metallothionein, which is a cystein-rich metal binding protein, can act as free radical scavenger and involved in resistance to heavy metal toxicity. The induction of synthesis has been shown to protect organs from the toxic effect of radiation. This study aimed to stud the effects of pre-irradiation induction of by heavy metal (Zinc sulfate) on potentially gamma radiation-induced toxic heavy metals ions in rate liver and kidney tissues. Forty eight albino rats were included in this study. They were divided into eight groups each of six animals. Two control groups injected with saline. Two Zinc sulfate-treated groups injected with zinc sulfate, two Irradiated groups exposed to a single dose level (7 Gy) of whole body gamma irradiation and two combined zinc sulfate and irradiation groups injected with zinc sulfate and exposed to whole body gamma irradiation (at dose 7 Gy). Animals of all groups were sacrificed 24 and 48 hours after last either zinc sulfate dose or irradiation. Samples of liver and kidney's tissues were subjected to the following investigations: Estimation of tissue heavy Metals (Zinc, Iron and Copper), and tissue (MT). After irradiation, liver and kidney MT were increased approximately 10-fold and 2-fold respectively after irradiation. Accumulation of zinc and iron in both liver and kidney tissues were detected, while accumulation of copper only in the liver tissues. The pre-irradiation treatment with zinc sulfate (Zn SO4) resulted in highly significant decrease in zinc, iron, and copper levels in both liver and kidney tissues in comparison with irradiation groups. Conclusion, it can be supposed that pre-irradiation injection of ZnSO 4 exerted protective effect against the potentially radiation-induced toxic heavy metals ions through MT induction

  9. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  10. Dedicated exhaust gas recirculation control systems and methods

    Science.gov (United States)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    2018-05-01

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.

  11. Daily micro particle distribution of an experimental recirculating aquaculture system – A case study

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2014-01-01

    The particle size distribution (PSD) in a recirculating aquaculture system (RAS) was investigated duringa 24-h cycle. PSD was analyzed in water sampled at several locations in a recirculation loop containing a60-m drum filter, a submerged fixed-bed biofilter and a trickling filter.In relation...

  12. Anaerobic degradation of dairy wastewater in intermittent UASB reactors: influence of effluent recirculation.

    Science.gov (United States)

    Couras, C S; Louros, V L; Gameiro, T; Alves, N; Silva, A; Capela, M I; Arroja, L M; Nadais, H

    2015-01-01

    This work studied the influence of effluent recirculation upon the kinetics of anaerobic degradation of dairy wastewater in the feedless phase of intermittent upflow anaerobic sludge bed (UASB) reactors. Several laboratory-scale tests were performed with different organic loads in closed circuit UASB reactors inoculated with adapted flocculent sludge. The data obtained were used for determination of specific substrate removal rates and specific methane production rates, and adjusted to kinetic models. A high initial substrate removal was observed in all tests due to adsorption of organic matter onto the anaerobic biomass which was not accompanied by biological substrate degradation as measured by methane production. Initial methane production rate was about 45% of initial soluble and colloidal substrate removal rate. This discrepancy between methane production rate and substrate removal rate was observed mainly on the first day of all experiments and was attenuated on the second day, suggesting that the feedless period of intermittent UASB reactors treating dairy wastewater should be longer than one day. Effluent recirculation expressively raised the rate of removal of soluble and colloidal substrate and methane productivity, as compared with results for similar assays in batch reactors without recirculation. The observed bed expansion was due to the biogas production and the application of effluent recirculation led to a sludge bed contraction after all the substrates were degraded. The settleability of the anaerobic sludge improved by the introduction of effluent recirculation this effect being more pronounced for the higher loads.

  13. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, S A; Puzynin, I V; Samojlov, V N; Sissakyan, A N [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    1997-12-31

    A new high-current pulsed linear induction accelerator proposed for application in beam-driven transmutation technologies is described. The accelerator consists of an ion injector, of ion separation and induction accelerating systems, and of an output system for extracting an ion beam into open air. An ion source with explosive ion emission, capable of producing various kinds of ions, is used as an injector. The ion separator exploits a pulsed magnetic system. The induction acceleration structure includes inductors with amorphous iron cores. Imbedded magnetic elements assure the ion beam transport. Main parameters of the accelerator are given in the paper and the design of an ion injector is discussed in more detail. (J.U.). 3 figs., 3 refs.

  14. High current pulsed ion inductor accelerator for destruction of radioactive wastes

    International Nuclear Information System (INIS)

    Korenev, S.A.; Puzynin, I.V.; Samojlov, V.N.; Sissakyan, A.N.

    1996-01-01

    A new high-current pulsed linear induction accelerator proposed for application in beam-driven transmutation technologies is described. The accelerator consists of an ion injector, of ion separation and induction accelerating systems, and of an output system for extracting an ion beam into open air. An ion source with explosive ion emission, capable of producing various kinds of ions, is used as an injector. The ion separator exploits a pulsed magnetic system. The induction acceleration structure includes inductors with amorphous iron cores. Imbedded magnetic elements assure the ion beam transport. Main parameters of the accelerator are given in the paper and the design of an ion injector is discussed in more detail. (J.U.). 3 figs., 3 refs

  15. Determination of acceleration and stabilization indicators for buried municipal wastes. Study of leachates recirculation impact on waste columns; Determination d'indicateurs d'acceleration et de stabilisation de dechets menagers enfouis. Etude de l'impact de la recirculation de lixiviats sur colonnes de dechets

    Energy Technology Data Exchange (ETDEWEB)

    Francois, V.

    2004-05-15

    The main goal of this research work was to study the stabilisation processes of municipal solid waste (MSW). Representative parameters, which are required to evaluate the stabilization state of wastes, were applied to study the acceleration of the degradation processes in lab-scale landfill anaerobic bioreactors operated with leachate recirculation. The characterisation of the wastes solid phase (i.e., volatile solids, organic carbon, fines, paper-cardboard and degraded component contents) is necessary to assess its degradation state. However, additional parameters are required such as the characterisation of water extracted from the waste (i.e., Chemical Oxygen Content (COD), Dissolved Oxygen Content (DOC) and ions content) and biogas composition (methane potential). Those parameters are nevertheless complementary to conclude on its polluting feature. The analysis of more specific indicators such as the organic macromolecules content in leachates and the evaluation of the metal contamination level in solid waste and its potential remobilization was showed to be consistent for the evaluation of waste stabilisation state. The composition of leachates used during recirculation influences greatly the waste leaching behaviour. For instance, the recirculation of a stabilised leachate containing organic macromolecules can increase the release of pollutants (organics and minerals) if contacted with young waste or on the other hand the release of pollutant is reduced when the leachate composition is similar to the organic species, which are expected to be released by the wastes. Due to the experimental limits of the leaching tests, several lab-scale landfill anaerobic bioreactors containing different wastes types (height of 1 m and mass of waste varying from 28 kg to 65 kg) were operated to study the effects of recirculation on the waste degradation at flow rate of 540 mL per day. The speed-up of waste degradation was clearly established from global parameters measured on

  16. Effects of fast ions and an external inductive electric field on the neoclassical parallel flow, current, and rotation in general toroidal systems

    International Nuclear Information System (INIS)

    Nakajima, Noriyoshi; Okamoto, Masao.

    1992-05-01

    Effects of external momentum sources, i.e., fast ions produced by the neutral beam injection and an external inductive electric field, on the neoclassical ion parallel flow, current, and rotation are analytically investigated for a simple plasma in general toroidal systems. It is shown that the contribution of the external sources to the ion parallel flow becomes large as the collision frequency of thermal ions increases because of the momentum conservation of Coulomb collisions and sharply decreasing viscosity coefficients, with collision frequency. As a result, the beam-driven parallel flow of thermal ions becomes comparable to that of electrons in the Pfirsh-Schluter collisionality regime, whereas in the 1/μ or banana regime it is smaller than that of electrons by the order of √(m e /m i ) (m e and m i are electron and ion masses). This beam-driven ion parallel flow can not produce a large beam-driven current because of the cancellation with electron parallel flow, but produces a large toroidal rotation of ions. As both electrons and ions approach the Pfirsh-Schluter collisionality regime the contribution of thermodynamical forces becomes negligibly small and the large toroidal rotation of ions is predominated by the beam-driven component in the non-axisymmetric configuration with large helical ripples. (author)

  17. Impact of capillary rise and recirculation on simulated crop yields

    Directory of Open Access Journals (Sweden)

    J. Kroes

    2018-05-01

    Full Text Available Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands, where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the

  18. A low emittance and uniform density Cs+ source for heavy ion induction linacs

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.

    1990-01-01

    A heavy-ion induction linac experiment (MBE-4) in progress at LBL is studying the transport and acceleration of space-charge-dominated beams in a long alternate gradient focusing channel. Recent studies of the transverse beam dynamics suggested that characteristics of the injector geometry were contributing to the normalized transverse emittance growth. Phase space and current density distribution measurements of the beam extracted from the injector revealed aberrations and a hollow density profile. Based on EGUN calculations the authors redesigned the 10 mA injector for MBE-4 by modifying the cathode: Pierce electrode and using a curved emitting surface. The simulation predicts an extracted beam with less aberrations and a flat density profile. A test stand was used to check the new design. The density profile has measured and found to be in agreement with the numerical simulation

  19. Effects of recirculation in a three-tank pilot-scale system for pharmaceutical removal with powdered activated carbon.

    Science.gov (United States)

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    The removal of pharmaceutically active compounds by powdered activated carbon (PAC) in municipal wastewater is a promising solution to the problem of polluted recipient waters. Today, an efficient design strategy is however lacking with regard to high-level overall, and specific, substance removal in the large scale. The performance of PAC-based removal of pharmaceuticals was studied in pilot-scale with respect to the critical parameters; contact time and PAC dose using one PAC product selected by screening in bench-scale. The goal was a minimum of 95% removal of the pharmaceuticals present in the evaluated municipal wastewater. A set of 21 pharmaceuticals was selected from an initial 100 due to their high occurrence in the effluent water of two selected wastewater treatment plants (WWTPs) in Sweden, whereof candidates discussed for future EU regulation directives were included. By using recirculation of PAC over a treatment system using three sequential contact tanks, a combination of the benefits of powdered and granular carbon performance was achieved. The treatment system was designed so that recirculation could be introduced to any of the three tanks to investigate the effect of recirculation on the adsorption performance. This was compared to use of the setup, but without recirculation. A higher degree of pharmaceutical removal was achieved in all recirculation setups, both overall and with respect to specific substances, as compared to without recirculation. Recirculation was tested with nominal contact times of 30, 60 and 120 min and the goal of 95% removal could be achieved already at the shortest contact times at a PAC dose of 10-15 mg/L. In particular, the overall removal could be increased even to 97% and 99%, at 60 and 120 min, respectively, when the recirculation point was the first tank. Recirculation of PAC to either the first or the second contact tank proved to be comparable, while a slightly lower performance was observed with recirculation to

  20. Induction linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-11-01

    Experimental progress to date has strengthened our belief in the soundness and attractiveness of the heavy ion method for fusion. What surprises that have shown up in the laboratory (e.g., in SBTE) have all been of the pleasant kind so far. The systems assessment has supported the view that the heavy ion approach can lead to economically attractive electric power and that a wide variety of options exists in all parameters. The systems work has also been of great help in pointing the way for the research and development activities

  1. Analysis of heat recovery from a spray dryer by recirculation of exhaust air

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    Highlights: • We study a spray dryer with heat recovery by partial recirculation of exhaust air. • We examine effects of process parameters on energy efficiency and energy savings. • Decreasing drying air temperature and flow rate will increase energy efficiency. • Increasing recirculation ratio and slurry feed rate will increase energy efficiency. - Abstract: Model simulations were employed to investigate the influences of process parameters on the energy recovery in spray drying process that partially recycle the exhaust drying gas. The energy efficiency and energy saving were studied for various values of recirculation ratios with respect to the temperature and flow rate of the drying air, slurry feed rate and concentration of slurry in spray drying of advanced ceramic materials. As a result, significant gains in energy efficiency and energy saving were obtained for a spray drying system with high recirculation ratio of exhaust air. The high slurry feed rate and the low slurry concentration, inlet drying air temperature and drying air flow rate enhanced the energy efficiency of spray drying system. However, the high energy saving was obtained in spray dryers operating at low slurry feed rate and high slurry concentration

  2. Effect of self recirculation casing treatment on the performance of a turbocharger centrifugal compressor

    Science.gov (United States)

    Gancedo, Matthieu

    Increase in emission regulations in the transport industry brings the need to have more efficient engines. A path followed by the automobile industry is to downsize the size of the internal combustion engine and increase the air density at the intake to keep the engine power when needed. Typically a centrifugal compressor is used to force the air into the engine, it can be powered from the engine shaft (superchargers) or extracting energy contained into the hot exhaust gases with a turbine (turbochargers). The flow range of the compressor needs to match the one of the engine. However compressors mass flow operating range is limited by choke on the high end and surge on the low end. In order to extend the operation at low mass flow rates, the use of passive devices for turbocharger centrifugal compressors was explored since the late 80's. Hence, casing treatments including flow recirculation from the inducer part of the compressor have been shown to move the surge limit to lower flows. Yet, the working mechanisms are still not well understood and thus, to optimize the design of this by-pass system, it is necessary to determine the nature of the changes induced by the device both on the dynamic stability of the pressure delivery and on the flow at the inlet. The compressor studied here features a self-recirculating casing treatment at the inlet. The recirculation passage could be blocked to carry a direct comparison between the cases with and without the flow feature. To grasp the effect on compressor stability, pressure measurements were taken in the different constituting elements of the compressor. The study of the mean pressure variations across the operating map showed that the tongue region is a limiting element. Dynamic pressure measurements revealed that the instabilities generated near the inducer when the recirculation is blocked increase the overall instability levels at the compressor outlet and propagating pressure waves starting at the tongue occurred

  3. Experimental investigation on the influences of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance

    International Nuclear Information System (INIS)

    Fu, Jianqin; Zhu, Guohui; Zhou, Feng; Liu, Jingping; Xia, Yan; Wang, Shuqian

    2016-01-01

    Highlights: • In-cylinder residual gas fraction almost increases linearly with exhaust gas recirculation rate. • Heat transfer loss and exhaust gas energy loss decrease with exhaust gas recirculation rate. • Engine indicated thermal efficiency can be increased by 4.29% at 1600 r/min and 2.94 bar. • The effective range of exhaust gas recirculation rate can be extended by intake tumble. - Abstract: To improve the economy and emission performance of gasoline engine under part load, the approach of exhaust gas recirculation coupling with intake tumble was investigated by bench testing. Based on a naturally aspirated gasoline engine, the sweeping test of exhaust gas recirculation rate was conducted in two intake modes (with/without intake tumble), and the parameters related to engine heat-work conversion process and emission performance were measured. Through comparing and analyzing the measured data, the effects of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance were revealed. The results show that pumping loss decreases gradually while in-cylinder residual gas fraction increases linearly with the exhaust gas recirculation rate increasing; the high-pressure cycle efficiency ascends with exhaust gas recirculation rate increasing due to the decrease of heat transfer loss and exhaust gas energy loss. Thus, the improvement of indicated thermal efficiency is the superposition of double benefits of low-pressure cycle and high-pressure cycle. At 1600 r/min and 2.94 bar, the indicated thermal efficiency can be increased by 4.29%. With the increase of exhaust gas recirculation rate, nitrogen oxide emissions almost fall linearly, but hydrocarbon and carbonic oxide emissions have no obvious change in the effective range of exhaust gas recirculation rate. The biggest advantage of intake tumble is that it can extend the effective range of exhaust gas recirculation rate. As a result, the potential of energy

  4. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: nauty@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Gao, Lei [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Lu, Wen-qiang [School of Physics, University of Chinese Academy of Sciences, Beijing (China)

    2014-09-15

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target.

  5. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Gao, Lei; Yang, Lei; Lu, Wen-qiang

    2014-01-01

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target

  6. Berkeley research program on ion-induction linacs for inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Rosenblum, S.S.

    1982-03-01

    The following areas of research are described: (1) driver studies, (2) induction linac technology, (3) core materials, (4) insulators, (5) modulator-switches and pulse forming network, (6) induction linac accelerators and prototype modules, and (7) a high-temperature experiment

  7. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Travis [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  8. X-ray spectra of He-like ions of Ga and Ge, excited in the low-inductance spark plasma

    International Nuclear Information System (INIS)

    Aglitsky, E.V.; Antsiferov, P.S.; Panin, A.M.

    1984-01-01

    The spectra of Ga XXX and Ge XXXI ions in the interval 1.2-1.4 A excited in the low-inductance vacuum spark plasma have been obtained for the first time. The resonance line 1s 2 -1s2p of Ga XXX and Ge XXXI and a group of satellites, corresponding to transitions in Ga XXIX and Ge XXX can be seen distinctly in the spectra. The spectra were obtained by an electronic-optical image-intensifier tube for one discharge. (orig.)

  9. Modeling Tar Recirculation in Biomass Fluidized Bed Gasification

    NARCIS (Netherlands)

    Heineken, Wolfram; De la Cuesta de Cal, Daniel; Zobel, Nico

    2016-01-01

    A biomass gasification model is proposed and applied to investigate the benefits of tar recirculation within a gasification plant. In the model, tar is represented by the four species phenol, toluene, naphthalene, and benzene. The model is spatially one-dimensional, assuming plug flow for the

  10. Effect of recirculation and regional counting rate on reliability of noninvasive bicompartmental CBF measurements

    International Nuclear Information System (INIS)

    Herholz, K.

    1985-01-01

    Based on data from routine intravenous Xe133-rCBF studies in 50 patients, using Obrist's algorithm the effect of counting rate statistics and amount of recirculating activity on reproducibility of results was investigated at five simulated counting rate levels. Dependence of the standard deviation of compartmental and noncompartmental flow parameters on recirculation and counting rate was determined by multiple linear regression analysis. Those regression equations permit determination of the optimum accuracy that may be expected from individual flow measurements. Mainly due to a delay of the start-of-fit time an exponential increase in standard deviation of flow measurements was observed as recirculation increased. At constant start-of-fit, however, a linear increase in standard deviation of compartmental flow parameters only was found, while noncompartmental results remained constant. Therefore, and in regard to other studies of potential sources of error, an upper limit of 2.5 min for the start-of-fit time and usage of noncompartmental flow parameters for measurements affected by high recirculation are suggested

  11. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    International Nuclear Information System (INIS)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-01-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag + ) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg −1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm

  12. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A., E-mail: joseph.caruso@uc.edu; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag{sup +}) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg{sup −1} detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  13. Ion detection in mass spectrometry

    International Nuclear Information System (INIS)

    Bolbach, Gerard

    2016-03-01

    This course aims at providing some elements for a better understanding of ion detectors used in mass spectrometers, of their operations, and of their limitations. A first part addresses the functions and properties of an ideal detector, how to detect ions in gas phase, and particle detectors and ion detectors used in mass spectrometry. The second part proposes an overview of currently used detectors with respect to their operation principle: detection from the ion charge (Faraday cylinder), detection by inductive effects (FTICR, Fourier Transform Ion Cyclotron Resonance), and detection by secondary electron emission. The third part discusses the specificities of secondary electron emission. The fourth one addresses operating modes and parameters related to detectors. The sixth part proposes a prospective view on future detectors by addressing the following issues: cryo-detector, inductive effect and charge detectors, ion detection and nano materials

  14. The effect of sludge recirculation rate on a UASB-digester treating domestic sewage at 15 °C.

    Science.gov (United States)

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Li, Weiguang; Buisman, Cees J N

    2012-01-01

    The anaerobic treatment of low strength domestic sewage at low temperature is an attractive and important topic at present. The upflow anaerobic sludge bed (UASB)-digester system is one of the anaerobic systems to challenge low temperature and concentrations. The effect of sludge recirculation rate on a UASB-digester system treating domestic sewage at 15 °C was studied in this research. A sludge recirculation rate of 0.9, 2.6 and 12.5% of the influent flow rate was investigated. The results showed that the total chemical oxygen demand (COD) removal efficiency rose with increasing sludge recirculation rate. A sludge recirculation rate of 0.9% of the influent flow rate led to organic solids accumulation in the UASB reactor. After the sludge recirculation rate increased from 0.9 to 2.6%, the stability of the UASB sludge was substantially improved from 0.37 to 0.15 g CH₄-COD/g COD, and the bio-gas production in the digester went up from 2.9 to 7.4 L/d. The stability of the UASB sludge and bio-gas production in the digester were not significantly further improved by increasing sludge recirculation rate to 12.5% of the influent flow rate, but the biogas production in the UASB increased from 0.37 to 1.2 L/d. It is recommended to apply a maximum sludge recirculation rate of 2-2.5% of the influent flow rate in a UASB-digester system, as this still allows energy self-sufficiency of the system.

  15. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    Science.gov (United States)

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  16. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  17. Etch induction time in cellulose nitrate: a new particle identification parameter

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Knowles, H.B.; Luckstead, S.C.; Tripard, G.E.

    1977-01-01

    By the use of a 'continuous etch' method, it has been ascertained that particle tracks do not appear in cellulose nitrate track detectors until a certain finite time after etch has been started: this etch induction time may provide a unique signal for distinguishing ions of different atomic number, Z, and possibly also resolving the mass, M, of such ions. Empirical relations between etch induction time and various experimental quantities are described, as is a simple theory of the cause of etch induction time, which can be related to experimental evidence on hand. There is reason to believe that etch induction time appears in other types of plastic track detectors and may indeed be a general phenomenon in all track detectors. (Auth.)

  18. An RF ion source based primary ion gun for secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Menon, Ranjini; Nabhiraj, P.Y.; Bhandari, R.K.

    2011-01-01

    In this article we present the design, development and characterization of an RF plasma based ion gun as a primary ion gun for SIMS application. RF ion sources, in particular Inductively Coupled Plasma (ICP) ion sources are superior compared to LMIS and duoplasmtron ion sources since they are filamentless, can produce ions of gaseous elements. At the same time, ICP ion sources offer high angular current density which is an important factor in producing high current in small spot size on the target. These high current microprobes improve the signal to noise ratio by three orders as compared to low current ion sources such as LMIS. In addition, the high current microprobes have higher surface and depth profiling speeds. In this article we describe a simple ion source in its very basic form, two lens optical column and characteristics of microprobe

  19. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  20. Combined production of fish and plants in recirculating water

    Energy Technology Data Exchange (ETDEWEB)

    Naegel, L.C.A.

    1977-01-01

    A pilot plant of ca 2000 l of recirculating fresh water for intensive fish production was constructed in a controlled-environment greenhouse. The feasibility was examined of using nutrients from fish wastewater, mainly oxidized nitrogenous compounds, for plant production, combined with an activated sludge system for water purification. The reduction of nitrates, formed during the extended aeration process by nitrifying bacteria, was not sufficient by higher plants and unicellular algae alone to reduce the nitrate concentration in our system significantly. An additional microbial denitrification step had to be included to effect maximal decrease in nitrogenous compounds. For fish culture in the pilot plant Tilapia mossambica and Cyprinus carpio were chosen as experimental fishes. Both fish species showed significant weight increases during the course of the experiment. Ice-lettuce and tomatoes were tested both in recirculating water and in batch culture. The unicellular algae Scenedesmus spp. were grown in a non-sterile batch culture. All plants grew well in the wastewater without additional nutrients. Determination of the physical and chemical parameters for optimum water purification, the most suitable ratio of denitrification by plants and by microorganisms, and the most favourable fish and plant species for combined culture in recirculating water are important and of current interest in view of the increasing demand for clean, fresh water, and the pressing need to find new ways of producing protein for human nutrition under prevailing conditions of an exponentially expanding world population.

  1. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Niu, Hongsen.

    1995-01-01

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T e ) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n e ) is in the range 10 8 --10 10 -cm at the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 near the skimmer tip and drops abruptly to 10 6 --10 8 cm -3 downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10 4 --10 5 downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z 2 intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z 2 fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument

  2. The Effect of Effluent Recirculation in a Semi-Continuous Two-Stage Anaerobic Digestion System

    Directory of Open Access Journals (Sweden)

    Karthik Rajendran

    2013-06-01

    Full Text Available The effect of recirculation in increasing organic loading rate (OLR and decreasing hydraulic retention time (HRT in a semi-continuous two-stage anaerobic digestion system using stirred tank reactor (CSTR and an upflow anaerobic sludge bed (UASB was evaluated. Two-parallel processes were in operation for 100 days, one with recirculation (closed system and the other without recirculation (open system. For this purpose, two structurally different carbohydrate-based substrates were used; starch and cotton. The digestion of starch and cotton in the closed system resulted in production of 91% and 80% of the theoretical methane yield during the first 60 days. In contrast, in the open system the methane yield was decreased to 82% and 56% of the theoretical value, for starch and cotton, respectively. The OLR could successfully be increased to 4 gVS/L/day for cotton and 10 gVS/L/day for starch. It is concluded that the recirculation supports the microorganisms for effective hydrolysis of polyhydrocarbons in CSTR and to preserve the nutrients in the system at higher OLRs, thereby improving the overall performance and stability of the process.

  3. Hyperthermia induced after recirculation triggers chronic neurodegeneration in the penumbra zone of focal ischemia in the rat brain

    Directory of Open Access Journals (Sweden)

    L.A. Favero-Filho

    2008-11-01

    Full Text Available Chronic neurodegenerative processes have been identified in the rat forebrain after prolonged survival following hyperthermia (HT initiated a few hours after transient global ischemia. Since transient global ischemia and ischemic penumbra share pathophysiological similarities, this study addressed the effects of HT induced after recirculation of focal brain ischemia on infarct size during long survival times. Adult male Wistar rats underwent intra-luminal occlusion of the left middle cerebral artery for 60 min followed by HT (39.0-39.5°C or normothermia. Control procedures included none and sham surgery with and without HT, and middle cerebral artery occlusion alone. Part I: 6-h HT induced at recirculation. Part II: 2-h HT induced at 2-, 6-, or 24-h recirculation. Part III: 2-h HT initiated at recirculation or 6-h HT initiated at 2-, 6- or 24-h recirculation. Survival periods were 7 days, 2 or 6 months. The effects of post-ischemic HT on cortex and striatum were evaluated histopathologically by measuring the area of remaining tissue in the infarcted hemisphere at -0.30 mm from bregma. Six-hour HT initiated from 6-h recirculation caused a significant decrease in the remaining cortical tissue between 7-day (N = 8 and 2-month (N = 8 survivals (98.46 ± 1.14 to 73.62 ± 8.99%, respectively. When induced from 24-h recirculation, 6-h HT caused a significant reduction of the remaining cortical tissue between 2- (N = 8 and 6-month (N = 9 survivals (94.97 ± 5.02 vs 63.26 ± 11.97%, respectively. These data indicate that post-ischemic HT triggers chronic neurodegenerative processes in ischemic penumbra, suggesting that similar fever-triggered effects may annul the benefit of early recirculation in stroke patients over the long-term.

  4. A replacement LH2 recirculation line before installation in Discovery

    Science.gov (United States)

    1999-01-01

    A spare four-inch diameter LH2 recirculation line (shown in photo) will be used to replace a damaged LH2 line in the orbiter Discovery. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. Workers noted a dent in the line during routine aft compartment inspections Tuesday, Dec. 7. The dent measures 12 inches long and about =-inch deep. Managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  5. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jinwook [R& D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-dong, Youngtong-gu, Suwon, Gyeonggi-do 443-823 (Korea, Republic of); Kim, Seungjin; Baek, Seungcheon [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Nam-Hoon [Department of Environmental & Energy Engineering, Anyang University, 22 Samdeok-ro, 37 Beon-gil, Manan-gu, Anyang, Gyeonggi-do 430-714 (Korea, Republic of); Park, Seongjun; Lee, Junghun; Lee, Heechang [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of)

    2015-03-21

    Highlights: • To solve the drawbacks (NH{sub 4}{sup +} accumulation) of leachate recirculation, ex-situ SBR was applied. • Produced NO{sub 2}{sup −} was recirculated and denitrified to N{sub 2} in landfill with insufficient carbon source. • Despite the inhibition of methanogenesis by DO and nitrate, CH{sub 4} fraction eventually increased. - Abstract: Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  6. Freshwater Institute: Focused on improving recirculating aquaculture system technology

    Science.gov (United States)

    Recirculating aquaculture system (RAS) technologies help to overcome barriers to domestic aquaculture expansion and enhance the sustainability of the modern fish farming industry through reduction in environmental impacts. With RAS, fish farm expansion is no longer highly constrained by competition ...

  7. STUDIES REGARDING THE PRESENCE OF THE PATHOGENS BACTERIA INTO A RECIRCULATING SYSTEM OF BELUGA STURGEON INTENSIVE REARING

    Directory of Open Access Journals (Sweden)

    ANGELICA DOCAN

    2008-10-01

    Full Text Available Recirculating aquaculture offers good potential for successful fish farming since is often independent of environmental conditions. Maintaining healthy fish in a recirculating system involves establishing adequate dissolved oxygen levels, removal of solid wastes, and sufficient ammonia nitrification to assure optimal rearing conditions. Neglecting these, the fish immune system will depress, the facultative pathogen germs will be able to provoke important disease outbreaks into cultured biomass, as was happened in our recirculating pilot system. In this study are presented the pathological aspects registered to the beluga sturgeon of 1 year, reared into our recirculating pilot system, pathological aspects generated by a haemorrhagic bacterial septicaemia which was manifested in the conditions of low concentrations of DO. The disease was diagnosed to the affected fish through anatomopathological and clinical exam, haematological exam and microbiological exam.

  8. Boiler recirculation pumps for nuclear power stations - present state of development. Directions for planning, operational experience

    International Nuclear Information System (INIS)

    Mattias, H.B.

    1976-01-01

    Boiler recirculation pumps are important components of modern power stations. The development of large recirculation pumps up to a driving power of 1,500 kW was faced with some problems in meeting the plant requirements. In this paper, the present state of development is dealt with. The development problems in the fields of hydrodynamics, cavitation, corrosion and erosion are dealt with as well as the problems of the design of the casing with regard to thermodynamics and strength. Finally, operational experience with the boiler recirculation pump for 600 MW power stations will be reported on. (orig./AK) [de

  9. Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems

    International Nuclear Information System (INIS)

    Zhu Yinhai; Li Yanzhong; Cai Wenjian

    2011-01-01

    A one-equation model is proposed for fuel ejector in anode gas recirculation solid oxide fuel cell (SOFC) system. Firstly, the fundamental governing equations are established by employing the thermodynamic, fluid dynamic principles and chemical constraints inside the ejector; secondly, the one-equation model is derived by using the parameter analysis and lumped-parameter method. Finally, the computational fluid dynamics (CFD) technique is employed to obtain the source data for determining the model parameters. The effectiveness of the model is studied under a wide range of operation conditions. The effect of ejector performance on the anode gas recirculation SOFC system is also discussed. The presented model, which only contains four constant parameters, is useful in real-time control and optimization of fuel ejector in the anode gas recirculation SOFC system.

  10. Analysis of an induction linac driver system for inertial fusion

    International Nuclear Information System (INIS)

    Hovingh, J.; Brady, V.O.; Faltens, A.; Keefe, D.; Lee, E.P.

    1987-07-01

    A linear induction accelerator that produces a beam of energetic (5 to 20 GeV) heavy (130 to 210 amu) ions is a prime candidate as a driver for inertial fusion. Continuing developments in sources for ions with charge state greater than unity allow a potentially large reduction in the driver cost and an increase in the driver efficiency. The use of high undepressed tunes (σ 0 ≅ 85 0 ) and low depressed tunes (σ ≅ 8.5 0 ) also contributes to a potentially large reduction in the driver cost. The efficiency and cost of the induction linac system are discussed as a function of output energy and pulse repetition frequency for several ion masses and charge states. The cost optimization code LIACEP, including accelerating module alternatives, transport modules, and scaling laws, is presented. Items with large cost-leverage are identified as a guide to future research activities and development of technology that can yield substantial reductions in the accelerator system cost and improvement in the accelerator system efficiency. Finally, a cost-effective strategy using heavy ion induction linacs in a development scenario for inertial fusion is presented. 34 refs., 6 figs., 7 tabs

  11. Inertial Confinement Fusion quarterly report, January--March 1995. Volume 5, No. 2

    International Nuclear Information System (INIS)

    1995-01-01

    The ICF quarterly report is published by the Inertial Confinement Fusion Program at the Lawrence Livermore National Laboratory. Topics included this quarter include: the role of the National Ignition Facility in the development of Inertial Confinement Fusion, laser-plasma interactions in large gas-filled hohlraums, evolution of solid-state induction modulators for a heavy-ion recirculator, the National Ignition Facility project, and terminal-level relaxation in Nd-doped laser material

  12. λ-prophage induction in E.coli cells by radiation with different LET

    International Nuclear Information System (INIS)

    Bonev, M.N.; Collev, S.D.

    1997-01-01

    λ-prophage induction in E.coli H fr H (λ) strain after irradiation with α-particles, accelerated helium ions, boron and carbon ions, as well as deuterons is investigated. The dose dependence of the fraction of induced cells is measured and its initial slope (λ-induction potency - λ i p) is determined. It is shown that the dependence of λ i p on LET is a curve with a maximum

  13. Effect of recirculation rate on methane production and SEBAR system performance using active stage digester.

    Science.gov (United States)

    Tubtong, Cheevanuch; Towprayoon, Sirintornthep; Connor, Michael Anthony; Chaiprasert, Pawinee; Nopharatana, Annop

    2010-09-01

    A project was undertaken to examine the feasibility of treating organic wastes from Thai fruit and vegetable markets using the sequential batch anaerobic digester (SEBAR) approach. A key feature of the SEBAR system is the regular interchanging, or recirculation, of portions of leachate between each freshly filled digester and a support digester to which it is coupled until it is ready to operate independently. Leachate transfer from this support digester to the fresh waste digester provides additional alkalinity to help counteract the effects of early high acid release rates; it also helps build a balanced microbial population in the fresh waste digester. To optimize the leachate recirculation process, the effect of varying the quantities of leachate interchanged between freshly filled waste digesters and the still highly active support digesters to which they were coupled was studied. It was found that increasing the recirculation rate accelerated the onset of both waste degradation and methane production. The increasing of recirculation rate from 10% to 20% and 10% to 30% could reduce the SEBAR cycle period by approximately 7% and 22% without significant reduction in the amount of methane obtained from the systems. The methane yields were 0.0063, 0.0068 and 0.0077 l g(-1) VS added in the NEW digester per day using leachate recirculation rates of 10%, 20% and 30%, respectively. This finding has potentially important practical and economic implications for those using the SEBAR system to add value to market waste.

  14. Economic Feasibility of Recirculating Aquaculture Systems in Pangasius Farming

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.C.; Verreth, J.A.J.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2016-01-01

    This study aims to analyze the economic feasibility of recirculating aquaculture systems (RAS) in pangasius farming in Vietnam. The study uses a capital budgeting approach and accounts for uncertainty in key parameters. Stochastic simulation is used to simulate the economic performance of medium and

  15. Digital feedwater and recirculation flow control for GPUN Oyster Creek

    International Nuclear Information System (INIS)

    Burjorjee, D.; Gan, B.

    1992-01-01

    This paper describes the digital system for feedwater and recirculation control that GPU Nuclear will be installing at Oyster Creek during its next outage - expected circa December 1992. The replacement was motivated by considerations of reliability and obsolescence - the analog equipment was aging and reaching the end of its useful life. The new system uses Atomic Energy of Canada Ltd.'s software platform running on dual, redundant, industrial-grade 386 computers with opto-isolated field input/output (I/O) accessed through a parallel bus. The feedwater controller controls three main feed regulating valves, two low flow regulating valves, and two block valves. The recirculation controller drives the five scoop positioners of the hydraulic couplers. The system also drives contacts that lock up the actuators on detecting an open circuit in their current loops

  16. A dented LH2 recirculation line is removed from Discovery

    Science.gov (United States)

    1999-01-01

    In the Payload Changeout Room, Launch Pad 39B, United Space Alliance and NASA workers look at the replacement main propulsion system liquid hydrogen recirculation line (left) to be installed in Shuttle Discovery's aft compartment. At right is the dented line that has been removed. The 12-inch-long dent was discovered during routine aft compartment inspections Tuesday, Dec. 7. The line recirculates hydrogen from the Shuttle main engines back to the external tank during prelaunch engine conditioning. The line is being replaced and managers expect the replacement work to take about 3 days, followed by system retests and final aft compartment close-outs. Preliminary assessments reflect a launch date of Space Shuttle Discovery on mission STS-103 no earlier than Dec. 16. STS-103 is the third servicing mission for the Hubble Space Telescope.

  17. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  18. Electromagnetic induction phenomena in plasma systems

    International Nuclear Information System (INIS)

    Karlovitz, B.

    1982-01-01

    The phenomenon of electromagnetic induction is considered in complex high temperature plasma systems. Thermal energy of such fully ionized plasma is really energy of the magnetic vortex fields surrounding the randomly moving ions and electrons. In an expanding plasma stream, moving across the containing magnetic field, random thermal motion of the ions and electrons is converted into ordered motion and thereby random magnetic energy of the plasma into magnetic energy of an ordered field. Consequently, in contrast to simple systems consisting of coils and magnets only, an expanding plasma stream can maintain net outflow of ordered magnetic energy from a closed volume for an indefinite length of time. Conversion of thermal energy of plasma into ordered magnetic energy by the thermodynamic expansion process leads to the expectation of a new induction phenomenon: the generation of a unidirectional induced electromotive force of unlimited duration, measured in a closed loop at rest relative to the magnetic field, by the expansion work of the plasma stream. No change is required in the differential form of Maxwell's equations for the existence of this induction phenomenon, only the definition of the concept of rate of change of magnetic flux needs to be modified in the macroscopic equations to correspond to the rate of flow of magnetic energy across a closed surface. An experimental test of the predicted induction phenomenon is proposed

  19. Investigation of a combined gas-steam system with flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Chmielniak Tadeusz

    2016-06-01

    Full Text Available This article presents changes in the operating parameters of a combined gas-steam cycle with a CO2 capture installation and flue gas recirculation. Parametric equations are solved in a purpose-built mathematical model of the system using the Ebsilon Professional code. Recirculated flue gases from the heat recovery boiler outlet, after being cooled and dried, are fed together with primary air into the mixer and then into the gas turbine compressor. This leads to an increase in carbon dioxide concentration in the flue gases fed into the CO2 capture installation from 7.12 to 15.7%. As a consequence, there is a reduction in the demand for heat in the form of steam extracted from the turbine for the amine solution regeneration in the CO2 capture reactor. In addition, the flue gas recirculation involves a rise in the flue gas temperature (by 18 K at the heat recovery boiler inlet and makes it possible to produce more steam. These changes contribute to an increase in net electricity generation efficiency by 1%. The proposed model and the obtained results of numerical simulations are useful in the analysis of combined gas-steam cycles integrated with carbon dioxide separation from flue gases.

  20. Recirculating electric air filter for use in confined spaces

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.; Kuhl, W.

    1985-01-01

    We have developed recirculating electric air filters for use in confined spaces where the existing ventilation system is not adequate for removing suspended particles. Two experimental filters were built and evaluated, both of which consisted of a cylindrical cartridge filter fitted over an air blower. In one design the cylindrical cartridge is a disposable unit with the electrodes and filter medium built as an integrated unit. The second design has a cylindrical cartridge that can be easily disassembled to allow replacement of the filter medium. Both designs were evaluated in a 354-ft 3 test cell using NaCl aerosols. The second design was installed and evaluated in a chamber where highly radioactive 238 PuO 2 powder is formed into pellets. We have derived equations that describe the theory of recirculating air filters. The predicted performance compares well with experimental measurements under controlled conditions. 2 refs., 7 figs., 1 tab. (DT)

  1. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2014-07-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  2. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    International Nuclear Information System (INIS)

    Loenhout, Gerard van; Hurni, Juerg

    2014-01-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  3. Thermodynamics of premixed combustion in a heat recirculating micro combustor

    International Nuclear Information System (INIS)

    Rana, Uttam; Chakraborty, Suman; Som, S.K.

    2014-01-01

    A thermodynamic model has been developed to evaluate exergy transfer and its destruction in the process of premixed combustion in a heat recirculating micro combustor. Exergy destruction caused by process irreversibilities is characterized by entropy generation in the process. The entropy transport equation along with the solution of temperature and species concentration fields in the wake of flame sheet assumptions have been used to determine the different components of entropy generation. The role of thermal conductivity and thickness of combustor wall, and Peclet number on transfer and destruction rate of exergy is depicted in the process of flame stabilization via heat recirculation. The entropy generations due to gas phase heat conduction and chemical reaction are identified as the major sources of exergy destruction. The total irreversibility in pre-flame region is confined only within a small distance upstream of the flame. It has been observed that the local volumetric entropy generation is higher near the axis than that near the combustor wall. The second law efficiency is almost invariant with heat loss from the combustor, Peclet number, and thermal conductivity and thickness of combustor wall. - Highlights: • Irreversibility in the combustor is mainly due to conduction and chemical reaction. • Entropy generation near the axis is higher compared to that near the wall. • Heat recirculation and process irreversibility decrease with heat loss. • The second law efficiency is almost independent of Peclet number. • Second law efficiency is almost independent of wall thermal conductivity

  4. Constrained control of a once-through boiler with recirculation

    DEFF Research Database (Denmark)

    Trangbæk, K

    2008-01-01

    There is an increasing need to operate power plants at low load for longer periods of time. When a once-through boiler operates at a sufficiently low load, recirculation is introduced, significantly altering the control structure. This paper illustrates the possibilities for using constrained con...

  5. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    Science.gov (United States)

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  6. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE).

    Science.gov (United States)

    Xing, Wei; Lu, Wenjing; Zhao, Yan; Zhang, Xu; Deng, Wenjing; Christensen, Thomas H

    2013-02-01

    In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl(-), Mg(2+), and Ca(2+), may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing

  7. K+ ion source for the heavy ion Induction Linac System Experiment ILSE

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-05-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam is emitted thermionically into a diode gap from alumina-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4in. to 7in.) source able to deliver high current (∼800 mA) low emittance (E n < .5 π mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. We report on the 1in. source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, we shall report on the extension of the fabricating technique to large diameter sources (up to 7in.), measured ion emission performance, measured surface temperature uniform heating power considerations for large sources

  8. K+ ion source for the heavy ion induction linac system experiment ILSE

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-01-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K + ion beam is emitted thermionically into a diode gap from alumino-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4 inches to 7 inches) source able to deliver high current (∼ 800 mA) low emittance (E n < .5 π mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. The authors report on the 1 inch source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, they shall report on the extension of the fabricating technique to large diameter sources (up to 7 inches), measured ion emission performance, measured surface temperature uniformity and heating power considerations for large sources

  9. Experiments and prospects for induction linac drivers

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-05-01

    In the last three years, the US program in Heavy Ion Fusion has concentrated on understanding the induction linac approach to a power-plant driver. In this method it is important that the beam current be maximized throughout the accelerator. Consequently, it is crucial to understand the space-charge limit in the AG transport system in the linac and, also, to achieve current amplification during acceleration to keep pace with the kinematical increase of this limit with energy. Experimental results on both these matters and also on the use of multiple beams (inside the same accelerating structure) will be described. A new examination of the most attractive properties of the induction linac for a fusion driver has clearly pointed to the advantage of using heavy ions with a charge-state greater than unity - perhaps q = 3 may be an optimum. This development places even greater importance on understanding space-charge limits and mechanisms for emittance growth; also, it will require a new emphasis on the development of a suitable ion source

  10. Experiments and prospects for induction linac drivers

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-12-01

    In the last three years, the US program in Heavy Ion Fusion has concentrated on understanding the induction linac approach to a power-plant driver. In this method it is important that the beam current be maximized throughout the accelerator. Consequently, it is crucial to understand the space-charge limit in the AG transport system in the linac and, also, to achieve current amplification during acceleration to keep pace with the kinematical increase of this limit with energy. Experimental results on both these matters and also on the use of multiple beams (inside the same accelerating structure) will be described. A new examination of the most attractive properties of the induction linac for a fusion driver has clearly pointed to the advantage of using heavy ions with a charge-state greater than unity - perhaps q = 3 may be an optimum. This development places even greater importance on understanding space-charge limits and mechanisms for emittance growth; also, it will require a new emphasis on the development of a suitable ion source

  11. The effect of leachate recirculation with enzyme cellulase addition on waste stability in landfill bioreactor

    Science.gov (United States)

    Saffira, N.; Kristanto, G. A.

    2018-01-01

    Landfill bioreactor with leachate recirculation is known to enhance waste stabilization. However, the composition of waste in Indonesia is comprised by organic waste which is lignocellulosic materials that considered take a long time to degrade under anaerobic condition. To accelerate the degradation process, enzyme addition is ought to do. Cellulase is an enzyme that can catalyse cellulose and other polysaccharide decomposition processes. Therefore, operation of waste degradation using leachate recirculation with a cellulase addition to enhance waste stabilization was investigated using anaerobic bioreactor landfill. The experiment was performed on 2 conditions; leachate recirculation with cellulase addition and recirculation only as a control. The addition of cellulase is reported to be significant in decreasing organic content, represented by volatile solid parameter. The volatile solid reduction in the cellulase augmented reactor and control reactor was 17.86% and 7.90%, respectively. Cellulase addition also resulted in the highest cellulose reduction. Settlement of the landfill in a bioreactor with enzyme addition (32.67%) was reported to be higher than the control (19.33%). Stabilization of landfill review by the decreasing rate constant of the cellulose and lignin ratio parameter was more rapidly achieved by the enzyme addition (0.014 day-1) compared to control (0.002 day-1).

  12. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  13. Chemical speciation analysis for bromine in tap water by ion chromatography/inductively coupled plasma-mass spectrometry and electrospray ionization-mass spectrometry

    International Nuclear Information System (INIS)

    Kurata, Keigo; Suzuki, Yoshinari; Furuta, Naoki

    2010-01-01

    Bromide compounds in tap water were measured by using a hyphenated technique of ion chromatography coupled with inductively coupled plasma - mass spectrometry (IC/ICP-MS) and electrospray ionization mass spectrometry (ESI-MS). We identified bromide ion (Br - ), bromate ion (BrO 3 - ), bromochloroacetic acid (BCAA), dibromoacetic acid (DBAA) and bromodichloroacetic acid (BDCAA) by standard addition methods with IC/ICP-MS. Moreover, we identified BCAA and BDCAA by ESI-MS after separation with IC. Br - , BrO 3 - , BCAA, DBAA and BDCAA in tap water collected from around Tokyo area were quantified by IC/ICP-MS. The maximum concentration of BrO 3 - (1.8 ng mL -1 ) was observed in tap water collected from Bunkyo-ku, although this concentration was lower than 10 ng mL -1 , which is the regulated concentration in Japan. DBAA, which is regulated by United States Environmental Protection Agency, was detected in tap water collected from all sites, except for Ome. However, since BrO 3 - and DBAA are toxic, it is necessary to continue monitoring bromide compounds in tap water. (author)

  14. Preoperational test report, recirculation ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-11

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. Preoperational test report, recirculation ventilation systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102 and supports the ability to exhaust air from each tank. Each system consists of a valved piping loop, a fan, condenser, and moisture separator; equipment is located inside each respective tank farm in its own hardened building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  16. Low-energy N-ion beam biotechnology application in the induction of Thai jasmine rice mutant with improved seed storability

    Science.gov (United States)

    Semsang, Nuananong; Techarang, Jiranat; Yu, Liangdeng; Phanchaisri, Boonrak

    2018-06-01

    Low-energy heavy-ion beam is a novel biotechnology used for mutation induction in plants. We used a low-energy N-ion beam to induce mutations in Thai jasmine rice (Oryza sativa L. cv. KDML 105) to improve the yield and seed quality. Seeds of BKOS6, a Thai jasmine rice mutant previously induced by ion beams, were re-bombarded with 60-kV-accelerated N-ions (N++N2+) to fluences of 1-2 × 1016 ions/cm2. The resulting mutant, named HyKOS21, exhibited photoperiod insensitivity, semi-dwarfness, and high yield potential. Seed storability of the mutant was studied in natural and accelerated ageing conditions and compared to that of KDML 105 and six other Thai rice varieties. In both testing conditions, HyKOS21 mutant had the highest seed storability among the tested varieties. After storage in the natural condition for 18 months, HyKOS21 had a seed germination percentage nearly two times as that of the original KDML 105. Biochemical analysis showed that the lipid peroxidation level of the mutant seeds was the lowest among those of the tested varieties. Furthermore, an expression analysis of genes encoding lipoxygenase isoenzyme (lox1, lox2, and lox3) revealed that the mutant lacked expression of lox1 and lox2 and expressed only lox3 in seeds. These results may explain the improved seed longevity of the mutant after storage. This work provides further evidence of the modification of biological materials using a low-energy ion beam to produce rice mutants with improved yield and seed storability. The benefits of this technology, to create new varieties with improved values, could serve for local economic development.

  17. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio.

    Science.gov (United States)

    Javadzadegan, Ashkan; Fulker, David; Barber, Tracie

    2017-07-01

    Haemodynamic perturbations such as flow recirculation zones play a key role in progression and development of renal artery stenosis, which typically originate at the aorta-renal bifurcation. The spiral nature of aortic blood flow, division of aortic blood flow in renal artery as well as the exercise conditions have been shown to alter the haemodynamics in both positive and negative ways. This study focuses on the combinative effects of spiral component of blood flow, renal-to-aorta flow ratio and the exercise conditions on the size and distribution of recirculation zones in renal branches using computational fluid dynamics technique. Our findings show that the recirculation length was longest when the renal-to-aorta flow ratio was smallest. Spiral flow and exercise conditions were found to be effective in reducing the recirculation length in particular in small renal-to-aorta flow ratios. These results support the hypothesis that in renal arteries with small flow ratios where a stenosis is already developed an artificially induced spiral flow within the aorta may decelerate the progression of stenosis and thereby help preserve kidney function.

  18. Study of atmospheric stagnation, recirculation, and ventilation potential at Narora Atomic Power Station site

    International Nuclear Information System (INIS)

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Rao, K.S.; Kumar, Jaivender; Ravi, P.M.

    2011-01-01

    Atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. Estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This article describes the meteorological characteristics of Narora Atomic Power Station (NAPS) site by using the integral parameters developed by Allwine and Whiteman. Meteorological data measured during the period 2006-2010 were analyzed. The integral quantities related to the occurrence of stagnation, recirculation, and ventilation characteristics were studied for NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation, and ventilation characteristics during 2006-2010 at NAPS site is observed to be 33.8% of the time, 19.5% of the time, and 34.7% of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1% and 44.3%) and recirculation (32.6% of the summer season). The presence of light winds and more dispersed winds during prewinter season with predominant wind directions W and WNW results in more stagnation (59.7% of the prewinter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent releases from any nuclear industry. (author)

  19. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells

    NARCIS (Netherlands)

    Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Scott, Laura L.; Teague, Jessica E.; Schlapbach, Christoph; Elco, Christopher P.; Huang, Victor; Matos, Tiago R.; Kupper, Thomas S.; Clark, Rachael A.

    2015-01-01

    The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in

  20. Prophage λ induction by ionizing radiation of different LETs

    International Nuclear Information System (INIS)

    Bonev, M.N.; Kozubek, S.; Krasavin, E.A.; Amirtaev, K.G.

    1988-01-01

    The λ prophage induction caused by γ-irradiation and accelerated heavy ions with different LET was studied in variety Escherichia coli strains. The induction frequency on the dose I(D) shaped a curve with a maximum in the strains which possess recA + /lexA + genotype. The inductivity of these strains increases as well as LET and an alteration poor → rich media does it. Unlike I(D) for recA + /lexA + , the dependence I(D) for recA, lexA and recBC strains was a constant. 15 refs.; 6 figs.; 3 tabs

  1. FROZEN ASH BERRIES PROCESSING IN THE DEVICE WITH A NOZZLE CONTINUOUS VIBRATION, EQUIPPED WITH AN EXTERNAL RECIRCULATION LOOP

    Directory of Open Access Journals (Sweden)

    P. P. Ivanov

    2015-01-01

    Full Text Available An external recirculation loop was used as the method of increasing the concentration of dry soluble substances in the obtained extract. The objective of the research is to determine the value of the external recirculation index (KR, which provides the optimal conditions for the process carrying out. The results of the conducted research show the increase in the concentration of dry soluble substances in the extract if the external recirculation index increases. It is conditioned by the extension of the interaction between the processed raw mate-rial and the extract, as well as by the decrease in the surface tension of the extracting agent, which results in improving the conditions of its penetration into the pores of particles. Such an opposite property of recirculation as the decrease in mass transfer rate was also ob-served. It causes the significant rise of dry soluble substances losses while discharging extraction cake, which leads to the performance degradation. According to the analytical evaluation of the obtained results, the maximum process results are observed if KR = 1 (without recirculation and KR = 2, the values of the optimality criterion are 5.02∙10-3 and 4.92∙10-3 % mass/W respectively. At the same time the operation of the apparatus with the recirculation loop at KR = 2 is characterized by 62%-increase in dry soluble substances concentration in the extract as compared to a pure extracting agent. The efficiency of recirculation at KR = 2 is proved by the saving of energy con-sumed on the evaporation of the extract obtained. The energy costs calculation for the production of 60l of 12 % mass dry soluble sub-stances concentration extract showed that if the initial dry soluble substances concentration is raised to 6 % mass (KR = 2, the amount of consumed saturated vapor is 104.1 kg less, which is 281685 kJ if the vapor specific enthalpy is 2706.29 kJ/kg.

  2. Numerical analysis and control of the recirculation bubble strength ...

    African Journals Online (AJOL)

    Numerical investigation of the turbulent jet flows, both central and annular type of jets has been carried out with the introduction of swirl at the inlet using the modified κ −ε model. It was observed that the recirculation bubble generated by the central jet without swirl diminishes in size due to increase in swirl number, while in ...

  3. Cost Characteristics of the African Catfish Culture in Recirculating ...

    African Journals Online (AJOL)

    Cost Characteristics of the African Catfish Culture in Recirculating Production Facilities in Ibadan, Oyo State, Nigeria. ... Food Conversion Ratio also ranged from 0.60–0.78 for fingerlings, 1.01-‐ 2.08 for juveniles and 1.15-‐1.68 for grow out system. In all cases, variable cost accounts for more than 75% of total cost.

  4. NUTRIENTS DYNIMIC IN AN AQUAPONIC RECIRCULATING SYSTEM FOR STURGEON AND LETTUCE (LACTUCA SATIVA PRODUCTION

    Directory of Open Access Journals (Sweden)

    LORENA SFETCU

    2008-10-01

    Full Text Available Aquaponics are modern production systems, which integrate the aquaculture technology with hydroponic systems (vegetable production without soil with a goal of fructification of residual nutrients resulted from metabolic activity of fish biomass as high quality vegetable biomass sealable as ecological products. In the present study, as a first step in aquaponic recirculating systems evaluation, the authors aim to compare two types of recirculating systems: classical (hereby noted with RAS and integrated/aquaponic (RAS_A regarding water quality parameters generally, and TAN (total ammonia nitrogen production and transformation, particularly.

  5. Particle capture by turbulent recirculation zones measured using long-time Lagrangian particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Y.W. [Hong Kong Securities Institute, Department of Professional Education and Training, Central (China); Taylor, A.M.K.P. [Imperial College London, Department of Mechanical Engineering, London (United Kingdom)

    2011-07-15

    We have measured the trajectories of particles into, and around, the recirculation zone formed in water flowing through a sudden pipe expansion with radius ratio 1:3.7, at Reynolds numbers between 5,960 and 41,700 over a range of particle Stokes number (here defined as St=(T{sub f})/({tau} p), where T{sub f} is an appropriate mean or turbulent timescale of the fluid flow and a particle relaxation time, {tau}{sub p},) between 6.2 and 51 and drift parameter between 0.3 and 2.8. The particles were thus weakly inertial but nevertheless heavy with a diameter about an order of magnitude larger than the Kolmogorov scale. Trajectories of particles, released individually into the flow, were taken in a Lagrangian framework by a three-dimensional particle tracking velocimeter using a single 25 Hz framing rate intensified CCD camera. Trajectories are quantified by the axial distribution of the locations of particle axial velocity component reversal and the probability distributions of trajectory angle and curvature. The effect of increasing the drift parameter was to reduce the tendency for particles to enter the recirculation zone. For centreline release, the proportion of particles entering the recirculation zone and acquiring a negative velocity decreased from about 80% to none and from about 66% to none, respectively, as the drift parameter increased from 0.3 to 2.8. Almost half of the particles experienced a relatively large change of direction corresponding to a radius of curvature of their trajectory comparable to, or smaller than, the radius of the downstream pipe. This was due to the interaction between these particles and eddies of this size in the downstream pipe and provides experimental evidence that particles are swept by large eddies into the recirculation zone over 1.0 < Z{sup *} < 2.5, where Z{sup *} is axial distance from the expansion plane normalized by the downstream pipe diameter, which was well upstream of the reattachment point at the wall (Z

  6. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  7. Optimization of time on CF_4/O_2 etchant for inductive couple plasma reactive ion etching of TiO_2 thin film

    International Nuclear Information System (INIS)

    Adzhri, R.; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M.; Arshad, M. K. Md.; Hashim, U.; Ayub, R. M.

    2016-01-01

    In this work, we investigate the optimum etching of titanium dioxide (TiO_2) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF_4/O_2 gases as plasma etchant with ratio of 3:1, three samples of TiO_2 thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF_4 gases with plasma enhancement by O_2 gas able to break the oxide bond of TiO_2 and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  8. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  9. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    Science.gov (United States)

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  10. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation

    DEFF Research Database (Denmark)

    Pedersen, Thomas H.; Grigoras, Ionela F.; Hoffmann, Julia

    2016-01-01

    heating value of 34.3 MJ/kg. The volatile fraction of the biocrude consisted mostly of compounds having number of carbon atoms in the C6–C12 range similar to gasoline. In terms of process feasibility, it was revealed that total organic carbon (TOC) and ash significantly accumulated in the water phase when...... such is recirculated for the proceeding batch. After four batches the TOC and the ash mass fraction of the water phase were 136.2 [g/L] and 12.6 [%], respectively. Water phase recirculation showed a slight increase in the biocrude quality in terms on an effective hydrogen-to-carbon ratio, but it showed no effects...

  11. Characterising organic matter in recirculating aquaculture systems with fluorescence EEM spectroscopy

    DEFF Research Database (Denmark)

    Hambly, Adam; Arvin, Erik; Pedersen, Lars-Flemming

    2015-01-01

    The potential of recirculating aquaculture systems (RAS) in the aquaculture industry is increasingly being acknowledged. Along with intensified application, the need to better characterise and understand the accumulated dissolved organic matter (DOM) within these systems increases. Mature RASs...

  12. Control methodologies based on geothermal recirculating aquaculture system

    International Nuclear Information System (INIS)

    Farghally, Hanaa M.; Atia, Doaa M.; El-madany, Hanaa T.; Fahmy, Faten H.

    2014-01-01

    One of the most common uses of geothermal heat is in RAS (recirculation aquaculture systems) where the water temperature is accurately controlled for optimum growing conditions for sustainable and intensive rearing of marine and freshwater fish. This paper presents a design for RAS rearing tank and plate type heat exchanger to be used with geothermal energy as a source of heating water. A well at Umm Huweitat on the Red Sea is used as a source of geothermal energy. The heat losses from the RAS tank are calculated using Geo Heat Center Software. Then a plate type heat exchanger is designed using the epsilon–NTU (number of transfer units) analysis method. For optimal growth and abundance of production, a different techniques of control system are applied to control the water temperature. The total system is built in MATLAB/SIMULINK to study the overall performance of control unit. Finally, a comparison between PI, Fuzzy-PID, and Fuzzy Logic Control has been done. - Highlights: • Design recirculating aquaculture system using geothermal energy. • Design a PI controller for water temperature control. • Design a Fuzzy logic controller for water temperature control. • Design a Fuzzy-PID controller for water temperature control. • Comparison between different control systems

  13. High-intensity sources for light ions

    International Nuclear Information System (INIS)

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H + and H - beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented

  14. Pulsed-focusing recirculating linacs for muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  15. Induction of aberrations in human lymphocytes by γ-rays and fast heavy ions

    International Nuclear Information System (INIS)

    Govorun, R.D.; Repin, M.V.; Krasavin, E.A.; Lukasova, E.; Kozubek, S.; Kroha, V.

    1998-01-01

    Frequencies of aberrations induced by different doses of γ-rays and 14 N ions (LET ∼ 77 keV/μm) in the chromosomes 1 and 2 of human lymphocytes as detected by FISH were compared with those detected by conventional staining in the whole genome. The results have shown that the induction of aberrations in the chromosomes 1 and 2 is more frequent than that in the rest of genome. The frequencies of dicentrics detected by FISH in the chromosomes 1 and 2 recalculated for the whole genome are in good agreement with those detected by conventional staining at different doses of 14 N, but they are about 2 times lower at low doses of γ-rays. Translocation frequencies calculated in the same manner from the frequencies induced in the chromosome 1 by γ-rays correspond to the frequencies of dicentrics detected by conventional staining, however, they are about 2 times higher than those detected by convectional staining at doses lower than 2 Gy of 14 N. The differences between the frequencies of these aberration types increase at higher doses of both radiation types

  16. Influence of recirculation rate on the performance of a combined ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate a combined anaerobic-aerobic upflow fixed-bed reactor with liquid phase recirculation for the removal of nitrogen and organic matter from poultry slaughterhouse wastewater. The reactor performance was evaluated with a hydraulic retention time (HRT) of 11 h and three different ...

  17. Preliminary design study of pebble bed reactor HTR-PM base using once-through-then-out fuel recirculation

    International Nuclear Information System (INIS)

    Topan Setiadipura; Jupiter S Pane; Zuhair

    2016-01-01

    Pebble Bed Reactor (PBR) is one of the advanced reactor type implementing strong passive safety feature. In this type of design has the potential to do a cogeneration useful for the treatment of various minerals in various islands in Indonesia. The operation of the PBR can be simplified by implementing once-through-then-out (OTTO) fuel recirculation scheme in which pebble fuel only pass the core once time. The purpose of this research is to understand quantitative influence of the changing of fuel element recirculation on the PBR core performance and to find preliminary optimization design of PBR type reactor with OTTO recirculation scheme. PEBBED software was used to find PBR equilibrium core. The calculation result gives quantitative data on the impact of implementing a different fuel recirculation, especially using OTTO scheme. Furthermore, an early optimized PBR design based on HTR-PM using OTTO scheme was obtained where the power must be downgraded into 115 MWt in order to preserve the safety feature. The simplicity of the reactor operation and the reduction of reactor component with OTTO scheme still make this early optimized design an interesting alternative design, despite its power reduction from the reference design. (author)

  18. Resolution of issues related to alternative RCS injection in the absence of containment sump recirculation

    International Nuclear Information System (INIS)

    Charles L Kling; Stephen S Barshay; Mathew C Jacob; Michael J Friedman

    2005-01-01

    Full text of publication follows: On June 9, 2003 the US NRC issued Bulletin No. 2003-01 that deals with the potential impact of debris blockage on containment sump recirculation at PWRs during a Loss-of-Coolant Accident (LOCA). In response to the bulletin, the Omaha Public Power District (OPPD) is in the process of developing procedural and operational strategies for their Fort Calhoun Station (FCS) to address the issues raised. Westinghouse provided engineering support to OPPD in identifying and resolving issues related to alternative means of supplying safety injection water to the reactor coolant system (RCS) in the absence of containment sump recirculation. Nuclear power plants are designed to protect the core following a LOCA by providing a continuous supply of cooling water to the core. In the long term, the Refueling Water Storage Tank (RWST) inventory will be depleted and core heat removal accomplished via recirculation of water previously injected into the Reactor Coolant System (RCS) and collected in the containment sump. Debris generated within the containment as a result of the impingement of fluid jets in the Zone of Influence (ZOI) of the RCS break and containment wash down may find its way into the containment sump. As the safety injection pumps take suction from the sump, in the recirculation mode of operation, the debris suspended in the sump water could begin to accumulate in the sump screen that is located in the recirculation path. Should sufficient debris accumulate on the sump screen, a flow blockage could potentially develop. This would result in insufficient safety injection pump NPSH, thereby impairing the recirculation mode of injection into RCS. Potential debris blockage and prevention of sump recirculation may be addressed by refilling the RWST with water and injecting this water directly into the core. This paper identifies and attempts to resolve several issues related to this alternative mode of RCS injection. In particular, the

  19. Molecular Adsorbent Recirculating System Can Reduce Short-Term Mortality Among Patients With Acute-on-Chronic Liver Failure-A Retrospective Analysis.

    Science.gov (United States)

    Gerth, Hans U; Pohlen, Michele; Thölking, Gerold; Pavenstädt, Hermann; Brand, Marcus; Hüsing-Kabar, Anna; Wilms, Christian; Maschmeier, Miriam; Kabar, Iyad; Torner, Josep; Pavesi, Marco; Arroyo, Vicente; Banares, Rafael; Schmidt, Hartmut H J

    2017-10-01

    Acute-on-chronic liver failure is associated with numerous consecutive organ failures and a high short-term mortality rate. Molecular adsorbent recirculating system therapy has demonstrated beneficial effects on the distinct symptoms, but the associated mortality data remain controversial. Retrospective analysis of acute-on-chronic liver failure patients receiving either standard medical treatment or standard medical treatment and molecular adsorbent recirculating system. Secondary analysis of data from the prospective randomized Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial by applying the recently introduced Chronic Liver Failure-criteria. Medical Departments of University Hospital Muenster (Germany). This analysis was conducted in two parts. First, 101 patients with acute-on-chronic liver failure grades 1-3 and Chronic Liver Failure-C-Organ Failure liver subscore equals to 3 but stable pulmonary function were identified and received either standard medical treatment (standard medical treatment, n = 54) or standard medical treatment and molecular adsorbent recirculating system (n = 47) at the University Hospital Muenster. Second, the results of this retrospective analysis were tested against the Recompensation of Exacerbated Liver Insufficiency with Hyperbilirubinemia and/or Encephalopathy and/or Renal Failure trial. Standard medical treatment and molecular adsorbent recirculating system. Additionally to improved laboratory variables (bilirubin and creatinine), the short-term mortality (up to day 14) of the molecular adsorbent recirculating system group was significantly reduced compared with standard medical treatment. A reduced 14-day mortality rate was observed in the molecular adsorbent recirculating system group (9.5% vs 50.0% with standard medical treatment; p = 0.004), especially in patients with multiple organ failure (acute-on-chronic liver failure grade 2-3). Concerning the

  20. Phase II study of induction chemotherapy with TPF followed by radioimmunotherapy with Cetuximab and intensity-modulated radiotherapy (IMRT in combination with a carbon ion boost for locally advanced tumours of the oro-, hypopharynx and larynx - TPF-C-HIT

    Directory of Open Access Journals (Sweden)

    Mavtratzas Athanasios

    2011-05-01

    Full Text Available Abstract Background Long-term locoregional control in locally advanced squamous cell carcinoma of the head and neck (SCCHN remains challenging. While recent years have seen various approaches to improve outcome by intensification of treatment schedules through introduction of novel induction and combination chemotherapy regimen and altered fractionation regimen, patient tolerance to higher treatment intensities is limited by accompanying side-effects. Combined radioimmunotherapy with cetuximab as well as modern radiotherapy techniques such as intensity-modulated radiotherapy (IMRT and carbon ion therapy (C12 are able to limit toxicity while maintaining treatment effects. In order to achieve maximum efficacy with yet acceptable toxicity, this sequential phase II trial combines induction chemotherapy with docetaxel, cisplatin, and 5-FU (TPF followed by radioimmunotherapy with cetuximab as IMRT plus carbon ion boost. We expect this approach to result in increased cure rates with yet manageable accompanying toxicity. Methods/design The TPF-C-HIT trial is a prospective, mono-centric, open-label, non-randomized phase II trial evaluating efficacy and toxicity of the combined treatment with IMRT/carbon ion boost and weekly cetuximab in 50 patients with histologically proven locally advanced SCCHN following TPF induction chemotherapy. Patients receive 24 GyE carbon ions (8 fractions and 50 Gy IMRT (2.0 Gy/fraction in combination with weekly cetuximab throughout radiotherapy. Primary endpoint is locoregional control at 12 months, secondary endpoints are disease-free survival, progression-free survival, overall survival, acute and late radiation effects as well as any adverse events of the treatment as well as quality of life (QoL analyses. Discussion The primary objective of TPF-C-HIT is to evaluate efficacy and toxicity of cetuximab in combination with combined IMRT/carbon ion therapy following TPF induction in locally advanced SCCHN. Trial Registration

  1. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam

    DEFF Research Database (Denmark)

    Trang, N.T.D.; Brix, Hans

    2014-01-01

    The feasibility of using planted biofilters for purification of recirculated aquaculture water in the Mekong Delta of Vietnam was assessed. The plant trenches were able to clean tilapia aquaculture water and to maintain good water quality in the fish tanks without renewal of the water. NH4-N was ...... rates of 725 kg N and 234 kg P ha-1 year-1. This research demonstrates that integrated recirculating aquaculture-hydroponics (aquaponics) systems provide significant water savings and nutrient recycling as compared with traditional fish ponds....

  2. The accumulation of substances in Recirculating Aquaculture Systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio

    NARCIS (Netherlands)

    Martins, C.I.; Pristin, M.G.; Ende, S.S.W.; Eding, E.H.; Verreth, J.A.J.

    2009-01-01

    The accumulation of substances in Recirculating Aquaculture Systems (RAS) may impair the growth and welfare of fish. To test the severity of contaminants accumulated in RAS, early-life stages of fish were used. Ultrafiltered water from two Recirculating Aquaculture Systems (RAS), one RAS with a high

  3. Intense Ion Pulses for Radiation Effects Research

    Science.gov (United States)

    2017-04-01

    induction linear accelerator that has been developed to deliver intense, up to 50 nC/pulse/mm2, sub-ns pulses of light ions with kinetic energy up to 1.2...II induction linear accelerator for intense ion beam pulses at Berkeley Lab. Figure 3. Helium current and integrated charge versus time at the...under contracts DE-AC02-205CH11231 and DE-AC52-07NA27344. JOURNAL OF RADIATION EFFECTS, Research and Engineering Vol. 35, No. 1, April 2017 158 INTENSE

  4. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  5. Linear fixed-field multipass arcs for recirculating linear accelerators

    Directory of Open Access Journals (Sweden)

    V. S. Morozov

    2012-06-01

    Full Text Available Recirculating linear accelerators (RLA’s provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dogbone RLA capable of transporting two beam passes with momenta different by a factor of 2. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dogbone RLA.

  6. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  7. Adoption of Recirculating Aquaculture Systems in Pangasius Farms: A Choice Experiment

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.T.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2015-01-01

    A growing number of European customers’ demands certified pangasius such as ASC in order to ensure sustainable production. Implementing Recirculating Aquaculture Systems (RAS) contributes to an improved water quality, a key issue in achieving ASC certification. This study uses a choice experiment to

  8. Steroids accumulate in the rearing water of commercial recirculating aquaculture systems

    NARCIS (Netherlands)

    Mota, V.C.; Martins, C.I.; Eding, E.H.; Canário, A.V.M.; Verreth, J.A.J.

    2014-01-01

    Little information is available on steroid concentrations in the rearing water of aquaculture systems and whether they accumulate in recirculating aquaculture systems (RAS). Therefore this study aimed at determining (1) the concentrations and variation of cortisol and sex steroids in RAS, (2) the

  9. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  10. Experimental studies of impact of exhaust gas recirculation on the ...

    African Journals Online (AJOL)

    This paper considers the problem of reducing the nitrogen oxides emissions in exhaust gases (EG) of diesel engine by exhaust gas recirculation (EGR). Based on the carried out study the influence of EGR on technical-and-economic and environmental performance of a diesel engine was found as well as main directions of ...

  11. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  12. Induction of Micronuclei in Human Fibroblasts across the Bragg Curve of Energetic Si and Fe Ions

    Science.gov (United States)

    Wu, H.; Rusek, A.; Hada, M.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. We studied micronuclei (MN) induction across the Bragg curve of Si and Fe ions at incident energies of 300 MeV/nucleon and 1 GeV/nucleon. A quantitative biological response curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono- to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results confirm the hypothesis that severely damaged cells at the Bragg peak are likely to go through reproduction death.

  13. Dietary carbohydrates and denitrification in recirculating aquaculture systems

    OpenAIRE

    Meriac, A.

    2014-01-01

    Due to overfishing of global fish stocks and increasing fish meal prices, plant ingredients are being increasingly used as an alternative source of protein in fish feeds. However, the inclusion of unpurified plant ingredients will also increase the content of fibers in feeds. Fibers are nearly indigestible and will therefore increase solid waste production in aquaculture. This solid waste can be used to as a carbon source for denitrification to control nitrate levels in recirculating aquacul...

  14. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  15. Risk assessment for cancer induction after low- and high-LET therapeutic irradiation

    International Nuclear Information System (INIS)

    Engels, H.; Menzel, H.G.; Pihet, P.; Wambersie, A.

    1999-01-01

    The risk of induction of a second primary cancer after a therapeutic irradiation with conventional photon beams is well recognized and documented. However, in general, it is totally overwhelmed by the benefit of the treatment. The same is true to a large extent for the combinations of radiation and drug therapy. After fast neutron therapy, the risk of induction of a second cancer is greater than after photon therapy. Neutron RBE increases with decreasing dose and there is a wide evidence that neutron RBE is greater for cancer induction (and for other late effects relevant in radiation protection) than for cell killing. Animal data on RBE for tumor induction are reviewed, as well as other biological effects such as life shortening, malignant cell transformation in vitro, chromosome aberrations, genetic effects. These effects can be related, directly or indirectly, to cancer induction to the extent that they express a 'genomic' lesions. Almost no reliable human epidemiological data are available so far. For fission neutrons a RBE for cancer induction of about 20 relative to photons seems to be a reasonable assumption. For fast neutrons, due to the difference in energy spectrum, a RBE of 10 can be assumed. After proton beam therapy (low-LET radiation), the risk of secondary cancer induction, relative to photons, can be divided by a factor of 3, due to the reduction of integral dose (as an average). The RBE of heavy-ions for cancer induction can be assumed to be similar to fission neutrons, i.e. about 20 relative to photons. However, after heavy-ion beam therapy, the risk should be divided by 3, as after proton therapy, due to the excellent physical selectivity of the irradiation. Therefore, a risk 5 to 10 times higher than photons could be assumed. This range is probably a pessimistic estimate for carbon ions since most of the normal tissues, at the level of the initial plateau, are irradiated with low-LET radiation. (orig.)

  16. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport

    DEFF Research Database (Denmark)

    Larsen, E.H.; Møbjerg, N.; Sørensen, Jens Nørkær

    2006-01-01

    transport similar to rat proximal tubule. Na+ recirculation is required for truly isotonic transport. The tonicity of the absorbate and the recirculation flux depend critically on ion permeabilities of interspace basement membrane. Conclusion: Our model based on solute-solvent coupling in lateral space......Aim: By mathematical modelling, we analyse conditions for near-isotonic and isotonic transport by mammalian kidney proximal tubule. Methods: The model comprises compliant lateral intercellular space (lis) and cells, and infinitely large luminal and peritubular compartments with diffusible species......: Na+, K+, Cl and an intracellular non-diffusible anion. Unknown model variables are solute concentrations, electrical potentials, volumes and hydrostatic pressures in cell and lis, and transepithelial potential. We used data mainly from rat proximal tubule to model epithelial cells and interspace...

  17. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  18. A New Eulerian Model for Turbulent Evaporating Sprays in Recirculating Flows

    NARCIS (Netherlands)

    Wittig, S.; Hallmann, M.; Scheurlen, M.; Schmehl, R.

    1993-01-01

    A new Eulerian model for the computation of turbulent evaporating sprays in recirculating flows is derived. It comprises droplet heating and evaporation processes by solving separate transport equations for the droplet's temperature and diameter. Full coupling of the droplet and the gaseous phase is

  19. An induction accelerator for the Heidelberg Test Storage Ring TSR

    International Nuclear Information System (INIS)

    Ellert, C.; Habs, D.; Music, M.; Schwalm, D.; Wolf, A.; Jaeschke, E.; Kambara, T.; Sigray, P.

    1992-01-01

    An induction accelerator has been installed in the heavy ion test storage ring TSR in Heidelberg. It allows for constant acceleration or deceleration of stored coasting ion beams without affecting their velocity profile and is well suited for ion beam manipulation in cooling experiments and for measurements of velocity dependent cooling forces. The design and operation of the device and first applications to laser cooling and to measurements of laser and electron cooling forces are described. (orig.)

  20. Continuous hydroponic wheat production using a recirculating system

    Science.gov (United States)

    Mackowiak, C. L.; Owens, L. P.; Hinkle, C. R.; Prince, R. P.

    1989-01-01

    Continuous crop production, where plants of various ages are growing simultaneously in a single recirculating nutrient solution, is a possible alternative to batch production in a Controlled Ecological Life Support System. A study was conducted at John F. Kennedy Space Center where 8 trays (0.24 sq m per tray) of Triticum aestivum L. Yecora Rojo were grown simultaneously in a growth chamber at 23 C, 65 percent relative humidity, 1000 ppm CO2, continuous light, with a continuous flow, thin film nutrient delivery system. The same modified Hoagland nutrient solution was recirculated through the plant trays from an 80 L reservoir throughout the study. It was maintained by periodic addition of water and nutrients based on chemical analyses of the solution. The study was conducted for 216 days, during which 24 trays of wheat were consecutively planted (one every 9 days), 16 of which were grown to maturity and harvested. The remaining 8 trays were harvested on day 216. Grain yields averaged 520 g m(exp -2), and had an average edible biomass of 32 percent. Consecutive yields were unaffected by nutrient solution age. It was concluded that continual wheat production will work in this system over an extended period of time. Certain micronutrient deficiencies and toxicities posed problems and must be addressed in future continuous production systems.

  1. Lethal, potentially lethal, and nonlethal damage induction by heavy ions in cultured human cells

    International Nuclear Information System (INIS)

    Todd, P.; Wood, J.C.; Walker, J.T.; Weiss, S.J.

    1985-01-01

    In the fields of high-LET radiotherapy and space radiation safety it is important to know the relative probabilities with which a cell whose nucleus is struck by a heavy ion will be damaged or killed. Experiments were performed in which synchronous cultured human T-1 cells (presumptive HeLa) were irradiated with natural alpha particles of energy approximately 3.5 MeV at various times after mitotic selection up to the middle of S phase. Nuclear-area histograms were determined as a function of time after mitosis under conditions identical to those used for irradiation. The efficiency with which one particle passing through the nucleus killed a cell was found to be 0.14-0.20. This value was extrapolated to experimental cell survival data obtained when asynchronous cultured human cells were irradiated with He, Li, B, C, N, O, Ne, Ar ions of energy 6.58 or 5.5 MeV/amu, and the cell killing efficiency was found to be in the broad range of 0.5-1.0 under single-hit conditions. Similarly irradiated cells were examined for colony-size distribution by an image analysis technique, and it was found that the loss of large colonies was dose and LET-dependent in a systematic way. Dose-response data suggest two predominant subpopulations, resistant and sensitive cells, and it appears that the sensitive population is affected by single-hit kinetics. The single-hit coefficient for the induction of inherited slow growth varied with LET in a similar way to that for survival. The action cross section for this form of heritable damage appears to be comparable to the geometric cross section of the cell nucleus

  2. An induction linac injector for scaled experiments

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Pike, C.; Brodzik, D.; Johnson, R.M.; Vanecek, D.; Hewett, D.W.

    1991-04-01

    An injector is being developed at LBL that would serve as the front end of a scaled induction linac accelerator technology experiment for heavy ion fusion. The ion mass being used is in the range 10--18. It is a multi-beam device intended to accelerate up to 2 MeV with 500 mA in each beam. The first half of the accelerating column has been built and experiments with one carbon beam are underway at the 1 MeV level. 5 refs., 1 fig

  3. Stability of the particle transverse motion in an electron linear accelerator with beam recirculation

    International Nuclear Information System (INIS)

    Volodin, V.A.

    1979-01-01

    Conditions, under which beam transverse instabilities appear in the electron linear accelerator (ELA) with a double particle acceleration due to excitation of asymmetric stray waves in the accelerating waveguide, and their peculiarities have been investigated. It is shown that in the ELA with beam recirculation the conditions under which the beam transverse instability appears can be determined with the help of the ''interaction function'' which depends on both the accelerating structure and the focusing in the beam transport channel. Comparison is made with characteristics of this phenomenon in conventional ELA, and possible reasons for the decrease of a starting current in ELA with recirculation are shown

  4. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2015-05-15

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core by feeding into multiple stationary jet pumps inside the vessel. Together with the jet pumps, they allow station operators to vary coolant flow and variable pump speed provides the best and most stable reactor power control. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. This article describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motor-generator set. This article will also discuss the 2,500 hour laboratory test results conducted under reactor recirculation pump sealing conditions using a newly developed seal face technology recently implemented to overcome challenges when sealing neutral, ultra-pure water. In addition, the article will describe the elaborate shaft grounding arrangement and the preliminary measurement results achieved in order to eliminate potential damages to both pump and mechanical seal.

  5. Parametric Effects of Debris Source, Environments, and Design Options on the Overall Performance of ECCS Recirculation Sump

    International Nuclear Information System (INIS)

    Park, Jong Woon; Kim, Chang Hyun

    2006-01-01

    A primary safety issue regarding long-term recirculation core cooling following a LOCA (Loss of Coolant Accident) is that LOCA-generated debris may be transported to the recirculation sump screen, resulting in adverse blockage on the sump screen and deterioration of available NPSH (Net Positive Suction Head) of ECCS (Emergency Core Cooling System). USNRC identified this as Generic Safety Issue (GSI) 191 and issued the Generic Letter 04-02 to resolve the issue. The GL required that all PWR owners perform an engineering assessment of their containment recirculation sumps to ensure they will not suffer from excessive blockage. The guidance report (GR) for PWR sump performance evaluation has been developed by NEI (Nuclear Energy Institute) and approved by the USNRC. In Korea, Korea Hydro and Nuclear Power Company (KHNP) is performing the assessment of Kori unit 1 and planning for remaining plants in the near future. The objective of the assessment is to derive required plant modifications including insulation, sump screen, etc. To derive the cost-effective modification items, we have to get insight on the parametric effects of plant conditions and design. Therefore, the general effects of debris source, containment environments and debris interceptor on the performance of ECCS recirculation sump with respect to head loss are parametrically investigated

  6. Experience with dispersant application: long-path recirculation cleanup trial at Byron Unit 1 during spring 2011 and online addition update

    International Nuclear Information System (INIS)

    Fruzzetti, K.; Marks, C.; Kreider, M.; Morey, D.; Duncanson, I.; Bates, J.; Sawochka, S.

    2012-01-01

    The first nuclear application of PAA dispersant to improve corrosion product removal during LPR (Long-path recirculation) cleanup occurred at Byron Unit 1 in spring 2011. The main conclusions and lessons learned are as follows: -) there were no significant problems with application of PAA during LPR with an initial PAA concentration of about 650 ppb; -) a reasonable estimate of the additional iron mass removed due to the presence of PAA is 5-9 kg. The qualification work, application details and an assessment of the results are the first focus of this paper. The second part of this paper summarizes the online experience to date at the Exelon and STP (South Texas Project) plants on the effects of dispersant on -) blowdown iron removal efficiency, -) steam generator heat transfer efficiency and -) ion exchange resin performance

  7. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two......-stroke marine diesel engine. A turbocharger model together with a blower, a pre-scrubber and a cooler for the exhaust gas recirculation line, are included. The steam turbine, depending on the configuration, is modeled as either a dual or triple pressure level turbine. The condensation and pre-heating process...

  8. Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste.

    Science.gov (United States)

    Affes, R; Palatsi, J; Flotats, X; Carrère, H; Steyer, J P; Battimelli, A

    2013-03-01

    Different configurations of anaerobic process, adapted to the treatment of solid slaughterhouse fatty waste, were proposed and evaluated in this study. The tested configurations are based on the combination of anaerobic digestion with/without waste saponification pretreatment (70 °C during 60 min) and with/without recirculation of the digestate solid fraction (ratio=20% w/w). After an acclimation period of substrate pulses-feeding cycles, the reactors were operated in a semi-continuous feeding mode, increasing organic loading rates along experimental time. The degradation of the raw substrate was shown to be the bottleneck of the whole process, obtaining the best performance and process yields in the reactor equipped with waste pretreatment and solids recirculation. Saponification promoted the emulsification and bioavailability of solid fatty residues, while recirculation of solids minimized the substrate/biomass wash-out and induced microbial adaptation to the treatment of fatty substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Maintenance of reactor recirculation pumps [Paper No.: II-1

    International Nuclear Information System (INIS)

    Ansari, M.A.; Bhat, K.P.

    1981-01-01

    At Tarapur Atomic Power Station (TAPS), two reactor recirculation pumps are provided, one each for the two reactor units. The performance of pumps has been uniformly good; however, leakage through the cartridge type, two stage, mechanical seals which are installed on these pumps was encountered on few occasions. The paper describes the leakage problems, identification of certain design deficiencies and rectification carried out at TAPS for overcoming these problems. (author)

  10. Experimental on fly ash recirculation with bottom feeding to improve the performance of a circulating fluidized bed boiler co-burning coal sludge

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lunbo; Xu, Guiling; Liu, Daoyin; Chen, Xiaoping; Zhao, Changsui [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    With the aim of reducing carbon content in fly ash, fly ash recirculation with bottom feeding (FARBF) technology was applied to a 75 t/h Circulating Fluidized Bed (CFB) boiler burning mixture of coal and coal sludge. And industrial experiments were carried out to investigate the influence of FARBF technology on the combustion performance and pollutant emission characteristics of the CFB boiler. Results show that as the recirculation rate of fly ash increases, the CFB dense bed temperature decreases while the furnace outlet temperature increases, and the temperature distribution in the furnace becomes uniform. Compared with the conditions without fly ash recirculation, the combustion efficiency increases from 92 to 95% when the recirculation rate increases to 8 t/h, and the desulfurization efficiency also increases significantly. As the recirculation rate increases, the emissions of NO and CO decrease, but the particulate emission increases. The present study indicates that FARBF technology can improve the combustion performance and desulfurization efficiency for the CFB boilers burning coal sludge, and this can bring large economical and environmental benefits in China.

  11. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, R. [Sengunthar Engineering College, Tiruchengode (India). Dept. of Civil Engineering], e-mail: gay3civil@gmail.com; Senthil Kumar, P. [SSN College of Engineering, Chennai (India). Dept. of Chemical Engineering], E-mail: senthilkumarp@ssn.edu.in

    2010-01-15

    The chrome plating industry is one of the highly polluting industries whose effluent mainly consists of chromium(VI). This compound is highly toxic to aquatic life and human health. The rinse water constituents reflect the chrome plating bath characteristics; generally dead tank wash water contains about 1% of the plating bath concentration. Other metals and metal compounds usually considered as toxic can be precipitated out by suitably adjusting the pH of the wastewaters. However, Cr(VI) is soluble in almost all pH ranges and therefore an efficient treatment is required for the removal and recovery of chromium, and also for the reuse of wastewaters. The present study aims to recover the chromium by a hybrid technique of electrodialysis and ion exchange for the removal and concentration of chromate ions from the effluent. The different modes of operation like batch recirculation process, batch recirculation process with continuous dipping and continuous process were carried out to remove and recover the chromium from the effluent and the percentage reductions of chromium were found to be 98.69%, 99.18% and 100%, respectively. (author)

  12. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange

    International Nuclear Information System (INIS)

    Gayathri, R.; Senthil Kumar, P.

    2010-01-01

    The chrome plating industry is one of the highly polluting industries whose effluent mainly consists of chromium(VI). This compound is highly toxic to aquatic life and human health. The rinse water constituents reflect the chrome plating bath characteristics; generally dead tank wash water contains about 1% of the plating bath concentration. Other metals and metal compounds usually considered as toxic can be precipitated out by suitably adjusting the pH of the wastewaters. However, Cr(VI) is soluble in almost all pH ranges and therefore an efficient treatment is required for the removal and recovery of chromium, and also for the reuse of wastewaters. The present study aims to recover the chromium by a hybrid technique of electrodialysis and ion exchange for the removal and concentration of chromate ions from the effluent. The different modes of operation like batch recirculation process, batch recirculation process with continuous dipping and continuous process were carried out to remove and recover the chromium from the effluent and the percentage reductions of chromium were found to be 98.69%, 99.18% and 100%, respectively. (author)

  13. Monitoring of Leachate Recirculation in a Bioreactor Using Electrical Resistivity

    Science.gov (United States)

    Grellier, S.; Bureau, N.; Robain, H.; Tabbagh, A.; Camerlynck, C.; Guerin, R.

    2004-05-01

    The bioreactor is a concept of waste landfill management consisting in speeding up the biodegradation by optimizing the moisture content through leachate recirculation. Electrical resistivity tomography (ERT) is carried out with fast resistivity-meter (Syscal Pro, IRIS Instruments, developed in the framework of the research project CERBERE 01V0665-69, funded by the French Research Ministry) to monitor leachate recirculation. During a recirculation period waste moisture increases, so that electrical resistivity may decrease, but at the same time temperature and mineralization of both waste and leachate become intermixed. If waste temperature is much higher than leachate temperature electrical resistivity will not decrease as much as if the temperature difference was smaller. If leachate mineralization (i.e. leachate conductivity) is higher than that of wet waste in the landfill, electrical resistivity will tend to decrease. Otherwise for example after an addition of rain water into the leachate storage or in case of very wet waste, the resistivities of each medium (leachate and wet waste) can be almost the same, so that leachate mineralization will not have a great influence on waste resistivity. Resistivity measurements were performed during 85 minutes injection trials (with a discharge of 20 m3 h-1) where leachate was injected through a vertical borehole perforated between 1.85 and 4.15 m. Three first measurements are made during the injection (3, 30 and 60 minutes from the beginning of the injection) and the two other after the injection period (8 and 72 minutes after the end of the injection). Apparent and interpreted resistivity variations that occurred during injection trials, expressed as the relative differences (in %) between apparent, respectively interpreted, resistivity during injection and apparent, respectively interpreted, resistivity before injection (reference measurement) show the formation of a plume (a negative anomaly: resistivity decreases with

  14. Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE)

    DEFF Research Database (Denmark)

    Xing, Wei; Lu, Wenjing; Zhao, Yan

    2013-01-01

    scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280t of waste was generated and then transported to a conventional landfill for disposal. A number...... to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment......, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl−, Mg2+, and Ca2+, may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia...

  15. High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material

    International Nuclear Information System (INIS)

    Ferguson, Jill Wisnewski; Houk, R.S.

    2006-01-01

    Common polyatomic ions (ArO + , NO + , H 2 O + , H 3 O + , Ar 2 + , ArN + , OH + , ArH + , O 2 + ) in inductively coupled plasma-mass spectrometry (ICP-MS) are identified using high mass resolution and studied using kinetic gas temperatures (T gas ) determined from a dissociation reaction approach. Methods for making accurate mass measurements, confirming ion identifications, and correcting for mass bias are discussed. The effects of sampler and skimmer cone composition and extraction voltage on polyatomic ion formation are also explored. Neutral species densities at several locations in the extraction interface are estimated and the corresponding effects of the T gas value are calculated. The results provide information about the origins of background ions and indicate possible locations for their formation or removal

  16. The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry

    DEFF Research Database (Denmark)

    Fadeyi, M.O.; Weschler, Charles J.; Tham, K.W.

    2009-01-01

    This study examined the impact of recirculation rates (7 and 14 h(-1)), ventilation rates (1 and 2 h(-1)), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling......, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35...

  17. Water cortisol and testosterone in Nile tilapia (Oreochromis niloticus) recirculating aquaculture systems

    NARCIS (Netherlands)

    Mota, Vasco C.; Martins, Catarina I.M.; Eding, Ep H.; Canário, Adelino V.M.; Verreth, Johan A.J.

    2017-01-01

    The accumulation of steroids released by fish in recirculating aquaculture systems (RAS) may potentially influence their physiology and behavior. The present study examined the release rate of cortisol and testosterone by Nile tilapia, Oreochromis niloticus, and their accumulation in six identical

  18. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture

    International Nuclear Information System (INIS)

    Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y.

    2003-01-01

    Constructed wetlands improved water qualities and consequently increased the shrimp growth and survival in a recirculating system. - A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD 5 , 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO 2 -N, 90%) and nitrate nitrogen (NO 3 -N, 68%). Phosphate (PO 4 -P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO 3 -N in the culture tank water in RAS were significantly (P≤0.05) lower than those in a control aquaculture system (CAS) that simulated static pond culture without wetland treatment. However, no significant difference (P≤0.05) in BOD 5 , TAN and NO 2 -N was found between the two systems. At the end of the study, the harvest results showed that shrimp weight and survival rate in the RAS (3.8±1.8 g/shrimp and 90%) significantly (P≤0.01) exceeded those in the CAS (2.3±1.5 g/shrimp and 71%). This study concludes that constructed wetlands can improve the water quality and provide a good culture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system

  19. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.-F.; Jing, S.-R.; Lee, D.-Y

    2003-05-01

    Constructed wetlands improved water qualities and consequently increased the shrimp growth and survival in a recirculating system. - A pilot-scale constructed wetland unit, consisting of free water surface (FWS) and subsurface flow (SF) constructed wetlands arranged in series, was integrated into an outdoor recirculating aquaculture system (RAS) for culturing Pacific white shrimp (Litopenaeus vannamei). This study evaluated the performance of the wetland unit in treating the recirculating wastewater and examined the effect of improvement in water quality of the culture tank on the growth and survival of shrimp postlarvae. During an 80-day culture period, the wetland unit operated at a mean hydraulic loading rate of 0.3 m/day and effectively reduced the influent concentrations of 5-day biochemical oxygen demand (BOD{sub 5}, 24%), suspended solids (SS, 71%), chlorophyll a (chl-a, 88%), total ammonium (TAN, 57%), nitrite nitrogen (NO{sub 2}-N, 90%) and nitrate nitrogen (NO{sub 3}-N, 68%). Phosphate (PO{sub 4}-P) reduction was the least efficient (5.4%). The concentrations of SS, Chl-a, turbidity and NO{sub 3}-N in the culture tank water in RAS were significantly (P{<=}0.05) lower than those in a control aquaculture system (CAS) that simulated static pond culture without wetland treatment. However, no significant difference (P{<=}0.05) in BOD{sub 5}, TAN and NO{sub 2}-N was found between the two systems. At the end of the study, the harvest results showed that shrimp weight and survival rate in the RAS (3.8{+-}1.8 g/shrimp and 90%) significantly (P{<=}0.01) exceeded those in the CAS (2.3{+-}1.5 g/shrimp and 71%). This study concludes that constructed wetlands can improve the water quality and provide a good culture environment, consequently increasing the shrimp growth and survival without water exchange, in a recirculating system.

  20. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    Science.gov (United States)

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.

  1. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  2. Optics of beam recirculation in the CEBAF [Continuous Electron Beam Accelerator Facility] cw linac

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1986-01-01

    The use of recirculation in linear accelerator designs requires beam transport systems that will not degrade beam quality. We present a design for the transport lines to be used during recirculation in the CEBAF accelerator. These beam lines are designed to avoid beam degradation through synchrotron radiation excitation or betatron motion mismatch, are insensitive to errors commonly encountered during beam transport, and are optimized for electron beams with energies of 0.5 to 6.0 GeV. Optically, they are linearly isochronous second order achromats based on a ''missing magnet'' FODO structure. We give lattice specifications for, and results of analytic estimates and numerical simulations of the performance of, the beam transport system

  3. Level population measurements on analyte atom and ion excited states in the inductively coupled plasma

    International Nuclear Information System (INIS)

    Walker, Z.H.; Blades, M.W.

    1986-01-01

    During the past decade a number of publications dealing with fundamental studies of the inductively coupled plasma (ICP) have appeared in the literature. The purpose of many of these investigations has been to understand the nature of the interaction between the plasma gas and the analyte. The general conclusion drawn from these studies has been that the ICP is very close to Local Thermodynamic Equilibrium (LTE), but that some deviations from LTE do occur. Recent studies by the authors' have been directed towards the measurement of analyte atom and ion excited state level populations with the objective of obtaining a better understanding of both ionization and excitation in the ICP discharge and the extent to which such processes contribute to a non-equilibrium state. Further discussion is drawn from similar measurements made on elements with low ionization potentials, such as Barium, as well as on elements such as Iron in the presence of Easily Ionizable Elements (EIE's). The spatial and power dependences of such measurements are also discussed

  4. Adoption of Recirculating Aquaculture Systems in Large Pangasius Farms: A Choice Experiment

    NARCIS (Netherlands)

    Pham, T.A.N.; Gielen-Meuwissen, M.P.M.; Le, T.C.; Verreth, J.A.J.; Bosma, R.H.; Oude Lansink, A.G.J.M.

    2016-01-01

    A growing number of European customers’ demands certified pangasius such as ASC in order to ensure sustainable production. Implementing Recirculating Aquaculture Systems (RAS) contributes to an improved water quality, a key issue in achieving ASC certification. This study uses a choice experiment to

  5. Removal of nitrogen by Algal Turf Scrubber Technology in recirculating aquaculture system

    NARCIS (Netherlands)

    Valeta, J.; Verdegem, M.C.J.

    2015-01-01

    Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to

  6. Ion sources for medical accelerators

    Science.gov (United States)

    Barletta, W. A.; Chu, W. T.; Leung, K. N.

    1998-02-01

    Advanced injector systems for proton synchrotrons and accelerator-based boron neutron capture therapy systems are being developed at the Lawrence Berkeley National Laboratory. Multicusp ion sources, particularly those driven by radio frequency, have been tested for these applications. The use of a radio frequency induction discharge provides clean, reliable, and long-life source operation. It has been demonstrated that the multicusp ion source can provide good-quality positive hydrogen ion beams with a monatomic ion fraction higher than 90%. The extractable ion current densities from this type of source can meet the injector requirements for both proton synchrotron and accelerator-based boron neutron capture therapy projects.

  7. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1992-01-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. Based on a comprehensive literature study concerning this theme, it has been attempted to identify the individual stages of the activity build-up and to classify their importance. The following areas are discussed in detail: The origins of the corrosion products and of cobalt-59 in the reactor feedwaters; the consolidation of the cobalt in the fuel pins deposits (activation); the release and transport of cobalt-60; the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarized. 90 refs, figs and tabs

  8. Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow.

    Science.gov (United States)

    De Sanctis, Marco; Beccari, Mario; Di Iaconi, Claudio; Majone, Mauro; Rossetti, Simona; Tandoi, Valter

    2013-02-01

    The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied. Both the microbial components of the granules, and their main metabolic activities were evaluated (heterotrophic oxidation, nitrification, denitrification, fermentation, sulphate reduction and methanogenesis). The results indicate that despite reduced recirculation, the SBBGR system maintained many of its advantageous characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)

    International Nuclear Information System (INIS)

    Lee, Chang-Eon; Yu, Byeonghun; Lee, Seungro

    2015-01-01

    This study presents fundamental research on the development of a new boiler that is expected to have a higher efficiency and lower emissions than existing boilers. The thermodynamic efficiency of exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB) was calculated using thermodynamic analysis and was compared with other boilers. The results show the possibility of obtaining a high efficiency when the temperature of the exhaust gas is controlled within 50–60 °C because water in the exhaust gas is condensed within this temperature range. In addition, the enthalpy emitted by the exhaust gas for the new boiler is smaller because the amount of condensed water is increased by the high dew-point temperature and the low exhaust gas temperature. Thus, the new boiler can obtain a higher efficiency than can older boilers. The efficiency of the EGR-CWR-WHR CB proposed in this study is 93.91%, which is 7.04% higher than that of existing CB that is currently used frequently. - Highlights: • The study presents the development of a new boiler expected to have a high efficiency. • Thermodynamic efficiency of EGR-CWR-WHR condensing boiler was calculated. • Efficiency of EGR-CWR-WHR CB is 93.91%, which is 7.04% higher than existing CB

  10. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Science.gov (United States)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  11. A Recirculating Linac-Based Facility for Ultrafast X-Ray Science

    International Nuclear Information System (INIS)

    Corlett, J. N.; Barletta, W. A.; DeSantis, S.; Doolittle, L.; Fawley, W. M.; Green, M.A.; Heimann, P.; Leone, S.; Lidia, S.; Li, D.; Ratti, A.; Robinson, K.; Schoenlein, R.; Staples, J.; Wan, W.; Wells, R.; Wolski, A.; Zholents, A.; Parmigiani, F.; Placidi, M.; Pirkl, W.; Rimmer, R. A.; Wang, S.

    2003-01-01

    We present an updated design for a proposed source of ultra-fast synchrotron radiation pulses based on a recirculating superconducting linac [1,2], in particular the incorporation of EUV and soft x-ray production. The project has been named LUX--Linac-based Ultrafast X-ray facility. The source produces intense x-ray pulses with duration of 10-100 fs at a 10 kHz repetition rate, with synchronization of 10's fs, optimized for the study of ultra-fast dynamics. The photon range covers the EUV to hard x-ray spectrum by use of seeded harmonic generation in undulators, and a specialized technique for ultra-short pulse photon production in the 1-10 keV range. High brightness rf photocathodes produce electron bunches which are optimized either for coherent emission in free electron lasers, or to provide a large x/y emittance ration and small vertical emittance which allows for manipulation to produce short-pulse hard x-rays. An injector linac accelerates the beam to 120 MeV, and is followed by f our passes through a 600-720 MeV recirculating linac. We outline the major technical components of the proposed facility

  12. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  13. Linear Fixed-Field Multi-Pass Arcs for Recirculating Linear Accelerators

    International Nuclear Information System (INIS)

    Morozov, V.S.; Bogacz, S.A.; Roblin, Y.R.; Beard, K.B.

    2012-01-01

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting the dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. We present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.

  14. Developments in accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1985-01-01

    The long term goal of Heavy Ion Fusion (HIF) is the development of an accelerator with the large beam power, large beam stored-energy, and high brightness needed to implode small deuterium-tritium capsules for fusion power. While studies of an RF linac/storage ring combination as an intertial fusion driver continue in Japan and Europe, the US program in recent times has concentrated on the study of the suitability of linear induction acceleration of ions for this purpose. Novel features required include use of multiple beams, beam current amplification in the linac, and manipulation of long beam bunches with a large velocity difference between head and tail. Recent experiments with an intense bright beam of cesium ions have established that much higher currents can be transported in a long quadrupole system than was believed possible a few years ago. A proof-of-principle ion induction linac to demonstrate beam current amplification with multiple beams is at present being fabricated at LBL

  15. Developments in accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1985-05-01

    The long term goal of Heavy Ion Fusion (HIF) is the development of an accelerator with the large beam power, large beam stored-energy, and high brightness needed to implode small deuterium-tritium capsules for fusion power. While studies of an rf linac/storage ring combination as an inertial fusion driver continue in Japan and Europe, the US program in recent times has concentrated on the study of the suitability of linear induction acceleration of ions for this purpose. Novel features required include use of multiple beams, beam current amplification in the linac, and manipulation of long beam bunches with a large velocity difference between head and tail. Recent experiments with an intense bright beam of cesium ions have established that much higher currents can be transported in a long quadrupole system than was believed possible a few years ago. A proof-of-principle ion induction linac to demonstrate beam current amplification with multiple beams is at present being fabricated at LBL. 28 refs., 4 figs

  16. Genomic instability in mutation induction on normal human fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field

    International Nuclear Information System (INIS)

    Suzuki, M.; Tsuruoka, C.; Uchihori, Y.; Yasuda, H.; Fujitaka, K.

    2003-01-01

    Full text: At a time when manned space exploration is more a reality with the planned the International Space Station (ISS) underway, the potential exposure of crews in a spacecraft to chronic low-dose radiations in the field of low-flux galactic cosmic rays (GCR) and the subsequent biological effects have become one of the major concerns of space science. We have studied both in vitro life span and genomic instability in cellular effects in normal human skin fibroblasts irradiated with chronic low-dose radiations in heavy-ion radiation field. Cells were cultured in a CO2 incubator, which was set in the irradiation room for the biological study of heavy ions in the Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences (NIRS), and irradiated with scattered radiations produced from heavy ions. Absorbed dose measured using a thermoluminescence dosimeter (TLD) and a Si-semiconductor detector was to be around 1.4 mGy per day when operating the HIMAC machine for biological experiments. The total population doubling number (tPDN) of low-dose irradiated cells was significantly smaller (79-93%) than that of unirradiated cells. The results indicate that the life span of the cell population shortens by irradiating with low-dose scattered radiations in the heavy-ion irradiation field. Genomic instability in cellular responses was examined to measure either cell killing or mutation induction in low-dose accumulated cells after exposing to X-ray challenging doses. The results showed that there was no enhanced effect on cell killing between low-dose accumulated and unirradiated cells after exposing to defined challenging doses of 200kV X rays. On the contrary, the mutation frequency on hprt locus of low-dose accumulated cells was much higher than that of unirradiated cells. The results suggested that genomic instability was induced in mutagenesis by the chronic low-dose irradiations in heavy-ion radiation field

  17. Cellular and subcellular effect of heavy ions: A comparison of the induction of strand breaks and chromosomal aberration with the incidence of inactivation and mutation

    International Nuclear Information System (INIS)

    Kraft, G.; Kraft-Weyrather, W.; Ritter, S.; Scholz, M.; Stanton, J.

    1988-10-01

    Radiobiological effects of heavy charged particles are compared for a large variety of ions from Helium to Uranium and energies between 1 and 1000 MeV/u which correspond to LET values between 10 and 16000 keV/μm. The different cross section for the induction of strand breaks and chromosomal aberrations as well as for inactivation and mutation induction exhibit striking similarities when compared as function of the linear energy transfer (LET). At LET values below 100 keV/μm all data points of one specific effect form one single curve as a function of LET, independent of the atomic number of the ion. In this LET range, the biological effects are independent from the particle energy or track structure and depend only on the energy transfer. Therefore, LET is a good parameter in tis regime. For LET values greater than 100 keV/μm, the curves for the different ions separate from the common curve in order of increasing atomic numbers. In this regime LET is no longer a good parameter and the physical parameters of the formation of particle tracks are important. The similarity of the σ-LET curves for different endpoints indicates that the 'hook-structure' is produced by physical and chemical effects which occur before the biologically relevant lesions are formed. However, from the existing data of biological effects, it can be concluded that the efficiencies for cell killing are always smaller than those extrapolated from X-ray data on the basis of the energy deposition only. Therefore, cells which are directly hit by an HZE particle are not killed and undergo a finite risk of mutation and transformation. (orig.)

  18. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry. Part 2: Investigation of MO+ ions, effect of sample morphology, transport gas, and binding agents

    International Nuclear Information System (INIS)

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-01-01

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO + ions also yield signal spikes, but these MO + spikes generally occur at different times from their atomic ion counterparts.

  19. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  20. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  1. Comparative analysis of the simulation of the instantaneous closing of the discharge valve of a recirculation loop of a BWR with a model of recirculation loop with 2 jet pumps and another model with 20 jet pumps using RELAP5/SCDAPSIM Mod. 3.4

    International Nuclear Information System (INIS)

    Araiza M, E.; Ortiz V, J.; Martinez C, E.; Amador G, R.; Castillo D, R.

    2016-09-01

    This work presents the results of the simulation of the instantaneous closing of the water hammer, of a recirculation loop using two different arrangements in the loops. One of these arrangements corresponds to the traditional model that uses only two jet pumps to simulate the twenty pumps of the two recirculation loops of a BWR. The second nodalization models each of the ten jet pumps of each recirculation loop. The results obtained from the execution of both models are compared, using important variables such as pressures and mass costs for the same components of both models. In addition, the maximum pressure value generated on the pipe located upstream of the water hammer, relative to the design pressure of the pipe, is compared for each arrangement. (Author)

  2. On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Legrand, M.; Rodriguez-Hidalgo, M.C.

    2010-01-01

    This paper presents a numerical model of single-effect absorption cycles with ammonia-lithium nitrate solution as the working pair and incorporating an adiabatic absorber. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers and it assumes an approach factor to adiabatic equilibrium. The results are offered as a function of external temperatures. A loop circuit with a heat exchanger upstream the absorber produces subcooling for facilitating absorption process. The effect of the mass flow rate recirculated through the absorber is studied. Results show a diminishing return effect. The value at which the recirculation mass flow yields a reasonable performance is between 4 and 6 times the solution mass flow. With a heat transfer area 6 times smaller than with a conventional diabatic shell-and-tube type absorber, the adiabatic absorber configured with a plate heat exchanger yields a 2% smaller maximum COP and a 15-20% smaller cooling power.

  3. 3d-4p transitions in the soft X-ray spectra of Mo XIV and of isoelectronic Y to Ag ions, from a low-inductance vacuum spark

    International Nuclear Information System (INIS)

    Klapisch, M.; Mandelbaum, P.; Schwob, J.L.; Bar-Shalom, A.; Schweitzer, N.

    1981-01-01

    Eight lines of 3d 10 4s-3d 9 4s4p and 3d 10 4p-3d 9 p 2 transitions of Cu I-like Y XI to Ag XIX ions are identified in the 30-80 Angstroem range of spectra emitted from a low-inductance vacuum spark. Identification is based on isoelectronic analysis and comparison with ab-initio relativistic calculations. (orig.)

  4. Hybrid plasma system for magnetron deposition of coatings with ion assistance

    International Nuclear Information System (INIS)

    Vavilin, K V; Kralkina, E A; Nekludova, P A; Petrov, A. K; Nikonov, A M; Pavlov, V B; Airapetov, A A; Odinokov, V V; Pavlov, G Ya; Sologub, V A

    2016-01-01

    The results of the study of the plasma hybrid system based on the combined magnetron discharge and high-frequency inductive discharge located in the external magnetic field is presented. Magnetron discharge provides the generation of atoms and ions of the target materials while the flow of accelerated ions used for the ion assistance is provided by the RF inductive discharge. An external magnetic field is used to optimize the power input to the discharge, to increase the ion current density in the realm of substrate and to enhance the area of uniform plasma. The joint operation of magnetron and RF inductive discharge leads to a substantial increase (not equal to the sum of the parameters obtained under separate operation of two hybrid system channels) of the ion current density and intensity of sputtered material spectral lines radiation. Optimal mode of the hybrid plasma system operation provides uniform ion current density on the diameter of at least 150mm at 0.7PA argon pressure. The optimal values of the magnetic fields in the region of the substrate location lie in the range 2-8 mTl, while in the region of the RF input power unit lie in the range 0.5-25 mTl. (paper)

  5. Induction of Harderian gland tumors in mice by heavy ion irradiation

    International Nuclear Information System (INIS)

    Alpen, E.L.; Powers-Risius, P.; Fry, R.J.M.; Ainsworth, E.J.; DeGuzman, R.J.; Harrison, L.D.; Havens, V.C.

    1983-01-01

    This project was undertaken as part of the program to evaluate the biological effects of charged particle beams generated by the LBL Bevelac and 184-Inch Synchrocyclotron. Experiments have been designed to investigate the relationship of LET to the effectivenesss of radiation of different qualities to induce tumors; and to study the factors that may influence the shape of the dose-response curve for cancer induction by high-LET radiation. The Harderian gland in mice has been chosen as a model tumor system. Although the total number of cells in these glands is small and the natural incidence is low (approx. 2.7%) they are reasonably susceptible to the induction of tumors by irradiation

  6. Measurements of the total energy lost per electron-ion pair lost in low-pressure inductive argon, helium, oxygen and nitrogen discharge

    International Nuclear Information System (INIS)

    Lee, Young-Kwang; Ku, Ju-Hwan; Chung, Chin-Wook

    2011-01-01

    Experimental measurements of the total energy lost per electron-ion pair lost, ε T , were performed in a low-pressure inductive atomic gases (Ar, He) and molecular gases (O 2 , N 2 ) discharge. The value of ε T was determined from a power balance based on the electropositive global (volume-averaged) model. A floating harmonic method was employed to measure ion fluxes and electron temperatures at the discharge wall. In the pressure range 5-50 mTorr, it was found that the measured ε T ranged from about 70 to 150 V for atomic gases, but from about 180 to 1300 V for molecular gases. This difference between atomic and molecular discharge is caused by additional collisional energy losses of molecular gases. For argon discharge, the stepwise ionization effect on ε T was observed at relatively high pressures. For different gases, the measured ε T was evaluated with respect to the electron temperature, and then compared with the calculation results, which were derived from collisional and kinetic energy loss. The measured ε T and their calculations showed reasonable agreement.

  7. Recirculating aquaculture production systems : an overview of different components, management, economics and technology

    NARCIS (Netherlands)

    Kals, J.

    2004-01-01

    Report of a literature study on Recirculating aquaculture production systems executed within the MRG ercirculation program. The report gives an overview of different components, management, economics and technology and is made by the Netherlands Institute for Fisheries Research (RIVO).

  8. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  9. Recycling Monoethylene Glycol (MEG from the Recirculating Waste of an Ethylene Oxide Unit

    Directory of Open Access Journals (Sweden)

    Moayed Mohsen

    2017-06-01

    Full Text Available In the ethylene glycol generation unit of petrochemical plants, first a reaction of ethylene oxide takes place which is then followed by other side reactions. These reactions include water absorption with ethylene oxide, which leads to the generation of formaldehyde and acetaldehyde. Over the lifetime of the alpha-alumina-based silver catalyst there is an increase in side reactions, increasing the amount of the formaldehyde and acetaldehyde generated by the ethylene oxide reactor which leads to reduced MEG product purity. Given the need of a petrochemical complex to further strip the aldehyde (formaldehyde and acetaldehyde to increase the quality of the MEG and increase the lifetime of the alpha-alumina-based silver catalyst, resin beds are designed and their surface absorption capacity is investigated to optimize aldehyde (formaldehyde and acetaldehyde removal in the recirculating water flow of the ethylene oxide unit. Experiments show that the ion exchange system based on strong anionic resin pre-treated with a sodium bisulfite solution can reduce the aldehyde level from about 300ppm to less than 5ppm. After the resin is saturated with aldehyde, the resin can be recycled using the sodium bisulfite solution which is a cheap chemical substance.

  10. Anaerobic digestion of food waste - Effect of recirculation and temperature on performance and microbiology.

    Science.gov (United States)

    Zamanzadeh, Mirzaman; Hagen, Live H; Svensson, Kine; Linjordet, Roar; Horn, Svein J

    2016-06-01

    Recirculation of digestate was investigated as a strategy to dilute the food waste before feeding to anaerobic digesters, and its effects on microbial community structure and performance were studied. Two anaerobic digesters with digestate recirculation were operated at 37 °C (MD + R) and 55 °C (TD + R) and compared to two additional digesters without digestate recirculation operated at the same temperatures (MD and TD). The MD + R digester demonstrated quite stable and similar performance to the MD digester in terms of the methane yield (around 480 mL CH4 per gVSadded). In both MD and MD + R Methanosaeta was the dominant archaea. However, the bacterial community structure was significantly different in the two digesters. Firmicutes dominated in the MD + R, while Chloroflexi was the dominant phylum in the MD. Regarding the thermophilic digesters, the TD + R showed the lowest methane yield (401 mL CH4 per gVSadded) and accumulation of VFAs. In contrast to the mesophilic digesters, the microbial communities in the thermophilic digesters were rather similar, consisting mainly of the phyla Firmicutes, Thermotoga, Synergistetes and the hydrogenotrophic methanogen Methanothermobacter. The impact of ammonia inhibition was different depending on the digesters configurations and operating temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Mike S. [Terralog Technologies USA, Inc., Calgary (Canada); Detwiler, Russell L. [Terralog Technologies USA, Inc., Calgary (Canada); Lao, Kang [Terralog Technologies USA, Inc., Calgary (Canada); Serajian, Vahid [Terralog Technologies USA, Inc., Calgary (Canada); Elkhoury, Jean [Terralog Technologies USA, Inc., Calgary (Canada); Diessl, Julia [Terralog Technologies USA, Inc., Calgary (Canada); White, Nicky [Terralog Technologies USA, Inc., Calgary (Canada)

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  12. Data quality objectives summary report for the 107-N Basin recirculation building liquid/sediment

    International Nuclear Information System (INIS)

    Nossardi, O.A.; Miller, M.S.; Carlson, D.

    1997-01-01

    The scope of the 107-N Basin Recirculation Facility Liquid/Sediment Data Quality Objectives (DQO) exclusively involves the determination of sampling and analytical requirements during the deactivation period. The sampling requirements are primarily directed at sample characterization for comparison to decontamination and decommissioning (D and D) endpoint acceptance criteria in preparation for turnover of the facilities (listed below) to D and D organization. If determined to be waste, the sample characterization is also used for comparison with the waste acceptance criteria (WAC) of the receiving facilities for selection of the appropriate disposition. Additionally, the data generated from the characterization will be used to support the selection of available disposition options. The primary media within the scope of this DQO includes the following: Accumulated liquids and sediment contained in tanks, vessels, pump wells, sumps, associated piping, and valve pit floors; and Limited solid debris (anticipated to be discovered). Although the title of this report refers only to the 107-N Basin Recirculation Building, this DQO encompasses the following four 100-N Buildings/areas: 1310-N valve pit area inside the Radioactive Chemical Waste Treatment Pump House (silo); 1314-N Waste Pump (Overflow) Tank at the Liquid Waste Disposal Station; 105-N Lift Station pump well and valve pit areas inside the 105-N Reactor Building; and 107-N Basin Recirculation Building

  13. Intense Ion Beams for Warm Dense Matter Physics

    International Nuclear Information System (INIS)

    Heimbucher, Lynn; Coleman, Joshua Eugene

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K + ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of

  14. Experience with dispersant application: long-path recirculation cleanup trial at Byron unit 1 during spring 2011 and online addition update

    International Nuclear Information System (INIS)

    Fruzzetti, Keith; Marks, Chuck; Kreider, Marc; Morey, David; Duncanson, Iain; Bates, Joe; Sawochka, Stephen

    2012-09-01

    of the results are the first focus of this paper. Since 2009, Exelon and then STP Nuclear Operating Company have implemented online dispersant technology at six PWR units to reduce corrosion product fouling of recirculating SGs. In most cases, dispersant addition has led to a rapid, appreciable increase in SG steam pressure and a consequent improvement in the operating thermal margin (i.e., margin above the turbine valves wide open (VWO) condition). In addition, all treated units have observed substantial increases in the SG iron removal efficiency, leading to a reduction in the SG deposit fouling rate. The second part of this paper summarizes the online experience to date at the Exelon and STP plants on the effects of dispersant on: - blowdown iron removal efficiency, - SG heat-transfer efficiency and - ion exchange resin performance. (authors)

  15. Off-gas recirculation system for nuclear reactors

    International Nuclear Information System (INIS)

    Eppler, M.; Lade, H.J.

    1975-01-01

    According to the invention, it is suggested to provide a buffer vessel in the ring main of the off-gas recirculation system for off-gases of a nuclear reactor to which all chambers or vessels which may contain radioactively contaminated gases are connected, within the connection line to outside air. This is to prevent the immediate release of an appreciable amount of gas to the outside air due to pressure variations conditioned by the sequence of operations - e.g. on the filling of the coolant storage. After the improvement, the released gas may be reduced to the amount of gas corresponding to the leakage gas flow entering the ring mains system. (TK) [de

  16. Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study

    International Nuclear Information System (INIS)

    Sjerić, Momir; Taritaš, Ivan; Tomić, Rudolf; Blažić, Mislav; Kozarac, Darko; Lulić, Zoran

    2016-01-01

    Highlights: • A cylinder model was calibrated according to experimental results. • A full cycle simulation model of turbocharged spark-ignition engine was made. • Engine performance with high pressure exhaust gas recirculation was studied. • Cooled exhaust gas recirculation lowers exhaust temperature and knock occurrence. • Leaner mixtures enable fuel consumption improvement of up to 11.2%. - Abstract: The numerical analysis of performance of a four cylinder highly boosted spark-ignition engine at full load is described in this paper, with the research focused on introducing high pressure exhaust gas recirculation for control of engine limiting factors such as knock, turbine inlet temperature and cyclic variability. For this analysis the cycle-simulation model which includes modeling of the entire engine flow path, early flame kernel growth, mixture stratification, turbulent combustion, in-cylinder turbulence, knock and cyclic variability was applied. The cylinder sub-models such as ignition, turbulence and combustion were validated by using the experimental results of a naturally aspirated multi cylinder spark-ignition engine. The high load operation, which served as a benchmark value, was obtained by a standard procedure used in calibration of engines, i.e. operation with fuel enrichment and without exhaust gas recirculation. By introducing exhaust gas recirculation and by optimizing other engine operating parameters, the influence of exhaust gas recirculation on engine performance is obtained. The optimum operating parameters, such as spark advance, intake pressure, air to fuel ratio, were found to meet the imposed requirements in terms of fuel consumption, knock occurrence, exhaust gas temperature and variation of indicated mean effective pressure. By comparing the results of the base point with the results that used exhaust gas recirculation the improvement in fuel consumption of 8.7%, 11.2% and 1.5% at engine speeds of 2000 rpm, 3500 rpm and 5000

  17. Flow Control by Slot Position and Noise Baffle in a Self-Recirculation Casing Treatment on an Axial Fan-Rotor

    Directory of Open Access Journals (Sweden)

    Xiangjun Li

    2017-01-01

    Full Text Available To address the situations where the casing treatment needs to be used to stabilize axial compressors through strong recirculation, this paper initiated a CFD study to investigate how the flow could be suitably controlled in the casing treatment to minimize the efficiency penalty and increase the flow range. A counter-swirl self-recirculation casing treatment was first designed on a low speed axial fan rotor as a baseline case. Then three different slot positions and the influence of including the noise baffle were numerically studied. Based on the understanding of their coeffects, the shorter noise baffle was considered and it was found that the highest efficiency was achieved in the case of the upstream slot when the length of baffle was suitably adjusted to balance the incoming flow and recirculation. The largest flow range was achieved by locating the slot at the most downstream position and using a 50% length baffle since it suitably controlled the recirculating flow and relieved the separation at the low-span region. An optimization study showed that the optimum length of the baffle for efficiency was always larger than for the flow range. Both of the two optimum values reduce as the slot moves downstream.

  18. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling

    Directory of Open Access Journals (Sweden)

    Georg H. Hoffstaetter

    2007-04-01

    Full Text Available Here we will derive the general theory of the beam-breakup (BBU instability in recirculating linear accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not have to be at the same radio-frequency phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs where beam currents become very large and coupled optics are used on purpose to increase the threshold current. This theory can be used for the analysis of phase errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. General formulas are then analyzed for several analytically solvable problems: (a Why can different higher order modes (HOM in one cavity couple and why can they then not be considered individually, even when their frequencies are separated by much more than the resonance widths of the HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated threshold current is then far above the design current of this accelerator. To justify that the simulation can represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited number of modes is reasonable. (b How does the x-y coupling in the particle optics determine when modes can be considered separately? (c How much of an increase in threshold current can be obtained by coupled optics and why does the threshold current for polarized modes diminish roughly with the square root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled optics increase the threshold current more effectively for cavities that have rather large HOM quality factors, e.g. those without very

  19. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange

    Directory of Open Access Journals (Sweden)

    R. Gayathri

    2010-03-01

    Full Text Available The chrome plating industry is one of the highly polluting industries whose effluent mainly consists of chromium(VI. This compound is highly toxic to aquatic life and human health. The rinse water constituents reflect the chrome plating bath characteristics; generally dead tank wash water contains about 1% of the plating bath concentration. Other metals and metal compounds usually considered as toxic can be precipitated out by suitably adjusting the pH of the wastewaters. However, Cr(VI is soluble in almost all pH ranges and therefore an efficient treatment is required for the removal and recovery of chromium, and also for the reuse of wastewaters. The present study aims to recover the chromium by a hybrid technique of electrodialysis and ion exchange for the removal and concentration of chromate ions from the effluent. The different modes of operation like batch recirculation process, batch recirculation process with continuous dipping and continuous process were carried out to remove and recover the chromium from the effluent and the percentage reductions of chromium were found to be 98.69%, 99.18% and 100%, respectively.

  20. Applications of induction linac technology to heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1977-07-01

    Evaluation of the application of heavy ion accelerators to ignite d-t pellets in a thermonuclear reactor is discussed. Accelerator design requirements considered include transport-limited current, beam injection conditions, and pulse bunching and focusing characteristics. The desirability of resonant and non-resonant accelerating structures is comparatively examined. The required power system switch tubes are discussed. It is concluded that heavy ion accelerators could offer a promising solution to the pellet-igniter problem. The advantages pointed out for this approach include electric efficiency greater than 10 percent, the possibility of high repetition rates (1 to 10 Hz), and a mature technological base

  1. A new mechanism for periodic bursting of the recirculation region in the flow through a sudden expansion in a circular pipe

    Science.gov (United States)

    Lebon, Benoit; Nguyen, Minh Quan; Peixinho, Jorge; Shadloo, Mostafa Safdari; Hadjadj, Abdellah

    2018-03-01

    We report the results of a combined experimental and numerical study of specific finite-amplitude disturbances for transition to turbulence in the flow through a circular pipe with a sudden expansion. The critical amplitude thresholds for localized turbulent patch downstream of the expansion scale with the Reynolds number with a power law exponent of -2.3 for experiments and -2.8 for simulations. A new mechanism for the periodic bursting of the recirculation region is uncovered where the asymmetric recirculation flow develops a periodic dynamics: a secondary recirculation breaks the symmetry along the pipe wall and bursts into localized turbulence, which travels downstream and relaminarises. Flow visualizations show a simple flow pattern of three waves forming, growing, and bursting.

  2. The effectiveness of recirculating flue gasses on a gas-fuel oil boiler unit with hearth burners

    Energy Technology Data Exchange (ETDEWEB)

    Eremeev, V V; Kovalenko, A L; Kozlov, V G

    1981-01-01

    The results of investigating the effect of recirculating flue gasses on a TP-87 boiler (D = 420 tons per hour, 14 MPa, 560 C) with a hearth composition of four gas-fuel oil burners are presented. The heat-release rate of the volume of the furnace is 136 Kw per m/sup 3/; that if a cross section of the combustion chamber is 3.2 MW/m/sup 2/. The hot air temperature is 420 C. The tests were carried out during the combustion of M-100 petroleum oil which has a moisture content of 3 / 4% and a sulfur content of 2.4%. The pressure of the oil against the mechanical sprayers is 2.9-3.0 MPa at the rated load; the temperature is 125-130 C. The recirculation of the flue gasses was organized in order to expand the regulatory stress range and decrease the discharge of nitric oxides into the atmosphere. Moreover, flue gasses with a temperature of 330-370/sup 0/C were removed from a first-degree BE gas conduit, and, using two BGD-15.5 type exhaust fans, were fed into the annular channels around the burners. The calculated velocity of the gasses at the output of the burner is equal to 35 M/s; the air velocity is 64 M/s. It is shown that the TP-87 furnace--with fuel oil hearth burners and recirculation to obtain flue gasses into independent burner ducts--makes it possible to obtain a useful stress range during almost complete fuel oil combustion with minimal air exceses by maintaining the calculated temperature of the superheated vapor. Recirculating flue gasses in a duct around the burners constitutes an effective means of decreasing the discharge of nitric oxides, and of decreasing local heat stress on the screens. However, increasing the recirculation coefficient to 0.17 causes a 0.35% increase in the loss of heat with the departing gasses (the temperature of which increases by 7 C), and a 0.15% decrease in the heat flow rate for SN, which leads to an overall drop of approx. 0.5% in the efficiency coefficient of the boiler.

  3. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability

    NARCIS (Netherlands)

    Martins, C.I.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Roque dÓrbcastel, E.; Verreth, J.A.J.

    2010-01-01

    The dual objective of sustainable aquaculture, i.e., to produce food while sustaining natural resources is achieved only when production systems with a minimum ecological impact are used. Recirculating aquaculture systems (RASs) provide opportunities to reduce water usage and to improve waste

  4. Power ion beam production in a magnetic-insulated diode placed in a circuit with an inductive storage with a plasmoerosion circuit breaker

    International Nuclear Information System (INIS)

    Anan'in, P.S.; Karpov, V.B.; Krasik, Ya.E.; Paul', E.A.

    1991-01-01

    Consideration is given to results of experimental studies of modes of operation of plasma current breaker and magnetic insulated diode, placed parallel in a circuit with inductive storage and microsecond generator, as well as parameters of high-power ion beam, generated in gas-filled diode. Magnetic field of mirror configuration, which enabled to locate the gas-filled diode dose to breaking region was used for decrease of electrodynamic plasma transfer. It is shown that time delay (of the order of ten and more) of power maximum in gas-filled diode with respect to power maximum in plasma breaker is observed when using passive plasma source on anode

  5. Ion-hose instability in a long-pulse linear induction accelerator

    Directory of Open Access Journals (Sweden)

    Thomas C. Genoni

    2003-03-01

    Full Text Available The ion-hose instability is a transverse electrostatic instability which occurs on electron beams in the presence of a low-density ion channel. It is a phenomenon quite similar to the interaction between electron clouds and proton or positron beams in high-energy accelerators and storage rings. In the DARHT-2 accelerator, the 2-kA, 2-μs beam pulse produces an ion channel through impact ionization of the residual background gas (10^{-7}–10^{-6}   torr. A calculation of the linear growth by Briggs indicates that the instability could be strong enough to affect the radiographic application of DARHT, which requires that transverse oscillations be small compared to the beam radius. We present semianalytical theory and 3D particle-in-cell simulations (using the Lsp code of the linear and nonlinear growth of the instability, including the effects of the temporal change in the ion density and spatially decreasing beam radius. We find that the number of e-foldings experienced by a given beam slice is given approximately by an analytic expression using the local channel density at the beam slice. Hence, in the linear regime, the number of e-foldings increases linearly from head to tail of the beam pulse since it is proportional to the ion density. We also find that growth is strongly suppressed by nonlinear effects at relatively small oscillation amplitudes of the electron beam. This is because the ion oscillation amplitude is several times larger than that of the beam, allowing nonlinear effects to come into play. An analogous effect has recently been noted in electron-proton instabilities in high-energy accelerators and storage rings. For DARHT-2 parameters, we find that a pressure of ≤1.5×10^{-7}   torr is needed to keep the transverse beam oscillation amplitude less than about 20% of the rms beam radius.

  6. Optimization of time on CF{sub 4}/O{sub 2} etchant for inductive couple plasma reactive ion etching of TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); Arshad, M. K. Md., E-mail: mohd.khairuddin@unimap.edu.my; Hashim, U.; Ayub, R. M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia)

    2016-07-06

    In this work, we investigate the optimum etching of titanium dioxide (TiO{sub 2}) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF{sub 4}/O{sub 2} gases as plasma etchant with ratio of 3:1, three samples of TiO{sub 2} thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF{sub 4} gases with plasma enhancement by O{sub 2} gas able to break the oxide bond of TiO{sub 2} and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  7. Heavy-ion driver parametric studies and choice of a base 5 mega-joule driver design

    International Nuclear Information System (INIS)

    Bieri, R.; Meier, W.

    1992-01-01

    Parametric studies to optimize heavy-ion driver designs are described and an optimized 5 MJ driver design is described. Parametric studies are done on driver parameters including driver energy, number of beams, type of superconductor used in focusing magnets, maximum magnetic field allowed at the superconducting windings, axial quadrupole field packing fraction, ion mass, and ion charge state. All modeled drivers use the maximum beam currents allowed by the Maschke limits; driver scaling is described in a companion paper. The optimized driver described is conservative and cost effective. The base driver direct costs are only $120/Joule, and the base driver uses no recirculation, beam combination, or beam separation. The low driver cost achieved is due, in part, to the use of compact Nb 3 Sn quadrupole arrays, but results primarily from optimization over the large, multi-dimensional, parameter space available for heavy-ion drivers

  8. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I

    2001-01-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  9. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    Science.gov (United States)

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Observations on side-swimming rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems

    Science.gov (United States)

    During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRAS), it was observed that rainbow trout Oncorhynchus mykiss in all WRAS exhibited a higher-than-normal prevalence of side-swimming (i.e. controlled, forward swimming, but with misaligned orientation suc...

  11. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  12. Leachate recirculation: moisture content assessment by means of a geophysical technique.

    Science.gov (United States)

    Guérin, Roger; Munoz, Marie Laure; Aran, Christophe; Laperrelle, Claire; Hidra, Mustapha; Drouart, Eric; Grellier, Solenne

    2004-01-01

    Bioreactor technology is a waste treatment concept consisting in speeding up the biodegradation of landfilled waste by optimizing its moisture content through leachate recirculation. The measurement of variations in waste moisture content is critical in the design and control of bioreactors. Conventional methods such as direct physical sampling of waste reach their limits due to the interference with the waste matrix. This paper reviews geophysical measurements such as electrical direct current and electromagnetic slingram methods for measuring the electrical conductivity. Electrical conductivity is a property, which is linked to both moisture and temperature and can provide useful indications on the biodegradation environment in the waste mass. The study reviews three site experiments: a first experimentation shows the advantages (correlation between conductive anomaly and water seepage) but also the limits of geophysical interpretation; the two other sites allow the leachate recirculation to be tracked by studying the relative resistivity variation versus time from electrical 2D imaging. Even if some improvements are necessary to consider geophysical measurements as a real bioreactor monitoring tool, results are promising and could lead to the use of electrical 2D imaging in bioreactor designing.

  13. Heavy ion fusion- Using heavy ions to make electricity

    International Nuclear Information System (INIS)

    Celata, C.M.

    2004-01-01

    The idea of using nuclear fusion as a source of commercial electrical power has been pursued worldwide since the 1950s. Two approaches, using magnetic and inertial confinement of the reactants, are under study. This paper describes the difference between the two approaches, and discusses in more detail the heavy-ion-driven inertial fusion concept. A multibeam induction linear accelerator would be used to bring ∼100 heavy ion beams to a few GeV. The beams would then heat and compress a target of solid D-T. This approach is unique among fusion concepts in its ability to protect the reaction chamber wall from neutrons and debris

  14. Corrosion products, activity transport and deposition in boiling water reactor recirculation systems

    International Nuclear Information System (INIS)

    Alder, H.P.; Buckley, D.; Grauer, R.; Wiedemann, K.H.

    1989-09-01

    The deposition of activated corrosion products in the recirculation loops of Boiling Water Reactors produces increased radiation levels which lead to a corresponding increase in personnel radiation dose during shut down and maintenance. The major part of this dose rate is due to cobalt-60. The following areas are discussed in detail: - the origins of the corrosion products and of cobalt-59 in the reactor feedwaters, - the consolidation of the cobalt in the fuel pin deposits (activation), - the release and transport of cobalt-60, - the build-up of cobalt-60 in the corrosion products in the recirculation loops. Existing models of the build-up of circuit radioactivity are discussed and the operating experiences from selected reactors are summarised. Corrosion chemistry aspects of the cobalt build-up in the primary circuit have already been studied on a broad basis and are continuing to be researched in a number of centers. The crystal chemistry of chromium-nickel steel corrosion products poses a number of yet unanswered questions. There are major loopholes associated with the understanding of activation processes of cobalt deposited on the fuel pins and in the mass transfer of cobalt-60. For these processes, the most important influence stems from factors associated with colloid chemistry. Accumulation of data from different BWRs contributes little to the understanding of the activity build-up. However, there are examples that the problem of activity build-up can be kept under control. Although many details for a quantitative understanding are still missing, the most important correlations are visible. The activity build-up in the BWR recirculation systems cannot be kept low by a single measure. Rather a whole series of measures is necessary, which influences not only cobalt-60 deposition but also plant and operation costs. (author) 26 figs., 13 tabs., 90 refs

  15. Gun and optics calculations for the Fermilab recirculation experiment

    International Nuclear Information System (INIS)

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes

  16. 3d-4p transitions in the soft X-ray spectra of Mo XIV and of isoelectronic Y to Ag ions from a low-inductance vacuum spark

    International Nuclear Information System (INIS)

    Klapisch, M.; Mandelbaum, P.; Schwob, J.L.; Bar-Shalom, A.; Schweitzer, N.

    1981-04-01

    Eight lines of 3d 10 4s - 3d 9 4s4p and 3d 10 4p-3d 9 4p 2 transitions of CuI-like Y XI to Ag XIX ions are identified in the 30-80 A range of spectra emitted from a low-inductance vacuum spark. Identification is based on isoelectronic analysis and comparison with ab-initio relativistic calculations. In the present paper is analyzed the spectra of Mo XIV

  17. Lower operating cost due to compressed-air recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Schauwecker, F

    1979-01-01

    Compressed air containing dirt and aggressive substances may cause damage in pipelines and pneumatic tools, equipment and systems. In consequence, operating costs can be greatly reduced by cleaning and recirculation of compressed air. Compressed-air driers are among the most common systems used for this purpose. Most of these driers are refrigeration driers; adsorption driers are less common. Refrigeration driers consist of a heat exchanger system, a separation system, and a power-controlled refrigerator. The water vapour concentration is proportional to the air temperature; for this reason, the pressure dew point should be as low as possible, i.e. about 1.5/sup 0/C.

  18. Dietary carbohydrate composition can change waste production and biofilter load in recirculating aquaculture systems

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Schrama, J.W.; Kamstra, A.; Verreth, J.A.J.

    2014-01-01

    This study investigated the effect of dietary carbohydrate composition on the production, recovery and degradability of fecal waste from rainbow trout (Oncorhynchus mykiss) in recirculating aquaculture systems (RAS). Dietary carbohydrate composition was altered by substituting starch with non-starch

  19. Classification of scrap material from nuclear power plants as acceptable for recirculation

    International Nuclear Information System (INIS)

    Bergman, C.

    1983-06-01

    The Swedish National Institute of Radiation Protection has in a principal decision accepted that scrap material from nuclear power plants, that contains or may contain radioactive material, can be recirculated. The document is an English translation of the background material for the Board meeting decision and gives some guide-lines for the authority when dealing with this questions. (author)

  20. Carbon and nutrient removal from on-site wastewater using extended-aeration activated sludge and ion exchange.

    Science.gov (United States)

    Safferman, Steven I; Burks, Bennette D; Parker, Robert A

    2004-01-01

    The need to improve on-site wastewater treatment processes is being realized as populations move into more environmentally sensitive regions and regulators adopt the total maximum daily load approach to watershed management. Under many conditions, septic systems do not provide adequate treatment; therefore, advanced systems are required. These systems must remove significant amounts of biochemical oxygen demand (BOD) and suspended solids, and substantially nitrify, denitrify, and remove phosphorus. Many existing advanced on-site wastewater systems effectively remove BOD, suspended solids, and ammonia, but few substantially denitrify and uptake phosphorus. The purpose of this research was to design and test modifications to an existing on-site wastewater treatment system to improve denitrification and phosphorus removal. The Nayadic (Consolidated Treatment Systems, Inc., Franklin, Ohio), an established, commercially available, extended-aeration, activated sludge process, was used to represent a typical existing system. Several modifications were considered based on a literature review, and the option with the best potential was tested. To improve denitrification, a supplemental treatment tank was installed before the Nayadic and a combination flow splitter, sump, and pump box with a recirculation system was installed after it. A recirculation pump returned a high proportion of the system effluent back to the supplemental treatment tank. Two supplemental treatment tank sizes, three flowrates, and three recirculation rates were tested. Actual wastewater was dosed as brief slugs to the system in accordance with a set schedule. Several ion-exchange resins housed in a contact column were tested on the effluent for their potential to remove phosphorus. Low effluent levels of five-day biochemical oxygen demand, suspended solids, and total nitrogen were achieved and substantial phosphorous removal was also achieved using a 3780-L supplemental treatment tank, a recirculation

  1. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    Science.gov (United States)

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  2. The impact of building recirculation rates on secondary organic aerosols generated by indoor chemistry

    DEFF Research Database (Denmark)

    Zuraimi, M.S.; Weschler, Charles J.; Tham, K.W.

    2007-01-01

    Numerous investigators have documented increases in the concentrations of airborne particles as a consequence of ozone/terpene reactions in indoor environments. This study examines the effect of building recirculation rates on the concentrations of secondary organic aerosol (SOA) resulting from r...

  3. Selective Iron(III ion uptake using CuO-TiO2 nanostructure by inductively coupled plasma-optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Rahman Mohammed M

    2012-12-01

    Full Text Available Abstract Background CuO-TiO2 nanosheets (NSs, a kind of nanomaterials is one of the most attracting class of transition doped semiconductor materials due to its interesting and important optical, electrical, and structural properties and has many technical applications, such as in metal ions detection, photocatalysis, Chemi-sensors, bio-sensors, solar cells and so on. In this paper the synthesis of CuO-TiO2 nanosheets by the wet-chemically technique is reported. Methods CuO-TiO2 NSs were prepared by a wet-chemical process using reducing agents in alkaline medium and characterized by UV/vis., FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, and field-emission scanning electron microscopy (FE-SEM etc. Results The structural and optical evaluation of synthesized NSs were measured by XRD pattern, Fourier transform infrared (FT-IR and UV–vis spectroscopy, respectively which confirmed that the obtained NSs are well-crystalline CuO-TiO2 and possessing good optical properties. The morphological analysis of CuO-TiO2 NSs was executed by FE-SEM, which confirmed that the doped products were sheet-shaped and growth in large quantity. Here, the analytical efficiency of the NSs was applied for a selective adsorption of iron(III ion prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES. The selectivity of NSs towards various metal ions, including Au(III, Cd(II, Co(II, Cr(III, Fe(III, Pd(II, and Zn(II was analyzed. Conclusions Based on the selectivity study, it was confirmed that the selectivity of doped NSs phase was the most towards Fe(III ion. The static adsorption capacity for Fe(III was calculated to be 110.06 mgg−1. Results from adsorption isotherm also verified that the adsorption process was mainly monolayer-adsorption onto a surface containing a finite number of CuO-TiO2 NSs adsorption sites.

  4. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-08-01

    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  5. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    International Nuclear Information System (INIS)

    Villarroel, M.; Alvarino, J. M. R.; Duran, J. M.

    2011-01-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by f ish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for f ish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC 2 5, HCO3 - , Cl - , NH + 4 , NO 2 - , NO 3 - , H 2 PO 4 - , SO 4 2 -, Na + , K + , Ca 2 + and Mg 2 + build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO 3 - , followed, in decreasing order, by Ca 2 +, H 2 PO 4 - , K + , Mg 2 + and SO 4 2 -. The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO 3 - , Ca 2 +, H 2 PO 4 - and K + ) at a density of 2 kg fish m3, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  6. Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Vejlgaard-Laursen, Morten

    2015-01-01

    recirculation. The paper provides proof of exponential stabilityfor closed loop control of the model given. Difficulties in the system include that certaindisturbance levels will make a desired setpoint in O2 unreachable, for reasons of the physics of thesystem, and it is proven that the proposed control...... will make the system converge exponentiallyto the best achievable state. Simulation examples confirm convergence and good disturbancerejection over relevant operational ranges of the engine....

  7. Intense Ion Beam for Warm Dense Matter Physics

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Joshua Eugene [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K+ ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally

  8. Application of the MIT two-channel model to predict flow recirculation in WARD 61-pin blanket tests

    International Nuclear Information System (INIS)

    Huang, T.T.; Todreas, N.E.

    1983-01-01

    The preliminary application of MIT two-channel model to WARD sodium blanket tests was presented in this report. The criterion was employed to predict the recirculation for selected completed (transient and steady state) and proposed (transient only) tests. The heat loss was correlated from the results of the WARD zero power tests. The calculational results show that the criterion agrees with the WARD tests except for WARD RUN 718 for which the criterion predicts a different result from WARD data under bundle heat loss condition. However, if the test assembly is adiabatic, the calculations predict an operating point which is marginally close to the mixed-to-recirculation transition regime

  9. Application of the MIT two-channel model to predict flow recirculation in WARD 61-pin blanket tests

    International Nuclear Information System (INIS)

    Huang, T.T.; Todreas, N.E.

    1983-01-01

    The preliminary application of MIT TWO-CHANNEL MODEL to WARD sodium blanket tests was presented in this report. Our criterion was employed to predict the recirculation for selected completed (transient and steady state) and proposed (transient only) tests. The heat loss was correlated from the results of the WARD zero power tests. The calculational results show that our criterion agrees with the WARD tests except for WARD RUN 718 for which the criterion predicts a different result from WARD data under bundle heat loss condition. However, if the test assembly is adiabatic, the calculations predict an operating point which is marginally close to the mixed-to-recirculation transition regime

  10. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Sally M. [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding

  11. Development of new design mechanical seal tester for Primary Loop Recirculation Pump (PLR Pump)

    International Nuclear Information System (INIS)

    Fukushima, Naoki; Koshiba, Koremutsu

    1995-01-01

    The mechanical seal for a Primary Loop Recirculation Pump (PLR Pump) is an important part of a BWR plant. This study describes a new mechanical seal tester developed to certify mechanical seal performance before installation in a PLR Pump on site. (author)

  12. Fulminant hepatic failure following marijuana drug abuse: Molecular adsorbent recirculation system therapy

    Directory of Open Access Journals (Sweden)

    G Swarnalatha

    2013-01-01

    Full Text Available Marijuana is used for psychoactive and recreational purpose. We report a case of fulminant hepatic failure following marijuana drug abuse who recovered following artificial support systems for acute liver failure. There is no published literature of management of marijuana intoxication with molecular adsorbent recirculation system (MARS. MARS is effective and safe in patients with fulminant hepatic failure following marijuana intoxication.

  13. A feasibility study of space-charge neutralized ion induction linacs: Final report

    International Nuclear Information System (INIS)

    Slutz, S.A.; Primm, P.; Renk, T.; Johnson, D.J.

    1997-03-01

    Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of open-quotes multicuspclose quotes accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion

  14. [Determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry].

    Science.gov (United States)

    Lin, Li; Chen, Guang; Chen, Yuhong

    2011-07-01

    A method was established for the determination of iodine and its species in plant samples using ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP/ MS). Alkaline extraction and IC-ICP/MS were applied as the sample pre-treatment method and the detection technique respectively, for iodate and iodide determination. Moreover, high-temperature pyrolysis absorption was adopted as the pre-treatment method for total iodine analysis, which finally converted all the iodine species into iodide and measured the iodide by IC-ICP/MS. The recoveries of iodine for alkaline extraction and high-temperature pyrolysis absorption were 89.6%-97.5% and 95.2%-111.2%, respectively. The results were satisfactory. The detection limit of iodine was 0.010 mg/kg. The iodine and its speciation contents in several kinds of plant samples such as seaweeds, kelp, cabbage, tea leaf and spinach were investigated. It was shown that the iodine in seaweeds mainly existed as organic iodine; while the ones in kelp, cabbage, tea leaf and spinach mainly existed as inorganic iodine.

  15. Recirculation of the Canary Current in fall 2014

    Science.gov (United States)

    Hernández-Guerra, Alonso; Espino-Falcón, Elisabet; Vélez-Belchí, Pedro; Dolores Pérez-Hernández, M.; Martínez-Marrero, Antonio; Cana, Luis

    2017-10-01

    Hydrographic measurements together with Ship mounted Acoustic Doppler Current Profilers and Lowered Acoustic Doppler Current Profilers (LADCP) obtained in October 2014 are used to describe water masses, geostrophic circulation and mass transport of the Canary Current System, as the Eastern Boundary of the North Atlantic Subtropical Gyre. Geostrophic velocities are adjusted to velocities from LADCP data to estimate an initial velocity at the reference layer. The adjustment results in a northward circulation at the thermocline layers over the African slope from an initial convergent flow. Final reference velocities and consequently absolute circulation are estimated from an inverse box model applied to an ocean divided into 13 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport is estimated from the wind data derived from the Weather Research and Forecasting model. Ekman transport is added to the first layer and adjusted with the inverse model. The Canary Current located west of Lanzarote Island transports to the south a mass of - 1.5 ± 0.7 Sv (1 Sv = 106 m3 s- 1 ≈ 109 kg s- 1) of North Atlantic Central Water at the surface and thermocline layers ( 0-700 m). In fall 2014, hydrographic data shows that the Canary Current in the thermocline (below at about 80 m depth to 700 m) recirculates to the north over the African slope and flows through the Lanzarote Passage. At intermediate layers ( 700-1400 m), the Intermediate Poleward Undercurrent transports northward a relatively fresh Antarctic Intermediate Water in the range of 0.8 ± 0.4 Sv through the Lanzarote Passage and west of Lanzarote Island beneath the recirculation of the Canary Current.

  16. Inductance-dependent characteristics of HTS dc-SQUID amplifiers

    International Nuclear Information System (INIS)

    Mitchell, E.E.; Tilbrook, D.L.; Foley, C.P.; MacFarlane, J.

    2002-01-01

    Full text: We have experimentally determined the transfer function V Φ and noise S Φ of several high temperature superconducting (HTS) dc SQUIDs of increasing loop size, while they were operated (without input flux transformer) in a small-signal-amplifier (open-loop) mode. A primary aim of our investigation was to provide reliable inductance data to aid our design of subsequent magnetometer devices. Flux was induced by means of current injection via a well-defined stripline directly into the SQUID loop. The loop size was systematically incremented in a range of otherwise similar SQUIDs. For each SQUID, the ratio between the induced flux and the injection current (which we define as the coupling inductance of the device, L c ) was measured as a function of the injection path length and the SQUID loop dimensions. Both L c and the derived SQUID self-inductance, L sq , were then compared with theoretical values, and contributions due to kinetic inductance and junction inductance were estimated. Correlations between the inductance data and our measured values of transfer function V Φ and noise S Φ were compared with previous results. Guidelines for optimisation of gradiometer SQUIDs were established, and in particular, the importance of achieving a large value transfer function together with a relatively small inductance was demonstrated. The strong influence of an enhanced transfer function was further emphasised when an order-of-magnitude reduction in noise was achieved by subjecting one of our SQUIDs to an in-house 'ion-beam trimming' process

  17. BWR recirculation loop discharge line break LOCA tests with break areas of 50 and 100% assuming HPCS failure at ROSA-III test facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Yonomoto, Taisuke; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Murata, Hideo; Shiba, Masayoshi; Iriko, Masanori.

    1985-03-01

    This report presents the experimental results of RUN 962 and RUN 963 in ROSA-III program, which are 50 and 100 % break LOCA tests at the BWR recirculation pump discharge line, respectively. The ROSA-III test facility simulates a volumetrically scaled (1/424) BWR system and has four half-length electrically heated fuel bundles, two active recirculation loops, three types of ECCSs and steam and feedwater systems. The experimental data of RUN 962 and RUN 963 were compared with those of RUN 961, a 200 % discharge line break test to study the break area effects on the transient thermal hydraulic phenomena. The least flow areas at the jet pump drive nozzles and recirculation pump discharge nozzle in the broken recirculation loop limitted the discharge flows from the pressure vessel and the depressurization rate in the 100 and 200 % break tests, whereas the least flow area at break nozzle limitted the depressurization rate in the 50 % break test. The highest PCT was observed in the 50 % break test among the three tests. (author)

  18. Matrix effects in inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Chen, Xiaoshan.

    1995-01-01

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the open-quotes Fasselclose quotes TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids

  19. Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lin, Ya-An; Jiang, Shiuh-Jen; Sahayam, A C

    2017-09-01

    A method was developed by coupling ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for the speciation of antimony. In this study, antimony species such as antimonite [Sb(III)], antimonate [Sb(V)] and trimethyl antimony(V) (TMeSb) were separated in less than 8min using anion exchange chromatography with a Hamilton PRP-X100 column as the stationary phase. Mobile phase A was 20mmolL -1 ethylenediaminetetraacetic acid (EDTA), 2mmolL -1 potassium hydrogen phthalate (KHP) in 1% v/v methanol (pH 5.5) and 20mmolL -1 EDTA, 2mmolL -1 KHP, 40mmolL -1 (NH 4 ) 2 CO 3 in 1% v/v methanol (pH 9.0) formed mobile phase B. Detection limits and relative standard deviations (RSD) were 0.012-0.032ngmL -1 and 2.2-2.8% respectively. This method was applied to bottled waters and fruit juices purchased in Kaohsiung, Taiwan. In water samples, Sb(V) was the major species where as in juices organometallic Sb species were also present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Interpretation of Mutation Induction by Accelerated Very Heavy Ions in Bacteria

    International Nuclear Information System (INIS)

    Kozubek, S.; Ryznar, L.; Krasavin, E.A.

    1994-01-01

    We propose a simple approach for the calculation of the frequency of mutation induction in bacteria. The approach is based on the calculation of the fraction of energy deposited by accelerated particles in indirect hits, e.i. events in which the particle does not pass through the cell, however, the cell is hit by δ-electrons. This descriptor of the radiation field has been evaluated for different values of the particle energy and different radii of sensitive structure. Four models of the track structure have been used for calculations. The results have been compared with experimental data on mutation induction in bacteria. Two different modes of particle mutagenic action can be distinguished. Available experimental data agree reasonably well with the results of the presented theory if appropriate track structure is taken. Very good results have been obtained with the track structure models of Kudryashov, 1973 and Chatterjee and Magee, 1973. 23 refs., 6 figs., 1 tab

  1. Recirculating ventilation system for radioactive laboratories

    International Nuclear Information System (INIS)

    Kotrappa, P.; Menon, V.B.; Dingankar, M.V.; Chandramoleshwar, K.; Bhargava, B.L.

    1980-01-01

    Radioactive laboratories designed to handle toxic substances such as plutonium are required to have ''once through'' ventilation scheme. This is an expensive proposition particularly when conditioned air is required. A recent approach is to have recirculatory system with exhausted air passing through absolute (HEPA) filters. This scheme not only drastically reduces capital costs but also substantially cuts down maintenance and running costs. Experiments emplyoing aerosol clearance techniques were conducted to specifically establish that this new scheme meets all the health physics safety stipulations laid down for such installations. It is shown that the ''once through'' system is three times more expensive compared to the recirculation system adopted in Purnima Laboratories. Further a saving of 70% is also achieved in running and operating costs. Therefore the new approach deserves serious consideration in future planning of similar projects, particularly in view of the fact that the considerable savings achievable both in terms of money and energy are without in any way compromising on safety. (auth.)

  2. Mass spectra and ionization temperatures in an argon-nitrogen inductively coupled plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Montaser, A.; Fassel, V.A.

    1983-01-01

    Positive ions were extracted from the axial channel of an inductively coupled plasma (ICP) in which the outer gas flow was Ar, N 2 , or a mixture of Ar and N 2 . Addition of N 2 to the outer gas decreases the electron number density (n/sub e/) in the axial channel. Ar +2 , O 2 + , and ArH + react with N-containing species in the plasma and/or during the ion extraction process. Ar + remains abundant even if there is no Ar in the outer gas, which indicates the probable occurrence of charge transfer reactions between N 2 + and Ar. The present work corroborates two general concepts upon which several theories of theorigin of suprathermal ionization in ICPs are based: (a) species are physically transported from the induction region to the axial channel; and (b) these species may react with a ionize neutral species in the axial channel. Ionization temperatures (T/sub ion/) measured from the ratio Cd + /I + were 5750 to 6700 K for a N 2 outer flow ICP a forward power of 1.2 kW. This T/sub ion/ range is significantly below that obtained for an Ar outer gas ICP under otherwise similar operating parameters

  3. Microscreen effects on water quality in replicated recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Fernandes, Paulo; Pedersen, Lars-Flemming; Pedersen, Per Bovbjerg

    2015-01-01

    This study investigated the effects of three microscreen mesh sizes (100, 60 and 20 μm) on water quality and rainbow trout (Oncorhynchus mykiss) performance compared to a control group without microscreens, in triplicated recirculating aquaculture systems (RAS). Operational conditions were kept....... Fish performed similarly in all treatments. Preliminary screening of trout gills did not reveal any pathological changes related to microscreen filtration and the resulting water quality. Biofilter performance was also unaffected, with 0′-order nitrification rates (k0a) being equivalent for all twelve...

  4. A recirculating hydroponic system for studying peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Peanut (Arachis hypogaea L.) plants were grown hydroponically, using continuously recirculating nutrient solution. Two culture tray designs were tested; one tray design used only nutrient solution, while the other used a sphagnum-filled pod development compartment just beneath the cover and above the nutrient solution. Both trays were fitted with slotted covers to allow developing gynophores to reach the root zone. Peanut seed yields averaged 350 gm-2 dry mass, regardless of tray design, suggesting that substrate is not required for hydroponic peanut production.

  5. Fast-opening vacuum switches for high-power inductive energy storage

    International Nuclear Information System (INIS)

    Cooperstein, G.

    1988-01-01

    The subject of fast-opening vacuum switches for high-power inductive energy storage is emerging as an exciting new area of plasma science research. This opening switch technology, which generally involves the use of plasmas as the switching medium, is key to the development of inductive energy storage techniques for pulsed power which have a number of advantages over conventional capacitive techniques with regard to cost and size. This paper reviews the state of the art in this area with emphasis on applications to inductive storage pulsed power generators. Discussion focuses on fast-opening vacuum switches capable of operating at high power (≥10 12 W). These include plasma erosion opening switches, ion beam opening switches, plasma filled diodes, reflex diodes, plasma flow switches, and other novel vacuum opening switches

  6. Treatment of fishpond water by recirculating horizontal and vertical flow constructed wetlands in the tropics

    DEFF Research Database (Denmark)

    Konnerup, Dennis; Trang, Ngo Thuy Diem; Brix, Hans

    2011-01-01

    quantities of phytoplankton algae were removed in the CWs but abundance of toxic algae such as Microcystis was low. It is concluded that particularly vertical flow CWs have great potential for treatment of fishpond water in recirculating aquaculture systems in the tropics as the discharge of polluted water......Common practice of aquaculture in Vietnam and other countries in South East Asia involves frequent discharge of polluted water into rivers which results in eutrophication and degradation of receiving water bodies. There is therefore a need to develop improved aquaculture systems which have a more...... efficient use of water and less environmental impact. The aim of this study was to assess the suitability of using constructed wetlands (CWs) for the treatment of fishpond water in a recirculating aquaculture system in the Mekong Delta of Vietnam. Water from a fishpond stocked with Nile tilapia (Oreochromis...

  7. Bacterial activity dynamics in the water phase during start-up of recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Rojas-Tirado, Paula Andrea; Pedersen, Per Bovbjerg; Pedersen, Lars-Flemming

    2017-01-01

    tMicrobial water quality in recirculating aquaculture systems (RAS) is important for successful RAS opera-tion but difficult to assess and control. There is a need to identify factors affecting changes in the bacterialdynamics – in terms of abundance and activity – to get the information needed...

  8. Conceptual design of the cryogenic system and estimation of the recirculated power for CFETR

    Science.gov (United States)

    Liu, Xiaogang; Qiu, Lilong; Li, Junjun; Wang, Zhaoliang; Ren, Yong; Wang, Xianwei; Li, Guoqiang; Gao, Xiang; Bi, Yanfang

    2017-01-01

    The China Fusion Engineering Test Reactor (CFETR) is the next tokamak in China’s roadmap for realizing commercial fusion energy. The CFETR cryogenic system is crucial to creating and maintaining operational conditions for its superconducting magnet system and thermal shields. The preliminary conceptual design of the CFETR cryogenic system has been carried out with reference to that of ITER. It will provide an average capacity of 75 to 80 kW at 4.5 K and a peak capacity of 1300 kW at 80 K. The electric power consumption of the cryogenic system is estimated to be 24 MW, and the gross building area is about 7000 m2. The relationships among the auxiliary power consumed by the cryogenic system, the fusion power gain and the recirculated power of CFETR are discussed, with the suggestion that about 52% of the electric power produced by CFETR in phase II must be recirculated to run the fusion test reactor.

  9. Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques

    Science.gov (United States)

    Pfeifer, Thorben; Janzen, Rasmus; Steingrobe, Tobias; Sperling, Michael; Franze, Bastian; Engelhard, Carsten; Buscher, Wolfgang

    2012-10-01

    A novel ion source/sampling cone device for inductively coupled plasma mass spectrometry (ICP-MS) especially operated in the hyphenated mode as a detection system coupled with different separation modules is presented. Its technical setup is described in detail. Its main feature is the very low total argon consumption of less than 1.5 L min- 1, leading to significant reduction of operational costs especially when time-consuming speciation analysis is performed. The figures of merit of the new system with respect to sensitivity, detection power, long-term stability and working range were explored. Despite the profound differences of argon consumption of the new system in comparison to the conventional ICP-MS system, many of the characteristic features of the conventional ICP-MS could be maintained to a great extent. To demonstrate the ion source's capabilities, it was used as an element-selective detector for gas (GC) and high performance liquid chromatography (HPLC) where organic compounds of mercury and cobalt, respectively, were separated and detected with the new low-flow ICP-MS detection system. The corresponding chromatograms are shown. The applicability for trace element analysis has been validated with the certified reference material NIST 1643e.

  10. Numerical solution of recirculating flow by a simple finite element recursion relation

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W; Cooper, R E

    1980-01-01

    A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.

  11. Design validation and performance of closed loop gas recirculation system

    International Nuclear Information System (INIS)

    Kalmani, S.D.; Majumder, G.; Mondal, N.K.; Shinde, R.R.; Joshi, A.V.

    2016-01-01

    A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m 2 , with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C 2 H 2 F 4 ), isobutane (iC 4 H 10 ) and sulphur hexafluoride (SF 6 ) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.

  12. HIFSA: Heavy-Ion Fusion Systems Assessment Project: Volume 1, Executive summary

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.; Saylor, W.W.

    1987-12-01

    The Heavy-Ion Fusion Systems Assessment (HIFSA) was conducted with the specific objective of evaluating the prospects of using induction-linac heavy-ion accelerators to generate economical electrical power from Inertial Confinement Fusion (ICF). Cost/performance models of the major fusion power plant systems were used to identify promising areas in parameter space. Resulting cost-of-electricity projections for a plant size of 1 GWe are comparable to those from other fusion system studies, some of which were for much larger power plants. These favorable projections maintain over an unusually large domain of parameter space but depend especially on making large cost savings for the accelerator by using higher charge-to-mass ratio ions than assumed previously. The feasibility of realizing such savings has been shown by (1) experiments demonstrating transport stability better than anticipated for space-charge-dominated beams, and (2) theoretical predictions that the final transport and pulse compression in reactor-chamber environments will be sufficiently resistant to streaming instabilities to allow successful propagation of neutralized beams to the target. Results of the HIFSA study already have had a significant impact on the heavy-ion induction accelerator R and D program, especially in selection of the charge-state objectives. Also, the study should enhance the credibility of induction linacs as ICF drivers

  13. Char-recirculation biomass gasification system--a site-specific feasibility study

    International Nuclear Information System (INIS)

    Purdy, K.R.; Kerr, C.P.; Hensley, B.D.

    1991-01-01

    A site-specific feasibility study was conducted for a char-recirculation biomass gasification plant which would dispose of the chippable solid residues of the area sawmills. The plant would receive green hardwood chips and convert them into active charcoal while producing process steam and electrical power. An economic analysis was performed on the basis of not-for-profit operation, marketing crushed active charcoal to a broker at a discounted price, and displacing purchased electric power. Given a market for the active charcoal, the plant was judged to be economically viable

  14. Adaptive feedforward control of exhaust recirculation in large diesel engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2017-01-01

    is generalized to a class of first order Hammerstein systems with sensor delay and exponentially converging bounds of the control error are proven analytically. It is then shown how to apply the method to the EGR system of a two-stroke crosshead diesel engine. The controller is validated by closed loop......Environmental concern has led the International Maritime Organization to restrict NO푥 emissions from marine diesel engines. Exhaust gas recirculation (EGR) systems have been introduced in order to comply to the new standards. Traditional fixed-gain feedback methods are not able to control the EGR...

  15. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Barker, R.J.; Colombant, D.G.; Goldstein, S.A.; Meger, R.A.; Mosher, D.; Neri, J.M.; Ottinger, P.F.

    1984-01-01

    This chapter reports on the use of high-brightness proton beams, extracted from axial pinch-reflex diodes mounted on the Naval Research Laboratory (NRL) Gamble II generator, to study light ion inertial fusion. Topics covered include the modular approach, ion beam brightness studies, light-ion beam transport, final focusing, the single diode approach, the inductive storage approach, an energy loss experiment, and future plans. Analysis of a modular inertial confinement fusion (ICF) system using axial pinch-reflex diodes shows that an operational window for transport of light-ion species exists. A proof-of-principle experiment for the required final focusing cell was conducted on Gamble II. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factorof-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. The stopping power of deuterons in hot plasmas was measured in other experiments. It is demonstrated that about 40% enhancement in stopping power over that in cold targets when the deuteron beam is focused on the target to about .25 MA/cm 2 . Includes 6 diagrams

  16. Composition shift in liquid-recirculation refrigerating systems: an experimental investigation for the pure fluid R134a and the mixture R32/134a

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, G.; Marchesi Donati, F.; Polonara, F. [Ancona Univ. (Italy). Dip. di Energetica; Hewitt, N.J. [University of Ulster at Coleraine, Northern Ireland (United Kingdom). NICERT

    1999-09-01

    The ability of zeotropic mixtures with a remarkable temperature glide to operate in liquid-recirculation systems is investigated and the results of an experimental comparison between the performances of the pure fluid R134a and the zeotropic mixture R32/134a (25/75% by mass) are presented. R134a performs slightly better in the liquid-recirculation mode than in the traditional dry-expansion mode; on the other hand, liquid-recirculation configuration has a detrimental effect on the zeotropic mixture's performance. The reason for this detrimental effect is the mixture component separation which occurs at the liquid/vapor separator. The effect of this separation is investigated using gas chromatograph analysis.

  17. Manipulation of high-current pulses for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Griedman, A.; Grote, D.P.

    1996-01-01

    For efficient induction-driven heavy-ion fusion, the current profile along a pulse must be modified in a non-selfsimilar manner between the accelerator and the target. In the accelerator, the pulse should have a duration of at least 50 ns in order to make efficient use of the induction cores, and the current should by nearly uniform along the pulse to minimize the aperture. In contrast, the optimal current profile on target consists of a main pulse of about 10 ns preceded by a longer low-current 'foot.' This pulse-shape manipulation must be carried out at the final pulse energy (5-10 GeV for 200 amu ions) in the presence of a large nonlinear longitudinal space-charge field. A straightforward method is presented here for doing the required pulse shaping. Induction-ceU voltages are generated using idealized beam profiles both in the accelerator and on target, and they are verified and checked for error sensitivity using the fluid/envelope code CIRCE

  18. Measurement of excitation, ionization, and electron temperatures and positive ion concentrations in a 144 MHz inductively coupled radiofrequency plasma

    International Nuclear Information System (INIS)

    Walters, P.E.; Chester, T.L.; Winefordner, J.D.

    1977-01-01

    Diagnostic measurements of 144 MHz radiofrequency inductively coupled plasmas at pressures between 0.5 and 14 Torr have been made. Other variables studied included the gas type (Ar or Ne) and material in plasma (Ti or Tl). Parameters measured included excitation temperatures via the atomic Boltzmann plot and the two-line method, ionization electric probes. Excitation temperatures increased as the pressure of Ar or Ne plasmas decreased and reached a maximum of approx.9000 degreeK in the latter case and approx.6700 degreeK in the former case; Tl in the Ar plasma resulted in in a smaller rate of decrease of excitation temperature with increase of pressure of Ar. The ionization temperatures were lower than the excitation temperatures and were similar for both the Ar and Ne plasmas. Electron temperatures were about 10 times higher than the excitation temperatures indicating non-LTE behavior. Again, the electron temperatures indicating in Ne were considerably higher than in Ar. With the presence of metals, the electron temperatures with a metal in the Ar plasma were higher than in the absence. Positive ion concentrations were also measured for the various plasmas and were found to be similar (approx.10 18 m -3 ) in both the Ar and Ne plasmas. The presence of metals caused significant increase in the positive ion concentrations. From the results obtained, the optimum Ar pressure for Tl electrodeless discharge lamps operated at 144 MHz would be between 2 and 4 Torr

  19. Using reaction-technical models for characterisation and optimisation of continuous ethanol production with biomass recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Yayanata, Y

    1983-11-28

    Ethanol production from S. cerevisiae was studied experimentally in one- and two-stage plants, with and without biomass recirculation. The hydrogen sources were glucose and molasses. The experimental findings were used as a basis for mathematical models whose kinetic parameters were established by comparison with the experiments. In the fermentation processes with glucose as carbon and energy source, an activation kinetics of yeast extract was considered in addition to the limitations resulting from the substrate and the inhibition by the produced ethanol. The problem of biomass recirculation received particular attention. Lamellar separators in the form of a cated tube cluster are described as an alternative to conventional conical separator tanks. Biomass concentrations in the fermenter may amount to about 80 gTS/l. Satisfactory simulation of the plant behaviour is possible by combining the kinetic approaches for the fermenter with the mathematical models for the separator.

  20. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    Science.gov (United States)

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW.

  1. The calibration of a cylindrical pressure probe for recirculating flow measurements

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-06-01

    The use of the pressure distribution around a cylinder in cross-flow to indicate the magnitude and direction of the velocity vector is discussed in the context of making measurements in highly turbulent recirculating flows. The intended application is the measurement of the flow between the ribs on the large-scale model of the AGR fuel-pin surface. Results from a number of calibration experiments in boundary layers are used to provide a correlation for the positions at which local static pressure is measured on the cylinder surface. After appropriate corrections, the dynamic pressure is deduced from the pressure at the stagnation point. Corrections are also necessary in deducing the direction of flow from the bisector of the static pressure positions, when the cylinder is in a shear flow or near a wall, and these too are evaluated from the results of the calibration experiments. Measurements in two recirculating flows are then presented as an illustration both of the validity and limitations of the technique. In the first case, comparison is made with the measurements of a pulsed-wire anemometer behind a surface-mounted cube and, in the second, the continuity is used to provide an overall check on measurements behind a transverse plate. It is concluded that useful results can be obtained in many turbulent flow situations. (author)

  2. Characteristic time series and operation region of the system of two tank reactors (CSTR) with variable division of recirculation stream

    International Nuclear Information System (INIS)

    Merta, Henryk

    2006-01-01

    The paper deals with a system of a cascade of two tank reactors, being characterized by the variable stream of recirculating fluid at each stage. The assumed mathematical model enables one to determine the system's dynamics for the case when there is no time delay and for the opposite case. The time series of the conversion degree and of the dimensionless fluid temperature, characteristic for the system considered as well as the operation regions-the latter-basing on Feingenbaum diagrams with respect to the division ratio of the recirculating stream are presented

  3. Studies of the mirrortron ion accelerator concept and its application to heavy-ion drivers

    International Nuclear Information System (INIS)

    Post, R.F.; Schwager, L.A.; Dougless, S.R.; Jones, B.R.; Lambert, M.A.; Larson, D.L.

    1991-01-01

    The Mirrortron accelerator is a plasma-based ion accelerator concept that, when implemented, should permit both higher acceleration gradients and higher peak-current capabilities than is possible with conventional induction-type accelerators. Control over the acceleration and focussing of an accelerated beam should approach that achieved in vacuum-field-based ion accelerators. In the Mirrortron a low density (10 10 to 10 11 cm -3 ) ''hot electron'' plasma is confined by a long solenoidal magnetic field capped by ''mirrors''. Acceleration of prebunched ions is accomplished by activating a series of fast-pulsed mirror coils spaced along the acceleration tube. The hot electrons, being repelled by mirror action, leave the plasma ions behind to create a localized region of high electrical gradient (up to of order 100 MV/m). At the Laboratory an experiment and analyses to elucidate the concept and its scaling laws as applied to heavy-ion drivers are underway and will be described. 4 refs., 5 figs

  4. Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data

    Directory of Open Access Journals (Sweden)

    M. Marnela

    2013-05-01

    Full Text Available The volume, heat and freshwater transports in the Fram Strait are estimated from geostrophic computations based on summer hydrographic data from 1984, 1997, 2002 and 2004. In these years, in addition to the usually sampled section along 79° N, a section between Greenland and Svalbard was sampled further north. Quasi-closed boxes bounded by the two sections and Greenland and Svalbard can then be formed. Applying conservation constraints on these boxes provides barotropic reference velocities. The net volume flux is southward and varies between 2 and 4 Sv. The recirculation of Atlantic water is about 2 Sv. Heat is lost to the atmosphere and the heat loss from the area between the sections averaged over the four years is about 10 TW. The net heat (temperature transport is 20 TW northward into the Arctic Ocean, with large interannual differences. The mean net freshwater added between the sections is 40 mSv and the mean freshwater transport southward across 79° N is less than 60 mSv, indicating that most of the liquid freshwater leaving the Arctic Ocean through Fram Strait in summer is derived from sea ice melt in the northern vicinity of the strait. In 1997, 2001 and 2003 meridional sections along 0° longitude were sampled and in 2003 two smaller boxes can be formed, and the recirculation of Atlantic water in the strait is estimated by geostrophic computations and continuity constraints. The recirculation is weaker close to 80° N than close to 78° N, indicating that the recirculation is mainly confined to the south of 80° N. This is supported by the observations in 1997 and 2001, when only the northern part of the meridional section, from 79° N to 80° N, can be computed with the constraints applied. The recirculation is found strongest close to 79° N.

  5. Heavy Ion Fusion Program. Year-end report, October 1978-September 1979

    International Nuclear Information System (INIS)

    1979-01-01

    The more significant activities and results reported for this year are: (1) Commissioning, in January 1979, of a large-area Cs +1 ion source of 1.2 amperes at 500 kV. (2) Commissioning, in July 1979, of the first drift-tube of the three drift-tube accelerator. (3) Acceleration, in January 1979, of a high-brightness, 40 milliampere Xe +1 beam through a Cockcroft-Walton column to 500 kV and confirmation of satisfactory emittance and charge distribution. (4) Development of a conceptual design for a 500 J induction linac test-bed facility to test many of the features needed for the success of an igniter (LBL PUB 5031). (5) Improvements to the systems studies of a Heavy Ion Induction Linac Driver over a wide parameter range with emphasis on cost and efficiency trade-off. (6) Start-up of a (Cs +1 , Cs +1 ) ion-ion cross section measurement program. Initial results of the scattering of Cs +1 ions on Xe gas (electronically similar to Cs +1 ) have shown some surprising results. (7) Expansion of theoretical studies on the behavior of space-charge dominated ion beams

  6. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai

    2013-01-01

    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynami...... principles followed by parameter identication and compares the results of these approaches. The paper performs a validation against experimental data from a test engine and presents a linearised model for EGR control design....

  7. Demonstration of Cascaded In-Line Single-Pump Fiber Optical Parametric Amplifiers in Recirculating Loop Transmission

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Ozolins, Oskars; An, Yi

    2012-01-01

    The performance of cascaded single-pump fiber optical parametric amplifiers (FOPAs) is experimentally studied for the first time using recirculating loop transmission with 80-km dispersion managed spans. Error-free performance has been achieved over 320 km for 40-Gbit/s CSRZ-OOK and CSRZ...

  8. Evaluation of commercial marine fish feeds for production of juvenile cobia in recirculating aquaculture systems

    Science.gov (United States)

    The effect of feeding three commercially available diets manufactured by three U.S. feed companies on production characteristics and body composition of juvenile cobia Rachycentron canadum reared in recirculating aquaculture systems (RAS) was evaluated in a 57 d growth trial. Juvenile cobia (26.7 +...

  9. Evaluation of chemical phenomena that could have an effect on the performance of recirculation strainers in a Ringhals PWR

    International Nuclear Information System (INIS)

    Liljenzin, Jan-Olov

    2005-01-01

    An evaluation has been made of the various chemical phenomena that could have an effect on the performance of recirculation strainers after a LOCA in a PWR. Values of pH and concentrations in the water at the bottom of the containment have been calculated as functions of time and temperature for a postulated LOCA. The behaviour of glass wool insulation, its dissolution, and precipitation of amorphous silic acid have been evaluated. Also the corrosion of galvanized surfaces has been considered. Dissolution of zinc by hot boric acid solution can lead to a later precipitation of amorphous zinc hydroxide or phosphate when pH increases and temperature drops. Also a possible growth of microorganisms is discussed. A rough classification of the various phenomena possible along a simplified time scale yields the following conclusions: Hours after the beginning of the LOCA: Precipitation of zinc hydroxide and/or phosphate. Dissolution of glass wool giving rise to an increasing concentration of silic acid in the water. Days after the beginning of the LOCA: Continued dissolution of glass wool and increasing concentration of silica in the water. Perhaps a precipitation of phosphates or carbonates of the metal ions released during dissolution of glass wool. Weeks after the beginning of the LOCA: Continued slow dissolution of glass wool leading to a risk of precipitation of amorphous silica. Perhaps a precipitation of phosphates or carbonates of the metal ions released during dissolution of glass wool. Initial growth of microorganisms in the water and on surfaces after mutations and adaptation to the existing environment. Months after the beginning of the LOCA: Continued slow dissolution of glass wool leading to a risk of precipitation of amorphous silica. Perhaps a precipitation of phosphates or carbonates of the metal ions released during dissolution of glass wool. Continued growth of adapted microorganisms

  10. Surrogate Model for Recirculation Phase LBLOCA and DET Application

    International Nuclear Information System (INIS)

    Fynan, Douglas A; Ahn, Kwang-Il; Lee, John C.

    2014-01-01

    In the nuclear safety field, response surfaces were used in the first demonstration of the code scaling, applicability, and uncertainty (CSAU) methodology to quantify the uncertainty of the peak clad temperature (PCT) during a large-break loss-of-coolant accident (LBLOCA). Surrogates could have applications in other nuclear safety areas such as dynamic probabilistic safety assessment (PSA). Dynamic PSA attempts to couple the probabilistic nature of failure events, component transitions, and human reliability to deterministic calculations of time-dependent nuclear power plant (NPP) responses usually through the use of thermal-hydraulic (TH) system codes. The overall mathematical complexity of the dynamic PSA architectures with many embedded computational expensive TH code calculations with large input/output data streams have limited realistic studies of NPPs. This paper presents a time-dependent surrogate model for the recirculation phase of a hot leg LBLOCA in the OPR-1000. The surrogate model is developed through the ACE algorithm, a powerful nonparametric regression technique, trained on RELAP5 simulations of the LBLOCA. Benchmarking of the surrogate is presented and an application to a simplified dynamic event tree (DET). A time-dependent surrogate model to predict core subcooling during the recirculation phase of a hot leg LBLOCA in the OPR-1000 has been developed. The surrogate assumed the structure of a general discrete time dynamic model and learned the nonlinear functional form by performing nonparametric regression on RELAP5 simulations with the ACE algorithm. The surrogate model input parameters represent mass and energy flux terms to the RCS that appeared as user supplied or code calculated boundary conditions in the RELAP5 model. The surrogate accurately predicted the TH behavior of the core for a variety of HPSI system performance and containment conditions when compared with RELAP5 simulations. The surrogate was applied in a DET application replacing

  11. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  12. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    International Nuclear Information System (INIS)

    Yu, L.D.; Sangwijit, K.; Prakrajang, K.; Phanchaisri, B.; Thongkumkoon, P.; Thopan, P.; Singkarat, S.; Anuntalabhochai, S.

    2014-01-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence

  13. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  14. Reliability analysis of air recirculation and refrigeration systems of Angra-1 reactor contaiment: a reevaluation

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.

    1983-01-01

    A realiability analysis of the air refrigeration and recirculation containment systems (ARRCS) of Angra-1 nuclear power plants, were done, aiming to evaluate the probabilities of occurence of a several accident. The systems were analysed for a 24 hours accident, including time failures and demand failures [pt

  15. High power millimeter-wave free electron laser based on recirculating electrostatic accelerator

    International Nuclear Information System (INIS)

    Lee, Byung-Cheol; Kim, Sun-Kook; Jeong, Young-Uk; Cho, Sung-Oh; Lee, Jongmin

    1995-01-01

    Progress in the development of a high power, millimeter-wave free electron laser driven by a recirculating electrostatic accelerator is reported. The energy and the current of electron beam are 430 keV and 2 A, respectively. The expected average output power is above 10 kW at the wavelength of 3-10 mm. Minimizing of the beam loss is a key issue for CW operation of the FEL with high efficiency. (author)

  16. Effect of a solar Fered-Fenton system using a recirculation reactor on biologically treated landfill leachate.

    Science.gov (United States)

    Ye, Zhihong; Zhang, Hui; Yang, Lin; Wu, Luxue; Qian, Yue; Geng, Jinyao; Chen, Mengmeng

    2016-12-05

    The effects of electrochemical oxidation (EO), Fered-Fenton and solar Fered-Fenton processes using a recirculation flow system containing an electrochemical cell and a solar photo-reactor on biochemically treated landfill leachate were investigated. The most successful method was solar Fered-Fenton which achieved 66.5% COD removal after 120min treatment utilizing the optimum operating conditions of 47mM H2O2, 0.29mM Fe(2+), pH0 of 3.0 and a current density of 60mA/cm(2). The generation of hydroxyl radicals (OH) are mainly from Fered-Fenton process, which is enhanced by the introduction of renewable solar energy. Moreover, Fe(2+)/chlorine and UV/chlorine processes taking place in this system also result in additional production of OH due to the relatively high concentration of chloride ions contained in the leachate. The energy consumption was 74.5kWh/kg COD and the current efficiency was 36.4% for 2h treatment. In addition, the molecular weight (MW) distribution analysis and PARAFAC analysis of excitation emission matrix (EEM) fluorescence spectroscopy for different leachate samples indicated that the organics in the leachate were significantly degraded into either small molecular weight species or inorganics. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Laser scanning of a recirculation zone on the Bolund escarpment

    DEFF Research Database (Denmark)

    Mann, Jakob; Angelou, Nikolas; Sjöholm, Mikael

    2012-01-01

    Rapid variations in the height of the recirculation zone are measured with a scanning wind lidar over a small escarpment on the Bolund Peninsula. The lidar is essentially a continuous-wave laser Doppler anemometer with the capability of rapidly changing the focus distance and the beam direction....... The instrument measures the line-ofsight velocity 390 times per second and scans ten wind profiles from the ground up to seven meters per second. The results will be used to test computational fluid dynamics models for flow over terrain, and has relevance for wind energy. The development of multiple lidar...

  18. Laser scanning of a recirculation zone on the Bolund escarpment

    DEFF Research Database (Denmark)

    Mann, Jakob; Angelou, Nikolas; Sjöholm, Mikael

    2014-01-01

    Rapid variations in the height of the recirculation zone are measured with a scanning wind lidar over a small escarpment on the Bolund Peninsula. The lidar is essentially a continuous-wave laser Doppler anemometer with the capability of rapidly changing the focus distance and the beam direction....... The instrument measures the line-of-sight velocity 390 times per second and scans ten wind profiles from the ground up to seven meters per second. We observe a sharp interface between slow and fast moving fluid after the escarpment, and the interface is moving rapidly up and down. This implies that the position...

  19. Trough and pot crop systems with leaching recirculation and defoliation levels for mini tomatoes

    Directory of Open Access Journals (Sweden)

    Lais Perin

    2017-11-01

    Full Text Available The use of raw rice husk as substrate allows the use of crop systems that promote the recirculation of leachate in long crop cycles. Mini tomatoes present relatively low demand for photoassimilates. Thus, partial defoliation of the sympodium could benefit the crop without damage to the production or quality of the fruits. The objective of this work was to evaluate the plant growth, fruit yield and fruit quality of Cherry Hybrid Wanda and Grape Hybrid Dolcetto mini tomatoes cultivated in two recirculation crop systems (pots and troughs, using raw rice husk as substrate, under three defoliation conditions (without defoliation, removal of one and two leaves of the sympodium. The Cherry cultivar showed higher plant growth, fruit yield and mean fruit size. The Grape cultivar produced fruits with higher sugar concentration. For the Grape cultivar, the removal of one sympodium leaf did not affect the plant responses. However, for the Cherry cultivar, it was necessary to maintain the complete sympodium. The trough cultivation system improved plant growth and yield, whereas the pot system increased fruit sugar concentration.

  20. Capture Zone Analyses of Two Airlift Recirculation Wells in the Southern Sector of A/M Area

    International Nuclear Information System (INIS)

    Aleman, S.E.

    1999-01-01

    This report documents a series of capture zone analyses performed to access the expected overall performance of two (of the twelve) vertical airlift recirculation wells (ARWs) (specifically, SSR-011 and SRR-012) located in the Southern Sector of A/M Area

  1. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    Science.gov (United States)

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  2. Recirculation, stagnation and ventilation: The 2014 legionella episode

    Science.gov (United States)

    Russo, Ana; Soares, Pedro M. M.; Gouveia, Célia M.; Cardoso, Rita M.; Trigo, Ricardo M.

    2017-04-01

    Legionella transmission through the atmosphere is unusual, but not unprecedented. A scientific paper published in 2006 reports a surge in Pas-de-Calais, France, in which 86 people have been infected by bacteria released by a cooling tower more than 6 km away [3]. Similarly, in Norway, in 2005, there was another case where contamination spread beyond 10 km, although more concentrated within a radius of 1 km from an industrial unit [2]. An unprecedented large Legionella outbreak occurred in November 2014 nearby Lisbon, Portugal. As of 7 November 2014, 375 individuals become hill and 12 died infected by the Legionella pneumophila bacteria, contracted by inhalation of steam droplets of contaminated water (aerosols). These droplets are so small that can carry the bacteria directly to the lungs, depositing it in the alveoli. One way of studying the propagation of legionella episodes is through the use of aerosol dispersion models. However, such approaches often require detailed 3D high resolution wind data over the region, which isn't often available for long periods. The likely impact of wind on legionella transmission can also be understood based on the analysis of special types of flow conditions such as stagnation, recirculation and ventilation [1, 4]. The Allwine and Whiteman (AW) approach constitutes a straightforward method to assess the assimilative and dispersal capacities of different airsheds [1,4], as it only requires hourly wind components. Thus, it has the advantage of not needing surface and upper air meteorological observations and a previous knowledge of the atmospheric transport and dispersion conditions. The objective of this study is to analyze if the legionella outbreak event which took place in November 2014 had extreme potential recirculation and/or stagnation characteristics. In order to accomplish the proposed objective, the AW approach was applied for a hindcast time-series covering the affected area (1989-2007) and then for an independent

  3. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    Science.gov (United States)

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l.

  4. Research in the US on heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Celata, C.; Faltens, A.; Fessenden, T.J.

    1986-10-01

    The US study of high-energy multigap accelerators to produce large currents of heavy ions for inertial fusion is centered on the single-pass induction linac method. The large technology base associated with multigap accelerators for high-energy physics gives confidence that high efficiency, high repetition rate, and good availability can be achieved, and that the path from scientific demonstration to commercial realization can be a smooth one. In an induction linac driver, multiple (parallel) ion beams are accelerated through a sequence of pulsed transformers. Crucial to the design is the manipulation of electric fields to amplify the beam current during acceleration. A proof-of-principle induction linac experiment (MBE-4) is underway and has begun the first demonstration of current amplification, control of the bunch ends, and the acceleration of multiple beams. A recently completed experiment, called the Single Beam Transport Experiment has shown that we can now count on more freedom to design an alternating-gradient quadrupole focusing channel to transport much higher ion-beam currents than formerly believed possible. A recent Heavy Ion Fusion System Assessment (HIFSA) has shown that a substantial cost saving results from use of multiply-charged ions, and that a remarkably broad range of options exist for viable power-plant designs. The driver cost at 3 to 4 MJ could be $200/joule or less, and the cost of electricity in the range of 50 to 55 mills/kWhr

  5. Preliminary design of a 10 MV ion accelerator

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Celata, C.M.; Faltens, A.

    1986-06-01

    At the low energy end of an induction linac HIF driver the beam current is limited by our ability to control space charge by a focusing system. As a consequence, HIF induction accelerator designs feature simultaneous acceleration of many beams in parallel within a single accelerator structure. As the speed of the beams increase, the focusing system changes from electrostatic to magnetic quadrupoles with a corresponding increase in the maximum allowable current. At that point the beams are merged thereby decreasing the cost of the subsequent accelerator structure. The LBL group is developing an experiment to study the physics of merging and of focusing ion beams. In the design, parallel beams of ions (C + , Al + , or Al ++ ) are accelerated to several MV and merged transversely. The merged beams are then further accelerated and the growth in transverse and longitudinal emittance is determined for comparison with theory. The apparatus will then be used to study the problems associated with focusing ion beams to a small spot. Details of the accelerator design and considerations of the physics of combining beams are presented

  6. Evaluation of a Shaker Dust Collector for Use in a Recirculating Ventilation System.

    Science.gov (United States)

    Peters, Thomas M; Sawvel, Russell A; Park, Jae Hong; Anthony, T Renée

    2015-01-01

    General ventilation with recirculated air may be cost-effective to control the concentration of low-toxicity, contaminants in workplaces with diffuse, dusty operations, such as in agriculture. Such systems are, however, rarely adopted with little evidence showing improved air quality and ability to operate under harsh conditions. The goal of this work was to examine the initial and long-term performance of a fabric-filter shaker dust collector (SDC) in laboratory tests and as deployed within a recirculating ventilation system in an agricultural building. In laboratory tests, collection efficiency and pressure drop were tracked over several filter loading cycles, and the recovery of filter capacity (pressure drop) from filter shaking was examined. Collection efficiencies of particles larger than 5 μm was high (>95%) even when the filter was pristine, showing effective collection of large particles that dominate inhalable concentrations typical of agricultural dusts. For respirable-sized particles, collection efficiencies were low when the filter was pristine (e.g., 27% for 1 μm) but much higher when a dust cake developed on the filter (>99% for all size particles), even after shaking (e.g., 90% for 1 μm). The first shake of a filter was observed to recovery a substantial fraction of filter capacity, with subsequent shakes providing little benefit. In field tests, the SDC performed effectively over a period of three months in winter when incorporated in a recirculating ventilation system of a swine farrowing room. Trends in collection efficiency and pressure drop with loading were similar to those observed in the laboratory with overall collection efficiencies high (>80%) when pressure drop exceeded 230 Pa, or 23% of the maximum loading recommended by the manufacturer. This work shows that the SDC can function effectively over the harsh winter in swine rearing operations. Together with findings of improved air quality in the farrowing room reported in a

  7. Multi-ampere heavy ion injector for linear induction accelerators using periodic electrostatic focusing

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1978-10-01

    Two configurations for ion source and drift-tube-linac combinations that could provide the energy and intensity of accelerated ions needed for the HIF applications are described. The focusing for the systems is provided by a periodic structure of rectangular electrostatic lenses. Scaling rules and extensions of the ideas will be briefly described. Example systems are described that could provide 150 μC of uranium or cesium ions at 12 MeV

  8. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  9. One- and two-phase anaerobic digestion of ley crop silage with and without liquid recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aa

    1996-10-01

    In this study the effects of liquid recirculation on hydrolysis and methanogenesis in one- and two-phase biogas processes were investigated in comparison with water-diluted processes. The operation of a water-diluted one-phase process resulted in process imbalances at a low loading rate. In a water-diluted two-phase process the fibre degrading capability was lost. The reason for the poor process performance was due to a deficiency in trace elements, since the supplementation of cobalt resulted in an increased conversion rate of acetate. The recirculation of process liquid resulted in an accumulation of different compounds which initially stabilized one-phase processes and stimulated the hydrolysis and the methane production in the liquefaction-acidogenesis stage of a two-phase process. However, upon continuous recirculation the concentration of free ammonia reached toxic levels, which resulted in a decrease in the methane yield both in the methanogenic reactor of the two-phase process and in the one-phase process. Due to the decreased methane production, acids started to accumulate which subsequently inhibited the hydrolysis in the one-phase process. The systematic variation in the processes were evaluated using principal component analysis and principal component regression. The interpretation of the dynamic behaviour of the processes was facilitated by the use of score plots and loading plots. The results indicate that ley crops do not meet the nutrient requirements of the bacteria in anaerobic digestion. Thus, the low content of trace elements and the high content of protein which subsequently will cause toxic levels of ammonia in digesting system with low water consumption, suggests co-digestion with supplementary feedstocks. 95 refs, 5 figs, 3 tabs

  10. Heavy-Ion Fusion System Assessment Project quarterly status report, January-March 1985

    International Nuclear Information System (INIS)

    Lee, E.P.; Hovingh, J.; Faltens, A.

    1985-06-01

    A computer model of an accelerator system is a necessary ingredient in estimating the cost of construction and operation of an ion-driven ICF power plant. The LBL computer program LIACEP (Linear Induction Accelerator Cost Evaluation Program) is used to estimate the cost and efficiency of a heavy ion induction linear accelerator as a function of the ion mass, charge and energy for a specified beam output energy, power and pulse repetition frequency. In addition to estimating the accelerator system cost and efficiency, LIACEP can be used to identify the components and materials that have a high leverage on the cost and efficiency of the accelerator system. These high leverage items are logical areas for research and technology development to reduce the cost and increase the efficiency of the accelerator system

  11. Aquaponics: integrating fish feeding rates and ion waste production for strawberry hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Villarroel, M; Alvarino, J M. R.; Duran, J M

    2011-07-01

    Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3{sup -}, Cl{sup -}, NH{sup +}{sub 4}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, H{sub 2}PO{sub 4}{sup -}, SO{sub 4}{sup 2}-, Na{sup +}, K{sup +}, Ca{sup 2}+ and Mg{sup 2}+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO{sub 3}{sup -}, followed, in decreasing order, by Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -}, K{sup +}, Mg{sup 2}+ and SO{sub 4}{sup 2}-. The total amount of feed required per mEq ranged from 1.61 - 13.1 kg for the four most abundant ions (NO{sub 3}{sup -}, Ca{sup 2}+, H{sub 2}PO{sub 4}{sup -} and K{sup +}) at a density of 2 kg fish m{sup -3}, suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries. (Author) 16 refs.

  12. FIST/6IB1, BWR/6 System Responses to Intermediate Break in Recirculation Suction Line LINE

    International Nuclear Information System (INIS)

    1993-01-01

    1 - Description of test facility: BWR/6-218 standard plant. A full size bundle with electrically heated rods is used to simulate the reactor core. A scaling ratio of 1/624 is applied in the design of the system components. Key features of the FIST facility include: (1) Full height test vessel and internals; (2) correctly scaled fluid volume distribution; (3) simulation of ECCS, S/RV, and ADS; (4) level trip capability; (5) heated feedwater supply system, which provides the capability for steady state operation. 2 - Description of test: Test 6IB1 investigates system responses to an intermediate break in the recirculation suction line. BWR system licensing evaluations for various size recirculation break LOCA's indicates that a break size of about 0.2 sq.ft., without LPCS operation, is the highest PCT case for the intermediate break LOCA. Test 6IB1 simulates this event

  13. The contribution of inductive electric fields to particle energization in the inner magnetosphere

    Science.gov (United States)

    Ilie, R.; Toth, G.; Liemohn, M. W.; Chan, A. A.

    2017-12-01

    Assessing the relative contribution of potential versus inductive electric fields at the energization of the hot ion population in the inner magnetosphere is only possible by thorough examination of the time varying magnetic field and current systems using global modeling of the entire system. We present here a method to calculate the inductive and potential components of electric field in the entire magnetosphere region. This method is based on the Helmholtz vector decomposition of the motional electric field as calculated by the BATS-R-US model, and is subject to boundary conditions. This approach removes the need to trace independent field lines and lifts the assumption that the magnetic field lines can be treated as frozen in a stationary ionosphere. In order to quantify the relative contributions of potential and inductive electric fields at driving plasma sheet ions into the inner magnetosphere, we apply this method for the March 17th, 2013 geomagnetic storm. We present here the consequences of slow continuous changes in the geomagnetic field as well as the strong tail dipolarizations on the distortion of the near-Earth magnetic field and current systems. Our findings indicate that the inductive component of the electric field is comparable, and even higher at times than the potential component, suggesting that the electric field induced by the time varying magnetic field plays a crucial role in the overall particle energization in the inner magnetosphere.

  14. Failure investigation of stem of valve disc in reactor recirculation system of TAPS Unit-1

    International Nuclear Information System (INIS)

    Ramadasan, E.; Bahl, J.K.; Sivaramakrishnan, K.S.

    1986-01-01

    Failure analysis was carried out of failed 17-4 PH stainless steel stem of the valve disc in reactor recirculation system of Unit-1 of Tarapur Atomic Power Station. The examination revealed that the stem failed due to fatigue, accelerated by corrosion. Recommendations have been made to avoid such failures. (author)

  15. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  16. Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn{sup 2+} by electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Caprarescu, Simona [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, Inorganic Chemistry, Physical Chemistry and Electrochemistry Department, 1-7 Polizu Street, 011061 Bucharest (Romania); Radu, Anita-Laura, E-mail: raduanita@gmail.com [Polymer Department, National Research and Development Institute for Chemistry and Petrochemistry – ICECHIM, Splaiul Independentei, No. 202, 060021 Bucharest (Romania); Purcar, Violeta; Ianchis, Raluca; Sarbu, Andrei; Ghiurea, Marius; Nicolae, Cristian [Polymer Department, National Research and Development Institute for Chemistry and Petrochemistry – ICECHIM, Splaiul Independentei, No. 202, 060021 Bucharest (Romania); Modrogan, Cristina [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, Inorganic Substances and Environmental Protection Department, 1-7 Polizu Street, 011061 Bucharest (Romania); Vaireanu, Danut-Ionel [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, Inorganic Chemistry, Physical Chemistry and Electrochemistry Department, 1-7 Polizu Street, 011061 Bucharest (Romania); Périchaud, Alain [Catalyse, lot 25, Master Park – 116, Bd de la Pomme, 13011 Marseille (France); Ebrasu, Daniela-Ion [National Research & Development Institute for Cryogenics and Isotopic Technologies-ICSI-Rm. Valcea, P.O. Box Raureni 7, 240050 Ramnicu Valcea (Romania)

    2015-02-28

    Highlights: • Removal of Zn{sup 2+} from the wastewater discharged from electroplating processes was studied. • A mini-electrodialysis system and different resin membranes were used. • The electrodialysis experiments were carried out at 25 °C, with and without recirculation. • The EIS measurements were carried out using new stainless steel disk electrodes. • The efficiency of the electrodialysis cell, mass flow, energy consumption was investigated. - Abstract: The present paper was aimed at studying the possibility of zinc (Zn) removal from the wastewater discharged from zinc electroplating processes. In order to save industrial and environmental resources, the concentrated solution could be reused after electrodialysis process. A mini-electrodialysis system with three cylindrical compartments and different membranes containing various resins (Purolite A500 and Hypersol-Macronet MN500) was employed, which can be further applied for the treatment of synthetic effluent which contained zinc ions. The electrodialysis system was operated at constant voltage using different concentrations of synthetic solutions of zinc ions, without and with electrolyte recirculation for 1.5 h. The pH and conductivity of solutions were measured before and after the electrodialysis process occurs. Also the removal ratio (R{sub r}) and mass flow (J) of zinc ions, energy consumption (EC) and current efficiency (CE) were determined. It was found that electrodialysis treatment generated a very low conductivity solution, enabling its reuse as rinse water. According to the obtained results when using a membrane pair with higher ion exchange capacity (IEC) the removal ratio is improved (over 80%). The physico-chemical, structural and mechanical properties of prepared membranes were registered, before and after electrodialysis process takes place, by means of complementary analytical techniques, namely, ion-exchange capacity, water content and thickness measurements. Furthermore

  17. The Statistics of Albedo and Heat Recirculation on Hot Exoplanets

    Science.gov (United States)

    Cowan, Nicolas B.; Agol, Eric

    2011-03-01

    If both the day-side and night-side effective temperatures of a planet can be measured, it is possible to estimate its Bond albedo, 0 calculate a sub-stellar equilibrium temperature, T 0, and associated uncertainty. We then use a simple model-independent technique to estimate a planet's effective temperature from planet/star flux ratios. We use thermal secondary eclipse measurements—those obtained at λ>0.8 μm—to estimate day-side effective temperatures, T d, and thermal phase variations—when available—to estimate night-side effective temperature. We strongly rule out the "null hypothesis" of a single AB and ɛ for all 24 planets. If we allow each planet to have different parameters, we find that low Bond albedos are favored (AB outliers are GJ 436b (abnormally hot) and HD 80606b (abnormally cool), and these are the only eccentric planets in our sample. The dimensionless quantity T d/T 0 exhibits no trend with the presence or absence of stratospheric inversions. There is also no clear trend between T d/T 0 and T 0. That said, the six planets with the greatest sub-stellar equilibrium temperatures (T > 2400 K) have low ɛ, as opposed to the 18 cooler planets, which show a variety of recirculation efficiencies. This hints that the very hottest transiting giant planets are qualitatively different from the merely hot Jupiters. We propose an explanation of this trend based on how a planet's radiative and advective times scale with temperature: both timescales are expected to be shorter for hotter planets, but the temperature dependence of the radiative timescale is stronger, leading to decreased heat recirculation efficiency.

  18. Chromium Speciation Analysis by Ion Chromatography Coupled ...

    African Journals Online (AJOL)

    Two methods coupling ion chromatography with inductively coupled plasma - optical emission spectroscopy (ICP-OES) were developed for the simultaneous separation and determination of Cr(III) and Cr(VI) species. In the first method, anion chromatography with sodium bicarbonate/carbonate solution as the eluent was ...

  19. Zinc in calcium phosphate mediates bone induction: in vitro and in vivo model

    NARCIS (Netherlands)

    Luo, Xiaoman; Barbieri, D.; Davison, N.; Yan, Y.; de Bruijn, Joost Dick; Yuan, Huipin

    2014-01-01

    Zinc-containing tricalcium phosphate (Zn-TCP) was synthesized to investigate the role of zinc in osteoblastogenesis, osteoclastogenesis and in vivo bone induction in an ectopic implantation model. Zinc ions were readily released in the culture medium. Zn-TCP with the highest zinc content enhanced

  20. Design of a recirculating radon progeny aerosol generation and animal exposure system

    International Nuclear Information System (INIS)

    Newton, G.J.; Cuddihy, R.G.; Yeh, H.C.; Barr, E.B.; Boecker, B.B.

    1988-01-01

    Inhalation studies are being conducted at ITRI using laboratory animals exposed to radon-222 progeny attached to vector aerosols that are typical of indoor environments. The purpose of these studies is to identify the cells at risk from inhaled radon progeny and their locations within the respiratory tract. These studies require exposures up to 1000 working level months (WLM) within a few hours. Thus, large amounts of radium-226 are needed to produce the gaseous radon-222. A once-through-exposure-system was considered to be impractical because of statutory discharge limitations and the large amounts of radium that would be required. Therefore, a recirculating exposure system was designed and constructed that removes the aerosol after passing through the exposure chambers and recirculates purified air and radon. The purified radon is mixed with freshly evolving radon from a radon generator and passed Into a reaction-aging chamber where attachment of radon progeny to the vector aerosol occurs. The design includes: (1) 50-200 mg radium-226 in a radon generator, (2) 40 L/min total flow rate, (3) CO 2 removal, (4) reconstitution of oxygen tension and water vapor content to atmospheric levels, and (5) a trap for radon gas. A radon progeny exposure concentration in the range of 4,000 to 50,000 WL is being produced. (author)