WorldWideScience

Sample records for recirculating electron accelerators

  1. Investigation of Microbunching Instabilities in Modern Recirculating Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Cheng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-05-21

    Particle accelerators are machines to accelerate and store charged particles, such as electrons or protons, to the energy levels for various scientific applications. A collection of charged particles usually forms a particle beam. There are three basic types of particle accelerators: linear accelerators (linac), storage-ring (or circular) accelerators, and recirculating accelerators. In a linac, particles are accelerated and pass through once along a linear or straight beamline. Storage-ring accelerators propel particles around a circular track and repetitively append the energy to the stored beam. The third type, also the most recent one in chronology, the recirculating accelerator, is designed to accelerate the particle beam in a short section of linac, circulate the beam, and then either continue to accelerate for energy boost or decelerate it for energy recovery. The beam properties of a linac machine are set at best by the initial particle sources. For storage rings, the beam equilibria are instead determined by the overall machine design. The modern recirculating machines share with linacs the advantages to both accelerate and preserve the beam with high beam quality, as well as efficiently reuse the accelerating components. The beamline design in such a machine configuration can however be much more complicated than that of linacs. As modern accelerators push toward the high-brightness or high-intensity frontier by demanding particles in a highly charged bunch (about nano-Coulomb per bunch) to concentrate in an ever-decreasing beam phase space (transverse normalized emittance about 1 μm and relative energy spread of the order of 10^-5 in GeV beam energy), the interaction amongst particles via their self-generated electromagnetic fields can potentially lead to coherent instabilities of the beam and thus pose significant challenges to the machine design and operation. In the past decade and a half, microbunching instability (MBI) has been one of the most

  2. Pulsed-focusing recirculating linacs for muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  3. Progress toward a prototype recirculating ion induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.; Barnard, J.J.; Cable, M.D. [and others

    1996-06-01

    The U.S. Inertial Fusion Energy (IFE) Program is developing the physics and technology of ion induction accelerators, with the goal of electric power production by means of heavy ion beam-driven inertial fusion (commonly called heavy ion fusion, or HIF). Such accelerators are the principal candidates for inertial fusion power production applications, because they are expected to enjoy high efficiency, inherently high pulse repetition frequency (power plants are expected to inject and burn several fusion targets per second), and high reliability. In addition (and in contrast with laser beams, which are focused with optical lenses) heavy-ion beams will be focused onto the target by magnetic fields, which cannot be damaged by target explosions. Laser beams are used in present-day and planned near-term facilities (such as LLNUs Nova and the National Ignition Facility, which is being designed) because they can focus beams onto very small, intensely illuminated spots for scaled experiments and because the laser technology is already available. An induction accelerator works by passing the beam through a series of accelerating modules, each of which applies an electromotive force to the beam as it goes by; effectively, the beam acts as the secondary winding of a series of efficient one-turn transformers. The authors present plans for and progress toward the development of a small (4.5-m-diam) prototype recirculator, which will accelerate singly charged potassium ions through 15 laps, increasing the ion energy from 80 to 320 keV and the beam current from 2 to 8 mA. Beam confinement and bending are effected with permanent-magnet quadrupoles and electric dipoles, respectively. The design is based on scaling laws and on extensive particle and fluid simulations of the behavior of the space charge-dominated beam.

  4. Pelletron-based MeV-range electron beam recirculation

    CERN Document Server

    Crawford, A C; Sharapa, A N; Shemyakin, A

    1999-01-01

    In this paper we describe the successful recirculation of a DC electron beam at energies 1-1.5 MeV and currents up to 0.7 A with typical relative losses of 5-20x10 sup - sup 6. Currents of 200 mA were maintained for periods of up to five hours without a single breakdown. We found that the aperture-limiting diaphragm in the gun anode significantly increased the stability of the recirculation. We also found that the stability depended strongly on vacuum pressure in the beamline. The performance of the collector with transverse magnetic fields was found to be adequate for beam currents up to 0.6 A, which is in agreement with our low-energy bench test results. (author)

  5. Use of Multipass Recirculation and Energy Recovery In CW SRF X-FEL Driver Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, David; Akers, Walt; Benson, Stephen V.; Biallas, George; Blackburn, Keith; Boyce, James; Bullard, Donald; Coleman, James; Dickover, Cody; Ellingsworth, Forrest; Evtushenko, Pavel; Fisk, Sally; Gould, Christopher; Gubeli, Joseph; Hannon, Fay; Hardy, David; Hernandez-Garcia, Carlos; Jordan, Kevin; Klopf, John; Kortze, J.; Legg, Robert; Li, Rui; Marchlik, Matthew; Moore, Steven W.; Neil, George; Powers, Thomas; Sexton, Daniel; Shin, Ilkyoung; Shinn, Michelle D.; Tennant, Christopher; Terzic, Balsa; Walker, Richard; Williams, Gwyn P.; Wilson, G.; Zhang, Shukui

    2010-08-01

    We discuss the use of multipass recirculation and energy recovery in CW SRF drivers for short wavelength FELs. Benefits include cost management (through reduced system footprint, required RF and SRF hardware, and associated infrastructure - including high power beam dumps and cryogenic systems), ease in radiation control (low drive beam exhaust energy), ability to accelerate and deliver multiple beams of differing energy to multiple FELs, and opportunity for seamless integration of multistage bunch length compression into the longitudinal matching scenario. Issues include all those associated with ERLs compounded by the challenge of generating and preserving the CW electron drive beam brightness required by short wavelength FELs. We thus consider the impact of space charge, BBU and other environmental wakes and impedances, ISR and CSR, potential for microbunching, intra-beam and beam-residual gas scattering, ion effects, RF transients, and halo, as well as the effect of traditional design, fabrication, installation and operational errors (lattice aberrations, alignment, powering, field quality). Context for the discussion is provided by JLAMP, the proposed VUV/X-ray upgrade to the existing Jefferson Lab FEL.

  6. Application of electron accelerator worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [Japan Atomic Industrial Forum, Inc., Tokyo (Japan)

    2003-02-01

    Electron accelerator is an important radiation source for radiation technology, which covers broad fields such as industry, health care, food and environmental protection. There are about 1,000 electron accelerators for radiation processing worldwide. Electron accelerator has advantage over Co-60 irradiator in term of high dose rate and power, assurance of safety, and higher economic performance at larger volume of irradiation. Accelerator generating higher energy in the range of 10 MeV and high power electron beam is now commercially available. There is a trend to use high-energy electron accelerator replacing Co-60 in case of large through-put of medical products. Irradiated foods, in particular species, are on the commercial market in 35 countries. Electron accelerator is used efficiently and economically for production of new or modified polymeric materials through radiation-induced cross-linking, grafting and polymerization reaction. Another important application of electron beam is the curing of surface coatings in the manufacture of products. Electron accelerators of large capacity are used for cleaning exhaust gases in industrial scale. Economic feasibility studies of this electron beam process have shown that this technology is more cost effective than the conventional process. It should be noted that the conventional limestone process produce gypsum as a by-product, which cannot be used in some countries. By contrast, the by-product of the electron beam process is a valuable fertilizer. (Y. Tanaka)

  7. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  8. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jinwook [R& D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-dong, Youngtong-gu, Suwon, Gyeonggi-do 443-823 (Korea, Republic of); Kim, Seungjin; Baek, Seungcheon [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Lee, Nam-Hoon [Department of Environmental & Energy Engineering, Anyang University, 22 Samdeok-ro, 37 Beon-gil, Manan-gu, Anyang, Gyeonggi-do 430-714 (Korea, Republic of); Park, Seongjun; Lee, Junghun; Lee, Heechang [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of); Bae, Wookeun, E-mail: wkbae@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Sa 3-dong, Sangnok-gu, Ansan, Gyeonggi-do 426-791 (Korea, Republic of)

    2015-03-21

    Highlights: • To solve the drawbacks (NH{sub 4}{sup +} accumulation) of leachate recirculation, ex-situ SBR was applied. • Produced NO{sub 2}{sup −} was recirculated and denitrified to N{sub 2} in landfill with insufficient carbon source. • Despite the inhibition of methanogenesis by DO and nitrate, CH{sub 4} fraction eventually increased. - Abstract: Leachate recirculation for rapid landfill stabilization can result in the accumulation of high-strength ammonium. An on-site sequencing batch reactor (SBR) was therefore, applied to oxidize the ammonium to nitrite, which was then recirculated to the landfill for denitrification to nitrogen gas. At relatively higher ammonium levels, nitrite accumulated well in the SBR; the nitrite was denitrified stably in the landfill, despite an insufficient biodegradable carbon source in the leachate. As the leachate was recirculated, the methane and carbon dioxide contents produced from the landfill fluctuated, implying that the organic acids and hydrogen produced in the acid production phase acted as the carbon source for denitrification in the landfill. Leachate recirculation combined with ex-situ partial nitrification of the leachate may enhance the biodegradation process by: (a) removing the nitrogen that is contained with the leachate, and (b) accelerating landfill stabilization, because the biodegradation efficiency of landfill waste is increased by supplying sufficient moisture and its byproducts are used as the carbon source for denitrification. In addition, partial nitrification using an SBR has advantages for complete denitrification in the landfill, since the available carbon source is in short supply in aged landfills.

  9. Calorimetry at industrial electron accelerators

    DEFF Research Database (Denmark)

    Miller, Arne; Kovacs, A.

    1985-01-01

    Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials such as grap......Calorimetry is a convenient way to measure doses at industrial electron accelerators, where high absorbed doses (1-100 kGy) are delivered at dose rates of 102-105 Gy s-1 or even higher. Water calorimeters have been used for this purpose for several years, but recently other materials...

  10. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  11. Industrial applications of electron accelerators

    CERN Document Server

    Cleland, M R

    2006-01-01

    This paper addresses the industrial applications of electron accelerators for modifying the physical, chemical or biological properties of materials and commercial products by treatment with ionizing radiation. Many beneficial effects can be obtained with these methods, which are known as radiation processing. The earliest practical applications occurred during the 1950s, and the business of radiation processing has been expanding since that time. The most prevalent applications are the modification of many different plastic and rubber products and the sterilization of single-use medical devices. Emerging applications are the pasteurization and preservation of foods and the treatment of toxic industrial wastes. Industrial accelerators can now provide electron energies greater than 10 MeV and average beam powers as high as 700 kW. The availability of high-energy, high-power electron beams is stimulating interest in the use of X-rays (bremsstrahlung) as an alternative to gamma rays from radioactive nuclides.

  12. Recirculated and Energy Recovered Linacs

    CERN Document Server

    Geoffr-Ey-Kraff

    2003-01-01

    Linacs that are recirculated share many characteristics with ordinary linacs, including the ability to accelerate electron beams FR-om an injector to high energy with relatively little (normalized) emittance growth and the ability to deliver ultrashort bunch duration pulses to users. When such linacs are energy recovered, the additional possibility of accelerating very high average beam current arises. Because this combination of beam properties is not possible FR-om either a conventional linac, or FR-om storage rings where emittance and pulse length are set by the equilibrium between radiation damping and quantum excitation of oscillations about the closed orbit, energy recovered linacs are being considered for an increasing variety of applications. These possibilities extend FR-om high power FR-ee-electron lasers and recirculated linac light sources, to electron coolers for high energy colliders or actual electron-ion colliding- beam machines based on an energy recovered linac for the electrons.

  13. High-current electron accelerator

    Science.gov (United States)

    Alekseyev, B. V.; Gorelikov, I. M.; Kazurov, V. I.; Mashkov, L. V.; Greshko, A. G.; Soklakov, G. I.; Fedorenko, A. I.; Yurekevich, K. B.

    1986-02-01

    A high current electron accelerator was developed and built on the basis of computer aided design calculations and electrolytic trough simulation. A 15 stage Arkadyev/Marx pulse voltage generator serves as the primary energy storing device. Each stage consists of two IK-100-0.4 capacitors connected in parallel and all immersed in transformer oil inside a metal container on electrically insulating posts. Each stage is shielded on both the positive and negative potential side. The shields, made of copper foil, not only smooth the electric field in the clearances but also constitute part of the commutating circuit and contribute to reduction of the overall generator size. The pulse voltage generator is triggered by a synchronizer through the conventional firing circuit of a TGI1-350/16 thyratron. To operate the accelerator in the nanosecond mode, the generator discharges into a diode through a twin shaping line. In this mode the accelerator can produce 0.8 MeV to 240 kA electron beams of 0.8 ns duration. To operate in the microsecond mode, the shaping line acts as storing capacitor, and the discharge gaps must be charged with polarity reversal in each stage. In this mode the accelerator can produce 0.5 MeV to 10 kA electron beams of 1 microsecond duration.

  14. Electron Cloud Effects in Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  15. High Power Electron Accelerator Prototype

    CERN Document Server

    Tkachenko, Vadim; Cheskidov, Vladimir; Korobeynikov, G I; Kuznetsov, Gennady I; Lukin, A N; Makarov, Ivan; Ostreiko, Gennady; Panfilov, Alexander; Sidorov, Alexey; Tarnetsky, Vladimir V; Tiunov, Michael A

    2005-01-01

    In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.

  16. Electron Acceleration in Supernovae and Millimeter Perspectives

    Directory of Open Access Journals (Sweden)

    Keiichi Maeda

    2014-12-01

    Full Text Available Supernovae launch a strong shock wave by the interaction of the expanding ejecta and surrounding circumstellar matter (CSM. At the shock, electrons are accelerated to relativistic speed, creating observed synchrotron emissions in radio wavelengths. In this paper, I suggest that SNe (i.e., < 1 year since the explosion provide a unique site to study the electron acceleration mechanism. I argue that the eciency of the acceleration at the young SN shock is much lower than conventionally assumed, and that the electrons emitting in the cm wavelengths are not fully in the Diffusive Shock Acceleration (DSA regime. Thus radio emissions from young SNe record information on the yet-unresolved 'injection' mechanism. I also present perspectives of millimeter (mm observations of SNe - this will provide opportunities to uniquely determine the shock physics and the acceleration efficiency, to test the non-linear DSA mechanism and provide a characteristic electron energy scale with which the DSA start dominating the electron acceleration.

  17. Beam Injection in Recirculator SALO

    CERN Document Server

    Guk, Ivan S; Dovbnya, Anatoly N; Kononenko, Stanislav; Peev, Fedor; Tarasenko, Alexander; Van der Wiel, Marnix

    2005-01-01

    Possible antetypes of injectors for electron recirculator SALO,* intended for nuclear-physical research, are analyzed. The plan injection of beams in recirculator is offered. Expected parameters of beams are designed.

  18. Electron accelerating unit for streak image tubes

    Indian Academy of Sciences (India)

    The distance between the cathode and the mesh is 1.2 mm. The electric field in the cathode-to-mesh region is a self-focusing field, which can reduce the electron beam size. There are three advantages of the accelerating unit. In the pulsed mode, a pulsed voltage is applied to the accelerating electrode. First, the SIT works ...

  19. Electron heating and acceleration during magnetic reconnection

    Science.gov (United States)

    Dahlin, Joel

    2017-10-01

    Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena such as solar flares and magnetospheric storms. However, the observed fraction of energy imparted to a nonthermal component can vary widely in different regimes. We use kinetic particle-in-cell (PIC) simulations to demonstrate the important role of the non-reversing (guide) field in controlling the efficiency of electron acceleration in collisionless reconnection. In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. The reconnection outflows that drive Fermi acceleration also expel accelerating particles from energization regions. In 2D reconnection, electrons are trapped in island cores and acceleration ceases, whereas in 3D the stochastic magnetic field enables energetic electrons to leak out of islands and freely sample regions of energy release. A finite guide field is required to break initial 2D symmetry and facilitate escape from island structures. We show that reconnection with a guide field comparable to the reconnecting field generates the greatest number of energetic electrons, a regime where both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. These results have important implications for electron acceleration in solar flares and reconnection-driven dissipation in turbulence.

  20. Radioactivity and Electron Acceleration in Supernova Remnants

    OpenAIRE

    Zirakashvili, V. N.; Aharonian, F. A.

    2010-01-01

    We argue that the decays of radioactive nuclei related to $^{44}$Ti and $^{56}$Ni ejected during supernova explosions can provide a vast pool of mildly relativistic positrons and electrons which are further accelerated to ultrarelativistic energies by reverse and forward shocks. This interesting link between two independent processes - the radioactivity and the particle acceleration - can be a clue for solution of the well known theoretical problem of electron injection in supernova remnants....

  1. Electron acceleration in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Oliver

    2014-02-03

    The bubble regime of laser-wakefield acceleration has been studied over the recent years as an important alternative to classical accelerators. Several models and theories have been published, in particular a theory which provides scaling laws for acceleration parameters such as energy gain and acceleration length. This thesis deals with numerical simulations within the bubble regime, their comparison to these scaling laws and data obtained from experiments, as well as some specific phenomenona. With a comparison of the scaling laws with numerical results a parameter scan was able to show a large parameter space in which simulation and theory agree. An investigation of the limits of this parameter space revealed boundaries to other regimes, especially at very high (a{sub 0} > 100) and very low laser amplitudes (a{sub 0} < 4). Comparing simulation data with data from experiments concerning laser pulse development and electron energies, it was found that experimental results can be adequately reproduced using the Virtual-Laser-Plasma-Laboratory code. In collaboration with the Institut fuer Optik und Quantenelektronik at the Friedrich-Schiller University Jena synchrotron radiation emitted from the inside of the bubble was investigated. A simulation of the movement of the electrons inside the bubble together with time dependent histograms of the emitted radiation helped to prove that the majority of radiation created during a bubble acceleration originates from the inside of the bubble. This radiation can be used to diagnose the amplitude of oscillation of the trapped electrons. During a further study it was proven that the polarisation of synchrotron radiation from a bubble contains information about the exact oscillation direction. This oscillation was successfully controlled by using either a laser pulse with a tilted pulse front or an asymmetric laser pulse. First results of ongoing studies concerning injecting electrons into an existing bubble and a scheme called

  2. Use Recirculator "SALO" in the Mode of the Neutron Source

    CERN Document Server

    Guk, Ivan S; Dovbnya, Anatoly N; Kononenko, Stanislav; Peev, Fedor; Tarasenko, Alexander; Van der Wiel, Marnix

    2005-01-01

    The opportunity of use developed in NSC KIPT recirculator SALO* with superconducting accelerating structure TESLA for reception of intensive neutron streams surveyed. As an injector it is supposed to use RF-gun with superconducting accelerating structure. An electron beam with the peak energy 130 ??? is transported on a target located apart of 100 m from recirculator. System of the focusing are designed allowing to gain on a target the required density of a beam. Tolerances on precision of an alignment of magnetooptical devices are calculated.

  3. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  4. Acceleration of electrons using an inverse free electron laser auto- accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  5. Acceleration of electrons using an inverse free electron laser auto- accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wernick, Iddo K. [Columbia Univ., New York, NY (United States); Marshall, Thomas C. [Columbia Univ., New York, NY (United States)

    1992-07-01

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW`s) FEL radiation at ~1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  6. Applications of electron accelerator in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman Hj. Mohd Dahlan [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Selangor Darul Ehsan (Malaysia)

    2003-02-01

    Current status of radiation processing, as one of the core research programs of the Malaysian Institute for Nuclear Technology Research (MINT), is presented. Industrial applications of six electron accelerators from 150 kV up to 3 MV in Malaysia now in operation are mainly for curing of surface coatings, crosslinking of tubes, heat shrinkable tubes and packaging films, crosslinking of wire insulation. Their performances are listed. New technology now in R and D stage includes natural rubber, sago starch and chitosan for biomedical applications, and radiation curable materials from oil palm for pressure sensitive adhesive and printing ink. (S. Ohno)

  7. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  8. Determination of acceleration and stabilization indicators for buried municipal wastes. Study of leachates recirculation impact on waste columns; Determination d'indicateurs d'acceleration et de stabilisation de dechets menagers enfouis. Etude de l'impact de la recirculation de lixiviats sur colonnes de dechets

    Energy Technology Data Exchange (ETDEWEB)

    Francois, V.

    2004-05-15

    The main goal of this research work was to study the stabilisation processes of municipal solid waste (MSW). Representative parameters, which are required to evaluate the stabilization state of wastes, were applied to study the acceleration of the degradation processes in lab-scale landfill anaerobic bioreactors operated with leachate recirculation. The characterisation of the wastes solid phase (i.e., volatile solids, organic carbon, fines, paper-cardboard and degraded component contents) is necessary to assess its degradation state. However, additional parameters are required such as the characterisation of water extracted from the waste (i.e., Chemical Oxygen Content (COD), Dissolved Oxygen Content (DOC) and ions content) and biogas composition (methane potential). Those parameters are nevertheless complementary to conclude on its polluting feature. The analysis of more specific indicators such as the organic macromolecules content in leachates and the evaluation of the metal contamination level in solid waste and its potential remobilization was showed to be consistent for the evaluation of waste stabilisation state. The composition of leachates used during recirculation influences greatly the waste leaching behaviour. For instance, the recirculation of a stabilised leachate containing organic macromolecules can increase the release of pollutants (organics and minerals) if contacted with young waste or on the other hand the release of pollutant is reduced when the leachate composition is similar to the organic species, which are expected to be released by the wastes. Due to the experimental limits of the leaching tests, several lab-scale landfill anaerobic bioreactors containing different wastes types (height of 1 m and mass of waste varying from 28 kg to 65 kg) were operated to study the effects of recirculation on the waste degradation at flow rate of 540 mL per day. The speed-up of waste degradation was clearly established from global parameters measured on

  9. Electron pulse shaping in the FELIX RF accelerator

    CERN Document Server

    Weits, H H; Oepts, D; Van der Meer, Alex F G

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel through an undulator. It was demonstrated that the power level of the CSE critically depends on the settings of the accelerator. In this article we seek to explain these observations by studying the length and shape of the electron bunches as a function of the settings of the accelerator. A particle- tracking model was used to simulate the acceleration and transport processes. These include bunch compression in a 14-cell travelling wave buncher cavity, acceleration in a travelling wave linear accelerator, and passage through a (dispersive) chicane structure. The effect of the phase setting of the RF accelerating field with respect to the arrival time of the electron bunch in each accelerator structure was studied. The ...

  10. Role of Direct Laser Acceleration of Electrons in a Laser Wakefield Accelerator with Ionization Injection.

    Science.gov (United States)

    Shaw, J L; Lemos, N; Amorim, L D; Vafaei-Najafabadi, N; Marsh, K A; Tsung, F S; Mori, W B; Joshi, C

    2017-02-10

    We show the first experimental demonstration that electrons being accelerated in a laser wakefield accelerator operating in the forced or blowout regimes gain significant energy from both the direct laser acceleration (DLA) and the laser wakefield acceleration mechanisms. Supporting full-scale 3D particle-in-cell simulations elucidate the role of the DLA of electrons in a laser wakefield accelerator when ionization injection of electrons is employed. An explanation is given for how electrons can maintain the DLA resonance condition in a laser wakefield accelerator despite the evolving properties of both the drive laser and the electrons. The produced electron beams exhibit characteristic features that are indicative of DLA as an additional acceleration mechanism.

  11. Utilization of electron accelerator in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, Estelita G. [Philippine Nuclear Research Institute, Quezon (Philippines)

    2003-02-01

    Radiosterilization of medical and surgical supplies, radiation treatment of consumer products such as food, pharmaceuticals and cosmetics, and the modification of polymers, crosslinking or curing, using gamma irradiation facilities in Philippine industries are overviewed. Philippine Nuclear Research Institute(PNRI) conducts bioburden determination, dose setting and validation of compatibility with radiation of product and packaging with the technical assistance of IAEA. The products with yields treated at the irradiation facility from 1996-2001 are shown in table. An electron accelerator of 10 MeV and 28 kW, established by Terumo Corporation, is used since 2000 for in-house radiation sterilization of syringes. Current regulations and regulatory authority in Philippines are also briefly introduced. Future processes such as radiation vulcanized natural rubber latex (RVNRL), use of carrageenan as hydrogel for dressing wounds and others and fermented bagasse as animal feed are now in progress. (S. Ohno)

  12. Determining Energy Distributions of HF-Accelerated Electrons at HAARP

    Science.gov (United States)

    2015-11-18

    AFRL-AFOSR-VA-TR-2015-0383 Determining energy distributions of HF -accelerated electrons at HAARP Christopher Fallen University of Alaska Fairbanks...2012 - 11/14/2015 4. TITLE AND SUBTITLE Determining energy distributions of HF -accelerated electrons at HAARP 5a. CONTRACT NUMBER FA9550-12-1-0424...The main project objective was to determine energy distribution of ionosphere electrons accelerated by powerful high-frequency ( HF ) radio waves

  13. Signature energetic analysis of accelerate electron beam after first acceleration station by accelerating stand of Joint Institute for Nuclear Research

    Science.gov (United States)

    Sledneva, A. S.; Kobets, V. V.

    2017-06-01

    The linear electron accelerator based on the LINAC - 800 accelerator imported from the Netherland is created at Joint Institute for Nuclear Research in the framework of the project on creation of the Testbed with an electron beam of a linear accelerator with an energy up to 250 MV. Currently two accelerator stations with a 60 MV energy of a beam are put in operation and the work is to put the beam through accelerating section of the third accelerator station. The electron beam with an energy of 23 MeV is used for testing the crystals (BaF2, CsI (native), and LYSO) in order to explore the opportunity to use them in particle detectors in experiments: Muon g-2, Mu2e, Comet, whose preparation requires a detailed study of the detectors properties such as their irradiation by the accelerator beams.

  14. The electron accelerator for the AWAKE experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Pepitone, K., E-mail: kevin.pepitone@cern.ch [CERN, Geneva (Switzerland); Doebert, S., E-mail: steffen.doebert@cern.ch [CERN, Geneva (Switzerland); Burt, G. [The University of Lancaster, Lancaster (United Kingdom); Chevallay, E.; Chritin, N.; Delory, C.; Fedosseev, V.; Hessler, Ch.; McMonagle, G. [CERN, Geneva (Switzerland); Mete, O. [The University of Manchester, Manchester (United Kingdom); Verzilov, V. [Triumf, Vancouver (Canada); Apsimon, R. [The University of Lancaster, Lancaster (United Kingdom)

    2016-09-01

    The AWAKE collaboration prepares a proton driven plasma wakefield acceleration experiment using the SPS beam at CERN. A long proton bunch extracted from the SPS interacts with a high power laser and a 10 m long rubidium vapour plasma cell to create strong wakefields allowing sustained electron acceleration. The electron bunch to probe these wakefields is supplied by a 20 MeV electron accelerator. The electron accelerator consists of an RF-gun and a short booster structure. This electron source should provide beams with intensities between 0.1 and 1 nC, bunch lengths between 0.3 and 3 ps and an emittance of the order of 2 mm mrad. The wide range of parameters should cope with the uncertainties and future prospects of the planned experiments. The layout of the electron accelerator, its instrumentation and beam dynamics simulations are presented.

  15. Acceleration of runaway electrons and Joule heating in solar flares

    Science.gov (United States)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  16. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  17. A microtron accelerator for a free electron laser

    NARCIS (Netherlands)

    Botman, J.I.M.; Delhez, J.L.; Webers, G.A.; Hagedoorn, H.L.; Kleeven, W.J.G.M.; Timmermans, J.C.M.; Ernst, G.J.; Verschuur, Jeroen W.J.; Witteman, W.J.; Haselhoff, E.H.; Haselhoff, E.H.

    1991-01-01

    A racetrack microtron as a source for a free electron laser is being constructed. It will accelerate electrons up to 25 MeV to provide 10 ¿m radiation in a hybrid undulator with a periodicity distance of 25 mm. The aim is to accelerate 100 A bunches of 30 ps pulse length at 81.25 MHz. This frequency

  18. Probing electron acceleration and X-ray emission in laser-plasma accelerator

    CERN Document Server

    Thaury, C; Corde, S; Brijesh, P; Lambert, G; Mangles, S P D; Bloom, M S; Kneip, S; Malka, V

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam is focused in the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  19. Staged electron laser accelerator (STELLA) experiment at brookhaven ATF

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I.V.; Steenbergen, A. van; Gallardo, J.C. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1998-03-01

    The STELLA experiment is being prepared at the BNL Accelerator Test Facility (STF). The goal of the experiment is to demonstrate quasi-monochromatic inverse Cherenkov acceleration (ICA) of electrons bunched to the laser wavelength period. Microbunches on the order of 2 {mu}m in length separated by 10.6 {mu}m will be produced using an inverse free electron laser (IFEL) accelerator driven by a CO{sub 2} laser. The design and simulations for two phases of this experiment including demonstration of 10 MeV and 100 MeV acceleration are presented. (author)

  20. Electron acceleration using laser produced plasmas

    CERN Multimedia

    CERN. Geneva; Landua, Rolf

    2005-01-01

    Low density plasmas have long been of interest as a potential medium for particle acceleration since relativistic plasma waves are capable of supporting electric fields greater than 100 GeV/m. The physics of particle acceleration using plasmas will be reviewed, and new results will be discussed which have demonstrated that relatively narrow energy spread (<3%) beams having energies greater than 100 MeV can be produced from femtosecond laser plasma interactions. Future experiments and potential applications will also be discussed.

  1. Measurements of beat wave accelerated electrons in a toroidal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.H. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Hwang, D.W. (California Univ., Davis, CA (United States). Dept. of Applied Science Lawrence Livermore National Lab., CA (United States))

    1992-06-01

    Electrons are accelerated by large amplitude electron plasma waves driven by counter-propagating microwaves with a difference frequency approximately equal to the electron plasma frequency. Energetic electrons are observed only when the phase velocity of the wave is in the range 3v{sub e} < v{sub ph} < 7v{sub e} (v{sub ph} was varied 2v{sub e} < v{sub ph} < 10v{sub e}), where v{sub e} is the electron thermal velocity, (kT{sub e}/m{sub e}){sup {1/2}}. As the phase velocity increases, fewer electrons are accelerated to higher velocities. The measured current contained in these accelerated electrons has the power dependence predicted by theory, but the magnitude is lower than predicted.

  2. Beam dynamics simulation of a double pass proton linear accelerator

    Science.gov (United States)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  3. Beam dynamics simulation of a double pass proton linear accelerator

    Directory of Open Access Journals (Sweden)

    Kilean Hwang

    2017-04-01

    Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  4. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  5. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel

  6. Generating ultrarelativistic attosecond electron bunches with laser wakefield accelerators

    NARCIS (Netherlands)

    Luttikhof, M.J.H.; Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2010-01-01

    Femtosecond electron bunches with ultrarelativistic energies were recently generated by laser wakefield accelerators. Here we predict that laser wakefield acceleration can generate even attosecond bunches, due to a strong chirp of the betatron frequency. We show how the bunch duration scales with

  7. Electron accelerators for radiosterilization; Akceleratory elektronow dla potrzeb sterylizacji radiacyjnej

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The applications of electron accelerators in commercial plants for radiosterilization have been shown. Advantages of such irradiation source have been presented. The types and parameters of accelerators being installed in worldwide irradiation plants for radiosterilization have been listed as well. 2 tabs.

  8. Electromagnetic Structure and Electron Acceleration in Shock-Shock Interaction

    Science.gov (United States)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru; Mazelle, Christian X.

    2017-09-01

    A shock-shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  9. High energy gain electron beam acceleration by 100TW laser

    Energy Technology Data Exchange (ETDEWEB)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10{sup -5} was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6{pi} mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  10. High-Power Electron Accelerators for Space (and other) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewellen, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  11. Suprathermal electron acceleration during reconnection onset in the magnetotail

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    2011-10-01

    Full Text Available We study one event of reconnection onset associated to a small substorm on 27 September 2006 by using Cluster observations at inter-spacecraft separation of about 10 000 km. We focus on the acceleration of suprathermal electrons during different stages of reconnection. We show that several distinct stages of acceleration occur: (1 moderate acceleration during reconnection of pre-existing plasma sheet flux tubes, (2 stronger acceleration during reconnection of lobe flux tubes, (3 production of the most energetic electrons within dipolarization fronts (magnetic pile-up regions. The strongest acceleration is reached at the location of Bz maxima inside the magnetic pile-up region where the reconnection jet stops. Very strong localized dawn-dusk electric field are observed within the magnetic pile-up regions and are associated to most of the magnetic flux transport.

  12. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.

    Science.gov (United States)

    Litos, M; Adli, E; An, W; Clarke, C I; Clayton, C E; Corde, S; Delahaye, J P; England, R J; Fisher, A S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Vafaei-Najafabadi, N; Walz, D; White, G; Wu, Z; Yakimenko, V; Yocky, G

    2014-11-06

    High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a

  13. Direct longitudinal laser acceleration of electrons in free space

    Directory of Open Access Journals (Sweden)

    Sergio Carbajo

    2016-02-01

    Full Text Available Compact laser-driven accelerators are pursued heavily worldwide because they make novel methods and tools invented at national laboratories widely accessible in science, health, security, and technology [V. Malka et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys. 4, 447 (2008]. Current leading laser-based accelerator technologies [S. P. D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature (London 431, 535 (2004; T. Toncian et al., Ultrafast laser-driven microlens to focus and energy-select mega-electron volt protons, Science 312, 410 (2006; S. Tokita et al. Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse, Appl. Phys. Lett. 95, 111911 (2009] rely on a medium to assist the light to particle energy transfer. The medium imposes material limitations or may introduce inhomogeneous fields [J. R. Dwyer et al., Femtosecond electron diffraction: “Making the molecular movie,”, Phil. Trans. R. Soc. A 364, 741 (2006]. The advent of few cycle ultraintense radially polarized lasers [S. Carbajo et al., Efficient generation of ultraintense few-cycle radially polarized laser pulses, Opt. Lett. 39, 2487 (2014] has ushered in a novel accelerator concept [L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially polarized laser beam, Opt. Express 18, 25035 (2010; F. Pierre-Louis et al. Direct-field electron acceleration with ultrafast radially polarized laser beams: Scaling laws and optimization, J. Phys. B 43, 025401 (2010; Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A 73, 043402 (2006; C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E 74, 045602 (2006; A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and

  14. Intrinsic normalized emittance growth in laser-driven electron accelerators

    Directory of Open Access Journals (Sweden)

    M. Migliorati

    2013-01-01

    Full Text Available Laser-based electron sources are attracting strong interest from the conventional accelerator community due to their unique characteristics in terms of high initial energy, low emittance, and significant beam current. Extremely strong electric fields (up to hundreds of GV/m generated in the plasma allow accelerating gradients much higher than in conventional accelerators and set the basis for achieving very high final energies in a compact space. Generating laser-driven high-energy electron beam lines therefore represents an attractive challenge for novel particle accelerators. In this paper we show that laser-driven electrons generated by the nowadays consolidated TW laser systems, when leaving the interaction region, are subject to a very strong, normalized emittance worsening which makes them quickly unusable for any beam transport. Furthermore, due to their intrinsic beam characteristics, controlling and capturing the full beam current can only be achieved improving the source parameters.

  15. Electron acceleration during streamer collisions in air

    DEFF Research Database (Denmark)

    Köhn, Christoph; Chanrion, Olivier; Neubert, Torsten

    2017-01-01

    during collisions of negative and a positive streamers. To explore this process, we have conducted the first self-consistent particle simulations of streamer encounters. Our simulation model is a 2-D, cylindrically symmetric, particle-in-cell code tracing the electron dynamics and solving the space...... charge fields, with a Monte Carlo scheme accounting for collisions and ionization. We present the electron density, the electric field, and the velocity distribution as functions of space and time. Assuming a background electric field 1.5 times the breakdown field, we find that the electron density...

  16. Plasma astrophysics: Acceleration of killer electrons

    OpenAIRE

    Horne, Richard Bertram

    2007-01-01

    Relativistic electrons in the outer Van Allen belt wreak havoc with satellites in geosynchronous orbit, but how they reach such high energies has been unclear. New data identify gyro-resonant wave-particle interactions as the culprit.

  17. PIC simulation of electron acceleration in an underdense plasma

    Directory of Open Access Journals (Sweden)

    S Darvish Molla

    2011-06-01

    Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons

  18. Laser-driven dielectric electron accelerator for radiobiology researches

    Science.gov (United States)

    Koyama, Kazuyoshi; Matsumura, Yosuke; Uesaka, Mitsuru; Yoshida, Mitsuhiro; Natsui, Takuya; Aimierding, Aimidula

    2013-05-01

    In order to estimate the health risk associated with a low dose radiation, the fundamental process of the radiation effects in a living cell must be understood. It is desired that an electron bunch or photon pulse precisely knock a cell nucleus and DNA. The required electron energy and electronic charge of the bunch are several tens keV to 1 MeV and 0.1 fC to 1 fC, respectively. The smaller beam size than micron is better for the precise observation. Since the laser-driven dielectric electron accelerator seems to suite for the compact micro-beam source, a phase-modulation-masked-type laser-driven dielectric accelerator was studied. Although the preliminary analysis made a conclusion that a grating period and an electron speed must satisfy the matching condition of LG/λ = v/c, a deformation of a wavefront in a pillar of the grating relaxed the matching condition and enabled the slow electron to be accelerated. The simulation results by using the free FDTD code, Meep, showed that the low energy electron of 20 keV felt the acceleration field strength of 20 MV/m and gradually felt higher field as the speed was increased. Finally the ultra relativistic electron felt the field strength of 600 MV/m. The Meep code also showed that a length of the accelerator to get energy of 1 MeV was 3.8 mm, the required laser power and energy were 11 GW and 350 mJ, respectively. Restrictions on the laser was eased by adopting sequential laser pulses. If the accelerator is illuminated by sequential N pulses, the pulse power, pulse width and the pulse energy are reduced to 1/N, 1/N and 1/N2, respectively. The required laser power per pulse is estimated to be 2.2 GW when ten pairs of sequential laser pulse is irradiated.

  19. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  20. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Basovic, Milos [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  1. High-current electron beam nonlinear relaxation in plasma and electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Karfidov, D.M. (AN SSSR, Moscow. Inst. of General Physics (USSR)); Nikolov, N.A.; Malinov, P.N.; Trifonov, I.P. (Sofia Univ. (Bulgaria). Fizicheski Fakultet (Bulgaria))

    1988-08-01

    A nonlinear relaxation is observed when an electron beam interacts with plasma in an external magnetic field. An acceleration of electrons to energies which are more than twice that of the initial beam energy is observed. The acceleration mechanism is connected with the modulation instability of the plasma waves which is excited when the beam relaxes. (author).

  2. Manipulation and electron-oscillation-measurement of laser accelerated electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kotaki, H; Hayashi, Y; Kawase, K; Mori, M; Kando, M; Homma, T; Koga, J K; Daido, H; Bulanov, S V, E-mail: kotaki.hideyuki@jaea.go.jp [Advanced Photon Research Center, Japan Atomic Energy Agency, 8-1-7, Umemidai, Kizugawa, Kyoto (Japan)

    2011-01-15

    Monoenergetic electron beams have been generated in the self-injection scheme of laser acceleration. In applications of these laser accelerated electron beams, stable and controllable electron beams are necessary. A stable electron beam is generated in the self-injection scheme by using a nitrogen gas jet target. We found the profile of the electron beam was manipulated by rotating the laser polarization. The electron beam is in the first bucket of the wake wave. In the energy space, transverse oscillation is observed when the laser pulse has S-polarization. The direction of the electron beam is controlled by the gas jet position.

  3. Dynamics of electron injection in a laser-wakefield accelerator

    Science.gov (United States)

    Xu, J.; Buck, A.; Chou, S.-W.; Schmid, K.; Shen, B.; Tajima, T.; Kaluza, M. C.; Veisz, L.

    2017-08-01

    The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way—called shock-front injection—utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.

  4. Electron acceleration via high contrast laser interacting with submicron clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Faenov, Anatoly; Pikuz, Tatiana [Joint Institute for High Temperature of the Russian Academy of Sciences, Izhorskaya 13/19, Moscow 127412 (Russian Federation); Quantum Beams Science Directorate, JAEA, Kizugawa, Kyoto (Japan); Li Dazhang [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Institute of High Energy Physics, CAS, Beijing 100049 (China); Sheng Zhengming [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Jie [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-01-02

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  5. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  6. Research and application of electron accelerator in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Wenlong; Liu Zhenghao [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2003-02-01

    There are more than 30 product lines of irradiation cross-linking wire and cable and shrinkable tube by EB in Chinese industry. Total of 3,000 KW power of EB, in which 40% coming from home made accelerator. Recently, about 450 KW electron accelerator is being manufactured and used in protection of environment that is removal of SO{sub 2} and NO{sub x} from flue gas. (author)

  7. Down-ramp injection and independently controlled acceleration of electrons in a tailored laser wakefield accelerator

    Directory of Open Access Journals (Sweden)

    M. Hansson

    2015-07-01

    Full Text Available We report on a study on controlled injection of electrons into the accelerating phase of a plasma wakefield accelerator by tailoring the target density distribution using two independent sources of gas. The tailored density distribution is achieved experimentally by inserting a narrow nozzle, with an orifice diameter of only 400  μm, into a jet of gas supplied from a 2 mm diameter nozzle. The combination of these two nozzles is used to create two regions of different density connected by a density gradient. Using this setup we show independent control of the charge and energy distribution of the bunches of accelerated electron as well as decreased shot-to-shot fluctuations in these quantities compared to self-injection in a single gas jet. Although the energy spectra are broad after injection, simulations show that further acceleration acts to compress the energy distribution and to yield peaked energy spectra.

  8. Down-ramp injection and independently controlled acceleration of electrons in a tailored laser wakefield accelerator

    CERN Document Server

    Hansson, M.; Davoine, X.; Ekerfelt, H.; Svensson, K.; Persson, A.; Wahlström, C.-G.; Lundh, O.; 10.1103/PhysRevSTAB.18.071303

    2015-01-01

    We report on a study on controlled injection of electrons into the accelerating phase of a plasma wakefield accelerator by tailoring the target density distribution using two independent sources of gas. The tailored density distribution is achieved experimentally by inserting a narrow nozzle, with an orifice diameter of only 400  μm , into a jet of gas supplied from a 2 mm diameter nozzle. The combination of these two nozzles is used to create two regions of different density connected by a density gradient. Using this setup we show independent control of the charge and energy distribution of the bunches of accelerated electron as well as decreased shot-to-shot fluctuations in these quantities compared to self-injection in a single gas jet. Although the energy spectra are broad after injection, simulations show that further acceleration acts to compress the energy distribution and to yield peaked energy spectra.

  9. Effects of Spatial Gradients on Electron Runaway Acceleration

    Science.gov (United States)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  10. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Directory of Open Access Journals (Sweden)

    C. M. Celata

    2011-04-01

    Full Text Available The interference of stray electrons (also called “electron clouds” with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in the Cornell Electron Storage Ring Test Accelerator experiment at the Cornell Electron Storage Ring. Three-dimensional particle-in-cell simulations with the WARP-POSINST computer code show different density and dynamics for the electron cloud at locations near the maxima of the vertical wiggler field when compared to locations near the minima. Dynamics in these regions, the electron cloud distribution vs longitudinal position, and the beam coherent tune shift caused by the wiggler electron cloud will be discussed.

  11. Dimuon production by laser-wakefield accelerated electrons

    Directory of Open Access Journals (Sweden)

    A. I. Titov

    2009-11-01

    Full Text Available We analyze μ^{+}μ^{-} pair production generated by high-energy electrons emerging from a laser-wakefield accelerator. The μ^{+}μ^{-} pairs are created in a solid thick high-Z target, following the electron accelerating plasma region. Numerical estimates are presented for 1 to 10 GeV electron beams which are expected to be reliable in the nearest future. Reactions induced by the secondary bremsstrahlung photons dominate the dimuon production. According to our estimates, a 20 pC electron bunch with energy of 1 (10 GeV may create about 100 (5000 muon pairs. The produced μ^{±} can be used in studying various aspects of muon-related physics in tabletop installations. This may be considered as an important step towards the investigation of more complicated elementary processes induced by laser-driven electrons.

  12. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  13. ORELA performance. [Oak Ridge Electron Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, T.A.

    1976-04-01

    The most recent information concerning the performance of ORELA that would be of interest to experimenters is presented. Included are characteristics of the beam in terms of both time and intensity and descriptions of systems routinely used to monitor these beam characteristics. For example, with klystron power and maximum electron gun output current at nominal values and for pulse repetition rates in the range above 800 pps, output beam energies per pulse vary from 5 J for 2.5 nsec-wide pulses to approximately 32 J for 10 nsec pulses and 65 J for 40 nsec pulses.

  14. Electron Acceleration by High Power Radio Waves in the Ionosphere

    Science.gov (United States)

    Bernhardt, Paul

    2012-10-01

    At the highest ERP of the High Altitude Auroral Research Program (HAARP) facility in Alaska, high frequency (HF) electromagnetic (EM) waves in the ionosphere produce artificial aurora and electron-ion plasma layers. Using HAARP, electrons are accelerated by high power electrostatic (ES) waves to energies >100 times the thermal temperature of the ambient plasma. These ES waves are driven by decay of the pump EM wave tuned to plasma resonances. The most efficient acceleration process occurs near the harmonics of the electron cyclotron frequency in earth's magnetic field. Mode conversion plays a role in transforming the ES waves into EM signals that are recorded with ground receivers. These diagnostic waves, called stimulated EM emissions (SEE), show unique resonant signatures of the strongest electron acceleration. This SEE also provides clues about the ES waves responsible for electron acceleration. The electron gas is accelerated by high frequency modes including Langmuir (electron plasma), upper hybrid, and electron Bernstein waves. All of these waves have been identified in the scattered EM spectra as downshifted sidebands of the EM pump frequency. Parametric decay is responsible low frequency companion modes such as ion acoustic, lower hybrid, and ion Bernstein waves. The temporal evolution of the scattered EM spectrum indicates development of field aligned irregularities that aid the mode conversion process. The onset of certain spectral features is strongly correlated with glow plasma discharge structures that are both visible with the unaided eye and detectable using radio backscatter techniques at HF and UHF frequencies. The primary goals are to understand natural plasma layers, to study basic plasma physics in a unique ``laboratory with walls,'' and to create artificial plasma structures that can aid radio communications.

  15. Scientists at Brookhaven contribute to the development of a better electron accelerator

    CERN Multimedia

    2004-01-01

    Scientists working at Brookhaven have developed a compact linear accelerator called STELLA (Staged Electron Laser Acceleration). Highly efficient, it may help electron accelerators become practical tools for applications in industry and medicine, such as radiation therapy (1 page)

  16. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    Science.gov (United States)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  17. Electron linear accelerator system for natural rubber vulcanization

    Science.gov (United States)

    Rimjaem, S.; Kongmon, E.; Rhodes, M. W.; Saisut, J.; Thongbai, C.

    2017-09-01

    Development of an electron accelerator system, beam diagnostic instruments, an irradiation apparatus and electron beam processing methodology for natural rubber vulcanization is underway at the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The project is carried out with the aims to improve the qualities of natural rubber products. The system consists of a DC thermionic electron gun, 5-cell standing-wave radio-frequency (RF) linear accelerator (linac) with side-coupling cavities and an electron beam irradiation apparatus. This system is used to produce electron beams with an adjustable energy between 0.5 and 4 MeV and a pulse current of 10-100 mA at a pulse repetition rate of 20-400 Hz. An average absorbed dose between 160 and 640 Gy is expected to be archived for 4 MeV electron beam when the accelerator is operated at 400 Hz. The research activities focus firstly on assembling of the accelerator system, study on accelerator properties and electron beam dynamic simulations. The resonant frequency of the RF linac in π/2 operating mode is 2996.82 MHz for the operating temperature of 35 °C. The beam dynamic simulations were conducted by using the code ASTRA. Simulation results suggest that electron beams with an average energy of 4.002 MeV can be obtained when the linac accelerating gradient is 41.7 MV/m. The rms transverse beam size and normalized rms transverse emittance at the linac exit are 0.91 mm and 10.48 π mm·mrad, respectively. This information can then be used as the input data for Monte Carlo simulations to estimate the electron beam penetration depth and dose distribution in the natural rubber latex. The study results from this research will be used to define optimal conditions for natural rubber vulcanization with different electron beam energies and doses. This is very useful for development of future practical industrial accelerator units.

  18. Temporary acceleration of electrons while inside an intense electromagnetic pulse

    Directory of Open Access Journals (Sweden)

    Kirk T. McDonald

    1999-12-01

    Full Text Available A free electron can temporarily gain a very significant amount of energy if it is overrun by an intense electromagnetic wave. In principle, this process would permit large enhancements in the center-of-mass energy of electron-electron, electron-positron, and electron-photon interactions if these take place in the presence of an intense laser beam. Practical considerations severely limit the utility of this concept for contemporary lasers incident on relativistic electrons. A more accessible laboratory phenomenon is electron-positron production via an intense laser beam incident on a gas. Intense electromagnetic pulses of astrophysical origin can lead to very energetic photons via bremsstrahlung of temporarily accelerated electrons.

  19. Electron acceleration by Landau resonance with whistler mode wave packets

    Science.gov (United States)

    Gurnett, D. A.; Reinleitner, L. A.

    1983-01-01

    Recent observations of electrostatic waves associated with whistler mode chorus emissions provide evidence that electrons are being trapped by Landau resonance interactions with the chorus. In this paper, the trapping, acceleration and escape of electrons in Landau resonance with a whistler mode wave packet are discussed. It is shown that acceleration can occur by both inhomogeneous and dispersive effects. The maximum energy gained is controlled by the points where trapping and escape occur. Large energy changes are possible if the frequency of the wave packet or the magnetic field strength increase between the trapping and escape points. Various trapping and escape mechanisms are discussed.

  20. ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; MACEK,R.J.

    2002-04-14

    One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

  1. Hybrid photoneutron source optimization for electron accelerator-based BNCT

    Science.gov (United States)

    Rahmani, F.; Shahriari, M.

    2010-06-01

    Boron Neutron Capture Therapy (BNCT) is being studied as a possible radiotherapic treatment for some cancer types. Neutron energy for penetrating into tissue should be in the epithermal range. Different methods are used for neutron production. Electron accelerators are an alternative way for producing neutrons in electron-photon-neutron processes. Optimization of electron/photon and photoneutron targets calculations with respect to electron energy, dimension (radius and thickness) and neutron yield were done by MCNPX Monte Carlo code. According to the results, a hybrid photoneutron source including BeD 2 and Tungsten has been introduced.

  2. Electron cloud in the CERN accelerator complex

    CERN Document Server

    AUTHOR|(CDS)2069325; Bartosik, Hannes; Belli, Eleonora; Iadarola, Giovanni; Li, Kevin Shing Bruce; Mether, Lotta Maria; Romano, Annalisa; Schenk, Michael

    2016-01-01

    Operation with closely spaced bunched beams causes the build-up of an Electron Cloud (EC) in both the LHC and the two last synchrotrons of its injector chain (PS and SPS). Pressure rise and beam instabilities are observed at the PS during the last stage of preparation of the LHC beams. The SPS was affected by coherent and incoherent emittance growth along the LHC bunch train over many years, before scrubbing has finally suppressed the EC in a large fraction of the machine. When the LHC started regular operation with 50 ns beams in 2011, EC phenomena appeared in the arcs during the early phases, and in the interaction regions with two beams all along the run. Operation with 25 ns beams (late 2012 and 2015), which is nominal for LHC, has been hampered by EC induced high heat load in the cold arcs, bunch dependent emittance growth and degraded beam lifetime. Dedicated and parasitic machine scrubbing is presently the weapon used at the LHC to combat EC in this mode of operation. This talk summarises the EC experi...

  3. Trends for Electron Beam Accelerator Applications in Industry

    Science.gov (United States)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  4. Statistical acceleration of electrons by lower-hybrid turbulence

    Science.gov (United States)

    Wu, C. S.; Gaffey, J. D., Jr.; Liberman, B.

    1981-01-01

    The statistical acceleration of electrons along an ambient magnetic field by large-amplitude lower-hybrid turbulence is discussed. Perturbations driven by a crossfield current and propagating nearly perpendicular to the applied magnetic field are considered. It is assumed that the instability saturates rapidly and that the fluctuating electric field is predominantly electrostatic. If the turbulence is characterized by a spectrum of small parallel wavenumbers, such that the parallel phase velocity of the waves is greater than the electron thermal velocity, then the turbulence can only accelerate electrons moving with large velocities along the magnetic field. The quasi-linear diffusion equation is solved using a Green's function technique, assuming a power law spectral energy density. The time evolution of an initial Maxwellian distribution is given and the time rate of change of the mean electron energy is calculated for various cases.

  5. Electron Rephasing in a Laser-Wakefield Accelerator.

    Science.gov (United States)

    Guillaume, E; Döpp, A; Thaury, C; Ta Phuoc, K; Lifschitz, A; Grittani, G; Goddet, J-P; Tafzi, A; Chou, S W; Veisz, L; Malka, V

    2015-10-09

    An important limit for energy gain in laser-plasma wakefield accelerators is the dephasing length, after which the electron beam reaches the decelerating region of the wakefield and starts to decelerate. Here, we propose to manipulate the phase of the electron beam in the wakefield, in order to bring the beam back into the accelerating region, hence increasing the final beam energy. This rephasing is operated by placing an upward density step in the beam path. In a first experiment, we demonstrate the principle of this technique using a large energy spread electron beam. Then, we show that it can be used to increase the energy of monoenergetic electron beams by more than 50%.

  6. Accelerator complex of ion and electron storage rings

    CERN Document Server

    Noda, A

    2000-01-01

    An accelerator complex consisting of storage rings of ions and electrons with their booster synchrotron of combined-function type is proposed as one of the candidates of the facility for the new campus of Kyoto University. Maximum energies for ions and electrons are 290 and 1500 MeV, respectively. Aimed beam intensities are 10 sup 1 sup 0 and 4x10 sup 1 sup 1 per pulse for ions and electrons, respectively. With use of this accelerator complex, merging of highly ionized ions and trial of laser beam cooling to ultimate low temperature might be possible. The possibility of laser cooling with use of free electron laser is also to be studied.

  7. Wave acceleration of electrons in the Van Allen radiation belts.

    Science.gov (United States)

    Horne, Richard B; Thorne, Richard M; Shprits, Yuri Y; Meredith, Nigel P; Glauert, Sarah A; Smith, Andy J; Kanekal, Shrikanth G; Baker, Daniel N; Engebretson, Mark J; Posch, Jennifer L; Spasojevic, Maria; Inan, Umran S; Pickett, Jolene S; Decreau, Pierrette M E

    2005-09-08

    The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.

  8. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    Directory of Open Access Journals (Sweden)

    J. T. Moody

    2016-02-01

    Full Text Available In this paper we discuss the ultrashort pulse high gradient inverse free electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gradients exceeding 200  MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, nondestructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with <100  fs accuracy. The results of this experiment are expected to pave the way towards the development of future GeV-class IFEL accelerators.

  9. Advanced ponderomotive description of electron acceleration in ICRF discharge initiation

    Directory of Open Access Journals (Sweden)

    Wauters Tom

    2017-01-01

    An example for plasma production by the TOMAS ICRF system is given. Following the described conditions it can be derived that plasma production is (i most efficient close to the antenna straps (few cm's where the field gradient and amplitude are large, and (ii that the lower frequency field accelerates electrons more easily for a given antenna voltage.

  10. Discrete and broadband electron acceleration in Jupiter's powerful aurora.

    Science.gov (United States)

    Mauk, B H; Haggerty, D K; Paranicas, C; Clark, G; Kollmann, P; Rymer, A M; Bolton, S J; Levin, S M; Adriani, A; Allegrini, F; Bagenal, F; Bonfond, B; Connerney, J E P; Gladstone, G R; Kurth, W S; McComas, D J; Valek, P

    2017-09-06

    The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.

  11. Discrete and broadband electron acceleration in Jupiter's powerful aurora

    Science.gov (United States)

    Mauk, B. H.; Haggerty, D. K.; Paranicas, C.; Clark, G.; Kollmann, P.; Rymer, A. M.; Bolton, S. J.; Levin, S. M.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bonfond, B.; Connerney, J. E. P.; Gladstone, G. R.; Kurth, W. S.; McComas, D. J.; Valek, P.

    2017-09-01

    The most intense auroral emissions from Earth's polar regions, called discrete for their sharply defined spatial configurations, are generated by a process involving coherent acceleration of electrons by slowly evolving, powerful electric fields directed along the magnetic field lines that connect Earth's space environment to its polar regions. In contrast, Earth's less intense auroras are generally caused by wave scattering of magnetically trapped populations of hot electrons (in the case of diffuse aurora) or by the turbulent or stochastic downward acceleration of electrons along magnetic field lines by waves during transitory periods (in the case of broadband or Alfvénic aurora). Jupiter's relatively steady main aurora has a power density that is so much larger than Earth's that it has been taken for granted that it must be generated primarily by the discrete auroral process. However, preliminary in situ measurements of Jupiter's auroral regions yielded no evidence of such a process. Here we report observations of distinct, high-energy, downward, discrete electron acceleration in Jupiter's auroral polar regions. We also infer upward magnetic-field-aligned electric potentials of up to 400 kiloelectronvolts, an order of magnitude larger than the largest potentials observed at Earth. Despite the magnitude of these upward electric potentials and the expectations from observations at Earth, the downward energy flux from discrete acceleration is less at Jupiter than that caused by broadband or stochastic processes, with broadband and stochastic characteristics that are substantially different from those at Earth.

  12. Electron Accelerator Shielding Design of KIPT Neutron Source Facility

    Directory of Open Access Journals (Sweden)

    Zhaopeng Zhong

    2016-06-01

    Full Text Available The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ∼0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both

  13. Electron and Ion Acceleration Associated with Magnetotail Reconnection

    Science.gov (United States)

    Liang, Haoming

    This dissertation is dedicated to understanding electron and ion acceleration associated with magnetotail reconnection during substorms by using numerical simulations. Electron dynamics were investigated by using the UCLA global magnetohydrodynamic (MHD) model and large scale kinetic (LSK) simulations. The neutral line configurations and magnetotail flows modify the amounts of the adiabatic and non-adiabatic acceleration that electrons undergo. This causes marked differences in the temperature anisotropy for different substorms. In particular, one substorm event analyzed shows T⊥ > T∥ (T⊥ / T ∥ ≈ 2.3)at -10RE while another shows T ∥ > T⊥ (T ⊥ / T∥ ≈ 0.8), where T⊥ and T∥ (second order moments of the distribution functions) are defined with respect to the magnetic field. These differences determine the subsequent acceleration of the energetic electrons in the inner magnetosphere. Whether the acceleration is mostly parallel or perpendicular is determined by the location of dayside reconnection. A 2.5D implicit Particle-in-Cell simulation was used to study the effects produced by oxygen ions on magnetotail reconnection, and the associated acceleration of protons and oxygen ions. The inertia of oxygen ions reduces the reconnection rate and slows down the earthward propagation of dipolarization fronts (DFs). An ambipolar electric field in the oxygen diffusion region contributes to the smaller reconnection rate. This change in the reconnection rate affects the ion acceleration. In particular 67% of protons and 58% of oxygen ions were accelerated in the exhaust (between the X-point and the DF) in a simulation corresponding to a magnetic storm in which there was a 50% concentration of oxygen ions. In addition, 42% of lobe oxygen-ions are accelerated locally by the Hall electric field, far away from the X-point without entering the exhaust. Protons at the same locations experience Ex B drift. This finding extends previous knowledge that oxygen and

  14. Regenerative Beam Breakup in Multi-Pass Electron Accelerators.

    Science.gov (United States)

    Vetter, Arthur Malcolm, Jr.

    1980-12-01

    Important electron coincidence experiments in the 1 to 2 GeV range require electron beams of high intensity and high duty factor. To provide such beams, multi-pass electron accelerator systems are being developed at many laboratories. The beam current in multi-pass electron machines is limited by beam breakup which arises from interaction of the electron beam with deflection modes of the accelerator structure. Achieving high beam intensity (50 to 100 (mu)A) will require detailed understanding and careful control of beam breakup phenomena, and is the subject of this thesis. The TM(,11)-like traveling wave theory is applied to obtain a physical understanding of beam-mode interactions and the principles of focussing in simple two-pass systems, and is used as a basis for general studies of the dependence of starting current on accelerator parameters in systems of many passes. The concepts developed are applied in analyzing beam breakup in the superconducting recyclotron at Stanford. Measurements of beam interactions with selected breakup modes are incorporated in a simple model in order to estimate relative strengths of breakup modes and to predict starting currents in five-pass operation. The improvement over these predicted currents required in order to obtain 50 to 100 (mu)A beams is shown to be achievable with a combination of increased breakup mode loading and improved beam optics.

  15. Plasma wave undulator for laser-accelerated electrons

    CERN Document Server

    Corde, S; 10.1063/1.3569827

    2011-01-01

    Laser-plasma accelerators have become compact sources of ultrashort electron bunches at energies up to the gigaelectronvolt range thanks to the remarkable progress made over the past decade. A direct application of these electron bunches is the production of short pulse x-ray radiation sources. In this letter, we study a fully optically driven x-ray source based on the combination of a laser-plasma accelerator and a plasma wave undulator. The longitudinal electric field of a laser-generated plasma wave is used to wiggle electrons transversally. The period of this plasma undulator being equal to the plasma wavelength, tunable photon energies in the 10 keV range can be achieved with electron energies in the 100-200 MeV range. Considering a 10s TW class femtosecond laser system, undulators with a strength parameter K~0.5 and with about ten periods can be combined with a laser-plasma accelerator, resulting in several 10^-2 emitted x-ray photons per electron.

  16. Advanced ponderomotive description of electron acceleration in ICRF discharge initiation

    Science.gov (United States)

    Wauters, Tom; Tripský, Matej; Lyssoivan, Anatoli; Louche, Fabrice; Möller, Sören; Ragona, Riccardo; Van Eester, Dirk

    2017-10-01

    This contribution proposes a new approach for the ponderomotive description of electron acceleration in ICRF discharge initiation. The motion of electrons in the parallel electric field Ez is separated into a fast oscillation and a slower drift around the oscillation centre. Three terms are maintained in the Taylor expansion of the electric field (0th , 1st and 2nd order). The efficiency for electron acceleration by Ez (z, t) is then assessed by comparing the values of these terms at the slow varying coordinate z0 . When (i) the 0th order term is not significantly larger than 1st order term at the reflection point, or when (ii) the 2nd order term is negative and not sufficiently small compared to the 1st order term at the reflection point, then the electron will gain energy in the reflection. An example for plasma production by the TOMAS ICRF system is given. Following the described conditions it can be derived that plasma production is (i) most efficient close to the antenna straps (few cm's) where the field gradient and amplitude are large, and (ii) that the lower frequency field accelerates electrons more easily for a given antenna voltage.

  17. Acceleration of Electrons in a Diffraction Dominated IFEL

    CERN Document Server

    Musumeci, Pietro; Pellegrini, Claudio; Ralph, J; Rosenzweig, J B; Sung, C; Tochitsky, Sergei Ya; Travish, Gil

    2004-01-01

    We report on the observation of energy gain in excess of 20 MeV at the Inverse Free Electron Laser Accelerator experiment at the Neptune Laboratory at UCLA. A 14.5 MeV electron beam is injected ina 50 cm long undulator strongly tapered both in period and field amplitude. A CO2 10 μ m laser with power >300 GW is used as the IFEL driver. The Rayleigh range of the laser (1.8cm) is shorter than the undulator length so that the interaction is diffraction dominated. Few per cent of the injected particles are trapped in stable accelerating buckets and electrons with energies up to 35 MeV are detected on the magnetic spectrometers. Experimental results on the scaling of the accelerator characteristics versus input parameters like injection energy, laser focus position and laser power are discussed. Three dimensional simulations are in good agreement with the electron energy spectrums observed in the experiment and indicate that substantial energy exchange between laser and electron beam only occurs in the firs...

  18. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  19. Electron acceleration by laser fields in a gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, J.R.

    1997-08-01

    The purpose of the project is an investigation of topics related to the high-energy acceleration of electrons by means of suitably shaped laser beams in an inert gaseous medium. By slowing down the phase velocity of the fields by its index of refraction, the gas allows a cumulative interaction with the electrons resulting in net acceleration and also focusing. The objectives of the work reported here were twofold: (1) to participate as a consultant in the design and analysis of demonstration experiments performed at the Brookhaven National Laboratory by STI Optronics, a Belleview, WA company, under a separate DOE funded contract; (2) to perform further analytic and design work on the laser acceleration scheme originally proposed and explore a possible extension of the method to acceleration in vacuum using the same field configuration and analogous interaction process as with a gas. This report thus comprises an account of both activities. Section 2 is an overview of the various laser acceleration methods that have been proposed, in order to provide a framework to the work reported. Section 3 contains a list of meetings attended by the Principal Investigator to present his work and interact with research community colleagues and STI staff, and a list of publications containing work he co-authored or was acknowledged for. Section 4 summarizes the work performed by STI to which he contributed. Section 5 consists of the technical reports the Principal Investigator wrote describing his independent theoretical work elaborating and extending the scope of the original project.

  20. Rotational total skin electron irradiation with a linear accelerator.

    Science.gov (United States)

    Reynard, Eric P; Evans, Michael D C; Devic, Slobodan; Parker, William; Freeman, Carolyn R; Roberge, David; Podgorsak, Ervin B

    2008-11-03

    The rotational total skin electron irradiation (RTSEI) technique at our institution has undergone several developments over the past few years. Replacement of the formerly used linear accelerator has prompted many modifications to the previous technique. With the current technique, the patient is treated with a single large field while standing on a rotating platform, at a source-to-surface distance of 380 cm. The electron field is produced by a Varian 21EX linear accelerator using the commercially available 6 MeV high dose rate total skin electron mode, along with a custom-built flattening filter. Ionization chambers, radiochromic film, and MOSFET (metal oxide semiconductor field effect transistor) detectors have been used to determine the dosimetric properties of this technique. Measurements investigating the stationary beam properties, the effects of full rotation, and the dose distributions to a humanoid phantom are reported. The current treatment technique and dose regimen are also described.

  1. Finite element analyses of a linear-accelerator electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wasy, A. [Department of Mechanical Engineering, Changwon National University, Changwon 641773 (Korea, Republic of); Islam, G. U. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Zhou, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  2. Finite element analyses of a linear-accelerator electron gun

    Science.gov (United States)

    Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-01

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  3. Polar PWI Observations of Chorus Emissions and Electron Acceleration

    Science.gov (United States)

    Sigsbee, K.; Menietti, J. D.; Santolik, O.; Blake, J. B.

    2006-12-01

    Using data from several geomagnetic storms in 1996-1997 when data from the Polar Plasma Wave Investigation (PWI) were available, we investigated the role of whistler mode chorus in accelerating outer radiation belt electrons. The storm time periods examined included the well-studied January 10-14, 1997 event. Possible correlations between chorus emissions observed by the Polar PWI and energetic electrons between 0.8 MeV and 6.4 MeV observed by the Polar Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) experiment will be presented. We will also discuss how the intensity of chorus emissions depends upon magnetic local time (MLT), magnetic latitude, L-shell, and the location of the plasmapause. We will also examine how chorus generation and the related electron acceleration processes depend upon the Kp and Dst geomagnetic activity indices. Results from detailed analysis of individual case studies and event statistics will be presented.

  4. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  5. Electron orbits in the microwave inverse FEL accelerator (MIFELA)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.B.; Marshall, T.C. [Columbia Univ., New York, NY (United States)

    1995-12-31

    The MIFELA is a new device based on stimulated absorption of microwaves by electrons moving along an undulator. An intense microwave field is used (a{sub s} = eE{sub s}/k{sub s} m c{sup 2} = 0.2) as well as a large undulator field (a{sub w}/{gamma} = eB{sub {perpendicular}}/{gamma}k{sub w} mc{sup 2} = 1/2) to accelerate electrons emitted at 6MeV from a rf gun to 20MeV in 1.5m. The spiral radius of the electrons in the undulator is 8mm, in a waveguide of diameter 34mm, with undulator period about 10cm. There is a small guiding field, and the electrons move in type I orbits. We describe three problems connected with the orbital motion of the electrons in this structure: (i) injecting the electrons in an increasing undulator field prior to entering the MIFELA; (ii) orbital motion and stability inside the MIFELA; (iii) extraction of electrons from the spiral orbit in the accelerator into an axially-propagating beam, obtaining {Beta}{sub {perpendicular}} < 0.02. These studies have application to a MIFELA which is under construction at Yale University by Omega-P.

  6. Experiments Studying Desorbed Gas and Electron Clouds in Ion Accelerators

    CERN Document Server

    Molvik, Arthur; Barnard, John J; Bieniosek, Frank; Celata, C M; Cohen, Ronald; Covo, Michel K; Friedman, Alex; Lund, Steven M; Seidl, Peter; Vay, Jean-Luc; Vujic, J L; Waldron, William

    2005-01-01

    Electron clouds and gas pressure rise limit the performance of many major accelerator rings. We are studying these issues experimentally with ~1 MeV heavy-ion beams, coordinated with significant efforts in self-consistent simulation and theory.* The experiments use multiple diagnostics, within and between quadrupole magnets, to measure the sources and accumulation of electrons and gas. In support of these studies, we have measured gas desorption and electron emission coefficients for potassium ions impinging on stainless steel targets at angles near grazing incidence.** Our goal is to measure the electron particle balance for each source - ionization of gas, emission from beam tubes, and emission from an end wall - determine the electron effects on the ion beam and apply the increased understanding to mitigation.

  7. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  8. Electromagnetic Simulations of Dielectric Wall Accelerator Structures for Electron Beam Acceleration

    CERN Document Server

    Nelson, Scott D

    2005-01-01

    Dielectric Wall Accelerator (DWA) technology incorporates the energy storage mechanism, the switching mechanism, and the acceleration mechanism for electron beams. Electromagnetic simulations of DWA structures includes these effects and also details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam. DWA structures include both bi-linear and bi-spiral configurations with field gradients on the order of 20MV/m and the simulations include the effects of the beampipe, the beampipe walls, the DWA High Gradient Insulator (HGI) insulating stack, wakefield impedance calculations, and test particle trajectories with low emittance gain. Design trade-offs include the transmission line impedance (typically a few ohms), equilibration ring optimization, driving switch inductances, and a layer-to-layer coupling analysis and its affect on the pulse rise time.

  9. Inverse free electron laser accelerator for advanced light sources

    Directory of Open Access Journals (Sweden)

    J. P. Duris

    2012-06-01

    Full Text Available We discuss the inverse free electron laser (IFEL scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  10. BOOK REVIEW: Electron acceleration in the aurora and beyond

    Science.gov (United States)

    McClements, K. G.

    1999-08-01

    Duncan Bryant is a retired space plasma physicist who spent most of his career at the Rutherford-Appleton Laboratory in Oxfordshire, England. For many years he has been challenging a widely accepted theory, that auroral electrons are accelerated by double layers, on the grounds that it contains a fundamental error (allegedly, an implicit assumption that charged particles can gain energy from conservative fields). It is, of course, right that models of particle acceleration in natural plasmas should be scrutinized carefully in terms of their consistency with basic physical principles, and I believe that Dr Bryant has performed a valuable service by highlighting this issue. He maintains that auroral electron acceleration by double layers is fundamentally untenable, and that acceleration takes place instead via resonant interactions with lower hybrid waves. In successive chapters, he asserts that essentially the same process can account for electron acceleration observed at the Earth's bow shock, in the neighbourhood of an `artificial comet' produced as part of the Active Magnetospheric Particle Explorers (AMPTE) space mission in 1984/85, in the solar wind, at the Earth's magnetopause, and in the Earth's magneto- sphere. The evidence for this is not always convincing: waves with frequencies of the order of the lower hybrid resonance are often observed in these plasma environments, but in general it is difficult to identify clearly which wave mode is being observed (whistlers, for example, have frequencies in approximately the same range as lower hybrid waves). Moreover, it is not at all clear that the waves which are observed, even if they were of the appropriate type, would have sufficient intensity to accelerate electrons to the extent observed. The author makes a persuasive case, however, that acceleration in the aurora, and in other plasma environments accessible to in situ measurements, involves some form of wave turbulence. In Chapter 2 it is pointed out that

  11. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    National Research Council Canada - National Science Library

    Loulergue, A; Labat, M; Evain, C; Benabderrahmane, C; Malka, Victor; Couprie, M E

    2015-01-01

    .... After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA...

  12. Accelerator physics in ERL based polarized electron ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yue [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-05-03

    This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

  13. Ultrafast Diagnostics for Electron Beams from Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H.; Bakeman, M.; Geddes, C. G. R.; Gonsalves, T.; Lin, C.; Nakamura, K.; Osterhoff, J.; Plateau, G. R.; Schroeder, C. B.; Shiraishi, S.; Sokollik, T.; van Tilborg, J.; Toth, Cs.; Leemans, W. P.

    2010-06-01

    We present an overview of diagnostic techniques for measuring key parameters of electron bunches from Laser Plasma Accelerators (LPAs). The diagnostics presented here were chosen because they highlight the unique advantages (e.g., diverse forms of electromagnetic emission) and difficulties (e.g., shot-to-shot variability) associated with LPAs. Non destructiveness and high resolution (in space and time and energy) are key attributes that enable the formation of a comprehensive suite of simultaneous diagnostics which are necessary for the full characterization of the ultrashort, but highly-variable electron bunches from LPAs.

  14. A "slingshot" laser-driven acceleration mechanism of plasma electrons

    CERN Document Server

    Fiore, Gaetano; Fedele, Renato

    2016-01-01

    We briefly report on the recently proposed [G. Fiore, R. Fedele, U. de Angelis, Phys. Plasmas 21 (2014), 113105], [G. Fiore, S. De Nicola, arXiv:1509.04656] electron acceleration mechanism named "slingshot effect": under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  15. The use and potential application of electron accelerator in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Danu, Sugiarto [National Nuclear Energy Agency, Center for Research and Development of Isotopes and Radiation Technology, Jakarta (Indonesia)

    2003-02-01

    The use of electron accelerator in Indonesia for research and development, radiation services, commercial purposes and potential application in the future is described. A pilot plant for radiation curing technology particularly for wood surface coating using low energy electron accelerator (300 keV, 50 mA; installed in 1984) and a EBM GJ 2 (2 MeV, 10 mA, installed in 1994) for R and D of crosslinking process such as wire and cable and heat shrinkable tube and sheets in Center for Research and Development of Isotopes and Radiation Technology, Jakarta, and also a low energy electron accelerator (installed in 1998) in a private company, PT Gajah Tunggai, are being mainly used. Their performances are presented with activities achieved in the fields of wood surface coating, vulcanization of natural rubber latex, grafting of polyethylene terephthalate (PET), radiation sterilization, degradation of cellulose and, as promising applications, radiation curing for composite production and uses for environmental preservation are introduced. (S. Ohno)

  16. Laser-ion acceleration via anomalous electron heating

    CERN Document Server

    Yogo, A; Iwata, N; Tosaki, S; Morace, A; Arikawa, Y; Fujioka, S; Nishimura, H; Sagisaka, A; Johzaki, T; Matsuo, K; Kamitsukasa, N; Kojima, S; Nagatomo, H; Nakai, M; Shiraga, H; Murakami, M; Tokita, S; Kawanaka, J; Miyanaga, N; Yamanoi, K; Norimatsu, T; Sakagami, H; Bulanov, S V; Kondo, K; Azechi, H

    2016-01-01

    Using a kilojoule class laser, we demonstrate for the first time that high-contrast picosecond pulses are advantageous for ion acceleration. We show that a laser pulse with optimum duration and a large focal spot accelerates electrons beyond the ponderomotive energy. This anomalous electron heating enables efficient ion acceleration reaching 52 MeV at an intensity of 1.2X10^19 Wcm^-2. The proton energy observed agrees quantitatively with a one-dimensional plasma expansion model newly developed by taking the anomalous heating effect into account. The heating process is confirmed by both measurements with an electron spectrometer and a one-dimensional particle-in-cell simulation. By extending the pulse duration to 6 ps, 5% energy conversion efficiency to protons (50 J out of 1 kJ laser energy) is achieved with an intensity of 10^18-Wcm^-2. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

  17. Millisecond newly born pulsars as efficient accelerators of electrons.

    Science.gov (United States)

    Osmanov, Zaza; Mahajan, Swadesh; Machabeli, George; Chkheidze, Nino

    2015-09-25

    The newly born millisecond pulsars are investigated as possible energy sources for creating ultra-high energy electrons. The transfer of energy from the star rotation to high energy electrons takes place through the Landau damping of centrifugally driven (via a two stream instability) electrostatic Langmuir waves. Generated in the bulk magnetosphere plasma, such waves grow to high amplitudes, and then damp, very effectively, on relativistic electrons driving them to even higher energies. We show that the rate of transfer of energy is so efficient that no energy losses might affect the mechanism of particle acceleration; the electrons might achieve energies of the order of 10(18) eV for parameters characteristic of a young star.

  18. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  19. Accelerating VASP electronic structure calculations using graphic processing units

    KAUST Repository

    Hacene, Mohamed

    2012-08-20

    We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to isolate the time-consuming parts, (ii) rewriting these so that the algorithms become better-suited for the chosen graphic accelerator, and (iii) optimizing memory traffic between the host computer and the GPU accelerator. We chose to accelerate VASP with NVIDIA GPU using CUDA. We compare the GPU and original versions of VASP by evaluating the Davidson and RMM-DIIS algorithms on chemical systems of up to 1100 atoms. In these tests, the total time is reduced by a factor between 3 and 8 when running on n (CPU core + GPU) compared to n CPU cores only, without any accuracy loss. © 2012 Wiley Periodicals, Inc.

  20. An energy recovery electron accelerator for DIS at the LHC

    CERN Document Server

    Schulte, Daniel; Jensen, Erk; Valloni, Alessandra; Zimmermann, Frank; Klein, Max

    2014-01-01

    The Large Hadron Electron Collider (LHeC) is a proposed faci lity which will exploit the LHC beams for electron–proton/nucleus scattering, using a new 60 GeV electron accelerator. Following the release of its detailed conceptual design report last ye ar, the configuration of a linac with racetrack shape has been chosen for its default design. Furt her work has been pursued in order to adapt the electron and high luminosity beam optics, to desig n an LHeC Test Facility at CERN and to maximise the ep luminosity to achieve values close to 10 34 cm − 2 s − 1 as is desirable for precision Higgs physics with the LHeC. The talk presents an overview on the design, recent activities and an outlook for further developments

  1. Conceptual design of industrial free electron laser using superconducting accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    Paper presents conceptual design of free electron laser (FEL) complex for industrial applications. The FEL complex consists of three. FEL oscillators with the optical output spanning the infrared (IR) and ultraviolet (UV) wave-lengths ({lambda} = 0.3...20 {mu}m) and with the average output power 10 - 20 kW. The driving beam for the FELs is produced by a superconducting accelerator. The electron beam is transported to the FELs via three beam lines (125 MeV and 2 x 250 MeV). Peculiar feature of the proposed complex is a high efficiency of the. FEL oscillators, up to 20 %. This becomes possible due to the use of quasi-continuous electron beam and the use of the time-dependent undulator tapering.

  2. Joule heating and runaway electron acceleration in a solar flare

    Science.gov (United States)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  3. Electron acceleration at nearly perpendicular collisionless shocks. 3: Downstream distributions

    Science.gov (United States)

    Krauss-Varban, D.

    1994-01-01

    Spacecraft observations at the Earth's bow shock and at interplanetary shocks have established that the largest fluxes of accelerated suprathermal electrons occur in so-called shock spike events immediately downstream of the shock ramp. Previous theoretical efforts have mainly focused on explaining upstream energetic electron beams. Here we investigate the general motion and acceleration of energetic electrons in a curved, nearly perpendicular shock by numerically integrating the orbits of solar wind halo electrons in shock fields generated by a hybrid simulation (core electron fluid and kinetic ions). Close to the angle Theta(sub Bn) = 90 degs between the upstream magnetic field and shock normal, the calculations result in a (perpendicular) temperature increase proportional to the magnetic field ratio and give the highest phase space densities in the overshoot. For a steep distribution, the temperature change can correspond to an enhancement of the distribution by several orders of magnitude. These results are in agreement with predictions from adiabatic mapping. With smaller angles Theta(sub Bn), the overshoot and downstream densities fall off quickly, because the adiabatic energy gain is less and fewer electrons transmit. The shock curvature also leads to an accumulation of electrons close to 90 degs. Without pitch angle scattering, energization is only significant within a few (approximately 5 to 10 degs) degrees of the point of tangency. However, shock spike events appear to be observed more easily and farther away from 90 degs. Given that over a region of several degrees around 90 degs the theory gives enhancements of up to approximately 4 orders of magnitude, such electrons could in principle account for the typically observed enhancements of 1 to 2 orders of magnitude, if they were distributed over Theta(sub Bn). To test the idea that scattering could efficiently redistribute the energetic electrons, we have conducted test particle simulations in which

  4. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  5. Longitudinal Jitter Analysis of a Linear Accelerator Electron Gun

    Directory of Open Access Journals (Sweden)

    MingShan Liu

    2016-11-01

    Full Text Available We present measurements and analysis of the longitudinal timing jitter of a Beijing Electron Positron Collider (BEPCII linear accelerator electron gun. We simulated the longitudinal jitter effect of the gun using PARMELA to evaluate beam performance, including: beam profile, average energy, energy spread, and XY emittances. The maximum percentage difference of the beam parameters is calculated to be 100%, 13.27%, 42.24% and 65.01%, 86.81%, respectively. Due to this, the bunching efficiency is reduced to 54%. However, the longitudinal phase difference of the reference particle was 9.89°. The simulation results are in agreement with tests and are helpful to optimize the beam parameters by tuning the trigger timing of the gun during the bunching process.

  6. Investigation of123I production using electron accelerator.

    Science.gov (United States)

    Avetisyan, Albert; Avagyan, Robert; Dallakyan, Ruben; Avdalyan, Gohar; Dobrovolsky, Nikolay; Gavalyan, Vasak; Kerobyan, Ivetta; Harutyunyan, Gevorg

    2017-04-01

    The possibility of 123 I isotope production with the help of the high-intensity bremsstrahlung photons produced by the electron beam of the LUE50 linear electron accelerator at the A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute [YerPhI]) is considered. The production method has been established and shown to be successful. The 124 Xe(γ,n) 123 Xe→ 123 I nuclear reaction has been investigated and the cross-section was calculated by nuclear codes TALYS 1.6 and EMPIRE 3.2. The optimum parameter of the thickness of the target was determined by GEANT4 code. For the normalized yield of 123 I, the value of 143Bq/(mg·μA·h) has been achieved. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Electron bow-wave injection of electrons in laser-driven bubble acceleration.

    Science.gov (United States)

    Ma, Y Y; Kawata, S; Yu, T P; Gu, Y Q; Sheng, Z M; Yu, M Y; Zhuo, H B; Liu, H J; Yin, Y; Takahashi, K; Xie, X Y; Liu, J X; Tian, C L; Shao, F Q

    2012-04-01

    An electron injection regime in laser wake-field acceleration, namely electron bow-wave injection, is investigated by two- and three-dimensional particle-in-cell simulation as well as analytical model. In this regime electrons in the intense electron bow wave behind the first bubble catch up with the bubble tail and are trapped by the bubble finally, resulting in considerable enhancement of the total trapped electron number. For example, with the increase of the laser intensity from 2 × 10(19) to 1 × 10(20) W/cm(2), the electron trapping changes from normal self-injection to bow-wave injection and the trapped electron number is enhanced by two orders of magnitude. An analytical model is proposed to explain the numerical observation.

  8. Electronics Packaging Issues for Future Accelerators and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.

    2004-11-11

    Standard instrument modules for physics reached their zenith of industrial development from the early 1960s through late 1980s. Started by laboratory engineering groups in Europe and North America, modular electronic standards were successfully developed and commercialized. In the late 1980's a major shift in large detector design toward custom chips mounted directly on detectors started a decline in the use of standard modules for data acquisition. With the loss of the detector module business, commercial support declined. Today the engineering communities supporting future accelerators and experiments face a new set of challenges that demand much more reliable system design. The dominant system metric is Availability. We propose (1) that future accelerator and detector systems be evaluated against a Design for Availability (DFA) metric; (2) that modular design and standardization applied to all electronic and controls subsystems are key to high Availability; and (3) that renewed Laboratory-Industry collaboration(s) could make an invaluable contribution to design and implementation.

  9. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  10. Externally Controlled Injection of Electrons by a Laser Pulse in a Laser Wakefield Electron Accelerator

    CERN Document Server

    Chen Szu Yuan; Chen Wei Ting; Chien, Ting-Yei; Lee, Chau-Hwang; Lin, Jiunn-Yuan; Wang, Jyhpyng

    2005-01-01

    Spatially and temporally localized injection of electrons is a key element for development of plasma-wave electron accelerator. Here we report the demonstration of two different schemes for electron injection in a self-modulated laser wakefield accelerator (SM-LWFA) by using a laser pulse. In the first scheme, by implementing a copropagating laser prepulse with proper timing, we are able to control the growth of Raman forward scattering and the production of accelerated electrons. We found that the stimulated Raman backward scattering of the prepulse plays the essential role of injecting hot electrons into the fast plasma wave driven by the pump pulse. In the second scheme, by using a transient density ramp we achieve self-injection of electrons in a SM-LWFA with spatial localization. The transient density ramp is produced by a prepulse propagating transversely to drill a density depression channel via ionization and expansion. The same mechanism of injection with comparable efficiency is also demonstrated wi...

  11. The application of a linear electron accelerator in radiation processing

    Science.gov (United States)

    Ruiying, Zhou; Binglin, Wang; Wenxiu, Chen; Yongbao, Gu; Yinfen, Zhang; Simin, Qian; Andong, Liu; Peide, Wang

    A 3-5 MeV electron beam generated by a BF-5 type linear electron accelerator has been used in some radiation processing works, such as, (1) The cross-linking technology by radiation for the polyethylene foaming processing --- the correlation between the cross-linkage and the absorbed dose, the relation between the elongation of foaming polyethylene and the dose, the relation between the size of the cavities and the gelatin rate and the optimum range of dosage for foaming have been found. (2) The research work on the fast switch thyristor irradiated by electron beam --- The relation between the absorbed dose and the life-time of minority carriers has been studied and the optimum condition for radiation processing was determined. This process is much better than the conventional gold diffusion in raising the quality and end-product rate of these devices. Besides, we have made some testing works on the hereditary mutation of plant seeds and microorganism mutation induced by electron radiation and radiation sterilization for some medical instruments and foods.

  12. Design of cavities of a standing wave accelerating tube for a 6 MeV electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Zarei

    2017-08-01

    Full Text Available Side-coupled standing wave tubes in  mode are widely used in the low-energy electron linear accelerator, due to high accelerating gradient and low sensitivity to construction tolerances. The use of various simulation software for designing these kinds of tubes is very common nowadays. In this paper, SUPERFISH code and COMSOL are used for designing the accelerating and coupling cavities for a 6 MeV electron linear accelerator. Finite difference method in SUPERFISH code and Finite element method in COMSOL are used to solve the equations. Besides, dimension of accelerating and coupling cavities and also coupling iris dimension are optimized to achieve resonance frequency of 2.9985 MHz and coupling constant of 0.0112. Considering the results of this study and designing of the RF energy injection port subsequently, the construction of 6 MeV electron tube will be provided

  13. Electron acceleration in the heart of the Van Allen radiation belts.

    Science.gov (United States)

    Reeves, G D; Spence, H E; Henderson, M G; Morley, S K; Friedel, R H W; Funsten, H O; Baker, D N; Kanekal, S G; Blake, J B; Fennell, J F; Claudepierre, S G; Thorne, R M; Turner, D L; Kletzing, C A; Kurth, W S; Larsen, B A; Niehof, J T

    2013-08-30

    The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth's magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA's Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.

  14. Vaccine Biotechnology by Accelerated Electron Beam and Microwave Irradiation

    Science.gov (United States)

    Craciun, Gabriela D.; Togoe, Iulian I.; Tudor, Laurentiu M.; Martin, Diana I.; Manaila, Elena N.; Ighigeanu, Daniel I.; Iacob, Nicusor I.; Oproiu, Constantin V.

    2007-04-01

    A new biotechnology for obtaining a commercial vaccine that contains either Fusobacterium necrophorum (F.n.) exotoxins inactivated by accelerated electron beam (EB) and microwave (MW) irradiation, or exotoxins isolated from F.n. cultures irradiated with EB+MW, is presented. This vaccine is designed for prophylaxis of ruminant infectious pododermatitis (IP) produced by F.n. Also, the research results concerning the effects of combined chemical adjuvant and EB+MW irradiation on F.n. immune capacity are discussed. The vaccine's efficacy will be tested in ruminant farms in which IP evolves. It is expected that this new vaccine to offer a better protection, more than 60%, which is the best presently obtained result in ruminant farms.

  15. Radiation processing of liquid with low energy electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Radiation induced emulsion polymerization, radiation vulcanization of NR latex (RVNRL) and radiation degradation of natural polymers were selected and reviewed as the radiation processing of liquid. The characteristic of high dose rate emulsion polymerization is the occurrence of cationic polymerization. Thus, it can be used for the production of new materials that cannot be obtained by radical polymerization. A potential application will be production of polymer emulsion that can be used as water-borne UV/EB curing resins. The technology of RVNRL by {gamma}-ray has been commercialized. RVNRL with low energy electron accelerator is under development for further vulcanization cost reduction. Vessel type irradiator will be favorable for industrial application. Radiation degradation of polysaccharides is an emerging and promising area of radiation processing. However, strict cost comparison between liquid irradiation with low energy EB and state irradiation with {gamma}-ray should be carried out. (author)

  16. Accelerating electron tomography reconstruction algorithm ICON with GPU.

    Science.gov (United States)

    Chen, Yu; Wang, Zihao; Zhang, Jingrong; Li, Lun; Wan, Xiaohua; Sun, Fei; Zhang, Fa

    2017-01-01

    Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in three-dimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.

  17. Distributed Bragg Coupler for Optical All-dielectric Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Tantawi, S.G.; Ruth, R.D.; /SLAC

    2005-09-30

    A Bragg waveguide consisting of multiple dielectric layers with alternating index of refraction provides confinement of a synchronous speed-of-light mode with extremely low loss. There are three requirements in designing input coupler for a Bragg electron accelerator: side-coupling, selective mode excitation, and high coupling efficiency. We present a side coupling scheme using a Bragg-grating-assisted input coupler to address these three requirements. Side coupling is achieved by a second order Bragg grating with a period on the order of an optical wavelength. The phase matching condition results in resonance coupling thus providing selective mode excitation capability. We demonstrate a non-uniform distributed grating structure generating an outgoing beam with a Gaussian profile, therefore, increasing the coupling efficiency.

  18. Design and construction of the first Iranian powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    AM Poursaleh

    2015-09-01

    Full Text Available In This paper we will introduce the process of design and manufacturing an electron accelerator with 10MeV energy and 100kW power as the first Iranian powerful industrial electron accelerator. This accelerator designed based on modeling of one of the most powerful industrial accelerator called Rhodotron. But the design of the accelerator in a way that can be localize by relying on domestic industries. So although it looks like a Rhodotron accelerator structure but has some different in design and manufacture of components, the results are satisfactory

  19. Acceleration of electrons outside flares - Coronal manifestation and possible origin

    Science.gov (United States)

    Raulin, J. P.; Kerdraon, A.; Klein, K.-L.; Trottet, G.; Willson, R. F.; Lang, K. R.

    1991-01-01

    Imaging observations at decimetric and metric wavelengths of the solar corona are used to investigate a short-lasting noise storm and the associated changes of the underlying active-region plasma. It is shown that a new source appears in the active region in close temporal and spatial coincidence with the onset of the noise storm in the middle corona. The onset of the noise storm is delayed at longer wavelengths. At a given wavelength, the noise-storm source undergoes a systematic slow movement with a significant component perpendicular to the magnetic-field lines above the active region. The observations are tentatively attributed to the emission of nonthermal electrons in a system of expanding coronal loops, the expansion being initiated by the appearance of the new 21-cm source in the low atmosphere. The derived velocity of expansion is about 80 to 150 km/s. The electrons emitting the noise storm cannot be provided by the high-energy tail of the Maxwellian in the new active region source, but originate either from a nonthermal population in this source or from acceleration at higher altitudes, in the structures which give rise to the noise storm.

  20. Portable X-Band Linear Electron Accelerators for Radiographic Applications

    CERN Document Server

    Saverskiy, Aleksandr J; Hernandez, Michael; Mishin, Andrey V; Skowbo, Dave

    2005-01-01

    The MINAC series portable linear electron accelerator systems designed and manufactured at American Science and Engineering, Inc. High Energy Systems Division (AS&E HESD) are discussed in this paper. Each system can be configured as either an X-ray or electron beam source. The powerful 4 MeV and 6 MeV linacs powered by a 1,5 MW magnetron permit operation in a dose rate range from 100 R/min at 80 cm to 600 R/min at 80 cm. Each MINAC is a self-contained source with radiation leakage outside of the X-ray head less than 0,1% of the maximum dose. Along with these systems a 1 MeV ultra compact MINAC has been successfully tested. The unit is available with radiation leakage less then 0.01% and permits producing X-ray beam in an energy range (1…2) MeV at a high output dose rate. Design and experimental parameters are presented. The common and system specific features are also discussed.

  1. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves

    OpenAIRE

    Horne, Richard B.; Thorne, Richard M.; Glauert, Sarah A.; Meredith, Nigel P.; Pokhotelov, Dimitry; Santolik, Ondrej

    2007-01-01

    Local acceleration is required to explain electron flux increases in the outer Van Allen radiation belt during magnetic storms. Here we show that fast magnetosonic waves, detected by Cluster 3, can accelerate electrons between ∼10 keV and a few MeV inside the outer radiation belt. Acceleration occurs via electron Landau resonance, and not Doppler shifted cyclotron resonance, due to wave propagation almost perpendicular to the ambient magnetic field. Using quasi-linear theory, pitch angle and ...

  2. Electron Acceleration By The Use Of Segmented Cylindrical Electrodes In An Inverse Free Electron Laser

    Directory of Open Access Journals (Sweden)

    M. Nikrah

    2015-08-01

    Full Text Available Abstract- In this paper we expend a theory of high gradient laser excited electron accelerator by the use of an inverse free-electron laser IFEL but with using new structure and design. The wiggler used in our scheme that is to say Paul wiggler is obtainedby segmented cylindrical electrodes with applied oscillatory voltagesVosc tover 90-degrees segments. The inverse free-electron laser interaction can be demonstrated by the equations that govern the electron motion in the composed fields of both laser pulse and Paul wiggler field. A numerical research of electron energy and electron trajectories has been made using fourth order Runge-Kutta method. The results show that the electron gains the maximum energy at a short distance for high wiggler amplitude intensities a0w. In addition it is discovered that the electron energy gains various peaks for different initial axial velocities. It is seen that aappropriate small initial axial velocity of e-beam produces remarkably high energy gain. According to the transverse limitation of the electron beam in a Paul wiggler there is no applied axial guide magnetic field in this devise.

  3. Radiation doses inside industrial irradiation installation with linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Alexandre R., E-mail: alexandre.lima@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pelegrineli, Samuel Q.; Alo, Gabriel F., E-mail: samuelfisica@yahoo.com.br, E-mail: gabriel.alo@aceletron.com.br [Aceletron Irradiacao Industrial, Aceletrica Comercio e Representacoes Ltda, Rio de Janeiro, RJ (Brazil); Silva, Francisco C.A. Da, E-mail: dasilva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Aceletron Industrial Irradiation Company is the unique installation in South America to provide industrial irradiation service using two linear electron accelerators of 18 kW and 10 MeV energy. The electron beam technology allows using electrons to irradiate many goods and materials, such as hospital and medical equipment, cosmetics, herbal products, polymers, peat, gemstones and food. Aceletron Company uses a concrete bunker with 3.66 m of thickness to provide the necessary occupational and environmental radiation protection of X-rays produced. The bunker is divided in main four areas: irradiation room, maze, tower and pit. Inside the irradiation room the x-rays radiation rates are measured in two ways: direct beam and 90 deg C. The rates produced in the conveyor system using 10 MeV energy are 500 Gy/min/mA and 15 Gy/min/mA, respectively. For a 1.8 mA current, the rates produced are 900 Gy/min and 27 Gy/min, respectively. Outside the bunker the radiation rate is at background level, but in the tower door and modulation room the radiation rate is 10 μSv/h. In 2014, during a routine operation, an effective dose of 30.90 mSv was recorded in a monthly individual dosimeter. After the investigation, it was concluded that the dose was only in the dosimeter because it felt inside the irradiation room. As Aceletron Company follows the principles of safety culture, it was decided to perform the radiation isodose curves, inside the four areas of the installation, to know exactly the hotspots positions, exposure times and radiation doses. Five hotspots were chosen taking into account worker's routes and possible operational places. The first experiment was done using a package with three TLD and OSLD dosimeters to obtain better statistical results. The first results for the five hotspots near the accelerator machine showed that the radiation dose rates were between 26 Gy/h and 31 Gy/h. The final measurements were performed using a package with one TLD and one OSLD

  4. Treatment of vinasses - recirculation

    Directory of Open Access Journals (Sweden)

    Germán Andrés Castro Moreno

    2009-08-01

    Full Text Available The purpose of this minireview is to give an overview of treatments that have been applied on the vinasse, residue from the alcoholic fermentation; appoint some of its advantages and disadvantages, and then submit recirculation, as one of the best options from an economic point of view and easy implementation, for those who are not interested in the ethanol byproducts.

  5. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Science.gov (United States)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  6. Data acquisition workstation for Oak Ridge Electron Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Todd, J.H.; Rooney, B.D.; Spencer, R.R.; Weston, L.W.

    1991-01-01

    A new multiparameter data acquisition system for the Oak Ridge Electron Linear Accelerator (ORELA) was developed, fabricated and tested. This system uses an IBM PS/2 Model 80-111 personal computer and a data handler with a 2048-word buffer. The buffer can accept data at a rate exceeding one million events per second in bursts of 512 words of 64-bits length. The acquisition system, limited by software, can acquire data from 1, 2, or 3 digitizers; multiplex up to 4 detectors; read and control up to 16 scalers or registers; and output up to 32 DC logic lines that can be used to control external instrumentation. Software was developed for the OS/2 operating system, supporting multiparameter data storage for up to three million channels. Data can be collected in a background mode to make the computer available for other tasks while collecting data. The system also supports multiparameter biasing and can collect, crunch, and store data at rates of 30,000 events per second, each event containing up to 64-bits of information. A technical manual, ORNL/TM-11454, covering the use of the system has been published. 1 refs., 4 figs., 2 tabs.

  7. Electron cloud studies for CERN particle accelerators and simulation code development

    OpenAIRE

    Iadarola, Giovanni

    2014-01-01

    In a particle accelerator free electrons in the beam chambers can be generated by different mechanisms like the ionization of the residual gas or the photoemission from the chamber’s wall due to the synchrotron radiation emitted by the beam. The electromagnetic field of the beam can accelerate these electrons and project them onto the chamber’s wall. According to their impact energy and to the Secondary Electron Yield (SEY) of the surface, secondary electrons can be generated. Especially...

  8. Electron transport with re-acceleration and radiation in the jets of X-ray binaries

    Science.gov (United States)

    Zhang, Jian-Fu; Li, Zhi-Ren; Xiang, Fu-Yuan; Lu, Ju-Fu

    2018-01-01

    This paper studies the acceleration processes of background thermal electrons in X-ray binary jets via turbulent stochastic interactions and shock collisions. By considering turbulent magnetized jets mixed with fluctuating magnetic fields and an ordered large-scale magnetic field, and numerically solving the transport equation along the jet axis, we explore the influence on acceleration efficiency of magnetic turbulence, electron injection, the location of the acceleration region and various cooling mechanisms. The results show the following: (1) Dominant turbulent magnetic fields in the jets are necessary to accelerate background thermal electrons to relativistic energies. (2) The acceleration of electrons depends on the type of magnetohydrodynamic turbulence and turbulence with a hard slope can accelerate electrons more effectively. (3) The effective acceleration region is located at a distance >103Rg away from the central black hole (Rg being the gravitational radius). As a result of acceleration mechanisms competing with various cooling mechanisms, background thermal electrons gain energy and their spectra are broadened beyond the initial distribution to form a thermal-like distribution. (4) The acceleration mechanisms explored in this work can reasonably provide the maximum electron energy required for interpreting high-energy γ-ray observations from microquasars; however, some extreme parameter values are needed for the possible very high-energy γ-ray signals.

  9. Energy-gain measurements from a microwave inverse free-electron-laser accelerator.

    Science.gov (United States)

    Yoder, R B; Marshall, T C; Hirshfield, J L

    2001-02-26

    Experiments are reported on inverse free-electron-laser acceleration, including for the first time observations of the energy change as a function of relative injection phase of the electron bunches. The microwave accelerating structure consists of a uniform circular waveguide with a helical wiggler and an axial magnetic field. Acceleration of the entire beam by 6% is seen for 6 MeV electron bunches at optimum relative phase. Experimental results compare favorably, for accelerating phases, with predictions of a three-dimensional simulation that includes large-orbit effects.

  10. Laser-Based Electron Acceleration Experiment in KERI/APRI-GIST

    CERN Document Server

    Kim, Guang-Hoon; Hafz, Nasr; Ko Do Kyeong; Lee Jong Min; Suk, Hyyong; Yu, T J

    2005-01-01

    Laser-based acceleration of charged particles has been of interest since laser wakefield produces very strong longitudinal electrical field to accelerate electrons upto relativistic energy. Recently, 20TW Ti:sapphire laser system, with pulse width of 30 fs and energy pf 600 mJ, was installed in APRI-GIST. The laser pulse is focused onto a gas jet to produce plasma and accelerate electrons in the scheme of self-modulated laser wakefield acceleration. Details of laser system and diagnostic results of electron beam will be discussed

  11. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses.

    Science.gov (United States)

    Faure, J; Rechatin, C; Norlin, A; Lifschitz, A; Glinec, Y; Malka, V

    2006-12-07

    In laser-plasma-based accelerators, an intense laser pulse drives a large electric field (the wakefield) which accelerates particles to high energies in distances much shorter than in conventional accelerators. These high acceleration gradients, of a few hundreds of gigavolts per metre, hold the promise of compact high-energy particle accelerators. Recently, several experiments have shown that laser-plasma accelerators can produce high-quality electron beams, with quasi-monoenergetic energy distributions at the 100 MeV level. However, these beams do not have the stability and reproducibility that are required for applications. This is because the mechanism responsible for injecting electrons into the wakefield is based on highly nonlinear phenomena, and is therefore hard to control. Here we demonstrate that the injection and subsequent acceleration of electrons can be controlled by using a second laser pulse. The collision of the two laser pulses provides a pre-acceleration stage which provokes the injection of electrons into the wakefield. The experimental results show that the electron beams obtained in this manner are collimated (5 mrad divergence), monoenergetic (with energy spread electron bunch durations shorter than 10 fs. We anticipate that this stable and compact electron source will have a strong impact on applications requiring short bunches, such as the femtolysis of water, or high stability, such as radiotherapy with high-energy electrons or radiography for materials science.

  12. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  13. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  14. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  15. Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

    OpenAIRE

    Li, W; Thorne, RM; Bortnik, J; Baker, DN; Reeves, GD; Kanekal, SG; Spence, HE; Green, JC

    2015-01-01

    ©2015. American Geophysical Union. All Rights Reserved. Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations ( > 1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly c...

  16. The role of three-dimensional transport in driving enhanced electron acceleration during magnetic reconnection

    Science.gov (United States)

    Dahlin, J. T.; Drake, J. F.; Swisdak, M.

    2017-09-01

    Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.

  17. Electrons acceleration in a TE 113 cylindrical cavity affected by a static inhomogeneous magnetic field

    Science.gov (United States)

    E Vergara, V.; González, J. D.; Beltrán, J. R.; Orozco, E. A.

    2017-12-01

    The relativistic dynamics of an electron accelerated in a cylindrical cavity mode TE 113 in the presence of a static inhomogeneous magnetic field is studied. This type of acceleration is known as Spatial AutoResonance Acceleration (SARA). The magnetic field profile is such that it keeps the phase difference between the electric microwave field and the electron velocity vector within the acceleration phase band. We study the dynamic of the electron through simulations of the relativistic Newton-Lorentz equation. Numerical experiments with TE 113 cylindrical microwave fields of a frequency of 2.45GHz and an amplitude of the order of 7kV/cm show that it is possible accelerate the electrons up to energies of the order of 300keV. This energy is about of 30% higher than those obtained in previous studies by using the TE 112 mode.

  18. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, K.P.; Wu, Z.; /SLAC; Cowan, B.M.; /Tech-X, Boulder; Hanuka, A.; /SLAC /Technion; Makasyuk, I.V.; /SLAC; Peralta, E.A.; Soong, K.; Byer, R.L.; /Stanford U.; England, R.J.; /SLAC

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  19. Cosmic Rays and Runaway Electrons: Evidence for Acceleration of Electrons during Thunderstorms

    Science.gov (United States)

    Lidvansky, A. S.; Khaerdinov, N. S.; Petkov, V. B.

    2003-12-01

    We present the data on correlations of the intensity of the soft component (10 -30 MeV) of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a. s. l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the `electric mill' type is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000--2002. We have observed strong enhancements of the soft component intensity before some lightning strokes [1]. The largest enhancement detected in the first season demonstrated an exponential growth of intensity before lightning and was interpreted as a confirmation of runaway electron breakdown mechanism [2]. However, this event is apparently very rare (a single event for three seasons of observation). The enhancements of a different pattern (slow events several minutes long) turned out to be much more numerous. Recently, a special experiment was made to estimate the minimum distance to lightning events [3], and the distances were found to be fairly large (2-5 km). At the same time, the analysis of the regression curve `intensity versus field' [4] discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons (see Fig. 1). It is interpreted as a precipitation of runaway electrons from the region of the strong field (with the opposite sign) overhead. If this interpretation is true, one can conclude from these data that (i) Wilson's runaway electrons do exist, (ii) their energy can be pretty high (more than ten MeV), and (iii) they are not necessarily directly related to lightning events. Fig. 1. Deviation of the soft component intensity from its mean value versus the near-earth electric field during thunderstorms. The left-hand side of the plot corresponds to acceleration of electrons near the ground

  20. Proposed Physics Experiments for Laser-Driven Electron Linear Acceleration in a Dielectric Loaded Vacuum, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Dept. of Applied Physics. Edward L. Ginzton Lab.

    2016-07-08

    This final report summarizes the last three years of research on the development of advanced linear electron accelerators that utilize dielectric wave-guide vacuum channels pumped by high energy laser fields to accelerate beams of electrons.

  1. Use of the calorimeter in the dosimetry for electron accelerators; Uso del calorimetro en la dosimetria para aceleradores de electrones

    Energy Technology Data Exchange (ETDEWEB)

    Chavez B, A

    1991-02-15

    The measure of different radiation types, with specific dosemeters, requires that the absorbed dose should be measured with accuracy by some common standard. The existent problem around the dosimetry of accelerated electrons has forced to the development of diverse detector types that after having analyzed the characteristics; dependability and reproducibility are used as dosemeters. Recently the calorimeters have been developed, with the purpose of carrying out dosimetry for electron accelerators. The RISO laboratory in Denmark, in it 10 MeV accelerator had been used for the dosimetry those water calorimeters, later on, using the principle of the water calorimeter, it was designing one similar, for the accelerator of 400 keV. Recently manufactured simple calorimeters of graphite have been used, which can be used in both accelerators of 10 MeV and 400 keV. (Author)

  2. A Low-Energy-Spread Rf Accelerator for a Far-Infrared Free-Electron Laser

    NARCIS (Netherlands)

    van der Geer, C. A. J.; Bakker, R. J.; van der Meer, A. F. G.; van Amersfoort, P. W.; Gillespie, W. A.; Saxon, G.; Poole, M. W.

    1993-01-01

    A high electron current and a small energy spread are essential for the operation of a free electron laser (FEL). In this paper we discuss the design and performance of the accelerator for FELIX, the free electron laser for infrared experiments. The system consists of a thermionic gun, a prebuncher,

  3. Relativistic Electron Acceleration with Ultrashort Mid-IR Laser Pulses

    Science.gov (United States)

    Feder, Linus; Woodbury, Daniel; Shumakova, Valentina; Gollner, Claudia; Miao, Bo; Schwartz, Robert; Pugžlys, Audrius; Baltuška, Andrius; Milchberg, Howard

    2017-10-01

    We report the first results of laser plasma wakefield acceleration driven by ultrashort mid-infrared laser pulses (λ = 3.9 μm , pulsewidth 100 fs, energy width, as well as trends in the accelerated beam profiles, charge and energy spectra which are supported by 3D particle-in-cell simulations. These results extend earlier work with sub-TW self-modulated laser wakefield acceleration using near IR drivers to the Mid-IR, and enable us to capture time-resolved images of relativistic self-focusing of the laser pulse. This work supported by DOE (DESC0010706TDD, DESC0015516); AFOSR(FA95501310044, FA95501610121); NSF(PHY1535519); DHS.

  4. The Role of the Guide Field in Electron Acceleration during Magnetic Reconnection

    Science.gov (United States)

    Dahlin, J.; Drake, J. F.; Swisdak, M.

    2016-12-01

    Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena including solar flares and magnetospheric storms. Kinetic particle-in-cell (PIC) simulations of collisionless reconnection reveal that the efficiency of electron acceleration is highly sensitive to magnitude of the guide field (the magnetic field component perpendicular to the reconnection plane). In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. In 2D systems electrons are trapped within stagnant magnetic island cores so that acceleration is suppressed, whereas in 3D the stochastic magnetic field enables energetic electrons to freely sample regions where energy release is taking place. In 3D systems with a weak guide field, however, transport is diminished and electron acceleration is suppressed as in the 2D case. These results suggest that the most efficient electron acceleration occur in reconnection with a moderate guide field (comparable to the reconnecting component) so that both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. This has important implications for understanding electron acceleration in solar flares and reconnection-driven dissipation in astrophysical turbulence.

  5. Spatiotemporal evolution of electron characteristics in the electron diffusion region of magnetic reconnection: Implications for acceleration and heating

    Science.gov (United States)

    Shuster, J. R.; Chen, L.-J.; Hesse, M.; Argall, M. R.; Daughton, W.; Torbert, R. B.; Bessho, N.

    2015-04-01

    Based on particle-in-cell simulations of collisionless magnetic reconnection, the spatiotemporal evolution of electron velocity distributions in the electron diffusion region (EDR) is reported to illustrate how electrons are accelerated and heated. Approximately when the reconnection rate maximizes, electron distributions in the vicinity of the X line exhibit triangular structures with discrete striations and a temperature (Te) twice that of the inflow region. Te increases as the meandering EDR populations mix with inflowing electrons. As the distance from the X line increases within the electron outflow jet, the discrete populations swirl into arcs and gyrotropize by the end of the jet with Te about 3 times that of the X line. Two dominant processes increase Te and produce the spatially and temporally evolving EDR distributions: (1) electric field acceleration preferential to electrons which meander in the EDR for longer times and (2) cyclotron turning by the magnetic field normal to the reconnection layer.

  6. Possible scenarios for the initial acceleration of electrons of the core of ball lightning

    Science.gov (United States)

    Shmatov, M. L.

    2015-12-01

    > A model for the initial acceleration of electrons of the core of ball lightning is presented, according to which this acceleration occurs on screening of the strong electric field of the positive charge injected into the atmosphere. Several scenarios for such injection, the factors favourable for the formation of ball lightning and possible experiments on such formation are considered.

  7. High quality electron bunch generation with CO2-laser plasma accelerator

    CERN Document Server

    Zhang, L G; Xu, J C; Ji, L L; Zhang, X M; Wang, W P; Zhao, X Y; Yi, L Q; Yu, Y H; Shi, Y; Xu, T J; Xu, Z Z

    2014-01-01

    CO2 laser-driven electron acceleration is demonstrated with particle-in-cell simulation in low-density plasma. An intense CO2 laser pulse with long wavelength excites wakefield. The bubble behind it has a broad space to sustain a large amount of electrons before reaching its charge saturation limit. A transversely propagating inject pulse is used to induce and control the ambient electron injection. The accelerated electron bunch with total charge up to 10 nC and the average charge per energy interval of more than 0.6 nC/MeV are obtained. Plasma-based electron acceleration driven by intense CO2 laser provides a new potential way to generate high-charge electron bunch with low energy spread, which has broad applications, especially for X-ray generation by table-top FEL and bremsstrahlung.

  8. Space-charge effects in ultrahigh current electron bunches generated by laser-plasma accelerators

    National Research Council Canada - National Science Library

    Grüner, F. J; Schroeder, C. B; Maier, A. R; Becker, S; Mikhailova, J. M

    2009-01-01

    ...) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process...

  9. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclear applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program

  10. Direct observation of radiation-belt electron acceleration from electron-volt energies to megavolts by nonlinear whistlers.

    Science.gov (United States)

    Mozer, F S; Agapitov, O; Krasnoselskikh, V; Lejosne, S; Reeves, G D; Roth, I

    2014-07-18

    The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth's outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electric field to relativistic energies in several resonant interactions. TDS are packets of electric field spikes, each spike having duration of a few hundred microseconds and containing a local parallel electric field. The TDS of interest resulted from nonlinearity of the parallel electric field component in oblique whistlers and consisted of ∼ 0.1 msec pulses superposed on the whistler waveform with each such spike containing a net parallel potential the order of 50 V. Local magnetic field compression from remote activity provided the free energy to drive the two processes. The expected temporal correlations between the compressed magnetic field, the nonlinear whistlers with their parallel electric field spikes, the electron flux and the electron pitch angle distributions were all observed.

  11. Present status of radiation processing and its future development by using electron accelerator in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Tran Khac An; Tran Tich Canh; Doan Binh [Research and Development Center for Radiation Technology (VINAGAMMA), Ho Chi Minh (Viet Nam); Nguyen Quoc Hien [Nuclear Research Institute (NRI), Dalat (Viet Nam)

    2003-02-01

    In Vietnam, studies on Radiation Processing have been carried out since 1983. Some results are applicable in the field of agriculture, health and foodstuff, some researches were developed to commercial scale and others have high potential for development by using electron accelerator. The paper offers the present status of radiation processing and also give out the growing tendency of using electron accelerator in the future. (author)

  12. Beam Spot Measurement on a 400 keV Electron Accelerator

    DEFF Research Database (Denmark)

    Miller, Arne

    1979-01-01

    A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function.......A line probe is used to measure the beam spot radius and beam divergence at a 400 keV ICT electron accelerator, and a method is shown for reducing the line probe data in order to get the radial function....

  13. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses

    Science.gov (United States)

    Gopal, K.; Gupta, D. N.

    2017-10-01

    Optimization and control of electron beam quality in laser wakefield acceleration are explored by using a temporally asymmetric laser pulse of the sharp rising front portion. The temporally asymmetric laser pulse imparts stronger ponderomotive force on the ambient plasma electrons. The stronger ponderomotive force associated with the asymmetric pulse significantly affects the injection of electrons into the wakefield and consequently the quality of the injected bunch in terms of injected charge, mean energy, and emittance. Based on particle-in-cell simulations, we report to generate a monoenergetic electron beam with reduced emittance and enhanced charge in laser wakefield acceleration using an asymmetric pulse of duration 30 fs.

  14. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus.

    Science.gov (United States)

    Thorne, R M; Li, W; Ni, B; Ma, Q; Bortnik, J; Chen, L; Baker, D N; Spence, H E; Reeves, G D; Henderson, M G; Kletzing, C A; Kurth, W S; Hospodarsky, G B; Blake, J B; Fennell, J F; Claudepierre, S G; Kanekal, S G

    2013-12-19

    Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth's outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.

  15. Low Secondary Electron Yield Carbon Coatings for Electron-cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Calatroni, Sergio; Chiggiato, Paolo; Costa Pinto, Pedro; Marques, Hugo; Neupert, Holger; Taborelli, Mauro; Vollenberg, Wilhelmus; Wevers, Ivo; Yaqub, Kashif

    2010-01-01

    Electron-cloud is one of the main limitations for particle accelerators with positively charged beams of high intensity and short bunch spacing, as the SPS at CERN. The Secondary Electron Yield (SEY) of the inner surface of the vacuum chamber is the main parameter governing the phenomenon. The effect could be eliminated by coating the vacuum chambers with a material of low SEY, which does not require bake-out and is robust against air exposure. For such a purpose amorphous carbon (a-C) coatings were produced by magnetron sputtering of graphite targets. They exhibit maximum SEY between 0.95 and 1.05 after air transfer to the measuring instrument. After 1 month of air exposure the SEY rises by 10 - 20 % of the initial values. Storage in desiccator or by packaging in Al foil makes this increase negligible. The coatings have a similar X-ray photoelectron spectroscopy (XPS) C1s spectrum for a large set of deposition parameters and exhibit an enlarged linewidth compared to HOPG graphite. The static outgassing witho...

  16. Spectral features of the diffusive shock acceleration of electrons at the termination shock

    Science.gov (United States)

    Prinsloo, Phillip; Toit Strauss, Du; Potgieter, Marius

    2016-07-01

    Following the revelation that the source of the anomalous cosmic rays was, contrary to expectation, not located at the termination shock, the diffusive shock acceleration mechanism came under increased criticism. With regards to galactic cosmic rays, however, its involvement in their re-acceleration is less disputed, but the extent of this involvement had to be reaffirmed given the new parameter constraints provided by the Voyager spacecraft. Hence, the features of diffusive shock acceleration, studied in the context of the transport of galactic electrons, are investigated using a numerical cosmic-ray modulation model that makes provision for the effects of this acceleration mechanism. The imprint of diffusive shock acceleration on the energy distributions of galactic electrons arriving at the termination shock is studied, along with the interplay between this acceleration mechanism and transport processes such as drift and diffusion. An important overarching set of results is that if the energy distribution of electrons incident at the termination shock is softer than the power law associated with the shock compression ratio, the latter is adopted by the accelerated particles, while if the converse is true, the incident distribution's intensity is raised uniformly. This intensity increase is in turn dependent on how similar the incident spectrum is to the power law associated with the compression ratio. The influence of other transport processes on cosmic-ray re-acceleration hence hinges on how they alter energy distributions incident at the termination shock.

  17. Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator.

    Science.gov (United States)

    He, Z-H; Beaurepaire, B; Nees, J A; Gallé, G; Scott, S A; Pérez, J R Sánchez; Lagally, M G; Krushelnick, K; Thomas, A G R; Faure, J

    2016-11-08

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.

  18. Relativistic laser hosing instability suppression and electron acceleration in a preformed plasma channel

    Science.gov (United States)

    Huang, T. W.; Zhou, C. T.; Zhang, H.; Wu, S. Z.; Qiao, B.; He, X. T.; Ruan, S. C.

    2017-04-01

    The hosing processes of a relativistic laser pulse, electron acceleration, and betatron radiation in a parabolic plasma channel are investigated in the direct laser acceleration regime. It is shown that the laser hosing instability would result in the generation of a randomly directed off-axis electron beam and radiation source with a large divergence angle. While employing a preformed parabolic plasma channel, the restoring force provided by the plasma channel would correct the perturbed laser wave front and thus suppress the hosing instability. As a result, the accelerated electron beam and the emitted photons are well guided and concentrated along the channel axis. The employment of a proper plasma density channel can stably guide the relativistically intense laser pulse and greatly improve the properties of the electron beam and radiation source. This scheme is of great interest for the generation of high quality electron beams and radiation sources.

  19. Modeling of electron cyclotron resonance acceleration in a stationary inhomogeneous magnetic field

    Directory of Open Access Journals (Sweden)

    Valeri D. Dougar-Jabon

    2008-04-01

    Full Text Available In this paper, the cyclotron autoresonance acceleration of electrons in a stationary inhomogeneous magnetic field is studied. The trajectory and energy of electrons are found through a numerical solution of the relativistic Newton-Lorentz equation by a finite difference method. The electrons move along a TE_{112} cylinder cavity in a steady-state magnetic field whose axis coincides with the cavity axis. The magnetic field profile is such that it keeps the phase difference between the electric microwave field and the electron velocity vector within the acceleration phase band. The microwaves amplitude of 6  kV/cm is used for numerical calculations. It is shown that an electron with an initial longitudinal energy of 8 keV can be accelerated up to 260 keV by 2.45 GHz microwaves at a distance of 17 cm.

  20. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  1. Thermionic gun control system for the CEBAF (Continuous Electron Beam Accelerator Facility) injector

    Energy Technology Data Exchange (ETDEWEB)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab.

  2. Innovative single-shot diagnostics for electrons accelerated through laser-plasma interaction at FLAME

    Science.gov (United States)

    Bisesto, F. G.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Costa, G.; Curcio, A.; Ferrario, M.; Galletti, M.; Pompili, R.; Schleifer, E.; Zigler, A.

    2017-05-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and optical transition radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC LAB LINAC, will be shown.

  3. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    Science.gov (United States)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  4. Beam dynamics analysis of femtosecond microbunches produced by the staged electron laser acceleration experiment

    Directory of Open Access Journals (Sweden)

    F. Zhou

    2003-05-01

    Full Text Available Preservation of the femtosecond (fs microbunches, created during laser acceleration, is a crucial step to enable staging of the laser acceleration process. This paper focuses on the optimization of the beam dynamics of fs microbunches transported through the staged electron laser acceleration (STELLA-II experiment being carried out at the Brookhaven National Laboratory Accelerator Test Facility. STELLA-II consists of an inverse free electron laser (IFEL untapered undulator, which acts as an electron beam energy modulator; a magnetic chicane, which acts as a buncher; a second IFEL tapered undulator, which acts as an accelerator; and a dipole, which serves as an energy spectrometer. When the energy-modulated macrobunch traverses through the chicane and a short drift space, microbunches of order fs in duration (i.e., ∼3  fs FWHM are formed. The 3-fs microbunches are accelerated by interacting with a high-power CO_{2} laser beam in the following tapered undulator. These extremely short microbunches may experience significant space charge and coherent synchrotron radiation effects when traversing the STELLA-II transport line. These effects are analyzed and the safe operating conditions are determined. With less than 0.5-pC microbunch charge, both microbunch debunching and emittance growth are negligible, and the energy-spread increase is less than 5%. These results are also useful for the laser electron acceleration project at SLAC and in possible future programs where the fs microbunches are employed for other purposes.

  5. Development of an automated system for the operation of an electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Moura, João A.; Calvo, Wilson Ap. Parejo, E-mail: somessar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Electron beam accelerators are used in many applications, such as basic physical research, chemistry, medicine, molecular biology, microelectronics, agriculture and industry, among others. The majority of the accelerators have electrons from a hot tungsten filament and their energy is increased as it passes through an electric field in the vacuum chamber. For industrial purposes, the most common model is Dynamitrons®. At IPEN-CNEN/SP, there is an electron beam accelerator Dynamitron® Type (Manufactured by RDI- Radiation Dynamics Inc., 1978) model DC1500/25/4. The technology applied was available in the 60's and 70's, but, nowadays is obsolete. Moreover, there are not original spare parts for this equipment any longer. The aim of this work is to develop a nationalized automated operation system for the accelerator, to replace the old equipment. (author)

  6. Accelerated Aging Platform for Prognostics of Power Electronics

    Data.gov (United States)

    National Aeronautics and Space Administration — To advance the field of electronics prognostics, the study of transistor fault modes and their precursors is essential. This paper reports on a platform for the...

  7. Unveiling the orbital angular momentum and acceleration of electron beams.

    Science.gov (United States)

    Shiloh, Roy; Tsur, Yuval; Remez, Roei; Lereah, Yossi; Malomed, Boris A; Shvedov, Vladlen; Hnatovsky, Cyril; Krolikowski, Wieslaw; Arie, Ady

    2015-03-06

    New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy, and interferometry, and so it is important to measure their properties with ease. Here, we show how one may immediately quantify these beams' parameters without need for additional fabrication or nonstandard microscopic tools. Our experimental results are backed by numerical simulations and analytic derivation.

  8. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza; Massudi, Reza, E-mail: r-massudi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 1983969411 (Iran, Islamic Republic of)

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  9. Design of electron beam accelerator for microwave application

    Science.gov (United States)

    Prestwich, K. R.

    Relativistic electron beams are used for generating high power microwaves. These microwave sources require electron beam generators spanning significant ranges in voltage and impedance. The pulsed power technology used to generate these electron beams is presented. Electron beam generators that produce beams with pulse durations in the 10 ns to 100 ns regime consist of an energy storage section, pulse shaping section, and an electron beam diode. The energy storage section is either a Marx generator or capacitor bank-pulsed transformer. The pulse shaping is done with high-voltage transmission lines. The electron beam diode is usually a cold-cathode, space-charge-limited flow device. For longer pulses (approx 1 microsec) the energy storage and pulse shaping can be combined. Lumped-element pulsed-forming networks (PFN) can be designed to produce the desired pulse shape. The Marx generator becomes one of the elements of the PFN. Alternatively, a low voltage PFN followed by a highly coupled transformer can be used. Basic design principles for all of the above subsystems are discussed. Both PFLs and PFNs can also be operated as inductive storage systems with opening switches.

  10. Spatial Control of Laser Wakefield Accelerated Electron Beams

    Science.gov (United States)

    Maksimchuk, A.; Behm, K.; Zhao, T.; Joglekar, A. S.; Hussein, A.; Nees, J.; Thomas, A. G. R.; Krushelnick, K.; Elle, J.; Lucero, A.; Samarin, G. M.; Sarry, G.; Warwick, J.

    2017-10-01

    The laser wakefield experiments to study and control spatial properties of electron beams were performed using HERCULES laser at the University of Michigan at power of 100 TW. In the first experiment multi-electron beam generation was demonstrated using co-propagating, parallel laser beams with a π-phase shift mirror and showing that interaction between the wakefields can cause injection to occur for plasma and laser parameters in which a single wakefield displays no significant injection. In the second experiment a magnetic triplet quadrupole system was used to refocus and stabilize electron beams at the distance of 60 cm from the interaction region. This produced a 10-fold increase in remote gamma-ray activation of 63Cu using a lead converter. In the third experiment measurements of un-trapped electrons with high transverse momentum produce a 500 mrad (FWHM) ring. This ring is formed by electrons that receive a forward momentum boost by traversing behind the bubble and its size is inversely proportional to the plasma density. The characterization of divergence and charge of this electron ring may reveal information about the wakefield structure and trapping potential. Supported by U.S. Department of Energy and the National Nuclear Security Administration and Air Force Office of Scientific Research.

  11. Mechanical design of the recirculating, terminal pumping in the Lund ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 59; Issue 5. Mechanical design of the recirculating, terminal pumping in the Lund Pelletron, and experimental experience. R Hellborg ... Details of the technical design, as well as experience of the use of the new system for accelerator mass spectrometry, will be given.

  12. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    CERN Document Server

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  13. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    Directory of Open Access Journals (Sweden)

    F. Lemery

    2015-08-01

    Full Text Available Collinear high-gradient O(GV/m beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth current profiles which support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ∼60  MV/m and a transformer ratio ∼5 consistent with a recently proposed multiuser free-electron laser facility.

  14. Time-interleaved multienergy acceleration for an x-ray free-electron laser facility

    Directory of Open Access Journals (Sweden)

    Toru Hara

    2013-08-01

    Full Text Available To meet the demand from the growing number of user experiments, multi-beam-line operation with a wide spectral range is seriously considered in x-ray free-electron laser facilities. In a conventional design, the beam line of low photon energies branches off from the middle of the accelerator to take out low energy electron beams. Here in this paper, a novel method is proposed to deliver bunch-to-bunch energy changed electron beams at the end of the accelerator. Since all accelerator components are operated in steady state, this method enables quasisimultaneous operation of multi-beam-line in the same undulator hall without degrading the stability and performance of the electron beam.

  15. Electron acceleration by a radially polarized laser pulse during ionization of low density gases

    Directory of Open Access Journals (Sweden)

    Kunwar Pal Singh

    2011-03-01

    Full Text Available The acceleration of electrons by a radially polarized intense laser pulse has been studied. The axial electric field of the laser is responsible for electron acceleration. The axial electric field increases with decreasing laser spot size; however, the laser pulse gets defocused sooner for smaller values and the electrons do not experience high electric field for long, reducing the energy they can reach. The electron remains confined in the electric field of the laser for longer and the electron energy peaks for the normalized laser spot size nearly equal to the normalized laser intensity parameter. Electron energy peaks for initial laser phase ϕ_{0}=π due to accelerating laser phase and decreases with transverse initial position of the electrons. The energy and angle of the emittance spectrum of the electrons generated during ionization of krypton and argon at low densities have been obtained and a right choice of laser parameters has been suggested to obtain high energy quasimonoenergetic collimated electron beams. It has been found that argon is more suitable than krypton to obtain high energy electron beams due to higher ionization potential of inner shells for the former.

  16. Short energetic electron bunches from laser wakefield accelerator with orthogonally polarized perpendicularly crossed laser pulses

    Science.gov (United States)

    Horný, Vojtěch; Petržílka, Václav; Klimo, Ondřej; Krůs, Miroslav

    2017-05-01

    Electron acceleration with optical injection by a perpendicularly propagating and orthogonally polarized low intensity laser pulse into a nonlinear plasma wave driven by a short intense laser pulse was explored by particle- in-cell simulations. The scheme presented here provides an energetic electron bunch in the first ion cavity with a low energy spread. The electron bunch short and compact, with the mean energy about 400 MeV and a low energy spread about 10 MeV in time of 6 ps of acceleration. The injected charge is several tens of pC for the low intensity of the injection pulse. Initial positions of electrons forming the energetic bunch are shown and then these electrons are followed during the simulation in order to understand the injection process and determine electron bunch properties.

  17. Beam loading by distributed injection of electrons in a plasma wakefield accelerator.

    Science.gov (United States)

    Vafaei-Najafabadi, N; Marsh, K A; Clayton, C E; An, W; Mori, W B; Joshi, C; Lu, W; Adli, E; Corde, S; Litos, M; Li, S; Gessner, S; Frederico, J; Fisher, A S; Wu, Z; Walz, D; England, R J; Delahaye, J P; Clarke, C I; Hogan, M J; Muggli, P

    2014-01-17

    We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43  GV/m to a strongly loaded value of 26  GV/m.

  18. Accomplishments of the heavy electron particle accelerator program

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermilab; Stratakis, D. [Fermilab; Palmer, M. [Brookhaven; Delahaye, J-P [SLAC; Summers, D. [Mississippi U.; Ryne, R. [LBNL, Berkeley; Cummings, M. A. [MUONS Inc.

    2016-10-18

    The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe ($\\bar{ve}$) and $\\bar{vμ}$ (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.

  19. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    Energy Technology Data Exchange (ETDEWEB)

    Weikum, M.K., E-mail: maria.weikum@desy.de [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Li, F.Y. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Assmann, R.W. [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Sheng, Z.M. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Jaroszynski, D. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom)

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented. - Highlights: • LWFA with an upramp density profile can trap and accelerate sub-fs electron beams. • A reduction of the necessary threshold laser intensity by a factor 4 is presented. • Electron properties are tuned by varying initial laser and plasma parameters. • Simulations predict electron bunch lengths below 200 attoseconds with pC charge. • Strong bunch evolution effects and a large energy spread still need to be improved.

  20. Generation of bremsstrahlung during multiple passes of accelerated electrons through a thin target in a betatron

    Science.gov (United States)

    Bespalov, V. I.; Kashkovsky, V. V.; Chakhlov, V. L.

    2003-01-01

    In the present work a method of bremsstrahlung generation in a betatron during multiple passes of the accelerated electrons through a thin target-converter is explored with the help of statistical modeling. The results are obtained on a basis of experimentally measured field distributions for the betatrons: MB-6 and B-35. The data of electron orbit dynamics and characteristics of bremsstrahlung field are given depending on parameters of the electron's dumping onto the target and sizes of the target.

  1. Comparing Solar-Flare Acceleration of >-20 MeV Protons and Electrons Above Various Energies

    Science.gov (United States)

    Shih, Albert Y.

    2010-01-01

    A large fraction (up to tens of percent) of the energy released in solar flares goes into accelerated ions and electrons, and studies indicate that these two populations have comparable energy content. RHESSI observations have shown a striking close linear correlation between the 2.223 MeV neutron-capture gamma-ray line and electron bremsstrahlung emission >300 keV, indicating that the flare acceleration of >^20 MeV protons and >300 keV electrons is roughly proportional over >3 orders of magnitude in fluence. We show that the correlations of neutron-capture line fluence with GOES class or with bremsstrahlung emission at lower energies show deviations from proportionality, primarily for flares with lower fluences. From analyzing thirteen flares, we demonstrate that there appear to be two classes of flares with high-energy acceleration: flares that exhibit only proportional acceleration of ions and electrons down to 50 keV and flares that have an additional soft, low-energy bremsstrahlung component, suggesting two separate populations of accelerated electrons. We use RHESSI spectroscopy and imaging to investigate a number of these flares in detail.

  2. On the Production of Flat Electron Bunches for Laser Wake Field Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Kando, M.; Fukuda, Y.; Kotaki, H.; Koga, J.; Bulanov, S.V.; Tajima, T.; /JAERI, Kyoto; Chao, A.; Pitthan, R.; /SLAC; Schuler, K.-P.; /DESY; Zhidkov, A.G.; /CRIEPI, Tokyo; Nemoto, K.; /CRIEPI, Tokyo

    2006-06-27

    We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the injection into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.

  3. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  4. ILU industrial electron accelerators for medical-product sterilization and food treatment

    Science.gov (United States)

    Bezuglov, V. V.; Bryazgin, A. A.; Vlasov, A. Yu.; Voronin, L. A.; Panfilov, A. D.; Radchenko, V. M.; Tkachenko, V. O.; Shtarklev, E. A.

    2016-12-01

    Pulse linear electron accelerators of the ILU type have been developed and produced by the Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, for more than 30 years. Their distinctive features are simplicity of design, convenience in operation, and reliability during long work under conditions of industrial production. ILU accelerators have a range of energy of 0.7-10 MeV at a power of accelerated beam of up to 100 kW and they are optimally suitable for use as universal sterilizing complexes. The scientific novelty of these accelerators consists of their capability to work both in the electron-treatment mode of production and in the bremsstrahlung generation mode, which has high penetrating power.

  5. Change in operating parameters of the Continuous Electron Beam Accelerator Facility and Free Electron Laser, Thomas Jefferson National Accelerator Facility, Newport News, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    In this environmental assessment (EA), the US Department of Energy (DOE) reports the results of an analysis of the potential environmental impacts from a proposed change in operating parameters of the Continuous Electron Beam Accelerator Facility (CEBAF), and operation of the Free Electron Laser (FEL) facility beyond the initial demonstration period. With this proposal, DOE intends to increase CEBAF operating range from its current operating maximum beam energy of 4.0 GeV [giga-(billion) electron volts] to 8.0 GeV at a beam power of no greater than 1,000 kW [1 megawatt (MW)], its maximum attainable level, based on current technology and knowledge, without significant, costly equipment modifications. DOE has prepared an EA for this action to determine the potential for adverse impacts from operation of CEBAF and the FEL at the proposed levels. Changing the operating parameters of CEBAF would require no new major construction and minor modifications to the accelerator, its support systems, the FEL, and onsite utility systems. Modifications and performance improvements would be made to (1) the accelerator housed in the underground tunnels, (2) its support systems located in the above ground service buildings, and (3) the water and equipment cooling systems both in the tunnel and at the ground surface. All work would be performed on previously disturbed land and in, on, or adjacent to existing buildings, structures, and equipment. With the proposed action, the recently constructed FEL facility at the Jefferson Lab would operate in concert with CEBAF beyond its demonstration period and up to its maximum effective electron beam power level of 210 kW. In this EA, DOE evaluates the impacts of the no-action alternative and the proposed action alternative. Alternatives considered, but dismissed from further evaluation, were the use of another accelerator facility and the use of another technology.

  6. Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja

    Science.gov (United States)

    Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.

    2000-01-01

    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

  7. Tailoring laser wakefield accelerated electron beams. An experimental study on the influence of experimental conditions on electron beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Couperus, Jurjen P.; Koehler, Alexander; Zarini, Omid; Huebl, Axel; Schramm, Ulrich [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Jochmann, Axel; Debus, Alexander; Irman, Arie [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    Laser wakefield acceleration (LWFA) has emerged as a promising concept for the next generation of high energy electron accelerators. In LFWA a high intensity ultrashort laser pulse drives plasma density waves, inducing a high accelerating field gradient in the order of GV/m. To create stable reproducible electron beams, tailoring of experimental parameters like gas density, laser energy and laser pulse duration is required. In this talk we present an overview of our experimental studies with the DRACO (3 J on target, 30 fs) laser on ultrasonic gas-jet targets (He and He-N{sub 2} mixtures). We discuss the influence of experimental parameters on beam parameters like beam charge, shot-to-shot stability and energy distribution, both in the self-injecting bubble regime as well as in the ionisation injection regime.

  8. Innovative single-shot diagnostics for electrons from laser wakefield acceleration at FLAME

    Science.gov (United States)

    Bisesto, F. G.; Anania, M. P.; Cianchi, A.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Pompili, R.; Zigler, A.

    2017-07-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (> 100 GV/m), enabling acceleration of electrons to GeV energy in few centimeters. Here we present all the plasma related activities currently underway at SPARC_LAB exploiting the high power laser FLAME. In particular, we will give an overview of the single shot diagnostics employed: Electro Optic Sampling (EOS) for temporal measurement and Optical Transition Radiation (OTR) for an innovative one shot emittance measurements. In detail, the EOS technique has been employed to measure for the first time the longitudinal profile of electric field of fast electrons escaping from a solid target, driving the ions and protons acceleration, and to study the impact of using different target shapes. Moreover, a novel scheme for one shot emittance measurements based on OTR, developed and tested at SPARC_LAB LINAC, used in an experiment on electrons from laser wakefield acceleration still undergoing, will be shown.

  9. Combined influence of azimuthal and axial magnetic fields on resonant electron acceleration in plasma

    Science.gov (United States)

    Singh, Arvinder; Rajput, Jyoti; Kant, Niti

    2017-11-01

    Resonant enhancement in electron acceleration due to a circularly polarized laser pulse in plasma, under the combined influence of external azimuthal and axial magnetic fields, is studied. We have investigated direct electron acceleration in plasma by employing a relativistic single particle simulation. The plasma is magnetized with an azimuthal magnetic field applied in the perpendicular plane and an axial magnetic field applied along the direction of laser beam propagation. Resonance takes place between electron and electric field of the laser pulse for the optimum value of the combined magnetic field, which supports electron acceleration to higher energies, up to the betatron resonance point. The optimum value of these magnetic fields is highly sensitive to laser initial intensity and laser initial spot size. The effects of laser intensity, initial spot size, and laser pulse duration are taken into consideration in optimizing the magnetic field for efficient electron acceleration. Higher electron energy gain, of the order of GeV, is observed by employing terawatt circularly polarized laser pulses in plasma under the influence of combined magnetic field of about 10 MG.

  10. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Glesener, Lindsay; Bain, Hazel M. [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Krucker, Säm [Also at Institute of 4-D Technologies, School of Engineering, University of Applied Sciences Northwestern Switzerland, 5210 Windisch, Switzerland. (Switzerland); Lin, Robert P., E-mail: glesener@ssl.berkeley.edu [Also at Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA. (United States)

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ∼11 MK in the core. RHESSI images reveal a large (∼100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  11. Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator

    Directory of Open Access Journals (Sweden)

    M. Chen

    2014-05-01

    Full Text Available A method to inject electron beams with controllable transverse emittances in a laser-plasma accelerators is proposed and analyzed. It uses two colliding laser pulses that propagate transversely to the plasma wave. For colliding pulses with equal frequencies, a beam with very low emittance is generated when the collision is close to the density peak of the plasma wave. Electrons near the axis are accelerated longitudinally by the ponderomotive force of the colliding pulses, accelerated transversely by the beat wave, and subsequently injected into the second bucket of the wake. Ionization is used to increase the transverse injection area and the final trapped charge. Simulations show that the transverse emittance can be less than the 0.1 mm mrad level, which is important for many applications. For colliding laser pulses with different frequencies, the beat wave can produce asymmetric injection, which can enhance betatron radiation generated by the electron beam.

  12. Electromagnetic waves and bursty electron acceleration: implications from Freja

    Directory of Open Access Journals (Sweden)

    L. Andersson

    Full Text Available Dispersive Alfvén wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about 1 keV, transverse ion heating and broadband extremely low frequency (ELF emissions below the lower hybrid cutoff frequency (a few kHz. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E and B field fluctuations below 64 Hz and 10 Hz, respectively, (the DC instruments upper threshold and the characteristics of the precipitating electrons. This study revealed that the energisation of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvénic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfvén waves set up these local field-aligned current regions and, in turn, trigger more electrostatic emissions during certain conditions. In these regions, ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

    Key words. Ionosphere (particle acceleraton; wave-particle interactions Magnetospheric physics (auroral phenomena

  13. Polarized Electron Beams for Nuclear Physics at the MIT Bates Accelerator Center

    CERN Document Server

    Farkhondeh, Manouchehr; Franklin, Wilbur; Ihloff, Ernie; McAllister, Brian; Milner, Richard; North, William; Tschalär, C; Tsentalovich, Evgeni; Wang, Defa; Wang, Dong; Wang, Fuhua; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    The MIT Bates Accelerator Center is delivering highly polarized electron beams to its South Hall Ring for use in Nuclear Physics Experiments. Circulating electron currents in excess of 200 mA with polarization of 70% are scattered from a highly polarized, but very thin atomic beam source deuterium target. At the electron source a compact diode laser creates photoemission of quasi-CW mA pulses of polarized electrons at low duty factors from a strained GaAs photocathode. Refurbished RF transmitters provide power to the 2856 MHz linac, accelerating the beam to 850 MeV in two passes before injection into the South Hall Ring. In the ring a Siberian snake serves to maintain a high degree of longitudinal polarization at the BLAST scattering target. A Compton laser back-scattering polarimeter measures the electron beam polarization with a statistical acuracy of 6% every 15 minutes.

  14. High energy electron beams from a laser wakefield acceleration with a long gas jet

    Science.gov (United States)

    Kim, Jaehoon; Hwangbo, Yong Hun; Lee, Shin-Yeong

    2017-09-01

    A long gas jet was used as a gas target for laser wake field acceleration to increase the energy and quality of the electron beam. When the plasma density was 7 × 1018 cm-3, quasi monoenergetic electron beams with a maximum energy of 152 MeV, a beam divergence 3 mrad, and a pointing stability 4 mrad were generated with a 5 mm long gas jet. The maximum energy was close to the theoretical limit predicted from the bubble model. This means that the length of the plasma was sufficiently long to accelerate the electron to the dephasing length after the electrons were self-injected by self-focusing. As the plasma density increased, the dephasing length decreased and the electron energy decreased. The continuous injection with higher density plasmas generated highly diverging beams. As the laser power increased, a number of electron beams with different propagation directions were generated. As shown by the measured shadowgram, the laser was divided into several filaments and each filament accelerated electron beam having different directions. The electron beam generated at this time decreased as the laser energy decreased due the division of the laser into different directions.

  15. Electron injection and acceleration at nonlinear shocks: Results of numerical simulations

    Science.gov (United States)

    Levinson, Amir

    1994-01-01

    We present results of numerical simulations of electron injection and acceleration at nonlinear high Mach number shocks. The electrons are assumed to be heated at the thermal subshock to an energy E(sub inj), which is treated as a free parameter, above which they are injected by self-generated whistlers to momentum m(sub p) x V(sub A). This injection mechanism requires Mach numbers greater than (43/(beta(sub -)))(((k T(sub e))/(E(sub inj)))(exp 1/2)), where T(sub e) and beta (sub -) are the upstream electron temperature and plasma beta parameter. Above m(sub p) x V(sub A) electrons are trapped in the shock by Alfven waves. In the proton precursor region the Alfven waves are assumed to be generated by protons accelerated at the shock, and have nonlinear intensities. Below GeV, however, electrons of a given rigidity propagate faster than protons with a similar rigidity and therefore diffuse to regions ahead of the proton precursor. In those regions the Alfven waves are generated by the electrons themselves. The diffusion coefficient appears to increase with decreasing acceleration efficiency. As a result, the number of electrons accelerated to energies GeV and above and, hence, the electron to proton ratio, depend only weakly on the extent of electron heating at the subshock. The negative feedback also renders the electron spectra insensitive to shock compression ratio and smoothing length scale. The estimated e/p ratio at GeV is between approximately 1%-10%.

  16. NOTE: Recording accelerator monitor units during electronic portal imaging: application to collimator position verification during IMRT

    Science.gov (United States)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-06-01

    The application of multiple portal image acquisition to collimator position verification during dynamic multileaf collimation (DMLC) using a commercial camera-based electronic portal imaging device (EPID) (TheraviewTM, Cablon Medical BV, Leusden, The Netherlands) mounted on an Elekta SL15i accelerator (Elekta Oncology Systems, Crawley, UK) is described. This is achieved using a custom-built dose acquisition system optically interfaced to both the camera control unit of the EPID and the monitor unit (MU) channel of the accelerator. The method uses the beam blanking camera control signal to trigger the dose acquisition system to read the cumulative accelerator MUs at the beginning and end of each period of image formation. A maximum delay of 15 ms has been estimated for recording of accelerator MUs in the current system. The camera interface was observed to have no effect on the operation of the EPID during normal clinical use and could therefore be left permanently in situ. Use of the system for collimator position verification of a test case is presented. The technique described uses a specific camera-based EPID and accelerator, although the general principle of using an EPID control signal to trigger recording of accelerator MUs may be applicable to other EPIDs/accelerators with suitable knowledge of the accelerator dosimetry system.

  17. Capture of electrons for acceleration in a betatron with time and spatial variation of the magnetic field

    Science.gov (United States)

    Romanov, V. V.; Chakhlov, V. L.

    1988-05-01

    It is shown that an additional pulsed magnetic field superimposed on the primary magnetic field of a betatron leads to time and spatial variation of the resulting magnetic field in the working gap of the accelerator. A mathematical model is developed for the capture of electrons for betatron acceleration with the additional pulsed magnetic field. It is shown that the time and spatial variation of the magnetic field in the working gap of the accelerator during electron injection leads to an increase in the efficiency of their capture for acceleration. The method of calculation permits a direct modeling of the capture of electrons for acceleration to obtain the highest efficiency.

  18. Tunable monoenergetic electron beams from independently controllable laser-wakefield acceleration and injection

    Directory of Open Access Journals (Sweden)

    G. Golovin

    2015-01-01

    Full Text Available We report the results of experiments on laser-wakefield acceleration in a novel two-stage gas target with independently adjustable density and atomic-composition profiles. We were able to tailor these profiles in a way that led to the separation of the processes of electron injection and acceleration and permitted independent control of both. This resulted in the generation of stable, quasimonoenergetic electron beams with central energy tunable in 50–300 MeV range. For the first time, we are able to independently control the beam charge and energy spread over the entire tunability range.

  19. High-flux electron beams from laser wakefield accelerators driven by petawatt lasers

    Science.gov (United States)

    Zeng, Ming; Tesileanu, Ovidiu

    2017-07-01

    Laser wakefield accelerators (LWFAs) are considered to be one of the most competitive next-generation accelerator candidates. In this paper, we will study the potential high-flux electron beam production of an LWFA driven by petawatt-level laser pulses. In our three-dimensional particle-in-cell simulations, an optimal set of parameters gives ˜ 40 {nC} of charge with 2 {PW} laser power, thus ˜ 400 {kA} of instantaneous current if we assume the electron beam duration is 100 fs. This high flux and its secondary radiation are widely applicable in nuclear and QED physics, industrial imaging, medical and biological studies.

  20. Staged concept of laser-plasma acceleration toward multi-GeV electron beams

    Directory of Open Access Journals (Sweden)

    Victor Malka

    2006-09-01

    Full Text Available The concepts of the laser-plasma based accelerator and injector are discussed here. The recent tests done at LOA as well as design studies of high-quality GeV electron beam production with low energy spread (1% are presented. These laser-produced particle beams have a number of interesting properties and could lend themselves to applications in many fields, including medicine (radiotherapy, chemistry (radiolysis, and accelerator physics. They could be used as a source for the production of γ ray beams for nondestructive material inspection by radiography, or for future compact X-free electron laser machines.

  1. Electronic cam motion generation with special reference to constrained velocity, acceleration, and jerk.

    Science.gov (United States)

    Liao, Chung-Shu; Jeng, Shyr-Long; Chieng, Wei-Hua

    2004-07-01

    Electronic cam motion involves velocity tracking control of the master motor and trajectory generation of the slave motor. Special concerns such as the limits of the velocity, acceleration, and jerk are beyond the considerations in the conventional electronic cam motion control. This study proposes the curve-fitting of a Lagrange polynomial to the cam profile, based on trajectory optimization by cubic B-spline interpolation. The proposed algorithms may yield a higher tracking precision than the conventional master-slaves control method does, providing an optimization problem is concerned. The optimization problem contains three dynamic constraints including velocity, acceleration, and jerk of the motor system.

  2. Radiosensitivity of chlorella after medium energy accelerated electron irradiation; Radiosensibilite des chlorelles aux electrons acceleres de moyenne energie

    Energy Technology Data Exchange (ETDEWEB)

    Roux, J.C. [commissariat a L' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-06-01

    The survival curves (capability of multiplication) of chlorella pyrenoidosa after irradiations can be used for soft electrons (0.65 and 1 MeV), hence penetrating into only 2 to 4 millimeters of water: the algae are laying on porous membranes and the doses are calculated from the power of the electron beam measured by the electric current on a metallic target or by Fricke's dosimetry. With these techniques, it is showed and discussed the part of anoxia in the radioprotection (magnitude or reduction of the dose calculated from the slope of survival curves: 2.5 ) that is more important than the restoration studied by the fractionation of the dose. The 0.65 and 1 MeV electrons have a biologic effect lesser than 180 keV X-rays (RBE - relative biological efficiency - calculated on the slope of survival curves is 0.92 in aerated irradiation, 0.56 in the deoxygenated irradiation). (author) [French] Les courbes de survie clonale (capacite de multiplication) de chlorella pyrenoidosa apres irradiation sont realisables meme avec des electrons peu energetiques (0.65 et 1 MeV), donc peu penetrants, par l'irradiation d'algues deposees sur membrane filtrante et grace au calcul de la dose a partir de l'energie du faisceau mesure par le courant que celui-ci cree dans une cible metallique ou par dosimetrie de Fricke. Par ces techniques, on a montre et discute le role de l'anoxie dans la radioprotection des chlorelles (facteur de reduction de la dose calcule sur la pente des courbes de survie de 2.5) qui est plus important que le pouvoir de restauration etudie par le fractionnement de la dose. Les electrons utilises ont un effet biologique moins grand que les rayons X de 180 keV (l'efficacite biologique relative - EBR - calculee sur la pente des courbes de survie est de 0.9 en presence d'air, 0.6 en presence d'azote)

  3. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    Science.gov (United States)

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  4. Controlled Electron Injection into Plasma Accelerators and SpaceCharge Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Fubiani, Gwenael G.J. [Univ. of California, Berkeley, CA (United States)

    2005-09-01

    Plasma based accelerators are capable of producing electron sources which are ultra-compact (a few microns) and high energies (up to hundreds of MeVs) in much shorter distances than conventional accelerators. This is due to the large longitudinal electric field that can be excited without the limitation of breakdown as in RF structures.The characteristic scale length of the accelerating field is the plasma wavelength and for typical densities ranging from 1018 - 1019 cm-3, the accelerating fields and scale length can hence be on the order of 10-100GV/m and 10-40 μm, respectively. The production of quasimonoenergetic beams was recently obtained in a regime relying on self-trapping of background plasma electrons, using a single laser pulse for wakefield generation. In this dissertation, we study the controlled injection via the beating of two lasers (the pump laser pulse creating the plasma wave and a second beam being propagated in opposite direction) which induce a localized injection of background plasma electrons. The aim of this dissertation is to describe in detail the physics of optical injection using two lasers, the characteristics of the electron beams produced (the micrometer scale plasma wavelength can result in femtosecond and even attosecond bunches) as well as a concise estimate of the effects of space charge on the dynamics of an ultra-dense electron bunch with a large energy spread.

  5. Stochastic Electron Acceleration by the Whistler Instability in a Growing Magnetic Field

    Science.gov (United States)

    Riquelme, Mario; Osorio, Alvaro; Quataert, Eliot

    2017-12-01

    We use 2D particle-in-cell simulations to study the effect of the saturated whistler instability on the viscous heating and nonthermal acceleration of electrons in a shearing, collisionless plasma with a growing magnetic field, {\\boldsymbol{B}}. In this setup, an electron pressure anisotropy with {p}\\perp ,e> {p}| | ,e naturally arises due to the adiabatic invariance of the electron magnetic moment ({p}| | ,e and {p}\\perp ,e are the pressures parallel and perpendicular to {\\boldsymbol{B}}). If the anisotropy is large enough, then the whistler instability arises, efficiently scattering the electrons and limiting {{Δ }}{p}e (\\equiv {p}\\perp ,e-{p}| | ,e). In this context, {{Δ }}{p}e taps into the plasma velocity shear, producing electron heating by the so-called anisotropic viscosity. In our simulations, we permanently drive the growth of | {\\boldsymbol{B}}| by externally imposing a plasma shear, allowing us to self-consistently capture the long-term, saturated whistler instability evolution. We find that besides the viscous heating, the scattering by whistler modes can stochastically accelerate electrons to nonthermal energies. This acceleration is most prominent when initially {β }e∼ 1, gradually decreasing its efficiency for larger values of {β }e (\\equiv 8π {p}e/| {\\boldsymbol{B}}{| }2). If initially {β }e∼ 1, then the final electron energy distribution can be approximately described by a thermal component, plus a power-law tail with a spectral index of ∼3.7. In these cases, the nonthermal tail accounts for ∼ 5 % of the electrons and for ∼ 15 % of their kinetic energy. We discuss the implications of our results for electron heating and acceleration in low-collisionality astrophysical environments, such as low-luminosity accretion flows.

  6. Imaging laser-wakefield-accelerated electrons using miniature magnetic quadrupole lenses

    Directory of Open Access Journals (Sweden)

    R. Weingartner

    2011-05-01

    Full Text Available The improvement of the energy spread, beam divergence, and pointing fluctuations are some of the main challenges currently facing the field of laser-wakefield acceleration of electrons. We address these issues by manipulating the electron beams after their generation using miniature magnetic quadrupole lenses with field gradients of ∼500  T/m. By imaging electron beams the spectral resolution of dipole magnet spectrometers can be significantly increased, resulting in measured energy spreads down to 1.0% rms at 190 MeV. The focusing of different electron energies demonstrates the tunability of the lens system and could be used to filter out off-target energies in order to reduce the energy spread even further. By collimating the beam, the shot-to-shot spatial stability of the beam is improved by a factor of 5 measured at a distance of 1 m from the source. Additionally, by deliberately transversely offsetting a quadrupole lens, the electron beam can be steered in any direction by several mrad. These methods can be implemented while still maintaining the ultrashort bunch duration and low emittance of the beam and, except for undesired electron energies in the energy filter, without any loss of charge. This reliable and compact control of laser-wakefield accelerated electron beams is independent of the accelerator itself, allowing immediate application of currently available beams.

  7. Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX

    Science.gov (United States)

    Baker, D. N.; Blake, J. B.; Callis, L. B.; Cummings, J. R.; Hovestadt, D.; Kanekal, S.; Klecker, B.; Mewaldt, R. A.; Zwickl, R. D.

    1994-01-01

    High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.

  8. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Science.gov (United States)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  9. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO 2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  10. Terahertz-induced acceleration of massive Dirac electrons in semimetal bismuth.

    Science.gov (United States)

    Minami, Yasuo; Araki, Kotaro; Dao, Thang Duy; Nagao, Tadaaki; Kitajima, Masahiro; Takeda, Jun; Katayama, Ikufumi

    2015-11-02

    Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band structure in the two-dimensional momentum space, whereas electrons in semimetal bismuth (Bi) are expected to behave as massive Dirac-like fermions in the three-dimensional momentum space, whose dynamics is of particular interest in comparison with that of the massless Dirac fermions. Here, we demonstrate that an intense terahertz electric field transient accelerates the massive Dirac-like fermions in Bi from classical Newtonian to the relativistic regime; the electrons are accelerated approaching the effective "speed of light" with the "relativistic" beta β = 0.89 along the asymptotic linear band structure. As a result, the effective electron mass is enhanced by a factor of 2.4.

  11. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, Mike [Fermilab; Carlson, Kermit [Fermilab; Nobrega, Lucy [Fermilab; Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab

    2016-06-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions.

  12. Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere

    Science.gov (United States)

    Artemyev, A. V.; Rankin, R.; Blanco, M.

    2015-12-01

    In this paper we study the interaction of kinetic Alfven waves generated near the equatorial plane of the magnetosphere with electrons having initial energies up to ˜100 eV. Wave-particle interactions are investigated using a theoretical model of trapping into an effective potential generated by the wave parallel electric field and the mirror force acting along geomagnetic field lines. It is demonstrated that waves with an effective potential amplitude on the order of ˜100-400 V and with perpendicular wavelengths on the order of the ion gyroradius can trap and efficiently accelerate electrons up to energies of several keV. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented, and the application of the proposed model is discussed.

  13. Direct acceleration of electrons by a CO$_{2}$ laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO$_{2}$ laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread ($\\sim1\\%$) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO$_{2}$ laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  14. Charging and the cross-field discharge during electron accelerator operation on a rocket

    Science.gov (United States)

    Kellogg, Paul J.; Monson, Steven J.

    1988-01-01

    Preliminary results are presented from experiments to study the neutralization processes around an electron beam emitting rocket. The rocket, SCEX II, was flown on January 31, 1987 from Alaska, with a payload consisting of two independent electron accelerators and two arms with conducting elements to act as Langmuir probes and to measure floating potentials. It was expected that electrons in the strong electric fields around the charged rocket would gain sufficient energy to ionize neutrals, producing ions which would be hurled outward at energies up to the rocket potential. Three hemispherical retarding potential analyzers were ejected from the main payload to measure these ions. The measurements show that fields sufficient to accelerate electrons to ionizing energies were present around the rocket.

  15. Optimum point of acceleration of an electron inside the collisional plasma-filled elliptical waveguide

    Science.gov (United States)

    Hadad, M.; Torkiha-Esfhani, M.

    2015-04-01

    In this paper, the effect of the electron collision frequency with background ions on TMmr mode field components, the trajectory and the electron energy gain is studied. The field components of the TMmr mode in the elliptical waveguides are calculated. The ohmic heating for three different value of collision frequency calculated and the power losses is obtained. The deflection angle and acceleration gradient of an electron in the fields associated with a transverse magnetic (TM) wave propagating inside a elliptical waveguide for TMmr mode is studied. The relativistic momentum and energy equations for an electron are solved, which was injected initially along the propagation direction of the microwave. The results for TMmr mode are graphically represented. Finally, the optimum point of acceleration for the even mode TM 11 is obtained and it is shown that in a cross section of elliptical waveguide optimum point is center of ellipse.

  16. Quantitative Assessment of MeV Electron Acceleration in Non-Linear Interactions with VLF Chorus

    Science.gov (United States)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.

    2016-12-01

    For occurrences of apparent rapid acceleration of radiation belt electrons to MeV energies at L 4, we examine the energy gained by seed electrons in non-linear (NL) interactions with VLF chorus rising tones. For the 17-18 March 2013 storm, observations of outer zone radiation belt electron populations were made with the magEIS and REPT instruments on Van Allen Probes A & B. These reveal that MeV electron fluxes at L=4.2 increased 10-fold in 30 min at the times of 30 - 100 keV electron injections during "substorm" dipolarizations. Simultaneous enhancements of VLF chorus were observed with the EMFISIS wave instruments. Three-axis burst mode observations of wave electric and magnetic fields have been used to investigate electron interactions with individual chorus rising tones on a sub millisecond time scale. Wave amplitudes at 2500 Hz were 1 nT (|B|) and 30 mV/m (|E|). Frequency - time characteristics of the observed chorus elements closely match those predicted by NL electron-chorus interaction modeling [Omura et al., 2015, J. Geophys. Res. Space Phys., 120, doi:10.1002/2015JA021563]. For seed electrons with initial energies 50 keV to 8 MeV, subpacket wave analysis was used to quantify resonant electron energy gain both by relativistic turning acceleration and by ultrarelativistic acceleration through nonlinear trapping by the chorus waves. Electrons with 1-2 MeV initial energy can experience a 300 keV total energy gain in NL interactions with a single 200 msec rising tone. Maximum energy gain from interaction with a single 10 msec subpacket was 100 keV for a 2 MeV seed electron. Examining a number of chorus elements at different locations during the rapid local acceleration of the radiation belt during this event, we conclude that seed electrons (100s keV - 5 MeV) can be accelerated by 50 keV - 500 keV in resonant NL interactions with a single VLF rising tone on a time scale of 10-100 msec.

  17. Kinetic Alfven Waves Carrying Intense Field Aligned Currents: Particle Trapping and Electron Acceleration

    Science.gov (United States)

    Rankin, R.; Artemyev, A.

    2015-12-01

    It is now common knowledge that dispersive scale Alfvén waves can drive parallel electron acceleration [Lotko et al., JGR, 1998; Samson et al., Ann. Geophys., 2003; Wygant et al., JGR, 2002] and transverse ion energization in the auroral zone and inner magnetosphere [Johnson and Cheng, JGR, 2001; Chaston et al., 2004]. In this paper we show that relatively low energy electrons (plasma sheet electrons with energies ranging up to ˜100 eV) can be accelerated very efficiently as they interact nonlinearly with kinetic Alfvén waves (KAWs) that carry intense field aligned currents from the equatorial plane toward the ionosphere in the inner magnetosphere. We propose a theoretical model describing electron trapping into an effective wave potential generated by parallel wave electric fields (with perpendicular wavelengths on the order of the ion gyro-radius) and the mirror force acting on electrons as they propagate along geomagnetic field lines. We demonstrate that waves with an electric potential amplitude between ~100 - 400 V can trap and accelerate electrons to energies approaching several keVs. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch-angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented. We discuss the application of the proposed model in light of recent observations of electromagnetic fluctuations in the inner magnetosphere that are present during periods of strong geomagnetic activity [Chaston et al., GRL, 2014; Califf et al., JGR, 2015].

  18. Ion acceleration and abundance enhancements by electron beam instabilities in impulsive solar flares

    Science.gov (United States)

    Miller, James A.; Vinas, Adolfo F.

    1993-01-01

    We show that a nonrelativistic electron beam in a hydrogen-helium solar flare plasma will excite H(+) electromagnetic ion cyclotron, shear Alfven, and R-X waves, in addition to waves resulting from the two-stream instability. The H(+) electromagnetic ion cyclotron and shear Alfven waves are able to selectively accelerate ambient He-3 and Fe, respectively, to MeV energies through first harmonic gyroresonance, and thereby account for the large (He-3)/(He-4) and Fe/C ratios seen in the energetic particles from impulsive solar flares. In this model, separate heating and acceleration mechanisms for either He-3 or Fe are not required, and Fe acceleration is quite efficient since it does not need to occur by second harmonic gyroresonance. The combination of the other two unstable modes is able to accelerate ions to hundreds of MeV if the particles become trapped in an electrostatic potential well of a two-stream wave.

  19. Rf System For The Industrial Linear Electron Accelerator At Kaeri (daejeon, Korea)

    CERN Document Server

    Arbuzov, V S; Evtushenko, Yu A; Gorniker, E I; Kenjebulatov, E K; Kondakov, A A; Krutikhin, S A; Kurkin, G Ya; Motygin, S V; Osipov, V N; Petrov, V M; Pilan, Andrey M; Popov, A R; Shteinke, A M; Tribendis, A G

    2004-01-01

    Budker Institute of Nuclear Physics has developed and produced RF generators, feeder lines and a control system for an industrial linear electron accelerator at Korean Atomic Energy Research Institute (KAERI, Daejeon, Korea). The accelerator is based on two superconducting RF cavities produced by CERN. Design energy of the accelerator is 10 MeV and design beam current is 10 mA. A 2 MeV injector for the accelerator was made by BINP earlier. Two-channel RF system of the accelerator operates at the frequency of 352 MHz in CW mode. Each channel has two-stage tetrode amplifier with output power of 50 kW, 100 W transistor preamplifier and the control system. Both tetrode stages have identical design. TH571B tetrode tubes produced by THALES (France) are used. Output power of 45 kW per channel was reached in an equivalent resistive load. Now BINP continues development of the accelerator. The energy of 11 MeV and the beam current of 1.9 mA were achieved. The amplitude of accelerating voltage was 4.5 MV in each cavity,...

  20. Simulation of electron postacceleration in a two-stage laser wakefield accelerator

    Directory of Open Access Journals (Sweden)

    A. J. W. Reitsma

    2002-05-01

    Full Text Available Electron bunches produced in self-modulated laser wakefield experiments usually have a broad energy distribution, with most electrons at low energy (1–3 MeV and only a small fraction at high energy. We propose and investigate further acceleration of such bunches in a channel-guided resonant laser wakefield accelerator. Two-dimensional simulations with and without the effects of self-consistent beam loading are performed and compared. These results indicate that it is possible to trap about 40% of the injected bunch charge and accelerate this fraction to an average energy of about 50 MeV in a plasma channel of a few mm.

  1. Lower hybrid resonance acceleration of electrons and ions in solar flares and the associated microwave emission

    Science.gov (United States)

    Mcclements, K. G.; Bingham, R.; Su, J. J.; Dawson, J. M.; Spicer, D. S.

    1993-01-01

    The particle acceleration processes here studied are driven by the relaxation of unstable ion ring distributions; these produce strong wave activity at the lower hybrid resonance frequency which collapses, and forms energetic electron and ion tails. The results obtained are applied to the problem posed by the production of energetic particles by solar flares. The numerical simulation results thus obtained by a 2 1/2-dimensional particle-in-cell code show a simultaneous acceleration of electrons to 10-500 keV energies, and of ions to as much as the 1 MeV range; the energy of the latter is still insufficient to account for gamma-ray emission in the 4-6 MeV range, but furnish a seed population for further acceleration.

  2. Field-reversed bubble in deep plasma channels for high quality electron acceleration

    CERN Document Server

    Pukhov, A; Tueckmantel, T; Thomas, J; Yu, I; Kostyukov, Yu

    2014-01-01

    We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10−3 r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the deep channel are derived. Ultra-short pancake-like laser pulses lead to the highest energies of accelerated electrons per Joule of laser pulse energy.

  3. The effect of superluminal phase velocity on electron acceleration in a powerful electromagnetic wave

    Science.gov (United States)

    Robinson, A. P. L.; Arefiev, A. V.; Khudik, V. N.

    2015-08-01

    In this paper, we examine the effect that electromagnetic dispersion has on the motion of an electron in a relativistically strong plane wave. We obtain an analytic solution for the electron momentum and check this solution against direct numerical integration of the equations of motion. The solution shows that even a relatively small difference between the phase velocity of the wave, vp, and the speed of light, c, can significantly alter the electron dynamics if the normalized wave amplitude a0 exceeds √{2 c /(vp-c ) } . At this amplitude, the maximum longitudinal electron momentum scales only linearly with a0, as opposed to a02 . We also show that at this amplitude the impact of an accelerating longitudinal electric field and electron pre-acceleration is negated by the superluminous phase velocity of the wave. This has implications for the potential of Direct Laser Acceleration of electrons. We point out that electromagnetic dispersion can arise from both propagation in a plasma and from propagating the laser in what is effectively a wave-guiding structure, and that this latter source of dispersion is likely to be more significant.

  4. Ultra-low emittance electron beam generation using ionization injection in a plasma beatwave accelerator

    Science.gov (United States)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2017-10-01

    Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  5. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    Science.gov (United States)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar

    2012-09-01

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the CODCr, BOD5 indicators.

  6. Electron beam accelerator: A new tool for environmental preservation in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Siti Aiasah; Bakar, Khomsaton Abu; Othman, Mohd Nahar [Malaysian Nuclear Agency, Bangi, 43000, Kajang Selangor (Malaysia)

    2012-09-26

    Electron beam accelerators are widely used for industrial applications such as surface curing, crosslinking of wires and cables and sterilization/ decontamination of pharmaceutical products. The energy of the electron beam determines the type of applications. This is due to the penetration power of the electron that is limited by the energy. In the last decade, more work has been carried out to utilize the energetic electron for remediation of environmental pollution. For this purposes, 1 MeV electron beam accelerator is sufficient to treat wastewater from textile industry and flue gases from fossil fuel combustions. In Nuclear Malaysia, a variable energy Cockroft Walton type accelerator has been utilized to initiate investigations in these two areas. An electron beam flue gas treatment test rig was built to treat emission from diesel combustion, where it was found that using EB parameters of 1MeV and 12mA can successfully remove at least 80% of nitric oxide in the emission. Wastewater from textile industries was treated using combination of biological treatment and EB. The initial findings indicated that the quality of water had improved based on the COD{sub Cr}, BOD{sub 5} indicators.

  7. STUDIES OF A FREE ELECTRON LASER DRIVEN BY A LASER-PLASMA ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.; Schroeder, C.; Fawley, W.

    2008-01-01

    A free electron laser (FEL) uses an undulator, a set of alternating magnets producing a periodic magnetic fi eld, to stimulate emission of coherent radiation from a relativistic electron beam. The Lasers, Optical Accelerator Systems Integrated Studies (LOASIS) group at Lawrence Berkeley National Laboratory (LBNL) will use an innovative laserplasma wakefi eld accelerator to produce an electron beam to drive a proposed FEL. In order to optimize the FEL performance, the dependence on electron beam and undulator parameters must be understood. Numerical modeling of the FEL using the simulation code GINGER predicts the experimental results for given input parameters. Among the parameters studied were electron beam energy spread, emittance, and mismatch with the undulator focusing. Vacuum-chamber wakefi elds were also simulated to study their effect on FEL performance. Energy spread was found to be the most infl uential factor, with output FEL radiation power sharply decreasing for relative energy spreads greater than 0.33%. Vacuum chamber wakefi elds and beam mismatch had little effect on the simulated LOASIS FEL at the currents considered. This study concludes that continued improvement of the laser-plasma wakefi eld accelerator electron beam will allow the LOASIS FEL to operate in an optimal regime, producing high-quality XUV and x-ray pulses.

  8. Polar PWI and CEPPAD observations of chorus emissions and radiation belt electron acceleration: Four case studies

    Science.gov (United States)

    Sigsbee, K.; Menietti, J. D.; Santolík, O.; Blake, J. B.

    2008-11-01

    We investigated the role of whistler-mode chorus in accelerating outer radiation belt electrons during four moderate geomagnetic storms when data from the Polar Plasma Wave Investigation (PWI) were available. The storm time periods we examined included two storms associated with coronal mass ejections (CMEs), the well-studied January 10-13, 1997 International Solar Terrestrial Physics event and the May 12-15, 1997 event. We compared these two storms with two geomagnetically active periods that were not associated with CMEs. Although strong chorus emissions were observed during all four events, the association of electron acceleration with chorus emissions is not clear. During all four events, the Polar Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) experiment observed increases in the fluxes of energetic electrons (0.8electron fluxes above 0.8 MeV that may have been related to the impact of the CME shock wave upon the magnetosphere. The other two events featured more gradual increases in the electron fluxes over a period of several days. The data from these events indicate that the role played by resonant interactions with chorus in accelerating electrons may depend on the upstream solar wind conditions driving the storm.

  9. Injection of electrons by colliding laser pulses in a laser wakefield accelerator

    CERN Document Server

    Hansson, Martin; Ekerfelt, Henrik; Persson, Anna; Lundh, Olle

    2016-01-01

    To improve the stability and reproducibility of laser wakefield accelerators and to allow for future applications, controlling the injection of electrons is of great importance. This allows us to control the amount of charge in the beams of accelerated electrons and final energy of the electrons. Results are presented from a recent experiment on controlled injection using the scheme of colliding pulses and performed using the Lund multi-terawatt laser. Each laser pulse is split into two parts close to the interaction point. The main pulse is focused on a 2 mm diameter gas jet to drive a nonlinear plasma wave below threshold for self-trapping. The second pulse, containing only a fraction of the total laser energy, is focused to collide with the main pulse in the gas jet under an angle of 150°. Beams of accelerated electrons with low divergence and small energy spread are produced using this set-up. Control over the amount of accelerated charge is achieved by rotating the plane of polarization of the second p...

  10. Space-charge effects in ultrahigh current electron bunches generated by laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    F. J. Grüner

    2009-02-01

    Full Text Available Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron laser (FEL. Significant reduction in size of the FEL is facilitated by the expected ultrahigh peak beam currents (10–100 kA generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultracompact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution, which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  11. Reducing NOx and SOx pollutants in an industrial units using electron accelerator

    Directory of Open Access Journals (Sweden)

    H Nouri

    2017-08-01

    Full Text Available Electron beam accelerators technology has made significant progress in environmental applications in recent years. Including some environmental applications of industrial accelerators, is clearing the air from oxides of nitrogen and sulfur(NOx , SOx produced by industrial facilities. Combustion  of coal, oil, natural gas and other gases that are produced in power plant, refineries and industrial factories, produce high extent of these oxides wshich exceed the limit in most cases. Clearing by irradiation involves adding amounts of ammonia to output gases and irradiation by Electron beam accelerators. Irradiation produces radicals that interact again with  NOx , SOx  and produced the related gases. Due to the ammonia, these acids transform into ammonium sulfate ((NH42SO4 and ammonium nitrate (NH4NO3 are precipitated by electrostatic precipitators, and are used as chemical fertilizer. Cosidering purification process of pollutant  gases by electron beam and the importance of electron accelerator in industrial plants that are polluting the environment in Iran, can be a suitable sollution for this environmental problem

  12. Experimental destruction of Ascarid ova in sewage sludge by accelerated electron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Horak, Petr (Charles Univ., Prague (Czech Republic). Dept. of Parasitology)

    1994-04-01

    Aerobically-treated sewage sludge containing eggs of the nematode Ascaris suum was processed using accelerated electrons. After 8 weeks of incubation the morphological and developmental status of eggs was determined. Inhibition of development and the destruction of nematode embryos within eggs were observed at doses over 1.1 kGy. (author).

  13. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  14. Electron acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode chorus waves

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2013-10-01

    Full Text Available Jupiter has the most intense radiation belts of all the outer planets. It is not yet known how electrons can be accelerated to energies of 10 MeV or more. It has been suggested that cyclotron-resonant wave-particle interactions by chorus waves could accelerate electrons to a few MeV near the orbit of Io. Here we use the chorus wave intensities observed by the Galileo spacecraft to calculate the changes in electron flux as a result of pitch angle and energy diffusion. We show that, when the bandwidth of the waves and its variation with L are taken into account, pitch angle and energy diffusion due to chorus waves is a factor of 8 larger at L-shells greater than 10 than previously shown. We have used the latitudinal wave intensity profile from Galileo data to model the time evolution of the electron flux using the British Antarctic Survey Radiation Belt (BAS model. This profile confines intense chorus waves near the magnetic equator with a peak intensity at ∼5° latitude. Electron fluxes in the BAS model increase by an order of magnitude for energies around 3 MeV. Extending our results to L = 14 shows that cyclotron-resonant interactions with chorus waves are equally important for electron acceleration beyond L = 10. These results suggest that there is significant electron acceleration by cyclotron-resonant interactions at Jupiter contributing to the creation of Jupiter's radiation belts and also increasing the range of L-shells over which this mechanism should be considered.

  15. Two-stage acceleration of externally injected electrons in plasma bubble derived from the combination of DLA and LWFA

    Science.gov (United States)

    Khudik, Vladimir; Wang, Tianhong; Vicuna, Daniel; Zhang, Xi; Shvets, Gennady

    2017-10-01

    Simultaneous interactions of accelerated electrons directly with a laser pulse and with a laser wakefield are studied using a novel quasistatic 3D particle-in-cell code. Relativistic electrons externally injected into the plasma bubble's decelerating phase can gain significant energy through the direct laser acceleration (DLA) mechanism from the driving laser pulse, increasing the amplitude of betatron oscillations. With time, the resonant interaction condition is violated, leading to gradual dephasing between electrons and laser wave, and to eventual slipping of the electrons to the back of the plasma bubble. After that, the oscillating electrons experience the second stage of acceleration gaining energy only from the bubble wakefield. We analyze each stage of acceleration and show that electrons undergoing two stages emits much more X-ray radiation compared with those accelerated during one wakefield stage. This work was supported by DOE Grant DESC0007889 and by AFOSR Grant FA9550-16-1-0013.

  16. Electron Pre-acceleration at Nonrelativistic High-Mach-number Perpendicular Shocks

    Science.gov (United States)

    Bohdan, Artem; Niemiec, Jacek; Kobzar, Oleh; Pohl, Martin

    2017-09-01

    We perform particle-in-cell simulations of perpendicular nonrelativistic collisionless shocks to study electron heating and pre-acceleration for parameters that permit the extrapolation to the conditions at young supernova remnants. Our high-resolution large-scale numerical experiments sample a representative portion of the shock surface and demonstrate that the efficiency of electron injection is strongly modulated with the phase of the shock reformation. For plasmas with low and moderate temperature (plasma beta {β }{{p}}=5\\cdot {10}-4 and {β }{{p}}=0.5), we explore the nonlinear shock structure and electron pre-acceleration for various orientations of the large-scale magnetic field with respect to the simulation plane, while keeping it at 90° to the shock normal. Ion reflection off of the shock leads to the formation of magnetic filaments in the shock ramp, resulting from Weibel-type instabilities, and electrostatic Buneman modes in the shock foot. In all of the cases under study, the latter provides first-stage electron energization through the shock-surfing acceleration mechanism. The subsequent energization strongly depends on the field orientation and proceeds through adiabatic or second-order Fermi acceleration processes for configurations with the out-of-plane and in-plane field components, respectively. For strictly out-of-plane field, the fraction of suprathermal electrons is much higher than for other configurations, because only in this case are the Buneman modes fully captured by the 2D simulation grid. Shocks in plasma with moderate {β }{{p}} provide more efficient pre-acceleration. The relevance of our results to the physics of fully 3D systems is discussed.

  17. Developing field emission electron sources based on ultrananocrystalline diamond for accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi; Antipov, Sergey; Jabotinski, Vadim; Shao, Jiahang; Gai, Wei; Sumant, Anirudha V.

    2016-08-25

    Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The natural way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.

  18. Demonstration of electron acceleration in a laser-driven dielectric microstructure

    Science.gov (United States)

    Peralta, E. A.; Soong, K.; England, R. J.; Colby, E. R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K. J.; Walz, D.; Sozer, E. B.; Cowan, B.; Schwartz, B.; Travish, G.; Byer, R. L.

    2013-11-01

    The enormous size and cost of current state-of-the-art accelerators based on conventional radio-frequency technology has spawned great interest in the development of new acceleration concepts that are more compact and economical. Micro-fabricated dielectric laser accelerators (DLAs) are an attractive approach, because such dielectric microstructures can support accelerating fields one to two orders of magnitude higher than can radio-frequency cavity-based accelerators. DLAs use commercial lasers as a power source, which are smaller and less expensive than the radio-frequency klystrons that power today's accelerators. In addition, DLAs are fabricated via low-cost, lithographic techniques that can be used for mass production. However, despite several DLA structures having been proposed recently, no successful demonstration of acceleration in these structures has so far been shown. Here we report high-gradient (beyond 250MeVm-1) acceleration of electrons in a DLA. Relativistic (60-MeV) electrons are energy-modulated over 563+/-104 optical periods of a fused silica grating structure, powered by a 800-nm-wavelength mode-locked Ti:sapphire laser. The observed results are in agreement with analytical models and electrodynamic simulations. By comparison, conventional modern linear accelerators operate at gradients of 10-30MeVm-1, and the first linear radio-frequency cavity accelerator was ten radio-frequency periods (one metre) long with a gradient of approximately 1.6MeVm-1 (ref. 5). Our results set the stage for the development of future multi-staged DLA devices composed of integrated on-chip systems. This would enable compact table-top accelerators on the MeV-GeV (106-109eV) scale for security scanners and medical therapy, university-scale X-ray light sources for biological and materials research, and portable medical imaging devices, and would substantially reduce the size and cost of a future collider on the multi-TeV (1012eV) scale.

  19. Beam Induced Electron Multipacting in the CERN Large Hadron Collider Accelerator LHC

    CERN Document Server

    Pivi, M

    2000-01-01

    Electron multiplication driven by the electric field of the proton bunches is expected to occur in the Large Hadron Collider (LHC), according to previous studies performed at CERN with two computer simulation codes. Electrons, secondary electrons and photo-electrons created by the beam will be accelerated in the electric field of the proton beam and will produce a large heat load at the surface, space charge in the chamber, coupling between the electrons and the beam and a pressure increase, which ultimately could cause the loss of the proton beam. It is, therefore, fundamental to study the phenomenon. The Ph.D. thesis work included studies and planning for the laboratory experimental setup to reproduce the electron multipacting induced by radio frequency, performing data aquisitionand analysis, modelization and simulations of the phenomenon, furthermore, to study the parameters influencing the effect, such as vacuum chamber material, cleaning, surface treatments, to better understand multipacting and determi...

  20. Thermal electron acceleration by localized bursts of electric field in the radiation belts

    Science.gov (United States)

    Artemyev, A. V.; Agapitov, O. V.; Mozer, F.; Krasnoselskikh, V.

    2014-08-01

    In this paper we investigate the resonant interaction of thermal ˜10-100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer-lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth's outer radiation belts. These structures propagate mostly away from the geomagnetic equator and share properties of soliton-like nonlinear electron acoustic waves: a velocity of propagation is about the thermal velocity of cold electrons (˜3000-10,000 km/s), and a spatial scale of electric field localization along the field lines is about the Debye radius of hot electrons (˜5-30 km). We model the nonlinear resonant interaction of these electric field structures and cold background electrons.

  1. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  2. submitter Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    CERN Document Server

    Scisciò, M; Migliorati, M; Mostacci, A; Palumbo, L; Papaphilippou, Y; Antici, P

    2016-01-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupo...

  3. Proposed method for internal electron therapy based on high-intensity laser acceleration

    Science.gov (United States)

    Tepper, Michal; Barkai, Uri; Gannot, Israel

    2015-05-01

    Radiotherapy is one of the main methods to treat cancer. However, due to the propagation pattern of high-energy photons in tissue and their inability to discriminate between healthy and malignant tissues, healthy tissues may also be damaged, causing undesired side effects. A possible method for internal electron therapy, based on laser acceleration of electrons inside the patient's body, is suggested. In this method, an optical waveguide, optimized for high intensities, is used to transmit the laser radiation and accelerate electrons toward the tumor. The radiation profile can be manipulated in order to create a patient-specific radiation treatment profile by changing the laser characteristics. The propagation pattern of electrons in tissues minimizes the side effects caused to healthy tissues. A simulation was developed to demonstrate the use of this method, calculating the trajectories of the accelerated electron as a function of laser properties. The simulation was validated by comparison to theory, showing a good fit for laser intensities of up to 2×1020 (W/cm2), and was then used to calculate suggested treatment profiles for two tumor test cases (with and without penetration to the tumor). The results show that treatment profiles can be designed to cover tumor area with minimal damage to adjacent tissues.

  4. Electron Acceleration by Beating of Two Intense Cross-Focused Hollow Gaussian Laser Beams in Plasma

    Science.gov (United States)

    Mahmoud, Saleh T.; Gauniyal, Rakhi; Ahmad, Nafis; Rawat, Priyanka; Purohit, Gunjan

    2018-01-01

    This paper presents propagation of two cross-focused intense hollow Gaussian laser beams (HGBs) in collisionless plasma and its effect on the generation of electron plasma wave (EPW) and electron acceleration process, when relativistic and ponderomotive nonlinearities are simultaneously operative. Nonlinear differential equations have been set up for beamwidth of laser beams, power of generated EPW, and energy gain by electrons using WKB and paraxial approximations. Numerical simulations have been carried out to investigate the effect of typical laser-plasma parameters on the focusing of laser beams in plasmas and further its effect on power of excited EPW and acceleration of electrons. It is observed that focusing of two laser beams in plasma increases for higher order of hollow Gaussian beams, which significantly enhanced the power of generated EPW and energy gain. The amplitude of EPW and energy gain by electrons is found to enhance with an increase in the intensity of laser beams and plasma density. This study will be useful to plasma beat wave accelerator and in other applications requiring multiple laser beams. Supported by United Arab Emirates University for Financial under Grant No. UPAR (2014)-31S164

  5. High-quality stable electron beams from laser wakefield acceleration in high density plasma

    Directory of Open Access Journals (Sweden)

    B. S. Rao

    2014-01-01

    Full Text Available High-quality, stable electron beams are produced from self-injected laser wakefield acceleration using the interaction of moderate 3 TW, 45 fs duration Ti:sapphire laser pulses with high density (>5×10^{19}   cm^{−3} helium gas jet plasma. The electron beam has virtually background-free quasimonoenergetic distribution with energy 35.6_{−2.5}^{+3.9}  MeV, charge 3.8_{−1.2}^{+2.8}  pC, divergence and pointing variation ∼10  mrad. The stable and high quality of the electron beam opens an easy way for applications of the laser wakefield accelerator in the future, particularly due to the widespread availability of sub-10 TW class lasers with a number of laser plasma laboratories around the world.

  6. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  7. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-02-01

    Full Text Available Utilizing laser-driven plasma accelerators (LPAs as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  8. First accelerator test of vacuum components with laser-engineered surfaces for electron-cloud mitigation

    Science.gov (United States)

    Calatroni, Sergio; Garcia-Tabares Valdivieso, Elisa; Neupert, Holger; Nistor, Valentin; Perez Fontenla, Ana Teresa; Taborelli, Mauro; Chiggiato, Paolo; Malyshev, Oleg; Valizadeh, Reza; Wackerow, Stefan; Zolotovskaya, Svetlana A.; Gillespie, W. Allan; Abdolvand, Amin

    2017-11-01

    Electron cloud mitigation is an essential requirement for high-intensity proton circular accelerators. Among other solutions, laser engineered surface structures (LESS) present the advantages of having potentially a very low secondary electron yield (SEY) and allowing simple scalability for mass production. Two copper liners with LESS have been manufactured and successfully tested by monitoring the electron cloud current in a dipole magnet in the SPS accelerator at CERN during the 2016 run. In this paper we report on these results as well as the detailed experiments carried out on samples—such as the SEY and topography studies—which led to an optimized treatment in view of the SPS test and future possible use in the HL-LHC.

  9. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    Science.gov (United States)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  10. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    CERN Document Server

    Brijesh, P; Phuoc, K T; Corde, S; Lambert, G; Malka, V; Mangles, S P D; Bloom, M; Kneip, S

    2012-01-01

    A density perturbation produced in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 +/- 3.6%, divergence of 4 +/- 0.8 mrad and charge of 6 +/- 1.8 pC.

  11. Generation of bremsstrahlung during multiple passes of accelerated electrons through a thin target in a betatron

    Energy Technology Data Exchange (ETDEWEB)

    Bespalov, V.I. E-mail: bvi@chair12.phtd.tpu.edu.ru; Kashkovsky, V.V.; Chakhlov, V.L

    2003-01-01

    In the present work a method of bremsstrahlung generation in a betatron during multiple passes of the accelerated electrons through a thin target-converter is explored with the help of statistical modeling. The results are obtained on a basis of experimentally measured field distributions for the betatrons: MB-6 and B-35. The data of electron orbit dynamics and characteristics of bremsstrahlung field are given depending on parameters of the electron's dumping onto the target and sizes of the target.

  12. Parametric waves excitation in relativistic laser-plasma interactions for electron acceleration

    Science.gov (United States)

    Shulyapov, S. A.; Ivanov, K. A.; Tsymbalov, I. N.; Krestovskih, D. A.; Savel'ev, A. B.; Ksenofontov, P. A.; Brantov, A. V.; Bychenkov, V. Yu

    2015-11-01

    Plasma created by femtosecond laser pulse of high intensity can be used as the brilliant source of high energy electrons, ions and x- or γ-rays. In most cases, laser pulses with high contrast are used for particle acceleration. But, it has been shown, that changing parameters of pre-plasma layer on the surface of the target can significantly increase electron energies. In this work we present the results of the experimental and numerical studies of the abnormally hot electron generation mechanisms in the case of long scale pre-plasma layer subcritical density.

  13. Acceleration of electrons by high intensity laser radiation in a magnetic field

    OpenAIRE

    Melikian, Robert

    2013-01-01

    We consider the acceleration of electrons in vacuum by means of the circularly-polirized electromagnetic wave, propagating along a magnetic field. We show that the electron energy growth, when using ultra-short and ultra-intense laser pulses (10 ps, 10^{18} Bm/cm^2, CO_{2} laser) in the presence of a magnetic field, may reach up to the value 2,1 Gev. The growth of the electron energy is shown to increase proportionally with the increase of the laser intensity and the initial energy of the ele...

  14. Energetic Electron Acceleration Observed by MMS in the Vicinity of an X-Line Crossing

    Science.gov (United States)

    Jaynes, A. N.; Turner, D. L.; Wilder, F. D.; Osmane, A.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Cohen, I. J.; Mauk, B. H.; Reeves, G. D.; hide

    2016-01-01

    During the first months of observations, the Magnetospheric Multiscale Fly's Eye Energetic Particle Spectrometer instrument has observed several instances of electron acceleration up to greater than 100 keV while in the vicinity of the dayside reconnection region. While particle acceleration associated with magnetic reconnection has been seen to occur up to these energies in the tail region, it had not yet been reported at the magnetopause. This study reports on observations of electron acceleration up to hundreds of keV that were recorded on 19 September 2015 around 1000 UT, in the midst of an X-line crossing. In the region surrounding the X-line, whistler-mode and broadband electrostatic waves were observed simultaneously with the appearance of highly energetic electrons which exhibited significant energization in the perpendicular direction. The mechanisms by which particles may be accelerated via reconnection-related processes are intrinsic to understanding particle dynamics among a wide range of spatial scales and plasma environments.

  15. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Byrd, J. M.; Billing, M.; Palmer, M.; Sikora, J.; Carlson, B.

    2010-01-02

    A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J.M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M.T.F. Pivi, and K.G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008).]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  16. Design and Simulation of the Recirculating Crossed-Field Planar Amplifier

    Science.gov (United States)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Simon, David; Lau, Yue Ying; Gilgenbach, Ronald; Hoff, Brad

    2016-10-01

    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is a high power microwave device adapted from the Recirculating Planar Magnetron1, developed at the University of Michigan. A travelling-wave, rectangular, meander-line design has been developed in simulation that amplifies a 1.3 MW signal at 3 GHz to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulation also shows that the RPCFA is zero-drive stable, e.g., output of any appreciable power is dependent on the presence of an input RF signal. The amplifier was designed to be driven by the Michigan Electron Long Beam Accelerator (MELBA), which is currently configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. Taking these parameters into consideration, a slow wave structure, cathode, and housing were designed using the finite element frequency domain code Ansys HFSS. The cold tube characteristics and RF field structures were then verified using the particle in cell code, MAGIC. Hot tube simulations on MAGIC were also run to calculate the RPCFA's performance, including gain and efficiency. Future work will include building a prototype RPCFA, cold testing, and performing experiments to verify the hot tube simulations. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  17. Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier

    Science.gov (United States)

    Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad

    2017-10-01

    The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.

  18. Design and operation of an inverse free-electron-laser accelerator in the microwave regime

    Science.gov (United States)

    Yoder, Rodney Bruce

    2000-09-01

    A novel electron accelerator demonstrating the inverse free-electron-laser (IFEL) principle has been designed, built, and operated using radio-frequency power at 2.856 GHz. Such an accelerator uses a stationary, periodic magnetic field to impart transverse motion to charged particles, which are then accelerated by guided electromagnetic waves. The experiment described here demonstrates for the first time the phase dependence of IFEL acceleration. This design uses up to 15 MW of RF power propagating in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator; an array of solenoids provides an axial guiding magnetic field undulator; pitch, which is initially 11.75 cm, is linearly increased to 12.3 cm. over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of up to 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The initial injection phase is the most important parameter, determining the rate of energy gain or loss. These simulations are compared with experimental measurements at low power in which electron beams at energies between 5 and 6 MeV gain up to 0.35 MeV with minimal energy spread, all exiting particles having been accelerated. The predicted phase sensitivity of the mechanism is verified, with beams injected into accelerating phases gaining energy cleanly while those injected into ``decelerating'' phases are shown to be degraded in quality and hardly changed in energy, demonstrating the asymmetry of a tapered-wiggler design. Agreement with simulation is very good for accelerating phases, though less exact otherwise. Scaling to higher power and frequency is investigated. The maximum attainable acceleration gradient for a MIFELA using 150 MW of RF power at 34 GHz is estimated to be at least 30 MV/m, and laser IFELs could conceivably reach gradients in the GeV/m range.

  19. Permanent Magnets In Steerers Of The Beam Extracted From The Electron Accelerator

    CERN Document Server

    Dovbnya, A N; Shendrik, V A; Tolstoj, A E

    2004-01-01

    The results of test bench simulation and magnetic measurements were used to develop and manufacture "dipole magnet"-type units with a constant field of intensity up to 1.8 kOe in the working gap, 3 to 3.5 cm in height. The operating experience at the technological accelerators has shown that these devices are convenient in service, are easy-to-transport and can be used for solving the various problems in electron beam formation and steering at the exit of the accelerator.

  20. High-quality electron beams from a helical inverse free-electron laser accelerator

    National Research Council Canada - National Science Library

    Duris, J; Musumeci, P; Babzien, M; Fedurin, M; Kusche, K; Li, R K; Moody, J; Pogorelsky, I; Polyanskiy, M; Rosenzweig, J B; Sakai, Y; Swinson, C; Threlkeld, E; Williams, O; Yakimenko, V

    2014-01-01

    .... By using an undulator magnetic field in combination with a laser, GeV m(-1) gradients may be sustained over metre-scale distances using laser intensities several orders of magnitude less than those used in laser wake-field accelerators...

  1. Energetic Electron Acceleration and Injection During Dipolarization Events in Mercury's Magnetotail

    Science.gov (United States)

    Dewey, Ryan M.; Slavin, James A.; Raines, Jim M.; Baker, Daniel N.; Lawrence, David J.

    2017-12-01

    Energetic particle bursts associated with dipolarization events within Mercury's magnetosphere were first observed by Mariner 10. The events appear analogous to particle injections accompanying dipolarization events at Earth. The Energetic Particle Spectrometer (3 s resolution) aboard MESSENGER determined the particle bursts are composed entirely of electrons with energies ≳ 300 keV. Here we use the Gamma-Ray Spectrometer high-time-resolution (10 ms) energetic electron measurements to examine the relationship between energetic electron injections and magnetic field dipolarization in Mercury's magnetotail. Between March 2013 and April 2015, we identify 2,976 electron burst events within Mercury's magnetotail, 538 of which are closely associated with dipolarization events. These dipolarizations are detected on the basis of their rapid ( 2 s) increase in the northward component of the tail magnetic field (ΔBz 30 nT), which typically persists for 10 s. Similar to those at Earth, we find that these dipolarizations appear to be low-entropy, depleted flux tubes convecting planetward following the collapse of the inner magnetotail. We find that electrons experience brief, yet intense, betatron and Fermi acceleration during these dipolarizations, reaching energies 130 keV and contributing to nightside precipitation. Thermal protons experience only modest betatron acceleration. While only 25% of energetic electron events in Mercury's magnetotail are directly associated with dipolarization, the remaining events are consistent with the Near-Mercury Neutral Line model of magnetotail injection and eastward drift about Mercury, finding that electrons may participate in Shabansky-like closed drifts about the planet. Magnetotail dipolarization may be the dominant source of energetic electron acceleration in Mercury's magnetosphere.

  2. New Statistical Multiparticle Approach to the Acceleration of Electrons by the Ion Field in Plasmas

    Directory of Open Access Journals (Sweden)

    Eugene Oks

    2010-01-01

    Full Text Available The phenomenon of the acceleration of the (perturbing electrons by the ion field (AEIF significantly reduces Stark widths and shifts in plasmas of relatively high densities and/or relatively low temperature. Our previous analytical calculations of the AEIF were based on the dynamical treatment: the starting point was the ion-microfield-caused changes of the trajectories and velocities of individual perturbing electrons. In the current paper, we employ a statistical approach: the starting point is the electron velocity distribution function modified by the ion microfield. The latter had been calculated by Romanovsky and Ebeling in the multiparticle description of the ion microfield. The result shows again the reduction of the electron Stark broadening. Thus two totally different analytical approaches (dynamical and statistical agree with each other and therefore disprove the corresponding recent fully-numerical simulations by Stambulchik et al. that claimed an increase of the electron Stark broadening.

  3. Enhanced electron yield from a laser-plasma accelerator using high-Z gas jet targets

    CERN Document Server

    Mirzaie, Mohammad; Li, Song; Sokollik, Thomas; He, Fei; Cheng, Ya; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    An investigation of the multi-hundred MeV electron beam yield (charge) form helium, nitrogen, neon and argon gas jet plasmas in a laser-plasma wakefield acceleration experiment was carried out. The charge measurement has been made via imaging the electron beam intensity profile on a fluorescent screen into a 14-bit charge coupled device (CCD) which was cross-calibrated with nondestructive electronics-based method. Within given laser and plasma parameters, we found that laser-driven low Z- gas jet targets generate high-quality and well-collimated electron beams with reasonable yields at the level of 10-100 pC. On the other hand, filamentary electron beams which were observed from high-Z gas jets at higher densities reached much higher yield. Evidences for cluster formation were clearly observed in high-Z gases, especially in the argon gas jet target where we received the highest yield of ~ 3 nC

  4. Proceedings of the workshop on photocathodes for polarized electron sources for accelerators. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Chatwell, M.; Clendenin, J.; Maruyama, T.; Schultz, D. [eds.

    1994-04-01

    Application of the GaAs polarized electron source to studies of surface magnetism; thermal stability of Cs on NES III-V-Photocathodes and its effect on quantum efficiency; AFEL accelerator; production and detection of SPIN polarized electrons; emittance measurements on a 100-keV beam from a GaAs photocathode electron gun; modern theory of photoemission and its applications to practical photocathodes; experimental studies of the charge limit phenomenon in GaAs photocathodes; new material for photoemission electron source; semiconductor alloy InGaAsP grown on GaAs substrate; NEA photocathode surface preparation; technology and physics; metalorganic chemical vapor deposition of GaAs-GaAsP spin-polarized photocathodes; development of photocathodes injectors for JLC-ATF; effect of radiation trapping on polarization of photoelectrons from semiconductors; and energy analysis of electrons emitted by a semiconductor photocathode.

  5. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question.

    Science.gov (United States)

    Yang, X; Brunetti, E; Gil, D Reboredo; Welsh, G H; Li, F Y; Cipiccia, S; Ersfeld, B; Grant, D W; Grant, P A; Islam, M R; Tooley, M P; Vieux, G; Wiggins, S M; Sheng, Z M; Jaroszynski, D A

    2017-03-10

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

  6. Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment

    Science.gov (United States)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.

    2017-03-01

    A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.

  7. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Science.gov (United States)

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  8. THz cavities and injectors for compact electron acceleration using laser-driven THz sources

    Directory of Open Access Journals (Sweden)

    Moein Fakhari

    2017-04-01

    Full Text Available We present a design methodology for developing ultrasmall electron injectors and accelerators based on cascaded cavities excited by short multicycle THz pulses obtained from laser-driven THz generation schemes. Based on the developed concept for optimal coupling of the THz pulse, a THz electron injector and two accelerating stages are designed. The designed electron gun consists of a four cell cavity operating at 300 GHz and a door-knob waveguide to coaxial coupler. Moreover, special designs are proposed to mitigate the problem of thermal heat flow and induced mechanical stress to achieve a stable device. We demonstrated a gun based on cascaded cavities that is powered by only 1.1 mJ of THz energy in 300 cycles to accelerate electron bunches up to 250 keV. An additional two linac sections can be added with five and four cell cavities both operating at 300 GHz boosting the bunch energy up to 1.2 MeV using a 4-mJ THz pulse.

  9. The effects of accelerated electrons on Escherichia Coli enterobacteria cytotoxic activity

    Science.gov (United States)

    Oproiu, C.; Martin, D.; Marghitu, S.; Popescu, A. S.; Butan, C.; Toma, M.; Hategan, A.; Dima, V.

    1999-01-01

    Electron beam effects of the cytotoxic capacity of enterotoxin Escherichia coli on “in vitro” cell colonies have been studied. The VERO cell colonies and tumoral epithelial cells HeLa-2 were treated with different concentrations of irradiated and natural entherotoxin (1-1000 μg/mL). The radiation doses used range from 1 to 35 kGy. The irradiation was carried out with ALIN-10 linear accelerator and the dose was measured with calorimetric devices and cellulose triacetate dosimetric films. The accelerated electrons effects were estimated by means of the effect of different absorbed radiation doses on the enterotoxin and on the protein synthesis in cell colonies treated with irradiated enterotoxin. The following results were obtained: a) there is a definite dependence between the electron beam irradiation and effects on cytotoxic activity of the enterotoxin; b) strong inhibition of protein synthesis is produced in cell colonies treated with large amounts of enterotoxin; c) the cytotoxic activity of treated enterotoxin with 35 kGy accelerated electrons is fully suppressed; d) the VERO cells are more sensitive against natural and irradiated enterotoxin, as compared with tumoral epithelial cells HeLa-2.

  10. Resonantly Enhanced Betatron Hard X-rays from Ionization Injected Electrons in a Laser Plasma Accelerator

    Science.gov (United States)

    Huang, K.; Li, Y. F.; Li, D. Z.; Chen, L. M.; Tao, M. Z.; Ma, Y.; Zhao, J. R.; Li, M. H.; Chen, M.; Mirzaie, M.; Hafz, N.; Sokollik, T.; Sheng, Z. M.; Zhang, J.

    2016-01-01

    Ultrafast betatron x-ray emission from electron oscillations in laser wakefield acceleration (LWFA) has been widely investigated as a promising source. Betatron x-rays are usually produced via self-injected electron beams, which are not controllable and are not optimized for x-ray yields. Here, we present a new method for bright hard x-ray emission via ionization injection from the K-shell electrons of nitrogen into the accelerating bucket. A total photon yield of 8 × 108/shot and 108 photons with energy greater than 110 keV is obtained. The yield is 10 times higher than that achieved with self-injection mode in helium under similar laser parameters. The simulation suggests that ionization-injected electrons are quickly accelerated to the driving laser region and are subsequently driven into betatron resonance. The present scheme enables the single-stage betatron radiation from LWFA to be extended to bright γ-ray radiation, which is beyond the capability of 3rd generation synchrotrons. PMID:27273170

  11. Effects of the precursor electron bunch on quasi-phase matched direct laser acceleration

    Science.gov (United States)

    Lin, M.-W.; Hsieh, C.-Y.; Liu, Y.-L.; Chen, S.-H.; Jovanovic, I.

    2016-12-01

    Direct laser acceleration (DLA) of electrons can be achieved by utilizing the axial field of a well-guided, radially polarized laser pulse in a density-modulated plasma waveguide. When a laser pulse of a few terawatt (TW) peak power is applied, however, the laser ponderomotive force perturbs plasma electrons to concentrate in the center, such that the generated electrostatic fields can significantly defocus the externally injected electron witness bunch and considerably deteriorate the acceleration efficiency. To improve the performance of DLA, a leading electron bunch, which acts as a precursor, can be introduced in DLA to effectively confine the witness bunch. Three-dimensional particle-in-cell simulations have been conducted to demonstrate that the transverse properties of the witness bunch can be significantly improved when a precursor bunch is used. Selected bunch transverse sizes, bunch charges, and axial separation from the witness bunch have been assigned to the precursor in a series of DLA simulations. Since a favorable ion-focusing force is provided by the precursor, the transverse properties of witness bunch can be maintained when a relatively high-power (˜2 TW) laser pulse is used in DLA, and an improved overall acceleration efficiency can be achieved.

  12. Recirculation nursery systems for bivalves

    NARCIS (Netherlands)

    Kamermans, P.; Blanco Garcia, A.; Joaquim, Sandra; Matias, Domitilia; Magnesen, Thorolf; Nicolas, J.; Petten, Bruno; Robert, Rene

    2016-01-01

    n order to increase production of bivalves in hatcheries and nurseries, the development of new technology and its integration into commercial bivalve hatcheries is important. Recirculation aquaculture systems (RASs) have several advantages: high densities of the species can be cultured resulting in

  13. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    CERN Document Server

    Gerasimov, A I; Kulgavchuk, V V; Pluzhnikov, A V

    2002-01-01

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 mu s duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  14. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    Science.gov (United States)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  15. An accelerator scenario for a hard X-ray free electron laser combined with high energy electron radiography

    Science.gov (United States)

    Wei, Tao; Li, Yiding; Yang, Guojun; Pang, Jian; Li, Yuhui; Li, Peng; Pflueger, Joachim; He, Xiaozhong; Lu, Yaxin; Wang, Ke; Long, Jidong; Zhang, Linwen; Wu, Qiang

    2016-08-01

    In order to study the dynamic response of the material and the physical mechanism of fluid dynamics, an accelerator scenario which can be applied to both hard X-ray free electron laser and high energy electron radiography is proposed. This accelerator is mainly composed of a 12 GeV linac, an undulator branch and an eRad beamline. In order to characterize a sample’s dynamic behavior in situ and real-time with XFEL and eRad simultaneously, the linac should be capable of accelerating the two kinds of beam within the same operation mode. Combining in-vacuum and tapering techniques, the undulator branch can produce more than 1011 photons per pulse in 0.1% bandwidth at 42 keV. Finally, an eRad amplifying beamline with 1:10 ratio is proposed as an important complementary tool for the wider view field and density identification ability. Supported by China Academy of Engineering Physics (2014A0402016) and Institute of Fluid Physics (SFZ20140201)

  16. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  17. Intense γ ray generated by refocusing laser pulse on wakefield accelerated electrons

    Science.gov (United States)

    Feng, Jie; Wang, Jinguang; Li, Yifei; Zhu, Changqing; Li, Minghua; He, Yuhang; Li, Dazhang; Wang, Weimin; Chen, Liming

    2017-09-01

    Ultrafast x/γ ray emission from the combination of laser wake-field acceleration and plasma mirror has been investigated as a promising Thomson scattering source. However, the photon energy and yield of radiation are limited to the intensity of reflected laser pulses. We use the 2D particle in cell simulation to demonstrate that a 75TW driven laser pulse can be refocused on the accelerated electron bunches through a hemispherical plasma mirror with a small f number of 0.25. The energetic electrons with the maximum energy about 350 MeV collide with the reflected laser pulse of a0 = 3.82 at the focal spot, producing high order multi-photon Thomson scattering, and resulting in the scattering spectrum which extends up to 21.2 MeV. Such a high energy γ ray source could be applied to photonuclear reaction and materials science.

  18. Design and validation of an accelerator for an ultracold electron source

    Directory of Open Access Journals (Sweden)

    G. Taban

    2008-05-01

    Full Text Available We describe here a specially designed accelerator structure and a pulsed power supply that are essential parts of a high brightness cold atoms-based electron source. The accelerator structure allows a magneto-optical atom trap to be operated inside of it, and also transmits subnanosecond electric field pulses. The power supply produces high voltage pulses up to 30 kV, with a rise time of up to 30 ns. The resulting electric field inside the structure is characterized with an electro-optic measurement and with an ion time-of-flight experiment. Simulations predict that 100 fC electron bunches, generated from trapped atoms inside the structure, reach an emittance of 0.04 mm mrad and a bunch length of 80 ps.

  19. Longitudinal wake of a bunch of suddenly accelerated electrons within the radiation formation zone

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2007-05-01

    Full Text Available The longitudinal wake is considered for a bunch of electrons that are suddenly accelerated to an ultrarelativistic velocity. This wake describes the wake of forward transition radiation, and it approximates the edge-radiation wake of a bunch exiting a bending magnet. The wake is large within the radiation formation zone, where it provides resistive impedance. A comparison with the computed wake downstream of a bending magnet yields good agreement, indicating that our wake expressions may be used to approximate the wake without numerical computation. For schemes in which a bunch produced by laser-plasma acceleration exits the plasma and then drives a free electron laser (FEL, the transition-radiation wake causes energy losses of many MeV that may affect the FEL process.

  20. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Directory of Open Access Journals (Sweden)

    David L. Bruhwiler

    2001-10-01

    Full Text Available We present 2D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low \\(∼10^{16} W/cm^{2}\\ and high \\(∼10^{18} W/cm^{2}\\ peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  1. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

    2001-10-01

    We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  2. Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear interactions with VLF chorus

    Science.gov (United States)

    Foster, J. C.; Erickson, P. J.; Omura, Y.; Baker, D. N.; Kletzing, C. A.; Claudepierre, S. G.

    2017-01-01

    Prompt recovery of MeV (millions of electron Volts) electron populations in the poststorm core of the outer terrestrial radiation belt involves local acceleration of a seed population of energetic electrons in interactions with VLF chorus waves. Electron interactions during the generation of VLF rising tones are strongly nonlinear, such that a fraction of the relativistic electrons at resonant energies are trapped by waves, leading to significant nonadiabatic energy exchange. Through detailed examination of VLF chorus and electron fluxes observed by Van Allen Probes, we investigate the efficiency of nonlinear processes for acceleration of electrons to MeV energies. We find through subpacket analysis of chorus waveforms that electrons with initial energy of hundreds of keV to 3 MeV can be accelerated by 50 keV-200 keV in resonant interactions with a single VLF rising tone on a time scale of 10-100 ms.

  3. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    OpenAIRE

    Ebrahimkhani, Marziye; Hassanzadeh, Mostafa; Feghhi, Sayed Amier Hossian; Masti, Darush

    2016-01-01

    Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee) and source multiplication coefficient (ks), has been investigated. A Monte Carlo code (MCNPX_2.6) has been used to ...

  4. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    OpenAIRE

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO$_{2}$ laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energ...

  5. Laser sources for polarized electron beams in cw and pulsed accelerators

    CERN Document Server

    Hatziefremidis, A; Fraser, D; Avramopoulos, H

    1999-01-01

    We report the characterization of a high power, high repetition rate, mode-locked laser system to be used in continuous wave and pulsed electron accelerators for the generation of polarized electron beams. The system comprises of an external cavity diode laser and a harmonically mode-locked Ti:Sapphire oscillator and it can provide up to 3.4 W average power, with a corresponding pulse energy exceeding 1 nJ at 2856 MHz repetition rate. The system is tunable between 770-785 and 815-835 nm with two sets of diodes for the external cavity diode laser. (author)

  6. Electron beam characteristics of a laser-driven plasma wakefield accelerator

    CERN Document Server

    Assamagan, Ketevi A; Chen, S Y; Ent, R; Green, R N; Gueye, P; Keppel, C; Mourou, G; Umstadter, D; Wagner, R

    1999-01-01

    The properties of an electron beam trapped and accelerated in a laser wakefield have been investigated. Plastic scintillating fibers were employed together with position sensitive photomultiplier tubes (PMT) and a series of dipole electro-magnets to study the beam. The measured momentum spectrum peaks around 7 MeV/c with an exponential fall-off at high momenta up to (70.3+- 19.9) MeV/c. The number of electrons detected per bunch is determined to be (2.6+-0.3)x10 sup 1 sup 1.

  7. A “slingshot” laser-driven acceleration mechanism of plasma electrons

    Energy Technology Data Exchange (ETDEWEB)

    Fiore, Gaetano, E-mail: gaetano.fiore@na.infn.it [Dip. di Matematica e Applicazioni, Università “Federico II”, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); De Nicola, Sergio [SPIN-CNR, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy); INFN, Sezione di Napoli, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli (Italy)

    2016-09-01

    We briefly report on the recently proposed Fiore et al. [1] and Fiore and De Nicola [2] electron acceleration mechanism named “slingshot effect”: under suitable conditions the impact of an ultra-short and ultra-intense laser pulse against the surface of a low-density plasma is expected to cause the expulsion of a bunch of superficial electrons with high energy in the direction opposite to that of the pulse propagation; this is due to the interplay of the huge ponderomotive force, huge longitudinal field arising from charge separation, and the finite size of the laser spot.

  8. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    OpenAIRE

    Vidya Ramanathan; Sudeep Banerjee; Nathan Powers; Nathaniel Cunningham; Nathan A. Chandler-Smith; Kun Zhao; Kevin Brown; Donald Umstadter; Shaun Clarke; Sara Pozzi; James Beene; Vane, C R; David Schultz

    2010-01-01

    We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100  MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense ma...

  9. Submillimeter-resolution radiography of shielded structures with laser-accelerated electron beams

    Directory of Open Access Journals (Sweden)

    Vidya Ramanathan

    2010-10-01

    Full Text Available We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100  MeV was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution.

  10. Submillimeter-Resolution Radiography of Shielded Structures with Laser-Accelerated Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Vidya [University of Nebraska, Lincoln; Banerjee, Sudeep [University of Nebraska, Lincoln; Powell, Nathan [University of Nebraska, Lincoln; Cummingham, N. J. [University of Nebraska, Lincoln; Chandler-Smith, Nate [University of Nebraska, Lincoln; Zhao, Kun [University of Nebraska, Lincoln; Brown, Kevin [University of Nebraska, Lincoln; Umstadter, Donald [University of Nebraska, Lincoln; Clarke, Shaun [University of Michigan; Pozzi, Sara [University of Michigan; Beene, James R [ORNL; Vane, C Randy [ORNL; Schultz, David Robert [ORNL

    2010-10-01

    We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution.

  11. The case for electron re-acceleration at galaxy cluster shocks

    Science.gov (United States)

    van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin

    2017-01-01

    On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.

  12. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G. [Fermilab; Burov, A. [Fermilab; Lebedev, V. [Fermilab; Nagaitsev, S. [Fermilab; Prebys, E. [Fermilab; Valishev, A. [Fermilab

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  13. Luminescent tracks of high-energy photoemitted electrons accelerated by plasmonic fields

    Directory of Open Access Journals (Sweden)

    Di Vece Marcel

    2015-12-01

    Full Text Available The emission of an electron from a metal nanostructure under illumination and its subsequent acceleration in a plasmonic field forms a platform to extend these phenomena to deposited nanoparticles, which can be studied by state-of-the-art confocal microscopy combined with femtosecond optical excitation. The emitted and accelerated electrons leave defect tracks in the immersion oil, which can be revealed by thermoluminescence. These photographic tracks are read out with the confocal microscope and have a maximum length of about 80 μm, which corresponds to a kinetic energy of about 100 keV. This energy is consistent with the energy provided by the intense laser pulse combined with plasmonic local field enhancement. The results are discussed within the context of the rescattering model by which electrons acquire more energy. The visualization of electron tracks originating from plasmonic field enhancement around a gold nanoparticle opens a new way to study with confocal microscopy both the plasmonic properties of metal nano objects as well as high energy electron interaction with matter.

  14. Recirculating cryogenic hydrogen maser

    Energy Technology Data Exchange (ETDEWEB)

    Huerlimann, M.D.; Hardy, W.N.; Berlinsky, A.J.; Cline, R.W.

    1986-08-01

    We report on the design and initial testing of a new type of hydrogen maser, operated at dilution refrigerator temperatures, in which H atoms circulate back and forth between a microwave-pumped state selector and the maser cavity. Other novel design features include liquid-/sup 4/He-coated walls, He-cooled electronics, and the use of microscopic magnetic particles to relax the two lowest hyperfine levels in the state selector. Stabilities at least as good as that of a Rb clock and a high-stability quartz oscillator are observed for measuring times between 1 and 300 s.

  15. The 10 sheath-accelerated electrons and ions. [atmospheric models of plasma sheaths and ionospheric electron density

    Science.gov (United States)

    Shawhan, S. D.

    1975-01-01

    A model is presented that suggests that plasma sheaths form between the ionospheric plasma moving with Io and the ambient plasma corotating with Jupiter. Potentials across these sheaths could be as high as 580 kV which is the motional emf across Io's ionosphere. Electrons and ions can be accelerated across these sheaths. The sheaths may exist at the top of the Io ionosphere with characteristic thicknesses of 1/4 kilometers. The model is consistent with the Pioneer observations of 0.15 MeV electrons at the inner edge of Io's L-shell and the enhanced number density of low-energy protons at the outer edge. Ion sputtering of the Io surface is discussed and may explain the presence of atomic hydrogen and sodium in the vicinity of Io. Also these accelerated particles may be important to the formation of the Io ionosphere. High electron flux which may lead to decametric radio emissions, Jovian atmospheric heating and optical and X-ray emissions is also discussed.

  16. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  17. Dosimetric characteristics of electron beams produced by two mobile accelerators, Novac7 and Liac, for intraoperative radiation therapy through Monte Carlo simulation

    National Research Council Canada - National Science Library

    Righi, Sergio; Karaj, Evis; Felici, Giuseppe; Di Martino, Fabio

    2013-01-01

    ...), which produce high energy, very high dose‐per‐pulse electron beams. The characteristics of the accelerators heads of the Novac7 and Liac are different compared to conventional electron accelerators...

  18. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, J.L.

    2001-05-25

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  19. Electron beam agrobionanotechnologies for agriculture and food industry enabled by electron accelerators

    Science.gov (United States)

    Pavlov, Y. S.; Revina, A. A.; Souvorova, O. V.; Voropaeva, N. L.; Chekmar, D. V.; Abkhalimov, E. V.; Zavyalov, M. A.; Filippovich, V. P.

    2017-12-01

    Electron beam (EB) radiation technologies have been employed to increase efficiency of biologically active nanochips developed for agricultural plants seed pre-treatment with purpose of enhancing crop yield and productivity. Iron-containing nanoparticles (NPs), synthesized in reverse micelles following known radiation-chemical technique, have served as a multifunctional biologically active and phytosanitary substance of the chips. Porous chip carriers activation has been performed by EB ionization (doze 20kGy) of the active carbons (AC) prepared from agricultural waste and by-products: Jerusalem artichoke (Helianthus tuberosus) straw, rape (Brassica napus L. ssp. oleifera Metzg) straw, camelina (Camelina sativa (L.) Crantz) straw, wheat (Triticum aestivum) straw. Three methods, UV-VIS spectrophotometry, Electron Paramagnetic Resonance (EPR) spectroscopy, cyclic voltammetry (CV) have been used for process control and characterization of radiation-activated and NPs-modified ACs. The results show a notable effect of ACs activation by electron beam radiation, evidenced by FeNPs-adsorption capacity increase. Studies of the impact of Fe NPs-containing nanochip technology on enhancement of seeds germination rate and seedlings vigour suggest that reported electron beam radiation treatment techniques of the ACs from selected agricultural residues may be advantageous for industrial application.

  20. Ion acceleration driven by a relativistic electron beam under a strong magnetic field

    Science.gov (United States)

    Taguchi, Toshihiro; Antonsen, Thomas; Mima, Kunioki

    2017-10-01

    We have been investigating about an electron beam propagation under a strong magnetic field and found a very interesting phenomena. It is a generation of a large amplitude whistler wave, which is amplified by a nonlinear coupling of obliquely propagating circularly polarized waves. Since the previous work did not include ion motions, such a giant whistler wave mainly affects on beam electrons and they stagnate due to a large ponderomotive force of the electromagnetic wave. In order to investigate the influence of the strong wave on background ions, we have developed a new PIC code which has an open (upstream and downstream) boundaries. By using the new code, we have been studying the kinetic behavior of ions in a circumstance generating a large whistler wave. As a result, it is found that the electrostatic field induced by the stagnated beam electrons not only creates a density dip in the background electrons but also accelerates background ions. We will discuss the relation between the ion acceleration and a formation of a collisionless shock wave. This work was supported by a Grant-in-Aid for Scientific Research (B), 15H03758.

  1. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    Directory of Open Access Journals (Sweden)

    Ronghao Hu

    2016-09-01

    Full Text Available The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0  μm. The results present a very promising way to drive coherent x-ray sources.

  2. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    Science.gov (United States)

    Yi, Longqing; Pukhov, Alexander; Shen, Baifei

    2016-06-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  3. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  4. Temporal characteristics of monoenergetic electron beams generated by the laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    T. Ohkubo

    2007-03-01

    Full Text Available Pulse length of quasimonoenergetic electrons accelerated by the wakefield generated by 12 TW, 40 fs laser pulses in a gas jet is determined via spectral measurements using a bolometer to detect coherent transition radiation. A quasimonoenergetic electron beam with its mean energy E=21  MeV, dispersion ΔE=4  MeV, total charge q∼30  pC, and the geometrical emittance 0.07π  mm mrad is generated with high reproducibility. The averaged duration of only the quasimonoenergetic electron bunches peaked around 20 MeV is 130±30  fs (FWHM, while it is 250±70  fs (FWHM for electron bunches with quasimonoenergetic distributions peaked around 4 MeV, at a distance of 180 mm far from the gas jet because of relatively large electron energy spread. Pulse elongation of the electron bunch with the quasimonoenergetic distribution after 180 mm path is 60–220  fs (FWHM. Therefore, the initial duration of the electron bunch at the gas-jet rear is expected to be less than 100  fs (FWHM.

  5. Numerical calculations of the electron beam emittance for laser acceleration experiments

    Science.gov (United States)

    Balascuta, Septimiu

    2017-06-01

    At the E6 experimental area at ELI-NP, two 10 PW Laser (pump and probe) pulses, with their directions making an 135° angle, will be used for the study of the radiation reaction, non-linear Thomson scattering, electron beam cooling and other QED phenomena in the relativistic regime. The pump 10 PW Laser beam focused in a gas-jet will generate a plasma wakefield that accelerate electrons by self-injection. The probe 10PW Laser pulse has to be synchronized and focused on the electron bunch. In order to maximize the flux of gamma rays produced in this collision, for a given Laser field intensity, the transversal area of the electron beam at the collision point has to be smaller than the focus of the probe pulse. This work presents the calculation of electron beam emittance and angular divergence, versus the distance traveled by electron bunch in vacuum. A configuration of dipole permanent magnets is proposed for the study of energy distribution of electrons and positrons.

  6. Electron acceleration in supernova remnants and diffuse gamma rays above 1 GeV

    DEFF Research Database (Denmark)

    Pohl, M.; Esposito, J.A.

    1998-01-01

    important consequences for studies of the Galactic diffuse gamma-ray emission, for which a strong excess over model predictions above 1 GeV has recently been reported. While these models relied on an electron injection spectrum with index 2.4 (chosen to fit the local electron flux up to 1 TeV), we show...... that an electron injection index of around 2.0 would (1) be consistent with the expected Poisson fluctuations in the locally observable electron spectrum and (2) explain the above-mentioned gamma-ray excess above 1 GeV. An electron injection index of around 2 would also correspond to the average radio synchrotron......The recently observed X-ray synchrotron emission from four supernova remnants (SNRs) has strengthened the evidence that cosmic-ray electrons are accelerated in SNRs. We show that if this is indeed the case, the local electron spectrum will be strongly time-dependent, at least above roughly 30 Ge...

  7. Absolute energy calibration of the Telescope Array fluorescence detector with an electron linear accelerator

    Directory of Open Access Journals (Sweden)

    Shin B.K.

    2013-06-01

    Full Text Available The Electron Light Source(ELS is a new light source for the absolute energy calibration of cosmic ray Fluorescence Detector(FD telescopes. The ELS is a compact electron linear accelerator with a typical output of 109 electrons per pulse at 40 MeV. We fire the electron beam vertically into the air 100 m in front of the telescope. The electron beam excites the gases of the atmosphere in the same way as the charged particles of the cosmic ray induced extensive air shower. The gases give off the same light with the same wavelength dependence. The light passes through a small amount of atmosphere and is collected by the same mirror and camera with their wavelength dependence. In this way we can use the electron beam from ELS to make an end-to-end calibration of the telescope. In September 2010, we began operation of the ELS and the FD telescopes observed the fluorescence photons from the air shower which was generated by the electron beam. In this article, we will reort the status of analysis of the absolute energy calibration with data which was taken in September 2010, and beam monitor study in November 2011.

  8. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  9. The effect of voltage droop on the output of an electrostatic accelerator free electron laser

    CERN Document Server

    Wright, C C; Lucas, J; Stuart, R A

    2000-01-01

    Electrostatic accelerator FEL oscillators when operated with energy recovery offer the prospect of long pulse, single-mode operation with very narrow linewidth at high-power levels. However, special care with wiggler construction, electron beam steering, and collector design is necessary to reduce the fraction of the electron beam lost before depressed collection to a sufficiently small value to stop the output hopping from one longitudinal mode of the cavity to another due to the droop of the terminal accelerating voltage. We are investigating what minimum recovery fraction is required both experimentally and theoretically. We have constructed a pulsed microwave FEM oscillator having an accelerating voltage of 65 kV supplied by a source, which is a capacitor, charged by a low-current, high-voltage supply. By changing the capacitor value, it is easily possible to achieve a range of voltage droop rates. Furthermore, because the gain bandwidth of the FEM is small, only 1 or 2 longitudinal modes are capable of b...

  10. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    Science.gov (United States)

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  11. The effect of longitudinal density gradient on electron plasma wake field acceleration

    CERN Document Server

    Tsiklauri, David

    2016-01-01

    3-, 2- and 1-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow out regime are presented. Earlier results are extended by (i) studying the effect of longitudinal density gradient; (ii) avoiding use of co-moving simulation box; (iii) inclusion of ion motion; and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of ten-fold increasing density over 10 cm long Lithium vapor plasma, results in spatially more compact and three times larger, compared to the uniform density case, electric fields (-6.4 x 10^{10} V/m), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from initial 20.4 GeV), with an energy transfer efficiencies from leading to trailing bunch of 75 percent. In the uniform density case -2.5 x 10^{10} V/m wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with an energy transfer eff...

  12. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)], E-mail: garciapareja@gmail.com; Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain); Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  13. Dosimetry measurements during the commissioning of the GJ-2 electron accelerator

    DEFF Research Database (Denmark)

    Chosdu, R.; Hilmy, N.; Tobing, R.

    1995-01-01

    The GJ-2 electron accelerator (made in China, Sanghai) was put into operation at the Centre for Application of Isotopes and Radiation in Jakarta, Indonesia. In the course of the commissioning of the machine its main technical parameters were measured under different operating conditions. The elec......, ethanol-chlorobenzene dosimeter solution and FWT-60 film dosimeters. The applicability of polystyrene calorimeters designed for low electron energies at Ris phi National Laboratory was also tested for nominal dose determination........ The electron energy was determined applying both wedge and stack methods at 1.5 and 2.0 MeV. The scanning width and homogeneity and the dose distribution in reference product were measured with film dosimeters. Nominal dose measurements were performed using alanine-polyethylene dosimeters produced at CAIR...

  14. Terahertz radiation source using a high-power industrial electron linear accelerator

    Science.gov (United States)

    Kalkal, Yashvir; Kumar, Vinit

    2017-04-01

    High-power (˜ 100 kW) industrial electron linear accelerators (linacs) are used for irradiations, e.g., for pasteurization of food products, disinfection of medical waste, etc. We propose that high-power electron beam from such an industrial linac can first pass through an undulator to generate useful terahertz (THz) radiation, and the spent electron beam coming out of the undulator can still be used for the intended industrial applications. This will enhance the utilization of a high-power industrial linac. We have performed calculation of spontaneous emission in the undulator to show that for typical parameters, continuous terahertz radiation having power of the order of μW can be produced, which may be useful for many scientific applications such as multispectral imaging of biological samples, chemical samples etc.

  15. Laser-wakefield acceleration of electron beams in a low density plasma channel

    Directory of Open Access Journals (Sweden)

    T. P. A. Ibbotson

    2010-03-01

    Full Text Available The generation of quasimonoenergetic electron beams, with energies greater than 500 MeV, in a laser-plasma accelerator driven by 2.5 J, 80 fs laser pulses guided in a low density plasma channel, is investigated. The laser energy required to achieve electron injection is found to depend strongly on the quality of the input laser focal spot. Simulations show that, although the matched spot size of the plasma channel is greater than the self-focused spot size, the channel assists relativistic self-focusing and enables electron injection to occur at lower plasma densities and laser powers than would be possible without a waveguide.

  16. Transverse emittance and current of multi-GeV trapped electrons in a plasma wakefield accelerator

    Directory of Open Access Journals (Sweden)

    N. Kirby

    2009-05-01

    Full Text Available Multi-GeV trapped electron bunches in a plasma wakefield accelerator (PWFA are observed with normalized transverse emittance divided by peak current, ϵ_{N,x}/I_{t}, below the level of 0.2  μm/kA. A theoretical model of the trapped electron emittance, developed here, indicates that emittance scales inversely with the square root of the plasma density in the nonlinear “bubble” regime of the PWFA. This model and simulations indicate that the observed values of ϵ_{N,x}/I_{t} result from multi-GeV trapped electron bunches with emittances of a few  μm and multi-kA peak currents.

  17. Nanoscale Electron Bunching in Laser-Triggered Ionization Injection in Plasma Accelerators.

    Science.gov (United States)

    Xu, X L; Pai, C-H; Zhang, C J; Li, F; Wan, Y; Wu, Y P; Hua, J F; Lu, W; An, W; Yu, P; Joshi, C; Mori, W B

    2016-07-15

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Because of the phase-dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to a discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three-dimensional effects limit the wave number of the modulation to between >2k_{0} and about 5k_{0}, where k_{0} is the wave number of the injection laser. Such a nanoscale bunched beam can be diagnosed by and used to generate coherent transition radiation and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  18. Nano-scale electron bunching in laser-triggered ionization injection in plasma accelerators

    CERN Document Server

    Xu, X L; Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; An, W; Yu, P; Mori, W B; Joshi, C

    2015-01-01

    Ionization injection is attractive as a controllable injection scheme for generating high quality electron beams using plasma-based wakefield acceleration. Due to the phase dependent tunneling ionization rate and the trapping dynamics within a nonlinear wake, the discrete injection of electrons within the wake is nonlinearly mapped to discrete final phase space structure of the beam at the location where the electrons are trapped. This phenomenon is theoretically analyzed and examined by three-dimensional particle-in-cell simulations which show that three dimensional effects limit the wave number of the modulation to between $> 2k_0$ and about $5k_0$, where $k_0$ is the wavenumber of the injection laser. Such a nano-scale bunched beam can be diagnosed through coherent transition radiation upon its exit from the plasma and may find use in generating high-power ultraviolet radiation upon passage through a resonant undulator.

  19. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.

    Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave

  20. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  1. Concepts and techniques: Active electronics and computers in safety-critical accelerator operation

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, R.S.

    1995-12-31

    The Relativistic Heavy Ion Collider (RHIC) under construction at Brookhaven National Laboratory, requires an extensive Access Control System to protect personnel from Radiation, Oxygen Deficiency and Electrical hazards. In addition, the complicated nature of operation of the Collider as part of a complex of other Accelerators necessitates the use of active electronic measurement circuitry to ensure compliance with established Operational Safety Limits. Solutions were devised which permit the use of modern computer and interconnections technology for Safety-Critical applications, while preserving and enhancing, tried and proven protection methods. In addition a set of Guidelines, regarding required performance for Accelerator Safety Systems and a Handbook of design criteria and rules were developed to assist future system designers and to provide a framework for internal review and regulation.

  2. Extremely intense laser-based electron acceleration in a plasma channel

    Science.gov (United States)

    Vranic, Marija; Fonseca, Ricardo A.; Silva, Luis O.

    2018-03-01

    Laser pulses of extreme intensities (I> {10}22 {{W}} {{cm}}-2) are about to become available in the laboratory. The prepulse of such a laser can induce a plasma expansion that generates a low-density channel in near-critical gas jets. We present a study of channel formation and subsequent direct laser acceleration of electrons within the pre-formed channel. Radiation reaction affects the acceleration in several ways. It first interferes with the motion of the return current on the channel walls. In addition, it reduces the radial expelling efficiency of the transverse ponderomotive force, leading to the radiative trapping of particles near the channel axis. These particles then interact with the peak laser intensity and can attain multi-GeV energies.

  3. Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J., E-mail: jun.zhu@desy.de [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Universität Hamburg, Hamburg (Germany); Assmann, R.W.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany)

    2016-09-01

    We present theoretical and numerical studies of matching sub-femtosecond space-charge-dominated electron bunch into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the SINBAD facility. The longitudinal space-charge (SC) effect induced growths of the energy spread and longitudinal phase-space chirp are major issues in the matching section, which will result in bunch elongation, emittance growth and spot size dilution. In addition, the transverse SC effect would lead to a mismatch of the beam optics if it were not compensated for. Start-to-end simulations and preliminary optimizations were carried out in order to understand the achievable beam parameters at the entrance of the plasma accelerator.

  4. Electron-beam dynamics for an advanced flash-radiography accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Laboratory

    2015-06-22

    Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.

  5. Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators

    CERN Document Server

    Caspers, Friedhelm; Scandale, Walter; Zimmermann, F

    2009-01-01

    In the beam pipe of high-energy proton or positron accelerators an “electron cloud” can be generated by a variety of processes, e.g. by residual-gas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a beam-induced multipactoring process. The electron cloud commonly leads to a degradation of the beam vacuum by several orders of magnitude, to fast beam instabilities, to beam-size increases, and to fast or slow beam losses. At the Large Hadron Collider (LHC), the cloud electrons could also give rise to an additional heat load inside cold superconducting magnets. In addition to the direct heat deposition from incoherently moving electrons, a potential “magnetron effect” has been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric “wake” field that may become resonant with the cyclotron frequency. Electron-cloud effects are already being observed w...

  6. Quasi-phase-matched acceleration of electrons in a corrugated plasma channel

    Directory of Open Access Journals (Sweden)

    S. J. Yoon

    2012-08-01

    Full Text Available A laser pulse propagating in a corrugated plasma channel is composed of spatial harmonics whose phase velocities can be subluminal. The phase velocity of a spatial harmonic can be matched to the speed of a relativistic electron resulting in direct acceleration by the guided laser field in a plasma waveguide and linear energy gain over the interaction length. Here we examine the fully self-consistent interaction of the laser pulse and electron beam using particle-in-cell (PIC simulations. For low electron beam densities, we find that the ponderomotive force of the laser pulse pushes plasma channel electrons towards the propagation axis, which deflects the beam electrons. When the beam density is high, the space charge force of the beam drives the channel electrons off axis, providing collimation of the beam. In addition, we consider a ramped density profile for lowering the threshold energy for trapping in a subluminal spatial harmonic. By using a density ramp, the trapping energy for a normalized vector potential of a_{0}=0.1 is reduced from a relativistic factor γ_{0}=170 to γ_{0}=20.

  7. Enhanced single-stage laser-driven electron acceleration by self-controlled ionization injection.

    Science.gov (United States)

    Li, Song; Hafz, Nasr A M; Mirzaie, Mohammad; Sokollik, Thomas; Zeng, Ming; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-12-01

    We report on overall enhancement of a single-stage laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3% nitrogen gas in 99.7% helium gas. Upon the interaction of 30-TW, 30-fs laser pulses with a gas jet of the above gas mixture, >300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5 × 10(18) cm(-3). Compared with the uncontrolled electron self-injection in pure helium gas jet, the ionization injection process due to the presence of ultra-low nitrogen concentrations appears to be self-controlled; it has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1%, making them suitable for driving ultra-compact free-electron lasers.

  8. Characterization of electron clouds in the Cornell Electron Storage Ring Test Accelerator using TE-wave transmission

    Directory of Open Access Journals (Sweden)

    S. De Santis

    2010-07-01

    Full Text Available A relatively new technique for measuring the electron cloud density in storage rings has been developed and successfully demonstrated [S. De Santis, J. M. Byrd, F. Caspers, A. Krasnykh, T. Kroyer, M. T. F. Pivi, and K. G. Sonnad, Phys. Rev. Lett. 100, 094801 (2008.PRLTAO0031-900710.1103/PhysRevLett.100.094801]. We present the experimental results of a systematic application of this technique at the Cornell Electron Storage Ring Test Accelerator. The technique is based on the phase modulation of the TE mode transmitted in a synchrotron beam pipe caused by the periodic variation of the density of electron plasma. Because of the relatively simple hardware requirements, this method has become increasingly popular and has been since successfully implemented in several machines. While the principles of this technique are straightforward, quantitative derivation of the electron cloud density from the measurement requires consideration of several effects, which we address in detail.

  9. The collisional relaxation of electrons in hot flaring plasma and inferring the properties of solar flare accelerated electrons from X-ray observations

    OpenAIRE

    Jeffrey, N. L. S.; Kontar, E. P.; Emslie, A. G.; Bian, N. H.

    2015-01-01

    X-ray observations are a direct diagnostic of fast electrons produced in solar flares, energized during the energy release process and directed towards the Sun. Since the properties of accelerated electrons can be substantially changed during their transport and interaction with the background plasma, a model must ultimately be applied to X-ray observations in order to understand the mechanism responsible for their acceleration. A cold thick target model is ubiquitously used for this task, si...

  10. Radiation recall reaction with docetaxel administration after accelerated partial breast irradiation with electronic brachytherapy.

    Science.gov (United States)

    Chen, Sea S; Strauss, Jonathan B; Shah, Anand P; Rao, Ruta D; Bernard, Damien A; Griem, Katherine L

    2009-01-01

    Accelerated partial breast irradiation (APBI) offers several advantages over whole breast irradiation. Electronic brachytherapy may further reduce barriers to breast conserving therapy by making APBI more available. However, its toxicity profile is not well characterized. A 60-year-old woman was treated with APBI using Axxent (Xoft, Sunnyvale, CA) electronic brachytherapy. One month after APBI, a cycle of docetaxel and cyclophosphamide was given. Within 3 weeks, the patient developed an ulcerative radiation recall reaction in the skin overlying the lumpectomy cavity. To investigate this toxicity, the skin dose from electronic brachytherapy was compared with the dose that would have been delivered by an iridium-192 ((192)Ir) source. Additionally, a dose equivalent was estimated by adjusting for the increased relative biologic effectiveness (RBE) of low energy photons generated by the electronic source. Using electronic brachytherapy, the skin dose was 537cGy per fraction compared with 470cGy for an (192)Ir source. Given an RBE for a 40kV source of 1.28 compared with (192)Ir, the equivalent dose at the skin for an electronic source was 687cGy-equivalents, a 46% increase. We present a case of an ulcerative radiation recall reaction in a patient receiving APBI with electronic brachytherapy followed by chemotherapy. Our analysis shows that the use of electronic brachytherapy resulted in the deposition of significantly higher equivalent dose at the skin compared with (192)Ir. These findings suggest that standard guidelines (e.g., surface-to-skin distance) that apply to (192)Ir-based balloon brachytherapy may not be applicable to electronic brachytherapy.

  11. Trapping of part of a beam of injected electrons in an accelerator with a magnetic-mirror control field configuration

    Science.gov (United States)

    Zvorygin, V. P.; Kas'yanov, V. A.; Chakhlov, V. L.

    1996-04-01

    An analysis is made of the process of trapping electrons in an accelerator by reducing their axial energy when they interact with the transverse electric field of an injected beam. Expressions are obtained establishing the connection between the parameters of the injector device, the injected beam, and a magnetic mirror. Graphs of the experimentally obtained and calculated dependences of the number of electrons trapped in the accelerator on the magnitude of the injection current are analyzed.

  12. Distributed grating-assisted coupler for optical all-dielectric electron accelerator

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    2005-07-01

    Full Text Available A Bragg waveguide consisting of multiple dielectric layers with alternating index of refraction becomes an excellent option to form electron accelerating structure powered by high power laser sources. It provides confinement of a synchronous speed-of-light mode with extremely low loss. However, laser field cannot be coupled into the structure collinearly with the electron beam. There are three requirements in designing input coupler for a Bragg electron accelerator: side coupling, selective mode excitation, and high coupling efficiency. We present a side-coupling scheme using a distributed grating-assisted coupler to inject the laser power into the waveguide. Side coupling is achieved by a grating with a period on the order of an optical wavelength. The phase matching condition results in resonance coupling thus providing selective mode excitation capability. The coupling efficiency is limited by profile matching between the outgoing beam and the incoming beam, which has normally a Gaussian profile. We demonstrate a nonuniform distributed grating structure generating an outgoing beam with a Gaussian profile, therefore, increasing the coupling efficiency.

  13. Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas

    Directory of Open Access Journals (Sweden)

    T. Toncian

    2016-01-01

    Full Text Available The irradiation of few-nm-thick targets by a finite-contrast high-intensity short-pulse laser results in a strong pre-expansion of these targets at the arrival time of the main pulse. The targets decompress to near and lower than critical densities with plasmas extending over few micrometers, i.e. multiple wavelengths. The interaction of the main pulse with such a highly localized but inhomogeneous target leads to the generation of a short channel and further self-focusing of the laser beam. Experiments at the Glass Hybrid OPCPA Scaled Test-bed (GHOST laser system at University of Texas, Austin using such targets measured non-Maxwellian, peaked electron distribution with large bunch charge and high electron density in the laser propagation direction. These results are reproduced in 2D PIC simulations using the EPOCH code, identifying direct laser acceleration (DLA [1] as the responsible mechanism. This is the first time that DLA has been observed to produce peaked spectra as opposed to broad, Maxwellian spectra observed in earlier experiments [2]. This high-density electrons have potential applications as injector beams for a further wakefield acceleration stage as well as for pump-probe applications.

  14. Initial Observations of Micropulse Elongation of Electron Beams in a SCRF Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Thurman-Keup, R. [Fermilab; Edstrom Jr., D. [Fermilab; Ruan, J. [Fermilab; Santucci, J. [Fermilab

    2016-10-09

    Commissioning at the SCRF accelerator at the Fermilab Accelerator Science and Technology (FAST) Facility has included the implementation of a versatile bunch-length monitor located after the 4-dipole chicane bunch compressor for electron beam energies of 20-50 MeV and integrated charges in excess of 10 nC. The team has initially used a Hamamatsu C5680 synchroscan streak camera to assess the effects of space charge on the electron beam bunch lengths. An Al-coated Si screen was used to generate optical transition radiation (OTR) resulting from the beam’s interaction with the screen. The chicane bypass beamline allowed the measurements of the bunch length without the compression stage at the downstream beamline location using OTR and the streak camera. We have observed electron beam bunch lengths from 5 to 16 ps (sigma) for micropulse charges of 60 pC to 800 pC, respectively. We also report a compressed sub-ps micropulse case.

  15. Electron Acceleration around the Supermassive Black Hole at the Galactic Center

    Science.gov (United States)

    Liu, S.; Petrosian, V.; Melia, F.

    2004-05-01

    The recent detection of variable infrared emission from Sagittarius A*, combined with its previously observed flare activity in X-rays, provides compelling evidence that at least a portion of this object's emission is produced by nonthermal electrons. We show here that acceleration of electrons by plasma wave turbulence in hot gases near the black hole's event horizon can not only account for Sgr A*'s emission in the quiescent state at mm and shorter wavelengths, but it can also produce infrared and X-ray flares, induced either via an enhancement of the mass accretion rate onto the black hole or by a reorganization of the magnetic field coupled to the accreting gas. These processes produce distinct spectra that may be compared with future coordinated multi-wavelength observations to test the model. We further suggest that the diffusion of high energy electrons away from the acceleration site toward larger radii might be able to account for the observed characteristics of Sgr A*'s emission at cm and longer wavelengths. This research was partially supported by NSF grant ATM-0312344, NASA grants NAG5-12111, and NAG5 11918-1 (at Stanford), and NASA grants NAG5-8239, NAG5-9205, and NAG5-8277 (at Arizona).

  16. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Pimpinella, M [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia, c.p. 2400 Rome (Italy); Mihailescu, D [Faculty of Physics, University Al I Cuza, Iasi (Romania); Guerra, A S [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia, c.p. 2400 Rome (Italy); Laitano, R F [Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA Centro Ricerche Casaccia, c.p. 2400 Rome (Italy)

    2007-10-21

    Energy and angular distributions of electron beams with different energies were simulated by Monte Carlo calculations. These beams were generated by the NOVAC7 (registered) system (Hitesys, Italy), a mobile electron accelerator specifically dedicated to intra-operative radiation therapy (IORT). The electron beam simulations were verified by comparing the measured dose distributions with the corresponding calculated distributions. As expected, a considerable difference was observed in the energy and angular distributions between the IORT beams studied in the present work and the electron beams produced by conventional accelerators for non-IORT applications. It was also found that significant differences exist between the IORT beams used in this work and other IORT beams with different collimation systems. For example, the contribution from the scattered electrons to the total dose was found to be up to 15% higher in the NOVAC7 (registered) beams. The water-to-air stopping power ratios of the IORT beams used in this work were calculated on the basis of the beam energy distributions obtained by the Monte Carlo simulations. These calculated stopping power ratios, s{sub w,air}, were compared with the corresponding s{sub w,air} values recommended by the TRS-381 and TRS-398 IAEA dosimetry protocols in order to estimate the deviations between a dosimetry based on generic parameters and a dosimetry based on parameters specifically obtained for the actual IORT beams. The deviations in the s{sub w,air} values were found to be as large as up to about 1%. Therefore, we recommend that a preliminary analysis should always be made when dealing with IORT beams in order to assess to what extent the possible differences in the s{sub w,air} values have to be accounted for or may be neglected on the basis of the specific accuracy needed in clinical dosimetry.

  17. Low-rank spectral expansions of two electron excitations for the acceleration of quantum chemistry calculations.

    Science.gov (United States)

    Schwerdtfeger, Christine A; Mazziotti, David A

    2012-12-28

    Treatment of two-electron excitations is a fundamental but computationally expensive part of ab initio calculations of many-electron correlation. In this paper we develop a low-rank spectral expansion of two-electron excitations for accelerated electronic-structure calculations. The spectral expansion differs from previous approaches by relying upon both (i) a sum of three expansions to increase the rank reduction of the tensor and (ii) a factorization of the tensor into geminal (rank-two) tensors rather than orbital (rank-one) tensors. We combine three spectral expansions from the three distinct forms of the two-electron reduced density matrix (2-RDM), (i) the two-particle (2)D, (ii) the two-hole (2)Q, and the (iii) particle-hole (2)G matrices, to produce a single spectral expansion with significantly accelerated convergence. While the resulting expansion is applicable to any quantum-chemistry calculation with two-particle excitation amplitudes, it is employed here in the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]. The low-rank parametric 2-RDM method scales quartically with the basis-set size, but like its full-rank version it can capture multi-reference correlation effects that are difficult to treat efficiently by traditional single-reference wavefunction methods. Applications are made to computing potential energy curves of HF and triplet OH(+), equilibrium bond distances and frequencies, the HCN-HNC isomerization, and the energies of hydrocarbon chains. Computed 2-RDMs nearly satisfy necessary N-representability conditions. The low-rank spectral expansion has the potential to expand the applicability of the parametric 2-RDM method as well as other ab initio methods to large-scale molecular systems that are often only treatable by mean-field or density functional theories.

  18. Effects of initial electron beam parameters of a linear accelerator on the properties of bremsstrahlung radiation in a radiotherapy setting

    Science.gov (United States)

    Gorlachev, G. E.; Polozov, S. M.; Dalechina, A. V.; Ksenofontov, A. I.; Kistenev, A. V.

    2016-12-01

    The dependence of the initial electron-beam parameters on absorbed dose distributions have been investigated using a CyberKnife radiotherapy accelerator (Accuray, United States). To describe the initial electron-beam characteristics, simulations of the linear electron accelerator are performed and the electron distributions in the beam of a linac output are analyzed. The radial distributions of electrons are assumed exponential, whereas the energy electron distributions are approximated by monoenergetic and rectangular spectra. There is no significant dependence of depth-dose curves in a phantom on the shape of the electron beam. Importantly, a clear dependence of the radiation field profile on the size of the electron beam is observed not just in the penumbra region, but also in the open part.

  19. The Study of Advanced Accelerator Physics Research at UCLA Using the ATF at BNL: Vacuum Acceleration by Laser of Free Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Cline, David B. [Univ. of California, Los Angeles, CA (United States)

    2016-09-07

    An experiment was designed and data were taken to demonstrate that a tightly focused laser on vacuum can accelerate an electron beam in free space. The experiment was proof-of-principle and showed a clear effect for the laser beam off and on. The size of the effect was about 20% and was consistent over 30 laser and beam shots.

  20. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  1. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    Science.gov (United States)

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  2. Recirculating linacs for a neutrino factory--Arc optics design and optimization

    CERN Document Server

    Bogacz, S A

    2001-01-01

    A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.

  3. Evidence For Acceleration of Outer Zone Electrons To Relativistic Energies By Whistler Mode Chorus

    Science.gov (United States)

    Meredith, N.; Horne, R.; Summers, D.; Thorne, R.; Iles, R.; Heynderickx, D.; Anderson, R.

    We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES) to investigate the viability of a local stochastic electron ac- celeration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spec- tral response of the electrons and the waves during the October 9, 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spec- tral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Fur- thermore, we show that the observed spectral hardening is not consistent with standard radial diffusion models. These results provide strong circumstantial evidence for a lo- cal stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results sug- gest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity.

  4. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm.

    Science.gov (United States)

    Zhang, Peiyu; Xu, Dake; Li, Yingchao; Yang, Ke; Gu, Tingyue

    2015-02-01

    In the microbiologically influenced corrosion (MIC) caused by sulfate reducing bacteria (SRB), iron oxidation happens outside sessile cells while the utilization of the electrons released by the oxidation process for sulfate reduction occurs in the SRB cytoplasm. Thus, cross-cell wall electron transfer is needed. It can only be achieved by electrogenic biofilms. This work hypothesized that the electron transfer is a bottleneck in MIC by SRB. To prove this, MIC tests were carried out using 304 stainless steel coupons covered with the Desulfovibrio vulgaris (ATCC 7757) biofilm in the ATCC 1249 medium. It was found that both riboflavin and flavin adenine dinucleotide (FAD), two common electron mediators that enhance electron transfer, accelerated pitting corrosion and weight loss on the coupons when 10ppm (w/w) of either of them was added to the culture medium in 7-day anaerobic lab tests. This finding has important implications in MIC forensics and biofilm synergy in MIC that causes billions of dollars of damages to the US industry each year. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Generating energetic electrons through staged acceleration in the two-plasmon-decay instability in inertial confinement fusion.

    Science.gov (United States)

    Yan, R; Ren, C; Li, J; Maximov, A V; Mori, W B; Sheng, Z-M; Tsung, F S

    2012-04-27

    A new hot-electron generation mechanism in two-plasmon-decay instabilities is described based on a series of 2D, long-term (~10 ps) particle-in-cell and fluid simulations under parameters relevant to inertial confinement fusion. The simulations show that significant laser absorption and hot-electron generation occur in the nonlinear stage. The hot electrons are stage accelerated from the low-density region to the high-density region. New modes with small phase velocities develop in the low-density region in the nonlinear stage and form the first stage for electron acceleration. Electron-ion collisions are shown to significantly reduce the efficiency of this acceleration mechanism.

  6. Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp

    Directory of Open Access Journals (Sweden)

    M. V. Goldman

    2003-01-01

    Full Text Available One-dimensional open-boundary simulations have been carried out in a current-carrying plasma seeded with a neutral density depression and with no initial electric field. These simulations show the development of a variety of nonlinear localized electric field structures: double layers (unipolar localized fields, fast electron phase-space holes (bipolar fields moving in the direction of electrons accelerated by the double layer and trains of slow alternating electron and ion phase-space holes (wave-like fields moving in the direction of ions accelerated by the double layer. The principal new result in this paper is to show by means of a linear stability analysis that the slow-moving trains of electron and ion holes are likely to be the result of saturation via trapping of a kinetic-Buneman instability driven by the interaction of accelerated ions with unaccelerated electrons.

  7. Study of photon emission by electron capture during solar nuclei acceleration. 3: Photon production evaluations

    Science.gov (United States)

    Perez-Peraza, J.; Alvarez, M.; Gallegos, A.

    1985-01-01

    Lower limits of photon fluxes were evaluated from electron capture during acceleration in solar flares, because the arbitrary q sub c asterisk assumed in this work evolves very slow with velocity, probably much more slowly than the physical actual situation: in fact, more emission is expected toward the IR region. Nevertheless the authors claim to show that the factibility of sounding acceleration processes, charge evolution processes and physical parameters of the source itself, by the observational analysis of this kind of emissions. For instance, it would be interesting to search observationally, for the predicted flux and energy drift of F sub e ions interacting with the atomic 0 and F sub e of the source matter, or, even more feasible for the X-ray lines at 4.2 keV and 2.624 + 0.003 KeV from Fe and S ions in ionized Fe at T = 10 to the 7th power K respectively, the 418 + or - 2 eV and 20 + or - 4 eV lines of Fe and S in ionized Fe at 5 x 10 to the 6th power K, which are predicted from Fermi acceleration.

  8. Fabrication of niobium superconducting accelerator cavity by electron beam welded joints

    Science.gov (United States)

    Saha, T. K.; Mondal, J.; Mittal, K. C.; Bhushan, K. G.; Bapat, A. V.

    2012-11-01

    Fabrication of superconducting cavities has been taken up as a part of the development of accelerator driven sub critical system (ADSS) by Bhabha Atomic Research Centre. Large grain (RRR>99) pure niobium was chosen as the material for the cavity. Niobium,for its application as superconductor requires extremely high quality joints, feasible only by electron beam welding at high vacuum environment. An indigenously developed 100kV, 4kW high vacuum electron beam welding machine has been utilized to carry out the welding operations. Planning of the weld sequences was chalked out. Holding fixtures for the cavity, consists of seven numbers of joints have been fabricated beforehand. A few coupons were welded for optimization of the weld parameters and for inspection of the weld purity by indigenously developed secondary ion mass spectroscopy. The report describes the welding equipment and the stage wise joining operations of the cavity in details and also discusses the qualification testing of the welded cavity.

  9. Electron yield enhancement in a laser wakefield accelerator driven by asymmetric laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, W.P.; Catravas, P.; Esarey, E.; Geddes, C.G.R.; Toth, C.; Trines, R.; Schroeder, C.B.; Shadwick, B.A.; van Tilborg, J.; Faure, J.

    2002-08-01

    The effect of asymmetric laser pulses on electron yield from a laser wakefield accelerator has been experimentally studied using > 10{sup 19} cm{sup -3} plasmas and a 10 TW, > 45 fs, Ti:Al{sub 2}O{sub 3} laser. Laser pulse shape was controlled through non-linear chirp with a grating pair compressor. Pulses (76 fs FWHM) with a steep rise and positive chirp were found to significantly enhance the electron yield compared to pulses with a gentle rise and negative chirp. Theory and simulation show that fast rising pulses can generate larger amplitude wakes that seed the growth of the self-modulation instability and that frequency chirp is of minimal importance for the experimental parameters.

  10. RADIO DIAGNOSTICS OF ELECTRON ACCELERATION SITES DURING THE ERUPTION OF A FLUX ROPE IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Vilmer, Nicole, E-mail: eoin.carley@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France)

    2016-12-10

    Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration during the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.

  11. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    Science.gov (United States)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  12. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    Science.gov (United States)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-08-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant.

  13. Characterization of the primary source of electrons in linear accelerators in clinical use; Caracterizacion de la fuente primaria de electrones en aceleradores lineales de uso clinico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Extremera, M.; Gonzalez Infantes, W.; Lallena rojo, A. M.; Anguiano Millan, M.

    2013-07-01

    Monte Carlo simulation is currently considered the most accurate method for calculations of doses due to electrons. The objective of the work is the characterization of the primary source of electrons from an accelerator of clinical use with Monte Carlo simulation, in order to build a model of sources involving a substantial saving of time of calculation in the simulation of treatment. (Author)

  14. Waves and electron acceleration in the separatrix regions of magnetic reconnection

    Science.gov (United States)

    Fujimoto, Keizo

    dominant in the inflow side of the separatrices. The waves are generated mainly due to the electron beams that constitute the Hall current. The relatively weak beams before strong acceleration trigger the Buneman instability which results in the waves with a frequency of the lower hybrid range. The strong acceleration occurs along the field line due to a localized potential hump and causes the density cavity. The intense electron beams excite the electron two-stream instability and the beam driven whistler instability. The former mode gives the Langmuir waves and the flat-top electron distributions in the parallel direction, both of which have been observed frequently in the Earth's magnetotail. The latter mode, on the other hand, scatters the electrons in the perpendicular direction, forming isotropic distribution with non-thermal high-energy tail. Both the Buneman and electron two-stream instabilities evolve the ESWs in the nonlinear phases. In this paper, we present the generation mechanisms of the waves around the separatrices and their roles in magnetic reconnection. The mechanism of the intense electron acceleration along the field line will be discussed.

  15. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  16. Alfvenic accelerated electrons and short burst auroral kilometric radiations observed by the FAST satellite

    Science.gov (United States)

    Ma, Lun

    This investigation is motivated by previous study of short burst radiations (S- bursts) reported by Ergun et al. [2006], who suggested two generation mechanisms of S-bursts: one is the electron cyclotron maser instability due to an unstable ring distribution; the other is an upward electron beam generating upper hybrid resonance. The simulation results reported by Su et al. [2007] support the former mechanism. Only one Earth-based S-burst event was reported prior to our study. A systematic study was performed on particle and field observations from the FAST spacecraft to search for events of S-bursts and Alfvén waves. Eight events involving coexistence were identified and are presented in this thesis. All of them were observed at altitudes greater than 2500 km during winter months. In addition, S-bursts associated with Alfvénic perturbations were detected during periods when the AE indices were high, indicating a possible association with substorms. Furthermore, 24 dayside Alfvénic events and 20 nightside events were examined in detail. We found that the electron phase space density peaks along the magnetic field line for the nightside, which supports the concept of field-aligned acceleration by inertial Alfvén waves. However, the electron anisotropies involving the phase space densities peaked perpendicular to the magnetic field were observed on the dayside.

  17. Molecule-optimized Basis Sets and Hamiltonians for Accelerated Electronic Structure Calculations of Atoms and Molecules

    CERN Document Server

    Gidofalvi, Gergely

    2014-01-01

    Molecule-optimized basis sets, based on approximate natural orbitals, are developed for accelerating the convergence of quantum calculations with strongly correlated (multi-referenced) electrons. We use a low-cost approximate solution of the anti-Hermitian contracted Schr{\\"o}dinger equation (ACSE) for the one- and two-electron reduced density matrices (RDMs) to generate an approximate set of natural orbitals for strongly correlated quantum systems. The natural-orbital basis set is truncated to generate a molecule-optimized basis set whose rank matches that of a standard correlation-consistent basis set optimized for the atoms. We show that basis-set truncation by approximate natural orbitals can be viewed as a one-electron unitary transformation of the Hamiltonian operator and suggest an extension of approximate natural-orbital truncations through two-electron unitary transformations of the Hamiltonian operator, such as those employed in the solution of the ACSE. The molecule-optimized basis set from the ACS...

  18. Radiation containment at a 1 MW high energy electron accelerator: Status of LCLS-II radiation physics design

    National Research Council Canada - National Science Library

    M Santana Leitner; J Blaha; MW Guetg; Z Li; JC Liu; SX Mao; L Nicolas; SH Rokni; S Xiao; L Ge

    2017-01-01

    LCLS-II will add a 4 GeV, 1 MHz, SCRF electron accelerator in the first 700 meters of the SLAC 2-mile Linac, as well as adjustable gap polarized undulators in the down-beam electron lines, to produce...

  19. Tracking studies in eRHIC energy-recovery recirculator

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-07-13

    Beam and polarization tracking studies in eRHIC energy recovery electron recirculator are presented, based on a very preliminary design of the FFAG lattice. These simulations provide examples of some of the beam and spin optics aspects of the linear FFAG lattice concept and its application in eRHIC, they provide code benchmarking for synchrotron radiation and spin diffusion in addition, and pave the way towards end-to-end 6-D(phasespace)+3D(spin) tracking simulations.

  20. Fast Acceleration of ``Killer'' Electrons and Energetic Ions by Interplanetary Shock Stimulated ULF Waves in the Inner Magnetosphere

    Science.gov (United States)

    Zong, Q.

    2010-12-01

    Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. How the energetic particles are accelerated in the Van Allen radiation belts is one of major problems in the space physics. Very Low Frequency (VLF) wave-particle interaction has been considered as one of primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. However, recently, by using four Cluster spacecraft observations, we have found that after interplanetary shocks impact on the Earth’s magnetosphere, the acceleration of the energetic electrons in the radiation belt started nearly immediately and lasted for a few hours. The time scale (a few days) for traditional acceleration mechanism of VLF wave-particle interaction, as proposed by Horne et al. [1], to accelerate electrons to relativistic energies is too long to explain the observations. It is further found that interplanetary shocks or solar wind pressure pulses with even small dynamic pressure change can play a non-negligible role in the radiation belt dynamics. Interplanetary shocks interact with and the Earth’s magnetosphere manifests many fundamental important space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt response to interplanetary shock impact contains three contributing parts: (1) the initial adiabatic acceleration due to the strong shock-related magnetic field compression; (2) then followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to fast damping electric fields associated with ULF waves. Particles will have a net acceleration since particles in the second half circle will not lose all of the energy gained in the first half cycle. The results reported in this paper cast new lights on understanding the acceleration of energetic particles in the

  1. Current-voltage and kinetic energy flux relations for relativistic field-aligned acceleration of auroral electrons

    Directory of Open Access Journals (Sweden)

    S. W. H. Cowley

    2006-03-01

    Full Text Available Recent spectroscopic observations of Jupiter's "main oval" auroras indicate that the primary auroral electron beam is routinely accelerated to energies of ~100 keV, and sometimes to several hundred keV, thus approaching the relativistic regime. This suggests the need to re-examine the classic non-relativistic theory of auroral electron acceleration by field-aligned electric fields first derived by Knight (1973, and to extend it to cover relativistic situations. In this paper we examine this problem for the case in which the source population is an isotropic Maxwellian, as also assumed by Knight, and derive exact analytic expressions for the field-aligned current density (number flux and kinetic energy flux of the accelerated population, for arbitrary initial electron temperature, acceleration potential, and field strength beneath the acceleration region. We examine the limiting behaviours of these expressions, their regimes of validity, and their implications for auroral acceleration in planetary magnetospheres (and like astrophysical systems. In particular, we show that for relativistic accelerating potentials, the current density increases as the square of the minimum potential, rather than linearly as in the non-relativistic regime, while the kinetic energy flux then increases as the cube of the potential, rather than as the square.

  2. Neutron-induced electronic failures around a high-energy linear accelerator.

    Science.gov (United States)

    Kry, Stephen F; Johnson, Jennifer L; White, R Allen; Howell, Rebecca M; Kudchadker, Rajat J; Gillin, Michael T

    2011-01-01

    After a new in-vault CT-on-rails system repeatedly malfunctioned following use of a high-energy radiotherapy beam, we investigated the presence and impact of neutron radiation on this electronic system, as well as neutron shielding options. We first determined the CT scanner's failure rate as a function of the number of 18 MV monitor units (MUs) delivered. We then re-examined the failure rate with both 2.7-cm-thick and 7.6-cm-thick borated polyethylene (BPE) covering the linac head for neutron shielding. To further examine shielding options, as well as to explore which neutrons were relevant to the scanner failure, Monte Carlo simulations were used to calculate the neutron fluence and spectrum in the bore of the CT scanner. Simulations included BPE covering the CT scanner itself as well as covering the linac head. We found that the CT scanner had a 57% chance of failure after the delivery of 200 MUs. While the addition of neutron shielding to the accelerator head reduced this risk of failure, the benefit was minimal and even 7.6 cm of BPE was still associated with a 29% chance of failure after the delivery of 200 MU. This shielding benefit was achieved regardless of whether the linac head or CT scanner was shielded. Additionally, it was determined that fast neutrons were primarily responsible for the electronic failures. As illustrated by the CT-on-rails system in the current study, physicists should be aware that electronic systems may be highly sensitive to neutron radiation. Medical physicists should therefore monitor electronic systems that have not been evaluated for potential neutron sensitivity. This is particularly relevant as electronics are increasingly common in the therapy vault and newer electronic systems may exhibit increased sensitivity.

  3. Quasi-monoenergetic electron beams from a few-terawatt laser driven plasma acceleration using a nitrogen gas jet

    Science.gov (United States)

    Rao, B. S.; Moorti, A.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2017-06-01

    An experimental investigation on the laser plasma acceleration of electrons has been carried out using 3 TW, 45 fs duration titanium sapphire laser pulse interaction with a nitrogen gas jet at an intensity of 2 × 1018 W cm-2. We have observed the stable generation of a well collimated electron beam with divergence and pointing variation ˜10 mrad from nitrogen gas jet plasma at an optimum plasma density around 3 × 1019 cm-3. The energy spectrum of the electron beam was quasi-monoenergetic with an average peak energy and a charge around 25 MeV and 30 pC respectively. The results will be useful for better understanding and control of ionization injection and the laser wakefield acceleration (LWFA) of electrons in high-Z gases and also towards the development of practical LWFA for various applications including injectors for high energy accelerators.

  4. The electron gun for high power high HV accelerator; Wyrzutnia elektronow do akceleratora wysokiego napiecia duzej mocy

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, W.; Kielsznia, R.; Kapla, P.; Stras, W. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Application of electron accelerators, for purification of flue gases from SO{sub 2} and NO{sub x} in industrial mode requires electron accelerators with 200 - 300 kW power. The electron source in such accelerators has to generate the current 200 - 300 mA for long time. In this report the technical project of d.c. electron gun with parameters 250 mA, 5 kW is presented. The construction of the gun is described, it consist of cathode made of LaB{sub 6} and heater made of pyrolytic graphite. For investigation of gun characteristics the test stand was build and the result of parameters measurements are also presented. The good agreement between assumed and measured parameters has been obtained. (author). 13 refs, 20 figs.

  5. Recirculating system for gas well dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, R.; Knight, J. [Centrilift, Claremore, OK (United States). Div of Baker Hughes

    2004-07-01

    The features and purpose of the Centrilift patented recirculating pump system for dewatering a gas well were presented. It was developed in 1995 to eliminate shrouds and to prevent scaling. The system sizing was described with reference to the main pump sizing program and the recirculation pump applet. Two case histories were also included. This recirculating pump system works in the well's production zone and includes a pump, seal, motor, recirculation tube and tubing clamp. The differences between the Original, Midland and Argentine style recirculation tubes were compared. The Centrilift system offers alternatives to motor shrouding and can operate below the perforation zone, thereby minimizing gas interference with the pump and minimizing fluid levels in low pressure wells. It was concluded that this proven pumping technology can mitigate horsepower limitations and is a good option for gassy wells. tabs., figs.

  6. Role of the Russell-McPherron Effect in the Acceleration of Relativistic Electrons

    Science.gov (United States)

    McPherron, R. L.; Baker, D. N.; Crooker, N. U.

    2010-01-01

    While it is well known that high fluxes of relativistic electrons in the Earth's radiation belts are associated with high-speed solar wind and its heightened geoeffectiveness,less known is the fact that the Russell McPherron(R M) effect strongly controls whether or not a given high-speed stream is geoffective. To test whether it then follows that the R M effect also strongly controls fluxes of relativistic electrons, we perform a superposed epoch analysis across corotating interaction regions (CIR) keyed on the interfaces between slow and fast wind. A total of 394 stream interfaces were identified in the years 1994-2006. Equinoctial interfaces were separated into four classes based on the R-M effect,that is, whether the solar wind on either side of the interface was either(geo)effective (E) or ineffective (I) depending on season and the polarity of the interplanetary magnetic field (IMF). Four classes of interface identified as II, IE, EI,and EE are possible. The classes IE and EI correspond to CIRs with polarity changes indicating passage through the heliospheric current sheet. To characterize the behavior of solar wind and magnetospheric variables, we produced maps of dynamic cumulative probability distribution functions (cdfs) as a function of time over 10-day intervals centered on the interfaces. These reveal that effective high-speed streams have geomagnetic activity nearly twice as strong as ineffective streams and electron fluxes a factor of 12 higher. In addition they show that an effective low-speed stream increases the flux of relativistic electrons before the interface so that an effective to ineffective transition results in lower fluxes after the interface.We conclude that the R-M effect plays a major role in organizing and sustaining a sequence of physical processes responsible for the acceleration of relativistic electrons.

  7. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    Directory of Open Access Journals (Sweden)

    C. J. Zhang

    2016-06-01

    Full Text Available A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  8. Solving the Accelerator-Condenser Coupling Problem in a Nanosecond Dynamic Transmission Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B W; LaGrange, T; Shuttlesworth, R M; Gibson, D J; Campbell, G H; Browning, N D

    2009-12-29

    We describe a modification to a transmission electron microscope (TEM) that allows it to briefly (using a pulsed-laser-driven photocathode) operate at currents in excess of 10 mA while keeping the effects of condenser lens aberrations to a minimum. This modification allows real-space imaging of material microstructure with a resolution of order 10 nm over regions several {micro}m across with an exposure time of 15 ns. This is more than 6 orders of magnitude faster than typical video-rate TEM imaging. The key is the addition of a weak magnetic lens to couple the large-diameter high-current beam exiting the accelerator into the acceptance aperture of a conventional TEM condenser lens system. We show that the performance of the system is essentially consistent with models derived from ray tracing and finite element simulations. The instrument can also be operated as a conventional TEM by using the electron gun in a thermionic mode. The modification enables very high electron current densities in {micro}m-sized areas and could also be used in a non-pulsed system for high-throughput imaging and analytical TEM.

  9. The extent of non-thermal particle acceleration in relativistic, electron-positron reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Greg [University of Colorado; Guo, Fan [Los Alamos National Laboratory

    2015-07-21

    Reconnection is studied as an explanation for high-energy flares from the Crab Nebula. The production of synchrotron emission >100 MeV challenges classical models of acceleration. 3D simulation shows that reconnection, converting magnetic energy to kinetic energy, can accelerate beyond γrad. The power-law index and high-energy cutoff are important for understanding the radiation spectrum dN/dγ = f(γ) ∝ γ. α and cutoff were measured vs. L and σ, where L is system (simulation) size and σ is upstream magnetization (σ = B2/4πnmc2). α can affect the high-energy cutoff. In conclusion, for collisionless relativistic reconnection in electron-positron plasma, without guide field, nb/nd=0.1: (1) relativistic magnetic reconnection yields power-law particle spectra, (2) the power law index decreases as σ increases, approaching ≈1.2. (3) the power law is cut off at an energy related to acceleration within a single current layer, which is proportional to the current layer length (for small systems, that length is the system length, yielding γc2 ≈ 0.1 L/ρ0; for large systems, the layer length is limited by secondary tearing instability, yielding γc1 ≈ 4σ; the transition from small to large is around L/ρ0 = 40σ.). (4) although the large-system energy cutoff is proportional to the average energy per particle, it is significantly higher than the average energy per particle.

  10. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L. [Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Hogstrom, Kenneth R., E-mail: hogstrom@lsu.edu; Carver, Robert L.; Gibbons, John P. [Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, Louisiana 70809-3482 and Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, Louisiana 70803-4001 (United States); Clarke, Taylor; Henderson, Alexander; Liang, Edison P. [Physics and Astronomy Department, Rice University, 6100 Main MS-61, Houston, Texas 77005-1827 (United States)

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  11. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators.

    Science.gov (United States)

    McLaughlin, David J; Hogstrom, Kenneth R; Carver, Robert L; Gibbons, John P; Shikhaliev, Polad M; Matthews, Kenneth L; Clarke, Taylor; Henderson, Alexander; Liang, Edison P

    2015-09-01

    The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration

  12. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares

    Science.gov (United States)

    Savage, Sabrina L.

    2011-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  13. A data acquisition work station for ORELA (Oak Ridge Electron Linear Accelerator)

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, B.D.; Todd, J.H.; Spencer, R.R.; Weston, L.W.

    1990-09-01

    A new multiparameter data acquisition system has been developed and fabricated at the Oak Ridge Electron Linear Accelerator (ORELA) which utilizes an IBM PS/2 Model 80 personal computer and data handler with a 2048 word buffer. The acquisition system can simultaneously acquire data from one, two, or three digitizers, multiplex up to four detectors, read and control up to 16 scalers, and output 32 DC logic signals which can be used to control external instrumentation. Software has been developed for the OS/2 operating system, supporting multiparameter data storage for up to three million channels with the capability of collecting data in a background mode, to make the computer available for other tasks while collecting data. The system also supports multiparameter biasing and can collect, crunch, and store data at rates as high as 30,000 events per second.

  14. Status report on electron cyclotron resonance ion sources at the Heavy Ion Medical Accelerator in Chiba

    CERN Document Server

    Kitagawa, A; Sekiguchi, M; Yamada, S; Jincho, K; Okada, T; Yamamoto, M; Hattori, T G; Biri, S; Baskaran, R; Sakata, T; Sawada, K; Uno, K

    2000-01-01

    The Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences (NIRS) is not only dedicated to cancer therapy, it is also utilized with various ion species for basic experiments of biomedical science, physics, chemistry, etc. Two electron cyclotron resonance (ECR) ion sources are installed for production of gaseous ions. One of them, the NIRS-ECR, is a 10 GHz ECR ion source, and is mainly operated to produce C/sup 4+/ ions for daily clinical treatment. This source realizes good reproducibility and reliability and it is easily operated. The other source, the NIRS-HEC, is an 18 GHz ECR ion source that is expected to produce heavier ion species. The output ion currents of the NIRS-ECR and the NIRS-HEC are 430e mu A for C/sup 4+/ and 1.1e mA for Ar/sup 8+/, respectively. (14 refs).

  15. Measurements of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes

    Directory of Open Access Journals (Sweden)

    Yosuke Honda

    2003-09-01

    Full Text Available We present the measurement results of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes. The measurements were carried out with an upgraded laser wire beam profile monitor. The monitor has now a vertical wire as well as a horizontal one and is able to make much faster measurements thanks to an increased effective laser power inside the cavity. The measured emittance shows no large bunch-to-bunch dependence in either the horizontal or vertical directions. The values of the vertical emittance are similar to those obtained in the single-bunch operation. The present results are an important step toward the realization of a high-energy linear collider.

  16. Study on the insulation gas system of the 300 keV electron accelerator

    Science.gov (United States)

    Leo, K. W.; Dalim, Y.; Naim, B.; Chulan, R. M.; Hashim, S. A.; Azhar, M.; Mohtar, M.; Baijan, A. H.; Sabri, R. M.; Faiz, M.; Azraf, A.; Zaid, M.; Azaman, A.; Rosli, R. C.

    2017-01-01

    This paper describes the method used to identify the parameters required for the insulation gas system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. The corona discharge will occur with the increment of beam energy; therefore insulation gas system is required to prevent this phenomenon. The corona discharge will disrupt the beam energy and harmful to the nearby devices due to the sparkling current. Therefore, a pressure vessel comprises of the few ten bar insulation gas has been designed to avoid the corona effect. As a result, the insulation species gas of nitrogen with the required pressure has been selected and identified based on its flexibility and toxicity

  17. SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check

    Energy Technology Data Exchange (ETDEWEB)

    Haywood, J [Mercy Health Partners, Muskegon, MI (United States)

    2016-06-15

    Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. I then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.

  18. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  19. Investigation of the Electron Acceleration by a High-Power Laser and a Density-Tapered Mixed-Gas Cell

    Science.gov (United States)

    Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong

    2017-10-01

    Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.

  20. Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program

    Energy Technology Data Exchange (ETDEWEB)

    SCHNEIDER,LARRY X.

    2000-06-01

    The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

  1. Resonantly excited betatron hard X-Rays from Ionization Injected Electron Beam in a Laser Plasma Accelerator

    CERN Document Server

    Huang, K; Li, Y F; Li, D Z; Tao, M Z; Mirzaie, M; Ma, Y; Zhao, J R; Li, M H; Chen, M; Hafz, N; Sokollik, T; Sheng, Z M; Zhang, J

    2015-01-01

    A new scheme for bright hard x-ray emission from laser wakefield electron accelerator is reported, where pure nitrogen gas is adopted. Intense Betatron x-ray beams are generated from ionization injected K-shell electrons of nitrogen into the accelerating wave bucket. The x-ray radiation shows synchrotron-like spectrum with total photon yield 8$\\times$10$^8$/shot and $10^8$ over 110keV. In particular, the betatron hard x-ray photon yield is 10 times higher compared to the case of helium gas under the same laser parameters. Particle-in-cell simulation suggests that the enhancement of the x-ray yield results from ionization injection, which enables the electrons to be quickly accelerated to the driving laser region for subsequent betatron resonance. Employing the present scheme,the single stage nitrogen gas target could be used to generate stable high brightness betatron hard x-ray beams.

  2. High-current pulsed electron accelerator “Gamma-1” with output power up to 1.5 TW

    Science.gov (United States)

    Zavyalov, N. V.; Gordeev, V. S.; Punin, V. T.; Grishin, A. V.; Myskov, G. A.; Nazarenko, S. T.; Mikhailov, E. S.; Kalashnikov, D. A.; Kozachek, A. V.; Pavlov, V. S.; Strabykin, K. V.; Glushkov, S. L.; Puchagin, S. Yu.; Mayornikova, V. L.; Mayorov, R. A.; Moiseevskikh, M. A.

    2014-08-01

    A multi-module multi-terawatt electrophysical facility “Gamma” is being developed at RFNCVNIIEF, Sarov, Russia. The facility will be used for conducting experiments in different fields of radiation physics. The first module of the facility - a high-current electron accelerator “Gamma-1” has been created. The output electric parameters of the module are as follows: electron energy ≤2.0 MeV, diode current 0.75 MA, maximal electric power 1.5 TW. Description of accelerator design and principles of its operation are presented. Results of experiments as well as further prospects on building a full-scale facility are given.

  3. Relativistic Electron Acceleration by Surface Plasma Waves in the High Intensity Regime

    Science.gov (United States)

    Zhu, Xiaoming; Cerchez, Mirela; Swantusch, Marco; Aurand, Bastian; Prasad, Rajendra; Andreev, Alexander; Willi, Oswald

    2017-10-01

    High field plasmonics is one of the new research fields which has synergetically benefited from the advances in laser technology. The availability of radiation fields of intensities exceeding 1018 W/cm2 brought plasmonics into a new regime where relativistic and nonlinear effects start to dominate the dynamics of the surface plasma waves (SPWs). Moreover, surface plasma waves are a very efficient route to transfer the laser energy to the secondary sources including laser driven particle and radiation beams and to control and optimize the physical properties of these sources. We present here experimental evidence of a novel regime of the SPWs excitation by ultra-high intensity laser field (I>1020 W/cm2) on grating targets and its effect on high energy surface electron acceleration. The peak of the electron emission was detected at a laser incidence angle of 45°. The results indicate new conditions for resonant excitation of SPWs since in the limit of the linear regime (moderate intensities of 1019 W/cm2 and step preplasma profile), the resonance angle is predicted at 30°. 2D PIC simulations and a novel analytical model confirm the experimental data and reveal that, at laser intensities above 1020W/cm2, nonlinearities induced by the preplasma condition and relativistic effects change the SPWs resonance.

  4. Analysis and comparison between electric and magnetic power couplers for accelerators in Free Electron Lasers (FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C., E-mail: claudio.serpico@elettra.eu [Elettra - Sincrotrone Trieste, Trieste (Italy); Grudiev, A. [CERN, Geneva (Switzerland); Vescovo, R. [University of Trieste, Trieste (Italy)

    2016-10-11

    Free-electron lasers represent a new and exciting class of coherent optical sources possessing broad wavelength tunability and excellent optical-beam quality. The FERMI seeded free-electron laser (FEL), located at the Elettra laboratory in Trieste, is driven by a 200 m long, S-band linac: the high energy part of the linac is equipped with 6 m long backward traveling wave (BTW) structures. The structures have small iris radius and a nose cone geometry which allows for high gradient operation. Development of new high-gradient, S-band accelerating structures for the replacement of the existing BTWs is under consideration. This paper investigates two possible solutions for the RF power couplers suitable for a linac driven FEL which require reduced wakefields effects, high operating gradient and very high reliability. The first part of the manuscript focuses on the reduction of residual field asymmetries, while in the second analyzes RF performances, the peak surface fields and the expected breakdown rate. In the conclusion, two solutions are compared and pros and cons are highlighted.

  5. Low-emittance tuning at the Cornell Electron Storage Ring Test Accelerator

    Directory of Open Access Journals (Sweden)

    J. Shanks

    2014-04-01

    Full Text Available In 2008 the Cornell Electron/Positron Storage Ring (CESR was reconfigured from an electron/positron collider to serve as a test bed for the International Linear Collider damping rings. One of the primary goals of the CESR Test Accelerator (CesrTA project is to develop a fast low-emittance tuning method which scales well to large rings such as the ILC damping rings, and routinely achieves a vertical emittance of order 10 pm at 2.085 GeV. This paper discusses the tuning methods developed at CesrTA to achieve low-emittance conditions. One iteration of beam-based measurement and correction requires about 10 min. A minimum vertical emittance of 10.3(+3.2/−3.4^{sys}(±0.2^{stat}  pm has been achieved at 2.085 GeV. In various configurations and beam energies the correction technique routinely achieves vertical emittance around 10 pm after correction, with rms coupling <0.5%. The measured vertical dispersion is dominated by beam position monitor systematics. The propagation of uncertainties in the emittance measurement is described in detail. Simulations modeling the effects of magnet misalignments, beam position monitor errors, and the emittance correction algorithm suggest the residual vertical emittance measured at the conclusion of the tuning procedure is dominated by sources other than optics errors and misalignments.

  6. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    Science.gov (United States)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  7. Analytical bunch compression studies for a linac-based electron accelerator

    Directory of Open Access Journals (Sweden)

    M. Schreck

    2015-10-01

    Full Text Available The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  8. Gamma-ray generation from laser-driven electron resonant acceleration: In the non-QED and the QED regimes

    Science.gov (United States)

    Qiao, B.; Chang, H. X.; Xie, Y.; Xu, Z.; He, X. T.

    2017-12-01

    Electron acceleration and γ-ray emission by circularly polarized laser pulses interacting with near-critical-density plasmas are systematically investigated for both the non-quantum-electrodynamic (non-QED) and QED regimes. In the non-QED regime, since electron density in the plasma channel is small and the self-generated electromagnetic fields are weak, only a few electrons can achieve the resonant acceleration, leading to weak γ-ray emission. However, when it comes to the QED regime, the radiation recoil force significantly affects the electron dynamics, which helps in not only the trapping of electrons, but also the relaxing of the condition for electrons to hit the resonance with laser fields, resulting in the formation of an ultradense helical electron bunch under resonant acceleration in the plasma channel. Therefore, an intense γ-ray pulse with unprecedented flux can be generated. Theoretical analysis and three-dimensional particle-in-cell simulations are carried out to compare the dynamics in two different regimes.

  9. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications; Irradiation de polyurethannes par electrons acceleres: evolution moleculaire et supramoleculaire, incidence sur les extractibles et implications biomedicales

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, C

    2002-11-15

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  10. RF accelerating unit installed in the PSB

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    RF accelerating unit installed in the PSB ring between two bending magnets. Cool air from a heat exchanger is injected into the four cavities from the central feeder and the hot air recirculated via the lateral ducts.

  11. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Science.gov (United States)

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays.

  12. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, G. [Fermilab; Carlson, K. [Fermilab; McGee, M. W. [Fermilab; Nobrega, L. E. [Fermilab; Romanov, A. L. [Fermilab; Ruan, J. [Fermilab; Valishev, A. [Fermilab; Noll, D. [Frankfurt U.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  13. Laser acceleration of electrons in two-dimensionally inhomogeneous plasma at the boundary of a metal foil

    Energy Technology Data Exchange (ETDEWEB)

    Pugachev, L. P., E-mail: pugachev@ihed.ras.ru; Andreev, N. E., E-mail: andreev@ras.ru; Levashov, P. R., E-mail: pasha@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation); Malkov, Yu. A., E-mail: yurymalkov@mail.ru; Stepanov, A. N., E-mail: step@ufp.appl.sci-nnov.ru; Yashunin, D. A., E-mail: yashuninda@yandex.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2015-07-15

    The electron acceleration mechanism associated with the generation of a plasma wave due to self-modulation instability of laser radiation in a subcritical plasma produced by a laser prepulse coming 10 ns before the arrival of the main intense femtosecond pulse is considered. Three-dimensional particle-in-cell simulations of the interaction of laser radiation with two-dimensionally inhomogeneous subcritical plasma have shown that, for a sufficiently strong plasma inhomogeneity and a sharp front of the laser pulse, efficient plasma wave excitation, electron trapping, and generation of collimated electron beams with energies on the order of 0.2–0.5 MeV can occur. The simulation results agree with experiments on the generation of collimated beams of accelerated electrons from metal targets irradiated by intense femtosecond laser pulses.

  14. The Strongest Acceleration of >40 keV Electrons by ICME-driven Shocks at 1 au

    Science.gov (United States)

    Yang, Liu; Wang, Linghua; Li, Gang; Wimmer-Schweingruber, Robert F.; He, Jiansen; Tu, Chuanyi; Tian, Hui; Bale, Stuart D.

    2018-01-01

    We present two case studies of the in-situ electron acceleration during the 2000 February 11 shock and the 2004 July 22 shock, with the strongest electron flux enhancement at 40 keV across the shock, among all the quasi-perpendicular and quasi-parallel ICME-driven shocks observed by the WIND 3DP instrument from 1995 through 2014 at 1 au. We find that for this quasi-perpendicular (quasi-parallel) shock on 2000 February 11 (2004 July 22), the shocked electron differential fluxes at ∼0.4–50 keV in the downstream generally fit well to a double-power-law spectrum, J ∼ E ‑β , with an index of β ∼ 3.15 (4.0) at energies below a break at ∼3 keV (∼1 keV) and β ∼ 2.65 (2.6) at energies above. For both shock events, the downstream electron spectral indices appear to be similar for all pitch angles, which are significantly larger than the index prediction by diffusive shock acceleration. In addition, the downstream electron pitch-angle distributions show the anisotropic beams in the anti-sunward-traveling direction, while the ratio of the downstream over ambient fluxes appears to peak near 90° pitch angles, at all energies of ∼0.4–50 keV. These results suggest that in both shocks, shock drift acceleration likely plays an important role in accelerating electrons in situ at 1 au. Such ICME-driven shocks could contribute to the formation of solar wind halo electrons at energies ≲2 keV, as well as the production of solar wind superhalo electrons at energies ≳2 keV in interplanetary space.

  15. Propagation speed, linear stability, and ion acceleration in radially imploding Hall-driven electron-magnetohydrodynamic shocks

    Science.gov (United States)

    Richardson, A. S.; Swanekamp, S. B.; Jackson, S. L.; Mosher, D.; Ottinger, P. F.

    2018-01-01

    Plasma density gradients are known to drive magnetic shocks in electron-magnetohydrodynamics. Previous slab modeling has been extended to cylindrical modeling of radially imploding shocks. The main new effect of the cylindrical geometry is found to be a radial dependence in the speed of shock propagation. This is shown here analytically and in numerical simulations. Ion acceleration by the magnetic shock is shown to possibly become substantial, especially in the peaked structures that develop in the shock because of electron inertia.

  16. Summary report : working group 5 on 'electron beam-driven plasma and structure based acceleration concepts'.

    Energy Technology Data Exchange (ETDEWEB)

    Conde, M. E.; Katsouleas, T.

    2000-10-19

    The talks presented and the work performed on electron beam-driven accelerators in plasmas and structures are summarized. Highlights of the working group include new experimental results from the E-157 Plasma Wakefield Experiment, the E-150 Plasma Lens Experiment and the Argonne Dielectric Structure Wakefield experiments. The presentations inspired discussion and analysis of three working topics: electron hose instability, ion channel lasers and the plasma afterburner.

  17. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    Science.gov (United States)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for PADs to higher energy electrons.

  18. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  19. A recirculating stream aquarium for ecological studies.

    Science.gov (United States)

    Gordon H. Reeves; Fred H. Everest; Carl E. McLemore

    1983-01-01

    Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.

  20. Operation Manual of the high voltage generator of the Pelletron electron accelerator; Manual de operacion del generador de alto voltaje del acelerador de electrones Pelletron

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, V.; Lopez V, H.; Alba P, U

    1988-04-15

    The first version of a manual to operate the generator of high voltage generator of the Pelletron electron accelerator built in the ININ is presented. Since this generator has several components and/or elements, the one manual present has the purpose that the armed one or maintenance of anyone on its parts, is carried out in an orderly and efficient way. (Author)

  1. Calibration of an Electron Linear Accelerator using an acrylic puppet; Calibracion de un Acelerador Lineal de Electrones usando maniqui de acrilico

    Energy Technology Data Exchange (ETDEWEB)

    Guzman C, C.S.; Picon C, C. [Instituto de Enfermedades Neoplasicas, Departamento de Radioterapia-Servicio de Fisica, Av. Angamos 2520, Lima 34 (Peru)

    1998-12-31

    The finality of this work is to find the dose for electron beams using acrylic puppets and inter comparing with the measurements in water, found also its respective conversion factor. With base in this, its may be realize interesting measurements for the good performance of a linear accelerator and special clinical treatments in less time. (Author)

  2. A monolithic relativistic electron beam source based on a dielectric laser accelerator structure

    Energy Technology Data Exchange (ETDEWEB)

    McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney [UCLA Dept. of Physics and Astronomy, Los Angeles, CA 90095 (United States); College of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 (China); Manhattanville College, Physics Dept., 2900 Purchase St., Purchase, NY 10577 (United States)

    2012-12-21

    Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

  3. Calorimetry for dose measurement at electron accelerators in the 80-120 keV energy range

    DEFF Research Database (Denmark)

    Helt-Hansen, J.; Miller, A.; Duane, S.

    2005-01-01

    Calorimeters for dose measurement at low-energy electron accelerator energies (80-120 keV) are described. Three calorimeters with different characteristics were designed and their dose response and measurement uncertainties were characterized. The heated air between the beam exit window and the c...

  4. Design and simulation of laser wakefield acceleration with external electron bunch injection in front of the laser pulse

    NARCIS (Netherlands)

    Irman, A.; Luttikhof, M.J.H.; Khachatryan, A.G.; van Goor, F.A.; Verschuur, Jeroen W.J.; Bastiaens, Hubertus M.J.; Boller, Klaus J.

    2007-01-01

    In this article we present a theoretical investigation on an experimental design of a laser wakefield accelerator in which electron bunches from a photocathode radio frequency linac are injected into a capillary discharge plasma channel just in front of a few tens of terawatt drive laser pulse. The

  5. Degradation of naphthalene and fluorene by radiolysis using accelerated electrons; Degradacion de naftaleno y fluoreno por radiolisis empleando electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Flores de Jesus, I

    2003-07-01

    The volume of the dangerous wastes in global level is causing the poisoning of planet and all of the ecosystems, degrading the life level of millions of humans and causing serious problems in the public health. Since a years ago the volumes of organic effluents generated by the few industry and small populations were so tiny that a natural debugger process in a time and space delimited, acquiring again their natural characteristics and they could be used again. Nowadays these wastes are so numerous and precise in some cases that the capacity of natural purification in the receiving channel is not enough, in addition to the difficulty to treat them in conventional processes, this leads to the decrease in the water's quality making impossible its future use and causing with this a serious ecological problem. This fact has motivated the development of measures that tend to the conservation of the environment and in consequence, the development of debugger technologies with no generation of sub products that often are more dangerous than the originals, due to the previous thing, the treatment by means of radiation of the water is impelled since is a method that allows to degrade or to eliminate in simultaneous form pathogenic microorganisms and organic substances. The radiation by means of electrons beams is a method of advanced treatment who allows to degrade organic compounds, transforming them in compounds with less molecular weight, and in the best of the cases until its oxidation to carbon dioxide and water. In the present thesis the objective is the study of naphthalene and fluorene degradation by means of radiation with electron beams, establishing the operating conditions of the accelerator of Pelletron type. This research is supported by the Instituto Nacional de Investigaciones Nucleares, of a joint way with a series of antecedents in this subject, established in previous research with respect to the treatment of residual waters in a great scale, giving

  6. Thin film studies toward improving the performance of accelerator electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Mamun, Md Abdullah [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)

    2016-05-31

    Future electron accelerators require DC high voltage photoguns to operate beyond the present state of the art to conduct new experiments that require ultra-bright electron beams with high average current and higher bunch charge. To meet these demands, the accelerators must demonstrate improvements in a number of photogun areas including vacuum, field emission elimination in high voltage electrodes, and photocathodes. This dissertation illustrates how these improvements can be achieved by the application of suitable thin-films to the photogun structure for producing ultra-bright electron beams. This work is composed of three complementary studies. First, the outgassing rates of three nominally identical 304L stainless steel vacuum chambers were studied to determine the effects of chamber coatings (silicon and titanium nitride) and heat treatments. For an uncoated stainless steel chamber, the diffusion limited outgassing was taken over by the recombination limited process as soon as a low outgassing rate of ~1.79(±0.05) x 10-13 Torr L s-1 cm-2 was achieved. An amorphous silicon coating on the stainless steel chambers exhibited recombination limited behavior and any heat treatment became ineffective in reducing the outgassing rate. A TiN coated chamber yielded the smallest apparent outgassing rate of all the chambers: 6.44(±0.05) x 10-13 Torr L s-1 cm-2 following an initial 90 °C bake and 2(±20) x 10-16 Torr L s-1 cm-2 following the final bake in the series. This perceived low outgassing rate was attributed to the small pumping nature of TiN coating itself. Second, the high voltage performance of three TiN-coated aluminum electrodes, before and after gas conditioning with helium, were compared to that of bare aluminum electrodes and electrodes manufactured from titanium alloy (Ti-6Al-4V). This study suggests that aluminum electrodes, coated with TiN, could simplify

  7. Simulation and characterization of the RF system and global stability analysis at the REGAE linear electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, Frank

    2012-12-15

    LAOLA (LAboratory for Laser- and beam-driven plasma Acceleration), is a collaboration between groups from DESY and the University of Hamburg. Its mission is to complement basic research in the relatively new field of plasma wakefield acceleration (PWA) by an explicit combination with DESY's conventional, modern accelerators. The linear electron accelerator REGAE is designed to produce sub 10 fs low charge electron bunches with ultra-low emittance at a repetition rate of 50 Hz. The planned experiments include femtosecond electron diffraction (R.J. Dwayne Miller), as well as the probing of laser induced plasma wakefields with well characterized bunches (LAOLA). They all require high bunch time of flight stability down to 10 fs. The REGAE machine consists of two RF cavities, both fed by a single klystron. While the first one - the gun cavity - is used for acceleration of the electrons, the second one - the buncher cavity - can be used to reduce the electron bunch length. This scheme only works for a specific RF phase relation between the two cavities. This thesis is split into two parts. In the first one the implications of the unique two cavity design on day-to-day machine operation are analyzed. To this end an analytical model of the RF system is developed, which is necessary for understanding how to individually adjust the cavity phases. In the second part the influence of the setup on time of flight stability is discussed with an emphasis on phase jitter compensation. RF phase stability measurements reveal that the current machine setup allows for a time of flight stability down to 50 fs right after the gun.

  8. First attempt of the measurement of the beam polarization at an accelerator with the optical electron polarimeter POLO

    CERN Document Server

    Collin, B; Essabaa, S; Frascaria, R; Gacougnolle, R; Kunne, Ronald Alexander; Aulenbacher, K; Tioukine, V

    2004-01-01

    The conventional methods for measuring the polarization of electron beams are either time consuming, invasive or accurate only to a few percent. We developped a method to measure electron beam polarization by observing the light emitted by argon atoms following their excitation by the impact of polarized electrons. The degree of circular polarization of the emitted fluorescence is directly related to the electron polarization. We tested the polarimeter on a test GaAs source available at the MAMI electron accelerator in Mainz, Germany. The polarimeter determines the polarization of a 50 keV electron beam decelerated to a few eV and interacting with an effusive argon gas jet. The resulting decay of the excited states produces the emission of a circularly polarized radiation line at 811.5 nm which is observed and analyzed.

  9. GPU-accelerated brain connectivity reconstruction and visualization in large-scale electron micrographs

    KAUST Repository

    Jeong, Wonki

    2011-01-01

    This chapter introduces a GPU-accelerated interactive, semiautomatic axon segmentation and visualization system. Two challenging problems have been addressed: the interactive 3D axon segmentation and the interactive 3D image filtering and rendering of implicit surfaces. The reconstruction of neural connections to understand the function of the brain is an emerging and active research area in neuroscience. With the advent of high-resolution scanning technologies, such as 3D light microscopy and electron microscopy (EM), reconstruction of complex 3D neural circuits from large volumes of neural tissues has become feasible. Among them, only EM data can provide sufficient resolution to identify synapses and to resolve extremely narrow neural processes. These high-resolution, large-scale datasets pose challenging problems, for example, how to process and manipulate large datasets to extract scientifically meaningful information using a compact representation in a reasonable processing time. The running time of the multiphase level set segmentation method has been measured on the CPU and GPU. The CPU version is implemented using the ITK image class and the ITK distance transform filter. The numerical part of the CPU implementation is similar to the GPU implementation for fair comparison. The main focus of this chapter is introducing the GPU algorithms and their implementation details, which are the core components of the interactive segmentation and visualization system. © 2011 Copyright © 2011 NVIDIA Corporation and Wen-mei W. Hwu Published by Elsevier Inc. All rights reserved..

  10. Simulation and experimental studies on electron cloud effects in particle accelerators

    CERN Document Server

    Romano, Annalisa; Cimino, Roberto; Iadarola, Giovanni; Rumolo, Giovanni

    Electron Cloud (EC) effects represent a serious limitation for particle accelerators operating with intense beams of positively charged particles. This Master thesis work presents simulation and experimental studies on EC effects carried out in collaboration with the European Organization for Nuclear Research (CERN) in Geneva and with the INFN-LNF laboratories in Frascati. During the Long Shut- down 1 (LS1, 2013-2014), a new detector for EC measurements has been installed in one of the main magnets of the CERN Proton Synchrotron (PS) to study the EC formation in presence of a strong magnetic field. The aim is to develop a reli- able EC model of the PS vacuum chamber in order to identify possible limitation for the future high intensity and high brightness beams foreseen by Large Hadron Collider (LHC) Injectors Upgrade (LIU) project. Numerical simulations with the new PyECLOUD code were performed in order to quantify the expected signal at the detector under different beam conditions. The experimental activity...

  11. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A., E-mail: marcelazoo@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2015-10-15

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. (author)

  12. Nondestructive diagnostic for electron bunch length in accelerators using the wakefield radiation spectrum

    Directory of Open Access Journals (Sweden)

    S. V. Shchelkunov

    2005-06-01

    Full Text Available We report the development of a nondestructive technique to measure bunch rms length in the psec range and below, and eventually in the fsec range, by measuring the high-frequency spectrum of wakefield radiation which is caused by the passage of a relativistic electron bunch through a channel surrounded by a dielectric. We demonstrate numerically that the generated spectrum is determined by the rms bunch length, while the specific axial and longitudinal charge distribution is not important. Measurement of the millimeter-wave spectrum will determine the rms bunch length in the psec range. This has been done using a series of calibrated mesh filters and the charge bunches produced by the 50 MeV rf linac system at ATF (Accelerator Test Facility, Brookhaven. We have developed the analysis of the factors crucial for achieving good accuracy in this measurement, and find the experimental data are fully understood by the theory. We point out that this technique also may be used for measuring fsec bunch lengths, using a prepared planar wakefield microstructure.

  13. Measurement and compensation of horizontal crabbing at the Cornell Electron Storage Ring Test Accelerator

    Directory of Open Access Journals (Sweden)

    M. P. Ehrlichman

    2014-04-01

    Full Text Available In storage rings, horizontal dispersion in the rf cavities introduces horizontal-longitudinal (xz coupling, contributing to beam tilt in the xz plane. This coupling can be characterized by a “crabbing” dispersion term ζ_{a} that appears in the normal mode decomposition of the 1-turn transfer matrix. ζ_{a} is proportional to the rf cavity voltage and the horizontal dispersion in the cavity. We report experiments at the Cornell Electron Storage Ring Test Accelerator where xz coupling was explored using three lattices with distinct crabbing properties. We characterize the xz coupling for each case by measuring the horizontal projection of the beam with a beam size monitor. The three lattice configurations correspond to (i 16 mrad xz tilt at the beam size monitor source point, (ii compensation of the ζ_{a} introduced by one of two pairs of rf cavities with the second, and (iii zero dispersion in rf cavities, eliminating ζ_{a} entirely. Additionally, intrabeam scattering is evident in our measurements of beam size vs rf voltage.

  14. Transverse expansion of the electron sheath during laser acceleration of protons

    Science.gov (United States)

    Svensson, K.; Mackenroth, F.; Senje, L.; Gonoskov, A.; Harvey, C.; Aurand, B.; Hansson, M.; Higginson, A.; Dalui, M.; Lundh, O.; McKenna, P.; Persson, A.; Marklund, M.; Wahlström, C.-G.

    2017-12-01

    The transverse expansion of the electrostatic sheath during target normal sheath acceleration of protons is investigated experimentally using a setup with two synchronized laser pulses. With the pulses spatially separated by less than three laser spot diameters, the resulting proton beam profiles become elliptical. By introducing a small intensity difference between the two pulses, the ellipses are rotated by a certain angle, except if the spatial separation of the two laser pulses is in the plane of incidence. The rotation angle is shown to depend on the relative intensity of the two pulses. The observed effects are found to require high temporal contrasts of the laser pulses. A simple model describing how the transverse shape of the electron sheath on the rear of the target depends on the relative intensity between the foci is presented. The model assumptions are verified, and the unknown dependence of the transverse extents of the sheaths are estimated self-consistently through a series of high resolution, two-dimensional particle-in-cell simulations. The results predicted by the model are also shown to be consistent with those obtained from the experiment.

  15. Simulation of Electron Beam Dynamics in the 22 MeV Accelerator for a Coherent Electron Cooling Proof of Principle Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Justin [Stony Brook Univ., NY (United States)

    2013-12-01

    Coherent electron cooling (CeC) offers a potential new method of cooling hadron beams in colliders such as the Relativistic Heavy Ion Collider (RHIC) or the future electron ion collider eRHIC. A 22 MeV linear accelerator is currently being built as part of a proof of principle experiment for CeC at Brookhaven National Laboratory (BNL). In this thesis we present a simulation of electron beam dynamics including space charge in the 22 MeV CeC proof of principle experiment using the program ASTRA (A Space charge TRacking Algorithm).

  16. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    Science.gov (United States)

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.

  17. A bremsstrahlung gamma-ray source based on stable ionization injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Döpp, A., E-mail: andreas.doepp@polytechnique.edu [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Centro de Laseres Pulsados, Parque Cientfico, 37185 Villamayor, Salamanca (Spain); Guillaume, E.; Thaury, C.; Lifschitz, A. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Sylla, F. [SourceLAB SAS, 86 rue de Paris, 91400 Orsay (France); Goddet, J-P.; Tafzi, A.; Iaquanello, G.; Lefrou, T.; Rousseau, P. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France); Conejero, E.; Ruiz, C. [Departamento de Física Aplicada, Universidad de Salamanca, Plaza de laMerced s/n, 37008 Salamanca (Spain); Ta Phuoc, K.; Malka, V. [LOA, ENSTA ParisTech, CNRS, École polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau Cedex (France)

    2016-09-11

    Laser wakefield acceleration permits the generation of ultra-short, high-brightness relativistic electron beams on a millimeter scale. While those features are of interest for many applications, the source remains constraint by the poor stability of the electron injection process. Here we present results on injection and acceleration of electrons in pure nitrogen and argon. We observe stable, continuous ionization-induced injection of electrons into the wakefield for laser powers exceeding a threshold of 7 TW. The beam charge scales approximately with the laser energy and is limited by beam loading. For 40 TW laser pulses we measure a maximum charge of almost 1 nC per shot, originating mostly from electrons of less than 10 MeV energy. The relatively low energy, the high charge and its stability make this source well-suited for applications such as non-destructive testing. Hence, we demonstrate the production of energetic radiation via bremsstrahlung conversion at 1 Hz repetition rate. In accordance with GEANT4 Monte-Carlo simulations, we measure a γ-ray source size of less than 100 μm for a 0.5 mm tantalum converter placed at 2 mm from the accelerator exit. Furthermore we present radiographs of image quality indicators.

  18. Influence of plasma density on the generation of 100's MeV electrons via Direct Laser Acceleration

    Science.gov (United States)

    Hussein, Amina; Batson, T.; Arefiev, A. V.; Chen, H.; Craxton, R. S.; Davies, A.; Froula, D. H.; Haberberger, D.; Jansen, O.; Krushelnick, K.; Nilson, P. M.; Theobald, W.; Wang, T.; Williams, G. J.; Willingale, L.

    2017-10-01

    The role of plasma density and quasi-static fields in the acceleration of electrons to many times the ponderomotive energies (exceeding 400 MeV) by high-energy, picosecond duration laser pulses via Direct Laser Acceleration (DLA) from underdense CH plasma was investigated. Experiments using the OMEGA EP laser facility and two-dimensional particle-in-cell simulations using the EPOCH code were performed. The existence of an optimal plasma density for the generation of high-energy, low-divergence electron beams is demonstrated. The role of quasi-static channel fields on electron energy enhancement, beam pointing and divergence elucidate the mechanisms and action of DLA at different plasma densities. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-FOA-0001109.

  19. Radiation containment at a 1 MW high energy electron accelerator: Status of LCLS-II radiation physics design

    OpenAIRE

    Leitner M. Santana; Blaha J.; Guetg M.W.; Li Z; Liu J.C.; Mao S.X.; Nicolas L; Rokni S.H.; Xiao S.; Ge L

    2017-01-01

    LCLS-II will add a 4 GeV, 1 MHz, SCRF electron accelerator in the first 700 meters of the SLAC 2-mile Linac, as well as adjustable gap polarized undulators in the down-beam electron lines, to produce tunable, fully coherent X-rays in programmable bunch patterns. This facility will work in unison with the existing Linac Coherent Light Source, which uses the legacy copper cavities in the last third of the linac to deliver electrons between 2 and 17 GeV to an undulator line. The upgrade plan inc...

  20. Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

    OpenAIRE

    Agapitov, O. V.; Artemyev, A. V.; Mourenas, D.; Mozer, F. S.; Krasnoselskikh, V.

    2015-01-01

    International audience; Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a signifi...

  1. Initial Assessment of Electron and X-Ray Production and Charge Exchange in the NDCX-II Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    COHEN, R.H.

    2010-02-18

    The purpose of this note is to provide initial assessments of some atomic physics effects for the accelerator section of NDCX-II. There are several effects we address: the production of electrons associated with loss of beam ions to the walls, the production of electrons associated with ionization of background gas, the possibly resultant production of X-rays when these electrons hit bounding surfaces, and charge exchange of beam ions on background gas. The results presented here are based on a number of caveats that will be stated below, which we will attempt to remove in the near future.

  2. Time-Dependent Electron Acceleration in Pulsar Wind Termination Shocks: Application the 2011 April Crab Nebula Gamma-ray Flare

    Science.gov (United States)

    Kroon, John; Becker, Peter A.; Finke, Justin

    2018-01-01

    The strongest gamma-ray flare from the Crab nebula observed by Fermi-LAT took place in 2011 April. Emission (up to a few GeV) exceeded the quiescent flux level by more than an order of magnitude. The Crab nebula gamma-ray flares challenge classical particle acceleration models in pulsar wind nebulae, because the radiating electrons have energies exceeding the classical radiation-reaction limit for synchrotron. However, numerical simulations have suggested that the classical synchrotron limit can be exceeded if electrons experience shock-driven electrostatic acceleration due to magnetic reconnection. In this talk, I present and summarize a new time-dependent model based on a transport equation that accounts for electrostatic acceleration, synchrotron losses, and particle escape. We implement a “blob” paradigm in which magnetically confined electrons from the upstream pulsar wind encounter and cross through the termination shock, producing a flare. We show that our model can reproduce the gamma-ray spectra and the integrated light curve for the 2011 April event, and we find that electrostatic acceleration occurs on both sides of the termination shock, driven by magnetic reconnection. We conclude that the dominant mode of particle escape changes from diffusive escape to advective escape as the blob passes through the shock.

  3. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    Science.gov (United States)

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A relaxation-accelerated propagator method for calculations of electron energy distribution function and electron transport parameters in gas under dc electric fields

    Science.gov (United States)

    Sugawara, Hirotake

    2017-04-01

    A propagator method (PM), a numerical technique to solve the Boltzmann equation (BE) for the electron velocity or energy distribution function (EVDF/EEDF) of electron swarms in gases, was customized to obtain the equilibrium solution quickly. The PM calculates the number of electrons in cells defined in velocity space using an operator called the propagator or Green’s function. The propagator represents the intercellular transfer of electrons corresponding to the electron velocity change due to the acceleration by the electric field and the collisional events with gas molecules. The relaxation of the EVDF to its drift equilibrium solution proceeds with iterative propagator operations for the EVDF. Merits of the PM are that the series expansion of the EVDF as done in the BE analyses is not required and that time evolution of the electron swarm can be observed if necessary. On the other hand, in case only the equilibrium solution of the EVDF is wanted, the relaxation can be accelerated numerically. A demonstration achieved a shortening of the computational time by about three orders of magnitude. Furthermore, this scheme was applied to calculations of a set of electron transport parameters required in fluid-model simulations, i.e. the effective ionization frequency, the centroid drift velocity and the longitudinal diffusion coefficient, using the zeroth-, first- and second-order moment equations derived from the BE. A detailed description on the PM calculation was presented.

  5. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    Directory of Open Access Journals (Sweden)

    W. Lu

    2007-06-01

    Full Text Available The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for laser wakefield acceleration (LWFA in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels. We demonstrate our results by presenting a sample particle-in-cell (PIC simulation of a 30   fs, 200 TW laser interacting with a 0.75 cm long plasma with density 1.5×10^{18}  cm^{-3} to produce an ultrashort (10 fs monoenergetic bunch of self-injected electrons at 1.5 GeV with 0.3 nC of charge. For future higher-energy accelerator applications, we propose a parameter space, which is distinct from that described by Gordienko and Pukhov [Phys. Plasmas 12, 043109 (2005PHPAEN1070-664X10.1063/1.1884126] in that it involves lower plasma densities and wider spot sizes while keeping the intensity relatively constant. We find that this helps increase the output electron beam energy while keeping the efficiency high.

  6. Origins of plateau formation in ion energy spectra under target normal sheath acceleration

    Science.gov (United States)

    DuBois, Timothy C.; Siminos, Evangelos; Ferri, Julien; Gremillet, Laurent; Fülöp, Tünde

    2017-12-01

    Target normal sheath acceleration (TNSA) is a method employed in laser-matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regions in their ion energy spectra when shooting on thin foil targets with thicknesses of the order of 10 μm. In this paper, we identify a mechanism which explains this phenomenon using one-dimensional particle-in-cell simulations. Fast electrons generated from the laser interaction recirculate back and forth through the target, giving rise to time-oscillating charge and current densities at the target backside. Periodic decreases in the electron density lead to transient disruptions of the TNSA sheath field: peaks in the ion spectra form as a result, which are then spread in energy from a modified potential driven by further electron recirculation. The ratio between the laser pulse duration and the recirculation period (dependent on the target thickness, including the portion of the pre-plasma which is denser than the critical density) determines if a plateau forms in the energy spectra.

  7. Shielding calculations for industrial 5/7.5MeV electron accelerators using the MCNP Monte Carlo Code

    Science.gov (United States)

    Peri, Eyal; Orion, Itzhak

    2017-09-01

    High energy X-rays from accelerators are used to irradiate food ingredients to prevent growth and development of unwanted biological organisms in food, and by that extend the shelf life of the products. The production of X-rays is done by accelerating 5 MeV electrons and bombarding them into a heavy target (high Z). Since 2004, the FDA has approved using 7.5 MeV energy, providing higher production rates with lower treatments costs. In this study we calculated all the essential data needed for a straightforward concrete shielding design of typical food accelerator rooms. The following evaluation is done using the MCNP Monte Carlo code system: (1) Angular dependence (0-180°) of photon dose rate for 5 MeV and 7.5 MeV electron beams bombarding iron, aluminum, gold, tantalum, and tungsten targets. (2) Angular dependence (0-180°) spectral distribution simulations of bremsstrahlung for gold, tantalum, and tungsten bombarded by 5 MeV and 7.5 MeV electron beams. (3) Concrete attenuation calculations in several photon emission angles for the 5 MeV and 7.5 MeV electron beams bombarding a tantalum target. Based on the simulation, we calculated the expected increase in dose rate for facilities intending to increase the energy from 5 MeV to 7.5 MeV, and the concrete width needed to be added in order to keep the existing dose rate unchanged.

  8. Neutron fluence in a 18 MeV Electron Accelerator for Therapy; Fluencia de neutrones en un Acelerador de Electrones de 18 MeV para terapia

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C. [Instituto Nacional de Investigaciones Nucleares, Direccion de Innovacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    An investigation was made on the theoretical fundamentals for the determination of the neutron fluence in a linear electron accelerator for radiotherapy applications and the limit values of leakage neutron radiation established by guidelines and standards in radiation protection for these type of accelerators. This investigation includes the following parts: a) Exhaustive bibliographical review on the topics mentioned above, in order to combine and to update the necessary basic information to facilitate the understanding of this subject; b) Analysis of the accelerator operation and identification of its main components, specially in the accelerator head; c) Study of different types of targets and its materials for the Bremsstrahlung production which is based on the electron initial energy, the thickness of the target, and its angular distribution and energy, which influences in the neutron generation by means of the photonuclear and electro disintegration reactions; d) Analysis of the neutron yield based on the target type and its thickness, the energy of electrons and photons; e) Analysis of the neutron energy spectra generated in the accelerator head, inside and outside the treatment room; f) Study of the dosimetry fundamentals for neutron and photon mixed fields, the dosimeter selection criteria and standards applied for these applications, specially the Panasonic U D-809 thermoluminescent dosemeter and C R-39 nuclear track dosimeter; g) Theoretical calculation of the neutron yield using a simplified geometric model for the accelerator head with spherical cell, which considers the target, primary collimator, flattener filter, movable collimators and the head shielding as the main components for radiation production. The cases with W and Pb shielding for closed movable collimators and an irradiation field of 20 x 20 cm{sup 2} were analyzed and, h) Experimental evaluation of the leakage neutron radiation from the patient and head planes, observing that the

  9. Resonant Excitation of Selected Modes by a Train of Electron Bunches in a Rectangular Dielectric Wakefield Accelerator

    CERN Document Server

    Onishchenko, Ivan N; Onishchenko, Nikolay; Sotnikov, Gennadiy

    2005-01-01

    The dielectric wake field accelerator is based on particle acceleration by wake fields excited in a dielectric waveguide by a regular sequence of electron bunches. Enhancement of the accelerating field can be achieved using two phenomena: coherent excitation by many bunches (multibunch effect) and constructive interference of many excited eigenmodes (multimode effect). It was believed that the latter is possible only for planar slab geometry in which the excited modes are equally spaced in frequency. By analysis and simulation, in this presentation the effect of wake field superposition to high amplitude is demonstrated for arbitrary rectangular geometry that is more realizable in experiment. We find this result using simultaneous multibunch and multimode operation providing the repetition frequency of the bunch sequence is equal to the frequency difference between selected modes, whereupon resonant oscillation takes place. Moreover, it is shown that for an appropriate choice of selected modes and bunch repet...

  10. A multi-sample changer coupled to an electron cyclotron resonance source for accelerator mass spectrometry experiments.

    Science.gov (United States)

    Vondrasek, R; Palchan, T; Pardo, R; Peters, C; Power, M; Scott, R

    2014-02-01

    A new multi-sample changer has been constructed allowing rapid changes between samples. The sample changer has 20 positions and is capable of moving between samples in 1 min. The sample changer is part of a project using Accelerator Mass Spectrometry (AMS) at the Argonne Tandem Linac Accelerator System (ATLAS) facility to measure neutron capture rates on a wide range of actinides in a reactor environment. This project will require the measurement of a large number of samples previously irradiated in the Advanced Test Reactor at Idaho National Laboratory. The AMS technique at ATLAS is based on production of highly charged positive ions in an electron cyclotron resonance ion source followed by acceleration in the ATLAS linac. The sample material is introduced into the plasma via laser ablation chosen to limit the dependency of material feed rates upon the source material composition as well as minimize cross-talk between samples.

  11. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ciocca, Mario, E-mail: mario.ciocca@cnao.it [Unit of Medical Physics, Centro Nazionale di Adroterapia Oncologica (CNAO) Foundation, via Campeggi, 27100 Pavia (Italy); Cantone, Marie-Claire; Veronese, Ivan [Department of Physics, Universita degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, INFN Milano, via Celoria 16, 20133 Milano (Italy); Cattani, Federica; Pedroli, Guido [Unit of Medical Physics, European Institute of Oncology, via Ripamonti 435, 20141 Milano (Italy); Molinelli, Silvia [Unit of Medical Physics, Centro Nazionale di Adroterapia Oncologica (CNAO) Foundation, via Campeggi, 27100 Pavia (Italy); Vitolo, Viviana [Unit of Radiotherapy, Centro Nazionale di Adroterapia Oncologica (CNAO) Foundation, via Campeggi, 27100 Pavia (Italy); Orecchia, Roberto [Division of Radiation Oncology, European Institute of Oncology, via Ripamonti 435, 20141 Milano (Italy); Scientific Direction, Centro Nazionale di Adroterapia Oncologica (CNAO) Foundation, via Campeggi, 27100 Pavia (Italy); Faculty of Medicine, Universita degli Studi di Milano, via Ripamonti 435, 20141 Milano (Italy)

    2012-02-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy. The

  12. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA; Optische Strahldiagnose an der Elektronen-Stretcher-Anlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Zander, Sven

    2013-10-15

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  13. Electron acceleration by an obliquely propagating electromagnetic wave in the regime of validity of the Fokker-Planck-Kolmogorov approach

    Science.gov (United States)

    Hizanidis, Kyriakos; Vlahos, L.; Polymilis, C.

    1989-01-01

    The relativistic motion of an ensemble of electrons in an intense monochromatic electromagnetic wave propagating obliquely in a uniform external magnetic field is studied. The problem is formulated from the viewpoint of Hamiltonian theory and the Fokker-Planck-Kolmogorov approach analyzed by Hizanidis (1989), leading to a one-dimensional diffusive acceleration along paths of constant zeroth-order generalized Hamiltonian. For values of the wave amplitude and the propagating angle inside the analytically predicted stochastic region, the numerical results suggest that the diffusion probes proceeds in stages. In the first stage, the electrons are accelerated to relatively high energies by sampling the first few overlapping resonances one by one. During that stage, the ensemble-average square deviation of the variable involved scales quadratically with time. During the second stage, they scale linearly with time. For much longer times, deviation from linear scaling slowly sets in.

  14. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  15. Feasibility study for an industrial superconducting table-top electron accelerator; Machbarkeitstudie fuer einen industriellen supraleitenden Table Top Elektronenbeschleuniger

    Energy Technology Data Exchange (ETDEWEB)

    Buettig, H.; Enghardt, W.; Gabriel, F.; Janssen, D.; Michel, P.; Pobell, F.; Prade, H.; Schneider, C.; Kudryavtsev, A.; Haberstroh, C.; Sandner, W.; Will, I.

    2004-07-01

    A concept of a table-top accelerator, consisting of a superconducting resonator and subsequent 6 standard TESLA cells working with a frequency of 1.3 GHz, is presented. Then electron gun is based on a photocathode. Especially described are the photocathode part, the laser system, the cryostat module, the RF system, the beam extraction, and the cryogenic facility. Finally the efficiency and the costs are considered, (HSI)

  16. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses.

    Science.gov (United States)

    Kim, Hyung Taek; Pae, Ki Hong; Cha, Hyuk Jin; Kim, I Jong; Yu, Tae Jun; Sung, Jae Hee; Lee, Seong Ku; Jeong, Tae Moon; Lee, Jongmin

    2013-10-18

    Laser-wakefield acceleration offers the promise of a compact electron accelerator for generating a multi-GeV electron beam using the huge field gradient induced by an intense laser pulse, compared to conventional rf accelerators. However, the energy and quality of the electron beam from the laser-wakefield accelerator have been limited by the power of the driving laser pulses and interaction properties in the target medium. Recent progress in laser technology has resulted in the realization of a petawatt (PW) femtosecond laser, which offers new capabilities for research on laser-wakefield acceleration. Here, we present a significant increase in laser-driven electron energy to the multi-GeV level by utilizing a 30-fs, 1-PW laser system. In particular, a dual-stage laser-wakefield acceleration scheme (injector and accelerator scheme) was applied to boost electron energies to over 3 GeV with a single PW laser pulse. Three-dimensional particle-in-cell simulations corroborate the multi-GeV electron generation from the dual-stage laser-wakefield accelerator driven by PW laser pulses.

  17. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H. [ed.

    1998-07-01

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  18. GPU-Accelerated Monte Carlo Electron Transport Methods: Development and Application for Radiation Dose Calculations Using Six GPU cards

    Science.gov (United States)

    Su, Lin; Du, Xining; Liu, Tianyu; Xu, X. George

    2014-06-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous EnviRonments - is being developed at Rensselaer Polytechnic Institute as a software testbed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. This paper presents the preliminary code development and the testing involving radiation dose related problems. In particular, the paper discusses the electron transport simulations using the class-II condensed history method. The considered electron energy ranges from a few hundreds of keV to 30 MeV. For photon part, photoelectric effect, Compton scattering and pair production were modeled. Voxelized geometry was supported. A serial CPU code was first written in C++. The code was then transplanted to the GPU using the CUDA C 5.0 standards. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla™ M2090 GPUs. The code was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and later dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x106 electron histories were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively. On-going work continues to test the code for different medical applications such as radiotherapy and brachytherapy.

  19. Magnetic storm acceleration of radiation belt electrons observed by the Scintillating Fibre Detector (SFD onboard EQUATOR-S

    Directory of Open Access Journals (Sweden)

    M. Cyamukungu

    1999-12-01

    Full Text Available On the basis of the currents induced by electron fluxes in the Scintillating Fibre Detector (SFD onboard the EQUATOR-S satellite launched on 2 December 1997, an in-situ acceleration of radiation belt electrons is found to possibly contribute to the increase of the flux of electrons with energies greater than 400 keV. The data acquired between 16 December 1997 and 30 April 1998 on the 500–67300 km, 4° inclination EQUATOR-S orbit show that the increase of the energetic electron flux corresponds to the enhanced geomagnetic activity measured through the Dst index.Key words. Magnetospheric physics (energetic particles · trapped; storms and substorms; instruments and techniques

  20. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  1. Design and construction of cavity frequency measurement and tuning systems of traveling wave electron linear accelerator

    Directory of Open Access Journals (Sweden)

    S Ahmadiannamin

    2017-08-01

    Full Text Available The main purpose for designing and constructing electroradio frequency linear accelerators is to reach better beam quality with higher power and energy by lower RF power consumption. The main step for this purpose is doing research and development in the area of designing, constructing, measuring and tuning of accelerator RF cavities. Institute for Research in Fundamental Sciences (IPM linear accelerator projecta is the first Iranian project for construction of electrolinear accelerator. In this paper, a brief introduction to construction procedure has been given. Then, the measurement and tuning of a disk-loaded periodic structure before and after tuning was reported. In addition, the detailed design and measurement setup for electric field measurement by perturbation method was investigated  

  2. Evaluation of some commercial grade polymers as possible dosimeters for technological irradiations in electron accelerators

    CERN Document Server

    Bryl-Sandelewska, T

    2002-01-01

    Dosimetric properties of two kinds of clear polymethylmethacrylate (PMMA)and one kind of polystyrene (PS) sheets in technological accelerator irradiations, are presented. Absorbance of the sheets and its dependence on the dose have been measured at a suitable wavelength using a UV/VIS spectrophotometer. Both kind PMMA can be used for technological dose measurements but each of them in the different range of the doses (approx 3 to approx 30 kGy and approx 30 to above 200 kGy). Heating the samples after irradiation accelerates the stabilization of the absorbance, which change slowly during the storage of the samples if not heated.Absorbance of clear PS sheets decreases very much during the storage after irradiation, and heating of the samples does not accelerate the stabilization of the value. It can be said that the Ps investigated is not suitable for technological dose measurements in accelerator i radiations.

  3. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu, E-mail: sscha@kaeri.re.kr [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Kim, Yujong; Lee, Byung Cheol [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Lee, Seung Hyun [Department of Energy Science, Sungkyunkwan University(SKKU), Suwon 16419 (Korea, Republic of); Buaphad, Pikad [Nuclear Data Center, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057 (Korea, Republic of); Radiation Technology eXcellence(RTX), Daejeon 34025 (Korea, Republic of); Accelerator and Nuclear Fusion Physical Engineering, University of Science and Technology(UST), Daejeon 34113 (Korea, Republic of)

    2017-05-21

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  4. Development of an automatic frequency control system for an X-band (=9300 MHz) RF electron linear accelerator

    Science.gov (United States)

    Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad

    2017-05-01

    KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per

  5. Development of efficient recirculation system for Tilapia ...

    African Journals Online (AJOL)

    Consequently, the obtained results represent an environmental standpoint for the conservation of water use in the aquaculture industry and also constitute an important contribution to the aquaculture and farmers who receive minimal economic support. Key words: Water recirculation, aquaculture, sustainability, low cost, ...

  6. Thermophysical fundamentals of cyclonic recirculating heating devices

    Science.gov (United States)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  7. Electron acceleration observed by the FAST satellite within the IAR during a 3 Hz modulated EISCAT heater experiment

    Directory of Open Access Journals (Sweden)

    S. R. Cash

    2002-09-01

    Full Text Available A quantitative analysis is presented of the FAST satellite electric field and particle flux data during an EISCAT heating experiment run on 8 October 1998. Radio frequency heating, modulated at 3 Hz, launched ULF waves from the ionosphere into the lower magnetosphere. The ULF waves were observed in FAST data and constituted the first satellite detection of artificially excited Alfvénic ULF waves. The downward electron flux data for this event contain the first observations of electrons undergoing acceleration within the Ionospheric Alfvén Resonator (IAR due to parallel electric fields associated with an artificially stimulated Alfvén wave. The time history and spectral content of the observed down-ward electron fluxes is investigated by considering the effects of a localised parallel electric field. Furthermore, it is demonstrated that a power law electron energy distribution describes the time-variable observed fluxes better than a Maxwellian distribution.Key words. Ionosphere (active experiments; particle acceleration – Magnetospheric physics (electric fields

  8. Low-charge, hard x-ray free electron laser driven with an X-band injector and accelerator

    Directory of Open Access Journals (Sweden)

    Yipeng Sun (孙一鹏

    2012-03-01

    Full Text Available After the successful operation of the Free Electron Laser in Hamburg (FLASH and the Linac Coherent Light Source (LCLS, soft and hard x-ray free electron lasers (FELs are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam’s longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms, low-charge (10 pC electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters, which makes it possible to be built in places where only limited space is available.

  9. Recurrent amoebic gill infestation in rainbow trout cultured in a semiclosed water recirculation system

    Science.gov (United States)

    Noble, A.C.; Herman, R.L.; Noga, E.J.; Bullock, G.L.

    1997-01-01

    Five lots of commercially purchased juvenile rainbow trout Oncorhynchus mykiss (17-44 g) stocked in a continuous-production water recirculation system became infested with gilt amoebae. The amoebae were introduced into the recirculation system, as evidenced by their presence on gills of fish held in quarantine tanks. Based on their morphology, as seen in histological sections and by electron microscopy, the amoebae appeared to be more closely related to the family Cochliopodiidae than to other taxa of free living amoebae. Attempts to culture the amoebae in different media, at different temperatures of incubation, and in fish cell culture were not successful. Initial treatment of the recirculation system with formalin at 167 parts per million (ppm) for 1 h eliminated amoebae from the gills. Subsequent treatments of the entire system with formalin at 50-167 ppm reduced the intensity of further infestations.

  10. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm.

    Science.gov (United States)

    Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue

    2017-12-01

    Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Steady-state Spectral Model for Electron Acceleration and Cooling in Blazar Jets: Application to 3C 279

    Science.gov (United States)

    Lewis, Tiffany R.; Finke, Justin D.; Becker, Peter A.

    2018-01-01

    We introduce a new theoretical model to describe the emitting region in a blazar jet. We adopt a one-zone leptonic picture and construct the particle transport equation for a plasma blob experiencing low-energy, monoenergetic particle injection, energy-dependent particle escape, shock acceleration, adiabatic expansion, stochastic acceleration, synchrotron radiation, and external Compton radiation from the dust torus and broad-line region (BLR). We demonstrate that a one-zone leptonic model is able to explain the IR though γ -ray spectrum for 3C 279 in 2008–2009. We determine that the BLR seed photons cannot be adequately described by a single average distribution, but rather we find that a stratified BLR provides an improvement in the estimation of the distance of the emitting region from the black hole. We calculate that the jet is not always in equipartition between the particles and magnetic field and find that stochastic acceleration provides more energy to the particles than does shock acceleration, where the latter is also overshadowed by adiabatic losses. We further introduce a novel technique to implement numerical boundary conditions and determine the global normalization for the electron distribution, based on analysis of stiff ordinary differential equations. Our astrophysical results are compared with those obtained by previous authors.

  12. Selection of dimensions for the accelerating chamber of a betatron with extraction of an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Chakhlov, V.L.; Kashovskii, V.V.; Pushin, V.S.

    1985-09-01

    The authors discuss the results of refinement of the dynamics of particles of a beam extracted from a betatron, a refinement which has made it possible to select the main dimensions of the accelerating chamber. Expressions are obtained which make it possible to determine the chamber dimensions and the profile of the extraction window from the distribution of the magnetic field of the betatron. It is shown that proper selection of the dimensions will increase the dose rate at the exit from the magnetic core of the accelerator.

  13. Selection of dimensions for the accelerating chamber of a betatron with extraction of an electron beam

    Science.gov (United States)

    Chakhlov, V. L.; Kashkovskii, V. V.; Pushin, V. S.

    1985-03-01

    This article reports results of refinement of the dynamics of particles of a beam extracted from a betatron. The refinement has made it possible to select the main dimensions of the accelerating chamber. Expressions were obtained which make it possible to determine the chamber dimensions and the profile of the extraction window from the distribution of the magnetic field of the betatron. It is shown that proper selection of the dimensions will increase the dose rate at the exit from the magnetic core of the accelerator.

  14. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A

    2010-01-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, o...

  15. Electron emission of cathode holder of vacuum diode of an intense electron-beam accelerator and its effect on the output voltage

    Directory of Open Access Journals (Sweden)

    Xin-Bing Cheng

    2011-04-01

    Full Text Available The vacuum diode which is used to generate relativistic electron beams is one of the most important parts of a pulsed-power modulator. In this paper, the electron emission of cathode holder of a vacuum diode and its effect on the output voltage is investigated by experiments on an intense electron-beam accelerator with 180 ns full width at half maximum and 200–500 kV output voltage. First, the field emission is analyzed and the electric field of the vacuum chamber is calculated. Then, the flatness of the output voltage is discussed before and after adding an insulation plate when a water load is used. It is found that the electron emission at the edges of the cathode holder is the main reason to cause the change of the flatness. Last, a piece of polyester film is used as a target to further show the electron emission of the cathode holder. This analysis shows that decreasing the electron emission of the cathode holder in such a pulse power modulator could be a good way to improve the quality of the output voltage.

  16. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Pivi, M.T.F.; Collet, G.; King, F.; Kirby, R.E.; Markiewicz, T.; Raubenheimer, T.O.; Seeman, J.; /SLAC; Le Pimpec, F.; /PSI, Villigen

    2010-08-25

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  17. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions

    Directory of Open Access Journals (Sweden)

    J. Ferri

    2016-10-01

    Full Text Available Petawatt, picosecond laser pulses offer rich opportunities in generating synchrotron x-rays. This paper concentrates on the regimes accessible with the PETAL laser, which is a part of the Laser Megajoule (LMJ facility. We explore two physically distinct scenarios through Particle-in-Cell simulations. The first one realizes in a dense plasma, such that the period of electron Langmuir oscillations is much shorter than the pulse duration. Hallmarks of this regime are longitudinal breakup (“self-modulation” of the picosecond-scale laser pulse and excitation of a rapidly evolving broken plasma wake. It is found that electron beams with a charge of several tens of nC can be obtained, with a quasi-Maxwellian energy distribution extending to a few-GeV level. In the second scenario, at lower plasma densities, the pulse is shorter than the electron plasma period. The pulse blows out plasma electrons, creating a single accelerating cavity, while injection on the density downramp creates a nC quasi-monoenergetic electron bunch within the cavity. This bunch accelerates without degradation beyond 1 GeV. The x-ray sources in the self-modulated regime offer a high number of photons (∼10^{12} with the slowly decaying energy spectra extending beyond 60 keV. In turn, quasimonoenergetic character of the electron beam in the blowout regime results in the synchrotron-like spectra with the critical energy around 10 MeV and a number of photons >10^{9}. Yet, much smaller source duration and transverse size increase the x-ray brilliance by more than an order of magnitude against the self-modulated case, also favoring high spatial and temporal resolution in x-ray imaging. In all explored cases, accelerated electrons emit synchrotron x-rays of high brilliance, B>10^{20}  photons/s/mm^{2}/mrad^{2}/0.1%BW. Synchrotron sources driven by picosecond kilojoule lasers may thus find an application in x-ray diagnostics on such facilities such as the LMJ or National

  18. Relativistic electron acceleration by mJ-class kHz lasers normally incident on liquid targets.

    Science.gov (United States)

    Feister, Scott; Austin, Drake R; Morrison, John T; Frische, Kyle D; Orban, Chris; Ngirmang, Gregory; Handler, Abraham; Smith, Joseph R H; Schillaci, Mark; LaVerne, Jay A; Chowdhury, Enam A; Freeman, R R; Roquemore, W M

    2017-08-07

    We report observation of kHz-pulsed-laser-accelerated electron energies up to 3 MeV in the -klaser (backward) direction from a 3 mJ laser interacting at normal incidence with a solid density, flowing-liquid target. The electrons/MeV/s.r. >1 MeV recorded here using a mJ-class laser exceeds or equals that of prior super-ponderomotive electron studies employing lasers at lower repetition-rates and oblique incidence. Focal intensity of the 40-fs-duration laser is 1.5 · 1018 W cm-2, corresponding to only ∼80 keV electron ponderomotive energy. Varying laser intensity confirms electron energies in the laser-reflection direction well above what might be expected from ponderomotive scaling in normal-incidence laser-target geometry. This direct, normal-incidence energy spectrum measurement is made possible by modifying the final focusing off-axis-paraboloid (OAP) mirror with a central hole that allows electrons to pass, and restoring laser intensity through adaptive optics. A Lanex-based, optics-free high-acquisition rate (>100 Hz) magnetic electron-spectrometer was developed for this study to enable shot-to-shot statistical analysis and real-time feedback, which was leveraged in finding optimal pre-plasma conditions. 3D Particle-in-cell simulations of the interaction show qualitative super-ponderomotive spectral agreement with experiment. The demonstration of a high-repetition-rate, high-flux source containing >MeV electrons from a few-mJ, 40 fs laser and a simple liquid target encourages development of future ≥kHz-repetition, fs-duration electron-beam applications.

  19. Electron acceleration through wave-particle interactions in the Van Allen belts: results of the MAARBLE project

    Science.gov (United States)

    Daglis, Ioannis A.; Turner, Drew; Balasis, Georgios; Papadimitriou, Constantinos; Georgiou, Marina; Katsavrias, Christos

    Wave-particle interactions in the inner magnetosphere play a critical role in the acceleration of electrons to high energies characteristic of the Van Allen belts. In the MAARBLE project we have been investigating the properties of ultra-low-frequency electromagnetic waves in the magnetosphere and the particular ways in which these waves can influence electron acceleration. For a number of selected intense magnetic storms, we studied the variations of energetic electron fluxes in the outer Van Allen belt along with variations of the power of Pc 4-5 waves and their earthward penetration, using multi-point observations both from a number of spacecraft and from ground-based magnetometer arrays. We present and discuss the results of this study. The work leading to this paper has received funding from the European Union’s Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project. This paper reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.

  20. X-Ray and electron beam source characterization from Self-Modulated Laser Wakefield Acceleration experiments at Titan

    Science.gov (United States)

    King, Paul; Lemos, Nuno; Albert, Felicie; Shaw, Jessica; Milder, Avi; Marsh, Ken; Pak, Art; Hegelich, Bjorn; Joshi, Chan

    2017-10-01

    The development of a directional, low-divergence, and short-duration (ps and sub-ps) x-ray probes with energies of tens of keV is desirable for the fields of astrophysics, High Energy Density Science and Inertial Confinement Fusion. In this work we focused the Titan laser beam (1 ps and 150 Joules) into a 4mm helium gas jet to produce an electron beam that in turn generates an x-ray beam. The measured Raman Forward Scattering satellites present in the laser spectrum after the interaction, indicate the generation of a Self-modulated laser wakefield accelerator. This accelerator produced an electron beam with energies up to 250 MeV, a divergence of 16 x 40 mrad and a total charge of 6 nC. Using this high-charge relativistic electron beam we explored the combination of three mechanisms to produce an x-ray beam: Betatron, Compton scattering and Bremsstrahlung. We show the generation of a low divergence (mrad), small source size (um) broadband (keV to MeV) x-ray beam that can be used as a backlighter for time-resolved spectroscopy, imaging, and Compton radiography. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. [LLNL-ABS-734746].

  1. Comparison of the Effects of Wave-Particle Interactions and the Kinetic Suprathermal Electron Population on the Acceleration of the Solar Wind

    Science.gov (United States)

    Tam, S. W. Y.; Chang, T.

    2002-01-01

    Kinetic effects due to wave-particle interactions and suprathermal electrons have been suggested in the literature as possible solar wind acceleration mechanisms. Ion cyclotron resonant heating, in particular, has been associated with some qualitative features observed in the solar wind. In terms of solar wind acceleration, however, it is interesting to compare the kinetic effects of suprathermal electrons with those due to the wave-particle interactions. The combined effects of the two acceleration mechanisms on the fast solar wind have been studied by Tam and Chang (1999a,b). In this study. we investigate the role of the suprathermal electron population in the acceleration of the solar wind. Our model follows the global kinetic evolution of the fast solar wind under the influence of ion cyclotron resonant heating, while taking into account Coulomb collisions, and the ambipolar electric field that is consistent with the particle distributions themselves. The kinetic effects due to the suprathermal electrons, which we define to be the tail of the electron distributions, can be included in the model as an option. By comparing the results with and without the inclusion of the suprathermal electron effects, we determine the relative importance of suprathermal electrons and wave-particle interactions in driving the solar wind. We find that although suprathermal electrons enhance the ambipolar electric potential in the solar wind considerably, their overall influence as an acceleration mechanism is relatively insignificant in a wave-driven solar wind.

  2. Limitation on the accelerating gradient of a wakefield excited by an ultrarelativistic electron beam in rubidium plasma

    Directory of Open Access Journals (Sweden)

    N. Vafaei-Najafabadi

    2016-10-01

    Full Text Available We have investigated the viability of using plasmas formed by ionization of high Z, low ionization potential element rubidium (Rb for beam-driven plasma wakefield acceleration. The Rb vapor column confined by argon (Ar buffer gas was used to reduce the expected limitation on the beam propagation length due to head erosion that was observed previously when a lower Z but higher ionization potential lithium vapor was used. However, injection of electrons into the wakefield due to ionization of Ar buffer gas and nonuniform ionization of Rb^{1+} to Rb^{2+} was a possible concern. In this paper we describe experimental results and the supporting simulations which indicate that such ionization of Ar and Rb^{1+} in the presence of combined fields of the beam and the wakefield inside the wake does indeed occur. Some of this charge accumulates in the accelerating region of the wake leading to the reduction of the electric field—an effect known as beam loading. The beam-loading effect is quantified by determining the average transformer ratio ⟨R⟩ which is the maximum energy gained divided by the maximum energy lost by the electrons in the bunch used to produce the wake. ⟨R⟩ is shown to depend on the propagation length and the quantity of the accumulated charge, indicating that the distributed injection of secondary Rb electrons is the main cause of beam loading in this experiment. The average transformer ratio is reduced from 1.5 to less than 1 as the excess charge from secondary ionization increased from 100 to 700 pC. The simulations show that while the decelerating field remains constant, the accelerating field is reduced from its unloaded value of 82 to 46  GeV/m due to this distributed injection of dark current into the wake.

  3. Estimation of Airborne Radioactivity Induced by 8-GeV-Class Electron LINAC Accelerator.

    Science.gov (United States)

    Asano, Yoshihiro

    2017-10-01

    Airborne radioactivity induced by high-energy electrons from 6 to 10 GeV is estimated by using analytical methods and the Monte Carlo codes PHITS and FLUKA. Measurements using a gas monitor with a NaI(Tl) scintillator are carried out in air from a dump room at SACLA, an x-ray free-electron laser facility with 7.8-GeV electrons and are compared to the simulations.

  4. Characterization of solvents containing CyMe4-BTPhen in selected cyclohexanone-based diluents after irradiation by accelerated electrons

    Directory of Open Access Journals (Sweden)

    Distler Petr

    2015-12-01

    Full Text Available Radiation stability of CyMe4-BTPhen was examined in systems with three selected cyclohexanone-based diluents. Accelerated electrons were used as a source of ionizing radiation. The CyMe4-BTPhen radiation degradation identification and characterization of the degradation products were performed by high performance liquid chromatography (HPLC and mass spectrometry (MS analyses. Residual concentrations of tested ligand were determined. Moreover, extraction properties of the solvents irradiated at two different doses were compared with the extraction properties of non-irradiated solvents to estimate the influence of the presence of degradation products in the organic phase.

  5. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  6. Emittance study of a 28 GHz electron cyclotron resonance ion source for the Rare Isotope Science Project superconducting linear accelerator.

    Science.gov (United States)

    Park, Bum-Sik; Hong, In-Seok; Jang, Ji-Ho; Jin, Hyunchang; Choi, Sukjin; Kim, Yonghwan

    2016-02-01

    A 28 GHz electron cyclotron resonance (ECR) ion source is being developed for use as an injector for the superconducting linear accelerator of the Rare Isotope Science Project. Beam extraction from the ECR ion source has been simulated using the KOBRA3-INP software. The simulation software can calculate charged particle trajectories in three dimensional complex magnetic field structures, which in this case are formed by the arrangement of five superconducting magnets. In this study, the beam emittance is simulated to understand the effects of plasma potential, mass-to-charge ratio, and spatial distribution. The results of these simulations and their comparison to experimental results are presented in this paper.

  7. Development of free electron laser and accelerator technology in Poland (CARE and EuCARD projects)

    CERN Document Server

    Romaniuk, Ryszard

    2009-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.

  8. Monte Carlo simulation of the CTA/IEAV electron linear accelerator environmental doses using albedo coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Viera, Wilson J.; Ono, Shizuca; Claro, Luiz H.; Dias, Artur F. [Centro Tecnico Aeroespacial (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados], e-mail: wjvieira@ieav.cta.br, e-mail: shizuca@ieav.cta.br, e-mail: luizhenu@ieav.cta.br, e-mail: arturf@ieav.cta.br

    2001-07-01

    With the purpose of determining the radiation field in the accelerator environment in an efficient way, it was developed an approximate methodology which uses multigroup albedo coefficients to describe the particle reflection by the walls. This method avoids the particle transport calculation inside the walls, which spends much of the processing time. The Monte Carlo code MCNP was suitably modified to allow the simulation of such calculations. To assess the accuracy achieved with this methodology, very realistic calculations considering the transport of particles inside all the walls are performed. The results showed that the use of albedo coefficients for some walls while allowing the transport of particles inside the other walls in the same calculation gives accurate results, saving significant computational time. The results obtained for the accelerator showed an excellent agreement with the realistic calculation, and that the technique is applicable to large environments. (author)

  9. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    Directory of Open Access Journals (Sweden)

    R. E. Phillips

    2013-07-01

    Full Text Available A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  10. Current Outlook for 99mTc Distribution Based on Electron Accelerator Production

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin L. Nelson; W. David Bence; John R. Snyder

    2007-07-01

    In 1999 a practical example illustrating the economical and reliable production of 99mTc from an accelerator was developed. It included the realistic costs involved in establishing and operating the accelerator facility and the distribution of the 99mTc to regions in Florida. However, the technology was never commercialized. Recent political and economic developments prompted this second look at accelerator produced 99mTc. The practicality of this system in 2007 dollars was established to account for inflation and current demand. The same distribution model and production schedule from the Global ‘99 study were used. Numbers were found using current rates and costs where possible and indexed estimations when necessary. Though several of the costs increased significantly and the sale price remains at approximately 35¢/mCi, the unit cost of 99mTc throughput only increased from 12.8¢/mCi to 15.0¢/mCi or approximately 17.2% from 1999 to 2007 thus continuing to be economically viable. This study provides ground work for creating business development models at additional locations within the U.S.

  11. Analysis of functional genomes from metagenomes: Revealing the accelerated electron transfer in microbial fuel cell with rhamnolipid addition.

    Science.gov (United States)

    Zhang, Yunshu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Yu, Hang

    2018-02-01

    Extracellular electron transfer is the predominant electricity generation process in microbial fuel cells (MFCs). Our pervious study have proved that the anodic adsorption of rhamnolipid resulted in the Frumkin effect, which enhanced anodic microorganism attachment and accelerated anodic electron transfer. In this study, an in-depth research on the influence of rhamnolipid on functional genes of anodic biofilms metagenomes was carried out to explain its mechanism at the gene level. The result showed that the composition and distribution of functional genes in each dominant genus were different. The category of signal transduction mechanisms was the dominant function category in exoelectrogens, and its relative abundance in the metagenome significantly increased from 4.56 to 5.86% from rhamnolipid addition. Additionally, the metabolic pathway and electron flow analysis revealed that electron flows tend to choose direct electron transfer in the presence of rhamnolipids, and resulting in the increase of Coulombic efficiency from 19.10±0.79% to 27.39±1.07%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  13. Impact of nitrate-enhanced leachate recirculation on gaseous releases from a landfill bioreactor cell.

    Science.gov (United States)

    Tallec, G; Bureau, C; Peu, P; Benoist, J C; Lemunier, M; Budka, A; Presse, D; Bouchez, T

    2009-07-01

    This study evaluates the impact of nitrate injection on a full scale landfill bioreactor through the monitoring of gaseous releases and particularly N(2)O emissions. During several weeks, we monitored gas concentrations in the landfill gas collection system as well as surface gas releases with a series of seven static chambers. These devices were directly connected to a gas chromatograph coupled to a flame ionisation detector and an electron capture detector (GC-FID/ECD) placed directly on the field. Measurements were performed before, during and after recirculation of raw leachate and nitrate-enhanced leachate. Raw leachate recirculation did not have a significant effect on the biogas concentrations (CO(2), CH(4) and N(2)O) in the gas extraction network. However, nitrate-enhanced leachate recirculation induced a marked increase of the N(2)O concentrations in the gas collected from the recirculation trench (100-fold increase from 0.2 ppm to 23 ppm). In the common gas collection system however, this N(2)O increase was no more detectable because of dilution by gas coming from other cells or ambient air intrusion. Surface releases through the temporary cover were characterized by a large spatial and temporal variability. One automated chamber gave limited standard errors over each experimental period for N(2)O releases: 8.1 +/- 0.16 mg m(-2) d(-1) (n = 384), 4.2 +/- 0.14 mg m(-2) d(-1) (n = 132) and 1.9 +/- 0.10 mg m(-2) d(-1) (n = 49), during, after raw leachate and nitrate-enhanced leachate recirculation, respectively. No clear correlation between N(2)O gaseous surface releases and recirculation events were evidenced. Estimated N(2)O fluxes remained in the lower range of what is reported in the literature for landfill covers, even after nitrate injection.

  14. Aberrations of magnetooptical system of SALO recirculator

    Science.gov (United States)

    Guk, I. S.; Dovbnya, A. N.; Kononenko, S. G.; Peev, F. A.; Tarasenko, A. S.

    2010-12-01

    The influence of spatial and chromatic aberrations on the parameters of the 730 MeV beam extracted from a SALO recirculator is studied using numerical simulation. The influence of fringing fields and the heterogeneity of the guide field of dipole magnets on the beam parameters at the extraction point is studied for different orders and types of aberrations. Estimates of the contributions of the different types of aberrations to the extracted beam emittance are presented.

  15. Numerical computations of swirling recirculating flow

    Science.gov (United States)

    Srinivasan, R.; Mongia, H. C.

    1980-01-01

    Swirling, recirculating, nonreacting flows were computed using a 2D elliptic program consisting of three tasks. The computations in Task 1 and 2 were made using an independent analysis for the two coaxial swirling flows. The Task 2 computations were made using the measured profiles of the mixing region. In Task 3, a modified 2D elliptic program was employed to include the effects of interaction between the inner and outer streams.

  16. Effects of accelerating voltage and specimen thickness on the spatial resolution of transmission electron backscatter diffraction in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Jhih-Wun; Kuo, Ka-Wei [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Kuo, Jui-Chao, E-mail: jckuo@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Kuo, Tsung-Yuan [Department of Mechanical Engineering, Southern Taiwan University of Technology, Tainan 71005, Taiwan, ROC (China)

    2017-06-15

    Highlights: • A quantitative approach is proposed to measure spatial resolutions of t-EBSD. • Increasing accelerating voltage enhances the lateral and longitudinal resolutions. • Decreasing thickness improves the lateral and longitudinal resolutions. • The depth resolution is 34.4 nm for a 100 nm sample thickness at 25 kV. - Abstract: A quantitative approach was proposed to determine the spatial resolution of transmission electron backscatter diffraction (t-EBSD) and to understand the limits of spatial resolution of t-EBSD. In this approach, Cu bicrystals and digital image correlation were employed. The effects of accelerating voltage and specimen thickness on the spatial resolution of t-EBSD were also investigated. t-EBSD specimens with 8 μm × 10 μm dimensions and different thicknesses were prepared using focused ion beam milling. The optimized quality of Kikuchi pattern was achieved at a working distance of 12 mm and a tilting angle of 20°. The optimum depth resolution of 34.4 nm was observed in the lower surface of a 100 nm thick sample at 25 kV. Thus, the penetration depth from the upper surface is 65.6 nm. The optimum lateral and longitudinal resolutions obtained from a 100 nm thick sample at 30 kV are 25.2 and 43.4 nm, respectively. The spatial resolution of t-EBSD can be enhanced by increasing the accelerating voltage and decreasing the sample thickness.

  17. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Fu, F.; Zhang, J. [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, X.; Wang, L.; Wang, X. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Wan, W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-09-21

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10{sup −19} ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  18. Bi-layer structure of counterstreaming energetic electron fluxes: a diagnostic tool of the acceleration mechanism in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2010-02-01

    Full Text Available For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS instrument that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008. The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an intense pressure gradient is directed earthward; hence, ions are ejected tailward

  19. Prompt Acceleration of Magnetospheric Electrons to Ultrarelativistic Energies by the 17 March 2015 Interplanetary Shock

    Science.gov (United States)

    Kanekal, S. G.; Baker, D. N.; Fennell, J. F.; Jones, A.; Schiller, Q.; Richardson, I.G.; Li, X.; Turner, D. L.; Califf, S.; Claudepierre, S. G.; hide

    2016-01-01

    Trapped electrons in Earth's outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = -223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized electrons. The CME itself was preceded by a strong IP shock whose immediate effects vis-a-vis electron energization were observed by sensors on board the Van Allen Probes. The comprehensive and high-quality data from the Van Allen Probes enable the determination of the location of the electron injection, timescales, and spectral aspects of the energized electrons. The observations clearly show that ultrarelativistic electrons with energies E greater than 6 MeV were injected deep into the magnetosphere at L approximately equals 3 within about 2 min of the shock impact. However, electrons in the energy range of approximately equals 250 keV to approximately equals 900 keV showed no immediate response to the IP shock. Electric and magnetic fields resulting from the shock-driven compression complete the comprehensive set of observations that provide a full description of the near-instantaneous electron energization.

  20. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    Science.gov (United States)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .