WorldWideScience

Sample records for receptors pxr car

  1. Transcriptional activation of PPARalpha by phenobarbital in the absence of CAR and PXR.

    Science.gov (United States)

    Tamasi, Viola; Juvan, Peter; Beer, Markus; Rozman, Damjana; Meyer, Urs A

    2009-01-01

    The nuclear receptors CAR (constitutive androstane receptor) and PXR (pregnane X receptor) mediate the effects of phenobarbital on gene transcription. To investigate the relative contribution of these nuclear receptors to the expression of specific genes we studied the effect of phenobarbital in livers of wild type, CAR(-/-), PXR(-/-) and CAR/PXR(-/-) knockout mice. Spotted Steroltalk v1 cDNA arrays were applied containing probes for genes involved in drug metabolism, sterol biosynthesis, steroid synthesis/transport and heme synthesis. In the absence of CAR and PXR, phenobarbital unexpectedly induced mRNAs of several nuclear receptors, including PPARalpha and its target genes Cyp4a10 and Cyp4a14. Interestingly, in primary cultures of hepatocytes isolated from CAR/PXR(-/-) knockout mice, phenobarbital increased HNF-4alpha levels. In further experiments in these hepatocyte cultures we provide evidence that phenobarbital directly induces transcription of the PPARalpha gene via its HNF-4alpha response element, and indirectly by lack of inhibitory crosstalk of AMPK, CAR and PXR with HNF-4alpha. Our results provide further insight into CAR and PXR-independent effects of phenobarbital and the crosstalk between different nuclear receptor signaling pathways.

  2. Small-molecule modulators of PXR and CAR

    Science.gov (United States)

    Chai, Sergio C.; Cherian, Milu T.; Wang, Yue-Ming; Chen, Taosheng

    2016-01-01

    Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. PMID:26921498

  3. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice

    International Nuclear Information System (INIS)

    Park, Young Joo; Lee, Eun Kyung; Lee, Yoon Kwang; Park, Do Joon; Jang, Hak Chul; Moore, David D.

    2012-01-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR −/− mice, but not in hypothyroid PXR −/− mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR −/− hypothyroid mice, and this induction was abolished in CAR −/− mice and in and CAR −/− PXR −/− double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR −/− mice and lowest in WT and PXR −/− mice. Hypothyroid WT or PXR −/− mice survived chronic CBZ treatment, but all hypothyroid CAR −/− and CAR −/− PXR −/− mice died, with CAR −/− PXR −/− mice surviving longer than CAR −/− mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal mice. ► Hypothyroidism sensitizes CAR null mice to toxic effects of carbamazepine.

  4. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Joo [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Seoul National University Bundang Hospital, Seoul (Korea, Republic of); Lee, Eun Kyung [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Lee, Yoon Kwang [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States); Park, Do Joon; Jang, Hak Chul [Department of Internal Medicine, Seoul National University College of Medicine (Korea, Republic of); Moore, David D., E-mail: moore@bcm.edu [Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 (United States)

    2012-09-01

    Clinical hypothyroidism affects various metabolic processes including drug metabolism. CYP2B and CYP3A are important cytochrome P450 drug metabolizing enzymes that are regulated by the xenobiotic receptors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2). We evaluated the regulation of the hepatic expression of CYPs by CAR and PXR in the hypothyroid state induced by a low-iodine diet containing 0.15% propylthiouracil. Expression of Cyp3a11 was suppressed in hypothyroid C57BL/6 wild type (WT) mice and a further decrement was observed in hypothyroid CAR{sup −/−} mice, but not in hypothyroid PXR{sup −/−} mice. In contrast, expression of Cyp2b10 was induced in both WT and PXR{sup −/−} hypothyroid mice, and this induction was abolished in CAR{sup −/−} mice and in and CAR{sup −/−} PXR{sup −/−} double knockouts. CAR mRNA expression was increased by hypothyroidism, while PXR expression remained unchanged. Carbamazepine (CBZ) is a commonly used antiepileptic that is metabolized by CYP3A isoforms. After CBZ treatment of normal chow fed mice, serum CBZ levels were highest in CAR{sup −/−} mice and lowest in WT and PXR{sup −/−} mice. Hypothyroid WT or PXR{sup −/−} mice survived chronic CBZ treatment, but all hypothyroid CAR{sup −/−} and CAR{sup −/−} PXR{sup −/−} mice died, with CAR{sup −/−}PXR{sup −/−} mice surviving longer than CAR{sup −/−} mice (12.3 ± 3.3 days vs. 6.3 ± 2.1 days, p = 0.04). All these findings suggest that hypothyroid status affects xenobiotic metabolism, with opposing responses of CAR and PXR and their CYP targets that can cancel each other out, decreasing serious metabolic derangement in response to a xenobiotic challenge. -- Highlights: ► Hypothyroid status activates CAR in mice and induces Cyp2b10 expression. ► Hypothyroid status suppresses PXR activity in mice and represses Cyp3a11 expression. ► These responses balance each other out in normal mice.

  5. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Catarina, E-mail: catarinarcruzeiro@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Lopes-Marques, Mónica, E-mail: monicaslm@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Ruivo, Raquel, E-mail: ruivo.raquel@gmail.com [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rodrigues-Oliveira, Nádia, E-mail: nadia.oliveira@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Santos, Miguel M., E-mail: santos@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal); Rocha, Maria João, E-mail: mjsrocha@netcabo.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rocha, Eduardo, E-mail: erocha@icbas.up.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Castro, L. Filipe C., E-mail: filipe.castro@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal)

    2016-05-15

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  6. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    International Nuclear Information System (INIS)

    Cruzeiro, Catarina; Lopes-Marques, Mónica; Ruivo, Raquel; Rodrigues-Oliveira, Nádia; Santos, Miguel M.; Rocha, Maria João; Rocha, Eduardo; Castro, L. Filipe C.

    2016-01-01

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  7. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Gährs, Maike; Roos, Robert; Andersson, Patrik L.; Schrenk, Dieter

    2013-01-01

    Polychlorinated biphenyls (PCBs) are among the most ubiquitously detectable ‘persistent organic pollutants’. In contrast to ‘dioxinlike’ (DL) PCBs, less is known about the molecular mode of action of the larger group of the ‘non-dioxinlike’ (NDL) PCBs. Owing to the life-long exposure of the human population, a carcinogenic, i.e., tumor-promoting potency of NDL-PCBs has to be considered in human risk assessment. A major problem in risk assessment of NDL-PCBs is dioxin-like impurities that can occur in commercially available NDL-PCB standards. In the present study, we analyzed the induction of CYP2B1 and CYP3A1 in primary rat hepatocytes using a number of highly purified NDL-PCBs with various degrees of chlorination and substitution patterns. Induction of these enzymes is mediated by the nuclear xenobiotic receptors CAR (Constitutive androstane receptor) and PXR (Pregnane X receptor). For CYP2B1 induction, concentration–response analysis revealed a very narrow window of EC 50 estimates, being in the range of 1–4 μM for PCBs 28 and 52, and between 0.4 and 1 μM for PCBs 101, 138, 153 and 180. CYP3A1 induction was less sensitive to NDL-PCBs, the most pronounced induction being achieved at 100 μM with the higher chlorinated congeners. Using okadaic acid and small interfering RNAs targeting CAR and PXR, we could demonstrate that CAR plays a major role and PXR a minor role in NDL-PCB-driven induction of CYPs, both effects showing no stringent structure–activity relationship. As the only obvious relevant determinant, the degree of chlorination was found to be positively correlated with the inducing potency of the congeners. - Highlights: • We analyzed six highly purified NDL-PCBs for CYP2B1 and CYP3A1 expression. • CAR plays a major, PXR a minor role in NDL-PCB-driven induction of CYPs. • The degree of chlorination seems to be the major parameter for the inducing potency. • There exists a competition between CAR and PXR. • Activated PXR may

  8. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gährs, Maike; Roos, Robert [University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern (Germany); Andersson, Patrik L. [Umeå University, Department of Chemistry, Linnaeus väg 6, SE-901 87 Umeå (Sweden); Schrenk, Dieter, E-mail: schrenk@rhrk.uni-kl.de [University of Kaiserslautern, Food Chemistry and Toxicology, Erwin-Schroedinger-Str. 52, D-67663 Kaiserslautern (Germany)

    2013-10-01

    Polychlorinated biphenyls (PCBs) are among the most ubiquitously detectable ‘persistent organic pollutants’. In contrast to ‘dioxinlike’ (DL) PCBs, less is known about the molecular mode of action of the larger group of the ‘non-dioxinlike’ (NDL) PCBs. Owing to the life-long exposure of the human population, a carcinogenic, i.e., tumor-promoting potency of NDL-PCBs has to be considered in human risk assessment. A major problem in risk assessment of NDL-PCBs is dioxin-like impurities that can occur in commercially available NDL-PCB standards. In the present study, we analyzed the induction of CYP2B1 and CYP3A1 in primary rat hepatocytes using a number of highly purified NDL-PCBs with various degrees of chlorination and substitution patterns. Induction of these enzymes is mediated by the nuclear xenobiotic receptors CAR (Constitutive androstane receptor) and PXR (Pregnane X receptor). For CYP2B1 induction, concentration–response analysis revealed a very narrow window of EC{sub 50} estimates, being in the range of 1–4 μM for PCBs 28 and 52, and between 0.4 and 1 μM for PCBs 101, 138, 153 and 180. CYP3A1 induction was less sensitive to NDL-PCBs, the most pronounced induction being achieved at 100 μM with the higher chlorinated congeners. Using okadaic acid and small interfering RNAs targeting CAR and PXR, we could demonstrate that CAR plays a major role and PXR a minor role in NDL-PCB-driven induction of CYPs, both effects showing no stringent structure–activity relationship. As the only obvious relevant determinant, the degree of chlorination was found to be positively correlated with the inducing potency of the congeners. - Highlights: • We analyzed six highly purified NDL-PCBs for CYP2B1 and CYP3A1 expression. • CAR plays a major, PXR a minor role in NDL-PCB-driven induction of CYPs. • The degree of chlorination seems to be the major parameter for the inducing potency. • There exists a competition between CAR and PXR. • Activated PXR

  9. Nonylphenol-mediated CYP induction is PXR-dependent: The use of humanized mice and human hepatocytes suggests that hPXR is less sensitive than mouse PXR to nonylphenol treatment

    International Nuclear Information System (INIS)

    Mota, Linda C.; Barfield, Christina; Hernandez, Juan P.; Baldwin, William S.

    2011-01-01

    Nonylphenol (NP), a by-product of alkylphenol ethoxylates, is a pervasive surfactant that activates the xenosensing nuclear receptor, the pregnane X-receptor (PXR) in transactivation assays in vitro. We are interested in determining if NP activates PXR in vivo, determining if hPXR and mPXR act similarly, and investigating the role of PXR in protecting individuals from NP. Wild-type (WT), PXR-null, and humanized PXR (hPXR) mice were treated with NP at 0, 50 or 75 mg/kg/day for one week, and cytochrome P450 (CYP) induction, liver histopathology, and serum NP concentrations were examined. WT mice treated with NP showed induction of Cyp2b, and male-specific induction of Cyp2c and Cyp3a. CYPs were not induced in PXR-null mice, demonstrating that PXR is necessary for NP-mediated CYP induction. CAR-mediated CYP induction was not observed in the PXR-null mice despite previous data demonstrating that NP is also a CAR activator. hPXR mice only showed moderate Cyp induction, suggesting that hPXR is not as sensitive to NP as mPXR in vivo. NP-mediated Cyp3a induction from three human hepatocyte donors was not significant, confirming that hPXR is not very sensitive to NP-mediated CYP induction. Lastly, mice with PXR (mPXR and hPXR) showed lower NP serum concentrations than PXR-null mice treated with NP suggesting that PXR plays a role in decreasing liver toxicity by basally regulating phase I-III detoxification enzymes that promote the metabolism and elimination of NP. In summary, PXR is required for NP-mediated CYP-induction, mPXR mediates greater CYP induction than hPXR in vivo, and the presence of PXR, especially mPXR, is associated with altered histopathology and increased clearance of NP.

  10. In vivo effects of chronic contamination with depleted uranium on CYP3A and associated nuclear receptors PXR and CAR in the rat

    International Nuclear Information System (INIS)

    Souidi, M.; Gueguen, Y.; Linard, C.; Dudoignon, N.; Grison, S.; Baudelin, C.; Marquette, C.; Gourmelon, P.; Aigueperse, J.; Dublineau, I.

    2005-01-01

    In addition to its natural presence at high concentrations in some areas, uranium has several civilian and military applications that could cause contamination of human populations, mainly through chronic ingestion. Reports describe the accumulation of this radionuclide in some organs (including the bone, kidney, and liver) after acute or chronic contamination and show that it produces chemical or radiological toxicity or both. The literature is essentially devoid of information about uranium-related cellular and molecular effects on metabolic functions such as xenobiotic detoxification. The present study thus evaluated rats chronically exposed to depleted uranium in their drinking water (1 mg/(rat day)) for 9 months. Our specific aim was to evaluate the hepatic and extrahepatic mRNA expression of CYP3A1/A2, CYP2B1, and CYP1A1 as well as of the nuclear receptors PXR, CAR, and RXR in these rats. CYP3A1 mRNA expression was significantly higher in the brain (200%), liver (300%), and kidneys (900%) of exposed rats compared with control rats, while CYP3A2 mRNA levels were higher in the lungs (300%) and liver (200%), and CYP2B1 mRNA expression in the kidneys (300%). Expression of CYP1A1 mRNA did not change significantly during this study. PXR mRNA levels increased in the brain (200%), liver (150%), and kidneys (200%). Uranium caused CAR mRNA expression in the lungs to double. Expression of RXR mRNA did not change significantly in the course of this study, nor did the hepatic activity of CYP2C, CYP3A, CYP2A, or CYP2B. Uranium probably affects the expression of drug-metabolizing CYP enzymes through the PXR and CAR nuclear receptors. These results suggest that the stimulating effect of uranium on these enzymes might lead to hepatic or extrahepatic toxicity (or both) during drug treatment and then affect the entire organism

  11. Hepatocellular hypertrophy and cell proliferation in Sprague–Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR

    International Nuclear Information System (INIS)

    Elcombe, Clifford R.; Elcombe, Barbara M.; Foster, John R.; Chang, Shu-Ching; Ehresman, David J.; Butenhoff, John L.

    2012-01-01

    14,643 increased CYP2B enzyme activity to a slight extent. All test compounds increased the liver cell proliferative index and decreased the liver apoptotic index. No histological changes of the thyroid were noted; however, PB and WY increased thyroid follicular cell proliferation index (seven-day treatment only), while K + PFOS did not. The thyroid follicular cell apoptotic index did not differ between groups. The hepatomegaly and hepatocellular adenoma observed after dietary exposure of Sprague–Dawley rats to K + PFOS likely are due to the increased expression of xenosensor nuclear receptors PPARα and CAR/PXR. Given the markedly lower or absent response of human hepatocytes to the proliferative stimulus from activation of PPARα and CAR/PXR, the hepatocellular proliferative response from activation of these receptors by PFOS observed in rats is not expected to be of human relevance.

  12. Human pregnane X receptor is activated by dibenzazepine carbamate-based inhibitors of constitutive androstane receptor.

    Science.gov (United States)

    Jeske, Judith; Windshügel, Björn; Thasler, Wolfgang E; Schwab, Matthias; Burk, Oliver

    2017-06-01

    Unintentional activation of xenosensing nuclear receptors pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR) by clinical drug use is known to produce severe side effects in patients, which may be overcome by co-administering antagonists. However, especially antagonizing CAR is hampered by the lack of specific inhibitors, which do not activate PXR. Recently, compounds based on a dibenzazepine carbamate scaffold were identified as potent CAR inhibitors. However, their potential to activate PXR was not thoroughly investigated, even if the lead compound was named "CAR inhibitor not PXR activator 1" (CINPA1). Thus, we performed a comprehensive analysis of the interaction of CINPA1 and four analogs with PXR. Cellular assays were used to investigate intra- and intermolecular interactions and transactivation activity of PXR as a function of the compounds. Modulation of PXR target gene expression was analyzed in primary human hepatocytes. Ligand binding to PXR was investigated by molecular docking and limited proteolytic digestion. We show here that CINPA1 induced the assembly of the PXR ligand-binding domain, released co-repressors from and recruited co-activators to the receptor. CINPA1 and its analogs induced the PXR-dependent activation of a CYP3A4 reporter gene and CINPA1 induced the expression of endogenous cytochrome P450 genes in primary hepatocytes, while not consistently inhibiting CAR-mediated induction. Molecular docking revealed favorable binding of CINPA1 and analogs to the PXR ligand-binding pocket, which was confirmed in vitro. Altogether, our data provide consistent evidence that compounds with a dibenzazepine carbamate scaffold, such as CINPA1 and its four analogs, bind to and activate PXR.

  13. Mode of Action and Human Relevance Analysis for Nuclear Receptor-Mediated Liver Toxicity: A Case Study with Phenobarbital as a Model Constitutive Androstane Receptor (CAR) Activator

    Science.gov (United States)

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are key nuclear receptors involved in the regulation of cellular responses. to exposure to many xenobiotics and various physiological processes. Phenobarbital (PB) is a non­ genotoxic i...

  14. CAR/PXR provide directives for Cyp3a41 gene regulation differently from Cyp3a11.

    Science.gov (United States)

    Anakk, S; Kalsotra, A; Kikuta, Y; Huang, W; Zhang, J; Staudinger, J L; Moore, D D; Strobel, H W

    2004-01-01

    This study reports that Cyp3a41 gene contains 13 exons and is localized on the chromosome 5. CYP3A41 is a female-specific isoform that is predominantly expressed in the liver. Estrogen signaling is not responsible for its female specificity. CYP3A41 expression in kidney and brain is observed only in 50% of mice examined. PXR mediates dexamethasone-dependent suppression of CYP3A41. In contrast to CYP3A11, CYP3A41 expression is not induced by pregnenolone-16alpha-carbonitrile (PCN) in wild-type mice, but is significantly suppressed by PCN in PXR(-/-) mice. Phenobarbital and TCPOBOP induce CYP3A11 expression only in the presence of CAR, but have no effect on CYP3A41 expression. Immunoblot and erythromycin demethylase activity analysis reveal robust CYP3A induction after PCN treatment, which is poorly correlated to CYP3A41. These findings suggest a differential role for CAR/PXR in regulating individual CYP3A isoforms by previously characterized CYP3A inducers.

  15. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    International Nuclear Information System (INIS)

    Al-Salman, Fadheela; Plant, Nick

    2012-01-01

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  16. Challenges predicting ligand-receptor interactions of promiscuous proteins: the nuclear receptor PXR.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    2009-12-01

    Full Text Available Transcriptional regulation of some genes involved in xenobiotic detoxification and apoptosis is performed via the human pregnane X receptor (PXR which in turn is activated by structurally diverse agonists including steroid hormones. Activation of PXR has the potential to initiate adverse effects, altering drug pharmacokinetics or perturbing physiological processes. Reliable computational prediction of PXR agonists would be valuable for pharmaceutical and toxicological research. There has been limited success with structure-based modeling approaches to predict human PXR activators. Slightly better success has been achieved with ligand-based modeling methods including quantitative structure-activity relationship (QSAR analysis, pharmacophore modeling and machine learning. In this study, we present a comprehensive analysis focused on prediction of 115 steroids for ligand binding activity towards human PXR. Six crystal structures were used as templates for docking and ligand-based modeling approaches (two-, three-, four- and five-dimensional analyses. The best success at external prediction was achieved with 5D-QSAR. Bayesian models with FCFP_6 descriptors were validated after leaving a large percentage of the dataset out and using an external test set. Docking of ligands to the PXR structure co-crystallized with hyperforin had the best statistics for this method. Sulfated steroids (which are activators were consistently predicted as non-activators while, poorly predicted steroids were docked in a reverse mode compared to 5alpha-androstan-3beta-ol. Modeling of human PXR represents a complex challenge by virtue of the large, flexible ligand-binding cavity. This study emphasizes this aspect, illustrating modest success using the largest quantitative data set to date and multiple modeling approaches.

  17. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors.

    Science.gov (United States)

    Luisier, Raphaëlle; Lempiäinen, Harri; Scherbichler, Nina; Braeuning, Albert; Geissler, Miriam; Dubost, Valerie; Müller, Arne; Scheer, Nico; Chibout, Salah-Dine; Hara, Hisanori; Picard, Frank; Theil, Diethilde; Couttet, Philippe; Vitobello, Antonio; Grenet, Olivier; Grasl-Kraupp, Bettina; Ellinger-Ziegelbauer, Heidrun; Thomson, John P; Meehan, Richard R; Elcombe, Clifford R; Henderson, Colin J; Wolf, C Roland; Schwarz, Michael; Moulin, Pierre; Terranova, Rémi; Moggs, Jonathan G

    2014-06-01

    The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.

  18. PXR and CAR single nucleotide polymorphisms influence plasma efavirenz levels in South African HIV/AIDS patients

    Directory of Open Access Journals (Sweden)

    Swart Marelize

    2012-11-01

    Full Text Available Abstract Background This study investigated variation in NR1I2 and NR1I3 and its effect on plasma efavirenz levels in HIV/AIDS patients. Variability in plasma drug levels has largely led research on identifying causative variants in drug metabolising enzyme (DME genes, with little focus on the nuclear receptor genes NR1I2 and NR1I3, coding for PXR and CAR, respectively, that are involved in regulating DMEs. Methods 464 Bantu-speaking South Africans comprising of HIV/AIDS patients on efavirenz-based treatment (n=301 and 163 healthy subjects were genotyped for 6 SNPs in NR1I2 and NR1I3. 32 of the 301 patients had their DNA binding domains (DBDs in NR1I2 and NR1I3 sequenced. Results Significantly decreased efavirenz plasma concentrations were observed in patients carrying the NR1I3 rs3003596C/C and T/C genotypes (P=0.015 and P=0.010, respectively. Sequencing resulted in the discovery of a further 13 SNPs, 3 of which are novel variants in the DBD of NR1I2. There were significant differences in the distribution of NR1I2 and NR1I3 SNPs between South Africans when compared to Caucasian, Asian and Yoruba population groups. Conclusion For the realisation of personalised medicine, PXR and CAR genetic variation should be taken into consideration because of their involvement in the regulation of DMEs.

  19. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  20. CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor.

    Science.gov (United States)

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-05-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    Energy Technology Data Exchange (ETDEWEB)

    Lille-Langøy, Roger, E-mail: Roger.lille-langoy@bio.uib.no [University of Bergen, Department of Biology, P.O. Box 7803, N-5020 Bergen (Norway); Goldstone, Jared V. [Woods Hole Oceanographic Institution, 266 Woods Hole Road, 02543-1050 Woods Hole, MA (United States); Rusten, Marte [University of Bergen, Department of Molecular Biology, P.O. Box 7803, N-5020 Bergen (Norway); Milnes, Matthew R. [Mars Hill University, 100 Athletic Street, Box 6671, Mars Hill, 28754 NC (United States); Male, Rune [University of Bergen, Department of Molecular Biology, P.O. Box 7803, N-5020 Bergen (Norway); Stegeman, John J. [Woods Hole Oceanographic Institution, 266 Woods Hole Road, 02543-1050 Woods Hole, MA (United States); Blumberg, Bruce [University of California, Irvine, 92697 CA (United States); Goksøyr, Anders [University of Bergen, Department of Biology, P.O. Box 7803, N-5020 Bergen (Norway)

    2015-04-01

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears.

  2. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    International Nuclear Information System (INIS)

    Lille-Langøy, Roger; Goldstone, Jared V.; Rusten, Marte; Milnes, Matthew R.; Male, Rune; Stegeman, John J.; Blumberg, Bruce; Goksøyr, Anders

    2015-01-01

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears

  3. Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 (Brazil); Kubota, Akira; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Lille-Langøy, Roger [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Karchner, Sibel I. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Celander, Malin C. [Department of Biological and Environmental Sciences, University of Gothenburg, SE 405 30 Göteborg (Sweden); Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Goksøyr, Anders [Department of Biology, University of Bergen, N-5020 Bergen (Norway); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-15

    Highlights: •Full-length pxr has been cloned from zebrafish. •Alleles of pxr were identified in zebrafish. •Full length Pxr was activated less strongly than ligand binding domain in cell-based reporter assays. •High levels of pxr expression were found in eye and brain as well as in liver. •TCPOBOP and PB did not significantly alter expression of pxr in liver. -- Abstract: The pregnane X receptor (PXR) (nuclear receptor NR1I2) is a ligand activated transcription factor, mediating responses to diverse xenobiotic and endogenous chemicals. The properties of PXR in fish are not fully understood. Here we report on cloning and characterization of full-length PXR of zebrafish, Danio rerio, and pxr expression in vivo. Initial efforts gave a cDNA encoding a 430 amino acid protein identified as zebrafish pxr by phylogenetic and synteny analysis. The sequence of the cloned Pxr DNA binding domain (DBD) was highly conserved, with 74% identity to human PXR-DBD, while the ligand-binding domain (LBD) of the cloned sequence was only 44% identical to human PXR-LBD. Sequence variation among clones in the initial effort prompted sequencing of multiple clones from a single fish. There were two prominent variants, one sequence with S183, Y218 and H383 and the other with I183, C218 and N383, which we designate as alleles pxr*1 (nr1i2*1) and pxr*2 (nr1i2*2), respectively. In COS-7 cells co-transfected with a PXR-responsive reporter gene, the full-length Pxr*1 (the more common variant) was activated by known PXR agonists clotrimazole and pregnenolone 16α-carbonitrile but to a lesser extent than the full-length human PXR. Activation of full-length Pxr*1 was only 10% of that with the Pxr*1 LBD. Quantitative real time PCR analysis showed prominent expression of pxr in liver and eye, as well as brain and intestine of adult zebrafish. The pxr was expressed in heart and kidney at levels similar to that in intestine. The expression of pxr in liver was weakly induced by ligands for

  4. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    International Nuclear Information System (INIS)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K.; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G.

    2004-01-01

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  5. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators.

    Science.gov (United States)

    Lamba, Vishal; Yasuda, Kazuto; Lamba, Jatinder K; Assem, Mahfoud; Davila, Julio; Strom, Stephen; Schuetz, Erin G

    2004-09-15

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues.

  6. Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis.

    Science.gov (United States)

    Wahlang, Banrida; Prough, Russell A; Falkner, K Cameron; Hardesty, Josiah E; Song, Ming; Clair, Heather B; Clark, Barbara J; States, J Christopher; Arteel, Gavin E; Cave, Matthew C

    2016-02-01

    Polychlorinated biphenyls (PCBs) are environmental pollutants associated with non-alcoholic-steatohepatitis (NASH), diabetes, and obesity. We previously demonstrated that the PCB mixture, Aroclor 1260, induced steatohepatitis and activated nuclear receptors in a diet-induced obesity mouse model. This study aims to evaluate PCB interactions with the pregnane-xenobiotic receptor (Pxr: Nr1i2) and constitutive androstane receptor (Car: Nr1i3) in NASH. Wild type C57Bl/6 (WT), Pxr(-/-) and Car(-/-) mice were fed the high fat diet (42% milk fat) and exposed to a single dose of Aroclor 1260 (20 mg/kg) in this 12-week study. Metabolic phenotyping and analysis of serum, liver, and adipose was performed. Steatohepatitis was pathologically similar in all Aroclor-exposed groups, while Pxr(-/-) mice displayed higher basal pro-inflammatory cytokine levels. Pxr repressed Car expression as evident by increased basal Car/Cyp2b10 expression in Pxr(-/-) mice. Both Pxr(-/-) and Car(-/-) mice showed decreased basal respiratory exchange rate (RER) consistent with preferential lipid metabolism. Aroclor increased RER and carbohydrate metabolism, associated with increased light cycle activity in both knockouts, and decreased food consumption in the Car(-/-) mice. Aroclor exposure improved insulin sensitivity in WT mice but not glucose tolerance. The Aroclor-exposed, Pxr(-/-) mice displayed increased gluconeogenic gene expression. Lipid-oxidative gene expression was higher in WT and Pxr(-/-) mice although RER was not changed, suggesting PCB-mediated mitochondrial dysfunction. Therefore, Pxr and Car regulated inflammation, behavior, and energy metabolism in PCB-mediated NASH. Future studies should address the 'off-target' effects of PCBs in steatohepatitis. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  7. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently.

    Science.gov (United States)

    Lille-Langøy, Roger; Goldstone, Jared V; Rusten, Marte; Milnes, Matthew R; Male, Rune; Stegeman, John J; Blumberg, Bruce; Goksøyr, Anders

    2015-04-01

    Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. Copyright © 2015. Published by Elsevier Inc.

  8. Effects of atorvastatin metabolites on induction of drug-metabolizing enzymes and membrane transporters through human pregnane X receptor

    Science.gov (United States)

    Hoffart, E; Ghebreghiorghis, L; Nussler, AK; Thasler, WE; Weiss, TS; Schwab, M; Burk, O

    2012-01-01

    BACKGROUND AND PURPOSE Atorvastatin metabolites differ in their potential for drug interaction because of differential inhibition of drug-metabolizing enzymes and transporters. We here investigate whether they exert differential effects on the induction of these genes via activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR). EXPERIMENTAL APPROACH Ligand binding to PXR or CAR was analysed by mammalian two-hybrid assembly and promoter/reporter gene assays. Additionally, surface plasmon resonance was used to analyse ligand binding to CAR. Primary human hepatocytes were treated with atorvastatin metabolites, and mRNA and protein expression of PXR-regulated genes was measured. Two-hybrid co-activator interaction and co-repressor release assays were utilized to elucidate the molecular mechanism of PXR activation. KEY RESULTS All atorvastatin metabolites induced the assembly of PXR and activated CYP3A4 promoter activity. Ligand binding to CAR could not be proven. In primary human hepatocytes, the para-hydroxy metabolite markedly reduced or abolished induction of cytochrome P450 and transporter genes. While significant differences in co-activator recruitment were not observed, para-hydroxy atorvastatin demonstrated only 50% release of co-repressors. CONCLUSIONS AND IMPLICATIONS Atorvastatin metabolites are ligands of PXR but not of CAR. Atorvastatin metabolites demonstrate differential induction of PXR target genes, which results from impaired release of co-repressors. Consequently, the properties of drug metabolites have to be taken into account when analysing PXR-dependent induction of drug metabolism and transport. The drug interaction potential of the active metabolite, para-hydroxy atorvastatin, might be lower than that of the parent compound. PMID:21913896

  9. QSAR model for human pregnane X receptor (PXR) binding: Screening of environmental chemicals and correlations with genotoxicity, endocrine disruption and teratogenicity

    DEFF Research Database (Denmark)

    Dybdahl, Marianne; Nikolov, Nikolai G.; Wedebye, Eva Bay

    2012-01-01

    The pregnane X receptor (PXR) has a key role in regulating the metabolism and transport of structurally diverse endogenous and exogenous compounds. Activation of PXR has the potential to initiate adverse effects, causing drug–drug interactions, and perturbing normal physiological functions...

  10. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    Science.gov (United States)

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  11. Affinity purification using recombinant PXR as a tool to characterize environmental ligands.

    Science.gov (United States)

    Dagnino, Sonia; Bellet, Virginie; Grimaldi, Marina; Riu, Anne; Aït-Aïssa, Sélim; Cavaillès, Vincent; Fenet, Hélène; Balaguer, Patrick

    2014-02-01

    Many environmental endocrine disrupting compounds act as ligands for nuclear receptors. The human pregnane X receptor (hPXR), for instance, is activated by a variety of environmental ligands such as steroids, pharmaceutical drugs, pesticides, alkylphenols, polychlorinated biphenyls and polybromo diethylethers. Some of us have previously reported the occurrence of hPXR ligands in environmental samples but failed to identify them. The aim of this study was to test whether a PXR-affinity column, in which recombinant hPXR was immobilized on solid support, could help the purification of these chemicals. Using PXR ligands of different affinity (10 nM < EC50 < 10 μM), we demonstrated that the PXR-affinity preferentially column captured ligands with medium to high affinities (EC50 < 1 μM). Furthermore, by using the PXR-affinity column to analyze an environmental sample containing ERα, AhR, AR, and PXR activities, we show that (i) half of the PXR activity of the sample was due to compounds with medium to high affinity for PXR and (ii) PXR shared ligands with ERα, AR, and AhR. These findings demonstrate that the newly developed PXR-affinity column coupled to reporter cell lines represents a valuable tool for the characterization of the nature of PXR active compounds and should therefore guide and facilitate their further analysis. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  12. Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: Evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Kakehashi, Anna, E-mail: anna@med.osaka-cu.ac.jp [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Hagiwara, Akihiro; Imai, Norio [DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113 (Japan); Nagano, Kasuke [Nagano Toxicologic-Pathology Consulting, Ochiai, Hadano, Kanagawa 257-0025 (Japan); Nishimaki, Fukumi [Biofuel Assessment Group, New Fuels Dept., Japan Petroleum Energy Center (JPEC), 4-3-9 Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Banton, Marcy [Toxicology and Risk Assessment, LyondellBasell Industries, LyondellBasell Corporate HSE/Product Safety, One Houston Center, Suite 700, 1221 McKinney Street, Houston, TX 770 10 (United States); Wei, Min [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Fukushima, Shoji [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Japan Bioassay Research Center, Japan Industrial Safety and Health Association, 2445 Hirasawa, Hadano, Kanagawa 257-0011 (Japan); Wanibuchi, Hideki [Department of Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2013-12-01

    To elucidate possible mode of action (MOA) and human relevance of hepatotumorigenicity in rats for ethyl tertiary-butyl ether (ETBE), male F344 rats were administered ETBE at doses of 0, 150 and 1000 mg/kg body weight twice a day by gavage for 1 and 2 weeks. For comparison, non-genotoxic carcinogen phenobarbital (PB) was applied at a dose of 500 ppm in diet. Significant increase of P450 total content and hydroxyl radical levels by low, high doses of ETBE and PB treatments at weeks 1 and 2, and 8-OHdG formation at week 2, accompanied accumulation of CYP2B1/2B2, CYP3A1/3A2 and CYP2C6, and downregulation of DNA oxoguanine glycosylase 1, induction of apoptosis and cell cycle arrest in hepatocytes, respectively. Up-regulation of CYP2E1 and CYP1A1 at weeks 1 and 2, and peroxisome proliferation at week 2 were found in high dose ETBE group. Results of proteome analysis predicted activation of upstream regulators of gene expression altered by ETBE including constitutive androstane receptor (CAR), pregnane-X-receptor (PXR) and peroxisome proliferator-activated receptors (PPARs). These results indicate that the MOA of ETBE hepatotumorigenicity in rats may be related to induction of oxidative stress, 8-OHdG formation, subsequent cell cycle arrest, and apoptosis, suggesting regenerative cell proliferation after week 2, predominantly via activation of CAR and PXR nuclear receptors by a mechanism similar to that of PB, and differentially by activation of PPARs. The MOA for ETBE hepatotumorigenicity in rats is unlikely to be relevant to humans. - Highlights: • We focus on MOA and human relevance of hepatotumorigenicity in rats for ETBE. • ETBE was administered to F344 rats for 1 and 2 weeks. • Oxidative stress formation, proliferation and apoptosis in the liver are analyzed. • ETBE-induced changes of gene and protein expression in the liver are examined. • The effects are compared with those induced by non-genotoxic carcinogen PB.

  13. A Concentration Addition Model to Assess Activation of the Pregnane X Receptor (PXR) by Pesticide Mixtures Found in the French Diet

    OpenAIRE

    de Sousa, Georges; Nawaz, Ahmad; Cravedi, Jean-Pierre; Rahmani, Roger

    2014-01-01

    French consumers are exposed to mixtures of pesticide residues in part through food consumption. As a xenosensor, the pregnane X receptor (hPXR) is activated by numerous pesticides, the combined effect of which is currently unknown. We examined the activation of hPXR by seven pesticide mixtures most likely found in the French diet and their individual components. The mixture's effect was estimated using the concentration addition (CA) model. PXR transactivation was measured by monitoring luci...

  14. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor

    International Nuclear Information System (INIS)

    Casabar, Richard C.T.; Das, Parikshit C.; DeKrey, Gregory K.; Gardiner, Catherine S.; Cao Yan; Rose, Randy L.; Wallace, Andrew D.

    2010-01-01

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 μM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 μM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 μM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 μM and 10 μM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5 mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates.

  15. Endosulfan induces CYP2B6 and CYP3A4 by activating the pregnane X receptor.

    Science.gov (United States)

    Casabar, Richard C T; Das, Parikshit C; Dekrey, Gregory K; Gardiner, Catherine S; Cao, Yan; Rose, Randy L; Wallace, Andrew D

    2010-06-15

    Endosulfan is an organochlorine pesticide commonly used in agriculture. Endosulfan has affects on vertebrate xenobiotic metabolism pathways that may be mediated, in part, by its ability to activate the pregnane X receptor (PXR) and/or the constitutive androstane receptor (CAR) which can elevate expression of cytochrome P450 (CYP) enzymes. This study examined the dose-dependency and receptor specificity of CYP induction in vitro and in vivo. The HepG2 cell line was transiently transfected with CYP2B6- and CYP3A4-luciferase promoter reporter plasmids along with human PXR (hPXR) or hCAR expression vectors. In the presence of hPXR, endosulfan-alpha exposure caused significant induction of CYP2B6 (16-fold) and CYP3A4 (11-fold) promoter activities over control at 10 microM. The metabolite endosulfan sulfate also induced CYP2B6 (12-fold) and CYP3A4 (6-fold) promoter activities over control at 10 microM. In the presence of hCAR-3, endosulfan-alpha induced CYP2B6 (2-fold) promoter activity at 10 microM, but not at lower concentrations. These data indicate that endosulfan-alpha significantly activates hPXR strongly and hCAR weakly. Using western blot analysis of human hepatocytes, the lowest concentrations at which CYP2B6 and CYP3A4 protein levels were found to be significantly elevated by endosulfan-alpha were 1.0 microM and 10 microM, respectively. In mPXR-null/hPXR-transgenic mice, endosulfan-alpha exposure (2.5mg/kg/day) caused a significant reduction of tribromoethanol-induced sleep times by approximately 50%, whereas no significant change in sleep times was observed in PXR-null mice. These data support the role of endosulfan-alpha as a strong activator of PXR and inducer of CYP2B6 and CYP3A4, which may impact metabolism of CYP2B6 or CYP3A4 substrates. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    Science.gov (United States)

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    OpenAIRE

    Cherian, Milu T; Lin, Wenwei; Wu, Jing; Chen, Taosheng

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug ...

  18. CINPA1 binds directly to constitutive androstane receptor and inhibits its activity.

    Science.gov (United States)

    Cherian, Milu T; Chai, Sergio C; Wright, William C; Singh, Aman; Alexandra Casal, Morgan; Zheng, Jie; Wu, Jing; Lee, Richard E; Griffin, Patrick R; Chen, Taosheng

    2018-03-31

    The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that regulate the expression of drug-metabolizing enzymes and efflux transporters. CAR activation promotes drug elimination, thereby reducing therapeutic effectiveness, or causes adverse drug effects via toxic metabolites. CAR inhibitors could be used to attenuate these adverse drug effects. CAR and PXR share ligands and target genes, confounding the understanding of the regulation of receptor-specific activity. We previously identified a small-molecule inhibitor, CINPA1, that inhibits CAR (without activating PXR at lower concentrations) by altering CAR-coregulator interactions and reducing CAR recruitment to DNA response elements of regulated genes. However, solid evidence was not presented for the direct binding of CINPA1 to CAR. In this study, we demonstrate direct interaction of CINPA1 with the CAR ligand-binding domain (CAR-LBD) and identify key residues involved in such interactions through a combination of biophysical and computational methods. We found that CINPA1 resides in the ligand-binding pocket to stabilize the CAR-LBD in a more rigid, less fluid state. Molecular dynamics simulations, together with our previously reported docking model, enabled us to predict which CAR residues were critical for interactions with CINPA1. The importance of these residues for CINPA1 binding were then validated by directed mutations and testing the mutant CAR proteins in transcription reporter and coregulatory interaction assays. We demonstrated strong hydrogen bonding of CINPA1 with N165 and H203 and identified other residues involved in hydrophobic contacts with CINPA1. Overall, our data confirm that CINPA1 directly binds to CAR. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Acetylated deoxycholic (DCA) and cholic (CA) acids are potent ligands of pregnane X (PXR) receptor

    Czech Academy of Sciences Publication Activity Database

    Carazo, A.; Hyršová, L.; Dušek, J.; Chodounská, Hana; Horvátová, A.; Berka, K.; Bazgier, V.; Gan-Schreier, H.; Chamulitrat, W.; Kudová, Eva; Pávek, P.

    2017-01-01

    Roč. 265, Jan 4 (2017), s. 86-96 ISSN 0378-4274 R&D Projects: GA TA ČR(CZ) TE01020028 Institutional support: RVO:61388963 Keywords : PXR * metabolism * bile acids * nuclear receptors * FXR Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.858, year: 2016

  20. A Concentration Addition Model to Assess Activation of the Pregnane X Receptor (PXR) by Pesticide Mixtures Found in the French Diet

    Science.gov (United States)

    de Sousa, Georges; Nawaz, Ahmad; Cravedi, Jean-Pierre; Rahmani, Roger

    2014-01-01

    French consumers are exposed to mixtures of pesticide residues in part through food consumption. As a xenosensor, the pregnane X receptor (hPXR) is activated by numerous pesticides, the combined effect of which is currently unknown. We examined the activation of hPXR by seven pesticide mixtures most likely found in the French diet and their individual components. The mixture's effect was estimated using the concentration addition (CA) model. PXR transactivation was measured by monitoring luciferase activity in hPXR/HepG2 cells and CYP3A4 expression in human hepatocytes. The three mixtures with the highest potency were evaluated using the CA model, at equimolar concentrations and at their relative proportion in the diet. The seven mixtures significantly activated hPXR and induced the expression of CYP3A4 in human hepatocytes. Of the 14 pesticides which constitute the three most active mixtures, four were found to be strong hPXR agonists, four medium, and six weak. Depending on the mixture and pesticide proportions, additive, greater than additive or less than additive effects between compounds were demonstrated. Predictions of the combined effects were obtained with both real-life and equimolar proportions at low concentrations. Pesticides act mostly additively to activate hPXR, when present in a mixture. Modulation of hPXR activation and its target genes induction may represent a risk factor contributing to exacerbate the physiological response of the hPXR signaling pathways and to explain some adverse effects in humans. PMID:25028461

  1. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor

    OpenAIRE

    Lin, Wenwei; Yang, Lei; Chai, Sergio C.; Lu, Yan; Chen, Taosheng

    2015-01-01

    Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a ti...

  2. PXR as a mediator of herb–drug interaction

    Directory of Open Access Journals (Sweden)

    Brett C. Hogle

    2018-04-01

    Full Text Available Medicinal herbs have been a part of human medicine for thousands of years. The herb–drug interaction is an extension of drug–drug interaction, in which the consumptions of herbs cause alterations in the metabolism of drugs the patients happen to take at the same time. The pregnane X receptor (PXR has been established as one of the most important transcriptional factors that regulate the expression of phase I enzymes, phase II enzymes, and drug transporters in the xenobiotic responses. Since its initial discovery, PXR has been implicated in multiple herb–drug interactions that can lead to alterations of the drug's pharmacokinetic properties and cause fluctuating therapeutic efficacies, possibly leading to complications. Regions of the world that heavily incorporate herbalism into their primary health care and people turning to alternative medicines as a personal choice could be at risk for adverse reactions or unintended results from these interactions. This article is intended to highlight our understanding of the PXR-mediated herb–drug interactions. Keywords: Drug metabolism, Herb–drug interaction, PXR, St. John's Wort, Xenobiotics

  3. Screening for polymorphisms in the PXR gene in a Dutch population.

    Science.gov (United States)

    Bosch, Tessa M; Deenen, Maarten; Pruntel, Roelof; Smits, Paul H M; Schellens, Jan H M; Beijnen, Jos H; Meijerman, Irma

    2006-05-01

    Cytochrome P450 3A4 (CYP3A4) is involved in the metabolism of over 50% of all drugs currently in use. However, CYP3A4 expression shows a large inter-individual variation that cannot only be explained by genetic polymorphisms identified in this gene. The pregnane X receptor (PXR) has been identified as a transcriptional regulator of CYP3A4. Single nucleotide polymorphisms (SNPs) in the PXR gene could influence PXR activity and thereby CYP3A4 expression. This study was therefore aimed at determining the frequencies of known SNPs and detecting yet unknown SNPs in the PXR gene in a Dutch population. Genomic DNA was isolated from blood samples obtained from 100 healthy volunteers and subjected to PCR amplification, followed by DNA sequencing. The population, of which the ethnicity was 93% Caucasian, consisted of 79 female individuals and 21 males. A total of 24 SNPs were found in the PXR gene, eight of which are previously unknown. The allelic frequencies found in this population varied from 0.5 to 73%. Most of the previously detected SNPs were located in introns. One new SNP, T8555G in exon 8, causes an amino acid change of C379G and is located in the Ligand Binding Domain of PXR. Several SNPs were detected in the PXR gene, one of which is located in the ligand binding domain (LBD). These SNPs may influence PXR-mediated CYP3A4 induction.

  4. PXR agonism decreases plasma HDL levels in ApoE*3-Leiden.CETP mice

    NARCIS (Netherlands)

    Haan, W. de; Vries-van der Weij, J. de; Mol, I.M.; Hoekstra, M.; Romijn, J.A.; Jukema, J.W.; Havekes, L.M.; Princen, H.M.G.; Rensen, P.C.N.

    2009-01-01

    Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis and catabolism of HDL, but its integrated effect on HDL metabolism in vivo remains unclear. The aim of this study was to evaluate the net effect of PXR agonism on HDL metabolism in ApoE*3-Leiden (E3L) and

  5. Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, Nicolas; Kinani, Said; Maillot-Marechal, Emmanuelle; Porcher, Jean-Marc; Ait-Aissa, Selim [Unite Ecotoxicologie, INERIS, Verneuil-en-Halatte (France); Balaguer, Patrick [IRCM-UM1-CRLC Val d' Aurelle, INSERM U896, Montpellier (France); Tapie, Nathalie; LeMenach, Karyn; Budzinski, Helene [ISM/LPTC-UMR 5255 CNRS Universite Bordeaux 1, Talence (France)

    2010-01-15

    Many environmental endocrine-disrupting compounds act as ligands for nuclear receptors. Among these receptors, the human pregnane X receptor (hPXR) is well described as a xenobiotic sensor to various classes of chemicals, including pharmaceuticals, pesticides, and steroids. To assess the potential use of PXR as a sensor for aquatic emerging pollutants, we employed an in vitro reporter gene assay (HG5LN-hPXR cells) to screen a panel of environmental chemicals and to assess PXR-active chemicals in (waste) water samples. Of the 57 compounds tested, 37 were active in the bioassay and 10 were identified as new PXR agonists: triazin pesticides (promethryn, terbuthryn, terbutylazine), pharmaceuticals (fenofibrate, bezafibrate, clonazepam, medazepam) and non co-planar polychlorobiphenyls (PCBs; PCB101, 138, 180). Furthermore, we detected potent PXR activity in two types of water samples: passive polar organic compounds integrative sampler (POCIS) extracts from a river moderately impacted by agricultural and urban inputs and three effluents from sewage treatment works (STW). Fractionation of POCIS samples showed the highest PXR activity in the less polar fraction, while in the effluents, PXR activity was mainly associated with the dissolved water phase. Chemical analyses quantified several PXR-active substances (i.e., alkylphenols, hormones, pharmaceuticals, pesticides, PCBs, bisphenol A) in POCIS fractions and effluent extracts. However, mass-balance calculations showed that the analyzed compounds explained only 0.03% and 1.4% of biological activity measured in POCIS and STW samples, respectively. In effluents, bisphenol A and 4-tert-octylphenol were identified as main contributors of instrumentally derived PXR activities. Finally, the PXR bioassay provided complementary information as compared to estrogenic, androgenic, and dioxin-like activity measured in these samples. This study shows the usefulness of HG5LN-hPXR cells to detect PXR-active compounds in water samples

  6. PXR as a mediator of herb-drug interaction.

    Science.gov (United States)

    Hogle, Brett C; Guan, Xiudong; Folan, M Maggie; Xie, Wen

    2018-04-01

    Medicinal herbs have been a part of human medicine for thousands of years. The herb-drug interaction is an extension of drug-drug interaction, in which the consumptions of herbs cause alterations in the metabolism of drugs the patients happen to take at the same time. The pregnane X receptor (PXR) has been established as one of the most important transcriptional factors that regulate the expression of phase I enzymes, phase II enzymes, and drug transporters in the xenobiotic responses. Since its initial discovery, PXR has been implicated in multiple herb-drug interactions that can lead to alterations of the drug's pharmacokinetic properties and cause fluctuating therapeutic efficacies, possibly leading to complications. Regions of the world that heavily incorporate herbalism into their primary health care and people turning to alternative medicines as a personal choice could be at risk for adverse reactions or unintended results from these interactions. This article is intended to highlight our understanding of the PXR-mediated herb-drug interactions. Copyright © 2017. Published by Elsevier B.V.

  7. PPARα gene expression is up-regulated by LXR and PXR activators in the small intestine

    International Nuclear Information System (INIS)

    Inoue, Jun; Satoh, Shin-ichi; Kita, Mariko; Nakahara, Mayuko; Hachimura, Satoshi; Miyata, Masaaki; Nishimaki-Mogami, Tomoko; Sato, Ryuichiro

    2008-01-01

    LXR, PXR, and PPARα are members of a nuclear receptor family which regulate the expression of genes involved in lipid metabolism. Here, we show the administration of T0901317 stimulates PPARα gene expression in the small intestine but not in the liver of both normal and FXR-null mice. The administration of LXR specific ligand GW3965, or PXR specific ligand PCN has the same effect, indicating that ligand-dependent activation of LXR and PXR, but not FXR, is responsible for the increased gene expression of PPARα in the mouse small intestine

  8. Activation of human stearoyl-coenzyme A desaturase 1 contributes to the lipogenic effect of PXR in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available The pregnane X receptor (PXR was previously known as a xenobiotic receptor. Several recent studies suggested that PXR also played an important role in lipid homeostasis but the underlying mechanism remains to be clearly defined. In this study, we found that rifampicin, an agonist of human PXR, induced lipid accumulation in HepG2 cells. Lipid analysis showed the total cholesterol level increased. However, the free cholesterol and triglyceride levels were not changed. Treatment of HepG2 cells with rifampicin induced the expression of the free fatty acid transporter CD36 and ABCG1, as well as several lipogenic enzymes, including stearoyl-CoA desaturase-1 (SCD1, long chain free fatty acid elongase (FAE, and lecithin-cholesterol acyltransferase (LCAT, while the expression of acyl:cholesterol acetyltransferase(ACAT1 was not affected. Moreover, in PXR over-expressing HepG2 cells (HepG2-PXR, the SCD1 expression was significantly higher than in HepG2-Vector cells, even in the absence of rifampicin. Down-regulation of PXR by shRNA abolished the rifampicin-induced SCD1 gene expression in HepG2 cells. Promoter analysis showed that the human SCD1 gene promoter is activated by PXR and a novel DR-7 type PXR response element (PXRE response element was located at -338 bp of the SCD1 gene promoter. Taken together, these results indicated that PXR activation promoted lipid synthesis in HepG2 cells and SCD1 is a novel PXR target gene.

  9. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    International Nuclear Information System (INIS)

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [ 14 C]CD or [ 14 C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0-50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice

  10. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    International Nuclear Information System (INIS)

    Hurst, Christopher H.; Waxman, David J.

    2004-01-01

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC 50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  11. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Böttcher, Kerstin; Chaudhry, Amarjit; Kroemer, Heyo K; Schuetz, Erin G; Kim, Richard B

    2010-11-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is a liver-enriched transporter involved in the hepatocellular uptake of many endogenous molecules and several structurally divergent drugs in clinical use. Although OATP1B1 coding region polymorphisms are known to make an impact on substrate drug disposition in humans, little is known regarding the mechanisms underlying the transcriptional regulation of this transporter. In this study, we note that messenger RNA (mRNA) expression of OATP1B1 in a large human liver bank exhibited marked interindividual variability that was not associated with coding region polymorphisms. Accordingly, we hypothesized that such variability in expression is reflective of nuclear receptor-mediated transcriptional regulation of this transporter. We tested prototypical ligands for the nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), liver X receptor (LXR) α, and farnesoid X receptor (FXR) in a human hepatoma-derived cell line and noted induction of OATP1B1 mRNA when the cells were treated with LXRα or FXR ligands. To confirm a direct role for LXRα and FXR to OATP1B1 expression, we performed detailed promoter analysis and cell-based reporter gene assays resulting in the identification of two functional FXR response elements and one LXRα response element. The direct interaction between nuclear receptors with the identified response elements was assessed using chromatin immunoprecipitation assays. Using isolated primary human hepatocytes, we show that LXRα or FXR agonists, but not PXR or CAR agonists, are capable of OATP1B1 induction. We note that OATP1B1 transcriptional regulation is under dual nuclear receptor control through the oxysterol sensing LXRα and the bile acid sensor FXR. Accordingly, the interplay between OATP1B1 and nuclear receptors may play an important and heretofore unrecognized role during cholestasis, drug-induced liver injury, and OATP1B1 induction-related drug interactions.

  12. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    International Nuclear Information System (INIS)

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-01-01

    Research highlights: → Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. → PXR undergoes dynamic deacetylation upon ligand-mediated activation. → SIRT1 partially mediates PXR deacetylation. → PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  13. Atropisomers of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro.

    Science.gov (United States)

    Pěnčíková, Kateřina; Brenerová, Petra; Svržková, Lucie; Hrubá, Eva; Pálková, Lenka; Vondráček, Jan; Lehmler, Hans-Joachim; Machala, Miroslav

    2017-11-09

    PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.

  14. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    International Nuclear Information System (INIS)

    Karimullina, Elina; Li Yangchun; Ginjupalli, Gautam K.; Baldwin, William S.

    2012-01-01

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  15. Daphnia HR96 is a promiscuous xenobiotic and endobiotic nuclear receptor

    Energy Technology Data Exchange (ETDEWEB)

    Karimullina, Elina [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ural Branch, Yekaterinburg 620144 (Russian Federation); Li Yangchun; Ginjupalli, Gautam K. [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Baldwin, William S., E-mail: baldwin@clemson.edu [Environmental Toxicology Program, Clemson University, Clemson, SC 29634 (United States); Biological Sciences, Clemson University, Clemson, SC (United States)

    2012-07-15

    Daphnia pulex is the first crustacean to have its genome sequenced. The genome project provides new insight and data into how an aquatic crustacean may respond to environmental stressors, including toxicants. We cloned Daphnia pulex HR96 (DappuHR96), a nuclear receptor orthologous to the CAR/PXR/VDR group of nuclear receptors. In Drosophila melanogaster, (hormone receptor 96) HR96 responds to phenobarbital exposure and has been hypothesized as a toxicant receptor. Therefore, we set up a transactivation assay to test whether DappuHR96 is a promiscuous receptor activated by xenobiotics and endobiotics similar to the constitutive androstane receptor (CAR) and the pregnane X-receptor (PXR). Transactivation assays performed with a GAL4-HR96 chimera demonstrate that HR96 is a promiscuous toxicant receptor activated by a diverse set of chemicals such as pesticides, hormones, and fatty acids. Several environmental toxicants activate HR96 including estradiol, pyriproxyfen, chlorpyrifos, atrazine, and methane arsonate. We also observed repression of HR96 activity by chemicals such as triclosan, androstanol, and fluoxetine. Nearly 50% of the chemicals tested activated or inhibited HR96. Interestingly, unsaturated fatty acids were common activators or inhibitors of HR96 activity, indicating a link between diet and toxicant response. The omega-6 and omega-9 unsaturated fatty acids linoleic and oleic acid activated HR96, but the omega-3 unsaturated fatty acids alpha-linolenic acid and docosahexaenoic acid inhibited HR96, suggesting that these two distinct sets of lipids perform opposing roles in Daphnia physiology. This also provides a putative mechanism by which the ratio of dietary unsaturated fats may affect the ability of an organism to respond to a toxic insult. In summary, HR96 is a promiscuous nuclear receptor activated by numerous endo- and xenobiotics.

  16. Foreign or Domestic CARs: Receptor Ligands as Antigen-Binding Domains

    Directory of Open Access Journals (Sweden)

    Donald R. Shaffer

    2014-01-01

    Full Text Available Chimeric antigen receptors (CARs are increasingly being used in clinical trials to treat a variety of malignant conditions and recent results with CD19-specific CARs showing complete tumor regressions has sparked the interest of researchers and the public alike. Traditional CARs have been generated using single-chain variable fragments (scFv, often derived from murine monoclonal antibodies, for antigen specificity. As the clinical experience with CAR T cells grows, so does the potential for unwanted immune responses against the foreign transgene. Strategies that may reduce the immunogenicity of CAR T cells are humanization of the scFv and the use of naturally occurring receptor ligands as antigen-binding domains. Herein, we review the experience with alternatively designed CARs that contain receptor ligands rather than scFv. While most of the experiences have been in the pre-clinical setting, clinical data is also emerging.

  17. Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes

    International Nuclear Information System (INIS)

    Smetanina, Mariya A.; Pakharukova, Mariya Y.; Kurinna, Svitlana M.; Dong, Bingning; Hernandez, Juan P.; Moore, David D.; Merkulova, Tatyana I.

    2011-01-01

    2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepatic mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car -/- ) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car -/- livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: → The azo dye and mouse carcinogen OAT is a very effective mCAR activator. → OAT increases mCAR transactivation in a dose-dependent manner. → OAT CAR-dependently increases the expression of a specific subset of CAR target genes. → OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.

  18. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  19. Nuclear receptors HR96 and ultraspiracle from the fall armyworm (Spodoptera frugiperda), developmental expression and induction by xenobiotics.

    Science.gov (United States)

    Giraudo, Maeva; Audant, Pascaline; Feyereisen, René; Le Goff, Gaëlle

    2013-05-01

    The fall armyworm Spodoptera frugiperda is a major polyphagous pest in agriculture and little is known on how this insect can adapt to the diverse and potentially toxic plant allelochemicals that they ingest or to insecticides. To investigate the involvement of nuclear receptors in the response of S. frugiperda to its chemical environment, we cloned SfHR96, a nuclear receptor orthologous to the mammalian xenobiotic receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). We also cloned ultraspiracle (USP), the ortholog of retinoid X receptor (RXR) that serves as partner of dimerization of PXR and CAR. Cloning of SfUSP revealed the presence of two isoforms, SfUSP-1 and SfUSP-2 in this species, that differ in their N-terminal region. The expression of these receptors as well as the ecdysone receptor was studied during specific steps of development in different tissues. SfHR96 was constitutively expressed in larval midgut, fat body and Malpighian tubules throughout the last two instars and pupal stage, as well as in Sf9 cells. EcR and SfUSP-2 showed peaks of expression before larval moults and during metamorphosis, whereas SfUSP-1 was mainly expressed in the pre-pupal stage. Receptor induction was followed after exposure of larvae or cells to 11 chemical compounds. SfHR96 was not inducible by the tested compounds. EcR was significantly induced by the 20-hydroxyecdysone agonist, methoxyfenozide, and SfUSP showed an increase expression when exposed to the juvenile hormone analog, methoprene. The cloning of these nuclear receptors is a first step in understanding the important capacities of adaptation of this insect pest. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Endocrine disruptors induce cytochrome P450 by affecting transcriptional regulation via pregnane X receptor

    International Nuclear Information System (INIS)

    Mikamo, Eriko; Harada, Shingo; Nishikawa, Jun-ichi; Nishihara, Tsutomu

    2003-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates the expression of genes for cytochrome P450 3A (CYP3A), multidrug resistance 1 (MDR1), and organic anion-transporting peptide 2 (OATP2). These genes control the metabolism (CYP3A subfamily) and aspects of the pharmacokinetics (MDR1 and OATP2) of both endogenous and xenobiotic compounds. Since PXR is important in understanding the actions of endocrine disruptors (EDs), we determined the ability of suspected EDs to interact with PXR. In our study, 7 of 54 xenobiotics compounds interacted with PXR, including methoxychlor and benzophenone. All of the chemicals activated PXR in vitro and induced CYP3A mRNA in the male rat liver. In addition, CYP2C11 was also induced by some PXR agonists and converted methoxychlor into xenoestrogen. These findings suggest that some EDs affect sex hormone receptor indirectly by induction of metabolic enzyme via PXR, to produce rapidly higher concentrations of effective metabolites, leading to disturbance of the endocrine system

  1. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes

    International Nuclear Information System (INIS)

    Andersen, Vibeke; Christensen, Jane; Overvad, Kim; Tjønneland, Anne; Vogel, Ulla

    2010-01-01

    Transcription factors and nuclear receptors constitute a link between exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from meat and tobacco smoke and colorectal cancer (CRC) risk. The aim of this study was to investigate if polymorphisms in nuclear factor kappa-B, pregnane X receptor, and liver X receptor were associated with risk of CRC, and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use. The polymorphisms nuclear factor kappa-B (NFkB, NFKB1) -94 insertion/deletion ATTG (rs28362491), pregnane X receptor (PXR, NR1I2) A-24381C (rs1523127), C8055T (rs2276707), A7635G (rs6785049), liver X receptor (LXR-β, NR1H3) C-rs1405655T, T-rs2695121C were assessed together with lifestyle factors in a nested case-cohort study of 378 CRC cases and 756 random participants from the Danish prospective Diet, Cancer and Health study of 57,053 persons. Carriers of NFkB -94deletion were at 1.45-fold higher risk of CRC than homozygous carriers of the insertion allele (incidence rate ratio (IRR) = 1.45, 95% confidence interval (95% CI): 1.10-1.92). There was interaction between this polymorphism and intake of red and processed meat in relation to CRC risk. Carriers of NFkB -94deletion were at 3% increased risk pr 25 gram meat per day (95% CI: 0.98-1.09) whereas homozygous carriers of the insertion were not at increased risk (p for interaction = 0.03). PXR and LXR polymorphisms were not associated with CRC risk. There was no interaction between use of nonsteroid antiinflammatory drugs (NSAID) or smoking status and NFkB, PXR or LXR polymorphisms. A polymorphism in NFkB was associated with CRC risk and there was interaction between this polymorphism and meat intake in relation to CRC risk. This study suggests a role for NFkB in CRC aetiology

  2. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes

    Directory of Open Access Journals (Sweden)

    Andersen Vibeke

    2010-09-01

    Full Text Available Abstract Background Transcription factors and nuclear receptors constitute a link between exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from meat and tobacco smoke and colorectal cancer (CRC risk. The aim of this study was to investigate if polymorphisms in nuclear factor kappa-B, pregnane X receptor, and liver X receptor were associated with risk of CRC, and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use. Methods The polymorphisms nuclear factor kappa-B (NFkB, NFKB1 -94 insertion/deletion ATTG (rs28362491, pregnane X receptor (PXR, NR1I2 A-24381C (rs1523127, C8055T (rs2276707, A7635G (rs6785049, liver X receptor (LXR-β, NR1H3 C-rs1405655T, T-rs2695121C were assessed together with lifestyle factors in a nested case-cohort study of 378 CRC cases and 756 random participants from the Danish prospective Diet, Cancer and Health study of 57,053 persons. Results Carriers of NFkB -94deletion were at 1.45-fold higher risk of CRC than homozygous carriers of the insertion allele (incidence rate ratio (IRR = 1.45, 95% confidence interval (95% CI: 1.10-1.92. There was interaction between this polymorphism and intake of red and processed meat in relation to CRC risk. Carriers of NFkB -94deletion were at 3% increased risk pr 25 gram meat per day (95% CI: 0.98-1.09 whereas homozygous carriers of the insertion were not at increased risk (p for interaction = 0.03. PXR and LXR polymorphisms were not associated with CRC risk. There was no interaction between use of nonsteroid antiinflammatory drugs (NSAID or smoking status and NFkB, PXR or LXR polymorphisms. Conclusions A polymorphism in NFkB was associated with CRC risk and there was interaction between this polymorphism and meat intake in relation to CRC risk. This study suggests a role for NFkB in CRC aetiology.

  3. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  4. Functional evolution of the vitamin D and pregnane X receptors

    Directory of Open Access Journals (Sweden)

    Ou Junhai

    2007-11-01

    Full Text Available Abstract Background The vitamin D receptor (VDR and pregnane X receptor (PXR are nuclear hormone receptors of the NR1I subfamily that show contrasting patterns of cross-species variation. VDR and PXR are thought to have arisen from duplication of an ancestral gene, evident now as a single gene in the genome of the chordate invertebrate Ciona intestinalis (sea squirt. VDR genes have been detected in a wide range of vertebrates including jawless fish. To date, PXR genes have not been found in cartilaginous fish. In this study, the ligand selectivities of VDRs were compared in detail across a range of vertebrate species and compared with those of the Ciona VDR/PXR. In addition, several assays were used to search for evidence of PXR-mediated hepatic effects in three model non-mammalian species: sea lamprey (Petromyzon marinus, zebrafish (Danio rerio, and African clawed frog (Xenopus laevis. Results Human, mouse, frog, zebrafish, and lamprey VDRs were found to have similar ligand selectivities for vitamin D derivatives. In contrast, using cultured primary hepatocytes, only zebrafish showed evidence of PXR-mediated induction of enzyme expression, with increases in testosterone 6β-hydroxylation activity (a measure of cytochrome P450 3A activity in other species and flurbiprofen 4-hydroxylation activity (measure of cytochrome P450 2C activity following exposure to known PXR activators. A separate assay in vivo using zebrafish demonstrated increased hepatic transcription of another PXR target, multidrug resistance gene (ABCB5, following injection of the major zebrafish bile salt, 5α-cyprinol 27-sulfate. The PXR target function, testosterone hydroxylation, was detected in frog and sea lamprey primary hepatocytes, but was not inducible in these two species by a wide range of PXR activators in other animals. Analysis of the sea lamprey draft genome also did not show evidence of a PXR gene. Conclusion Our results show tight conservation of ligand

  5. Up-Regulation of CYP2C19 Expression by BuChang NaoXinTong via PXR Activation in HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Hong Sun

    Full Text Available Cytochrome P450 2C19 (CYP2C19 is an important drug-metabolizing enzyme (DME, which is responsible for the biotransformation of several kinds of drugs such as proton pump inhibitors, platelet aggregation inhibitors and antidepressants. Previous studies showed that Buchang NaoXinTong capsules (NXT increased the CYP2C19 metabolic activity in vitro and enhanced the antiplatelet effect of clopidogrel in vivo. However, the underlying molecular mechanism remained unclear. In the present study, we examined whether Pregnane X receptor (PXR plays a role in NXT-mediated regulation of CYP2C19 expression.We applied luciferase assays, real-time quantitative PCR (qPCR, Western blotting and cell-based analysis of metabolic activity experiments to investigate the NXT regulatory effects on the CYP2C19 promoter activity, the mRNA/ protein expression and the metabolic activity.Our results demonstrated that NXT significantly increased the CYP2C19 promoter activity when co-transfected with PXR in HepG2 cells. Mutations in PXR responsive element abolished the NXT inductive effects on the CYP2C19 promoter transcription. Additionally, NXT incubation (150 and 250μg/mL also markedly up-regulated endogenous CYP2C19 mRNA and protein levels in PXR-transfected HepG2 cells. Correspondingly, NXT leaded to a significant enhancement of the CYP2C19 catalytic activity in PXR-transfected HepG2 cells.In summary, this is the first study to suggest that NXT could induce CYP2C19 expression via PXR activation.

  6. Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation.

    Science.gov (United States)

    Shizu, Ryota; Min, Jungki; Sobhany, Mack; Pedersen, Lars C; Mutoh, Shingo; Negishi, Masahiko

    2018-01-05

    The nuclear protein constitutive active/androstane receptor (CAR or NR1I3) regulates several liver functions such as drug and energy metabolism and cell growth or death, which are often involved in the development of diseases such as diabetes and hepatocellular carcinoma. CAR undergoes a conversion from inactive homodimers to active heterodimers with retinoid X receptor α (RXRα), and phosphorylation of the DNA-binding domain (DBD) at Thr-38 in CAR regulates this conversion. Here, we uncovered the molecular mechanism by which this phosphorylation regulates the intramolecular interaction between CAR's DBD and ligand-binding domain (LBD), enabling the homodimer-heterodimer conversion. Phosphomimetic substitution of Thr-38 with Asp increased co-immunoprecipitation of the CAR DBD with CAR LBD in Huh-7 cells. Isothermal titration calorimetry assays also revealed that recombinant CAR DBD-T38D, but not nonphosphorylated CAR DBD, bound the CAR LBD peptide. This DBD-LBD interaction masked CAR's dimer interface, preventing CAR homodimer formation. Of note, EGF signaling weakened the interaction of CAR DBD T38D with CAR LBD, converting CAR to the homodimer form. The DBD-T38D-LBD interaction also prevented CAR from forming a heterodimer with RXRα. However, this interaction opened up a CAR surface, allowing interaction with protein phosphatase 2A. Thr-38 dephosphorylation then dissociated the DBD-LBD interaction, allowing CAR heterodimer formation with RXRα. We conclude that the intramolecular interaction of phosphorylated DBD with the LBD enables CAR to adapt a transient monomer configuration that can be converted to either the inactive homodimer or the active heterodimer.

  7. Surface localization of the nuclear receptor CAR in influenza A virus-infected cells

    International Nuclear Information System (INIS)

    Takahashi, Tadanobu; Moriyama, Yusuke; Ikari, Akira; Sugatani, Junko; Suzuki, Takashi; Miwa, Masao

    2008-01-01

    Constitutive active/androstane receptor CAR is a member of the nuclear receptors which regulate transcription of xenobiotic metabolism enzymes. CAR is usually localized in the cytosol and nucleus. Here, we found that CAR was localized at the cell surface of influenza A virus (IAV)-infected cells. Additionally, we demonstrated that expression of a viral envelope glycoprotein, either hemagglutinin (HA) or neuraminidase (NA), but not viral nucleoprotein (NP), was responsible for this localization. This report is the first demonstration of CAR at the surface of tissue culture cells, and suggests that CAR may exert the IAV infection mechanism

  8. Exploiting natural killer group 2D receptors for CAR T-cell therapy.

    Science.gov (United States)

    Demoulin, Benjamin; Cook, W James; Murad, Joana; Graber, David J; Sentman, Marie-Louise; Lonez, Caroline; Gilham, David E; Sentman, Charles L; Agaugue, Sophie

    2017-08-01

    Chimeric antigen receptors (CARs) are genetically engineered proteins that combine an extracellular antigen-specific recognition domain with one or several intracellular T-cell signaling domains. When expressed in T cells, these CARs specifically trigger T-cell activation upon antigen recognition. While the clinical proof of principle of CAR T-cell therapy has been established in hematological cancers, CAR T cells are only at the early stages of being explored to tackle solid cancers. This special report discusses the concept of exploiting natural killer cell receptors as an approach that could broaden the specificity of CAR T cells and potentially enhance the efficacy of this therapy against solid tumors. New data demonstrating feasibility of this approach in humans and supporting the ongoing clinical trial are also presented.

  9. A PXR reporter gene assay in a stable cell culture system: CYP3A4 and CYP2B6 induction by pesticides.

    Science.gov (United States)

    Lemaire, Géraldine; de Sousa, Georges; Rahmani, Roger

    2004-12-15

    A stable hepatoma cell line expressing the human pregnane X receptor (hPXR) and the cytochrome P4503A4 (CYP3A4) distal and proximal promoters plus the luciferase reporter gene was developed to assess the ability of several xenobiotic agents to induce CYP3A4 and CYP2B6. After selection for neomycin resistance, one clone, displaying high luciferase activity in response to rifampicin (RIF), was isolated and the stable expression of hPXR was confirmed by reverse transcription polymerase chain reaction (RT-PCR). Dose-response curves were generated by treating these cells with increasing concentrations of RIF, phenobarbital (PB), clotrimazole (CLOT) or 5beta-pregnane-3,20-dione (5beta-PREGN). The effective concentrations for half maximal response (EC50) were determined for each of these compounds. RIF was the most effective compound, with maximal luciferase activity induced at 10 microM. The agonist activities of PXR-specific inducers measured using our stable model were consistent with those measured in transient transfectants. The abilities of organochlorine (OC), organophosphate (OP) and pyrethroid pesticides (PY) to activate hPXR were also assessed and found to be consistent with the abilities of these compounds to induce CYP3A4 and CYP2B6 in primary culture of human hepatocytes. These results suggest that CYP3A4 and CYP2B6 regulation through PXR activation by persistent pesticides may have an impact on the metabolism of xenobiotic agents and endogenous steroid hormones. Our model provides a useful tool for studying hPXR activation and for identifying agents capable of inducing CYP3A4 and CYP2B6.

  10. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    International Nuclear Information System (INIS)

    Kanno, Yuichiro; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-01-01

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR

  11. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-03-27

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR.

  12. Chimeric Antigen Receptor T Cell (Car T Cell Therapy In Hematology

    Directory of Open Access Journals (Sweden)

    Pinar Ataca

    2015-12-01

    Full Text Available It is well demonstrated that immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation (HSCT. Adoptive T cell transfer has been improved to be more specific and potent and cause less off-target toxicities. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR and chimeric antigen receptor (CAR modified T cells. On July 1, 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the beneficiaries of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical-clinical studies, effectiveness and drawbacks of this strategy.

  13. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants.

    Science.gov (United States)

    Zhang, J; Kuehl, P; Green, E D; Touchman, J W; Watkins, P B; Daly, A; Hall, S D; Maurel, P; Relling, M; Brimer, C; Yasuda, K; Wrighton, S A; Hancock, M; Kim, R B; Strom, S; Thummel, K; Russell, C G; Hudson, J R; Schuetz, E G; Boguski, M S

    2001-10-01

    The pregnane X receptor (PXR)/steroid and xenobiotic receptor (SXR) transcriptionally activates cytochrome P4503A4 (CYP3A4) when ligand activated by endobiotics and xenobiotics. We cloned the human PXR gene and analysed the sequence in DNAs of individuals whose CYP3A phenotype was known. The PXR gene spans 35 kb, contains nine exons, and mapped to chromosome 13q11-13. Thirty-eight single nucleotide polymorphisms (SNPs) were identified including six SNPs in the coding region. Three of the coding SNPs are non-synonymous creating new PXR alleles [PXR*2, P27S (79C to T); PXR*3, G36R (106G to A); and PXR*4, R122Q (4321G to A)]. The frequency of PXR*2 was 0.20 in African Americans and was never found in Caucasians. Hepatic expression of CYP3A4 protein was not significantly different between African Americans homozygous for PXR*1 compared to those with one PXR*2 allele. PXR*4 was a rare variant found in only one Caucasian person. Homology modelling suggested that R122Q, (PXR*4) is a direct DNA contact site variation in the third alpha-helix in the DNA binding domain. Compared with PXR*1, and variants PXR*2 and PXR*3, only the variant PXR*4 protein had significantly decreased affinity for the PXR binding sequence in electromobility shift assays and attenuated ligand activation of the CYP3A4 reporter plasmids in transient transfection assays. However, the person heterozygous for PXR*4 is normal for CYP3A4 metabolism phenotype. The relevance of each of the 38 PXR SNPs identified in DNA of individuals whose CYP3A basal and rifampin-inducible CYP3A4 expression was determined in vivo and/or in vitro was demonstrated by univariate statistical analysis. Because ligand activation of PXR and upregulation of a system of drug detoxification genes are major determinants of drug interactions, it will now be useful to extend this work to determine the association of these common PXR SNPs to human variation in induction of other drug detoxification gene targets.

  14. Pregnane X Receptor-Humanized Mice Recapitulate Gender Differences in Ethanol Metabolism but Not Hepatotoxicity.

    Science.gov (United States)

    Spruiell, Krisstonia; Gyamfi, Afua A; Yeyeodu, Susan T; Richardson, Ricardo M; Gonzalez, Frank J; Gyamfi, Maxwell A

    2015-09-01

    Both human and rodent females are more susceptible to developing alcoholic liver disease following chronic ethanol (EtOH) ingestion. However, little is known about the relative effects of acute EtOH exposure on hepatotoxicity in female versus male mice. The nuclear receptor pregnane X receptor (PXR; NR1I2) is a broad-specificity sensor with species-specific responses to toxic agents. To examine the effects of the human PXR on acute EtOH toxicity, the responses of male and female PXR-humanized (hPXR) transgenic mice administered oral binge EtOH (4.5 g/kg) were analyzed. Basal differences were observed between hPXR males and females in which females expressed higher levels of two principal enzymes responsible for EtOH metabolism, alcohol dehydrogenase 1 and aldehyde dehydrogenase 2, and two key mediators of hepatocyte replication and repair, cyclin D1 and proliferating cell nuclear antigen. EtOH ingestion upregulated hepatic estrogen receptor α, cyclin D1, and CYP2E1 in both genders, but differentially altered lipid and EtOH metabolism. Consistent with higher basal levels of EtOH-metabolizing enzymes, blood EtOH was more rapidly cleared in hPXR females. These factors combined to provide greater protection against EtOH-induced liver injury in female hPXR mice, as revealed by markers for liver damage, lipid peroxidation, and endoplasmic reticulum stress. These results indicate that female hPXR mice are less susceptible to acute binge EtOH-induced hepatotoxicity than their male counterparts, due at least in part to the relative suppression of cellular stress and enhanced expression of enzymes involved in both EtOH metabolism and hepatocyte proliferation and repair in hPXR females. U.S. Government work not protected by U.S. copyright.

  15. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    Science.gov (United States)

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. 5' diversity of human hepatic PXR (NR1I2) transcripts and identification of the major transcription initiation site.

    Science.gov (United States)

    Kurose, Kouichi; Koyano, Satoru; Ikeda, Shinobu; Tohkin, Masahiro; Hasegawa, Ryuichi; Sawada, Jun-Ichi

    2005-05-01

    The human pregnane X receptor (PXR) is a crucial regulator of the genes encoding several major cytochrome P450 enzymes and transporters, such as CYP3A4 and MDR1, but its own transcriptional regulation remains unclear. To elucidate the transcriptional mechanisms of human PXR gene, we first endeavored to identify the transcription initiation site of human PXR using 5'-RACE. Five types of 5'-variable transcripts (a, b, c, d, and e) with common exon 2 sequence were found, and comparison of these sequences with the genomic sequence suggested that their 5' diversity is derived from initiation by alternative promoters and alternative splicing. None of the exons found in our study contain any new in-frame coding regions. Newly identified introns IVS-a and IVS-b were found to have CT-AC splice sites that do not follow the GT-AG rule of conventional donor and acceptor splice sites. Of the five types of 5' variable transcripts identified, RT-PCR showed that type-a was the major transcript type. Four transcription initiation sites (A-D) for type-a transcript were identified by 5'-RACE using GeneRacer RACE Ready cDNA (human liver) constructed by the oligo-capping method. Putative TATA boxes were located approximately 30 bp upstream from the transcriptional start sites of the major transcript (C) and the longest minor transcript (A) expressed in the human liver. These results indicate that the initiation of transcription of human PXR is more complex than previously reported.

  17. Regional Delivery of Chimeric Antigen Receptor (CAR) T-Cells for Cancer Therapy.

    Science.gov (United States)

    Sridhar, Praveen; Petrocca, Fabio

    2017-07-18

    Chimeric Antigen Receptor (CAR) T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  18. Regional Delivery of Chimeric Antigen Receptor (CAR T-Cells for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Praveen Sridhar

    2017-07-01

    Full Text Available Chimeric Antigen Receptor (CAR T-cells are T-cells with recombinant receptors targeted to tumor antigens. CAR-T cell therapy has emerged as a mode of immunotherapy and is now being extensively explored in hematologic cancer. In contrast, CAR-T cell use in solid tumors has been hampered by multiple obstacles. Several approaches have been taken to circumvent these obstacles, including the regional delivery of CAR-T cells. Regional CAR-T cell delivery can theoretically compensate for poor T-cell trafficking and tumor antigen specificity while avoiding systemic toxicity associated with intravenous delivery. We reviewed completed clinical trials for the treatment of glioblastoma and metastatic colorectal cancer and examined the data in these studies for safety, efficacy, and potential advantages that regional delivery may confer over systemic delivery. Our appraisal of the available literature revealed that regional delivery of CAR-T cells in both glioblastoma and hepatic colorectal metastases was generally well tolerated and efficacious in select instances. We propose that the regional delivery of CAR-T cells is an area of potential growth in the solid tumor immunotherapy, and look towards future clinical trials in head and neck cancer, mesothelioma, and peritoneal carcinomatosis as the use of this technique expands.

  19. Development of CINPA1 analogs as novel and potent inverse agonists of constitutive androstane receptor.

    Science.gov (United States)

    Lin, Wenwei; Yang, Lei; Chai, Sergio C; Lu, Yan; Chen, Taosheng

    2016-01-27

    Constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) are master regulators of endobiotic and xenobiotic metabolism and disposition. Because CAR is constitutively active in certain cellular contexts, inhibiting CAR might reduce drug-induced hepatotoxicity and resensitize drug-resistant cancer cells to chemotherapeutic drugs. We recently reported a novel CAR inhibitor/inverse agonist CINPA1 (11). Here, we have obtained or designed 54 analogs of CINPA1 and used a time-resolved fluorescence resonance energy transfer (TR-FRET) assay to evaluate their CAR inhibition potency. Many of the 54 analogs showed CAR inverse agonistic activities higher than those of CINPA1, which has an IC50 value of 687 nM. Among them, 72 has an IC50 value of 11.7 nM, which is about 59-fold more potent than CINPA1 and over 10-fold more potent than clotrimazole (an IC50 value of 126.9 nM), the most potent CAR inverse agonist in a biochemical assay previously reported by others. Docking studies provide a molecular explanation of the structure-activity relationship (SAR) observed experimentally. To our knowledge, this effort is the first chemistry endeavor in designing and identifying potent CAR inverse agonists based on a novel chemical scaffold, leading to 72 as the most potent CAR inverse agonist so far. The 54 chemicals presented are novel and unique tools for characterizing CAR's function, and the SAR information gained from these 54 analogs could guide future efforts to develop improved CAR inverse agonists. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure.

    Science.gov (United States)

    Okegawa, T; Pong, R C; Li, Y; Bergelson, J M; Sagalowsky, A I; Hsieh, J T

    2001-09-01

    The coxsackie and adenovirus receptor (CAR) is identified as a high-affinity receptor for adenovirus type 5. We observed that invasive bladder cancer specimens had significantly reduced CAR mRNA levels compared with superficial bladder cancer specimens, which suggests that CAR may play a role in the progression of bladder cancer. Elevated CAR expression in the T24 cell line (CAR-negative cells) increased its sensitivity to adenovirus infection and significantly inhibited its in vitro growth, accompanied by p21 and hypophosphorylated retinoblastoma accumulation. Conversely, decreased CAR levels in both RT4 and 253J cell lines (CAR-positive cells) promoted their in vitro growth. To unveil the mechanism of action of CAR, we showed that the extracellular domain of CAR facilitated intercellular adhesion. Furthermore, interrupting intercellular adhesion of CAR by a specific antibody alleviates the growth-inhibitory effect of CAR. We also demonstrated that both the transmembrane and intracellular domains of CAR were critical for its growth-inhibitory activity. These data indicate that the cell-cell contact initiated by membrane-bound CAR can elicit a negative signal cascade to modulate cell cycle regulators inside the nucleus of bladder cancer cells. Therefore, the presence of CAR cannot only facilitate viral uptake of adenovirus but also inhibit cell growth. These results can be integrated to formulate a new strategy for bladder cancer therapy.

  1. Sulforaphane is not an effective antagonist of the human pregnane X-receptor in vivo

    International Nuclear Information System (INIS)

    Poulton, Emma Jane; Levy, Lisa; Lampe, Johanna W.; Shen, Danny D.; Tracy, Julia; Shuhart, Margaret C.; Thummel, Kenneth E.; Eaton, David L.

    2013-01-01

    Sulforaphane (SFN), is an effective in vitro antagonist of ligand activation of the human pregnane and xenobiotic receptor (PXR). PXR mediated CYP3A4 up-regulation is implicated in adverse drug-drug interactions making identification of small molecule antagonists a desirable therapeutic goal. SFN is not an antagonist to mouse or rat PXR in vitro; thus, normal rodent species are not suitable as in vivo models for human response. To evaluate whether SFN can effectively antagonize ligand activation of human PXR in vivo, a three-armed, randomized, crossover trial was conducted with 24 healthy adults. The potent PXR ligand — rifampicin (300 mg/d) was given alone for 7 days in arm 1, or in daily combination with 450 μmol SFN (Broccoli Sprout extract) in arm 2; SFN was given alone in arm 3. Midazolam as an in vivo phenotype marker of CYP3A was administered before and after each treatment arm. Rifampicin alone decreased midazolam AUC by 70%, indicative of the expected increase in CYP3A4 activity. Co-treatment with SFN did not reduce CYP3A4 induction. Treatment with SFN alone also did not affect CYP3A4 activity in the cohort as a whole, although in the subset with the highest basal CYP3A4 activity there was a statistically significant increase in midazolam AUC (i.e., decrease in CYP3A4 activity). A parallel study in humanized PXR mice yielded similar results. The parallel effects of SFN between humanized PXR mice and human subjects demonstrate the predictive value of humanized mouse models in situations where species differences in ligand-receptor interactions preclude the use of a native mouse model for studying human ligand-receptor pharmacology. -- Highlights: ► The effects of SFN on PXR mediated CYP3A4 induction in humanized PXR mice and humans were examined. ► SFN had no effect on rifampicin mediated CYP3A4 induction in humans or humanized mice. ► SFN had a modest effect on basal CYP3A4 activity among subjects with higher baseline activity. ► Humanized PXR

  2. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.

    Science.gov (United States)

    Yoon, Dok Hyun; Osborn, Mark J; Tolar, Jakub; Kim, Chong Jai

    2018-01-24

    Chimeric antigen receptor (CAR) T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  3. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts: Combination or Built-In CAR-T

    Directory of Open Access Journals (Sweden)

    Dok Hyun Yoon

    2018-01-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents the first U.S. Food and Drug Administration approved gene therapy and these engineered cells function with unprecedented efficacy in the treatment of refractory CD19 positive hematologic malignancies. CAR translation to solid tumors is also being actively investigated; however, efficacy to date has been variable due to tumor-evolved mechanisms that inhibit local immune cell activity. To bolster the potency of CAR-T cells, modulation of the immunosuppressive tumor microenvironment with immune-checkpoint blockade is a promising strategy. The impact of this approach on hematological malignancies is in its infancy, and in this review we discuss CAR-T cells and their synergy with immune-checkpoint blockade.

  4. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  5. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    Science.gov (United States)

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Marine and Semi-Synthetic Hydroxysteroids as New Scaffolds for Pregnane X Receptor Modulation

    Directory of Open Access Journals (Sweden)

    Valentina Sepe

    2014-05-01

    Full Text Available In recent years many sterols with unusual structures and promising biological profiles have been identified from marine sources. Here we report the isolation of a series of 24-alkylated-hydroxysteroids from the soft coral Sinularia kavarattiensis, acting as pregnane X receptor (PXR modulators. Starting from this scaffold a number of derivatives were prepared and evaluated for their ability to activate the PXR by assessing transactivation and quantifying gene expression. Our study reveals that ergost-5-en-3β-ol (4 induces PXR transactivation in HepG2 cells and stimulates the expression of the PXR target gene CYP3A4. To shed light on the molecular basis of the interaction between these ligands and PXR, we investigated, through docking simulations, the binding mechanism of the most potent compound of the series, 4, to the PXR. Our findings provide useful functional and structural information to guide further investigations and drug design.

  7. Chimeric antigen receptor (CAR T cell therapy for malignant cancers: Summary and perspective

    Directory of Open Access Journals (Sweden)

    Aaron J. Smith

    2016-11-01

    Full Text Available This paper will summarize the data obtained primarily from the last decade of chimeric antigen receptor (CAR T cell immunotherapy. It will do so in a manner that provides an overview needed to set the foundation for perspective on the state of research associated with CAR T cell therapy. The topics covered will include the construction of engineered CAR T cells from the standpoint of the different generations, the mode in which autologous T cells are transfected, the various biomarkers that have been used in CAR T cell immunotherapy, and setbacks associated with engineered T cells. Perspective on priorities of CAR T cell immunotherapy will also be addressed as they are related to safety and efficacy.

  8. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine.

    Science.gov (United States)

    Li, Ling; Bonneton, François; Chen, Xiao Yong; Laudet, Vincent

    2015-02-05

    Nuclear receptors (NRs) are major pharmacological targets that allow an access to the mechanisms controlling gene regulation. As such, some NRs were identified as biological targets of active compounds contained in herbal remedies found in traditional medicines. We aim here to review this expanding literature by focusing on the informative articles regarding the mechanisms of action of traditional Chinese medicines (TCMs). We exemplified well-characterized TCM action mediated by NR such as steroid receptors (ER, GR, AR), metabolic receptors (PPAR, LXR, FXR, PXR, CAR) and RXR. We also provided, when possible, examples from other traditional medicines. From these, we draw a parallel between TCMs and phytoestrogens or endocrine disrupting chemicals also acting via NR. We define common principle of action and highlight the potential and limits of those compounds. TCMs, by finely tuning physiological reactions in positive and negative manners, could act, in a subtle but efficient way, on NR sensors and their transcriptional network. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. The PXR/CAR nuclear receptor sytem and antimalaria chemotherapy

    OpenAIRE

    Piedade, Rita

    2010-01-01

    Malaria is one of the oldest diseases know to mankind, still having devastating consequences; killing 1 million people/year. The efforts to control this disease have been focused on the control of its transmission and, most importantly, its clinical management by effective chemotherapy. Concerning the latter, several antimalarials have been developed in the last decades. They can be subdivided into four structural classes: aminoquinolines, antifolates, artemisinin derived compounds and naphto...

  10. Omeprazole and lansoprazole enantiomers induce CYP3A4 in human hepatocytes and cell lines via glucocorticoid receptor and pregnane X receptor axis.

    Science.gov (United States)

    Novotna, Aneta; Dvorak, Zdenek

    2014-01-01

    Benzimidazole drugs lansoprazole and omeprazole are used for treatment of various gastrointestinal pathologies. Both compounds cause drug-drug interactions because they activate aryl hydrocarbon receptor and induce CYP1A genes. In the current paper, we examined the effects of lansoprazole and omeprazole enantiomers on the expression of key drug-metabolizing enzyme CYP3A4 in human hepatocytes and human cancer cell lines. Lansoprazole enantiomers, but not omeprazole, were equipotent inducers of CYP3A4 mRNA in HepG2 cells. All forms (S-, R-, rac-) of lansoprazole and omeprazole induced CYP3A4 mRNA and protein in human hepatocytes. The quantitative profiles of CYP3A4 induction by individual forms of lansoprazole and omeprazole exerted enantiospecific patterns. Lansoprazole dose-dependently activated pregnane X receptor PXR in gene reporter assays, and slightly modulated rifampicin-inducible PXR activity, with similar potency for each enantiomer. Omeprazole dose-dependently activated PXR and inhibited rifampicin-inducible PXR activity. The effects of S-omeprazole were much stronger as compared to those of R-omeprazole. All forms of lansoprazole, but not omeprazole, slightly activated glucocorticoid receptor and augmented dexamethasone-induced GR transcriptional activity. Omeprazole and lansoprazole influenced basal and ligand inducible expression of tyrosine aminotransferase, a GR-target gene, in HepG2 cells and human hepatocytes. Overall, we demonstrate here that omeprazole and lansoprazole enantiomers induce CYP3A4 in HepG2 cells and human hepatocytes. The induction comprises differential interactions of omeprazole and lansoprazole with transcriptional regulators PXR and GR, and some of the effects were enantiospecific. The data presented here might be of toxicological and clinical importance, since the effects occurred in therapeutically relevant concentrations.

  11. The development of CAR design for tumor CAR-T cell therapy.

    Science.gov (United States)

    Xu, Dandan; Jin, Guoliang; Chai, Dafei; Zhou, Xiaowan; Gu, Weiyu; Chong, Yanyun; Song, Jingyuan; Zheng, Junnian

    2018-03-02

    In recent years, the chimeric antigen receptor modified T cells (Chimeric antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has been considered the most promising therapy. Efforts to enhance the efficacy of CAR-based anti-tumor therapy have been made, such as the improvement of structures of CAR-T cells, including the development of extracellular antigen recognition receptors, intracellular co-stimulatory molecules and the combination application of CARs and synthetic small molecules. In addition, effects on the function of the CAR-T cells that the space distance between the antigen binding domains and tumor targets and the length of the spacer domains have are also being investigated. Given the fast-moving nature of this field, it is necessary to make a summary of the development of CAR-T cells. In this review, we mainly focus on the present design strategies of CAR-T cells with the hope that they can provide insights to increase the anti-tumor efficacy and safety.

  12. Integrated in silico and in vivo approaches to investigate effects of BDE-99 mediated by the nuclear receptors on developing zebrafish.

    Science.gov (United States)

    Zhang, Li; Jin, Yaru; Han, Zhihua; Liu, Hongling; Shi, Laihao; Hua, Xiaoxue; Doering, Jon A; Tang, Song; Giesy, John P; Yu, Hongxia

    2018-03-01

    One of the most abundant polybrominated diphenyl ethers (PBDEs) is 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), which persists and potentially bioaccumulates in aquatic wildlife. Previous studies in mammals have shown that BDE-99 affects development and disrupts certain endocrine functions through signaling pathways mediated by nuclear receptors. However, fewer studies have investigated the potential of BDE-99 to interact with nuclear receptors in aquatic vertebrates such as fish. In the present study, interactions between BDE-99 and nuclear receptors were investigated by in silico and in vivo approaches. This PBDE was able to dock into the ligand-binding domain of zebrafish aryl hydrocarbon receptor 2 (AhR2) and pregnane X receptor (PXR). It had a significant effect on the transcriptional profiles of genes associated with AhR or PXR. Based on the developed cytoscape of all zebrafish genes, it was also inferred that AhR and PXR could interact via cross-talk. In addition, both the in silico and in vivo approaches found that BDE-99 affected peroxisome proliferator-activated receptor alpha (PPARα), glucocorticoid receptor, and thyroid receptor. Collectively, our results demonstrate for the first time detailed in silico evidence that BDE-99 can bind to and interact with zebrafish AhR and PXR. These findings can be used to elaborate the molecular mechanism of BDE-99 and guide more objective environmental risk assessments. Environ Toxicol Chem 2018;37:780-787. © 2017 SETAC. © 2017 SETAC.

  13. PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.

    Science.gov (United States)

    Coumoul, Xavier; Diry, Monique; Barouki, Robert

    2002-11-15

    OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.

  14. Evaluation of Computational Docking to Identify Pregnane X Receptor Agonists in the ToxCast Database

    OpenAIRE

    Kortagere, Sandhya; Krasowski, Matthew D.; Reschly, Erica J.; Venkatesh, Madhukumar; Mani, Sridhar; Ekins, Sean

    2010-01-01

    Background The pregnane X receptor (PXR) is a key transcriptional regulator of many genes [e.g., cytochrome P450s (CYP2C9, CYP3A4, CYP2B6), MDR1] involved in xenobiotic metabolism and excretion. Objectives As part of an evaluation of different approaches to predict compound affinity for nuclear hormone receptors, we used the molecular docking program GOLD and a hybrid scoring scheme based on similarity weighted GoldScores to predict potential PXR agonists in the ToxCast database of pesticides...

  15. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities.

    Science.gov (United States)

    Xia, An-Liang; Wang, Xiao-Chen; Lu, Yi-Jun; Lu, Xiao-Jie; Sun, Beicheng

    2017-10-27

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have been shown to have unprecedented efficacy in B cell malignancies, most notably in B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate using anti-CD19 CAR-T cells. However, CAR T-cell therapy for solid tumors currently is faced with numerous challenges such as physical barriers, the immunosuppressive tumor microenvironment and the specificity and safety. The clinical results in solid tumors have been much less encouraging, with multiple cases of toxicity and a lack of therapeutic response. In this review, we will discuss the current stats and challenges of CAR-T cell therapy for solid tumors, and propose possibl e solutions and future perspectives.

  16. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-01-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA III induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA III increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA III induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  17. Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish.

    Science.gov (United States)

    Nearing, J; Betka, M; Quinn, S; Hentschel, H; Elger, M; Baum, M; Bai, M; Chattopadyhay, N; Brown, E M; Hebert, S C; Harris, H W

    2002-07-09

    To determine whether calcium polyvalent cation-sensing receptors (CaRs) are salinity sensors in fish, we used a homology-based cloning strategy to isolate a 4.1-kb cDNA encoding a 1,027-aa dogfish shark (Squalus acanthias) kidney CaR. Expression studies in human embryonic kidney cells reveal that shark kidney senses combinations of Ca(2+), Mg(2+), and Na(+) ions at concentrations present in seawater and kidney tubules. Shark kidney is expressed in multiple shark osmoregulatory organs, including specific tubules of the kidney, rectal gland, stomach, intestine, olfactory lamellae, gill, and brain. Reverse transcriptase-PCR amplification using specific primers in two teleost fish, winter flounder (Pleuronectes americanus) and Atlantic salmon (Salmo salar), reveals a similar pattern of CaR tissue expression. Exposure of the lumen of winter flounder urinary bladder to the CaR agonists, Gd(3+) and neomycin, reversibly inhibit volume transport, which is important for euryhaline teleost survival in seawater. Within 24-72 hr after transfer of freshwater-adapted Atlantic salmon to seawater, there are increases in their plasma Ca(2+), Mg(2+), and Na(+) that likely serve as a signal for internal CaRs, i.e., brain, to sense alterations in salinity in the surrounding water. We conclude that CaRs act as salinity sensors in both teleost and elasmobranch fish. Their tissue expression patterns in fish provide insights into CaR functions in terrestrial animals including humans.

  18. The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis and other non-mammalian species

    Directory of Open Access Journals (Sweden)

    Kullman Seth W

    2011-02-01

    Full Text Available Abstract Background The farnesoid X receptor (FXR, pregnane X receptor (PXR, and vitamin D receptor (VDR are three closely related nuclear hormone receptors in the NR1H and 1I subfamilies that share the property of being activated by bile salts. Bile salts vary significantly in structure across vertebrate species, suggesting that receptors binding these molecules may show adaptive evolutionary changes in response. We have previously shown that FXRs from the sea lamprey (Petromyzon marinus and zebrafish (Danio rerio are activated by planar bile alcohols found in these two species. In this report, we characterize FXR, PXR, and VDR from the green-spotted pufferfish (Tetraodon nigriviridis, an actinopterygian fish that unlike the zebrafish has a bile salt profile similar to humans. We utilize homology modelling, docking, and pharmacophore studies to understand the structural features of the Tetraodon receptors. Results Tetraodon FXR has a ligand selectivity profile very similar to human FXR, with strong activation by the synthetic ligand GW4064 and by the primary bile acid chenodeoxycholic acid. Homology modelling and docking studies suggest a ligand-binding pocket architecture more similar to human and rat FXRs than to lamprey or zebrafish FXRs. Tetraodon PXR was activated by a variety of bile acids and steroids, although not by the larger synthetic ligands that activate human PXR such as rifampicin. Homology modelling predicts a larger ligand-binding cavity than zebrafish PXR. We also demonstrate that VDRs from the pufferfish and Japanese medaka were activated by small secondary bile acids such as lithocholic acid, whereas the African clawed frog VDR was not. Conclusions Our studies provide further evidence of the relationship between both FXR, PXR, and VDR ligand selectivity and cross-species variation in bile salt profiles. Zebrafish and green-spotted pufferfish provide a clear contrast in having markedly different primary bile salt profiles

  19. Intracellular localization of pregnane X receptor in HepG2 cells cultured by the hanging drop method.

    Science.gov (United States)

    Yokobori, Kosuke; Kobayashi, Kaoru; Azuma, Ikuko; Akita, Hidetaka; Chiba, Kan

    2017-10-01

    Pregnane X receptor (PXR) is localized in the cytoplasm of liver cells, whereas it is localized in the nucleus of monolayer-cultured HepG2 cells. Since cultured cells are affected by the microenvironment in which they are grown, we studied the effect of three-dimensional (3D) culture on the localization of PXR in HepG2 cells using the hanging drop method. The results showed that PXR was retained in the cytoplasm of HepG2 cells and other human hepatocarcinoma cell lines (FLC5, FLC7 and Huh7) when they were cultured by the hanging drop method. Treatment with rifampicin, a ligand of PXR, translocated PXR from the cytoplasm to nucleus and increased expression levels of CYP3A4 mRNA in HepG2 cells cultured by the hanging drop method. These findings suggest that 3D culture is a key factor determining the intracellular localization of PXR in human hepatocarcinoma cells and that PXR that becomes retained in the cytoplasm of HepG2 cells with 3D culture has functions of nuclear translocation and regulation of target genes in response to human PXR ligands. Three-dimensionally cultured hepatocarcinoma cells would be a useful tool to evaluate induction potency of drug candidates and also to study mechanisms of nuclear translocation of PXR by human PXR ligands. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  20. Interactions of endosulfan and methoxychlor involving CYP3A4 and CYP2B6 in human HepaRG cells.

    Science.gov (United States)

    Savary, Camille C; Jossé, Rozenn; Bruyère, Arnaud; Guillet, Fabrice; Robin, Marie-Anne; Guillouzo, André

    2014-08-01

    Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR)

    International Nuclear Information System (INIS)

    Hernandez, J.P.; Mota, L.C.; Huang, W.; Moore, D.D.; Baldwin, W.S.

    2009-01-01

    The constitutive androstane receptor (CAR) is a xenosensing nuclear receptor and regulator of cytochrome P450s (CYPs). However, the role of CAR as a basal regulator of CYP expression nor its role in sexually dimorphic responses have been thoroughly studied. We investigated basal regulation and sexually dimorphic regulation and induction by the potent CAR activator TCPOBOP and the moderate CAR activator Nonylphenol (NP). NP is an environmental estrogen and one of the most commonly found environmental toxicants in Europe and the United States. Previous studies have demonstrated that NP induces several CYPs in a sexually dimorphic manner, however the role of CAR in regulating NP-mediated sexually dimorphic P450 expression and induction has not been elucidated. Therefore, wild-type and CAR-null male and female mice were treated with honey as a carrier, NP, or TCPOBOP and CYP expression monitored by QPCR and Western blotting. CAR basally regulates the expression of Cyp2c29, Cyp2b13, and potentially Cyp2b10 as demonstrated by QPCR. Furthermore, we observed a shift in the testosterone 6α/15α-hydroxylase ratio in untreated CAR-null female mice to the male pattern, which indicates an alteration in androgen status and suggests a role for androgens as CAR inverse agonists. Xenobiotic-treatments with NP and TCPOBOP induced Cyp2b10, Cyp2c29, and Cyp3a11 in a CAR-mediated fashion; however NP only induced these CYPs in females and TCPOBOP induced these CYPs in both males and females. Interestingly, Cyp2a4, was only induced in wild-type male mice by TCPOBOP suggesting Cyp2a4 induction is not sensitive to CAR-mediated induction in females. Overall, TCPOBOP and NP show similar CYP induction profiles in females, but widely different profiles in males potentially related to lower sensitivity of males to either indirect or moderate CAR activators such as NP. In summary, CAR regulates the basal and chemically inducible expression of several sexually dimorphic xenobiotic metabolizing P

  2. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  3. Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes inmice

    International Nuclear Information System (INIS)

    Kleiner, Heather E.; Xia, Xiaojun; Sonoda, Junichiro; Zhang, Jun; Pontius, Elizabeth; Abey, Jane; Evans, Ronald M.; Moore, David D.; DiGiovanni, John

    2008-01-01

    Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug-metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often is a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full-length mCAR, a Gal4-mCAR ligand-binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10, Cyp3a11, and GSTa in CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(-/-) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have

  4. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Christensen, Jane; Overvad, Kim

    2010-01-01

    . There was no interaction between use of nonsteroid antiinflammatory drugs (NSAID) or smoking status and NFkB, PXR or LXR polymorphisms. Conclusions A polymorphism in NFkB was associated with CRC risk and there was interaction between this polymorphism and meat intake in relation to CRC risk. This study suggests a role......-B, pregnane X receptor, and liver X receptor were associated with risk of CRC, and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use. Methods The polymorphisms nuclear factor kappa-B (NFkB, NFKB1) -94 insertion/deletion ATTG (rs28362491), pregnane X...... and Health study of 57,053 persons. Results Carriers of NFkB -94deletion were at 1.45-fold higher risk of CRC than homozygous carriers of the insertion allele (incidence rate ratio (IRR) = 1.45, 95% confidence interval (95% CI): 1.10-1.92). There was interaction between this polymorphism and intake of red...

  5. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor

    Science.gov (United States)

    Zhang, Xianxie; Wang, Yuguang; Ma, Zengchun; Liang, Qiande; Tang, Xianglin; Hu, Donghua; Tan, Hongling; Xiao, Chengrong; Gao, Yue

    2015-01-01

    Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility. PMID:26674743

  6. Up-regulatation of CYP3A expression through pregnent X receptor by praeruptorin D isolated from Peucedanum praeruptorum Dunn.

    Science.gov (United States)

    Huang, Ling; Huang, Min; Li, Yu-Hua; Li, Rui-Ming; Zeng, Yu; Kuang, Shao-Yi; Zhang, Li; Wang, Yi-Tao; Bi, Hui-Chang

    2013-07-09

    Qianhu, the dried roots of Peucedanum praeruptorum DUNN (Umbelliferae), is a well-known traditional Chinese medicinal herb which was officially listed in the Chinese Pharmacopoeia. Praeruptorin D (PD) is one of the major active constituents of Peucedanum praeruptorum Dunn (Qianhu). The Pregnane X receptor (PXR) is an orphan nuclear receptor and plays a pivotal role in the activation of human cytochrome P450 3A4 (CYP3A4) gene. The purpose of this study was to investigate the effect of PD on the PXR-mediated transactivation of CYP3A4, and thus to predict potential herb-drug interactions between PD, Qianhu, and the other co-administered drugs that metabolized by CYP3A4. The effect of PD on the Cyp3a11, mPXR mRNA expression in mice primary hepatocytes was measured using real-time PCR. The gene expression, protein expression, and catalytic activity of CYP3A4 in the LS174T cells after transfected with PXR expression plasmids were determined by real-time PCR, Western blot analysis, and LC-MS/MS based CYP3A4 substrate assay. The results revealed that the level of Cyp3a11 gene expression in mice primary hepatocytes was significantly increased by PD, but PD cannot induce the mPXR gene expression. On the other hand, CYP3A4 mRNA, protein expression and functional activity in PXR-over-expression LS174T cells were significantly increased by PD through PXR-mediated pathway; conversely, no significant change was found in the untransfected cells. These findings suggest that PD can significantly up-regulate CYP3A4 expression and activity via the PXR-mediated pathway and this should be taken into consideration to predict any potential herb-drug interactions when PD and Peucedanum praeruptorum Dunn are co-administered with other drugs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. CAR-T cells are serial killers.

    Science.gov (United States)

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  8. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    International Nuclear Information System (INIS)

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  9. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital

    International Nuclear Information System (INIS)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P.

    2015-01-01

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR

  10. Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Wassmur, Britt; Graens, Johanna; Kling, Peter; Celander, Malin C.

    2010-01-01

    The pregnane X receptor (PXR) belongs to the nuclear hormone receptor (NR) superfamily and is commonly described as a xenophore or a pharmacophore, as it can be activated by a wide array of xenobiotics, including numerous pharmaceuticals and other environmental pollutants. The PXR regulates expression of e.g. cytochrome P450 3A (CYP3A) and the P-glycoprotein (P-gp) that are involved in excretion of lipophilic xenobiotics and endobiotics. A full length PXR cDNA was isolated from rainbow trout liver and it was expressed in a descending order of magnitude in liver > intestine > kidney > heart. A rainbow trout PXR reporter assay was developed and a suite of pharmaceuticals and other xenobiotics were screened. However, no specific activation of rainbow trout PXR was observed with the substances tested. Interactions of prototypical PXR agonists on PXR signaling in rainbow trout were further investigated in cells of hepatic origin exposed in vitro and in juvenile rainbow trout exposed in vivo. The rainbow trout hepatoma cell line (RTH-149), displayed 600 times lower expression of CYP3A mRNA compared to primary cultures of hepatocytes, and did not respond to treatment with either pregnenolone 16α-carbonitrile (PCN), ketoconazole (KCZ) or rifampicin (RIF), which implies a non-functional PXR in this cell line. Exposure of hepatocytes to PCN and lithocholic acid (LA), resulted in a weak concentration-dependent induction of CYP3A and P-gp mRNA levels, though, exposure to the higher concentration of LA (50 μM) decreased PXR mRNA levels. Exposure to dexamethasone (DEX) resulted in a decrease in PXR mRNA, without affecting CYP3A mRNA levels in hepatocytes in vitro. Injections of rainbow trout in vivo with 1 mg LA/kg fish resulted in a slight (albeit not significant) increase in CYP3A mRNA levels without affecting PXR mRNA levels. Although, injection with 10 mg omeprazole (OME)/kg fish had no effect on PXR and CYP3A mRNA levels, a 60% inhibition of CYP3A enzyme activities was

  11. Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Wassmur, Britt; Graens, Johanna; Kling, Peter [University of Gothenburg, Department of Zoology, Box 463, SE-405 30 Goeteborg (Sweden); Celander, Malin C., E-mail: malin.celander@zool.gu.se [University of Gothenburg, Department of Zoology, Box 463, SE-405 30 Goeteborg (Sweden)

    2010-10-01

    The pregnane X receptor (PXR) belongs to the nuclear hormone receptor (NR) superfamily and is commonly described as a xenophore or a pharmacophore, as it can be activated by a wide array of xenobiotics, including numerous pharmaceuticals and other environmental pollutants. The PXR regulates expression of e.g. cytochrome P450 3A (CYP3A) and the P-glycoprotein (P-gp) that are involved in excretion of lipophilic xenobiotics and endobiotics. A full length PXR cDNA was isolated from rainbow trout liver and it was expressed in a descending order of magnitude in liver > intestine > kidney > heart. A rainbow trout PXR reporter assay was developed and a suite of pharmaceuticals and other xenobiotics were screened. However, no specific activation of rainbow trout PXR was observed with the substances tested. Interactions of prototypical PXR agonists on PXR signaling in rainbow trout were further investigated in cells of hepatic origin exposed in vitro and in juvenile rainbow trout exposed in vivo. The rainbow trout hepatoma cell line (RTH-149), displayed 600 times lower expression of CYP3A mRNA compared to primary cultures of hepatocytes, and did not respond to treatment with either pregnenolone 16{alpha}-carbonitrile (PCN), ketoconazole (KCZ) or rifampicin (RIF), which implies a non-functional PXR in this cell line. Exposure of hepatocytes to PCN and lithocholic acid (LA), resulted in a weak concentration-dependent induction of CYP3A and P-gp mRNA levels, though, exposure to the higher concentration of LA (50 {mu}M) decreased PXR mRNA levels. Exposure to dexamethasone (DEX) resulted in a decrease in PXR mRNA, without affecting CYP3A mRNA levels in hepatocytes in vitro. Injections of rainbow trout in vivo with 1 mg LA/kg fish resulted in a slight (albeit not significant) increase in CYP3A mRNA levels without affecting PXR mRNA levels. Although, injection with 10 mg omeprazole (OME)/kg fish had no effect on PXR and CYP3A mRNA levels, a 60% inhibition of CYP3A enzyme activities

  12. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  13. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  14. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics

    Energy Technology Data Exchange (ETDEWEB)

    Tocchetti, Guillermo Nicolás [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Rigalli, Juan Pablo [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Arana, Maite Rocío; Villanueva, Silvina Stella Maris [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Mottino, Aldo Domingo, E-mail: amottino@unr.edu.ar [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina)

    2016-07-15

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. - Highlights: • Intestinal MRP2 (ABCC2) expression and activity can be regulated by xenobiotics. • PXR and CAR are major MRP2 modulators through a transcriptional mechanism. • Rifampicin

  15. Novel receptor targets for production and action of allopregnanolone in the central nervous system: a focus on pregnane xenobiotic receptor

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2014-04-01

    Full Text Available Neurosteroids are cholesterol-based hormones that can be produced in the brain, independent of secretion from peripheral endocrine glands, such as the gonads and adrenals. A focus in our laboratory for over 25 years has been how production of the pregnane neurosteroid, allopregnanolone, is regulated and the novel (i.e. non steroid receptor targets for steroid action for behavior. One endpoint of interest has been lordosis, the mating posture of female rodents. Allopregnanolone is necessary and sufficient for lordosis, and the brain circuitry underlying it, such as actions in the midbrain ventral tegmental area (VTA, has been well-characterized. Published and recent findings supporting a dynamic role of allopregnanolone are included in this review. First, contributions of ovarian and adrenal sources of precursors of allopregnanolone, and the requisite enzymatic actions for de novo production in the central nervous system will be discussed. Second, how allopregnanolone produced in the brain has actions on behavioral processes that are independent of binding to steroid receptors, but instead involve rapid modulatory actions via neurotransmitter targets (e.g. -amino butyric acid-GABA, n-methyl-D-aspartate- NMDA will be reviewed. Third, a recent focus on characterizing the role of a promiscuous nuclear receptor, pregnane xenobiotic receptor (PXR, involved in cholesterol metabolism and expressed in the VTA, as a target for allopregnanolone and how this relates to both actions and production of allopregnanolone will be addressed. For example, allopregnanolone can bind PXR and knocking down expression of PXR in the midbrain VTA attenuates actions of allopregnanolone via NMDA and/or GABAA for lordosis. Our understanding of allopregnanolone’s actions in the VTA for lordosis has been extended to reveal the role of allopregnanolone for broader, clinically-relevant questions, such as neuropsychiatric disorders, epilepsy, and aging.

  16. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies.

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-03-01

    Adoptive immunotherapy with chimeric antigen receptor-modified (CAR)-T cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T cell therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin's lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers.

  17. Chimeric Antigen Receptor (CAR) T cells: Lessons Learned from Targeting of CD19 in B cell malignancies

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-01-01

    Adoptive immunotherapy with chimeric antigen receptor-modified T (CAR-T) cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers. PMID:28110394

  18. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view.

    Science.gov (United States)

    Helsley, Robert N; Zhou, Changcheng

    2017-10-01

    Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.

  19. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor

    International Nuclear Information System (INIS)

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María; Zanette, Juliano; Woodin, Bruce R.; Karchner, Sibel I.; Nacci, Diane E.; Champlin, Denise; Jayaraman, Saro; Hahn, Mark E.; Stegeman, John J.; Celander, Malin C.

    2015-01-01

    Highlights: • Basal levels of PXR and Pgp mRNA are lower in liver of fish from NBH than from SC. • Hepatic PXR, CYP3A and Pgp mRNA levels are induced by PCB in fish from NBH. • Both non-dioxin-like and dioxin-like PCBs induce PXR, CYP3A and Pgp in NBH fish. • Branchial PXR and CYP3A mRNA levels are induced by PCB 126 in fish from SC. • There is possible cross-talk between AhR and PXR signaling in killifish. - Abstract: Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of

  20. Regulation of pregnane-X-receptor, CYP3A and P-glycoprotein genes in the PCB-resistant killifish (Fundulus heteroclitus) population from New Bedford Harbor

    Energy Technology Data Exchange (ETDEWEB)

    Gräns, Johanna; Wassmur, Britt; Fernández-Santoscoy, María [Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg (Sweden); Zanette, Juliano; Woodin, Bruce R.; Karchner, Sibel I. [Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Nacci, Diane E.; Champlin, Denise; Jayaraman, Saro [Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett, RI 02882 (United States); Hahn, Mark E.; Stegeman, John J. [Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Celander, Malin C., E-mail: malin.celander@gu.se [Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE 405 30 Gothenburg (Sweden)

    2015-02-15

    Highlights: • Basal levels of PXR and Pgp mRNA are lower in liver of fish from NBH than from SC. • Hepatic PXR, CYP3A and Pgp mRNA levels are induced by PCB in fish from NBH. • Both non-dioxin-like and dioxin-like PCBs induce PXR, CYP3A and Pgp in NBH fish. • Branchial PXR and CYP3A mRNA levels are induced by PCB 126 in fish from SC. • There is possible cross-talk between AhR and PXR signaling in killifish. - Abstract: Killifish survive and reproduce in the New Bedford Harbor (NBH) in Massachusetts (MA), USA, a site severely contaminated with polychlorinated biphenyls (PCBs) for decades. Levels of 22 different PCB congeners were analyzed in liver from killifish collected in 2008. Concentrations of dioxin-like PCBs in liver of NBH killifish were ∼400 times higher, and the levels of non-dioxin-like PCBs ∼3000 times higher than in killifish from a reference site, Scorton Creek (SC), MA. The NBH killifish are known to be resistant to the toxicity of dioxin-like compounds and to have a reduced aryl hydrocarbon receptor (AhR) signaling response. Little is known about the responses of these fish to non-dioxin-like PCBs, which are at extraordinarily high levels in NBH fish. In mammals, some non-dioxin-like PCB congeners act through nuclear receptor 1I2, the pregnane-X-receptor (PXR). To explore this pathway in killifish, a PXR cDNA was sequenced and its molecular phylogenetic relationship to other vertebrate PXRs was determined. Killifish were also collected in 2009 from NBH and SC, and after four months in the laboratory they were injected with a single dose of either the dioxin-like PCB 126 (an AhR agonist) or the non-dioxin-like PCB 153 (a mammalian PXR agonist). Gills and liver were sampled three days after injection and transcript levels of genes encoding PXR, cytochrome P450 3A (CYP3A), P-glycoprotein (Pgp), AhR2 and cytochrome P450 1A (CYP1A) were measured by quantitative PCR. As expected, there was little effect of PCB exposure on mRNA expression of

  1. Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital.

    Science.gov (United States)

    Schraplau, Anne; Schewe, Bettina; Neuschäfer-Rube, Frank; Ringel, Sebastian; Neuber, Corinna; Kleuser, Burkhard; Püschel, Gerhard P

    2015-02-03

    Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. Copyright © 2014. Published by Elsevier Ireland Ltd.

  2. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward.

    Science.gov (United States)

    Li, Jian; Li, Wenwen; Huang, Kejia; Zhang, Yang; Kupfer, Gary; Zhao, Qi

    2018-02-13

    Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.

  3. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  4. Clinical trials of CAR-T cells in China.

    Science.gov (United States)

    Liu, Bingshan; Song, Yongping; Liu, Delong

    2017-10-23

    Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.

  5. Measurement of intensity distribution of CSR in LEBRA PXR beamline

    International Nuclear Information System (INIS)

    Nakao, Keisuke; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nogami, Kyoko; Inagaki, Manabu; Sei, Norihiro

    2014-01-01

    Last year, the intensity of Coherent Synchrotron Radiation (CSR) in LEBRA PXR beamline was measured. As a result, it turned out that the intensity of CSR was stronger than anticipation. It is suggested that Coherent Edge Radiation (CER) is mixed with CSR. Then, in order to confirm whether CER is contained, the intensity distribution of CSR was measured. The result of the experiment is reported in this paper. (author)

  6. QSAR development and profiling of 72,524 REACH substances for PXR activation and CYP3A4 induction

    DEFF Research Database (Denmark)

    Abildgaard Rosenberg, Sine; Xia, M.; Huang, R.

    2017-01-01

    ,524 substances pre-registered under the EU chemicals regulation, REACH, and the models could predict 52.5% to 71.9% of the substances within their respective applicability domains. These predictions can, for example, be used for priority setting and in weight-of-evidence assessments of chemicals. Statistical...... analyses of the experimental drug dataset and the QSAR-predicted set of REACH substances were performed to identify similarities and differences in frequencies of overlapping positive results for PXR binding, PXR activation and CYP3A4 induction between the two datasets....

  7. Clinical trials of CAR-T cells in China

    Directory of Open Access Journals (Sweden)

    Bingshan Liu

    2017-10-01

    Full Text Available Abstract Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous and sequential CAR-T cells are being studied for clinical applications. Multi-target CAR-engineered T cells are also entering clinical trials. T cell receptor-engineered CAR-T and universal CAR-T cells represent new frontiers in CAR-T cell development. In this study, we analyzed the characteristics of CAR constructs and registered clinical trials of CAR-T cells in China and provided a quick glimpse of the landscape of CAR-T studies in China.

  8. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    Science.gov (United States)

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  9. CAR models: next-generation CAR modifications for enhanced T-cell function

    Directory of Open Access Journals (Sweden)

    Daniel Abate-Daga

    2016-01-01

    Full Text Available T cells genetically targeted with a chimeric antigen receptor (CAR to B-cell malignancies have demonstrated tremendous clinical outcomes. With the proof in principle for CAR T cells as a therapy for B-cell malignancies being established, current and future research is being focused on adapting CAR technology to other cancers, as well as enhancing its efficacy and/or safety. The modular nature of the CAR, extracellular antigen-binding domain fused to a transmembrane domain and intracellular T-cell signaling domains, allows for optimization by replacement of the various components. These modifications are creating a whole new class of therapeutic CARs. In this review, we discuss the recent major advances in CAR design and how these modifications will impact its clinical application.

  10. Expression of Human CAR Splicing Variants in BAC-Transgenic Mice

    OpenAIRE

    Zhang, Yu-Kun Jennifer; Lu, Hong; Klaassen, Curtis D.

    2012-01-01

    The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as wel...

  11. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells.

    Science.gov (United States)

    Levine, B L

    2015-03-01

    Performance enhancement of the immune system can now be generated through ex vivo gene modification of T cells in order to redirect native specificity to target tumor antigens. This approach combines the specificity of antibody therapy, the expanded response of cellular therapy and the memory activity of vaccine therapy. Recent clinical trials of chimeric antigen receptor (CAR) T cells directed toward CD19 as a stand-alone therapy have shown sustained complete responses in patients with acute lymphoblastic leukemia and chronic lymphocytic leukemia. As these drug products are individually derived from a patient's own cells, a different manufacturing approach is required for this kind of personalized therapy compared with conventional drugs. Key steps in the CAR T-cell manufacturing process include the selection and activation of isolated T cells, transduction of T cells to express CARs, ex vivo expansion of modified T cells and cryopreservation in infusible media. In this review, the steps involved in isolating, genetically modifying and scaling-out the CAR T cells for use in a clinical setting are described in the context of in-process and release testing and regulatory standards.

  12. Chimeric antigen receptor (CAR-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    Directory of Open Access Journals (Sweden)

    Bipulendu Jena

    Full Text Available Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63. We describe a novel anti-idiotype monoclonal antibody (mAb to detect CD19-specific CAR(+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1 was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+ tumor targets. This clone can be used to detect CD19-specific CAR(+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1 will be useful to investigators implementing CD19-specific CAR(+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  13. Development of a Systems Computational Model to Investigate Early Biological Events in Hepatic Activation of Constitutive Androstane Receptor (CAR) by Phenobarbital

    Science.gov (United States)

    Activation of the nuclear receptor CAR (constitutive active/androstane receptor) is implicated in the control several key biological events such as metabolic pathways. Here, we combined data from literature with information obtained from in vitro assays in the US EPA ToxCast dat...

  14. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy

    OpenAIRE

    Yeku, Oladapo O.; Brentjens, Renier J.

    2016-01-01

    Chimaeric antigen receptor (CAR) T-cells are T-cells that have been genetically modified to express an artificial construct consisting of a synthetic T-cell receptor (TCR) targeted to a predetermined antigen expressed on a tumour. Coupling the T-cell receptor to a CD3ζ signalling domain paved the way for first generation CAR T-cells that were efficacious against cluster of differentiation (CD)19-expressing B-cell malignancies. Optimization with additional signalling domains such as CD28 or 4-...

  15. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV.

    Science.gov (United States)

    Liu, Dongfang; Tian, Shuo; Zhang, Kai; Xiong, Wei; Lubaki, Ndongala Michel; Chen, Zhiying; Han, Weidong

    2017-12-01

    Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.

  16. Pyrethroid insecticides: Isoform-dependent hydrolysis, induction of cytochrome P450 3A4 and evidence on the involvement of the pregnane X receptor

    International Nuclear Information System (INIS)

    Yang Dongfang; Wang Xiliang; Chen Yitzai; Deng Ruitang; Yan Bingfang

    2009-01-01

    Pyrethroids account for more than one-third of the insecticides currently marketed in the world. In mammals, these insecticides undergo extensive metabolism by carboxylesterases and cytochrome P450s (CYPs). In addition, some pyrethroids are found to induce the expression of CYPs. The aim of this study was to determine whether pyrethroids induce carboxylesterases and CYP3A4, and whether the induction is correlated inversely with their hydrolysis. Human liver microsomes were pooled and tested for the hydrolysis of 11 pyrethroids. All pyrethroids were hydrolyzed by the pooled microsomes, but the hydrolytic rates varied by as many as 14 fold. Some pyrethroids such as bioresmethrin were preferably hydrolyzed by carboxylesterase HCE1, whereas others such as bifenthrin preferably by HCE2. In primary human hepatocytes, all pyrethroids except tetramethrin significantly induced CYP3A4. In contrast, insignificant changes were detected on the expression of carboxylesterases. The induction of CYP3A4 was confirmed in multiple cell lines including HepG2, Hop92 and LS180. Overall, the magnitude of the induction was correlated inversely with the rates of hydrolysis, but positively with the activation of the pregnane X receptor (PXR). Transfection of a carboxylesterase markedly decreased the activation of PXR, and the decrease was in agreement with carboxylesterase-based preference for hydrolysis. In addition, human PXR variants as well as rat PXR differed from human PXR (wild-type) in responding to certain pyrethroids (e.g., lambda-cyhalothrin), suggesting that induction of PXR target genes by these pyrethroids varies depending on polymorphic variants and the PXR species identity.

  17. GLYCAN-DIRECTED CAR-T CELLS.

    Science.gov (United States)

    Steentoft, Catharina; Migliorini, Denis; King, Tiffany R; Mandel, Ulla; June, Carl H; Posey, Avery D

    2018-01-23

    Cancer immunotherapy is rapidly advancing in the treatment of a variety of hematopoietic cancers, including pediatric acute lymphoblastic leukemia and diffuse large B cell lymphoma, with chimeric antigen receptor (CAR)-T cells. CARs are genetically encoded artificial T cell receptors that combine the antigen specificity of an antibody with the machinery of T cell activation. However, implementation of CAR technology in the treatment of solid tumors has been progressing much slower. Solid tumors are characterized by a number of challenges that need to be overcome, including cellular heterogeneity, immunosuppressive tumor microenvironment (TME), and, in particular, few known cancer-specific targets. Post-translational modifications that differentially occur in malignant cells generate valid cell surface, cancer-specific targets for CAR-T cells. We previously demonstrated that CAR-T cells targeting an aberrant O-glycosylation of MUC1, a common cancer marker associated with changes in cell adhesion, tumor growth, and poor prognosis, could control malignant growth in mouse models. Here, we discuss the field of glycan-directed CAR-T cells and review the different classes of antibodies specific for glycan-targeting, including the generation of high affinity O-glycopeptide antibodies. Finally, we discuss historic and recently investigated glycan targets for CAR-T cells and provide our perspective on how targeting the tumor glycoproteome and/or glycome will improve CAR-T immunotherapy. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A novel statistical algorithm for gene expression analysis helps differentiate pregnane X receptor-dependent and independent mechanisms of toxicity.

    Directory of Open Access Journals (Sweden)

    M Ann Mongan

    Full Text Available Genome-wide gene expression profiling has become standard for assessing potential liabilities as well as for elucidating mechanisms of toxicity of drug candidates under development. Analysis of microarray data is often challenging due to the lack of a statistical model that is amenable to biological variation in a small number of samples. Here we present a novel non-parametric algorithm that requires minimal assumptions about the data distribution. Our method for determining differential expression consists of two steps: 1 We apply a nominal threshold on fold change and platform p-value to designate whether a gene is differentially expressed in each treated and control sample relative to the averaged control pool, and 2 We compared the number of samples satisfying criteria in step 1 between the treated and control groups to estimate the statistical significance based on a null distribution established by sample permutations. The method captures group effect without being too sensitive to anomalies as it allows tolerance for potential non-responders in the treatment group and outliers in the control group. Performance and results of this method were compared with the Significant Analysis of Microarrays (SAM method. These two methods were applied to investigate hepatic transcriptional responses of wild-type (PXR(+/+ and pregnane X receptor-knockout (PXR(-/- mice after 96 h exposure to CMP013, an inhibitor of β-secretase (β-site of amyloid precursor protein cleaving enzyme 1 or BACE1. Our results showed that CMP013 led to transcriptional changes in hallmark PXR-regulated genes and induced a cascade of gene expression changes that explained the hepatomegaly observed only in PXR(+/+ animals. Comparison of concordant expression changes between PXR(+/+ and PXR(-/- mice also suggested a PXR-independent association between CMP013 and perturbations to cellular stress, lipid metabolism, and biliary transport.

  19. Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer.

    Science.gov (United States)

    Tchou, Julia; Zhao, Yangbing; Levine, Bruce L; Zhang, Paul J; Davis, Megan M; Melenhorst, Jan Joseph; Kulikovskaya, Irina; Brennan, Andrea L; Liu, Xiaojun; Lacey, Simon F; Posey, Avery D; Williams, Austin D; So, Alycia; Conejo-Garcia, Jose R; Plesa, Gabriela; Young, Regina M; McGettigan, Shannon; Campbell, Jean; Pierce, Robert H; Matro, Jennifer M; DeMichele, Angela M; Clark, Amy S; Cooper, Laurence J; Schuchter, Lynn M; Vonderheide, Robert H; June, Carl H

    2017-12-01

    Chimeric antigen receptors (CAR) are synthetic molecules that provide new specificities to T cells. Although successful in treatment of hematologic malignancies, CAR T cells are ineffective for solid tumors to date. We found that the cell-surface molecule c-Met was expressed in ∼50% of breast tumors, prompting the construction of a CAR T cell specific for c-Met, which halted tumor growth in immune-incompetent mice with tumor xenografts. We then evaluated the safety and feasibility of treating metastatic breast cancer with intratumoral administration of mRNA-transfected c-Met-CAR T cells in a phase 0 clinical trial (NCT01837602). Introducing the CAR construct via mRNA ensured safety by limiting the nontumor cell effects (on-target/off-tumor) of targeting c-Met. Patients with metastatic breast cancer with accessible cutaneous or lymph node metastases received a single intratumoral injection of 3 × 10 7 or 3 × 10 8 cells. CAR T mRNA was detectable in peripheral blood and in the injected tumor tissues after intratumoral injection in 2 and 4 patients, respectively. mRNA c-Met-CAR T cell injections were well tolerated, as none of the patients had study drug-related adverse effects greater than grade 1. Tumors treated with intratumoral injected mRNA c-Met-CAR T cells were excised and analyzed by immunohistochemistry, revealing extensive tumor necrosis at the injection site, cellular debris, loss of c-Met immunoreactivity, all surrounded by macrophages at the leading edges and within necrotic zones. We conclude that intratumoral injections of mRNA c-Met-CAR T cells are well tolerated and evoke an inflammatory response within tumors. Cancer Immunol Res; 5(12); 1152-61. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. The far and distal enhancers in the CYP3A4 gene co-ordinate the proximal promoter in responding similarly to the pregnane X receptor but differentially to hepatocyte nuclear factor-4alpha.

    Science.gov (United States)

    Liu, Fu-Jun; Song, Xiulong; Yang, Dongfang; Deng, Ruitang; Yan, Bingfang

    2008-01-01

    CYP3A4 (cytochrome P450 3A4) is involved in the metabolism of more than 50% of drugs and other xenobiotics. The expression of CYP3A4 is induced by many structurally dissimilar compounds. The PXR (pregnane X receptor) is recognized as a key regulator for the induction, and the PXR-directed transactivation of the CYP3A4 gene is achieved through a co-ordinated mechanism of the distal module with the proximal promoter. Recently, a far module was found to support constitutive expression of CYP3A4. The far module, like the distal module, is structurally clustered by a PXR response element (F-ER6) and elements recognized by HNF-4alpha (hepatocyte nuclear receptor-4alpha). We hypothesized that the far module supports PXR transactivation of the CYP3A4 gene. Consistent with the hypothesis, fusion of the far module to the proximal promoter of CYP3A4 markedly increased rifampicin-induced reporter activity. The increase was synergistically enhanced when both the far and distal modules were fused to the proximal promoter. The increase, however, was significantly reduced when the F-ER6 was disrupted. Chromatin immunoprecipitation detected the presence of PXR in the far module. Interestingly, HNF-4alpha increased the activity of the distal-proximal fused promoter, but decreased the activity of the far-proximal fused promoter. Given the fact that induction of CYP3A4 represents an important detoxification mechanism, the functional redundancy and synergistic interaction in supporting PXR transactivation suggest that the far and distal modules ensure the induction of CYP3A4 during chemical insults. The difference in responding to HNF-4alpha suggests that the magnitude of the induction is under control through various transcriptional networks.

  1. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    International Nuclear Information System (INIS)

    Molina-Molina, José-Manuel; Amaya, Esperanza; Grimaldi, Marina; Sáenz, José-María; Real, Macarena; Fernández, Mariana F.; Balaguer, Patrick; Olea, Nicolás

    2013-01-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed

  2. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Molina, José-Manuel, E-mail: molinajm@ugr.es [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Amaya, Esperanza [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Grimaldi, Marina [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Sáenz, José-María; Real, Macarena; Fernández, Mariana F. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Balaguer, Patrick [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Olea, Nicolás [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain)

    2013-10-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.

  3. Seatbelts in CAR therapy: How Safe Are CARS?

    Directory of Open Access Journals (Sweden)

    Kentaro Minagawa

    2015-05-01

    Full Text Available T-cells genetically redirected with a chimeric antigen receptor (CAR to recognize tumor antigens and kill tumor cells have been infused in several phase 1 clinical trials with success. Due to safety concerns related to on-target/off-tumor effects or cytokine release syndrome, however, strategies to prevent or abate serious adverse events are required. Pharmacologic therapies; suicide genes; or novel strategies to limit the cytotoxic effect only to malignant cells are under active investigations. In this review, we summarize results and toxicities of investigations employing CAR redirected T-cells, with a focus on published strategies to grant safety of this promising cellular application.

  4. Clinical trials of CAR-T cells in China

    OpenAIRE

    Bingshan Liu; Yongping Song; Delong Liu

    2017-01-01

    Abstract Novel immunotherapeutic agents targeting tumor-site microenvironment are revolutionizing cancer therapy. Chimeric antigen receptor (CAR)-engineered T cells are widely studied for cancer immunotherapy. CD19-specific CAR-T cells, tisagenlecleucel, have been recently approved for clinical application. Ongoing clinical trials are testing CAR designs directed at novel targets involved in hematological and solid malignancies. In addition to trials of single-target CAR-T cells, simultaneous...

  5. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    International Nuclear Information System (INIS)

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-01

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity

  6. Driving CAR T-cells forward

    Science.gov (United States)

    Jackson, Hollie J.; Rafiq, Sarwish; Brentjens, Renier J.

    2017-01-01

    The engineered expression of chimeric antigen receptors (CARs) on the surface of T cells enables the redirection of T-cell specificity. Early clinical trials using CAR T cells for the treatment of patients with cancer showed modest results, but the impressive outcomes of several trials of CD19-targeted CAR T cells in the treatment of patients with B-cell malignancies have generated an increased enthusiasm for this approach. Important lessons have been derived from clinical trials of CD19-specific CAR T cells, and ongoing clinical trials are testing CAR designs directed at novel targets involved in haematological and solid malignancies. In this Review, we discuss these trials and present strategies that can increase the antitumour efficacy and safety of CAR T-cell therapy. Given the fast-moving nature of this field, we only discuss studies with direct translational application currently or soon-to-be tested in the clinical setting. PMID:27000958

  7. T-cells fighting B-cell lymphoproliferative malignancies: the emerging field of CD19 CAR T-cell therapy

    NARCIS (Netherlands)

    Heijink, D. M.; Kater, A. P.; Hazenberg, M. D.; Hagenbeek, A.; Kersten, M. J.

    2016-01-01

    CAR T-cells are autologous T-cells transduced with a chimeric antigen receptor (CAR). The CAR contains an antigen recognition part (originating from an antibody), a T-cell receptor transmembrane and cytoplasmic signalling part, and one or more co-stimulatory domains. While CAR T-cells can be

  8. Nanobody Based Dual Specific CARs

    Directory of Open Access Journals (Sweden)

    Stijn De Munter

    2018-01-01

    Full Text Available Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR. High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity.

  9. Nanobody Based Dual Specific CARs.

    Science.gov (United States)

    De Munter, Stijn; Ingels, Joline; Goetgeluk, Glenn; Bonte, Sarah; Pille, Melissa; Weening, Karin; Kerre, Tessa; Abken, Hinrich; Vandekerckhove, Bart

    2018-01-30

    Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv) is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR). High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity.

  10. Antigen-specific T cell activation independently of the MHC: chimeric antigen receptor (CAR-redirected T cells.

    Directory of Open Access Journals (Sweden)

    Hinrich eAbken

    2013-11-01

    Full Text Available Adoptive T cell therapy has recently shown powerful in initiating a lasting anti-tumor response with spectacular therapeutic success in some cases. Specific T cell therapy, however, is limited since a number of cancer cells are not recognized by T cells due to various mechanisms including the limited availability of tumor-specific T cells and deficiencies in antigen processing or major histocompatibility complex (MHC expression of cancer cells. To make adoptive cell therapy applicable for the broad variety of cancer entities, patient's T cells are engineered ex vivo with pre-defined specificity by a recombinant chimeric antigen receptor (CAR which consists in the extracellular part of an antibody-derived domain for binding with a tumor-associated antigen and in the intracellular part of a TCR-derived signaling moiety for T cell activation. The specificity of CAR mediated T cell recognition is defined by the antibody domain, is independent of MHC presentation and can be extended to any target for which an antibody is available. We discuss the advantages and limitations of MHC-independent T cell targeting by an engineered CAR and review most significant progress recently made in early stage clinical trials to treat cancer.

  11. TNFα promotes CAR-dependent migration of leukocytes across epithelial monolayers

    Science.gov (United States)

    Morton, Penny E.; Hicks, Alexander; Ortiz-Zapater, Elena; Raghavan, Swetavalli; Pike, Rosemary; Noble, Alistair; Woodfin, Abigail; Jenkins, Gisli; Rayner, Emma; Santis, George; Parsons, Maddy

    2016-01-01

    Trans-epithelial migration (TEpM) of leukocytes during inflammation requires engagement with receptors expressed on the basolateral surface of the epithelium. One such receptor is Coxsackie and Adenovirus Receptor (CAR) that binds to Junctional Adhesion Molecule-like (JAM-L) expressed on leukocytes. Here we provide the first evidence that efficient TEpM of monocyte-derived THP-1 cells requires and is controlled by phosphorylation of CAR. We show that TNFα acts in a paracrine manner on epithelial cells via a TNFR1-PI3K-PKCδ pathway leading to CAR phosphorylation and subsequent transmigration across cell junctions. Moreover, we show that CAR is hyper-phosphorylated in vivo in acute and chronic lung inflammation models and this response is required to facilitate immune cell recruitment. This represents a novel mechanism of feedback between leukocytes and epithelial cells during TEpM and may be important in controlling responses to pro-inflammatory cytokines in pathological settings. PMID:27193388

  12. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  13. The Molecular Interaction of CAR and JAML Recruits the Central Cell Signal Transducer PI3K

    Energy Technology Data Exchange (ETDEWEB)

    Verdino, Petra; Witherden, Deborah A.; Havran, Wendy L.; Wilson, Ian A. (Scripps)

    2010-11-15

    Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif as delineated for the {alpha}{beta} T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.

  14. Advantages and Applications of CAR-Expressing Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Wolfgang eGlienke

    2015-02-01

    Full Text Available In contrast to donor T cells, natural killer (NK cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD. In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/ on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.

  15. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    Science.gov (United States)

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  16. Reporter cell lines for the characterization of the interactions between nuclear receptors and endocrine disruptors

    Directory of Open Access Journals (Sweden)

    marina egrimaldi

    2015-05-01

    Full Text Available Endocrine-disrupting chemicals (EDCs are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs which are primary targets of numerous environmental contaminants.The main NRs targeted by environmental contaminants are the estrogen (ER α, β and the androgen (AR receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ, the thyroid hormone (TRα, β, the retinoid X receptors (RXRα, β, γ and peroxisome proliferator-activated (PPAR α, γ receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife.In this review we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants and cosmetics.

  17. Cars, Cars, Cars

    Science.gov (United States)

    McIntosh, Phyllis

    2013-01-01

    Cars are the focus of this feature article, which explores such topics as the history of cars in the United States, the national highway system, safety and pollution concerns, mobility and freedom for women, classic car shows, and the road trip in American literature and film. Also included are links to the websites of Automobile in American Life…

  18. CARs in the Lead Against Multiple Myeloma

    DEFF Research Database (Denmark)

    Ormhøj, Maria; Bedoya, Felipe; Frigault, Matthew J.

    2017-01-01

    The recent clinical success of CD19-directed chimeric antigen receptor (CAR) T cell therapy in chronic and acute leukemia has led to increased interest in broadening this technology to other hematological malignancies and solid tumors. Now, advances are being made using CAR T cell technology...... to target myeloma antigens such as B cell maturation antigen (BCMA), CD138, and kappa-light chain as well as CD19 on putative myeloma stem cells. To date, only a limited number of multiple myeloma patients have received CAR T cell therapy but preliminary results have been encouraging. In this review, we...... summarize the recently reported results of clinical trials conducted utilizing CAR T cell therapy in multiple myeloma (MM)....

  19. Activation of pregnane X receptor by pregnenolone 16 α-carbonitrile prevents high-fat diet-induced obesity in AKR/J mice.

    Directory of Open Access Journals (Sweden)

    Yongjie Ma

    Full Text Available Pregnane X receptor (PXR is known to function as a xenobiotic sensor to regulate xenobiotic metabolism through selective transcription of genes responsible for maintaining physiological homeostasis. Here we report that the activation of PXR by pregnenolone 16α-carbonitrile (PCN in AKR/J mice can prevent the development of high-fat diet-induced obesity and insulin resistance. The beneficial effects of PCN treatment are seen with reduced lipogenesis and gluconeogenesis in the liver, and lack of hepatic accumulation of lipid and lipid storage in the adipose tissues. RT-PCR analysis of genes involved in gluconeogenesis, lipid metabolism and energy homeostasis reveal that PCN treatment on high-fat diet-fed mice reduces expression in the liver of G6Pase, Pepck, Cyp7a1, Cd36, L-Fabp, Srebp, and Fas genes and slightly enhances expression of Cyp27a1 and Abca1 genes. RT-PCR analysis of genes involved in adipocyte differentiation and lipid metabolism in white adipose tissue show that PCN treatment reduces expression of Pparγ2, Acc1, Cd36, but increases expression of Cpt1b and Pparα genes in mice fed with high-fat diet. Similarly, PCN treatment of animals on high-fat diet increases expression in brown adipose tissue of Pparα, Hsl, Cpt1b, and Cd36 genes, but reduces expression of Acc1 and Scd-1 genes. PXR activation by PCN in high-fat diet fed mice also increases expression of genes involved in thermogenesis in brown adipose tissue including Dio2, Pgc-1α, Pgc-1β, Cidea, and Ucp-3. These results verify the important function of PXR in lipid and energy metabolism and suggest that PXR represents a novel therapeutic target for prevention and treatment of obesity and insulin resistance.

  20. Gene expression profiling in the liver of CD-1 mice to characterize the hepatotoxicity of triazole fungicides

    International Nuclear Information System (INIS)

    Goetz, Amber K.; Bao, Wenjun; Ren, Hongzu; Schmid, Judith E.; Tully, Douglas B.; Wood, Carmen; Rockett, John C.; Narotsky, Michael G.; Sun, Guobin; Lambert, Guy R.; Thai, S.-F.; Wolf, Douglas C.; Nesnow, Stephen; Dix, David J.

    2006-01-01

    Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and hypotheses on potential mechanisms of action for this class of chemicals. Adult male CD-1 mice were exposed daily for 14 days to fluconazole, myclobutanil, propiconazole, or triadimefon at three dose levels by oral gavage. Doses were based on previous studies that resulted in liver hypertrophy or hepatotoxicity. All four triazoles caused hepatocyte hypertrophy, and all except triadimefon increased relative liver/body weight ratios at the middle and high dose levels. CYP enzyme activities were also induced by all four triazoles at the middle and high doses as measured by the dealkylations of four alkoxyresorufins, although some differences in substrate specificity were observed. Consistent with this common histopathology and biochemistry, several CYP and xenobiotic metabolizing enzyme (XME) genes were differentially expressed in response to all four (Cyp2d26 and Cyp3a11), or three of the four (Cyp2c40, Cyp2c55, Ces2, Slco1a4) triazoles. Differential expression of numerous other CYP and XME genes discriminated between the various triazoles, consistent with differences in CYP enzyme activities, and indicative of possible differences in mechanisms of hepatotoxicity or dose response. Multiple isoforms of Cyp1a, 2b, 2c, 3a, and other CYP and XME genes regulated by the nuclear receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) were differentially expressed following triazole exposure. Based on these results, we expanded on our original hypothesis that triazole hepatotoxicity was mediated by CYP induction, to include additional XME genes, many of which are modulated by CAR and PXR

  1. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor.

    Science.gov (United States)

    Adachi, Keishi; Kano, Yosuke; Nagai, Tomohiko; Okuyama, Namiko; Sakoda, Yukimi; Tamada, Koji

    2018-04-01

    Infiltration, accumulation, and survival of chimeric antigen receptor T (CAR-T) cells in solid tumors is crucial for tumor clearance. We engineered CAR-T cells to express interleukin (IL)-7 and CCL19 (7 × 19 CAR-T cells), as these factors are essential for the maintenance of T-cell zones in lymphoid organs. In mice, 7 × 19 CAR-T cells achieved complete regression of pre-established solid tumors and prolonged mouse survival, with superior anti-tumor activity compared to conventional CAR-T cells. Histopathological analyses showed increased infiltration of dendritic cells (DC) and T cells into tumor tissues following 7 × 19 CAR-T cell therapy. Depletion of recipient T cells before 7 × 19 CAR-T cell administration dampened the therapeutic effects of 7 × 19 CAR-T cell treatment, suggesting that CAR-T cells and recipient immune cells collaborated to exert anti-tumor activity. Following treatment of mice with 7 × 19 CAR-T cells, both recipient conventional T cells and administered CAR-T cells generated memory responses against tumors.

  2. Marine and semi-synthetic hydroxysteroids as new scaffolds for pregnane x receptor modulation.

    Digital Repository Service at National Institute of Oceanography (India)

    Sepe, V.; DiLeva, F.S.; D'Amore, C.; Festa, C.; DeMarino, S.; Renga, B.; D’Auria, M.V.; Novellino, E.; Limongelli, V.; DeSouza, L.; Majik, M.; Zampella, A.; Fiorucci, S.

    that ergost-5-en-3?-ol (4) induces PXR transactivation in HepG2 cells and stimulates the expression of the PXR target gene CYP3A4. To shed light on the molecular basis of the interaction between these ligands and PXR, we investigated, through docking...

  3. Assessment of human pregnane X receptor involvement in pesticide-mediated activation of CYP3A4 gene.

    Science.gov (United States)

    Matsubara, Tsutomu; Noracharttiyapot, Wachiraporn; Toriyabe, Takayoshi; Yoshinari, Kouichi; Nagata, Kiyoshi; Yamazoe, Yasushi

    2007-05-01

    Assessment of foreign chemical inducibility on CYP3A4 is necessary to optimize drug therapies. The properties of chemicals such as pesticides, however, are not well investigated. In the present study, properties of various pesticides on human CYP3A4 induction have been tested using HepG2-derived cells stably expressing the CYP3A4 promoter/enhancer (3-1-10 cells) and the human pregnane X receptor (hPXR)-small interfering RNA (siRNA) system. Among the examined pesticides, 13 pesticides were observed to activate the CYP3A4 gene. Surprisingly, pyributicarb was found to increase the CYP3A4 reporter activity at 0.1 to 1 microM more strongly than typical CYP3A4 inducer rifampicin. Expression of hPXR-siRNA clearly diminished the pyributicarb-stimulated CYP3A4 reporter activity in 3-1-10 cells and decreased the endogenous CYP3A4 mRNA levels in HepG2 cells. Pyributicarb caused enhancement of CYP3A4-derived reporter activity in mouse livers introduced with hPXR by adenovirus. These results indicate pyributicarb as a potent activator of CYP3A4 gene, suggesting the existence of pesticides leading to CYP3A4 induction in our environment.

  4. Building a CAR Garage: Preparing for the Delivery of Commercial CAR T Cell Products at Memorial Sloan Kettering Cancer Center.

    Science.gov (United States)

    Perica, Karlo; Curran, Kevin J; Brentjens, Renier J; Giralt, Sergio A

    2018-03-01

    Two commercial chimeric antigen receptor (CAR) T cell therapies for CD19-expressing B cell malignancies, Kymriah and Yescarta, have recently been approved by the Food and Drug Administration. The administration of CAR T cells is a complex endeavor involving cell manufacture, tracking and shipping of apheresis products, and management of novel and severe toxicities. At Memorial Sloan Kettering Cancer Center, we have identified 8 essential tasks that define the CAR T cell workflow. In this review, we discuss practical aspects of CAR T cell program development, including clinical, administrative, and regulatory challenges for successful implementation. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  5. Young T cells age during a redirected anti-tumour attack: chimeric antigen receptor (CAR-provided dual costimulation is half the battle.

    Directory of Open Access Journals (Sweden)

    Andreas A Hombach

    2013-06-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells showed spectacular efficacy in the treatment of leukaemia in recent early phase trials. Patient's T cells were ex vivo genetically engineered with a CAR, amplified and re-administered to the patient. While T cells mediating the primary response were predominantly of young effector and central memory phenotype, repetitive antigen engagement irreversible triggers T cell maturation leaving late memory cells with the KLRG-1+ CD57+ CD7- CCR7- phenotype in the long-term. These cells preferentially accumulate in the periphery, are hypo-responsive upon TCR engagement and prone to activation-induced cell death. A recent report indicates that those T cells can be rescued by CAR provided CD28 and OX40 (CD134 stimulation. We discuss the strategy with respect to prolong the anti-tumour response and to improve the over-all efficacy of adoptive cell therapy.

  6. Establishing guidelines for CAR-T cells: challenges and considerations.

    Science.gov (United States)

    Wang, Wei; Qin, Di-Yuan; Zhang, Bing-Lan; Wei, Wei; Wang, Yong-Sheng; Wei, Yu-Quan

    2016-04-01

    T cells, genetically modified by chimeric antigen receptors (CAR-T), are endowed with specificity to a desired antigen and are cytotoxic to cells expressing the targeted antigen. CAR-T-based cancer immunotherapy is a promising therapy for curing hematological malignancy, such as acute lymphoid leukemia, and is promising for extending their efficacy to defeat solid tumors. To date, dozens of different CAR-T cells have been evaluated in clinical trials to treat tumors; this necessitates the establishment of guidelines for the production and application of CAR-T cells. However, it is challenging to standardize CAR-T cancer therapy because it involves a combination of gene therapy and cell therapy. In this review, we compare the existing guidelines for CAR-T cells and discuss the challenges and considerations for establishing guidance for CAR-T-based cancer immunotherapy.

  7. ErbB-targeted CAR T-cell immunotherapy of cancer.

    Science.gov (United States)

    Whilding, Lynsey M; Maher, John

    2015-01-01

    Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.

  8. New development in CAR-T cell therapy.

    Science.gov (United States)

    Wang, Zhenguang; Wu, Zhiqiang; Liu, Yang; Han, Weidong

    2017-02-21

    Chimeric antigen receptor (CAR)-engineered T cells (CAR-T cells) have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL) with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.

  9. New development in CAR-T cell therapy

    Directory of Open Access Journals (Sweden)

    Zhenguang Wang

    2017-02-01

    Full Text Available Abstract Chimeric antigen receptor (CAR-engineered T cells (CAR-T cells have yielded unprecedented efficacy in B cell malignancies, most remarkably in anti-CD19 CAR-T cells for B cell acute lymphoblastic leukemia (B-ALL with up to a 90% complete remission rate. However, tumor antigen escape has emerged as a main challenge for the long-term disease control of this promising immunotherapy in B cell malignancies. In addition, this success has encountered significant hurdles in translation to solid tumors, and the safety of the on-target/off-tumor recognition of normal tissues is one of the main reasons. In this mini-review, we characterize some of the mechanisms for antigen loss relapse and new strategies to address this issue. In addition, we discuss some novel CAR designs that are being considered to enhance the safety of CAR-T cell therapy in solid tumors.

  10. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  11. Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia

    Science.gov (United States)

    Pascussi, Jean Marc; Robert, Agnes; Nguyen, Minh; Walrant-Debray, Odile; Garabedian, Michèle; Martin, Pascal; Pineau, Thierry; Saric, Jean; Navarro, Fréderic; Maurel, Patrick; Vilarem, Marie Josè

    2005-01-01

    Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D3-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16α-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16α-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D3. Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between –326 and –142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D3 hormonal activity and calcium homeostasis through the activation of PXR. PMID:15630458

  12. Helix 11 Dynamics is Critical for Constitutive Androstane Receptor Activity

    OpenAIRE

    Wright, Edward; Busby, Scott A.; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R.; Fernandez, Elias J.

    2011-01-01

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizi...

  13. Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling

    International Nuclear Information System (INIS)

    Magno, Aaron L.; Ingley, Evan; Brown, Suzanne J.; Conigrave, Arthur D.; Ratajczak, Thomas; Ward, Bryan K.

    2011-01-01

    Highlights: → A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. → The second zinc finger of LIM domain 1 of testin is critical for interaction. → Testin bound to a region of the receptor tail important for cell signalling. → Testin and receptor interaction was confirmed in mammalian (HEK293) cells. → Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependent stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.

  14. Dynamic imaging for CAR-T-cell therapy.

    Science.gov (United States)

    Emami-Shahri, Nia; Papa, Sophie

    2016-04-15

    Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behavein vivoand in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans. © 2016 Authors; published by Portland Press Limited.

  15. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside.

    Science.gov (United States)

    Zhang, Qi; Zhang, Zimu; Peng, Meiyu; Fu, Shuyu; Xue, Zhenyi; Zhang, Rongxin

    2016-01-01

    The chimeric antigen receptor (CAR) is a genetically engineered receptor that combines a scFv domain, which specifically recognizes the tumor-specific antigen, with T cell activation domains. CAR-T cell therapies have demonstrated tremendous efficacy against hematologic malignancies in many clinical trials. Recent studies have extended these efforts to the treatment of solid tumors. However, the outcomes of CAR-T cell therapy for solid tumors are not as remarkable as the outcomes have been for hematologic malignancies. A series of hurdles has arisen with respect to CAR-T cell-based immunotherapy, which needs to be overcome to target solid tumors. The major challenge for CAR-T cell therapy in solid tumors is the selection of the appropriate specific antigen to demarcate the tumor from normal tissue. In this review, we discuss the application of CAR-T cells to gastrointestinal and hepatic carcinomas in preclinical and clinical research. Furthermore, we analyze the usefulness of several specific markers in the study of gastrointestinal tumors and hepatic carcinoma.

  16. Toxicity and management in CAR T-cell therapy

    Directory of Open Access Journals (Sweden)

    Challice L Bonifant

    2016-01-01

    Full Text Available T cells can be genetically modified to target tumors through the expression of a chimeric antigen receptor (CAR. Most notably, CAR T cells have demonstrated clinical efficacy in hematologic malignancies with more modest responses when targeting solid tumors. However, CAR T cells also have the capacity to elicit expected and unexpected toxicities including: cytokine release syndrome, neurologic toxicity, “on target/off tumor” recognition, and anaphylaxis. Theoretical toxicities including clonal expansion secondary to insertional oncogenesis, graft versus host disease, and off-target antigen recognition have not been clinically evident. Abrogating toxicity has become a critical step in the successful application of this emerging technology. To this end, we review the reported and theoretical toxicities of CAR T cells and their management.

  17. CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α

    Science.gov (United States)

    Gao, Jie; Yan, Jiong; Xu, Meishu; Ren, Songrong

    2015-01-01

    The constitutive androstane receptor (CAR) and peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) are master regulators of drug metabolism and gluconeogenesis, respectively. In supporting the cross talk between drug metabolism and energy metabolism, activation of CAR has been shown to suppress hepatic gluconeogenesis and ameliorate hyperglycemia in vivo, but the underlying molecular mechanism remains elusive. In this study, we demonstrated that CAR suppressed hepatic gluconeogenic gene expression through posttranslational regulation of the subcellular localization and degradation of PGC1α. Activated CAR translocated into the nucleus and served as an adaptor protein to recruit PGC1α to the Cullin1 E3 ligase complex for ubiquitination. The interaction between CAR and PGC1α also led to their sequestration within the promyelocytic leukemia protein-nuclear bodies, where PGC1α and CAR subsequently underwent proteasomal degradation. Taken together, our findings revealed an unexpected function of CAR in recruiting an E3 ligase and targeting the gluconeogenic activity of PGC1α. Both drug metabolism and gluconeogenesis are energy-demanding processes. The negative regulation of PGC1α by CAR may represent a cellular adaptive mechanism to accommodate energy-restricted conditions. PMID:26407237

  18. Fine-tuning the CAR spacer improves T-cell potency

    Science.gov (United States)

    Watanabe, Norihiro; Bajgain, Pradip; Sukumaran, Sujita; Ansari, Salma; Heslop, Helen E.; Rooney, Cliona M.; Brenner, Malcolm K.; Leen, Ann M.; Vera, Juan F.

    2016-01-01

    ABSTRACT The adoptive transfer of genetically engineered T cells expressing chimeric antigen receptors (CARs) has emerged as a transformative cancer therapy with curative potential, precipitating a wave of preclinical and clinical studies in academic centers and the private sector. Indeed, significant effort has been devoted to improving clinical benefit by incorporating accessory genes/CAR endodomains designed to enhance cellular migration, promote in vivo expansion/persistence or enhance safety by genetic programming to enable the recognition of a tumor signature. However, our efforts centered on exploring whether CAR T-cell potency could be enhanced by modifying pre-existing CAR components. We now demonstrate how molecular refinements to the CAR spacer can impact multiple biological processes including tonic signaling, cell aging, tumor localization, and antigen recognition, culminating in superior in vivo antitumor activity. PMID:28180032

  19. Biomonitoring of non-dioxin-like polychlorinated biphenyls in transgenic Arabidopsis using the mammalian pregnane X receptor system: a role of pectin in pollutant uptake.

    Directory of Open Access Journals (Sweden)

    Lieming Bao

    Full Text Available Polychlorinated biphenyls (PCBs are persistent organic pollutants damaging to human health and the environment. Techniques to indicate PCB contamination in planta are of great interest to phytoremediation. Monitoring of dioxin-like PCBs in transgenic plants carrying the mammalian aryl hydrocarbon receptor (AHR has been reported previously. Herein, we report the biomonitoring of non-dioxin-like PCBs (NDL-PCBs using the mammalian pregnane X receptor (PXR. In the transgenic Arabidopsis designated NDL-PCB Reporter, the EGFP-GUS reporter gene was driven by a promoter containing 18 repeats of the xenobiotic response elements, while PXR and its binding partner retinoid X receptor (RXR were coexpressed. Results showed that, in live cells, the expression of reporter gene was insensitive to endogenous lignans, carotenoids and flavonoids, but responded to all tested NDL-PCBs in a dose- and time- dependent manner. Two types of putative PCB metabolites, hydroxy- PCBs and methoxy- PCBs, displayed different activation properties. The vascular tissues seemed unable to transport NDL-PCBs, whereas mutation in QUASIMODO1 encoding a 1,4-galacturonosyltransferase led to reduced PCB accumulation in Arabidopsis, revealing a role for pectin in the control of PCB translocation. Taken together, the reporter system may serve as a useful tool to biomonitor the uptake and metabolism of NDL-PCBs in plants.

  20. Genetic engineering of chimeric antigen receptors using lamprey derived variable lymphocyte receptors

    Directory of Open Access Journals (Sweden)

    Robert Moot

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are used to redirect effector cell specificity to selected cell surface antigens. Using CARs, antitumor activity can be initiated in patients with no prior tumor specific immunity. Although CARs have shown promising clinical results, the technology remains limited by the availability of specific cognate cell target antigens. To increase the repertoire of targetable tumor cell antigens we utilized the immune system of the sea lamprey to generate directed variable lymphocyte receptors (VLRs. VLRs serve as membrane bound and soluble immune effectors analogous but not homologous to immunoglobulins. They have a fundamentally different structure than immunoglobulin (Ig-based antibodies while still demonstrating high degrees of specificity and affinity. To test the functionality of VLRs as the antigen recognition domain of CARs, two VLR-CARs were created. One contained a VLR specific for a murine B cell leukemia and the other contained a VLR specific for the human T cell surface antigen, CD5. The CAR design consisted of the VLR sequence, myc-epitope tag, CD28 transmembrane domain, and intracellular CD3ζ signaling domain. We demonstrate proof of concept, including gene transfer, biosynthesis, cell surface localization, and effector cell activation for multiple VLR-CAR designs. Therefore, VLRs provide an alternative means of CAR-based cancer recognition.

  1. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes

    International Nuclear Information System (INIS)

    Bjork, J.A.; Butenhoff, J.L.; Wallace, K.B.

    2011-01-01

    Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surface active fluorochemicals that, due to their exceptional stability to degradation, are persistent in the environment. Both PFOA and PFOS are eliminated slowly in humans, with geometric mean serum elimination half-lives estimated at 3.5 and 4.8 years, respectively. The biological activity of PFOA and PFOS in rodents is attributed primarily to transactivation of the nuclear receptor peroxisome proliferator activated receptor alpha (PPARA), which is an important regulator of lipid and carbohydrate metabolism. However, there are significant species-specific differences in the response to PFOA and PFOS exposure; non-rodent species, including humans, are refractory to several but not all of these effects. Many of the metabolic effects have been attributed to the activation of PPARA; however, recent studies using PPARα knockout mice demonstrate residual PPARA-independent effects, some of which may involve the activation of alternate nuclear receptors, including NR1I2 (PXR), NR1I3 (CAR), NR1H3 (LXRA), and NR1H4 (FXR). The objective of this investigation was to characterize the activation of multiple nuclear receptors and modulation of metabolic pathways associated with exposure to PFOA and PFOS, and to compare and contrast the effects between rat and human primary liver cells using quantitative reverse transcription PCR (RT-qPCR). Our results demonstrate that multiple nuclear receptors participate in the metabolic response to PFOA and PFOS exposure resulting in a substantial shift from carbohydrate metabolism to fatty acid oxidation and hepatic triglyceride accumulation in rat liver cells. This shift in intermediary metabolism was more pronounced for PFOA than PFOS. Furthermore, while there is some similarity in the activation of metabolic pathways between rat and humans, particularly in PPARA regulated responses; the changes in primary human cells were more subtle and possibly reflect an adaptive

  2. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in patients with haematological and solid malignancies: protocol for a systematic review and meta-analysis.

    Science.gov (United States)

    Grigor, Emma J M; Fergusson, Dean A; Haggar, Fatima; Kekre, Natasha; Atkins, Harold; Shorr, Risa; Holt, Robert A; Hutton, Brian; Ramsay, Tim; Seftel, Matthew; Jonker, Derek; Daugaard, Mads; Thavorn, Kednapa; Presseau, Justin; Lalu, Manoj M

    2017-12-29

    Patients with relapsed or refractory malignancies have a poor prognosis. Immunotherapy with chimeric antigen receptor T (CAR-T) cells redirects a patient's immune cells against the tumour antigen. CAR-T cell therapy has demonstrated promise in treating patients with several haematological malignancies, including acute B-cell lymphoblastic leukaemia and B-cell lymphomas. CAR-T cell therapy for patients with other solid tumours is also being tested. Safety is an important consideration in CAR-T cell therapy given the potential for serious adverse events, including death. Previous reviews on CAR-T cell therapy have been limited in scope and methodology. Herein, we present a protocol for a systematic review to identify CAR-T cell interventional studies and examine the safety and efficacy of this therapy in patients with haematology malignancies and solid tumours. We will search MEDLINE, including In-Process and Epub Ahead of Print, EMBASE and the Cochrane Central Register of Controlled Trials from 1946 to 22 February 2017. Studies will be screened by title, abstract and full text independently and in duplicate. Studies that report administering CAR-T cells of any chimeric antigen receptor construct targeting antigens in patients with haematological malignancies and solid tumours will be eligible for inclusion. Outcomes to be extracted will include complete response rate (primary outcome), overall response rate, overall survival, relapse and adverse events. A meta-analysis will be performed to synthesise the prevalence of outcomes reported as proportions with 95% CIs. The potential for bias within included studies will be assessed using a modified Institute of Health Economics tool. Heterogeneity of effect sizes will be determined using the Cochrane I 2 statistic. The review findings will be submitted for peer-reviewed journal publication and presented at relevant conferences and scientific meetings to promote knowledge transfer. CRD42017075331. © Article author(s) (or

  3. A Global Genomic Screening Strategy Reveals Diverse Activators of Constitutive Activated Receptor (CAR)

    Science.gov (United States)

    A comprehensive survey of conditions that activate CAR in the mouse liver has not been carried out but would be useful in understanding their impact on CAR-dependent liver tumor induction. A gene signature dependent on CAR activation was identified by comparing the transcript pr...

  4. CAR-T therapy for leukemia: progress and challenges.

    Science.gov (United States)

    Wang, Xin; Xiao, Qing; Wang, Zhe; Feng, Wen-Li

    2017-04-01

    Despite the rapid development of therapeutic strategies, leukemia remains a type of difficult-to-treat hematopoietic malignancy that necessitates introduction of more effective treatment options to improve life expectancy and quality of patients. Genetic engineering in adoptively transferred T cells to express antigen-specific chimeric antigen receptors (CARs) has proved highly powerful and efficacious in inducing sustained responses in patients with refractory malignancies, as exemplified by the success of CD19-targeting CAR-T treatment in patients with relapsed acute lymphoblastic leukemia. Recent strategies, including manipulating intracellular activating domains and transducing viral vectors, have resulted in better designed and optimized CAR-T cells. This is further facilitated by the rapid identification of an accumulating number of potential leukemic antigens that may serve as therapeutic targets for CAR-T cells. This review will provide a comprehensive background and scrutinize recent important breakthrough studies on anti-leukemia CAR-T cells, with focus on recently identified antigens for CAR-T therapy design and approaches to overcome critical challenges. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Triclocarban mediates induction of xenobiotic metabolism through activation of the constitutive androstane receptor and the estrogen receptor alpha.

    Directory of Open Access Journals (Sweden)

    Mei-Fei Yueh

    Full Text Available Triclocarban (3,4,4'-trichlorocarbanilide, TCC is used as a broad-based antimicrobial agent that is commonly added to personal hygiene products. Because of its extensive use in the health care industry and resistance to degradation in sewage treatment processes, TCC has become a significant waste product that is found in numerous environmental compartments where humans and wildlife can be exposed. While TCC has been linked to a range of health and environmental effects, few studies have been conducted linking exposure to TCC and induction of xenobiotic metabolism through regulation by environmental sensors such as the nuclear xenobiotic receptors (XenoRs. To identify the ability of TCC to activate xenobiotic sensors, we monitored XenoR activities in response to TCC treatment using luciferase-based reporter assays. Among the XenoRs in the reporter screening assay, TCC promotes both constitutive androstane receptor (CAR and estrogen receptor alpha (ERα activities. TCC treatment to hUGT1 mice resulted in induction of the UGT1A genes in liver. This induction was dependent upon the constitutive active/androstane receptor (CAR because no induction occurred in hUGT1Car(-/- mice. Induction of the UGT1A genes by TCC corresponded with induction of Cyp2b10, another CAR target gene. TCC was demonstrated to be a phenobarbital-like activator of CAR in receptor-based assays. While it has been suggested that TCC be classified as an endocrine disruptor, it activates ERα leading to induction of Cyp1b1 in female ovaries as well as in promoter activity. Activation of ERα by TCC in receptor-based assays also promotes induction of human CYP2B6. These observations demonstrate that TCC activates nuclear xenobiotic receptors CAR and ERα both in vivo and in vitro and might have the potential to alter normal physiological homeostasis. Activation of these xenobiotic-sensing receptors amplifies gene expression profiles that might represent a mechanistic base for

  7. Towards safe and effective CD38-CAR T cell therapy for myeloma

    NARCIS (Netherlands)

    Drent, Esther

    2018-01-01

    Immunotherapy is a promising field within cancer therapy. The recent progresses resulted in 'Immunotherapy for the treatment of cancer' as break-through of the year in 2013. This was partly due to the great successes with Chimeric Antigen Receptor (CAR) T cell therapy. With CAR T cells, recognition

  8. Development of CAR T cells designed to improve antitumor efficacy and safety

    OpenAIRE

    Jaspers, Janneke E.; Brentjens, Renier J.

    2017-01-01

    Chimeric antigen receptor (CAR) T cell therapy has shown promising efficacy against hematologic malignancies. Antitumor activity of CAR T cells, however, needs to be improved to increase therapeutic efficacy in both hematologic and solid cancers. Limitations to overcome are ‘on-target, off-tumor’ toxicity, antigen escape, short CAR T cell persistence, little expansion, trafficking to the tumor and inhibition of T cell activity by an inhibitory tumor microenvironment. Here we will discuss how ...

  9. New Approaches in CAR-T Cell Immunotherapy for Breast Cancer.

    Science.gov (United States)

    Wang, Jinghua; Zhou, Penghui

    2017-01-01

    Despite significant advances in surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of death from malignant tumors among women. Immunotherapy has recently become a critical component of breast cancer treatment with encouraging activity and mild safety profiles. CAR-T therapy using genetically modifying T cells with chimeric antigen receptors (CAR) is the most commonly used approach to generate tumor-specific T cells. It has shown good curative effect for a variety of malignant diseases, especially for hematological malignancies. In this review, we briefly introduce the history and the present state of CAR research. Then we discuss the barriers of solid tumors for CARs application and possible strategies to improve therapeutic response with a focus on breast cancer. At last, we outlook the future directions of CAR-T therapy including managing toxicities and developing universal CAR-T cells.

  10. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  11. Chimeric antigen receptor T-cell therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Kheng Newick

    2016-01-01

    Full Text Available Chimeric antigen receptor (CAR T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias. This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.

  12. [Current Status and Challenges of CAR-T Immunotherapy in Hematologic Malignancies -Review].

    Science.gov (United States)

    Cheng, Xin; Wang, Ya-Jie; Feng, Shuai; Wu, Ya-Yun; Yang, Tong-Hua; Lai, Xun

    2018-04-01

    The chimeric antigen receptor (CAR) T cell therapy has gradually became a new trend in the treatment of refractory and relapsed hematologic malignancies by developing for 30 years. With the exciting development of genetic engineering, CAR-T technology has subjected to 4 generations of innovation. Structure of CAR-T started from a single signal molecule to 2 or more than 2 co-stimulatory molecules, and then coding the CAR gene or promoter. CAR-T can specifically recognize tumor antigens, and does not be restricted by major histocompatibility complex (MHC), thus making a breakthrough in clinical treatment. In this review, the history, structure and mechanism of action of CAR-T, as well as the current status and challenges of CAR-T immunotherapy in acute lymphoblastic leukemia, acute myeloid leukemia, chronic myeloid leukemia and multiple myeloma are summarized.

  13. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  14. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.

    Science.gov (United States)

    Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L

    2018-05-02

    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.

  15. An analytical biomarker for treatment of patients with recurrent B-ALL after remission induced by infusion of anti-CD19 chimeric antigen receptor T (CAR-T) cells.

    Science.gov (United States)

    Zhang, Yajing; Zhang, Wenying; Dai, Hanren; Wang, Yao; Shi, Fengxia; Wang, Chunmeng; Guo, Yelei; Liu, Yang; Chen, Meixia; Feng, Kaichao; Zhang, Yan; Liu, Chuanjie; Yang, Qingming; Li, Suxia; Han, Weidong

    2016-04-01

    Anti-CD19 chimeric antigen receptor-modified T (CAR-T-19) cells have emerged as a powerful targeted immunotherapy for B-cell lineage acute lymphoblastic leukemia with a remarkable clinical response in recent trials. Nonetheless, few data are available on the subsequent clinical monitoring and treatment of the patients, especially those with disease recurrence after CAR-T-19 cell infusion. Here, we analyzed three patients who survived after our phase I clinical trial and who were studied by means of biomarkers reflecting persistence of CAR-T-19 cells in vivo and predictive factors directing further treatment. One patient achieved 9-week sustained complete remission and subsequently received an allogeneic hematopoietic stem cell transplant. Another patient who showed relapse after 20 weeks without detectable leukemia in the cerebrospinal fluid after CAR-T-19 cell treatment was able to achieve a morphological remission under the influence of stand-alone low-dose chemotherapeutic agents. The third patient gradually developed extensive extramedullary involvement in tissues with scarce immune- cell infiltration during a long period of hematopoietic remission after CAR-T-19 cell therapy. Long-term and discontinuous increases in serum cytokines (mainly interleukin 6 and C-reactive protein) were identified in two patients (Nos. 1 and 6) even though only a low copy number of CAR molecules could be detected in their peripheral blood. This finding was suggestive of persistent functional activity of CAR-T-19 cells. Combined analyses of laboratory biomarkers with their clinical manifestations before and after salvage treatment showed that the persistent immunosurveillance mediated by CAR-T-19 cells would inevitably potentiate the leukemia-killing effectiveness of subsequent chemotherapy in patients who showed relapse after CAR-T-19-induced remission.

  16. CCR research lays foundation for FDA approval of CAR T cell therapy Yescarta | Center for Cancer Research

    Science.gov (United States)

    Decades ago, the use of chimeric antigen receptor (CAR)-expressing T cells as an effective form of immunotherapy was a speculative idea. In 2010, a breakthrough clinical trial conducted by Steven Rosenberg, M.D., Ph.D., and his clinical team showed that CAR T cells recognizing the CD19 receptor were useful in the treatment of some types of B-cell malignancies. Read more...

  17. CRISPR-Cas9 mediated LAG-3 disruption in CAR-T cells.

    Science.gov (United States)

    Zhang, Yongping; Zhang, Xingying; Cheng, Chen; Mu, Wei; Liu, Xiaojuan; Li, Na; Wei, Xiaofei; Liu, Xiang; Xia, Changqing; Wang, Haoyi

    2017-12-01

    T cells engineered with chimeric antigen receptor (CAR) have been successfully applied to treat advanced refractory B cell malignancy. However, many challenges remain in extending its application toward the treatment of solid tumors. The immunosuppressive nature of tumor microenvironment is considered one of the key factors limiting CAR-T efficacy. One negative regulator of Tcell activity is lymphocyte activation gene-3 (LAG-3). We successfully generated LAG-3 knockout Tand CAR-T cells with high efficiency using CRISPR-Cas9 mediated gene editing and found that the viability and immune phenotype were not dramatically changed during in vitro culture. LAG-3 knockout CAR-T cells displayed robust antigen-specific antitumor activity in cell culture and in murine xenograft model, which is comparable to standard CAR-T cells. Our study demonstrates an efficient approach to silence immune checkpoint in CAR-T cells via gene editing.

  18. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available Cell microparticles (MPs released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5, and serotype 35 (HAdV35, respectively. We found that MPs derived from CHO cells (MP-donor cells constitutively expressing CAR (MP-CAR or CD46 (MP-CD46 were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  19. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

    OpenAIRE

    Kebriaei, Partow; Singh, Harjeet; Huls, M. Helen; Figliola, Matthew J.; Bassett, Roland; Olivares, Simon; Jena, Bipulendu; Dawson, Margaret J.; Kumaresan, Pappanaicken R.; Su, Shihuang; Maiti, Sourindra; Dai, Jianliang; Moriarity, Branden; Forget, Marie-Andrée; Senyukov, Vladimir

    2016-01-01

    BACKGROUND. T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR.

  20. Posttransplant chimeric antigen receptor therapy.

    Science.gov (United States)

    Smith, Melody; Zakrzewski, Johannes; James, Scott; Sadelain, Michel

    2018-03-08

    Therapeutic T-cell engineering is emerging as a powerful approach to treat refractory hematological malignancies. Its most successful embodiment to date is based on the use of second-generation chimeric antigen receptors (CARs) targeting CD19, a cell surface molecule found in most B-cell leukemias and lymphomas. Remarkable complete remissions have been obtained with autologous T cells expressing CD19 CARs in patients with relapsed, chemo-refractory B-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. Allogeneic CAR T cells may also be harnessed to treat relapse after allogeneic hematopoietic stem cell transplantation. However, the use of donor T cells poses unique challenges owing to potential alloreactivity. We review different approaches to mitigate the risk of causing or aggravating graft-versus-host disease (GVHD), including CAR therapies based on donor leukocyte infusion, virus-specific T cells, T-cell receptor-deficient T cells, lymphoid progenitor cells, and regulatory T cells. Advances in CAR design, T-cell selection and gene editing are poised to enable the safe use of allogeneic CAR T cells without incurring GVHD. © 2018 by The American Society of Hematology.

  1. CuseCar--community car-sharing program : car sharing lessons learned.

    Science.gov (United States)

    2011-08-01

    CuseCar of Syracuse launched services in December 2008 with 3 Toyota Prius Hybrids. CuseCar initially, due to : concerns about availability, limited membership to Origination Sponsor Locations, which in turn developed few : members. In 2009 CuseCar o...

  2. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.

    Science.gov (United States)

    Hege, Kristen M; Bergsland, Emily K; Fisher, George A; Nemunaitis, John J; Warren, Robert S; McArthur, James G; Lin, Andy A; Schlom, Jeffrey; June, Carl H; Sherwin, Stephen A

    2017-01-01

    T cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s. Patients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 10 10 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72. Fourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111 Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72

  3. Biology and clinical application of CAR T cells for B cell malignancies.

    Science.gov (United States)

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  4. CAR-T Cell Therapies From the Transfusion Medicine Perspective.

    Science.gov (United States)

    Fesnak, Andrew; Lin, ChieYu; Siegel, Don L; Maus, Marcela V

    2016-07-01

    The use of chimeric antigen receptor (CAR)-T cell therapy for the treatment of hematologic malignancies has generated significant excitement over the last several years. From a transfusion medicine perspective, the implementation of CAR-T therapy as a potential mainstay treatment for not only hematologic but also solid-organ malignancies represents a significant opportunity for growth and expansion. In this review, we will describe the rationale for the development of genetically redirected T cells as a cancer therapeutic, the different elements that are required to engineer these cells, as well as an overview of the process by which patient cells are harvested and processed to create and subsequently validate CAR-T cells. Finally, we will briefly describe some of the toxicities and clinical efficacy of CAR-T cells in the setting of patients with advanced malignancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Indirubin, a component of Ban-Lan-Gen, activates CYP3A4 gene transcription through the human pregnane X receptor.

    Science.gov (United States)

    Kumagai, Takeshi; Aratsu, Yusuke; Sugawara, Ryosuke; Sasaki, Takamitsu; Miyairi, Shinichi; Nagata, Kiyoshi

    2016-04-01

    Ban-Lan-Gen is the common name for the dried roots of indigo plants, including Polygonum tinctorium, Isatis indigotica, Isatis tinctoria, and Strobilanthes cusia. Ban-Lan-Gen is frequently used as an anti-inflammatory and an anti-viral for the treatment of hepatitis, influenza, and various types of inflammation. One of the cytochrome P450 (CYP) enzymes, CYP3A4, is responsible for the metabolism of a wide variety of xenobiotics, including an estimated 60% of all clinically used drugs. In this study, we investigated the effect of Ban-Lan-Gen on the transcriptional activation of the CYP3A4 gene. Ban-Lan-Gen extract increased CYP3A4 gene reporter activity in a dose-dependent manner. Indirubin, one of the biologically active ingredients in the Ban-Lan-Gen, also dose-dependently increased CYP3A4 gene reporter activity. Expression of short hairpin RNA for the human pregnane X receptor (hPXR-shRNA) inhibited CYP3A4 gene reporter activity, and overexpression of human PXR increased indirubin- and rifampicin-induced CYP3A4 gene reporter activity. Furthermore, indirubin induced CYP3A4 mRNA expression in HepG2 cells. Taken together, these results indicate that indirubin, a component of Ban-Lan-Gen, activated CYP3A4 gene transcription through the activation of the human PXR. Copyright © 2016. Published by Elsevier Ltd.

  6. CAR T Cell Therapy for Glioblastoma: Recent Clinical Advances and Future Challenges.

    Science.gov (United States)

    Bagley, Stephen J; Desai, Arati S; Linette, Gerald P; June, Carl H; O'Rourke, Donald M

    2018-03-02

    In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T cell therapy for glioblastoma. In addition, despite formidable barriers to T cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.

  7. Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis.

    Science.gov (United States)

    Azuma, Kotaro; Ouchi, Yasuyoshi; Inoue, Satoshi

    2014-01-01

    Vitamin K is a fat-soluble vitamin, which is involved in blood coagulation mediated by maintaining the activity of coagulation factors in the liver. Vitamin K also has extrahepatic actions and has been shown to prevent bone fractures in clinical studies. In addition, epidemiological studies suggest that a lack of vitamin K is associated with several geriatric diseases, including osteoporosis, osteoarthritis, dementia and arteriosclerosis. It has also been shown that vitamin K contributes to the prevention and treatment of some kinds of malignancies. Recently, we discovered a novel role for vitamin K as a ligand of the nuclear receptor, steroid and xenobiotic receptor (SXR), and its murine ortholog, pregnane X receptor (PXR). In addition to its established roles as a cofactor of γ-glutamyl carboxylase (GGCX) in mediating post-transcriptional modifications, vitamin K has a different mode of action mediated by transcriptional regulation of SXR/PXR target genes. Analysis of bone tissue from PXR-deficient mice showed that the bone protective effects of vitamin K are partially mediated by SXR/PXR-dependent signaling. The discoveries of a novel mode of vitamin K action have opened up new possibilities that vitamin K might be useful for prevention or treatment of a variety of diseases that affect the geriatric population. © 2013 Japan Geriatrics Society.

  8. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Erhao Zhang

    2017-01-01

    Full Text Available Abstract Adoptive cell therapy using chimeric antigen receptor (CAR-engineered T cells has emerged as a very promising approach to combating cancer. Despite its ability to eliminate tumors shown in some clinical trials, CAR-T cell therapy involves some significant safety challenges, such as cytokine release syndrome (CRS and “on-target, off-tumor” toxicity, which is related to poor control of the dose, location, and timing of T cell activity. In the past few years, some strategies to avoid the side effects of CAR-T cell therapy have been reported, including suicide gene, inhibitory CAR, dual-antigen receptor, and the use of exogenous molecules as switches to control the CAR-T cell functions. Because of the advances of the CAR paradigm and other forms of cancer immunotherapy, the most effective means of defeating the cancer has become the integration therapy with the combinatorial control system of switchable dual-receptor CAR-T cell and immune checkpoint blockade.

  9. Effects and mechanisms of 3α,5α,-THP on emotion, motivation, and reward functions involving pregnane xenobiotic receptor

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2012-01-01

    Full Text Available Progestogens [progesterone (P4 and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP, influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA, 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence. Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance affective and motivated

  10. Effect of CAR activation on selected metabolic pathways in normal and hyperlipidemic mouse livers.

    Science.gov (United States)

    Rezen, Tadeja; Tamasi, Viola; Lövgren-Sandblom, Anita; Björkhem, Ingemar; Meyer, Urs A; Rozman, Damjana

    2009-08-19

    Detoxification in the liver involves activation of nuclear receptors, such as the constitutive androstane receptor (CAR), which regulate downstream genes of xenobiotic metabolism. Frequently, the metabolism of endobiotics is also modulated, resulting in potentially harmful effects. We therefore used 1,4-Bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) to study the effect of CAR activation on mouse hepatic transcriptome and lipid metabolome under conditions of diet-induced hyperlipidemia. Using gene expression profiling with a dedicated microarray, we show that xenobiotic metabolism, PPARalpha and adipocytokine signaling, and steroid synthesis are the pathways most affected by TCPOBOP in normal and hyperlipidemic mice. TCPOBOP-induced CAR activation prevented the increased hepatic and serum cholesterol caused by feeding mice a diet containing 1% cholesterol. We show that this is due to increased bile acid metabolism and up-regulated removal of LDL, even though TCPOBOP increased cholesterol synthesis under conditions of hyperlipidemia. Up-regulation of cholesterol synthesis was not accompanied by an increase in mature SREBP2 protein. As determined by studies in CAR -/- mice, up-regulation of cholesterol synthesis is however CAR-dependent; and no obvious CAR binding sites were detected in promoters of cholesterogenic genes. TCPOBOP also affected serum glucose and triglyceride levels and other metabolic processes in the liver, irrespective of the diet. Our data show that CAR activation modulates hepatic metabolism by lowering cholesterol and glucose levels, through effects on PPARalpha and adiponectin signaling pathways, and by compromising liver adaptations to hyperlipidemia.

  11. Clofibric acid induces hepatic CYP 2B1/2 via constitutive androstane receptor not via peroxisome proliferator activated receptor alpha in rat.

    Science.gov (United States)

    Ibrahim, Zein Shaban; Ahmed, Mohamed Mohamed; El-Shazly, Samir Ahmed; Ishizuka, Mayumi; Fujita, Shoichi

    2014-01-01

    Peroxisome proliferator activated receptor α (PPARα) ligands, fibrates used to control hyperlipidemia. We demonstrated CYP2B induction by clofibric acid (CFA) however, the mechanism was not clear. In this study, HepG2 cells transfected with expression plasmid of mouse constitutive androstane receptor (CAR) or PPARα were treated with CFA, phenobarbital (PB) or TCPOBOP. Luciferase assays showed that CFA increased CYP2B1 transcription to the same level as PB, or TCPOBOP in HepG2 transfected with mouse CAR But failed to induce it in PPARα transfected cells. CYP2B expressions were increased with PB or CFA in Wistar female rats (having normal levels of CAR) but not in Wistar Kyoto female rats (having low levels of CAR). The induction of CYP2B by PB or CFA was comparable to nuclear CAR levels. CAR nuclear translocation was induced by CFA in both rat strains. This indicates that fibrates can activate CAR and that fibrates-insulin sensitization effect may occur through CAR, while hypolipidemic effect may operate through PPARα.

  12. Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver.

    Science.gov (United States)

    Lickteig, Andrew J; Csanaky, Iván L; Pratt-Hyatt, Matthew; Klaassen, Curtis D

    2016-06-01

    Activation of Constitutive Androstane Receptor (CAR) protects against bile acid (BA)-induced liver injury. This study was performed to determine the effect of CAR activation on bile flow, BA profile, as well as expression of BA synthesis and transport genes. Synthetic CAR ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) was administered to mice for 4 days. BAs were quantified by UPLC-MS/MS (ultraperformance liquid chromatography-tandem mass spectrometry). CAR activation decreases total BAs in livers of male (49%) and female mice (26%), largely attributable to decreases of the 12α-hydroxylated BA taurocholic acid (T-CA) (males (M) 65%, females (F) 45%). Bile flow in both sexes was increased by CAR activation, and the increases were BA-independent. CAR activation did not alter biliary excretion of total BAs, but overall BA composition changed. Excretion of muricholic (6-hydroxylated) BAs was increased in males (101%), and the 12α-OH proportion of biliary BAs was decreased in both males (37%) and females (28%). The decrease of T-CA in livers of males and females correlates with the decreased mRNA of the sterol 12α-hydroxylase Cyp8b1 in males (71%) and females (54%). As a response to restore BAs to physiologic concentrations in liver, mRNA of Cyp7a1 is upregulated following TCPOBOP (males 185%, females 132%). In ilea, mRNA of the negative feedback regulator Fgf15 was unaltered by CAR activation, indicating biliary BA excretion was sufficient to maintain concentrations of total BAs in the small intestine. In summary, the effects of CAR activation on BAs in male and female mice are quite similar, with a marked decrease in the major BA T-CA in the liver. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. An "off-the-shelf" fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies.

    Science.gov (United States)

    Cooper, Matthew L; Choi, Jaebok; Staser, Karl; Ritchey, Julie K; Devenport, Jessica M; Eckardt, Kayla; Rettig, Michael P; Wang, Bing; Eissenberg, Linda G; Ghobadi, Armin; Gehrs, Leah N; Prior, Julie L; Achilefu, Samuel; Miller, Christopher A; Fronick, Catrina C; O'Neal, Julie; Gao, Feng; Weinstock, David M; Gutierrez, Alejandro; Fulton, Robert S; DiPersio, John F

    2018-02-20

    T cell malignancies represent a group of hematologic cancers with high rates of relapse and mortality in patients for whom no effective targeted therapies exist. The shared expression of target antigens between chimeric antigen receptor (CAR) T cells and malignant T cells has limited the development of CAR-T because of unintended CAR-T fratricide and an inability to harvest sufficient autologous T cells. Here, we describe a fratricide-resistant "off-the-shelf" CAR-T (or UCART7) that targets CD7+ T cell malignancies and, through CRISPR/Cas9 gene editing, lacks both CD7 and T cell receptor alpha chain (TRAC) expression. UCART7 demonstrates efficacy against human T cell acute lymphoblastic leukemia (T-ALL) cell lines and primary T-ALL in vitro and in vivo without the induction of xenogeneic GvHD. Fratricide-resistant, allo-tolerant "off-the-shelf" CAR-T represents a strategy for treatment of relapsed and refractory T-ALL and non-Hodgkin's T cell lymphoma without a requirement for autologous T cells.

  14. Emerging immunotherapeutics in adenocarcinomas: A focus on CAR-T cells.

    Science.gov (United States)

    Yazdanifar, Mahboubeh; Zhou, Ru; Mukherjee, Pinku

    2016-01-01

    More than 80% of all cancers arise from epithelial cells referred to as carcinomas. Adenocarcinomas are the most common type of carcinomas arising from the specialized epithelial cells that line the ducts of our major organs. Despite many advances in cancer therapies, metastatic and treatment-refractory cancers remain the 2 nd leading cause of death. Immunotherapy has offered potential opportunities with specific targeting of tumor cells and inducing remission in many cancer patients. Numerous therapies using antibodies as antagonists or checkpoint inhibitors/immune modulators, peptide or cell vaccines, cytokines, and adoptive T cell therapies have been developed. The most innovative immunotherapy approach so far has been the use of engineered T cell, also referred to as chimeric antigen receptor T cells (CAR-T cells). CAR-T cells are genetically modified naïve T cells that express a chimeric molecule which comprises of the antigen-recognition domains (scFv) of an anti-tumor antibody and one, two, or three intracellular signaling domains of the T cell receptor (TCR). When these engineered T cells recognize and bind to the tumor antigen target via the scFv fragment, a signal is sent to the intracellular TCR domains of the CAR, leading to activation of the T cells to become cytolytic against the tumor cells. CAR-T cell therapy has shown tremendous success for certain hematopoietic malignancies, but this success has not been extrapolated to adenocarcinomas. This is due to multiple factors associated with adenocarcinoma that are different from hematopoietic tumors. Although many advances have been made in targeting multiple cancers by CAR-T cells, clinical trials have shown adverse effects and toxicity related to this treatment. New strategies are yet to be devised to manage side effects associated with CAR-T cell therapies. In this review, we report some of the promising immunotherapeutic strategies being developed for treatment of most common adenocarcinomas with

  15. Quarter Century of Anti-HIV CAR T Cells.

    Science.gov (United States)

    Wagner, Thor A

    2018-04-01

    A therapy that might cure HIV is a very important goal for the 30-40 million people living with HIV. Chimeric antigen receptor T cells have recently had remarkable success against certain leukemias, and there are reasons to believe they could be successful for HIV. This manuscript summarizes the published research on HIV CAR T cells and reviews the current anti-HIV chimeric antigen receptor strategies. Research on anti-HIV chimeric antigen receptor T cells has been going on for at least the last 25 years. First- and second-generation anti-HIV chimeric antigen receptors have been developed. First-generation anti-HIV chimeric antigen receptors were studied in clinical trials more than 15 years ago, but did not have meaningful clinical efficacy. There are some reasons to be optimistic about second-generation anti-HIV chimeric antigen receptor T cells, but they have not yet been tested in vivo.

  16. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas.

    Directory of Open Access Journals (Sweden)

    Xin Huang

    Full Text Available Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR T cells targeting the type I insulin-like growth factor receptor (IGF1R or tyrosine kinase-like orphan receptor 1 (ROR1 molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15 and ROR1 (11/15 were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients.

  17. Paralleled comparison of vectors for the generation of CAR-T cells.

    Science.gov (United States)

    Qin, Di-Yuan; Huang, Yong; Li, Dan; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-09-01

    T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application.

  18. CAR T-cell therapy for glioblastoma: ready for the next round of clinical testing?

    Science.gov (United States)

    Prinzing, Brooke L; Gottschalk, Stephen M; Krenciute, Giedre

    2018-05-01

    The outcome for patients with glioblastoma (GBM) remains poor, and there is an urgent need to develop novel therapeutic approaches. T cells genetically modified with chimeric antigen receptors (CARs) hold the promise to improve outcomes since they recognize and kill cells through different mechanisms than conventional therapeutics. Areas covered: This article reviews CAR design, tumor associated antigens expressed by GBMs that can be targeted with CAR T cells, preclinical and clinical studies conducted with CAR T cells, and genetic approaches to enhance their effector function. Expert commentary: While preclinical studies have highlighted the potent anti-GBM activity of CAR T cells, the initial foray of CAR T-cell therapies into the clinic resulted only in limited benefits for GBM patients. Additional genetic modification of CAR T cells has resulted in a significant increase in their anti-GBM activity in preclinical models. We are optimistic that clinical testing of these enhanced CAR T cells will be safe and result in improved anti-glioma activity in GBM patients.

  19. A guide to manufacturing CAR T cell therapies.

    Science.gov (United States)

    Vormittag, Philipp; Gunn, Rebecca; Ghorashian, Sara; Veraitch, Farlan S

    2018-02-17

    In recent years, chimeric antigen receptor (CAR) modified T cells have been used as a treatment for haematological malignancies in several phase I and II trials and with Kymriah of Novartis and Yescarta of KITE Pharma, the first CAR T cell therapy products have been approved. Promising clinical outcomes have yet been tempered by the fact that many therapies may be prohibitively expensive to manufacture. The process is not yet defined, far from being standardised and often requires extensive manual handling steps. For academia, big pharma and contract manufacturers it is difficult to obtain an overview over the process strategies and their respective advantages and disadvantages. This review details current production processes being used for CAR T cells with a particular focus on efficacy, reproducibility, manufacturing costs and release testing. By undertaking a systematic analysis of the manufacture of CAR T cells from reported clinical trial data to date, we have been able to quantify recent trends and track the uptake of new process technology. Delivering new processing options will be key to the success of the CAR-T cells ensuring that excessive manufacturing costs do not disrupt the delivery of exciting new therapies to the wide possible patient cohort. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sleeping Beauty Transposition of Chimeric Antigen Receptors Targeting Receptor Tyrosine Kinase-Like Orphan Receptor-1 (ROR1 into Diverse Memory T-Cell Populations.

    Directory of Open Access Journals (Sweden)

    Drew C Deniger

    Full Text Available T cells modified with chimeric antigen receptors (CARs targeting CD19 demonstrated clinical activity against some B-cell malignancies. However, this is often accompanied by a loss of normal CD19+ B cells and humoral immunity. Receptor tyrosine kinase-like orphan receptor-1 (ROR1 is expressed on sub-populations of B-cell malignancies and solid tumors, but not by healthy B cells or normal post-partum tissues. Thus, adoptive transfer of T cells specific for ROR1 has potential to eliminate tumor cells and spare healthy tissues. To test this hypothesis, we developed CARs targeting ROR1 in order to generate T cells specific for malignant cells. Two Sleeping Beauty transposons were constructed with 2nd generation ROR1-specific CARs signaling through CD3ζ and either CD28 (designated ROR1RCD28 or CD137 (designated ROR1RCD137 and were introduced into T cells. We selected for T cells expressing CAR through co-culture with γ-irradiated activating and propagating cells (AaPC, which co-expressed ROR1 and co-stimulatory molecules. Numeric expansion over one month of co-culture on AaPC in presence of soluble interleukin (IL-2 and IL-21 occurred and resulted in a diverse memory phenotype of CAR+ T cells as measured by non-enzymatic digital array (NanoString and multi-panel flow cytometry. Such T cells produced interferon-γ and had specific cytotoxic activity against ROR1+ tumors. Moreover, such cells could eliminate ROR1+ tumor xenografts, especially T cells expressing ROR1RCD137. Clinical trials will investigate the ability of ROR1-specific CAR+ T cells to specifically eliminate tumor cells while maintaining normal B-cell repertoire.

  1. Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer.

    Science.gov (United States)

    Liu, Hong; Xu, Yiyang; Xiang, Jingyi; Long, Li; Green, Shon; Yang, Zhiyuan; Zimdahl, Bryan; Lu, Jingwei; Cheng, Neal; Horan, Lucas H; Liu, Bin; Yan, Su; Wang, Pei; Diaz, Juan; Jin, Lu; Nakano, Yoko; Morales, Javier F; Zhang, Pengbo; Liu, Lian-Xing; Staley, Binnaz K; Priceman, Saul J; Brown, Christine E; Forman, Stephen J; Chan, Vivien W; Liu, Cheng

    2017-01-15

    The majority of tumor-specific antigens are intracellular and/or secreted and therefore inaccessible by conventional chimeric antigen receptor (CAR) T-cell therapy. Given that all intracellular/secreted proteins are processed into peptides and presented by class I MHC on the surface of tumor cells, we used alpha-fetoprotein (AFP), a specific liver cancer marker, as an example to determine whether peptide-MHC complexes can be targets for CAR T-cell therapy against solid tumors. We generated a fully human chimeric antigen receptor, ET1402L1-CAR (AFP-CAR), with exquisite selectivity and specificity for the AFP 158-166 peptide complexed with human leukocyte antigen (HLA)-A*02:01. We report that T cells expressing AFP-CAR selectively degranulated, released cytokines, and lysed liver cancer cells that were HLA-A*02:01 + /AFP + while sparing cells from multiple tissue types that were negative for either expressed proteins. In vivo, intratumoral injection of AFP-CAR T cells significantly regressed both Hep G2 and AFP 158 -expressing SK-HEP-1 tumors in SCID-Beige mice (n = 8 for each). Moreover, intravenous administration of AFP-CAR T cells in Hep G2 tumor-bearing NSG mice lead to rapid and profound tumor growth inhibition (n = 6). Finally, in an established intraperitoneal liver cancer xenograft model, AFP-CAR T cells showed robust antitumor activity (n = 6). This study demonstrates that CAR T-cell immunotherapy targeting intracellular/secreted solid tumor antigens can elicit a potent antitumor response. Our approach expands the spectrum of antigens available for redirected T-cell therapy against solid malignancies and offers a promising new avenue for liver cancer immunotherapy. Clin Cancer Res; 23(2); 478-88. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Optimizing EphA2-CAR T Cells for the Adoptive Immunotherapy of Glioma

    Directory of Open Access Journals (Sweden)

    Zhongzhen Yi

    2018-06-01

    Full Text Available Glioblastoma is the most aggressive primary brain tumor in humans and is virtually incurable with conventional therapies. Chimeric antigen receptor (CAR T cell therapy targeting the glioblastoma antigen EphA2 is an attractive approach to improve outcomes because EphA2 is expressed highly in glioblastoma but only at low levels in normal brain tissue. Building upon our previous findings in this area, we generated and evaluated a panel of EphA2-specific CARs. We demonstrate here that T cells expressing CD28.ζ and 41BB.ζ CARs with short spacers had similar effector function, resulting in potent antitumor activity. In addition, incorporating the 41BB signaling domain into CD28.ζ CARs did not improve CAR T cell function. While we could not determine functional differences between CD28.ζ, 41BB.ζ, and CD28.41BB.ζ CAR T cells, we selected CD28.ζ CAR T cells for further clinical development based on safety consideration. Keywords: GBM, CAR T cells, EphA2, brain tumor

  3. Overexpression of the cAMP Receptor 1 in Growing Dictyostelium Cells

    NARCIS (Netherlands)

    Johnson, Ronald L.; Vaughan, Roxanne A.; Caterina, Michael J.; Haastert, Peter J.M. van; Devreotes, Peter N.

    1991-01-01

    cAR1, the cAMP receptor expressed normally during the early aggregation stage of the Dictyostelium developmental program, has been expressed during the growth stage, when only low amounts of endogenous receptors are present. Transformants expressing cAR1 have 7-40 times over growth stage and

  4. Crystallographic analysis of murine constitutive androstane receptor ligand-binding domain complexed with 5α-androst-16-en-3α-ol

    International Nuclear Information System (INIS)

    Vincent, Jeremy; Shan, Li; Fan, Ming; Brunzelle, Joseph S.; Forman, Barry M.; Fernandez, Elias J.

    2004-01-01

    The purification and structure determination of the murine constitutive androstane receptor bound to its inverse agonist/antagonist androstenol is described. The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily. In contrast to classical nuclear receptors, which possess small-molecule ligand-inducible activity, CAR exhibits constitutive transcriptional activity in the apparent absence of ligand. CAR is among the most important transcription factors; it coordinately regulates the expression of microsomal cytochrome P450 genes and other drug-metabolizing enzymes. The murine CAR ligand-binding domain (LBD) was coexpressed with the steroid receptor coactivator protein (SRC-1) receptor-interacting domain (RID) in Escherichia coli. The mCAR LBD subunit was purified away from SRC-1 by affinity, anion-exchange and size-exclusion chromatography, crystallized with androstenol and the structure of the complex determined by molecular replacement

  5. Time-course comparison of xenobiotic activators of CAR and PPARα in mouse liver

    International Nuclear Information System (INIS)

    Ross, Pamela K.; Woods, Courtney G.; Bradford, Blair U.; Kosyk, Oksana; Gatti, Daniel M.; Cunningham, Michael L.; Rusyn, Ivan

    2009-01-01

    Constitutive androstane receptor (CAR) and peroxisome proliferator activated receptor (PPAR)α are transcription factors known to be primary mediators of liver effects, including carcinogenesis, by phenobarbital-like compounds and peroxisome proliferators, respectively, in rodents. Many similarities exist in the phenotypes elicited by these two classes of agents in rodent liver, and we hypothesized that the initial transcriptional responses to the xenobiotic activators of CAR and PPARα will exhibit distinct patterns, but at later time-points these biological pathways will converge. In order to capture the global transcriptional changes that result from activation of these nuclear receptors over a time-course in the mouse liver, microarray technology was used. First, differences in basal expression of liver genes between C57Bl/6J wild-type and Car-null mice were examined and 14 significantly differentially expressed genes were identified. Next, mice were treated with phenobarbital (100 mg/kg by gavage for 24 h, or 0.085% w/w diet for 7 or 28 days), and liver gene expression changes with regards to both time and treatment were identified. While several pathways related to cellular proliferation and metabolism were affected by phenobarbital in wild-type mice, no significant changes in gene expression were found over time in the Car-nulls. Next, we determined commonalities and differences in the temporal response to phenobarbital and WY-14,643, a prototypical activator of PPAR α. Gene expression signatures from livers of wild-type mice C57Bl6/J mice treated with PB or WY-14,643 were compared. Similar pathways were affected by both compounds; however, considerable time-related differences were present. This study establishes common gene expression fingerprints of exposure to activators of CAR and PPARα in rodent liver and demonstrates that despite similar phenotypic changes, molecular pathways differ between classes of chemical carcinogens

  6. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.

    Science.gov (United States)

    Zhang, Bing-Lan; Qin, Di-Yuan; Mo, Ze-Ming; Li, Yi; Wei, Wei; Wang, Yong-Sheng; Wang, Wei; Wei, Yu-Quan

    2016-04-01

    Recent reports on the impressive efficacy of chimeric antigen receptor (CAR)-modified T cells against hematologic malignancies have inspired oncologists to extend these efforts for the treatment of solid tumors. Clinical trials of CAR-T-based cancer immunotherapy for solid tumors showed that the efficacies are not as remarkable as in the case of hematologic malignancies. There are several challenges that researchers must face when treating solid cancers with CAR-T cells, these include choosing an ideal target, promoting efficient trafficking and infiltration, overcoming the immunosuppressive microenvironment, and avoiding associated toxicity. In this review, we discuss the obstacles imposed by solid tumors on CAR-T cell-based immunotherapy and strategies adopted to improve the therapeutic potential of this approach. Continued investigations are necessary to improve therapeutic outcomes and decrease the adverse effects of CAR-T cell therapy in patients with solid malignancies in the future.

  7. Long Terminal Repeat CRISPR-CAR-Coupled "Universal" T Cells Mediate Potent Anti-leukemic Effects.

    Science.gov (United States)

    Georgiadis, Christos; Preece, Roland; Nickolay, Lauren; Etuk, Aniekan; Petrova, Anastasia; Ladon, Dariusz; Danyi, Alexandra; Humphryes-Kirilov, Neil; Ajetunmobi, Ayokunmi; Kim, Daesik; Kim, Jin-Soo; Qasim, Waseem

    2018-03-06

    Gene editing can be used to overcome allo-recognition, which otherwise limits allogeneic T cell therapies. Initial proof-of-concept applications have included generation of such "universal" T cells expressing chimeric antigen receptors (CARs) against CD19 target antigens combined with transient expression of DNA-targeting nucleases to disrupt the T cell receptor alpha constant chain (TRAC). Although relatively efficient, transgene expression and editing effects were unlinked, yields variable, and resulting T cell populations heterogeneous, complicating dosing strategies. We describe a self-inactivating lentiviral "terminal" vector platform coupling CAR expression with CRISPR/Cas9 effects through incorporation of an sgRNA element into the ΔU3 3' long terminal repeat (LTR). Following reverse transcription and duplication of the hybrid ΔU3-sgRNA, delivery of Cas9 mRNA resulted in targeted TRAC locus cleavage and allowed the enrichment of highly homogeneous (>96%) CAR + (>99%) TCR - populations by automated magnetic separation. Molecular analyses, including NGS, WGS, and Digenome-seq, verified on-target specificity with no evidence of predicted off-target events. Robust anti-leukemic effects were demonstrated in humanized immunodeficient mice and were sustained longer than by conventional CAR + TCR + T cells. Terminal-TRAC (TT) CAR T cells offer the possibility of a pre-manufactured, non-HLA-matched CAR cell therapy and will be evaluated in phase 1 trials against B cell malignancies shortly. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  8. CAR-T cell therapy in ovarian cancer: from the bench to the bedside.

    Science.gov (United States)

    Zhu, Xinxin; Cai, Han; Zhao, Ling; Ning, Li; Lang, Jinghe

    2017-09-08

    Ovarian cancer (OC) is the most lethal gynecological malignancy and is responsible for most gynecological cancer deaths. Apart from conventional surgery, chemotherapy, and radiotherapy, chimeric antigen receptor-modified T (CAR-T) cells as a representative of adoptive cellular immunotherapy have received considerable attention in the research field of cancer treatment. CARs combine antigen specificity and T-cell-activating properties in a single fusion molecule. Several preclinical experiments and clinical trials have confirmed that adoptive cell immunotherapy using typical CAR-engineered T cells for OC is a promising treatment approach with striking clinical efficacy; moreover, the emerging CAR-Ts targeting various antigens also exert great potential. However, such therapies have side effects and toxicities, such as cytokine-associated and "on-target, off-tumor" toxicities. In this review, we systematically detail and highlight the present knowledge of CAR-Ts including the constructions, vectors, clinical applications, development challenges, and solutions of CAR-T-cell therapy for OC. We hope to provide new insight into OC treatment for the future.

  9. A compound chimeric antigen receptor strategy for targeting multiple myeloma.

    Science.gov (United States)

    Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y

    2018-02-01

    Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.

  10. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity

    Directory of Open Access Journals (Sweden)

    Marcela V Maus

    2016-01-01

    Full Text Available Chimeric antigen receptors (CARs are synthetic receptors that usually redirect T cells to surface antigens independent of human leukocyte antigen (HLA. Here, we investigated a T cell receptor-like CAR based on an antibody that recognizes HLA-A*0201 presenting a peptide epitope derived from the cancer-testis antigen NY-ESO-1. We hypothesized that this CAR would efficiently redirect transduced T cells in an HLA-restricted, antigen-specific manner. However, we found that despite the specificity of the soluble Fab, the same antibody in the form of a CAR caused moderate lysis of HLA-A2 expressing targets independent of antigen owing to T cell avidity. We hypothesized that lowering the affinity of the CAR for HLA-A2 would improve its specificity. We undertook a rational approach of mutating residues that, in the crystal structure, were predicted to stabilize binding to HLA-A2. We found that one mutation (DN lowered the affinity of the Fab to T cell receptor-range and restored the epitope specificity of the CAR. DN CAR T cells lysed native tumor targets in vitro, and, in a xenogeneic mouse model implanted with two human melanoma lines (A2+/NYESO+ and A2+/NYESO−, DN CAR T cells specifically migrated to, and delayed progression of, only the HLA-A2+/NY-ESO-1+ melanoma. Thus, although maintaining MHC-restricted antigen specificity required T cell receptor-like affinity that decreased potency, there is exciting potential for CARs to expand their repertoire to include a broad range of intracellular antigens.

  11. New Strategies for the Treatment of Solid Tumors with CAR-T Cells.

    Science.gov (United States)

    Zhang, Hao; Ye, Zhen-Long; Yuan, Zhen-Gang; Luo, Zheng-Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2016-01-01

    Recent years, we have witnessed significant progresses in both basic and clinical studies regarding novel therapeutic strategies with genetically engineered T cells. Modification with chimeric antigen receptors (CARs) endows T cells with tumor specific cytotoxicity and thus induce anti-tumor immunity against malignancies. However, targeting solid tumors is more challenging than targeting B-cell malignancies with CAR-T cells because of the histopathological structure features, specific antigens shortage and strong immunosuppressive environment of solid tumors. Meanwhile, the on-target/off-tumor toxicity caused by relative expression of target on normal tissues is another issue that should be reckoned. Optimization of the design of CAR vectors, exploration of new targets, addition of safe switches and combination with other treatments bring new vitality to the CAR-T cell based immunotherapy against solid tumors. In this review, we focus on the major obstacles limiting the application of CAR-T cell therapy toward solid tumors and summarize the measures to refine this new cancer therapeutic modality.

  12. CD19-Targeted CAR T Cells as Novel Cancer Immunotherapy for Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Davila, Marco L.; Brentjens, Renier J.

    2016-01-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the ju...

  13. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy.

    Science.gov (United States)

    Gauthier, Jordan; Turtle, Cameron J

    2018-04-03

    T-cells engineered to express CD19-specific chimeric antigen receptors (CD19 CAR-T cells) can achieve high response rates in patients with refractory/relapsed (R/R) CD19+ hematologic malignancies. Nonetheless, the efficacy of CD19-specific CAR-T cell therapy can be offset by significant toxicities, such as cytokine release syndrome (CRS) and neurotoxicity. In this report of our presentation at the 2018 Second French International Symposium on CAR-T cells (CAR-T day), we describe the clinical presentations of CRS and neurotoxicity in a cohort of 133 adults treated with CD19 CAR-T cells at the Fred Hutchinson Cancer Research Center, and provide insights into the mechanisms contributing to these toxicities. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. BDE-99, but not BDE-47, is a transient aryl hydrocarbon receptor agonist in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zhu, Jinyong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2016-08-15

    Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that affect the environment and the health of humans and wildlife. In this study, the zebrafish liver (ZFL) cell line was used in vitro to investigate two major PBDE contaminants: 2, 2′, 4, 4′, 5-pentabromodiphenyl ether (BDE-99) and 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47). BDE-99 was found to significantly induce cytochrome P450 (CYP1A), uridine diphosphate glucuronosyl transferase 1 family a, b (ugt1ab), 7-ethoxyresorufin-O-deethylase activity and an aryl hydrocarbon receptor (Ahr) dependent xenobiotic response element luciferase reporter system, confirming the Ahr-mediated activation of CYP1A by BDE-99. The time-course effect indicated that the role of BDE-99 in Ahr-mediated signaling is likely to be transient and highly dependent on the ability of BDE-99 to induce CYP1A and ugt1ab, and presumably its metabolism. BDE-99 also exhibited a significant dose-response effect on a developed zebrafish pregnane X receptor luciferase reporter gene system. However, the other abundant contaminant under study, BDE-47, did not exhibit the above effects. Together, these results indicated that the molecular mechanism of PBDEs induced in ZFL cells is a chemically specific process that differs between members of the PBDE family. CYP1A induction derived by BDE-99 warrants further risk assessment as the humans, wildlife and environment are exposed to a complex mixture including dioxin-like compounds and carcinogenic compounds. - Highlights: • BDE-99 is an aryl hydrocarbon receptor (Ahr) agonist in zebrafish liver cell-line ZFL. • BDE-99 induced EROD activity, CYP1A and ugt1ab gene expression, in ZFL. • BDE-99 induced the pregnane X receptor (Pxr) luciferase reporter gene system in ZFL. • BDE-47 did not show any effects in ZFL to induce CYP1A, ugt1ab, and EROD. • BDE-47 and -99 showed no induction of Rxr and Pxr pathways in ZFL cells.

  15. Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells.

    Science.gov (United States)

    Boice, Michael; Salloum, Darin; Mourcin, Frederic; Sanghvi, Viraj; Amin, Rada; Oricchio, Elisa; Jiang, Man; Mottok, Anja; Denis-Lagache, Nicolas; Ciriello, Giovanni; Tam, Wayne; Teruya-Feldstein, Julie; de Stanchina, Elisa; Chan, Wing C; Malek, Sami N; Ennishi, Daisuke; Brentjens, Renier J; Gascoyne, Randy D; Cogné, Michel; Tarte, Karin; Wendel, Hans-Guido

    2016-10-06

    The HVEM (TNFRSF14) receptor gene is among the most frequently mutated genes in germinal center lymphomas. We report that loss of HVEM leads to cell-autonomous activation of B cell proliferation and drives the development of GC lymphomas in vivo. HVEM-deficient lymphoma B cells also induce a tumor-supportive microenvironment marked by exacerbated lymphoid stroma activation and increased recruitment of T follicular helper (T FH ) cells. These changes result from the disruption of inhibitory cell-cell interactions between the HVEM and BTLA (B and T lymphocyte attenuator) receptors. Accordingly, administration of the HVEM ectodomain protein (solHVEM (P37-V202) ) binds BTLA and restores tumor suppression. To deliver solHVEM to lymphomas in vivo, we engineered CD19-targeted chimeric antigen receptor (CAR) T cells that produce solHVEM locally and continuously. These modified CAR-T cells show enhanced therapeutic activity against xenografted lymphomas. Hence, the HVEM-BTLA axis opposes lymphoma development, and our study illustrates the use of CAR-T cells as "micro-pharmacies" able to deliver an anti-cancer protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  17. SwissProt search result: AK065120 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065120 J013001O15 (O09012) Peroxisomal targeting signal 1 receptor (Peroxismore r...eceptor 1) (Peroxisomal C-terminal targeting signal import receptor) (PTS1-BP) (Peroxin-5) (PTS1 receptor) (PXR1P) (PTS1R) PEX5_MOUSE 4e-63 ...

  18. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  19. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity

    Directory of Open Access Journals (Sweden)

    Gray Kueberuwa

    2018-03-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy represents a significant advancement in cancer therapy. Larger studies have shown ∼90% complete remission rates against chemoresistant and/or refractory CD19+ leukemia or lymphoma. Effective CAR T cell therapy is highly dependent on lymphodepleting preconditioning, which is achieved through chemotherapy or radiotherapy that carries with it significant toxicities. These can exclude patients of low performance status. In order to overcome the need for preconditioning, we constructed fully mouse first and second generation anti-murine CD19 CARs with or without interleukin-12 (IL-12 secretion. To test these CARs, we established a mouse model to reflect the human situation without preconditioning. Murine second generation CAR T cells expressing IL-12 were capable of eradicating established B cell lymphoma with a long-term survival rate of ∼25%. We believe this to be the first study in a truly lymphoreplete model. We provide evidence that IL-12-expressing CAR T cells not only directly kill target CD19+ cells, but also recruit host immune cells to an anti-cancer immune response. This finding is critical because lymphodepletion regimens required for the success of current CAR T cell technology eliminate host immune cells whose anti-cancer activity could otherwise be harnessed by strategies such as IL-12-secreting CAR T cells. Keywords: CD19 CAR T cells, IL-12, immunotherapy, chimeric antigen receptor, adoptive cellular therapy, lymphoma, B cell malignancies, TRUCKs, pre-conditioning

  20. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research.

    Science.gov (United States)

    Inoo, Kanako; Inagaki, Ryo; Fujiwara, Kento; Sasawatari, Shigemi; Kamigaki, Takashi; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR) specific for vascular endothelial growth factor receptor 2 (VEGFR2), demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP) and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6-12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.

  1. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research

    Directory of Open Access Journals (Sweden)

    Kanako Inoo

    2016-01-01

    Full Text Available We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR specific for vascular endothelial growth factor receptor 2 (VEGFR2, demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6–12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.

  2. Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Spalding, T A; Burstein, E S

    2000-01-01

    The calcium-sensing receptor (CaR) belongs to family C of the G-protein-coupled receptor superfamily. To date 14 activating mutations in CaR showing increased sensitivity to Ca(2+) have been identified in humans with autosomal dominant hypocalcemia. Four of these activating mutations are found......, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR....

  3. Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery.

    Science.gov (United States)

    Katz, S C; Point, G R; Cunetta, M; Thorn, M; Guha, P; Espat, N J; Boutros, C; Hanna, N; Junghans, R P

    2016-05-01

    Metastatic spread of colorectal cancer (CRC) to the peritoneal cavity is common and difficult to treat, with many patients dying from malignant bowel obstruction. Chimeric antigen receptor T cell (CAR-T) immunotherapy has shown great promise, and we previously reported murine and phase I clinical studies on regional intrahepatic CAR-T infusion for CRC liver metastases. We are now studying intraperitoneal (IP) delivery of CAR-Ts for peritoneal carcinomatosis. Regional IP infusion of CAR-T resulted in superior protection against carcinoembryonic antigen (CEA+) peritoneal tumors, when compared with systemically infused CAR-Ts. IP CAR-Ts also provided prolonged protection against IP tumor re-challenges and demonstrated an increase in effector memory phenotype over time. IP CAR-Ts provided protection against tumor growth at distant subcutaneous (SC) sites in association with increases in serum IFNγ levels. Given the challenges posed by immunoinhibitory pathways in solid tumors, we combined IP CAR-T treatment with suppressor cell targeting. High frequencies of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) were found within the IP tumors, with MDSC expressing high levels of immunosuppressive PD-L1. Combinatorial IP CAR-T treatment with depleting antibodies against MDSC and Treg further improved efficacy against peritoneal metastases. Our data support further development of combinatorial IP CAR-T immunotherapy for peritoneal malignancies.

  4. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    Science.gov (United States)

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  5. Efficacy and toxicity management of CAR-T-cell immunotherapy: a matter of responsiveness control or tumour-specificity?

    Science.gov (United States)

    Alonso-Camino, Vanesa; Harwood, Seandean Lykke; Álvarez-Méndez, Ana; Alvarez-Vallina, Luis

    2016-04-15

    Chimaeric antigen receptor (CAR)-expressing T-cells have demonstrated potent clinical efficacy in patients with haematological malignancies. However, the use of CAR-T-cells targeting solid tumour-associated antigens (TAAs) has been limited by organ toxicities related to activation of T-cell effector functions through the CAR. Most existing CARs recognize TAAs, which are also found in normal tissues. CAR-T-cell-mediated destruction of normal tissues constitutes a major roadblock to CAR-T-cell therapy, and must be avoided or mitigated. There is a broad range of strategies for modulating antigen responsiveness of CAR-T-cells, with varying degrees of complexity. Some of them might ameliorate the acute and chronic toxicities associated with current CAR constructs. However, further embellishments to CAR therapy may complicate clinical implementation and possibly create new immunogenicity issues. In contrast, the development of CARs targeting truly tumour-specific antigens might circumvent on-target/off-tumour toxicities without adding additional complexity to CAR-T-cell therapies, but these antigens have been elusive and may require novel selection strategies for their discovery. © 2016 Authors; published by Portland Press Limited.

  6. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    Science.gov (United States)

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  7. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  8. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line.

    Science.gov (United States)

    Gomes-Silva, Diogo; Ramos, Carlos A

    2018-02-01

    The focus of cancer treatment has recently shifted toward targeted therapies, including immunotherapy, which allow better individualization of care and are hoped to increase the probability of success for patients. Specifically, T cells genetically modified to express chimeric antigen receptors (CARs; CAR-T cells) have generated exciting results. Recent clinical successes with this cutting-edge therapy have helped to push CAR-T cells toward approval for wider use. However, several limitations need to be addressed before the widespread use of CAR-T cells as a standard treatment. Here, a succinct background on adoptive T-cell therapy (ATCT)is given. A brief overview of the structure of CARs, how they are introduced into T cells, and how CAR-T cell expansion and selection is achieved in vitro is then presented. Some of the challenges in CAR design are discussed, as well as the difficulties that arise in large-scale CAR-T cell manufacture that will need to be addressed to achieve successful commercialization of this type of cell therapy. Finally, developments already on the horizon are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    Science.gov (United States)

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM. ©2016 American Association for Cancer Research.

  10. Clinical manufacturing of CAR T cells: foundation of a promising therapy

    Science.gov (United States)

    Wang, Xiuyan; Rivière, Isabelle

    2016-01-01

    The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality. PMID:27347557

  11. Clinical manufacturing of CAR T cells: foundation of a promising therapy

    Directory of Open Access Journals (Sweden)

    Xiuyan Wang

    2016-01-01

    Full Text Available The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality.

  12. Nuclear receptor CAR specifically activates the two-pore K+ channel Kcnk1 gene in male mouse livers, which attenuates phenobarbital-induced hepatic hyperplasia.

    Science.gov (United States)

    Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2013-03-01

    KCNK1, a member of the family of two-pore K(+) ion channels, is specifically induced in the livers of male mice after phenobarbital treatment. Here, we have determined the molecular mechanism of this male-specific activation of the Kcnk1 gene and characterized KCNK1 as a phenobarbital-inducible antihyperplasia factor. Upon activation by phenobarbital, nuclear receptor CAR binds the 97-bp response element (-2441/-2345) within the Kcnk1 promoter. This binding is observed in the livers of male mice, but not in the livers of female mice and requires the pituitary gland, because hypophysectomy abrogates it. Hyperplasia further progressed in the livers of Kcnk1 ( -/- ) male mice compared with those of Kcnk1 ( +/+ ) males after phenobarbital treatment. Thus, KCNK1 suppresses phenobarbital-induced hyperplasia. These results indicate that phenobarbital treatment induces KCNK1 to elicit a male-specific and growth-suppressing signal. Thus, KCNK1 and Kcnk1 ( -/- ) mice provide an experimental tool for further investigation into the molecular mechanism of CAR-mediated promotion of the development of hepatocellular carcinoma in mice.

  13. CAR-T cells and allogeneic hematopoietic stem cell transplantation for relapsed/refractory B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Liu, Jun; Zhang, Xi; Zhong, Jiang F; Zhang, Cheng

    2017-10-01

    Relapsed/refractory acute lymphoblastic leukemia (ALL) has a low remission rate after chemotherapy, a high relapse rate and poor long-term survival even when allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed. Chimeric antigen receptors redirected T cells (CAR-T cells) can enhance disease remission with a favorable outcome for relapsed/refractory ALL, though some cases quickly relapsed after CAR-T cell treatment. Thus, treatment with CAR-T cells followed by allo-HSCT may be the best way to treat relapsed/refractory ALL. In this review, we first discuss the different types of CAR-T cells. We then discuss the treatment of relapsed/refractory ALL using only CAR-T cells. Finally, we discuss the use of CAR-T cells, followed by allo-HSCT, for the treatment of relapsed/refractory ALL.

  14. The market for gasoline cars and diesel cars

    International Nuclear Information System (INIS)

    Verboven, F.

    1999-01-01

    In Europe the tax tariff is much lower for diesel fuel than for gasoline. This benefit is used by manufacturers to increase the price of diesel-fueled cars, which limits the possibility to control the use of diesel cars by means of a fiscal policy (tax incidence). Attention is paid to the impact of fiscal advantages for diesel cars on the purchasing behavior of the consumer and the pricing policy (price discrimination) of the car manufacturers. 1 ref

  15. Role for a Steroid Sulfontransferase (SULT2B) in the Intratumoral Androgen Metabolism and in Prostate Cancer

    Science.gov (United States)

    2015-10-01

    Defense 06-09;09-12 Member, Biology of Aging Review Committee, National Institute on Aging, NIH 2008 Panel Member, AACR Centennial Pre- and Post...e. Drug-herb interaction i) St. John’s Wort, PXR, CAR, CYP3A4: The phytochemical hyperforin, which confers the anti- depressant activity of St

  16. Expression and Regulation of the Bile Acid Transporter, OST alpha-OST beta in Rat and Human Intestine and Liver

    NARCIS (Netherlands)

    Khan, Ansar A.; Chow, Edwin C. Y.; Porte, Robert J.; Pang, K. Sandy; Groothuis, Geny M. M.

    The regulation of the OST alpha and OST beta expression was studied in the rat jejunum, ileum, colon and liver and in human ileum and liver by ligands for the farnesoid X receptor (FXR), pregnane X receptor (PXR), vitamin D receptor (VDR) and glucocorticoid receptor (GR) using precision cut tissue

  17. Adaptation Model for Corporate Car Sharing in the Car Rental Industry

    OpenAIRE

    Matthes, Martin

    2016-01-01

    The focus of this thesis was on developing an adaption model for implementing a corporate car sharing service within the existing infrastructure of a car rental company. The investigated case companies were a leading Finnish car rental franchisee and an international car sharing subsidiary, largely owned by the car rental franchisor, which offers corporate car sharing solutions in major European countries. Adapting this new service in Finland will help the car rental franchisee to assert its ...

  18. Enhancement of PSMA-Directed CAR Adoptive Immunotherapy by PD-1/PD-L1 Blockade

    Directory of Open Access Journals (Sweden)

    Inna Serganova

    2017-03-01

    Full Text Available Chimeric antigen receptor (CAR T cell therapy in hematologic malignancies has shown remarkable responses, but the same level of success has not been observed in solid tumors. A new prostate cancer model (Myc-CaP:PSMA(+ and a second-generation anti-hPSMA human CAR T cells expressing a Click Beetle Red luciferase reporter were used to study hPSMA targeting and assess CAR T cell trafficking and persistence by bioluminescence imaging (BLI. We investigated the antitumor efficacy of human CAR T cells targeting human prostate-specific membrane antigen (hPSMA, in the presence and absence of the target antigen; first alone and then combined with a monoclonal antibody targeting the human programmed death receptor 1 (anti-hPD1 mAb. PDL-1 expression was detected in Myc-CaP murine prostate tumors growing in immune competent FVB/N and immune-deficient SCID mice. Endogenous CD3+ T cells were restricted from the centers of Myc-CaP tumor nodules growing in FVB/N mice. Following anti-programmed cell death protein 1 (PD-1 treatment, the restriction of CD3+ T cells was reversed, and a tumor-treatment response was observed. Adoptive hPSMA-CAR T cell immunotherapy was enhanced when combined with PD-1 blockade, but the treatment response was of comparatively short duration, suggesting other immune modulation mechanisms exist and restrict CAR T cell targeting, function, and persistence in hPSMA expressing Myc-CaP tumors. Interestingly, an “inverse pattern” of CAR T cell BLI intensity was observed in control and test tumors, which suggests CAR T cells undergo changes leading to a loss of signal and/or number following hPSMA-specific activation. The lower BLI signal intensity in the hPSMA test tumors (compared with controls is due in part to a decrease in T cell mitochondrial function following T cell activation, which may limit the intensity of the ATP-dependent Luciferin-luciferase bioluminescence signal.

  19. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Davila, Marco L; Brentjens, Renier J

    2016-10-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the jump from the laboratory to the clinic, and the results have been remarkable. CD19-targeted CAR T cells have induced complete remissions of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL), who have an expected complete response rate of 30% in response to chemotherapy. The high efficacy of CAR T cells in B-ALL suggests that regulatory approval of this therapy for this routinely fatal leukemia is on the horizon. We review the preclinical development of CAR T cells and their early clinical application for lymphoma. We also provide a comprehensive analysis of the use of CAR T cells in patients with B-ALL. In addition, we discuss the unique toxicities associated with this therapy and the management schemes that have been developed.

  20. Distortionary company car taxation: deadweight losses through increased car ownership

    NARCIS (Netherlands)

    van Ommeren, J.N.; Gutierrez Puigarnau, E.

    2013-01-01

    We analyse the effects of distortionary company car taxation through increased household car consumption for the Netherlands. We use several identification strategies and demonstrate that for about 20 % of households company car possession increases car ownership. The annual welfare loss of

  1. The Coxsackievirus and Adenovirus Receptor: a new adhesion protein in cochlear development.

    Science.gov (United States)

    Excoffon, Katherine J D A; Avenarius, Matthew R; Hansen, Marlan R; Kimberling, William J; Najmabadi, Hossein; Smith, Richard J H; Zabner, Joseph

    2006-05-01

    The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness.

  2. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18

    Directory of Open Access Journals (Sweden)

    Biliang Hu

    2017-09-01

    Full Text Available The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.

  3. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis.

    Science.gov (United States)

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Feng, Kuan; Zhang, Shuangyan; Huang, Jiefang; Miao, Xiang; Baggi, Fulvio; Ostrom, Rennolds S; Zhang, Yanyun; Chen, Xiangjun; Xu, Congfeng

    2017-01-01

    Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.

  4. Phase I Escalating-Dose Trial of CAR-T Therapy Targeting CEA+ Metastatic Colorectal Cancers.

    Science.gov (United States)

    Zhang, Chengcheng; Wang, Zhe; Yang, Zhi; Wang, Meiling; Li, Shiqi; Li, Yunyan; Zhang, Rui; Xiong, Zhouxing; Wei, Zhihao; Shen, Junjie; Luo, Yongli; Zhang, Qianzhen; Liu, Limei; Qin, Hong; Liu, Wei; Wu, Feng; Chen, Wei; Pan, Feng; Zhang, Xianquan; Bie, Ping; Liang, Houjie; Pecher, Gabriele; Qian, Cheng

    2017-05-03

    Chimeric antigen receptor T (CAR-T) cells have shown promising efficacy in treatment of hematological malignancies, but its applications in solid tumors need further exploration. In this study, we investigated CAR-T therapy targeting carcino-embryonic antigen (CEA)-positive colorectal cancer (CRC) patients with metastases to evaluate its safety and efficacy. Five escalating dose levels (DLs) (1 × 10 5 to 1 × 10 8 /CAR + /kg cells) of CAR-T were applied in 10 CRC patients. Our data showed that severe adverse events related to CAR-T therapy were not observed. Of the 10 patients, 7 patients who experienced progressive disease (PD) in previous treatments had stable disease after CAR-T therapy. Two patients remained with stable disease for more than 30 weeks, and two patients showed tumor shrinkage by positron emission tomography (PET)/computed tomography (CT) and MRI analysis, respectively. Decline of serum CEA level was apparent in most patients even in long-term observation. Furthermore, we observed persistence of CAR-T cells in peripheral blood of patients receiving high doses of CAR-T therapy. Importantly, we observed CAR-T cell proliferation especially in patients after a second CAR-T therapy. Taken together, we demonstrated that CEA CAR-T cell therapy was well tolerated in CEA + CRC patients even in high doses, and some efficacy was observed in most of the treated patients. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  5. An improved car-following model accounting for the preceding car's taillight

    Science.gov (United States)

    Zhang, Jian; Tang, Tie-Qiao; Yu, Shao-Wei

    2018-02-01

    During the deceleration process, the preceding car's taillight may have influences on its following car's driving behavior. In this paper, we propose an extended car-following model with consideration of the preceding car's taillight. Two typical situations are used to simulate each car's movement and study the effects of the preceding car's taillight on the driving behavior. Meanwhile, sensitivity analysis of the model parameter is in detail discussed. The numerical results show that the proposed model can improve the stability of traffic flow and the traffic safety can be enhanced without a decrease of efficiency especially when cars pass through a signalized intersection.

  6. 49 CFR 1247.1 - Annual Report of Cars Loaded and Cars Terminated.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Annual Report of Cars Loaded and Cars Terminated... TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) ACCOUNTS, RECORDS AND REPORTS REPORT OF CARS LOADED AND CARS TERMINATED § 1247.1 Annual Report of Cars Loaded and Cars Terminated. Beginning with the...

  7. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked on...

  8. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

    Science.gov (United States)

    Kawalekar, Omkar U; O'Connor, Roddy S; Fraietta, Joseph A; Guo, Lili; McGettigan, Shannon E; Posey, Avery D; Patel, Prachi R; Guedan, Sonia; Scholler, John; Keith, Brian; Snyder, Nathaniel W; Snyder, Nathaniel; Blair, Ian A; Blair, Ian; Milone, Michael C; June, Carl H

    2016-02-16

    Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Enhanced CAR T cell therapy: A novel approach for head and neck cancers.

    Science.gov (United States)

    Wang, Songlin; Zhu, Zhao

    2018-05-05

    Head and neck cancer that presents in locally advanced stages often results in a bad prognosis with an increased recurrence rate even after curative resections. Radiation therapy is then applied, with multiple side effects, as adjuvant regional therapy. Because of the high rate of recurrence and mortality, new therapies are needed for patients suffering from head and neck malignant tumors.CAR (chimeric antigen receptor) T cell therapy, which was first devised about 25 years ago, causes the killing or apoptosis of target tumor cells through inducing the secretion of cytokines and granzymes by T cells (Cheadle et al., 2014). CARs are comprised of three canonical domains for antigen recognition, T cell activation, and co-stimulation, and are synthetic receptors that reprogram immune cells for therapeutic treatment of multiple tumors (Sadelain, 2017). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.

    Science.gov (United States)

    Jindal, Vishal; Arora, Ena; Gupta, Sorab

    2018-05-05

    Chimeric antigen receptor (CAR) T cell therapy is a novel and innovative immunotherapy. CAR-T cells are genetically engineered T cells, carrying MHC independent specific antigen receptor and co-stimulatory molecule which can activate an immune response to a cancer specific antigen. This therapy showed great results in hematological malignancies but were unable to prove their worth in solid tumors. Likely reasons for their failure are lack of antigens, poor trafficking, and hostile tumor microenvironment. Excessive amount of research is going on to improve the efficacy of CAR T cell therapy in solid tumors. In this article, we will discuss the challenges faced in improving the outcome of CAR T cell therapy in solid tumors and various strategies adopted to curb them.

  11. Frontline Science: Functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression.

    Science.gov (United States)

    Guha, Prajna; Cunetta, Marissa; Somasundar, Ponnandai; Espat, N Joseph; Junghans, Richard P; Katz, Steven C

    2017-08-01

    Chimeric antigen receptor expressing T cells (CAR-T) are a promising form of immunotherapy, but the influence of age-related immune changes on CAR-T production remains poorly understood. We showed that CAR-T cells from geriatric donors (gCAR-T) are functionally impaired relative to CAR-T from younger donors (yCAR-T). Higher transduction efficiencies and improved cell expansion were observed in yCAR-T cells compared with gCAR-T. yCAR-T demonstrated significantly increased levels of proliferation and signaling activation of phosphorylated (p)Erk, pAkt, pStat3, and pStat5. Furthermore, yCAR-T contained higher proportions of CD4 and CD8 effector memory (EM) cells, which are known to have enhanced cytolytic capabilities. Accordingly, yCAR-T demonstrated higher levels of tumor antigen-specific cytotoxicity compared with gCAR-T. Enhanced tumor killing by yCAR-T correlated with increased levels of perforin and granzyme B. yCAR-T had increased α5β1 integrin expression, a known mediator of retroviral transduction. We found that treatment with M-CSF or TGF-β1 rescued the impaired transduction efficiency of the gCAR-T by increasing the α5β1 integrin expression. Neutralization of α5β1 confirmed that this integrin was indispensable for CAR expression. Our study suggests that the increase of α5β1 integrin expression levels enhances CAR expression and thereby improves tumor killing by gCAR-T. © Society for Leukocyte Biology.

  12. Positive and negative spillover effects from electric car purchase to car use

    OpenAIRE

    Kløckner, Christian; Nayum, Alim; Mehmetoglu, Mehmet

    2013-01-01

    This study reports the results of two online surveys conducted on buyers of conventional combustion engine cars compared to those of electric vehicles in Norway. The results show that electric cars are generally purchased as additional cars, do not contribute to a decrease in annual mileage if the old car is not substituted, and that electric car buyers use the car more often for their everyday mobility. Psychological determinants derived from the theory of planned behavior and the norm-activ...

  13. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  14. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss.

    Science.gov (United States)

    Sampson, John H; Choi, Bryan D; Sanchez-Perez, Luis; Suryadevara, Carter M; Snyder, David J; Flores, Catherine T; Schmittling, Robert J; Nair, Smita K; Reap, Elizabeth A; Norberg, Pamela K; Herndon, James E; Kuan, Chien-Tsun; Morgan, Richard A; Rosenberg, Steven A; Johnson, Laura A

    2014-02-15

    Chimeric antigen receptor (CAR) transduced T cells represent a promising immune therapy that has been shown to successfully treat cancers in mice and humans. However, CARs targeting antigens expressed in both tumors and normal tissues have led to significant toxicity. Preclinical studies have been limited by the use of xenograft models that do not adequately recapitulate the immune system of a clinically relevant host. A constitutively activated mutant of the naturally occurring epidermal growth factor receptor (EGFRvIII) is antigenically identical in both human and mouse glioma, but is also completely absent from any normal tissues. We developed a third-generation, EGFRvIII-specific murine CAR (mCAR), and performed tests to determine its efficacy in a fully immunocompetent mouse model of malignant glioma. At elevated doses, infusion with EGFRvIII mCAR T cells led to cures in all mice with brain tumors. In addition, antitumor efficacy was found to be dependent on lymphodepletive host conditioning. Selective blockade with EGFRvIII soluble peptide significantly abrogated the activity of EGFRvIII mCAR T cells in vitro and in vivo, and may offer a novel strategy to enhance the safety profile for CAR-based therapy. Finally, mCAR-treated, cured mice were resistant to rechallenge with EGFRvIII(NEG) tumors, suggesting generation of host immunity against additional tumor antigens. All together, these data support that third-generation, EGFRvIII-specific mCARs are effective against gliomas in the brain and highlight the importance of syngeneic, immunocompetent models in the preclinical evaluation of tumor immunotherapies. ©2013 AACR

  15. Electric Car Special

    Energy Technology Data Exchange (ETDEWEB)

    Zoethout, T.; Belin, H.; Verwijs, H.; Nicola, S.; De Saint Jacob, Y.; Gatermann, R.

    2009-09-15

    In six articles, two columns and two interviews a part of this issue is dedicated to electric car developments: about winners and losers in the electric car race; a unique business model to rolling out the electric car by the electric battery company Better Place and the automobile industry Renault Nissan; interview with entrepreneur Shai Agassi of the Indian company Better Place; the development of electric cars in Germany; interview with Jean-Jacques Chanaron, an economist specialising in innovation management and a firm believer in electric cars; start of mass production of electric vehicles at the Japanese Nissan automobile industry; the constraints in Sweden in developing fuel-efficient automobiles; plans for 1 million electric or hybrid cars by 2025 in the Netherlands.

  16. Phallusiasterol C, A New Disulfated Steroid from the Mediterranean Tunicate Phallusia fumigata

    Directory of Open Access Journals (Sweden)

    Concetta Imperatore

    2016-06-01

    Full Text Available A new sulfated sterol, phallusiasterol C (1, has been isolated from the Mediterranean ascidian Phallusia fumigata and its structure has been determined on the basis of extensive spectroscopic (mainly 2D NMR analysis. The possible role in regulating the pregnane X receptor (PXR activity of phallusiasterol C has been investigated; although the new sterol resulted inactive, this study adds more items to the knowledge of the structure-PXR regulating activity relationships in the case of sulfated steroids.

  17. Transit Car Performance Comparison, State-of-the-Art Car vs. PATCO Transit Car, NYCTA R-46, MBTA Silverbirds

    Science.gov (United States)

    1978-02-01

    The first phase of this contract authorized the design, development, and demonstration of two State-Of-The-Art Cars (SOAC). This document reports on the gathering of comparative test data on existing in-service transit cars. The three transit cars se...

  18. Car Seat Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Car Seat Safety KidsHealth / For Parents / Car Seat Safety ... certified child passenger safety technician.) Guidelines for Choosing Car Seats Choose a seat with a label that ...

  19. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  20. Car Sickness

    Science.gov (United States)

    ... Preventable Diseases Healthy Children > Health Issues > Conditions > Head Neck & Nervous System > Car Sickness Health Issues Listen Español Text Size Email Print Share Car Sickness Page Content ...

  1. Minimum datasets to establish a CAR-mediated mode of action for rodent liver tumors.

    Science.gov (United States)

    Peffer, Richard C; LeBaron, Matthew J; Battalora, Michael; Bomann, Werner H; Werner, Christoph; Aggarwal, Manoj; Rowe, Rocky R; Tinwell, Helen

    2018-07-01

    Methods for investigating the Mode of Action (MoA) for rodent liver tumors via constitutive androstane receptor (CAR) activation are outlined here, based on current scientific knowledge about CAR and feedback from regulatory agencies globally. The key events (i.e., CAR activation, altered gene expression, cell proliferation, altered foci and increased adenomas/carcinomas) can be demonstrated by measuring a combination of key events and associative events that are markers for the key events. For crop protection products, a primary dataset typically should include a short-term study in the species/strain that showed the tumor response at dose levels that bracket the tumorigenic and non-tumorigenic dose levels. The dataset may vary depending on the species and the test compound. As examples, Case Studies with nitrapyrin (in mice) and metofluthrin (in rats) are described. Based on qualitative differences between the species, the key events leading to tumors in mice or rats by this MoA are not operative in humans. In the future, newer approaches such as a CAR biomarker signature approach and/or in vitro CAR3 reporter assays for mouse, rat and human CAR may eventually be used to demonstrate a CAR MoA is operative, without the need for extensive additional studies in laboratory animals. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation

    International Nuclear Information System (INIS)

    Osabe, Makoto; Sugatani, Junko; Takemura, Akiko; Yamazaki, Yasuhiro; Ikari, Akira; Kitamura, Naomi; Negishi, Masahiko; Miwa, Masao

    2008-01-01

    Constitutive androstane receptor (CAR) is a transcription factor to regulate the expression of several genes related to drug-metabolism. Here, we demonstrate that CAR protein accumulates during G1 in human SW480 and HepG2 cells. After the G1/S phase transition, CAR protein levels decreased, and CAR was hardly detected in cells by the late M phase. CAR expression in both cell lines was suppressed by RNA interference-mediated suppression of CDK4. Depletion of CAR by RNA interference in both cells and by hepatocyte growth factor treatment in HepG2 cells resulted in decreased MDM2 expression that led to p21 upregulation and repression of HepG2 cell growth. Thus, our results demonstrate that CAR expression is an early G1 event regulated by CDK4 that contributes to MDM2 expression; these findings suggest that CAR may influence the expression of genes involved in not only the metabolism of endogenous and exogenous substances but also in the cell proliferation

  3. Identification and Characterization of CINPA1 Metabolites Facilitates Structure-Activity Studies of the Constitutive Androstane Receptor

    OpenAIRE

    Cherian, Milu T.; Yang, Lei; Chai, Sergio C.; Lin, Wenwei; Chen, Taosheng

    2016-01-01

    The constitutive androstane receptor (CAR) regulates the expression of genes involved in drug metabolism and other processes. A specific inhibitor of CAR is critical for modulating constitutive CAR activity. We recently described a specific small-molecule inhibitor of CAR, CINPA1 (ethyl (5-(diethylglycyl)-10,11-dihydro-5H-dibenzo[b,f]azepin-3-yl)carbamate), which is capable of reducing CAR-mediated transcription by changing the coregulator recruitment pattern and reducing CAR occupancy at the...

  4. Perancangan dan Implementasi Kontroler PID untuk Pengaturan Autonomous Car-Following Car

    Directory of Open Access Journals (Sweden)

    Andreas Parluhutan Bonor Sinaga

    2014-03-01

    Full Text Available Pengiriman logistik ke daerah-daerah rawan bencana merupakan hal yang sangat sulit dilakukan, tentunya diperlukan pengetahuan mengenai kondisi medan jalan. Salah satu dampak yang utama adalah sulitnya melakukan manuver dalam pengendalian performansi  truk logistik yang pada umumnya berupa truk-truk gandeng. Untuk membantu pengemudi truk dalam berkendara pada kondisi tersebut, dirancang sebuah prototype mobil mandiri (Autonomous Car yang mampu melakukan manuver-manuver pergerakan secara sendirinya, salah satu manuver tersebut ialah Following Car.  Dalam Tugas Akhir ini perancangan sistem yang akan dilakukan dengan  memodelkan  dua buah kendaraan mobil RC (remote control yang bertindak sebagai  follower dan leader car. Pengoperasian dari  following car dilakukan dengan memodifikasi dari kendaraan RC-1, sedangkan RC-2 bertindak sebagai leader car yang dikondisikan secara manual. Dengan penerapan kontroler PID pada implementasi sistem didapatkan penurunan time settling menjadi 2,7 Detik dan peningkatan error steady state sebesar 2,44%. Pada implementasi diberikan kecepatan leader secara acak, dengan implementasi kontroler PID, kondisi jarak antara autonomous car dengan leader car masih dalam range keadaan ideal pada set point.

  5. Distinguishing Truncated and Normal MUC1 Glycoform Targeting from Tn-MUC1-Specific CAR T Cells

    DEFF Research Database (Denmark)

    Posey, Avery D; Clausen, Henrik; June, Carl H

    2016-01-01

    Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate potent clinical antitumor effects in a variety of blood cancers. However, clinical activity in solid tumors has been disappointing and toxicity has been a serious concern (Lamers et al., 2013; Morgan et al., 2010......). We recently found that a CAR composed of a scFv antibody fragment specific for the Tn-glycoform of MUC1 had potent activity in preclinical models of blood cancer and adenocarcinoma (Posey et al., 2016)....

  6. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy.

    Science.gov (United States)

    Wang, Zhenguang; Han, Weidong

    2018-01-01

    Severe cytokine release syndrome (CRS) and neurotoxicity following chimeric antigen receptor T cell (CAR-T) therapy can be life-threatening in some cases, and management of those toxicities is still a great challenge for physicians. Researchers hope to understand the pathophysiology of CRS and neurotoxicity, and identify predictive biomarkers that can forecast those toxicities in advance. Some risk factors for severe CRS and/or neurotoxicity including patient and treatment characteristics have been identified in multiple clinical trials of CAR-T cell therapy. Moreover, several groups have identified some predictive biomarkers that are able to determine beforehand which patients may suffer severe CRS and/or neurotoxicity during CAR-T cell therapy, facilitating testing of early intervention strategies for those toxicities. However, further studies are needed to better understand the biology and related risk factors for CRS and/or neurotoxicity, and determine if those identified predictors can be extrapolated to other series. Herein, we review the pathophysiology of CRS and neurotoxicity, and summarize the progress of predictive biomarkers to improve CAR-T cell therapy in cancer.

  7. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    Energy Technology Data Exchange (ETDEWEB)

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  8. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts

    International Nuclear Information System (INIS)

    Cartellieri, M; Feldmann, A; Koristka, S; Arndt, C; Loff, S; Ehninger, A; Bonin, M von; Bejestani, E P; Ehninger, G; Bachmann, M P

    2016-01-01

    The adoptive transfer of CD19-specific chimeric antigen receptor engineered T cells (CAR T cells) resulted in encouraging clinical trials in indolent B-cell malignancies. However, they also show the limitations of this fascinating technology: CAR T cells can lead to even life-threatening off-tumor, on-target side effects if CAR T cells crossreact with healthy tissues. Here, we describe a novel modular universal CAR platform technology termed UniCAR that reduces the risk of on-target side effects by a rapid and reversible control of CAR T-cell reactivity. The UniCAR system consists of two components: (1) a CAR for an inert manipulation of T cells and (2) specific targeting modules (TMs) for redirecting UniCAR T cells in an individualized time- and target-dependent manner. UniCAR T cells can be armed against different tumor targets simply by replacement of the respective TM for (1) targeting more than one antigen simultaneously or subsequently to enhance efficacy and (2) reducing the risk for development of antigen-loss tumor variants under treatment. Here we provide ‘proof of concept' for retargeting of UniCAR T cells to CD33- and/or CD123-positive acute myeloid leukemia blasts in vitro and in vivo

  9. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies.

    Science.gov (United States)

    Liu, Jun; Zhong, Jiang F; Zhang, Xi; Zhang, Cheng

    2017-01-31

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered the cornerstone in treatment of hematological malignancies. However, relapse of the hematological disease after allo-HSCT remains a challenge and is associated with poor long-term survival. Chimeric antigen receptor redirected T cells (CAR-T cells) can lead to disease remission in patients with relapsed/refractory hematological malignancies. However, the therapeutic window for infusion of CAR-T cells post allo-HSCT and its efficacy are debatable. In this review, we first discuss the use of CAR-T cells for relapsed cases after allo-HSCT. We then review the toxicities and the occurrence of graft-versus-host disease in relapsed patients who received CAR-T cells post allo-HSCT. Finally, we review clinical trial registrations and the therapeutic time window for infusion of CAR-T cells post allo-HSCT. The treatment of allogeneic CAR-T cells is beneficial for patients with relapsed B cell malignancies after allo-HSCT with low toxicities and complications. However, multicenter clinical trials with larger sample sizes should be performed to select the optimal therapeutic window and confirm its efficacy.

  10. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome.

    Science.gov (United States)

    Wang, Linan; Ma, Ning; Okamoto, Sachiko; Amaishi, Yasunori; Sato, Eiichi; Seo, Naohiro; Mineno, Junichi; Takesako, Kazutoh; Kato, Takuma; Shiku, Hiroshi

    2016-01-01

    Carcinoembryonic antigen (CEA) is a cell surface antigen highly expressed in various cancer cell types and in healthy tissues. It has the potential to be a target for chimeric antigen receptor (CAR)-modified T-cell therapy; however, the safety of this approach in terms of on-target/off-tumor effects needs to be determined. To address this issue in a clinically relevant model, we used a mouse model in which the T cells expressing CEA-specific CAR were transferred into tumor-bearing CEA-transgenic (Tg) mice that physiologically expressed CEA as a self-antigen. The adoptive transfer in conjunction with lymphodepleting and myeloablative preconditioning mediated significant tumor regression but caused weight loss in CEA-Tg, but not in wild-type mice. The weight loss was not associated with overt inflammation in the CEA-expressing gastrointestinal tract but was associated with malnutrition, reflected in elevated systemic levels of cytokines linked to anorexia, which could be controlled by the administration of an anti-IL-6 receptor monoclonal antibody without compromising efficacy. The apparent relationship between lymphodepleting and myeloablative preconditioning, efficacy, and off-tumor toxicity of CAR-T cells would necessitate the development of CEA-specific CAR-T cells with improved signaling domains that require less stringent preconditioning for their efficacy. Taken together, these results suggest that CEA-specific CAR-based adoptive T-cell therapy may be effective for patients with CEA + solid tumors. Distinguishing the fine line between therapeutic efficacy and off-tumor toxicity would involve further modifications of CAR-T cells and preconditioning regimens.

  11. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  12. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants.

    Science.gov (United States)

    Krenciute, Giedre; Prinzing, Brooke L; Yi, Zhongzhen; Wu, Meng-Fen; Liu, Hao; Dotti, Gianpietro; Balyasnikova, Irina V; Gottschalk, Stephen

    2017-07-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is virtually incurable with conventional therapies. Immunotherapy with T cells expressing GBM-specific chimeric antigen receptors (CAR) is an attractive approach to improve outcomes. Although CAR T cells targeting GBM antigens, such as IL13 receptor subunit α2 (IL13Rα2), HER2, and EGFR variant III (EGFRvIII), have had antitumor activity in preclinical models, early-phase clinical testing has demonstrated limited antiglioma activity. Transgenic expression of IL15 is an appealing strategy to enhance CAR T-cell effector function. We tested this approach in our IL13Rα2-positive glioma model in which limited IL13Rα2-CAR T-cell persistence results in recurrence of antigen-positive gliomas. T cells were genetically modified with retroviral vectors encoding IL13Rα2-CARs or IL15 (IL13Rα2-CAR.IL15 T cells). IL13Rα2-CAR.IL15 T cells recognized glioma cells in an antigen-dependent fashion, had greater proliferative capacity, and produced more cytokines after repeated stimulations in comparison with IL13Rα2-CAR T cells. No autonomous IL13Rα2-CAR.IL15 T-cell proliferation was observed; however, IL15 expression increased IL13Rα2-CAR T-cell viability in the absence of exogenous cytokines or antigen. In vivo , IL13Rα2-CAR.IL15 T cells persisted longer and had greater antiglioma activity than IL13Rα2-CAR T cells, resulting in a survival advantage. Gliomas recurring after 40 days after T-cell injection had downregulated IL13Rα2 expression, indicating that antigen loss variants occur in the setting of improved T-cell persistence. Thus, CAR T cells for GBM should not only be genetically modified to improve their proliferation and persistence, but also to target multiple antigens. Summary: Glioblastoma responds imperfectly to immunotherapy. Transgenic expression of IL15 in T cells expressing CARs improved their proliferative capacity, persistence, and cytokine production. The emergence of antigen

  13. Bioanalytical characterisation of multiple endocrine- and dioxin-like activities in sediments from reference and impacted small rivers

    Energy Technology Data Exchange (ETDEWEB)

    Kinani, Said, E-mail: said@dcmr.polytechnique.f [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France); Departement de Chimie des Mecanismes Reactionnels, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Bouchonnet, Stephane, E-mail: stephane.bouchonnet@dcmr.polytechnique.f [Departement de Chimie des Mecanismes Reactionnels, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Creusot, Nicolas [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France); Bourcier, Sophie [Departement de Chimie des Mecanismes Reactionnels, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Balaguer, Patrick [Institut National de la Sante et de la Recherche Medicale (INSERM), U896, Montpellier, F-34298 (France); Porcher, Jean-Marc [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France); Ait-Aissa, Selim, E-mail: selim.ait-aissa@ineris.f [Unite d' Ecotoxicologie, Institut National de l' Environnement Industriel et des Risques (INERIS), BP2, F-60550 Verneuil en Halatte (France)

    2010-01-15

    A comprehensive evaluation of organic contamination was performed in sediments sampled in two reference and three impacted small streams where endocrine disruptive (ED) effects in fish have been evidenced. The approach combined quantitative chemical analyses of more than 50 ED chemicals (EDCs) and a battery of in vitro bioassays allowing the quantification of receptor-mediated activities, namely estrogen (ER), androgen (AR), dioxin (AhR) and pregnane X (PXR) receptors. At the most impacted sites, chemical analyses showed the presence of natural estrogens, organochlorine pesticides, parabens, polycyclic aromatic hydrocarbons (16 PAHs), bisphenol A and alkylphenols, while synthetic steroids, myco-estrogens and phyto-estrogens were not detected. Determination of toxic-equivalent amounts showed that 28-96% of estrogenic activities in bioassays (0.2-6.3 ng/g 17beta-estradiol equivalents) were explained by 17beta-estradiol and estrone. PAHs were major contributors (20-60%) to the total dioxin-like activities. Interestingly, high PXR and (anti)AR activities were detected; however, the targeted analysed compounds could not explain the measured biological activities. This study highlighted the presence of multiple organic EDCs in French river sediments subjected to mixed diffuse pollution, and argues for the need to further identify AR and PXR active compounds in the aquatic environment. - Multiple endocrine disrupting chemicals (ER, AR, AhR and PXR ligands) are detected in French river sediments using a panel of in vitro bioassays and analytical methods.

  14. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer.

    Science.gov (United States)

    Priceman, Saul J; Gerdts, Ethan A; Tilakawardane, Dileshni; Kennewick, Kelly T; Murad, John P; Park, Anthony K; Jeang, Brook; Yamaguchi, Yukiko; Yang, Xin; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E; Wu, Anna M; Brown, Christine E; Forman, Stephen J

    2018-01-01

    Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with "on-target off-tumor" activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.

  15. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer

    Science.gov (United States)

    Priceman, Saul J.; Gerdts, Ethan A.; Tilakawardane, Dileshni; Kennewick, Kelly T.; Murad, John P.; Park, Anthony K.; Jeang, Brook; Yamaguchi, Yukiko; Urak, Ryan; Weng, Lihong; Chang, Wen-Chung; Wright, Sarah; Pal, Sumanta; Reiter, Robert E.; Brown, Christine E.; Forman, Stephen J.

    2018-01-01

    ABSTRACT Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies. PMID:29308300

  16. Evodia alkaloids suppress gluconeogenesis and lipogenesis by activating the constitutive androstane receptor.

    Science.gov (United States)

    Yu, Lushan; Wang, Zhangting; Huang, Minmin; Li, Yingying; Zeng, Kui; Lei, Jinxiu; Hu, Haihong; Chen, Baian; Lu, Jing; Xie, Wen; Zeng, Su

    2016-09-01

    The constitutive androstane receptor (CAR) is a key sensor in xenobiotic detoxification and endobiotic metabolism. Increasing evidence suggests that CAR also plays a role in energy metabolism by suppressing the hepatic gluconeogenesis and lipogenesis. In this study, we investigated the effects of two evodia alkaloids, rutaecarpine (Rut) and evodiamine (Evo), on gluconeogenesis and lipogenesis through their activation of the human CAR (hCAR). We found that both Rut and Evo exhibited anti-lipogenic and anti-gluconeogenic effects in the hyperlipidemic HepG2 cells. Both compounds can potently activate hCAR, and treatment of cells with hCAR antagonists reversed the anti-lipogenic and anti-gluconeogenic effects of Rut and Evo. The anti-gluconeogenic effect of Rut and Evo was due to the CAR-mediated inhibition of the recruitment of forkhead box O1 (FoxO1) and hepatocyte nuclear factor 4α (HNF4α) onto the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene promoters. In vivo, we showed that treatment of mice with Rut improved glucose tolerance in a CAR-dependent manner. Our results suggest that the evodia alkaloids Rut and Evo may have a therapeutic potential for the treatment of hyperglycemia and type 2 diabetes. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene.

    Science.gov (United States)

    Casucci, Monica; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Porcellini, Simona; Stornaiuolo, Anna; Ciceri, Fabio; Traversari, Catia; Bordignon, Claudio; Bonini, Chiara; Bondanza, Attilio

    2018-01-01

    Chimeric antigen receptor (CAR)-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR). We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6). We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting.

  18. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene

    Science.gov (United States)

    Casucci, Monica; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Porcellini, Simona; Stornaiuolo, Anna; Ciceri, Fabio; Traversari, Catia; Bordignon, Claudio; Bonini, Chiara; Bondanza, Attilio

    2018-01-01

    Chimeric antigen receptor (CAR)-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR). We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6). We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting. PMID:29619024

  19. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene

    Directory of Open Access Journals (Sweden)

    Monica Casucci

    2018-03-01

    Full Text Available Chimeric antigen receptor (CAR-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR. We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6. We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting.

  20. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy.

    Science.gov (United States)

    Tang, Xiang-Jun; Sun, Xu-Yong; Huang, Kuan-Ming; Zhang, Li; Yang, Zhuo-Shun; Zou, Dan-Dan; Wang, Bin; Warnock, Garth L; Dai, Long-Jun; Luo, Jie

    2015-12-29

    Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.

  1. CAR2 - Czech Database of Car Speech

    Directory of Open Access Journals (Sweden)

    P. Sovka

    1999-12-01

    Full Text Available This paper presents new Czech language two-channel (stereo speech database recorded in car environment. The created database was designed for experiments with speech enhancement for communication purposes and for the study and the design of a robust speech recognition systems. Tools for automated phoneme labelling based on Baum-Welch re-estimation were realised. The noise analysis of the car background environment was done.

  2. CAR2 - Czech Database of Car Speech

    OpenAIRE

    Pollak, P.; Vopicka, J.; Hanzl, V.; Sovka, Pavel

    1999-01-01

    This paper presents new Czech language two-channel (stereo) speech database recorded in car environment. The created database was designed for experiments with speech enhancement for communication purposes and for the study and the design of a robust speech recognition systems. Tools for automated phoneme labelling based on Baum-Welch re-estimation were realised. The noise analysis of the car background environment was done.

  3. Age-dependent Hepatic UDP-glucuronosyltransferase Gene Expression and Activity in Children

    Directory of Open Access Journals (Sweden)

    Elizabeth Neumann

    2016-11-01

    Full Text Available ABSTRACTUDP-glucuronosyltransferases (UGTs are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17 and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3 in liver tissue of donors (n = 38 ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19 of children donors. We found a statistically significant increase (nominal p < 0.05 in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7 and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 (ESR1 and pregnane X receptor (PXR, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05. These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children.

  4. The Green City Car. A holistic approach for NVH abatement of city cars

    OpenAIRE

    Bein, Thilo; Mayer, Dirk; Elliott, Steve; Ferrali, Leonardo; Casella, Mauro; Saemann, Ernst-Ulrich; Kropp, Wolfgang; Nielsen, Finn Kryger; Meschke, Jens; Pisano, Emanuel

    2014-01-01

    Pursuing the different passive and active concepts in a holistic approach, the FP7 project Green City Car demonstrates the feasibility of applying active systems to NVH-related problems light city cars from a system point-of view. During the project, a city car equipped with a small engine has been considered equipped with the latest technology in terms of safety aspects related to pedestrian’s impact and car-to-car compatibility, which are of major importance in an urban environment. The noi...

  5. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    International Nuclear Information System (INIS)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-01-01

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 μM arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression

  6. UV exposure in cars.

    Science.gov (United States)

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  7. Calcium-Induced Activation of a Mutant G-Protein-Coupled Receptor Causes In Vitro Transformation of NIH/3T3 Cells

    Directory of Open Access Journals (Sweden)

    Ana O. Hoff

    1999-12-01

    Full Text Available The calcium-sensing receptor (CaR is a G-proteincoupled receptor that is widely expressed, has tissuespecific functions, regulates cell growth. Activating mutations of this receptor cause autosomal dominant hypocalcemia, a syndrome characterized by hypocalcemia and hypercalciuria. The identification of a family with an activating mutation of the CaR (Thr151 Met in which hypocalcemia cosegregates with several unusual neoplasms led us to examine the transforming effects of this mutant receptor. Transfection of NIH/3T3 cells with the mutant but not the normal receptor supported colony formation in soft agar at subphysiologic calcium concentrations. The mutant CaR causes a calcium-dependent activation of the extracellular signal-regulated protein kinase (ERK 1/2 and Jun-N-terminal kinase/stress-activated (JNK/ SAPK pathways, but not P38 MAP kinase. These findings contribute to a growing body of information suggesting that this receptor plays a role in the regulation of cellular proliferation, that aberrant activation of the mutant receptor in this family may play a role in the unusual neoplastic manifestations.

  8. Car use within the household

    DEFF Research Database (Denmark)

    de Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    2013-01-01

    In this paper we study the demand for car kilometres in two-car households, focusing on the substitution between cars in response to fuel price changes. We use a large sample of detailed Danish data on two-car households to estimate—for each car owned by the household—own and cross-price effects...... of increases in fuel costs per kilometre. The empirical results show that failure to capture substitution between cars within the household can result in substantial misspecification biases. Ignoring substitution, we estimate fuel price elasticities of –0.81 and -0.65 for the primary and secondary cars...... efficient car, finding partial support for the underlying hypothesis. More importantly, the results of this extended model emphasize the importance of behavioural differences related to the position of the most fuel efficient car in the household, suggesting that households’ fuel efficiency choices...

  9. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way

    International Nuclear Information System (INIS)

    Marmugi, Alice; Lukowicz, Céline; Lasserre, Frederic; Montagner, Alexandra; Polizzi, Arnaud; Ducheix, Simon; Goron, Adeline; Gamet-Payrastre, Laurence; Gerbal-Chaloin, Sabine; Pascussi, Jean Marc; Moldes, Marthe; Pineau, Thierry; Guillou, Hervé; Mselli-Lakhal, Laila

    2016-01-01

    The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases. - Highlights: • Induction of hepatic glycolytic and lipogenic genes upon CAR activation by TCPOBOP. • These effects are not mediated by the nuclear receptor LXR. • CAR activation resulted in hepatic lipid accumulation. • Pnpla3 expression is regulated by CAR in mouse liver and

  10. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way

    Energy Technology Data Exchange (ETDEWEB)

    Marmugi, Alice; Lukowicz, Céline; Lasserre, Frederic; Montagner, Alexandra; Polizzi, Arnaud; Ducheix, Simon; Goron, Adeline; Gamet-Payrastre, Laurence [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France); Gerbal-Chaloin, Sabine [Institute of Regenerative Medicine and Biotherapy, INSERM, U1183 Montpellier (France); Pascussi, Jean Marc [Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier (France); Moldes, Marthe [Centre de Recherche Saint-Antoine, INSERM, UMR 938, Sorbonne Universités, Université Paris 6, Paris (France); Institut Hospitalo-Universitaire ICAN, Paris (France); Pineau, Thierry; Guillou, Hervé [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France); Mselli-Lakhal, Laila, E-mail: laila.lakhal@toulouse.inra.fr [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France)

    2016-07-15

    The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases. - Highlights: • Induction of hepatic glycolytic and lipogenic genes upon CAR activation by TCPOBOP. • These effects are not mediated by the nuclear receptor LXR. • CAR activation resulted in hepatic lipid accumulation. • Pnpla3 expression is regulated by CAR in mouse liver and

  11. Tank car leaks gasoline

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    On January 27, 1994, a Canadian National (CN) tank car loaded with gasoline began to leak from a crack in the tank shell on the end of the car near the stub sill. The tank car had been damaged from impact switching. A part of the tank car was sent for laboratory analysis which concluded that: (1) the fracture originated in two locations in welds, (2) the cracks propagated in a symmetrical manner and progressed into the tank plate, (3) the fracture surface revealed inadequate weld fusion. A stress analysis of the tank car was conducted to determine the coupling force necessary to cause the crack. It was noted that over the last decade several problems have occurred pertaining to stub sill areas of tank cars that have resulted in hazardous material spills. An advisory was sent to Transport Canada outlining many examples where tank cars containing serious defects had passed CN inspections that were specifically designed to identify such defects. 4 figs

  12. Car allocation between household heads in car deficient households : A decision model

    NARCIS (Netherlands)

    Anggraini, Renni; Arentze, Theo A.; Timmermans, Harry J P

    2008-01-01

    This paper considers car allocation choice behaviour in car-deficient households explicitly in the context of an activity-scheduling process, focusing on work activities. A decision tree induction method is applied to derive a decision tree for the car allocation decision in automobile deficient

  13. First results from car-to-car and car-to-infrastructure radio channel measurements at 5.2GHZ

    OpenAIRE

    Paier, Alexander; Kåredal, Johan; Czink, Nicolai; Hofstetter, Helmut; Dumard, Charlotte; Zemen, Thomas; Tufvesson, Fredrik; Mecklenbräuker, Christoph; Molisch, Andreas

    2007-01-01

    Car-to-car and car-to-infrastructure (henceforth called C2X) communications are constantly gaining importance for road-safety and other applications. In order to design efficient C2X systems, an understanding of realistic C2X propagation channels is required, but currently, only few measurements have been published. This paper presents a description of an extensive measurement campaign recently conducted in an urban scenario, a rural scenario, and on a highway. We focused on 4 ÿ 4 multiple-in...

  14. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O.

    2014-01-01

    Highlights: • CAR activation decreased the level of Foxo1 in mouse livers. • CAR activation decreased the level of p21 in mouse livers. • CAR activation inhibited Foxo1 transcriptional activity in mouse livers. - Abstract: 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor (CAR), is a well-known strong primary chemical mitogen for the mouse liver. Despite extensive investigation of the role of CAR in the regulation of cell proliferation, our knowledge of the intricate mediating mechanism is incomplete. In this study, we demonstrated that long-term CAR activation by TCPOBOP increased liver-to-body weight ratio and decreased tumour suppressor Foxo1 expression and transcriptional activity, which were correlated with reduced expression of genes regulated by Foxo1, including the cell-cycle inhibitor Cdkn1a(p21), and upregulation of the cell-cycle regulator Cyclin D1. Moreover, we demonstrated the negative regulatory effect of TCPOBOP-activated CAR on the association of Foxo1 with the target Foxo1 itself and Cdkn1a(p21) promoters. Thus, we identified CAR-mediated repression of cell cycle inhibitor p21, as mediated by repression of FOXO1 expression and transcriptional activity. CAR-FOXO1 cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments

  15. Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Morita

    2018-03-01

    Full Text Available Adoptive T cell therapy using chimeric antigen receptor (CAR-modified T cells is a promising cancer immunotherapy. We previously developed a non-viral method of gene transfer into T cells using a piggyBac transposon system to improve the cost-effectiveness of CAR-T cell therapy. Here, we have further improved our technology by a novel culture strategy to increase the transfection efficiency and to reduce the time of T cell manufacturing. Using a CH2CH3-free CD19-specific CAR transposon vector and combining irradiated activated T cells (ATCs as feeder cells and virus-specific T cell receptor (TCR stimulation, we achieved 51.4% ± 14% CAR+ T cells and 2.8-fold expansion after 14 culture days. Expanded CD19.CAR-T cells maintained a significant fraction of CD45RA+CCR7+ T cells and demonstrated potent antitumor activity against CD19+ leukemic cells both in vitro and in vivo. Therefore, piggyBac-based gene transfer may provide an alternative to viral gene transfer for CAR-T cell therapy.

  16. DP97, a DEAD box DNA/RNA helicase, is a target gene-selective co-regulator of the constitutive androstane receptor

    International Nuclear Information System (INIS)

    Kanno, Yuichiro; Serikawa, Takafumi; Inajima, Jun; Inouye, Yoshio

    2012-01-01

    Highlights: ► DP97 interacts with nuclear receptor CAR. ► DP97 enhances CAR-mediated transcriptional activation. ► DP97 synergistically enhances transactivity of CAR by the co-expression of SRC-1 or PGC1α. ► DP97 is a gene-selective co-activator for hCAR. -- Abstract: The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that DP97, a member of the DEAD box DNA/RNA helicase protein family, is a novel CAR-interacting protein. Using HepG2 cells expressing human CAR in the presence of tetracycline, we showed that knockdown of DP97 with small interfering RNAs suppressed tetracycline-inducible mRNA expression of CYP2B6 and UGT1A1 but not CYP3A4. Thus, DP97 was found to be a gene (or promoter)-selective co-activator for hCAR. DP97-mediated CAR transactivation was synergistically enhanced by the co-expression of SRC-1 or PGC1α, therefore it might act as mediator between hCAR and appropriate co-activators.

  17. CAR-T cells and combination therapies: What's next in the immunotherapy revolution?

    Science.gov (United States)

    Ramello, Maria C; Haura, Eric B; Abate-Daga, Daniel

    2018-03-01

    Cancer immunotherapies are dramatically reshaping the clinical management of oncologic patients. For many of these therapies, the guidelines for administration, monitoring, and management of associated toxicities are still being established. This is especially relevant for adoptively transferred, genetically-modified T cells, which have unique pharmacokinetic properties, due to their ability to replicate and persist long-term, following a single administration. Furthermore, in the case of CAR-T cells, the use of synthetic immune receptors may impact signaling pathways involved in T cell function and survival in unexpected ways. We, herein, comment on the most salient aspects of CAR-T cell design and clinical experience in the treatment of solid tumors. In addition, we discuss different possible scenarios for combinations of CAR-T cells and other treatment modalities, with a special emphasis on kinase inhibitors, elaborating on the strategies to maximize synergism. Finally, we discuss some of the technologies that are available to explore the molecular events governing the success of these therapies. The young fields of synthetic and systems biology are likely to be major players in the advancement of CAR-T cell therapies, providing the tools and the knowledge to engineer patients' T lymphocytes into intelligent cancer-fighting micromachines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  19. Clinical pharmacology of CAR-T cells: Linking cellular pharmacodynamics to pharmacokinetics and antitumor effects.

    Science.gov (United States)

    Norelli, M; Casucci, M; Bonini, C; Bondanza, A

    2016-01-01

    Adoptive cell transfer of T cells genetically modified with tumor-reactive chimeric antigen receptors (CARs) is a rapidly emerging field in oncology, which in preliminary clinical trials has already shown striking antitumor efficacy. Despite these premises, there are still a number of open issues related to CAR-T cells, spanning from their exact mechanism of action (pharmacodynamics), to the factors associated with their in vivo persistence (pharmacokinetics), and, finally, to the relative contribution of each of the two in determining the antitumor effects and accompanying toxicities. In light of the unprecedented curative potential of CAR-T cells and of their predicted wide availability in the next few years, in this review we will summarize the current knowledge on the clinical pharmacology aspects of what is anticipated to be a brand new class of biopharmaceuticals to join the therapeutic armamentarium of cancer doctors. Copyright © 2015. Published by Elsevier B.V.

  20. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  1. Approved CAR T cell therapies : Ice bucket challenges on glaring safety risks and long-term impacts

    NARCIS (Netherlands)

    P.P. Zheng (Pingpin); J.M. Kros (Johan); J. Li (Jin)

    2018-01-01

    textabstractTwo autologous chimeric antigen receptor (CAR) T cell therapies (Kymriah™ and Yescarta™) were recently approved by the FDA. Kymriah™ is for the treatment of pediatric patients and young adults with refractory or relapse (R/R) B cell precursor acute lymphoblastic leukemia and Yescarta™ is

  2. Functional analysis of four naturally occurring variants of human constitutive androstane receptor.

    Science.gov (United States)

    Ikeda, Shinobu; Kurose, Kouichi; Jinno, Hideto; Sai, Kimie; Ozawa, Shogo; Hasegawa, Ryuichi; Komamura, Kazuo; Kotake, Takeshi; Morishita, Hideki; Kamakura, Shiro; Kitakaze, Masafumi; Tomoike, Hitonobu; Tamura, Tomohide; Yamamoto, Noboru; Kunitoh, Hideo; Yamada, Yasuhide; Ohe, Yuichiro; Shimada, Yasuhiro; Shirao, Kuniaki; Kubota, Kaoru; Minami, Hironobu; Ohtsu, Atsushi; Yoshida, Teruhiko; Saijo, Nagahiro; Saito, Yoshiro; Sawada, Jun-ichi

    2005-01-01

    The human constitutive androstane receptor (CAR, NR1I3) is a member of the orphan nuclear receptor superfamily that plays an important role in the control of drug metabolism and disposition. In this study, we sequenced all the coding exons of the NR1I3 gene for 334 Japanese subjects. We identified three novel single nucleotide polymorphisms (SNPs) that induce non-synonymous alterations of amino acids (His246Arg, Leu308Pro, and Asn323Ser) residing in the ligand-binding domain of CAR, in addition to the Val133Gly variant, which was another CAR variant identified in our previous study. We performed functional analysis of these four naturally occurring CAR variants in COS-7 cells using a CYP3A4 promoter/enhancer reporter gene that includes the CAR responsive elements. The His246Arg variant caused marked reductions in both transactivation of the reporter gene and in the response to 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO), which is a human CAR-specific agonist. The transactivation ability of the Leu308Pro variant was also significantly decreased, but its responsiveness to CITCO was not abrogated. The transactivation ability and CITCO response of the Val133Gly and Asn323Ser variants did not change as compared to the wild-type CAR. These data suggest that the His246Arg and Leu308Pro variants, especially His246Arg, may influence the expression of drug-metabolizing enzymes and transporters that are transactivated by CAR.

  3. Report on electric cars and plug-in hybrid cars; Redegoerelse - elbiler og plug-in hybridbiler

    Energy Technology Data Exchange (ETDEWEB)

    Elkjaer Toennesen, A.; Winther, K.; Noerregaard, K. (Teknologisk Institut, Taastrup (Denmark)); Larsen, Esben; Christensen, Linda; Kveiborg, O. (Danmarks Teknologiske Univ., Kgs. Lyngby (DTU) (Denmark))

    2010-04-15

    The Center for Green Transport at the Danish Transport Authority has prepared this statement in order to uncover driving technical aspects, user expectations and needs, and the environmental consequences of using electric and plug-in hybrid cars. An electric car is defined as a car driven by an electric motor that has a battery that can be charged with power from the grid. A plug-in hybrid car is defined as a car that combines gasoline or diesel engine with an electric motor with a battery which can be recharged with power from the grid. From an overall consideration related to the transport sector electric cars and plug-in hybrid cars have the major advantage that negative impacts on environment and climate from traffic can be reduced while the high mobility is maintained. Through an increased use of electric cars and plug-in hybrid cars, the many advantages attached to the car as an individual transportation form is maintained, while CO{sub 2} emissions etc. are reduced. Electric cars and plug-in hybrid cars is one of the technologies that are considered to have particularly great prospects in the medium term when it comes to promoting new technologies in transport. Another advantage of using electric vehicles is the power supply factor. An increased use of electricity in transport will reduce the need for and dependence on fossil fuels in the sector. Both electric cars and plug-in hybrid cars are expected to be used for storage of wind power, a possibility which is hardly available today. The plug-in hybrid car could meet some of the challenges facing the pure electric car, because it also can use conventional fuel. The report presents analyses based on three focus areas: a) Users' needs, expectations and economics in relation to vehicles; b) The technology - and hence the manufacturers' opportunities and challenges; c) Connection to the power grid. (ln)

  4. New Chimeric Antigen Receptor Design for Solid Tumors

    Directory of Open Access Journals (Sweden)

    Yuedi Wang

    2017-12-01

    Full Text Available In recent years, chimeric antigen receptor (CAR T-cell therapy has become popular in immunotherapy, particularly after its tremendous success in the treatment of lineage-restricted hematologic cancers. However, the application of CAR T-cell therapy for solid tumors has not reached its full potential because of the lack of specific tumor antigens and inhibitory factors in suppressive tumor microenvironment (TME (e.g., programmed death ligand-1, myeloid-derived suppressor cells, and transforming growth factor-β. In this review, we include some limitations in CAR design, such as tumor heterogeneity, indefinite spatial distance between CAR T-cell and its target cell, and suppressive TME. We also summarize some new approaches to overcome these hurdles, including targeting neoantigens and/or multiple antigens at once and depleting some inhibitory factors.

  5. [Prerequisite for hematopoietic cellular therapy programs to set up chimeric antigen receptor T-cell therapy (CAR T-cells): Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)].

    Science.gov (United States)

    Yakoub-Agha, Ibrahim; Ferrand, Christophe; Chalandon, Yves; Ballot, Caroline; Castilla Llorente, Cristina; Deschamps, Marina; Gauthier, Jordan; Labalette, Myriam; Larghero, Jérôme; Maheux, Camille; Moreau, Anne-Sophie; Varlet, Pauline; Pétillon, Marie-Odile; Pinturaud, Marine; Rubio, Marie Thérèse; Chabannon, Christian

    2017-12-01

    CAR T-cells are autologous or allogeneic human lymphocytes that are genetically engineered to express a chimeric antigen receptor targeting an antigen expressed on tumor cells such as CD19. CAR T-cells represent a new class of medicinal products, and belong to the broad category of Advanced Therapy Medicinal Products (ATMPs), as defined by EC Regulation 2007-1394. Specifically, they are categorized as gene therapy medicinal products. Although CAR T-cells are cellular therapies, the organization for manufacturing and delivery is far different from the one used to deliver hematopoietic cell grafts, for different reasons including their classification as medicinal products. Currently available clinical observations were mostly produced in the context of trials conducted either in the USA or in China. They demonstrate remarkable efficacy for patients presenting advanced or poor-prognosis hematological malignancies, however with severe side effects in a significant proportion of patients. Toxicities can and must be anticipated and dealt with in the context of a full coordination between the clinical cell therapy ward in charge of the patient, and the neighboring intensive care unit. The present workshop aimed at identifying prerequisites to be met in order for French hospitals to get efficiently organized and fulfill sponsors' expectations before initiation of clinical trials designed to investigate CAR T-cells. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells

    OpenAIRE

    Stroncek, David F.; Lee, Daniel W.; Ren, Jiaqiang; Sabatino, Marianna; Highfill, Steven; Khuu, Hanh; Shah, Nirali N.; Kaplan, Rosandra N.; Fry, Terry J.; Mackall, Crystal L.

    2017-01-01

    Background Clinical trials of Chimeric Antigen Receptor (CAR) T cells manufactured from autologous peripheral blood mononuclear cell (PBMC) concentrates for the treatment of hematologic malignancies have been promising, but CAR T cell yields have been variable. This variability is due in part to the contamination of the PBMC concentrates with monocytes and granulocytes. Methods Counter-flow elutriation allows for the closed system separation of lymphocytes from monocytes and granulocytes. We ...

  7. 77 FR 3482 - Prospective Grant of Exclusive License: Development of T Cell Receptors and Chimeric Antigen...

    Science.gov (United States)

    2012-01-24

    ... Exclusive License: Development of T Cell Receptors and Chimeric Antigen Receptors Into Therapeutics for.... 61/473,409 entitled ``Anti-epidermal growth factor receptor variant III chimeric antigen receptors... EGFRvIII chimeric antigen (CARs) and methods of using these engineered T cells to treat and/or prevent...

  8. Homology-Directed Recombination for Enhanced Engineering of Chimeric Antigen Receptor T Cells

    Directory of Open Access Journals (Sweden)

    Malika Hale

    2017-03-01

    Full Text Available Gene editing by homology-directed recombination (HDR can be used to couple delivery of a therapeutic gene cassette with targeted genomic modifications to generate engineered human T cells with clinically useful profiles. Here, we explore the functionality of therapeutic cassettes delivered by these means and test the flexibility of this approach to clinically relevant alleles. Because CCR5-negative T cells are resistant to HIV-1 infection, CCR5-negative anti-CD19 chimeric antigen receptor (CAR T cells could be used to treat patients with HIV-associated B cell malignancies. We show that targeted delivery of an anti-CD19 CAR cassette to the CCR5 locus using a recombinant AAV homology template and an engineered megaTAL nuclease results in T cells that are functionally equivalent, in both in vitro and in vivo tumor models, to CAR T cells generated by random integration using lentiviral delivery. With the goal of developing off-the-shelf CAR T cell therapies, we next targeted CARs to the T cell receptor alpha constant (TRAC locus by HDR, producing TCR-negative anti-CD19 CAR and anti-B cell maturation antigen (BCMA CAR T cells. These novel cell products exhibited in vitro cytolytic activity against both tumor cell lines and primary cell targets. Our combined results indicate that high-efficiency HDR delivery of therapeutic genes may provide a flexible and robust method that can extend the clinical utility of cell therapeutics.

  9. Background free CARS imaging by phase sensitive heterodyne CARS

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2008-01-01

    In this article we show that heterodyne CARS, based on a controlled and stable phase-preserving chain, can be used to measure amplitude and phase information of molecular vibration modes. The technique is validated by a comparison of the imaginary part of the heterodyne CARS spectrum to the

  10. Target Antigen Density Governs the Efficacy of Anti-CD20-CD28-CD3 zeta Chimeric Antigen Receptor-Modified Effector CD8(+) T Cells

    NARCIS (Netherlands)

    Watanabe, Keisuke; Terakura, Seitaro; Martens, Anton C.; van Meerten, Tom; Uchiyama, Susumu; Imai, Misa; Sakemura, Reona; Goto, Tatsunori; Hanajiri, Ryo; Imahashi, Nobuhiko; Shimada, Kazuyuki; Tomita, Akihiro; Kiyoi, Hitoshi; Nishida, Tetsuya; Naoe, Tomoki; Murata, Makoto

    2015-01-01

    The effectiveness of chimeric Ag receptor (CAR)-transduced T (CAR-T) cells has been attributed to supraphysiological signaling through CARs. Second-and later-generation CARs simultaneously transmit costimulatory signals with CD3 zeta signals upon ligation, but may lead to severe adverse effects

  11. Breaking car use habits

    DEFF Research Database (Denmark)

    Thøgersen, John; Møller, Berit Thorup

    2008-01-01

    Based on calls for innovative ways of reducing car traffic and research indicating that car driving is often the result of habitual decision-making and choice processes, this paper reports on a field experiment designed to test a tool aimed to entice drivers to skip the habitual choice of the car...... and consider using-or at least trying-public transport instead. About 1,000 car drivers participated in the experiment either as experimental subjects, receiving a free one-month travelcard, or as control subjects. As predicted, the intervention had a significant impact on drivers' use of public transport...... and it also neutralized the impact of car driving habits on mode choice. However, in the longer run (i.e., four months after the experiment) experimental subjects did not use public transport more than control subjects. Hence, it seems that although many car drivers choose travel mode habitually, their final...

  12. Annotation of the Nuclear Receptors in an Estuarine Fish species, Fundulus heteroclitus

    Directory of Open Access Journals (Sweden)

    William S. Baldwin

    2017-06-01

    Full Text Available The nuclear receptors (NRs are ligand-dependent transcription factors that respond to various internal as well as external cues such as nutrients, pheromones, and steroid hormones that play crucial roles in regulation and maintenance of homeostasis and orchestrating the physiological and stress responses of an organism. We annotated the Fundulus heteroclitus (mummichog; Atlantic killifish nuclear receptors. Mummichog are a non-migratory, estuarine fish with a limited home range often used in environmental research as a field model for studying ecological and evolutionary responses to variable environmental conditions such as salinity, oxygen, temperature, pH, and toxic compounds because of their hardiness. F. heteroclitus have at least 74 NRs spanning all seven gene subfamilies. F. heteroclitus is unique in that no RXRα member was found within the genome. Interestingly, some of the NRs are highly conserved between species, while others show a higher degree of divergence such as PXR, SF1, and ARα. Fundulus like other fish species show expansion of the RAR (NR1B, Rev-erb (NR1D, ROR (NR1F, COUPTF (NR2F, ERR (NR3B, RXR (NR2B, and to a lesser extent the NGF (NR4A, and NR3C steroid receptors (GR/AR. Of particular interest is the co-expansion of opposing NRs, Reverb-ROR, and RAR/RXR-COUPTF.

  13. Design of an intelligent car

    Science.gov (United States)

    Na, Yongyi

    2017-03-01

    The design of simple intelligent car, using AT89S52 single chip microcomputer as the car detection and control core; The metal sensor TL - Q5MC induction to iron, to detect the way to send feedback to the signal of single chip microcomputer, make SCM according to the scheduled work mode to control the car in the area according to the predetermined speed, and the operation mode of the microcontroller choose different also can control the car driving along s-shaped iron; Use A44E hall element to detect the car speeds; Adopts 1602 LCD display time of car driving, driving the car to stop, take turns to show the car driving time, distance, average speed and the speed of time. This design has simple structure and is easy to implement, but are highly intelligent, humane, to a certain extent reflects the intelligence.

  14. Misuse of car safety seats.

    Science.gov (United States)

    Bull, M J; Stroup, K B; Gerhart, S

    1988-01-01

    Correct use of car seats for small children is essential to prevent serious injuries and death from automotive accidents. Failure to use a car seat properly can contribute to serious injury or death of a child. A case study in which misuse of a car seat occurred is reported. The infant died of hemorrhage and shock secondary to liver laceration which resulted from excessive pressure over the abdomen sustained on impact. Surveys of car seat use for small children prior to and following a child restraint law are also reported. Observers noted types of car seats and specific forms of misuse. Survey results suggest that parents are more likely to misuse car seats for infants than toddlers. Medical professionals can reinforce the importance of proper car seat use by incorporating specific car seat use questions into the patient interview and by providing educational materials.

  15. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity.

    Science.gov (United States)

    Magee, Michael S; Kraft, Crystal L; Abraham, Tara S; Baybutt, Trevor R; Marszalowicz, Glen P; Li, Peng; Waldman, Scott A; Snook, Adam E

    2016-01-01

    Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.

  16. Genomics and the prediction of xenobiotic toxicity

    International Nuclear Information System (INIS)

    Meyer, Urs-A.; Gut, Josef

    2002-01-01

    The systematic identification and functional analysis of human genes is revolutionizing the study of disease processes and the development and rational use of drugs. It increasingly enables medicine to make reliable assessments of the individual risk to acquire a particular disease, raises the number and specificity of drug targets and explains interindividual variation of the effectiveness and toxicity of drugs. Mutant alleles at a single gene locus for more than 20 drug metabolizing enzymes are some of the best studied individual risk factors for adverse drug reactions and xenobiotic toxicity. Increasingly, genetic polymorphisms of transporter and receptor systems are also recognized as causing interindividual variation in drug response and drug toxicity. However, pharmacogenetic and toxicogenetic factors rarely act alone; they produce a phenotype in concert with other variant genes and with environmental factors. Environmental factors may affect gene expression in many ways. For instance, numerous drugs induce their own and the metabolism of other xenobiotics by interacting with nuclear receptors such as AhR, PPAR, PXR and CAR. Genomics is providing the information and technology to analyze these complex situations to obtain individual genotypic and gene expression information to assess the risk of toxicity

  17. Car-use habits

    DEFF Research Database (Denmark)

    Møller, Berit Thorup; Thøgersen, John

    2008-01-01

    It is often claimed that many drivers use their private car rather habitually. The claim gains credibility from the fact that travelling to many everyday destinations fulfils all the prerequisites for habit formation: it is recurring, performed under stable circumstances and produces rewarding...... consequences. Since the decision is made quite automatically and only one choice alternative is considered (the habitually chosen one), behaviour guided by habit is difficult to change. The implications of car use habits for converting drivers to commuters using public transportation is analysed based...... to do so, car use habit, and the interaction between the two, confirms the theory-derived hypothesis that car use habits act as an obstacle to the transformation of intentions to commute by public transportation into action....

  18. 49 CFR 1037.2 - Cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Cars. 1037.2 Section 1037.2 Transportation Other... GENERAL RULES AND REGULATIONS BULK GRAIN AND GRAIN PRODUCTS-LOSS AND DAMAGE CLAIMS § 1037.2 Cars. A car is... railroad-leased cars. [57 FR 54334, Nov. 18, 1992] ...

  19. Differential effects of the enantiomers of tamsulosin and tolterodine on P-glycoprotein and cytochrome P450 3A4.

    Science.gov (United States)

    Doricakova, Aneta; Theile, Dirk; Weiss, Johanna; Vrzal, Radim

    2017-01-01

    The pregnane X receptor (PXR) is a transcription factor regulating P-glycoprotein (P-gp; ABCB1)-mediated transport and cytochrome P450 3A4 (CYP3A4)-mediated metabolism of xenobiotics thereby affecting the pharmacokinetics of many drugs and potentially modulating clinical efficacy. Thus, pharmacokinetic drug-drug interactions can arise from PXR activation. Here, we examined whether the selective α1-adrenoreceptor blocker tamsulosin or the antagonist of muscarinic receptors tolterodine affect PXR-mediated regulation of CYP3A4 and of P-gp at the messenger RNA (mRNA) and protein level in an enantiomer-specific way. In addition, the effect of tamsulosin and tolterodine on P-gp activity was evaluated. We used quantitative real-time PCR, gene reporter assay, western blotting, rhodamine efflux assay, and calcein assay for determination of expression, activity, and inhibition of P-glycoprotein. The studied compounds significantly and concentration-dependently increased PXR activity in the ABCB1-driven luciferase-based reporter gene assay. We observed much stronger induction of ABCB1 mRNA by S-tamsulosin as compared to the R or racemic form. R or racemic form of tolterodine and R-tamsulosin concentration-dependently increased P-gp protein expression; the latter also enhanced P-gp efflux function in a rhodamine-based efflux assay. R-tamsulosin and all forms of tolderodine slightly inhibited P-gp. The effect on CYP3A4 expression followed the same pattern but was much weaker. Taken together, tamsulosin and tolterodine are demonstrated to interfere with P-gp and CYP3A4 regulation in an enantiomer-specific way.

  20. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars.

    Science.gov (United States)

    Platt, S M; El Haddad, I; Pieber, S M; Zardini, A A; Suarez-Bertoa, R; Clairotte, M; Daellenbach, K R; Huang, R-J; Slowik, J G; Hellebust, S; Temime-Roussel, B; Marchand, N; de Gouw, J; Jimenez, J L; Hayes, P L; Robinson, A L; Baltensperger, U; Astorga, C; Prévôt, A S H

    2017-07-13

    Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, -7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at -7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.

  1. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  2. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  3. NREL Model Car Competitions | NREL

    Science.gov (United States)

    work together building cars with guidance from a parent, teacher, or coach to compete in race and Solar and Lithium Ion model car races in Colorado. Building solar- and battery-powered cars requires listPDF for Junior Solar Sprint and Lithium-Ion Battery model cars. Junior Solar Sprint Solar Made Pitsco

  4. DP97, a DEAD box DNA/RNA helicase, is a target gene-selective co-regulator of the constitutive androstane receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp [Faculty of Pharmaceutical Sciences, Toho University, Chiba (Japan); Serikawa, Takafumi; Inajima, Jun; Inouye, Yoshio [Faculty of Pharmaceutical Sciences, Toho University, Chiba (Japan)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer DP97 interacts with nuclear receptor CAR. Black-Right-Pointing-Pointer DP97 enhances CAR-mediated transcriptional activation. Black-Right-Pointing-Pointer DP97 synergistically enhances transactivity of CAR by the co-expression of SRC-1 or PGC1{alpha}. Black-Right-Pointing-Pointer DP97 is a gene-selective co-activator for hCAR. -- Abstract: The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that DP97, a member of the DEAD box DNA/RNA helicase protein family, is a novel CAR-interacting protein. Using HepG2 cells expressing human CAR in the presence of tetracycline, we showed that knockdown of DP97 with small interfering RNAs suppressed tetracycline-inducible mRNA expression of CYP2B6 and UGT1A1 but not CYP3A4. Thus, DP97 was found to be a gene (or promoter)-selective co-activator for hCAR. DP97-mediated CAR transactivation was synergistically enhanced by the co-expression of SRC-1 or PGC1{alpha}, therefore it might act as mediator between hCAR and appropriate co-activators.

  5. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells.

    Science.gov (United States)

    Frigault, Matthew J; Lee, Jihyun; Basil, Maria Ciocca; Carpenito, Carmine; Motohashi, Shinichiro; Scholler, John; Kawalekar, Omkar U; Guedan, Sonia; McGettigan, Shannon E; Posey, Avery D; Ang, Sonny; Cooper, Laurence J N; Platt, Jesse M; Johnson, F Brad; Paulos, Chrystal M; Zhao, Yangbing; Kalos, Michael; Milone, Michael C; June, Carl H

    2015-04-01

    This study compared second-generation chimeric antigen receptors (CAR) encoding signaling domains composed of CD28, ICOS, and 4-1BB (TNFRSF9). Here, we report that certain CARs endow T cells with the ability to undergo long-term autonomous proliferation. Transduction of primary human T cells with lentiviral vectors encoding some of the CARs resulted in sustained proliferation for up to 3 months following a single stimulation through the T-cell receptor (TCR). Sustained numeric expansion was independent of cognate antigen and did not require the addition of exogenous cytokines or feeder cells after a single stimulation of the TCR and CD28. Results from gene array and functional assays linked sustained cytokine secretion and expression of T-bet (TBX21), EOMES, and GATA-3 to the effect. Sustained expression of the endogenous IL2 locus has not been reported in primary T cells. Sustained proliferation was dependent on CAR structure and high expression, the latter of which was necessary but not sufficient. The mechanism involves constitutive signaling through NF-κB, AKT, ERK, and NFAT. The propagated CAR T cells retained a diverse TCR repertoire, and cellular transformation was not observed. The CARs with a constitutive growth phenotype displayed inferior antitumor effects and engraftment in vivo. Therefore, the design of CARs that have a nonconstitutive growth phenotype may be a strategy to improve efficacy and engraftment of CAR T cells. The identification of CARs that confer constitutive or nonconstitutive growth patterns may explain observations that CAR T cells have differential survival patterns in clinical trials. ©2015 American Association for Cancer Research.

  6. Increase of child car seat temperature in cars parked in the outpatient parking lot.

    Science.gov (United States)

    Sugimura, Tetsu; Suzue, Junji; Kamada, Makoto; Ozaki, Yukiko; Tananari, Yoshifumi; Maeno, Yasuki; Ito, Shinichi; Nishino, Hiroshi; Kakimoto, Noriko; Yamakawa, Rumi

    2011-12-01

    A guideline for the safe use of child car seats (CS) was published by the Japan Pediatric Society in 2008. There have been few studies of the increase of temperature of a CS in parked cars. The aim of this study was to determine the change in the temperature of the CS in cars parked in full sun. The temperature of CS was measured during summer (July and August) in 2006, 2007, and 2008. The CS used in this study (n= 50) were for children (≤ 6 years old) who were taken by car to Sugimura Children's Medical Clinic. Temperatures were only measured on sunny days. Measurements were performed from 09.00 to 17.00 hours. Thermochron (Thermochron i-Button: G type, Maxim Integrated Products, CA, USA) was used to measure the temperatures. The maximum temperatures of CS were compared in time at the clinic, taking into consideration seat colors, and car colors. Of the 50 cars, three cars were excluded due to being in the shade while the temperature was measured. A total of 47 cars were used for this study. The temperature of the CS ranged from 38.0 to 65.5°C (47.8 ± 5.8°C). Eighteen CS (38.3%) reached a temperature of 50°C or above. The maximum temperature of the 13.00-15.00-hours group was significantly higher than that of the 09.00-11.00-hours group (P= 0.035). The CS temperatures in the black car group were significantly higher than those of the white car group (P= 0.013). CS may become very hot while a car is parked in sun, especially if the car and the CS are black, so the CS should be cooled before a young child is placed in it. Guardians of small children should be aware of this risk. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  7. Car stickers for 2012

    CERN Multimedia

    GS Department

    2011-01-01

    The 2012 car stickers are now available. Holders of blue car stickers will receive by internal mail their 2012 car stickers as of 5 December. Holders of red car stickers are kindly requested to come to the Registration Service (Building 55,1st floor) to renew their 2011 stickers. This service is open from Monday to Friday from 7.30 am to 5.30 pm non-stop. Documents related to the vehicles concerned are mandatory. Reception and Access Control Service – GS/IS/SIS General Infrastructure Services Department

  8. Car stickers for 2011

    CERN Multimedia

    GS Department

    2010-01-01

    The 2011 car stickers are now available. Holders of blue car stickers will receive their 2011 car stickers by internal mail as of 15 December.   Holders of red car stickers are kindly requested to come to the Registration Service (Building 55,1st floor) to renew their 2011 stickers. This service is open from Monday to Friday from 7.30 am to 5.30 pm non-stop. Documents for the vehicles concerned must be presented. Reception and Access Control Service – GS/ISG/SIS General Infrastructure Services Department

  9. CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications.

    Science.gov (United States)

    Köhl, Ulrike; Arsenieva, Stanislava; Holzinger, Astrid; Abken, Hinrich

    2018-04-05

    The adoptive transfer of chimeric antigen receptor (CAR)-modified T cells is attracting growing interest for the treatment of malignant diseases. Early trials with anti-CD19 CAR T cells have achieved spectacular remissions in B-cell leukemia and lymphoma, so far refractory, very recently resulting in the Food and Drug Administration approval of CD19 CAR T cells for therapy. With further applications and increasing numbers of patients, the reproducible manufacture of high-quality clinical-grade CAR T cells is becoming an ever greater challenge. New processing techniques, quality-control mechanisms, and logistic developments are required to meet both medical needs and regulatory restrictions. This paper summarizes the state-of-the-art in manufacturing CAR T cells and the current challenges that need to be overcome to implement this type of cell therapy in the treatment of a variety of malignant diseases and in a greater number of patients.

  10. The Socialist Car

    DEFF Research Database (Denmark)

    Christensen, Lars K.

    2013-01-01

    Review of L.H. Siegelbaum (ed.) The Socialist Car. Automobility in the Eastern Block. Cornell University Press, 2011.......Review of L.H. Siegelbaum (ed.) The Socialist Car. Automobility in the Eastern Block. Cornell University Press, 2011....

  11. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  12. Differential modulation of FXR activity by chlorophacinone and ivermectin analogs

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chia-Wen [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Hsieh, Jui-Hua [National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC (United States); Huang, Ruili [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Pijnenburg, Dirk [PamGene International B.V., Wolvenhoek 10, 5211 HH ' s-Hertogenbosch (Netherlands); Khuc, Thai [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Hamm, Jon [Integrated Laboratory System, Inc., Morrisville, NC (United States); Zhao, Jinghua; Lynch, Caitlin [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States); Beuningen, Rinie van [PamGene International B.V., Wolvenhoek 10, 5211 HH ' s-Hertogenbosch (Netherlands); Chang, Xiaoqing [Integrated Laboratory System, Inc., Morrisville, NC (United States); Houtman, René [PamGene International B.V., Wolvenhoek 10, 5211 HH ' s-Hertogenbosch (Netherlands); Xia, Menghang, E-mail: mxia@mail.nih.gov [NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD (United States)

    2016-12-15

    Chemicals that alter normal function of farnesoid X receptor (FXR) have been shown to affect the homeostasis of bile acids, glucose, and lipids. Several structural classes of environmental chemicals and drugs that modulated FXR transactivation were previously identified by quantitative high-throughput screening (qHTS) of the Tox21 10 K chemical collection. In the present study, we validated the FXR antagonist activity of selected structural classes, including avermectin anthelmintics, dihydropyridine calcium channel blockers, 1,3-indandione rodenticides, and pyrethroid pesticides, using in vitro assay and quantitative structural-activity relationship (QSAR) analysis approaches. (Z)-Guggulsterone, chlorophacinone, ivermectin, and their analogs were profiled for their ability to alter CDCA-mediated FXR binding using a panel of 154 coregulator motifs and to induce or inhibit transactivation and coactivator recruitment activities of constitutive androstane receptor (CAR), liver X receptor alpha (LXRα), or pregnane X receptor (PXR). Our results showed that chlorophacinone and ivermectin had distinct modes of action (MOA) in modulating FXR-coregulator interactions and compound selectivity against the four aforementioned functionally-relevant nuclear receptors. These findings collectively provide mechanistic insights regarding compound activities against FXR and possible explanations for in vivo toxicological observations of chlorophacinone, ivermectin, and their analogs. - Highlights: • A subset of Tox21 chemicals was investigated for FXR antagonism. • In vitro and computational approaches were used to evaluate FXR antagonists. • Chlorophacinone and ivermectin had distinct patterns in modulating FXR activity.

  13. FLAG-tagged CD19-specific CAR-T cells eliminate CD19-bearing solid tumor cells in vitro and in vivo.

    Science.gov (United States)

    Berahovich, Robert; Xu, Shirley; Zhou, Hua; Harto, Hizkia; Xu, Qumiao; Garcia, Andres; Liu, Fenyong; Golubovskaya, Vita M; Wu, Lijun

    2017-06-01

    Autologous T cells expressing chimeric antigen receptors (CARs) specific for CD19 have demonstrated remarkable efficacy as therapeutics for B cell malignancies. In the present study, we generated FLAG-tagged CD19-specific CAR-T cells (CD19-FLAG) and compared them to their non-tagged counterparts for their effects on solid and hematological cancer cells in vitro and in vivo . For solid tumors, we used HeLa cervical carcinoma cells engineered to overexpress CD19 (HeLa-CD19), and for hematological cancer we used Raji Burkitt's lymphoma cells, which endogenously express CD19. Like non-tagged CD19 CAR-T cells, CD19-FLAG CAR-T cells expanded in culture >100-fold and exhibited potent cytolytic activity against both HeLa-CD19 and Raji cells in vitro . CD19-FLAG CAR-T cells also secreted significantly more IFN-gamma and IL-2 than the control T cells. In vivo , CD19-FLAG CAR-T cells significantly blocked the growth of HeLa-CD19 solid tumors, increased tumor cleaved caspase-3 levels, and expanded systemically. CD19-FLAG CAR-T cells also significantly reduced Raji tumor burden and extended mouse survival. These results demonstrate the strong efficacy of FLAG-tagged CD19 CAR-T cells in solid and hematological cancer models.

  14. An integrated approach for prospectively investigating a mode-of-action for rodent liver effects

    International Nuclear Information System (INIS)

    LeBaron, Matthew J.; Geter, David R.; Rasoulpour, Reza J.; Gollapudi, B. Bhaskar; Thomas, Johnson; Murray, Jennifer; Kan, H. Lynn; Wood, Amanda J.; Elcombe, Cliff; Vardy, Audrey; McEwan, Jillian; Terry, Claire; Billington, Richard

    2013-01-01

    Registration of new plant protection products (e.g., herbicide, insecticide, or fungicide) requires comprehensive mammalian toxicity evaluation including carcinogenicity studies in two species. The outcome of the carcinogenicity testing has a significant bearing on the overall human health risk assessment of the substance and, consequently, approved uses for different crops across geographies. In order to understand the relevance of a specific tumor finding to human health, a systematic, transparent, and hypothesis-driven mode of action (MoA) investigation is, appropriately, an expectation by the regulatory agencies. Here, we describe a novel approach of prospectively generating the MoA data by implementing additional end points to the standard guideline toxicity studies with sulfoxaflor, a molecule in development. This proactive MoA approach results in a more robust integration of molecular with apical end points while minimizing animal use. Sulfoxaflor, a molecule targeting sap-feeding insects, induced liver effects (increased liver weight due to hepatocellular hypertrophy) in an initial palatability probe study for selecting doses for subsequent repeat-dose dietary studies. This finding triggered the inclusion of dose-response investigations of the potential key events for rodent liver carcinogenesis, concurrent with the hazard assessment studies. As predicted, sulfoxaflor induced liver tumors in rats and mice in the bioassays. The MoA data available by the time of the carcinogenicity finding supported the conclusion that the carcinogenic potential of sulfoxaflor was due to CAR/PXR nuclear receptor activation with subsequent hepatocellular proliferation. This MoA was not considered to be relevant to humans as sulfoxaflor is unlikely to induce hepatocellular proliferation in humans and therefore would not be a human liver carcinogen. - Highlights: • We prospectively generated MoA data into standard guideline toxicity studies. • A proactive MoA approach

  15. An integrated approach for prospectively investigating a mode-of-action for rodent liver effects

    Energy Technology Data Exchange (ETDEWEB)

    LeBaron, Matthew J., E-mail: MJLeBaron@dow.com [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Geter, David R., E-mail: dave.geter@gmail.com [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Rasoulpour, Reza J. [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Gollapudi, B. Bhaskar, E-mail: BBGollapudi@dow.com [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Thomas, Johnson, E-mail: JThomas4@dow.com [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Murray, Jennifer, E-mail: AMurray@dow.com [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Kan, H. Lynn, E-mail: HLKan@dow.com [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Wood, Amanda J., E-mail: AJWood@dow.com [Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674 (United States); Elcombe, Cliff, E-mail: CliffElcombe@cxrbiosciences.com [CXR Biosciences, 2 James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, Scotland (United Kingdom); Vardy, Audrey, E-mail: audrey_vardy@europe.bd.com [CXR Biosciences, 2 James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, Scotland (United Kingdom); McEwan, Jillian, E-mail: jillian.mcewan@rtmcewan.co.uk [CXR Biosciences, 2 James Lindsay Place, Dundee Technopole, Dundee, DD1 5JJ, Scotland (United Kingdom); Terry, Claire, E-mail: CTerry@dow.com [Dow AgroSciences, Abingdon, Oxfordshire (United Kingdom); Billington, Richard, E-mail: RBillington@dow.com [Dow AgroSciences, Abingdon, Oxfordshire (United Kingdom)

    2013-07-15

    Registration of new plant protection products (e.g., herbicide, insecticide, or fungicide) requires comprehensive mammalian toxicity evaluation including carcinogenicity studies in two species. The outcome of the carcinogenicity testing has a significant bearing on the overall human health risk assessment of the substance and, consequently, approved uses for different crops across geographies. In order to understand the relevance of a specific tumor finding to human health, a systematic, transparent, and hypothesis-driven mode of action (MoA) investigation is, appropriately, an expectation by the regulatory agencies. Here, we describe a novel approach of prospectively generating the MoA data by implementing additional end points to the standard guideline toxicity studies with sulfoxaflor, a molecule in development. This proactive MoA approach results in a more robust integration of molecular with apical end points while minimizing animal use. Sulfoxaflor, a molecule targeting sap-feeding insects, induced liver effects (increased liver weight due to hepatocellular hypertrophy) in an initial palatability probe study for selecting doses for subsequent repeat-dose dietary studies. This finding triggered the inclusion of dose-response investigations of the potential key events for rodent liver carcinogenesis, concurrent with the hazard assessment studies. As predicted, sulfoxaflor induced liver tumors in rats and mice in the bioassays. The MoA data available by the time of the carcinogenicity finding supported the conclusion that the carcinogenic potential of sulfoxaflor was due to CAR/PXR nuclear receptor activation with subsequent hepatocellular proliferation. This MoA was not considered to be relevant to humans as sulfoxaflor is unlikely to induce hepatocellular proliferation in humans and therefore would not be a human liver carcinogen. - Highlights: • We prospectively generated MoA data into standard guideline toxicity studies. • A proactive MoA approach

  16. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia

    Directory of Open Access Journals (Sweden)

    Mingxue Fan

    2017-08-01

    Full Text Available Abstract Currently, conventional therapies for acute myeloid leukemia (AML have high failure and relapse rates. Thus, developing new strategies is crucial for improving the treatment of AML. With the clinical success of anti-CD19 chimeric antigen receptor (CAR T cell therapies against B-lineage malignancies, many studies have attempted to translate the success of CAR T cell therapy to other malignancies, including AML. This review summarizes the current advances in CAR T cell therapy against AML, including preclinical studies and clinical trials, and discusses the potential AML-associated surface markers that could be used for further CAR technology. Finally, we describe strategies that might address the current issues of employing CAR T cell therapy in AML.

  17. Substitution between Cars within the Household

    DEFF Research Database (Denmark)

    de Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    In this paper we study the demand for car kilometres in two-car households, focusing on the substitution between cars in response to fuel price changes. We use a large sample of detailed Danish data on two-car households to estimate—for each car owned by the household—own and cross-price effects...... of increases in fuel costs per kilometre. The empirical results show that failure to capture substitution between cars within the household can result in substantial misspecification biases. Ignoring substitution, we estimate fuel price elasticities of –0.81 and -0.65 for the primary and secondary cars...... efficient car, finding partial support for the underlying hypothesis. More importantly, the results of this extended model emphasize the importance of behavioural differences related to the position of the most fuel efficient car in the household, suggesting that households’ fuel efficiency choices...

  18. Cars, Cycles, and Consumers.

    Science.gov (United States)

    Idleman, Hillis K. Ed.

    The purpose of this consumer education module is to provide information and skills, and the ability to raise questions and find answers, while seeking the best automobile or motorcycle buy available for the money. The module may be used for a full or part semester course. The five sections (cars and the consumer, renting and leasing cars, cars and…

  19. Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal.

    Science.gov (United States)

    Angelotti, Tim; Daunt, David; Shcherbakova, Olga G; Kobilka, Brian; Hurt, Carl M

    2010-04-01

    Plasma membrane (PM) expression of G-protein coupled receptors (GPCRs) is required for activation by extracellular ligands; however, mechanisms that regulate PM expression of GPCRs are poorly understood. For some GPCRs, such as alpha2c-adrenergic receptors (alpha(2c)-ARs), heterologous expression in non-native cells results in limited PM expression and extensive endoplasmic reticulum (ER) retention. Recently, ER export/retentions signals have been proposed to regulate cellular trafficking of several GPCRs. By utilizing a chimeric alpha(2a)/alpha(2c)-AR strategy, we identified an evolutionary conserved hydrophobic sequence (ALAAALAAAAA) in the extracellular amino terminal region that is responsible in part for alpha(2c)-AR subtype-specific trafficking. To our knowledge, this is the first luminal ER retention signal reported for a GPCR. Removal or disruption of the ER retention signal dramatically increased PM expression and decreased ER retention. Conversely, transplantation of this hydrophobic sequence into alpha(2a)-ARs reduced their PM expression and increased ER retention. This evolutionary conserved hydrophobic trafficking signal within alpha(2c)-ARs serves as a regulator of GPCR trafficking.

  20. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients.

    Science.gov (United States)

    Turtle, Cameron J; Hanafi, Laïla-Aïcha; Berger, Carolina; Gooley, Theodore A; Cherian, Sindhu; Hudecek, Michael; Sommermeyer, Daniel; Melville, Katherine; Pender, Barbara; Budiarto, Tanya M; Robinson, Emily; Steevens, Natalia N; Chaney, Colette; Soma, Lorinda; Chen, Xueyan; Yeung, Cecilia; Wood, Brent; Li, Daniel; Cao, Jianhong; Heimfeld, Shelly; Jensen, Michael C; Riddell, Stanley R; Maloney, David G

    2016-06-01

    T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR-T cell products were prepared from unselected T cells. We conducted a clinical trial to evaluate CD19 CAR-T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy. The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR-T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR-T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell-mediated anti-CAR transgene product immune responses developed after CAR-T cell infusion in some patients, limited CAR-T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR-T cell persistence and disease-free survival. Immunotherapy with a CAR-T cell product of defined composition enabled identification of factors that correlated with CAR-T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR-T cell dosing strategies that mitigated toxicity and improved disease-free survival. ClinicalTrials.gov NCT01865617. R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation.

  1. Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps☆

    OpenAIRE

    Beatty, Gregory L.; O’Hara, Mark

    2016-01-01

    Chimeric antigen receptor (CAR) T cell therapy has shown promise in CD19 expressing hematologic malignancies, but how to translate this success to solid malignancies remains elusive. Effective translation of CAR T cells to solid tumors will require an understanding of potential therapeutic barriers, including factors that regulate CAR T cells expansion, persistence, trafficking, and fate within tumors. Herein, we describe the current state of CAR T cells in solid tumors; define key barriers t...

  2. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy.

    Science.gov (United States)

    Siegler, Elizabeth Louise; Wang, Pin

    2018-05-01

    Cancer immunotherapy has enormous potential in inducing long-term remission in cancer patients, and chimeric antigen receptor (CAR)-engineered T cells have been largely successful in treating hematological malignancies in the clinic. CAR-T therapy has not been as effective in treating solid tumors, in part due to the immunosuppressive tumor microenvironment. Additionally, CAR-T therapy can cause dangerous side effects, including off-tumor toxicity, cytokine release syndrome, and neurotoxicity. Animal models of CAR-T therapy often fail to predict such adverse events and frequently overestimate the efficacy of the treatment. Nearly all preclinical CAR-T studies have been performed in mice, including syngeneic, xenograft, transgenic, and humanized mouse models. Recently, a few studies have used primate models to mimic clinical side effects better. To date, no single model perfectly recapitulates the human immune system and tumor microenvironment, and some models have revealed CAR-T limitations that were contradicted or missed entirely in other models. Careful model selection based on the primary goals of the study is a crucial step in evaluating CAR-T treatment. Advancements are being made in preclinical models, with the ultimate objective of providing safer, more effective CAR-T therapy to patients.

  3. Xenosensor CAR mediates down-regulation of miR-122 and up-regulation of miR-122 targets in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Mostovich, Lyudmila A. [The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117 (Russian Federation); Pustylnyak, Yuliya A. [Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090 (Russian Federation); Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru [The Institute of Molecular Biology and Biophysics, Timakova str., 2/12, Novosibirsk 630117 (Russian Federation); Novosibirsk State University, Pirogova str., 2, Novosibirsk 630090 (Russian Federation); The Institute International Tomography Center of the Russian Academy of Sciences, Institutskaya str. 3-A, Novosibirsk 630090 (Russian Federation)

    2015-10-01

    MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α–CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α–CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments. - Highlights: • CAR activation decreased the level of miR-122 in mouse livers. • CAR decreases

  4. Xenosensor CAR mediates down-regulation of miR-122 and up-regulation of miR-122 targets in the liver

    International Nuclear Information System (INIS)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Mostovich, Lyudmila A.; Pustylnyak, Yuliya A.; Pustylnyak, Vladimir O.

    2015-01-01

    MiR-122 is a major hepatic microRNA, accounting for more than 70% of the total liver miRNA population. It has been shown that miR-122 is associated with liver diseases, including hepatocellular carcinoma. Mir-122 is an intergenic miRNA with its own promoter. Pri-miR-122 expression is regulated by liver-enriched transcription factors, mainly by HNF4α, which mediates the expression via the interaction with a specific DR1 site. It has been shown that phenobarbital-mediated activation of constitutive androstane receptor (CAR), xenobiotic nuclear receptor, is associated with a decrease in miR-122 in the liver. In the present study, we investigated HNF4α–CAR cross-talk in the regulation of miR-122 levels and promitogenic signalling in mouse livers. The level of miR-122 was significantly repressed by treatment with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), which is an agonist of mouse CAR. ChIP assays demonstrated that TCPOBOP-activated CAR inhibited HNF4α transactivation by competing with HNF4α for binding to the DR1 site in the pri-miR-122 promoter. Such transcription factor replacement was strongly correlated with miR-122 down-regulation. Additionally, the decrease in miR-122 levels produced by CAR activation is accompanied by an increase in mRNA and cellular protein levels of E2f1 and its accumulation on the target cMyc gene promoter. The increase in accumulation of E2f1 on the target cMyc gene promoter is accompanied by an increase in cMyc levels and transcriptional activity. Thus, our results provide evidence to support the conclusion that CAR activation decreases miR-122 levels through suppression of HNF4α transcriptional activity and indirectly regulates the promitogenic protein cMyc. HNF4α–CAR cross-talk may provide new opportunities for understanding liver diseases and developing more effective therapeutic approaches to better drug treatments. - Highlights: • CAR activation decreased the level of miR-122 in mouse livers. • CAR decreases

  5. Crash protection of stock car racing drivers--application of biomechanical analysis of Indy car crash research.

    Science.gov (United States)

    Melvin, John W; Begeman, Paul C; Faller, Ronald K; Sicking, Dean L; McClellan, Scott B; Maynard, Edwin; Donegan, Michael W; Mallott, Annette M; Gideon, Thomas W

    2006-11-01

    Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars. Unlike the Indy car, the typical racing stock car features a more spacious driver cockpit due to its resemblance to the shape of a passenger car. The typical racing seat used in stock cars did not have the same configuration or support characteristics of the Indy car seat, and five-point belt restraints were used. The tubular steel space frame chassis of a stock car also differs from an Indy car's composite chassis structure in both form and mechanical behavior. This paper describes the application of results of the biomechanical analysis of the Indy car crash studies to the unique requirements of stock car racing driver crash protection. Sled test and full-scale crash test data using both Hybrid III frontal crash anthropomorphic test devices (ATDs) and BioSID side crash ATDs for the purpose of evaluating countermeasures involving restraint systems, seats and head/neck restraints has been instrumental in guiding these developments. In addition, the development of deformable walls for oval tracks (the SAFER Barrier) is described as an adjunct to improved occupant restraint through control

  6. Systemic treatment with CAR-engineered T cells against PSCA delays subcutaneous tumor growth and prolongs survival of mice

    International Nuclear Information System (INIS)

    Hillerdal, Victoria; Ramachandran, Mohanraj; Leja, Justyna; Essand, Magnus

    2014-01-01

    Adoptive transfer of T cells genetically engineered with a chimeric antigen receptor (CAR) has successfully been used to treat both chronic and acute lymphocytic leukemia as well as other hematological cancers. Experimental therapy with CAR-engineered T cells has also shown promising results on solid tumors. The prostate stem cell antigen (PSCA) is a protein expressed on the surface of prostate epithelial cells as well as in primary and metastatic prostate cancer cells and therefore a promising target for immunotherapy of prostate cancer. We developed a third-generation CAR against PSCA including the CD28, OX-40 and CD3 ζ signaling domains. T cells were transduced with a lentivirus encoding the PSCA-CAR and evaluated for cytokine production (paired Student’s t-test), proliferation (paired Student’s t-test), CD107a expression (paired Student’s t-test) and target cell killing in vitro and tumor growth and survival in vivo (Log-rank test comparing Kaplan-Meier survival curves). PSCA-CAR T cells exhibit specific interferon (IFN)-γ and interleukin (IL)-2 secretion and specific proliferation in response to PSCA-expressing target cells. Furthermore, the PSCA-CAR-engineered T cells efficiently kill PSCA-expressing tumor cells in vitro and systemic treatment with PSCA-CAR-engineered T cells significantly delays subcutaneous tumor growth and prolongs survival of mice. Our data confirms that PSCA-CAR T cells may be developed for treatment of prostate cancer

  7. Modelling and optimization of car-to-car compatibility - Modellierung und optimierung von pkw-pkw-kompatibilität

    NARCIS (Netherlands)

    Mooi, H.G.; Nastic, T.; Huibers, J.H.A.M.

    1999-01-01

    In this paper simple and more detailed MADYMO multibody models were used to simulate the car structure for improving the car-to-car compatibility of the whole car fleet. As a first step, survey studies were performed to develop a method for the optimization of car design with respect to frontal and

  8. CAR T-Cell Therapies in Glioblastoma: A First Look.

    Science.gov (United States)

    Migliorini, Denis; Dietrich, Pierre-Yves; Stupp, Roger; Linette, Gerald P; Posey, Avery D; June, Carl H

    2018-02-01

    Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Car Covers | Outdoor Covers Canada

    OpenAIRE

    Covers, Outdoor

    2018-01-01

    Protect your car from the elements with Ultimate Touch Car Cover. The multi-layer non-woven fabric is soft on the finish and offers 4 seasons all weather protection.https://outdoorcovers.ca/car-covers/

  10. Autonomous and nonautonomous regulation of axis formation by antagonistic signaling via 7-span cAMP receptors and GSK3 in Dictyostelium.

    Science.gov (United States)

    Ginsburg, G T; Kimmel, A R

    1997-08-15

    Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.

  11. T cell maturation stage prior to and during GMP processing informs on CAR T cell expansion in patients

    NARCIS (Netherlands)

    Y. Klaver (Yarne); S.C.L. van Steenbergen; S. Sleijfer (Stefan); J.E.M.A. Debets (Reno); C.H.J. Lamers (Cor)

    2016-01-01

    textabstractAutologous T cells were genetically modified to express a chimeric antigen receptor (CAR) directed toward carboxy-anhydrase-IX (CAIX) and used to treat patients with CAIX-positive metastatic renal cell carcinoma. In this study, we questioned whether the T cell maturation stage in the

  12. Plasticizers May Activate Human Hepatic Peroxisome Proliferator-Activated Receptor α Less Than That of a Mouse but May Activate Constitutive Androstane Receptor in Liver

    Science.gov (United States)

    Ito, Yuki; Nakamura, Toshiki; Yanagiba, Yukie; Ramdhan, Doni Hikmat; Yamagishi, Nozomi; Naito, Hisao; Kamijima, Michihiro; Gonzalez, Frank J.; Nakajima, Tamie

    2012-01-01

    Dibutylphthalate (DBP), di(2-ethylhexyl)phthalate (DEHP), and di(2-ethylhexyl)adipate (DEHA) are used as plasticizers. Their metabolites activate peroxisome proliferator-activated receptor (PPAR) α, which may be related to their toxicities. However, species differences in the receptor functions between rodents and human make it difficult to precisely extrapolate their toxicity from animal studies to human. In this paper, we compared the species differences in the activation of mouse and human hepatic PPARα by these plasticizers using wild-type (mPPARα) and humanized PPARα (hPPARα) mice. At 12 weeks old, each genotyped male mouse was classified into three groups, and fed daily for 2 weeks per os with corn oil (vehicle control), 2.5 or 5.0 mmol/kg DBP (696, 1392 mg/kg), DEHP (977, 1953 mg/kg), and DEHA (926, 1853 mg/kg), respectively. Generally, hepatic PPARα of mPPARα mice was more strongly activated than that of hPPARα mice when several target genes involving β-oxidation of fatty acids were evaluated. Interestingly, all plasticizers also activated hepatic constitutive androstane receptor (CAR) more in hPPARα mice than in mPPARα mice. Taken together, these plasticizers activated mouse and human hepatic PPARα as well as CAR. The activation of PPARα was stronger in mPPARα mice than in hPPARα mice, while the opposite was true of CAR. PMID:22792086

  13. Plasticizers May Activate Human Hepatic Peroxisome Proliferator-Activated Receptor α Less Than That of a Mouse but May Activate Constitutive Androstane Receptor in Liver

    Directory of Open Access Journals (Sweden)

    Yuki Ito

    2012-01-01

    Full Text Available Dibutylphthalate (DBP, di(2-ethylhexylphthalate (DEHP, and di(2-ethylhexyladipate (DEHA are used as plasticizers. Their metabolites activate peroxisome proliferator-activated receptor (PPAR α, which may be related to their toxicities. However, species differences in the receptor functions between rodents and human make it difficult to precisely extrapolate their toxicity from animal studies to human. In this paper, we compared the species differences in the activation of mouse and human hepatic PPARα by these plasticizers using wild-type (mPPARα and humanized PPARα (hPPARα mice. At 12 weeks old, each genotyped male mouse was classified into three groups, and fed daily for 2 weeks per os with corn oil (vehicle control, 2.5 or 5.0 mmol/kg DBP (696, 1392 mg/kg, DEHP (977, 1953 mg/kg, and DEHA (926, 1853 mg/kg, respectively. Generally, hepatic PPARα of mPPARα mice was more strongly activated than that of hPPARα mice when several target genes involving β-oxidation of fatty acids were evaluated. Interestingly, all plasticizers also activated hepatic constitutive androstane receptor (CAR more in hPPARα mice than in mPPARα mice. Taken together, these plasticizers activated mouse and human hepatic PPARα as well as CAR. The activation of PPARα was stronger in mPPARα mice than in hPPARα mice, while the opposite was true of CAR.

  14. Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action

    Science.gov (United States)

    Currie, Richard A.; Peffer, Richard C.; Goetz, Amber K.; Omiecinski, Curtis J.; Goodman, Jay I.

    2014-01-01

    Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA. PMID:24675475

  15. Phenobarbital and propiconazole toxicogenomic profiles in mice show major similarities consistent with the key role that constitutive androstane receptor (CAR) activation plays in their mode of action

    International Nuclear Information System (INIS)

    Currie, Richard A.; Peffer, Richard C.; Goetz, Amber K.; Omiecinski, Curtis J.; Goodman, Jay I.

    2014-01-01

    Toxicogenomics (TGx) is employed frequently to investigate underlying molecular mechanisms of the compound of interest and, thus, has become an aid to mode of action determination. However, the results and interpretation of a TGx dataset are influenced by the experimental design and methods of analysis employed. This article describes an evaluation and reanalysis, by two independent laboratories, of previously published TGx mouse liver microarray data for a triazole fungicide, propiconazole (PPZ), and the anticonvulsant drug phenobarbital (PB). Propiconazole produced an increase incidence of liver tumors in male CD-1 mice only at a dose that exceeded the maximum tolerated dose (2500 ppm). Firstly, we illustrate how experimental design differences between two in vivo studies with PPZ and PB may impact the comparisons of TGx results. Secondly, we demonstrate that different researchers using different pathway analysis tools can come to different conclusions on specific mechanistic pathways, even when using the same datasets. Finally, despite these differences the results across three different analyses also show a striking degree of similarity observed for PPZ and PB treated livers when the expression data are viewed as major signaling pathways and cell processes affected. Additional studies described here show that the postulated key event of hepatocellular proliferation was observed in CD-1 mice for both PPZ and PB, and that PPZ is also a potent activator of the mouse CAR nuclear receptor. Thus, with regard to the events which are hallmarks of CAR-induced effects that are key events in the mode of action (MOA) of mouse liver carcinogenesis with PB, PPZ-induced tumors can be viewed as being promoted by a similar PB-like CAR-dependent MOA

  16. Multiplexing a high-throughput liability assay to leverage efficiencies.

    Science.gov (United States)

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  17. A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.

    Science.gov (United States)

    Lu, Tangying Lily; Pugach, Omar; Somerville, Robert; Rosenberg, Steven A; Kochenderfer, James N; Better, Marc; Feldman, Steven A

    2016-12-01

    The treatment of B-cell malignancies by adoptive cell transfer (ACT) of anti-CD19 chimeric antigen receptor T cells (CD19 CAR-T) has proven to be a highly successful therapeutic modality in several clinical trials. 1-6 The anti-CD19 CAR-T cell production method used to support initial trials relied on numerous manual, open process steps, human serum, and 10 days of cell culture to achieve a clinical dose. 7 This approach limited the ability to support large multicenter clinical trials, as well as scale up for commercial cell production. Therefore, studies were completed to streamline and optimize the original National Cancer Institute production process by removing human serum from the process in order to minimize the risk of viral contamination, moving process steps from an open system to functionally closed system operations in order to minimize the risk of microbial contamination, and standardizing additional process steps in order to maximize process consistency. This study reports a procedure for generating CD19 CAR-T cells in 6 days, using a functionally closed manufacturing process and defined, serum-free medium. This method is able to produce CD19 CAR-T cells that are phenotypically and functionally indistinguishable from cells produced for clinical trials by the previously described production process.

  18. External exposure dose of car mechanics during the maintenance of the cars from the risk cautionary area

    International Nuclear Information System (INIS)

    Kawakami, Hiroto; Yamada, Norikazu; Sasaki, Satoru; Kawasaki, Satoru

    2011-12-01

    At the request of the Local Nuclear Emergency Response Headquarters, JNES has estimated the effective external exposure dose of car mechanics during the maintenance of the cars from the risk cautionary area. JNES investigated the contamination of the cars from the risk cautionary area and of the average cars at Fukushima city cooperated by the Japan Automobile Dealers Association. Data of screed cars by the Local Nuclear Emergency Response Headquarters is also considered in. Effective external exposure dose of car mechanics treating the cars screened with the emergency situation screening level is estimated to be less than 1 mSv/y under the conservative conditions. This result shows that particular health concern isn't necessary for them. (author)

  19. 49 CFR 215.121 - Defective car body.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective car body. 215.121 Section 215.121..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Car Bodies § 215.121 Defective car body. A railroad may not place or continue in service a car, if: (a) Any portion of...

  20. Car sick.

    Science.gov (United States)

    Renner, M G

    1988-01-01

    The automobile is currently seen as the most desirable mode of transportation. However, this view needs to be changed since the proliferation of the automobile worldwide is leading to the poisoning of the environment and people. In the US the number of passenger cars grew 51% between 1971-86 and in the noncommunist industrialized community that figure is 71%. The gasoline and diesel fuel used to power the overwhelming majority of cars creates a variety of problems. The pollution is estimated to have a hidden cost of US $.80/gallon. Others estimate that the pollution causes 30,000 premature deaths annually just in the US. 75% of the carbon monoxide (CO), 48% of nitrogen oxides (NO2), 13% of particulates (P), and 3% of sulfur (S) emissions come from cars in the countries of the Organization for Economic Cooperation and Development (OECD), which includes the US, Canada, Western Europe, Japan, Australia, and New Zealand. 17% of all worldwide carbon dioxide (CO2) emission comes from the production and use of fossil fuels for cars. The single biggest problem associated with cars is the photochemical smog they create in urban areas. In 1986 75 million Americans lived in areas that failed to meet national air quality standards for CO, P, and ozone (03). The only area of major improvement has been the removal of lead from gasoline. It was known to cause problems from the beginning of its use in the 1920s, but remained for 50 years because of auto and oil company pressure. Ground 03 is estimated by the US government to cost US $4 billion in annual losses, just for corn, wheat, soybeans, and peanuts. Acid rain is the other major problem associated with cars, and its damage is estimated at US $5 billion annually. Both these problems are shortterm, their effects occur immediately; the longterm disadvantage is the build up of CO2 and its contribution to the greenhouse effect. While the US is at the forefront of regulation and many other countries are modeling their emission

  1. Development of RaRaII solar car. Solar car RaRaII no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, M [Toyota Motor Corp., Aichi (Japan)

    1991-05-31

    A solar car was developed to be able to travel, by utilizing solar energy, as a guiding car for the marathon race in the public road. That car is 210kg in weight, 1 in number of riding persons and 4.8m in smallest rotating radius. Its traveling performance is 44km h in highest speed, 10{degree} in hill-climbing ability and 0.6m s{sup 2} in acceleration. Those principal particulars satisfied the required condition of guiding car for the marathon race. That car was equipped with a polycrystalline silicon type solar cell, 6m{sup 2} in area to generate 870Wp power. A silver oxide-zinc battery, used as a secondary battery to secure traveling in case of rain, is of a performance to travel twice the marathon race road through. To satisfy the public road traveling in safety standard, that car was equipped with head lamps, wiper, direction winkers, rear-view mirrors, etc. As material of the body, aramid fiber and carbon fiber were adopted for securing the rigidity to cover the lightening in weight. That car, as used at an opportunity of intercollegiate marathon relay race, traveled a distance of about 30km which was its entire public road portion of course. 2 figs., 2 tabs.

  2. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy.

    Science.gov (United States)

    Gardner, Rebecca; Wu, David; Cherian, Sindhu; Fang, Min; Hanafi, Laïla-Aïcha; Finney, Olivia; Smithers, Hannah; Jensen, Michael C; Riddell, Stanley R; Maloney, David G; Turtle, Cameron J

    2016-05-19

    Administration of lymphodepletion chemotherapy followed by CD19-specific chimeric antigen receptor (CAR)-modified T cells is a remarkably effective approach to treating patients with relapsed and refractory CD19(+) B-cell malignancies. We treated 7 patients with B-cell acute lymphoblastic leukemia (B-ALL) harboring rearrangement of the mixed lineage leukemia (MLL) gene with CD19 CAR-T cells. All patients achieved complete remission (CR) in the bone marrow by flow cytometry after CD19 CAR-T-cell therapy; however, within 1 month of CAR-T-cell infusion, 2 of the patients developed acute myeloid leukemia (AML) that was clonally related to their B-ALL, a novel mechanism of CD19-negative immune escape. These reports have implications for the management of patients with relapsed and refractory MLL-B-ALL who receive CD19 CAR-T-cell therapy. © 2016 by The American Society of Hematology.

  3. Engineering an Affordable Self-Driving Car

    KAUST Repository

    Budisteanu, Alexandru Ionut

    2018-01-01

    for affordable self-driving cars and he designed a low-cost self-driving car. The car's roof has cameras and low-resolution 3D LiDAR equipment to detect traffic lanes, other cars, curbs and obstacles, such as people crossing by. To process this dizzying amount

  4. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications

    Directory of Open Access Journals (Sweden)

    Hamid R. Mirzaei

    2017-12-01

    Full Text Available Adoptive cellular immunotherapy (ACT employing engineered T lymphocytes expressing chimeric antigen receptors (CARs has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.

  5. 49 CFR 215.203 - Restricted cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Restricted cars. 215.203 Section 215.203..., DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Restricted Equipment § 215.203 Restricted cars. (a) This section restricts the operation of any railroad freight car that is— (1) More than 50...

  6. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  7. Our Car as Power Plant

    NARCIS (Netherlands)

    Van Wijk, A.J.M.; Verhoef, L.

    2014-01-01

    Fuel cell cars can provide more efficient and cleaner transportation. However, we use our cars for transportation only 5% of the time. When parked, the fuel cell in the car can produce electricity from hydrogen, which is cleaner and more efficient than the current electricity system, generating

  8. Substitution between cars within the household

    DEFF Research Database (Denmark)

    De Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    The purpose of this paper is to study to what extent two-car households substitute the use of their less fuel efficient car by the use of their more fuel efficient car after an increase in fuel prices. Based on a simple theoretical framework we use a large sample of detailed Danish data on two-car...... households to estimate, for each car owned by the household, own and cross-price effects of increases in fuel costs per kilometer. The empirical results point at important substitution effects, so that models that estimate responses to fuel prices on the implicit or explicit assumption of one car per...

  9. 49 CFR 174.615 - Cleaning cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  10. Proton - Malaysia's national car project

    DEFF Research Database (Denmark)

    Fleming, Daniel; Søborg, Henrik

    2017-01-01

    The rise and development of the Malaysian national car project. How this project has become an esential part of the industrial development in Malaysia and how it has underpinned a growing middle class consumption culture with house and car as it pivotal goods.......The rise and development of the Malaysian national car project. How this project has become an esential part of the industrial development in Malaysia and how it has underpinned a growing middle class consumption culture with house and car as it pivotal goods....

  11. Demand for mini cars and large cars; decay effects, and gasoline demand in Japan

    International Nuclear Information System (INIS)

    Bonilla, David; Schmitz, Klaus E.; Akisawa, Atsushi

    2012-01-01

    This article explains why: (a) consumers underinvest in new car fuel economy by opting to buy large vehicles; (b) macro shifts in vehicle classes have occurred in the last decades; and how (c) the effects of vehicle fuel economy and shifts in vehicle type influence the growth path of gasoline demand, which is the key to designing effective energy efficiency goals for transport. From 2008, 1.9 EXJ (Exajoules) of energy were consumed in Japan by private vehicles producing 124 MtCO 2 emissions. For the period 1980 to 2008, we estimated: (1) gasoline demand for three vehicle sizes; (2) vehicle sales; (3) new car fuel economy changes (the ‘real’ technical change); and (4) vehicle stocks. Using a data sample for 1980–2008 we found that: (a) in the short term consumers buy fuel economy, that is sales of mini and small cars increase, but this is not sustained in the long term: and (b) consumers increasingly traded in their cars for larger cars. A further finding was that gasoline demand is projected to increase to 2.3 EXJ by 2035, even with a growing number of mini cars. The policy implication is clear: Japan’s policy to reduce oil dependency to 80% by 2030 is in peril as long as buyers prefer larger cars and drive ever longer distances.

  12. Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB.

    Science.gov (United States)

    Li, Shiqi; Zhang, Jiasi; Wang, Meiling; Fu, Gang; Li, Yunyan; Pei, Li; Xiong, Zhouxing; Qin, Dabing; Zhang, Rui; Tian, Xiaobo; Wei, Zhihao; Chen, Run; Chen, Xuejiao; Wan, Jia; Chen, Jun; Wei, Xia; Xu, Yanmin; Zhang, Pei; Wang, Ping; Peng, Xi; Yang, Sainan; Shen, Junjie; Yang, Zhi; Chen, Jieping; Qian, Cheng

    2018-04-10

    T cells modified with anti-CD19 chimeric antigen receptor (CAR) containing either CD28 or 4-1BB (also termed TNFRSF9, CD137) costimulatory signalling have shown great potential in the treatment of acute lymphoblastic leukaemia (ALL). However, the difference between CD28 and 4-1BB costimulatory signalling in CAR-T treatment has not been well elucidated in clinical trials. In this study, we treated 10 relapsed or refractory ALL patients with the second generation CD19 CAR-T. The first 5 patients were treated with CD28-CAR and the other 5 patients were treated with 4-1BB CAR-T. All the 10 patients were response-evaluable. Three patients achieved complete remission and 1 patient with extramedullary disease achieved partial response after CD28-CAR-T treatment. In the 4-1BB CAR-T treatment group, 3 patients achieved complete remission. Furthermore, FLT-3 ligand (FLT3LG) was highly correlated with response time and may serve as a prognosis factor. No severe adverse events were observed in these 10 treated patients. Our study showed that both CD28 CAR-T and 4-1BB CAR-T both worked for response but they differed in response pattern (peak reaction time, reaction lasting time and reaction degree), adverse events, cytokine secretion and immune-suppressive factor level. © 2018 John Wiley & Sons Ltd.

  13. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T

    Science.gov (United States)

    Burga, Rachel A.; Thorn, Mitchell; Point, Gary R.; Guha, Prajna; Nguyen, Cang T.; Licata, Lauren A.; DeMatteo, Ronald P.; Ayala, Alfred; Espat, N. Joseph; Junghans, Richard P.; Katz, Steven C.

    2015-01-01

    Chimeric antigen receptor modified T cell (CAR-T) technology, a promising immunotherapeutic tool, has not been applied specifically to treat liver metastases (LM). While CAR-T delivery to LM can be optimized by regional intrahepatic infusion, we propose that liver CD11b+Gr-1+ myeloid-derived suppressor cells (L-MDSC) will inhibit the efficacy of CAR-T in the intrahepatic space. We studied anti-CEA CAR-T in a murine model of CEA+ LM and identified mechanisms through which L-MDSC expand and inhibit CAR-T function. We established CEA+ LM in mice and studied purified L-MDSC and responses to treatment with intrahepatic anti-CEA CAR-T infusions. L-MDSC expanded three-fold in response to LM and their expansion was dependent on GM-CSF, which was produced by tumor cells. L-MDSC utilized PD-L1 to suppress anti-tumor responses through engagement of PD-1 on CAR-T. GM-CSF, in cooperation with STAT3, promoted L-MDSC PD-L1 expression. CAR-T efficacy was rescued when mice received CAR-T in combination with MDSC depletion, GM-CSF neutralization to prevent MDSC expansion, or PD-L1 blockade. As L-MDSC suppressed anti-CEA CAR-T, infusion of anti-CEA CAR-T in tandem with agents targeting L-MDSC is a rational strategy for future clinical trials. PMID:25850344

  14. Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars.

    Directory of Open Access Journals (Sweden)

    Michael Ansong

    Full Text Available When traveling in cars, we can unintentionally carry and disperse weed seed; but which species, and where are they a problem? To answer these questions, we systematically searched the scientific literature to identify all original research studies that assess seed transported by cars and listed the species with seed on/in cars. From the 13 studies that fit these criteria, we found 626 species from 75 families that have seed that can be dispersed by cars. Of these, 599 are listed as weeds in some part of the world, with 439 listed as invasive or naturalized alien species in one or more European countries, 248 are invasive/noxious weeds in North America, 370 are naturalized alien species in Australia, 167 are alien species in India, 77 are invasive species in China and 23 are declared weeds/invaders in South Africa. One hundred and one are classified as internationally important environmental weeds. Although most (487 were only recorded once, some species such as Chenopodium album, Poa pratensis and Trifolium repens were common among studies. Perennial graminoids seem to be favoured over annual graminoids while annual forbs are favoured over perennial forbs. Species characteristics including seed size and morphology and where the plants grew affected the probability that their seed was transported by cars. Seeds can be found in many different places on cars including under the chassis, front and rear bumpers, wheel wells and rims, front and back mudguards, wheel arches, tyres and on interior floor mats. With increasing numbers of cars and expanding road networks in many regions, these results highlight the importance of cars as a dispersal mechanism, and how it may favour invasions by some species over others. Strategies to reduce the risk of seed dispersal by cars include reducing seed on cars by mowing road verges and cleaning cars.

  15. SODA-IIoT4ConnectedCars: Spread updates between cars with limited Internet access

    OpenAIRE

    Boudguiga , Aymen; Quesnel , Flavien; Bouzerna , Nabil

    2017-01-01

    International audience; A blockchain infrastructure, combined with cryptographic signatures, can improve availability and accountability for the deployment of IoT updates.However, cars with limited or intermittent Internet access may have difficulties in downloading full updates fromthe blockchain. Therefore, we allow cars that successfully downloaded updates to share them with other cars by means of a Peer-to-Peer (P2P) mechanism.

  16. 49 CFR 231.6 - Flat cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Flat cars. 231.6 Section 231.6 Transportation... TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.6 Flat cars. (Cars with sides 12 inches or less above the floor may be equipped the same as flat cars.) (a) Hand brakes—(1) Number. Same as specified for...

  17. Engineering an Affordable Self-Driving Car

    KAUST Repository

    Budisteanu, Alexandru Ionut

    2018-01-17

    "More than a million people die in car accidents each year, and most of those accidents are the result of human errorヤ Alexandru Budisteanu is 23 years old and owns a group of startups including Autonomix, an Artificial Intelligence software for affordable self-driving cars and he designed a low-cost self-driving car. The car\\'s roof has cameras and low-resolution 3D LiDAR equipment to detect traffic lanes, other cars, curbs and obstacles, such as people crossing by. To process this dizzying amount of data, Alexandru employed Artificial Intelligence algorithms to extract information from the visual data and plot a safe route for the car. Then, he built a manufacturing facility in his garage from Romania to assembly affordable VisionBot Pick and Place robots that are used to produce electronics. During this lecture, Alexandru will talk about this autonomous self-driving car prototype, for which he received the grand prize of the Intel International Science and Engineering Fair, and was nominated by TIME magazine as one of the worldメs most influential teens of 2013.

  18. Chimeric Antigen Receptor-Engineered T Cells in Tumor Immunotherapy: From Bench to Beside

    Directory of Open Access Journals (Sweden)

    Peng WANG

    2017-06-01

    Full Text Available Chimeric antigen receptor-engineered T cells (CAR-T cells, a classification of cultured T cells after modification of gene engineering technology, can recognize specific tumor antigens in a major histocompatibility complex (MHC-independent manner, consequently leading to the activation of antitumor function. The recent studies have confirmed that a variety of tumor-associated antigens (TAAs can act as target antigens for CAR-T cells. Nowadays, CAR T-cell therapy, one of the most potential tumor immunotherapies, has made great breakthroughs in hematological malignancies and promising outcomes in solid tumors. In this article, the biological characteristics and antitumor mechanism of CAR-T cells, and their application in tumor treatment were mainly reviewed.

  19. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver

    International Nuclear Information System (INIS)

    Guo Dongsheng; Sarkar, Joy; Ahmed, Mohamed R.; Viswakarma, Navin; Jia Yuzhi; Yu Songtao; Sambasiva Rao, M.; Reddy, Janardan K.

    2006-01-01

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function

  20. Art Cars: Transformations of the Mundane

    Science.gov (United States)

    Stienecker, Dawn

    2010-01-01

    The automobile itself is often understood as an extension of oneself, where individuals may manipulate the interior and exterior of cars and trucks, decorating them through detailing, stickers, custom colors, and so on. Others go further and change their cars into unique works of art called art cars. Such cars break away from the banality of mass…

  1. Substitution between cars within the household

    DEFF Research Database (Denmark)

    De Borger, Bruno; Mulalic, Ismir; Rouwendal, Jan

    2016-01-01

    In this paper we study the demand for car kilometres in two-car households, focusing on the substitution between cars of different fuel efficiency in response to fuel price changes. We use a large sample of detailed Danish data on two-car households to estimate – for each car owned by the household...... – own and cross-price effects of increases in fuel costs per kilometre. The empirical results show that failure to capture substitution between cars within the household can result in substantial misspecification biases. Ignoring substitution, the basic model yielded fuel price elasticities of 0.......98 and 1.41 for the primary and secondary cars, respectively. Accounting for substitution effects, these figures reduce to, respectively, 0.32 and 0.45. Consistent with substitution behaviour, we find that the fuel price elasticity of fuel demand exceeds the elasticity of kilometre demands with respect...

  2. 49 CFR 238.311 - Single car test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Single car test. 238.311 Section 238.311... Requirements for Tier I Passenger Equipment § 238.311 Single car test. (a) Except for self-propelled passenger cars, single car tests of all passenger cars and all unpowered vehicles used in passenger trains shall...

  3. ADULTEROUS BEHAVIOUR WITHIN THE CAR-OWNER COUPLE

    Directory of Open Access Journals (Sweden)

    Francis PAPON

    2008-01-01

    Full Text Available The objective of this paper was to analyse two activities: who rents a car and why? Which households share the driving of their cars? In order to do that, the Parc-Auto (Car-Fleet database, built from annual postal surveys conducted with a panel of 10,000 French households, has been processed. Among approximately one hundred questions in the survey, two key questions have been crossed against many social, economic, demographic, geographic or time variables. KQ1: “During the last 12 months, did you — or another person from your home — rent a car in France for personal purposes?” KQ2: “Is this car occasionally used by other persons?” Here are the main findings. Renting households are mainly working, high income households, living in the core of big cities, and in particular in Paris. Most of them have two wage-sheets and two cars, one of which is generally a recent, high power, high quality car. Car rental is mainly an occasional practice. Yet for a minority of renters, it is a sustained habit. Households with more licence holders than cars share the most: about three quarters of them share their cars. On the contrary, single driver-single car households have less opportunity to share: only 15% share. Household car sharing shed light on the gender role within households: while 58% of the main users of the shared cars are male, 55% of secondary users are female. Household car sharing is mainly a regular practice. Finally, without diminishing the merits of innovative transport solutions proposed here and there, it is not a waste of time to give some insight on self established behaviour within households. This reveals that complex patterns have been built over time by the people themselves, to cope with diverse situations that cannot be easily handled by straightforward classifications. The car cannot be reduced to a personal object. Household car sharing also carries strong links with the issue of car dependency. Sifting car

  4. CARs and other T cell therapies for MM: The clinical experience.

    Science.gov (United States)

    Danhof, Sophia; Hudecek, Michael; Smith, Eric L

    2018-06-01

    Harnessing the endogenous immune system to eliminate malignant cells has long been an intriguing approach. After considerable success in the treatment of B-cell acute lymphoblastic leukemia, chimeric antigen receptor (CAR)-modified T cells have entered early clinical evaluation in the field of multiple myeloma (MM). The choice of suitable non-CD19 target antigens is challenging and a variety of myeloma-associated surface molecules have been under preclinical investigation. Most recent clinical protocols have focused on targeting B-cell maturation antigen (BCMA), and early results are promising. The trials differ in receptor constructs, patient selection, dosing strategies and conditioning chemotherapy and will thus pave the way to eventually define the optimal parameters. Other sources for autologous T-cell therapy of MM include affinity-enhanced T-cell receptor-modified cells and marrow infiltrating lymphocytes. In summary, adoptive T-cell transfer for the treatment of MM is still in its infancy, but if early response rates indicate durability, will be a paradigm changing therapeutic modality for the treatment of MM. Copyright © 2018. Published by Elsevier Ltd.

  5. Constitutive androstane receptor activation promotes bilirubin clearance in a murine model of alcoholic liver disease.

    Science.gov (United States)

    Wang, Xiuyan; Zheng, Liyu; Wu, Jinming; Tang, Binbin; Zhang, Mengqin; Zhu, Debin; Lin, Xianfan

    2017-06-01

    Increased plasma levels of bilirubin have been reported in rat models and patients with alcoholic liver disease (ALD). The constitutive androstane receptor (CAR) is a known xenobiotic receptor, which induces the detoxification and transport of bilirubin. In the present study, the bilirubin transport regulatory mechanisms, and the role of CAR activation in hepatic and extrahepatic bilirubin clearance were investigated in a murine model of ALD. The mice were fed a Lieber-DeCarli ethanol diet or an isocaloric control diet for 4 weeks, followed by the administration of CAR agonists, 1,4-bis-[2‑(3,5-dichlorpyridyloxy)]benzene (TCPOBOP) and phenobarbital (PB), and their vehicles to examine the effect of the pharmacological activation of CAR on serum levels of bilirubin and on the bilirubin clearance pathway in ALD by serological survey, western blotting and reverse transcription‑quantitative polymerase chain reaction. The results showed that chronic ethanol ingestion impaired the nuclear translocation of CAR, which was accompanied by elevated serum levels of bilirubin, suppression of the expression of hepatic and renal organic anion transporting polypeptide (OATP) 1A1 and hepatic multidrug resistance‑associated protein 2 (MRP2), and induction of the expression of UDP-glucuronosyltransferase (UGT) 1A1. The activation of CAR by TCPOBOP and PB resulted in downregulation of the serum levels of bilirubin followed by selective upregulation of the expression levels of OATP1A1, OATP1A4, UGT1A1 and MRP2 in ALD. These results revealed the bilirubin transport regulatory mechanisms and highlighted the importance of CAR in modulating the bilirubin clearance pathway in the ALD mouse model.

  6. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.

    Science.gov (United States)

    Wang, Jinghua; Chen, Siyu; Xiao, Wei; Li, Wende; Wang, Liang; Yang, Shuo; Wang, Weida; Xu, Liping; Liao, Shuangye; Liu, Wenjian; Wang, Yang; Liu, Nawei; Zhang, Jianeng; Xia, Xiaojun; Kang, Tiebang; Chen, Gong; Cai, Xiuyu; Yang, Han; Zhang, Xing; Lu, Yue; Zhou, Penghui

    2018-01-10

    Acute myeloid leukemia (AML) is one of the most common types of adult acute leukemia. Standard chemotherapies can induce complete remission in selected patients; however, a majority of patients eventually relapse and succumb to the disease. Thus, the development of novel therapeutics for AML is urgently needed. Human C-type lectin-like molecule-1 (CLL-1) is a type II transmembrane glycoprotein, and its expression is restricted to myeloid cells and the majority of AML blasts. Moreover, CLL-1 is expressed in leukemia stem cells (LSCs), but absent in hematopoietic stem cells (HSCs), which may provide a potential therapeutic target for AML treatment. We tested the expression of CLL-1 antigen on peripheral blood cells and bone marrow cells in healthy donor and AML patients. Then, we developed a chimeric antigen receptor (CAR) containing a CLL1-specific single-chain variable fragment, in combination with CD28, 4-1BB costimulatory domains, and CD3-ζ signaling domain. We further investigate the function of CLL-1 CAR-T cells. The CLL-1 CAR-T cells specifically lysed CLL-1 + cell lines as well as primary AML patient samples in vitro. Strong anti-leukemic activity was observed in vivo by using a xenograft model of disseminated AML. Importantly, CLL-1 + myeloid progenitor cells and mature myeloid cells were specifically eliminated by CLL-1 CAR-T cells, while normal HSCs were not targeted due to the lack of CLL-1 expression. CLL-1 CAR-T represents a promising immunotherapy for the treatment of AML.

  7. AAP Updates Recommendations on Car Seats

    Science.gov (United States)

    ... Size Email Print Share AAP Updates Recommendations on Car Seats Page Content Article Body Children should ride ... of approved car safety seats. Healthy Children Radio: Car Seat Safety Dennis Durbin, MD, FAAP, lead author ...

  8. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase

    OpenAIRE

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-01-01

    Inward rectifier K+ channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP2). Stimulation of the Ca2+-sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both Gq/11, which decreases PIP2, and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP2. How membrane PIP2 levels are regulated by CaR activation and wheth...

  9. Evaluation and comparison of bisphenol A analog activity ...

    Science.gov (United States)

    Bisphenol A (BPA) is used in consumer products and industrial applications, primarily in plastics, and has been detected in the environment, human urine, blood, and breast milk. Mainly studied as an endocrine disruptor, other toxicities, including obesity, metabolic conditions such as diabetes, and neurodevelopmental effects have also been associated with exposure to BPA, indicating that its effects may not be limited to estrogenicity. In addition, a number of BPA analogs are in use and may exhibit other additional toxicities. To address these unknowns, we examined the bioactivity of 21 BPA analogs across a selection of ToxCast/Tox21 assays grouped by 7 gene sets including estrogen receptor (ER), androgen receptor (AR), thyroid receptor (TR), peroxisome proliferator-activated receptor (PPAR), pregnane x receptor (PXR), aromatase (AROM), and aryl hydrocarbon receptor (AHR). The most active compounds were bisphenol AF (BPAF) (ER, AR, AROM, AHR), bisphenol A glycidyl methacrylate (TR), 3,3’,5,5’-tetrabromobisphenol A (PPAR) and bisphenol B (BPB) (PXR). We used these data to produce toxicological prioritization index (ToxPi) scores and images to integrate and visually compare the toxicity profiles across all gene sets. The compounds with highest ToxPi scores were BPAF, BPA and BPB. We also mapped the intended gene targets for all ToxCast assays to their associated KEGG BRITE protein families in order to characterize their toxicity profiles on a broader spectr

  10. DOES ELECTRIC CAR PRODUCE EMISSIONS?

    Directory of Open Access Journals (Sweden)

    Vladimír RIEVAJ

    2017-03-01

    Full Text Available This article focuses on the comparison of the amount of emissions produced by vehicles with a combustion engine and electric cars. The comparison, which is based on the LCA factor results, indicates that an electric car produces more emissions than a vehicle with combustion engine. The implementation of electric cars will lead to an increase in the production of greenhouse gases.

  11. Treatment of Metastatic Renal Cell Carcinoma With CAIX CAR-engineered T cells: Clinical Evaluation and Management of On-target Toxicity

    NARCIS (Netherlands)

    Lamers, C.H.; Sleijfer, S.; Steenbergen, S. van; Elzakker, P. van; Krimpen, B. van; Groot, C. de; Vulto, A.; Bakker, M. den; Oosterwijk, E.; Debets, R.; Gratama, J.W.

    2013-01-01

    Autologous T cells genetically modified to express a chimeric antibody receptor (CAR) against carboxy-anhydrase-IX (CAIX) were administered to 12 patients with CAIX-expressing metastatic renal cell carcinoma (RCC). Patients were treated in three cohorts with a maximum of 10 infusions of a total of

  12. Parents smoking in their cars with children present.

    Science.gov (United States)

    Nabi-Burza, Emara; Regan, Susan; Drehmer, Jeremy; Ossip, Deborah; Rigotti, Nancy; Hipple, Bethany; Dempsey, Janelle; Hall, Nicole; Friebely, Joan; Weiley, Victoria; Winickoff, Jonathan P

    2012-12-01

    To determine prevalence and factors associated with strictly enforced smoke-free car policies among smoking parents. As part of a cluster, randomized controlled trial addressing parental smoking, exit interviews were conducted with parents whose children were seen in 10 control pediatric practices. Parents who smoked were asked about smoking behaviors in their car and receipt of smoke-free car advice at the visit. Parents were considered to have a "strictly enforced smoke-free car policy" if they reported having a smoke-free car policy and nobody had smoked in their car within the past 3 months. Of 981 smoking parents, 817 (83%) had a car; of these, 795 parents answered questions about their car smoking policy. Of these 795 parents, 29% reported having a smoke-free car policy, and 24% had a strictly enforced smoke-free car policy. Of the 562 parents without a smoke-free car policy, 48% reported that smoking occurred with children present. Few parents who smoke (12%) were advised to have a smoke-free car. Multivariable logistic regression controlling for parent age, gender, education, and race showed that having a younger child and smoking ≤10 cigarettes per day were associated with having a strictly enforced smoke-free car policy. The majority of smoking parents exposed their children to tobacco smoke in cars. Coupled with the finding of low rates of pediatricians addressing smoking in cars, this study highlights the need for improved pediatric interventions, public health campaigns, and policies regarding smoke-free car laws to protect children from tobacco smoke.

  13. 77 FR 62520 - Prospective Grant of Exclusive License: The Development of Anti-CD22 Chimeric Antigen Receptors...

    Science.gov (United States)

    2012-10-15

    ... Exclusive License: The Development of Anti- CD22 Chimeric Antigen Receptors (CARs) for the Treatment of B... ``Anti-CD22 Chimeric Antigen Receptors'' [HHS Ref. E-265-2011/0-US-01], and (b) U.S. Patent Application... CD22 on their cell surface using chimeric antigen receptors which contain the HA22 or BL22 antibody...

  14. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  15. Ground effect aerodynamics of racing cars

    OpenAIRE

    Zhang, Xin; Toet, Willem; Zerihan, Jonathan

    2006-01-01

    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  16. 49 CFR 210.9 - Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of a noise defective locomotive, rail car, or consist of a locomotive and rail cars. 210.9 Section 210.9 Transportation Other Regulations... locomotive, rail car, or consist of a locomotive and rail cars. A locomotive, rail car, or consist of a...

  17. The kinematic advantage of electric cars

    Science.gov (United States)

    Meyn, Jan-Peter

    2015-11-01

    Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.

  18. A Viral Receptor Complementation Strategy to Overcome CAV-2 Tropism for Efficient Retrograde Targeting of Neurons.

    Science.gov (United States)

    Li, Shu-Jing; Vaughan, Alexander; Sturgill, James Fitzhugh; Kepecs, Adam

    2018-06-06

    Retrogradely transported neurotropic viruses enable genetic access to neurons based on their long-range projections and have become indispensable tools for linking neural connectivity with function. A major limitation of viral techniques is that they rely on cell-type-specific molecules for uptake and transport. Consequently, viruses fail to infect variable subsets of neurons depending on the complement of surface receptors expressed (viral tropism). We report a receptor complementation strategy to overcome this by potentiating neurons for the infection of the virus of interest-in this case, canine adenovirus type-2 (CAV-2). We designed AAV vectors for expressing the coxsackievirus and adenovirus receptor (CAR) throughout candidate projection neurons. CAR expression greatly increased retrograde-labeling rates, which we demonstrate for several long-range projections, including some resistant to other retrograde-labeling techniques. Our results demonstrate a receptor complementation strategy to abrogate endogenous viral tropism and thereby facilitate efficient retrograde targeting for functional analysis of neural circuits. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Active deceleration support in car following

    NARCIS (Netherlands)

    Mulder, M.; Pauwelussen, J.J.A.; Paassen, M.M. van; Mulder, M.; Abbink, D.A.

    2010-01-01

    A haptic gas pedal feedback system is developed that provides car-following information via haptic cues from the gas pedal. During normal car-following situations, the haptic feedback (HF) cues were sufficient to reduce control activity and improve car-following performance. However, in more

  20. Chimeric Antigen Receptors in Different Cell Types: New Vehicles Join the Race.

    Science.gov (United States)

    Harrer, Dennis C; Dörrie, Jan; Schaft, Niels

    2018-05-01

    Adoptive cellular therapy has evolved into a powerful force in the battle against cancer, holding promise for curative responses in patients with advanced and refractory tumors. Autologous T cells, reprogrammed to target malignant cells via the expression of a chimeric antigen receptor (CAR) represent the frontrunner in this approach. Tremendous clinical regressions have been achieved using CAR-T cells against a variety of cancers both in numerous preclinical studies and in several clinical trials, most notably against acute lymphoblastic leukemia, and resulted in a very recent United States Food and Drug Administration approval of the first CAR-T-cell therapy. In most studies CARs are transferred to conventional αβT cells. Nevertheless, transferring a CAR into different cell types, such as γδT cells, natural killer cells, natural killer T cells, and myeloid cells has yet received relatively little attention, although these cell types possess unique features that may aid in surmounting some of the hurdles CAR-T-cell therapy currently faces. This review focuses on CAR therapy using effectors beyond conventional αβT cells and discusses those strategies against the backdrop of developing a safe, powerful, and durable cancer therapy.

  1. Passenger car fuel consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    This survey originated from a proposal to monitor the fuel consumption and fuel economy of personal use passenger cars operated in Canada. Its purpose is to establish a data base which would contain information on total distance travelled, total amount of fuel consumed, average distance obtained per unit of fuel, total expenditures on fuel, and seasonal fluctuations in fuel consumption and in distance travelled. Among the needs served by this data base are the monitoring of passenger car fuel economy standards and the estimation of pasenger car fuel requirements in conditions involving fuel shortages. Survey methodology is by telephone interview to trace selected vehicles to the registered owners, at which time a fuel purchase diary is then mailed to the principal driver of the car. The results are tabulated on a quarterly basis and to be released as they become available in bulletins similar to this. Data are presented for each province and the total for Canada is given. During the fourth quarter of 1982, it is estimated that there were 7.3 million personal use passenger cars operated in Canada. These cars were driven 28 billion kilometers and consumed 4.3 billion litres of fuel. Their average litres/100 kilometres and the average fuel consumption was 590 litres. 8 tabs.

  2. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells.

    Science.gov (United States)

    Emami-Shahri, Nia; Foster, Julie; Kashani, Roxana; Gazinska, Patrycja; Cook, Celia; Sosabowski, Jane; Maher, John; Papa, Sophie

    2018-03-14

    The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19 + B-cell malignancy has established a new therapeutic pillar of hematology-oncology. Nonetheless, formidable challenges remain for the attainment of comparable success in patients with solid tumors. To accelerate progress and rapidly characterize emerging toxicities, systems that permit the repeated and non-invasive assessment of CAR T-cell bio-distribution would be invaluable. An ideal solution would entail the use of a non-immunogenic reporter that mediates specific uptake of an inexpensive, non-toxic and clinically established imaging tracer by CAR T cells. Here we show the utility of the human sodium iodide symporter (hNIS) for the temporal and spatial monitoring of CAR T-cell behavior in a cancer-bearing host. This system provides a clinically compliant toolkit for high-resolution serial imaging of CAR T cells in vivo, addressing a fundamental unmet need for future clinical development in the field.

  3. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy

    Directory of Open Access Journals (Sweden)

    Hua Li

    2017-04-01

    Full Text Available Abstract Chimeric antigen receptor (CAR T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or “on-target/off-tumor” toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal—curing cancer with high safety, high efficacy, and low cost.

  4. CAR SECURITY ENHANCEMENT IN PARKING AREAS

    OpenAIRE

    NANYONGA BERINDA; AYESIGA LINDSEY PATRA; BYEKWASO FAISAL; NATULINDA LADAN

    2017-01-01

    Over time, car thefts have been reported within Kampala parking areas. This has been majorly due to inefficient security measures of the available parking systems which focus mainly on the car and not the driver, making parking management a challenge. The focus of this survey was to explore the requirements of a new system called Car to Driver Matching Security System to enhance security of cars in Kampala, in particular, from the experience of 15 people. The data collected was then analyzed ...

  5. 30 CFR 57.19079 - Blocking mine cars.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blocking mine cars. 57.19079 Section 57.19079... Hoisting Procedures § 57.19079 Blocking mine cars. Where mine cars are hoisted by cage or skip, means for blocking cars shall be provided at all landings and also on the cage. ...

  6. 30 CFR 56.19079 - Blocking mine cars.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blocking mine cars. 56.19079 Section 56.19079... Hoisting Procedures § 56.19079 Blocking mine cars. Where mine cars are hoisted by cage or skip, means for blocking cars shall be provided at all landings and also on the cage. ...

  7. Prediction of future car forms based on historical trends

    Directory of Open Access Journals (Sweden)

    Bijendra Kumar

    2016-09-01

    Full Text Available Cars are one of the most important products that affects our daily life. Manufacturers of cars are inclined to know factors that affect the sales of cars and how to influence them. Car is a very competitive product whose technology is already matured. Thus, purchase decisions of a car depend on factors such as, aesthetics, ergonomics, features available and price. Exterior form and colour of a car are the most important factors that influence likeness of the car. We did a case study on car aesthetics (form, colour, shape, and user focus with more than 500 car advertisements over the past 70 years, appearing in various car magazines. Results show that form of cars has changed from sharp to smooth over the years, and white colour cars are becoming more popular. Additionally, car size is becoming smaller and increasingly focused towards family. Thus, manufacturers are recommended to develop compact, efficient and hybrid cars.

  8. 49 CFR 174.57 - Cleaning cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.57 Section 174.57... and Loading Requirements § 174.57 Cleaning cars. All hazardous material which has leaked from a package in any rail car or on other railroad property must be carefully removed. ...

  9. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  10. Car Builder: Design, Construct and Test Your Own Cars. School Version with Lesson Plans. [CD-ROM].

    Science.gov (United States)

    Highsmith, Joni Bitman

    Car Builder is a scientific CD-ROM-based simulation program that lets students design, construct, modify, test, and compare their own cars. Students can design sedans, four-wheel-drive vehicles, vans, sport cars, and hot rods. They may select for aerodynamics, power, and racing ability, or economic and fuel efficiency. It is a program that teaches…

  11. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors

    DEFF Research Database (Denmark)

    Jamnani, Fatemeh Rahimi; Rahbarizadeh, Fatemeh; Shokrgozar, Mohammad Ali

    2014-01-01

    Adoptive cell therapy with engineered T cells expressing chimeric antigen receptors (CARs) originated from antibodies is a promising strategy in cancer immunotherapy. Several unsuccessful trials, however, highlight the need for alternative conventional binding domains and the better combination...

  12. CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors

    Directory of Open Access Journals (Sweden)

    Markus Chmielewski

    2017-12-01

    Full Text Available Adoptive therapy with chimeric antigen receptor (CAR-redirected T cells has achieved remarkable efficacy in the treatment of hematopoietic malignancies. However, eradicating large solid tumors in advanced stages of the disease remains challenging. We explored augmentation of the anti-tumor immune reaction by establishing an acute inflammatory reaction. Systematic screening indicates that IL-18 polarizes CAR T cells toward T-bethigh FoxO1low effectors with an acute inflammatory response. CAR T cells engineered with inducible IL-18 release exhibited superior activity against large pancreatic and lung tumors that were refractory to CAR T cells without cytokines. IL-18 CAR T cell treatment was accompanied by an overall change in the immune cell landscape associated with the tumor. More specifically, CD206− M1 macrophages and NKG2D+ NK cells increased in number, whereas Tregs, suppressive CD103+ DCs, and M2 macrophages decreased, suggesting that “iIL18 TRUCKs” can be used to sensitize large solid tumor lesions for successful immune destruction.

  13. CAN PUBLIC TRANSPORT COMPETE WITH THE PRIVATE CAR?

    Directory of Open Access Journals (Sweden)

    Linda STEG

    2003-01-01

    Full Text Available Public transport is often perceived to be a poor alternative for car use. This paper describes who may be open to use public transport more often, and how people might be persuaded to use it. A computerised questionnaire study was conducted among 1,803 Dutch respondents in May 2001. Results revealed that especially fervent car users disliked public transport. For them, the car outperformed public transport not only because of its instrumental function, but also because the car represents cultural and psychological values, e.g. the car is a symbol of freedom and independence, a status symbol and driving is pleasurable. So, for fervent car users, car use is connected with various important values in modern society. Infrequent car users judged less positively about the car and less negatively about public transport. Consequently, they may be open to use public transport more regularly. In contrast, many efforts are needed to stimulate fervent car users to travel by public transport, because in their view, public transport cannot compete with their private car. In this case, policies should be aimed at reducing the functional, psychological and cultural values of private cars, as well as increasing the performance of public transport and other (more environmentally sound modes of transport on these aspects.

  14. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Bräuner-Osborne, Hans

    2004-01-01

    with a significant homology to the human calcium-sensing receptor (CaR, 34% aa sequence identity), the taste receptor 1 (T1R1, 28%), and the metabotropic glutamate receptor 1 (mGluR1, 24%), places GPRC6A in family C of the GPCRs. Interestingly, GPRC6A bears the highest resemblance with an odorant goldfish 5...

  15. Solar Powered Heat Control System for Cars

    OpenAIRE

    Abin John; Jithin Thomas

    2014-01-01

    It takes times for an air-conditioner to effectively start cooling the passenger compartment in the car. So the passenger of the car will feel the heat in the car extremely before the air-conditioner fully cooling the interior of the car. Excessive heat can also damage an automobile's interior as well as personal property kept in the passenger compartment. So, a system to reduce this excessive heat by pumping out hot air and allowing cooler ambient air to enter the car by mean...

  16. Flying car design and testing

    OpenAIRE

    Klein, S.; Smrcek, L.

    2009-01-01

    This paper is primarily concerned with the inverted design process and manufacture of a flying car prototype which can overcome the problem of traffic management in the world today. A possible solution to the problem of overcrowded roads would be to design a flying or hovering car. Given technological advances in aircraft construction, navigation and operation, flying cars or personal aircraft are now a feasible proposition. The viability of such a concept was investigated in terms of produci...

  17. 49 CFR 180.507 - Qualification of tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Qualification of tank cars. 180.507 Section 180... QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification and Maintenance of Tank Cars § 180.507 Qualification of tank cars. (a) Each tank car marked as meeting a “DOT” specification or any other tank car used...

  18. Car sharing à la carte

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    Do you want to make your commute to CERN easier, while saving money at the same time? Would you prefer not to spend a quarter of an hour crawling round the CERN car parks looking for a space? If so, read on: this article might well be of great interest to you.   We would like to draw your attention to a well established, albeit sadly under-used, method of transport: car sharing. To promote car-sharing, the GS Department has stepped in to call on the services of the Swiss firm Green Monkeys which specialises in this user-friendly and intelligent transport scheme. The company’s slogan is:  “Car-sharing as you want, when you want and as much as you want”. The principle is very straightforward. To use this car-sharing facility, you simply complete your free online registration with Green Monkeys, providing the following details: your journey, departure time, arrival time and days of the week, and indicating whether you are a passenger or driver or both. &a...

  19. Consumer Behavior towards Safer Car Purchasing Decisions

    Directory of Open Access Journals (Sweden)

    Khairil Anwar Abu Kassim

    2016-08-01

    Full Text Available In Malaysia, the car safety level has been elevated through regulations and a consumer-based approach, i.e. the New Car Assessment Program in Southeast Asian Countries (ASEAN NCAP. Nevertheless, the availability of information on consumers’ car purchasing decisions towards safety is still limited in Malaysia. Thus, this study was aimed at evaluating consumers’ purchasing decisions of their present cars and investigating their awareness of ASEAN NCAP. Self-administered questionnaires were distributed among consumers visiting different car showrooms and dealer shops. The findings suggest that safety was considered as one of the top three factors by the respondents when purchasing their present cars. Awareness of ASEAN NCAP has increased as compared to a previous study. This information is essential for policy makers, manufacturers and other stakeholders to assist in setting priorities with regard to the promotion of car safety in the country.

  20. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells.

    Science.gov (United States)

    Ramachandran, Mohanraj; Dimberg, Anna; Essand, Magnus

    2017-08-01

    Cell therapy is an advanced form of cancer immunotherapy that has had remarkable clinical progress in the past decade in the search for cure of cancer. Most success has been achieved for chimeric antigen receptor (CAR) T-cells where CAR T-cells targeting CD19 show very high complete response rates for patients with refractory acute B-cell acute lymphoblastic leukemia (ALL) and are close to approval for this indication. CD19 CAR T-cells are also effective against B-cell chronic lymphoblastic leukemia (CLL) and B-cell lymphomas. Although encouraging, CAR T-cells have not yet proven clinically effective for solid tumors. This is mainly due to the lack of specific and homogenously expressed targets to direct the T-cells against and a hostile immunosuppressive tumor microenvironment in solid tumors. Cancer vaccines based on dendritic cells (DC) are also making progress although clinical efficacy is still lacking. The likelihood of success is however increasing now when individual tumors can be sequences and patient-specific neoepitopes identified. Neoepitopes and/or neoantigens can then be included in patient-based DC vaccines. This review discusses recent advancements of DC vaccines and CAR T-cells with emphasis on the cancer-immunity cycle, and current efforts to design novel cell therapies. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Stock-car racing makes intuitive physicists

    Science.gov (United States)

    Gwynne, Peter

    2008-03-01

    Formula One races involve cars festooned with gadgets and complex electronic devices, in which millions of dollars are spent refining a vehicle's aerodynamics and reducing its weight. But in events run by America's National Association of Stock Car Auto Racing (NASCAR), cars hurtle round an oval track at speeds of about 300 km h-1 without the help of the complex sensors that are employed in Formula One cars. To avoid crashing, drivers must make their own adjustments to track conditions, engine problems and the traffic around them.

  2. Electric Cars and Oil Prices

    OpenAIRE

    Azar, Jose

    2009-01-01

    This paper studies the joint dynamics of oil prices and interest in electric cars, measured as the volume of Google searches for related phrases. Not surprisingly, I find that oil price shocks predict increases in Google searches for electric cars. Much more surprisingly, I also find that an increase in Google searches predicts declines in oil prices. The high level of public interest in electric cars between April and August of 2008 can explain approximately half of the decline in oil prices...

  3. Research of braking peculiarities of used cars

    Directory of Open Access Journals (Sweden)

    V. Mitunevičius

    2002-06-01

    Full Text Available This paper briefly describes some analysis of a car braking process - the peculiarities of car wheel-to-road adhesion, the influence of distribution of braking forces on car stability between front and rear axles. The requirements of EU Directive 71/320/EEC to braking force coefficients of car front and rear axles are exposed. Structural designs of braking systems are analyzed with respect to their meeting the EU standards. Experimental measurements of braking force coefficients for some models of cars which are used in Lithuania, are presented with the analysis how these coefficients meet the EU standards. The analysis of test results, suggestions for the ratio of braking forces of car front and rear axles are presented.

  4. Car stickers for 2009

    CERN Multimedia

    TS Department

    2008-01-01

    All members of the personnel holding a valid contract (except owners of cars with green or CD plates) can come to the Registration Service (Building 55, 1st floor) to obtain their 2009 car sticker, Mondays to Fridays from 7.30 a.m. to 4.00 p.m. non-stop. Please ensure you bring with you the documents relating to the vehicles(s) concerned. If you only wish to register one vehicle, you can obtain the 2009 sticker using the request form on the Web (via internet Explorer only). NB: This notice only applies to members of the personnel who obtained one or several blue car stickers for 2008. Reception and Access Control Service – TS/FM

  5. Preferences for Alternative Fuel Vehicles of Company Car Drivers

    NARCIS (Netherlands)

    Koetse, M.J.; Hoen, A.

    2014-01-01

    Costs of car ownership for company cars drivers and private car owners are very different. Car use, car choice decisions and preferences for car characteristics may therefore differ substantially between these two markets. In this paper, we present results of a study on the preferences of company

  6. The Electric Cars Challenge

    Science.gov (United States)

    Roman, Harry T.

    2011-01-01

    Over 100 years ago, the great inventor Thomas Edison warned that gasoline cars would pollute the environment and lead to gasoline shortages. He preferred the use of clean electric vehicles. He also put his money where his mouth was and developed an entirely new alkaline storage battery system for his beloved cars, the nickel-iron storage battery.…

  7. 49 CFR 231.8 - Tank cars without side sills and tank cars with short side sills and end platforms.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tank cars without side sills and tank cars with... APPLIANCE STANDARDS § 231.8 Tank cars without side sills and tank cars with short side sills and end platforms. (a) Hand brakes—(1) Number. Same as specified for “Box and other house cars” (see § 231.1(a)(1...

  8. Potent anti-leukemia activities of humanized CD19-targeted CAR-T cells in patients with relapsed/refractory acute lymphoblastic leukemia.

    Science.gov (United States)

    Cao, Jiang; Wang, Gang; Cheng, Hai; Wei, Chen; Qi, Kunming; Sang, Wei; Zhenyu, Li; Shi, Ming; Li, Huizhong; Qiao, Jianlin; Pan, Bin; Zhao, Jing; Wu, Qingyun; Zeng, Lingyu; Niu, Mingshan; Jing, Guangjun; Zheng, Junnian; Xu, Kailin

    2018-04-10

    Chimeric antigen receptor T (CAR-T) cell therapy has shown promising results for relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). The immune response induced by murine single-chain variable fragment (scFv) of the CAR may limit CAR-T cell persistence and thus increases the risk of leukemia relapse. In this study, we developed a novel humanized scFv from the murine FMC63 antibody. A total of 18 R/R ALL patients with or without prior murine CD19 CAR-T therapy were treated with humanized CD19-targeted CAR-T cells (hCART19s). After lymphodepletion chemotherapy with cyclophosphamide and fludarabine, the patients received a single dose (1 × 10 6 /kg) of autologous hCART19s infusion. Among the 14 patients without previous CAR-T therapy, 13 (92.9%) achieved complete remission (CR) or CR with incomplete count recovery (CRi) on day 30, whereas 1 of the 3 patients who failed a second murine CAR-T infusion achieved CR after hCART19s infusion. At day 180, the overall and leukemia-free survival rates were 65.8% and 71.4%, respectively. The cumulative incidence of relapse was 22.6%, and the non-relapse mortality rate was 7.1%. During treatment, 13 patients developed grade 1-2 cytokine release syndrome (CRS), 4 patients developed grade 3-5 CRS, and 1 patient experienced reversible neurotoxicity. These results indicated that hCART19s could induce remission in patients with R/R B-ALL, especially in patients who received a reinfusion of murine CAR-T. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  9. CARS 2009. Computer assisted radiology and surgery. Proceedings

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    The CARS 2009 proceedings include contributions and poster sessions concerning different conferences and workshops: computer assisted radiology, 23rd international congress and exhibition, CARS clinical day, 13th annual conference of the international society for computer aided surgery, 10th CARS/SPIE/EuroPACS joint workshop on surgical PACS and the digital operating, 11th international workshop on computer-aided diagnosis, 15th computed maxillofacial imaging congress, CARS - computer assisted radiology and surgery, 1st EPMA/CARS workshop on personalized medicine and ICT, JICARS - Japanese institutes of CARS, 1st EuroNotes/CTAC/CARS workshop on NOTES: an interdisciplinary challenge, 13th annual conference for computer aided surgery, 27th international EuroPACS meeting.

  10. The emerging role of promiscuous 7TM receptors as chemosensors for food intake

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2010-01-01

    review, we describe the molecular mechanisms of nutrient-sensing of the calcium-sensing receptor (CaR), the G protein-coupled receptor family C, group 6, subtype A (GPRC6A), and the taste1 receptor T1R1/T1R3-sensing L-a-amino acids; the carbohydrate-sensing T1R2/T1R3 receptor; the proteolytic degradation......In recent years, several highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized of which many are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids (FFAs) and are expressed in taste tissue, the gastrointestinal...

  11. How does Euro NCAP results correlate to real life injury risks - a paired comparison study of car-to-car crashes in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Lie, A. [Swedish National Road Administration, Borlaenge (Sweden)]|[ Karolinska Institutet (Sweden); Tingvall, C. [Monash University, Accident Research Centre (Australia)

    2001-07-01

    Euro NCAP is a resource for consumers regarding vehicle crash safety. The program also promotes safety developments, and credits car manufacturers focussing on safety. This study, based on real life car to car crashes, shows that the overall indication of the safety level, provided by the crash testing, is a valid prediction, at least when looking at the star rating and severe to fatal injuries. For minor injuries no significant injury risk differences are seen. The cars with three or four stars are approximately 30% safer, compared to two star cars or cars without an Euro NCAP score, in car to car collisions. The good general correlation between injury risk, and Euro NCAP scores is not necessarily similarly good for individual car models. Pedestrian safety and child occupant protection was not studied. (orig.)

  12. Characterization of a switchable chimeric antigen receptor platform in a pre-clinical solid tumor model.

    Science.gov (United States)

    Pishali Bejestani, Elham; Cartellieri, Marc; Bergmann, Ralf; Ehninger, Armin; Loff, Simon; Kramer, Michael; Spehr, Johannes; Dietrich, Antje; Feldmann, Anja; Albert, Susann; Wermke, Martin; Baumann, Michael; Krause, Mechthild; Bornhäuser, Martin; Ehninger, Gerhard; Bachmann, Michael; von Bonin, Malte

    2017-01-01

    The universal modular chimeric antigen receptor (UniCAR) platform redirects CAR-T cells using a separated, soluble targeting module with a short half-life. This segregation allows precise controllability and flexibility. Herein we show that the UniCAR platform can be used to efficiently target solid cancers in vitro and in vivo using a pre-clinical prostate cancer model which overexpresses prostate stem cell antigen (PSCA). Short-term administration of the targeting module to tumor bearing immunocompromised mice engrafted with human UniCAR-T cells significantly delayed tumor growth and prolonged survival of recipient mice both in a low and high tumor burden model. In addition, we analyzed phenotypic and functional changes of cancer cells and UniCAR-T cells in association with the administration of the targeting module to reveal potential immunoevasive mechanisms. Most notably, UniCAR-T cell activation induced upregulation of immune-inhibitory molecules such as programmed death ligands. In conclusion, this work illustrates that the UniCAR platform mediates potent anti-tumor activity in a relevant in vitro and in vivo solid tumor model.

  13. The old-new car sticker

    CERN Multimedia

    2000-01-01

    You have had the same car sticker for ten years and have been driving in and out of CERN every day. Suddenly one morning the guard stops you and tells you need a new one. Hmmm ?! “There were 60 000 stickers in circulation in Geneva and we could not control wether the sticker had been distributed to the right person”, saysa Claude Ducastel, responsible for Entrance Security. “So to solve this problem, last year DSU decided to change Operational Circular N°2 and introduce new car stickers that will be changed every year.” Three types of car stickers were introduced: blue, green and red. The blue one is for staff members whose contract is for one year or more. It indicates the plate number of the car. The green one is for staff members whose contract is for less than one year. It indicates the plate number of the car and the date the contract of the employee terminates. It also has a big L for "Limited". The red one is for enterprise subcontractors whose contracts finish at the end of the year. If ...

  14. Perceptions and attitudes of car owners on innovative automobiles

    International Nuclear Information System (INIS)

    Pol, M.; Brunsting, S.

    2012-01-01

    To abate the detrimental effects of transport a transition is foreseen from the conventional fossil cars to energy-sustainable cars. A successful transition requires a major behavioral change of car consumers who need to make choices about new options for transport with uncertain costs and benefits compared to their current car. This paper examines consumers' perceptions about innovative cars and considerations for buying or not buying innovative cars (hybrid, electric, plug-in electric, hydrogen, flexifuel). In this study an on-line questionnaire on attitudes, interests and social norms regarding innovative cars was conducted among 339 Dutch respondents who recently bought a new car. To obtain in-depth understanding of the answers, a follow-up study was conducted consisting of two focus groups with a sample of survey participants. These focus groups respectively concentrated on respondents' perceptions of innovative cars, and on the personality traits of the 'typical' innovative car driver. The results of the survey shows that the attitude towards innovative cars are strongly influenced by affective aspects (such as comfort and pleasant) and to a (much) smaller extent by environmental considerations. The results of the focus groups confirm these findings. According to the participants the price of the car is decisive whereby environmental concerns play no role. The design and image of the car are important. In addition, it appears that the familiarity with (and thus the knowledge about) the innovative cars is still very limited (with the exception of the hybrid car). This point of view stresses the importance of the way in which innovative cars are positioned thereby affecting the image (social norms) people will have regarding these cars. [nl

  15. Forecasting U.S. Car Sales and Car Registrations in Japan: Rationality, Accuracy and Herding

    DEFF Research Database (Denmark)

    Stadtmann, Georg; Rülke, Jan; Pierdzioch, Christian

    2011-01-01

    We analyze forecasts of car sales in the U.S. and forecasts of car registrations in Japan. We document a substantial heterogeneity of forecasts, and we show that, based on traditional criteria, forecasts are neither rational nor unbiased. We also report that forecasters anti-herd, that is...

  16. Collaborative Car Pooling System

    OpenAIRE

    João Ferreira; Paulo Trigo; Porfírio Filipe

    2009-01-01

    This paper describes the architecture for a collaborative Car Pooling System based on a credits mechanism to motivate the cooperation among users. Users can spend the accumulated credits on parking facilities. For this, we propose a business model to support the collaboration between a car pooling system and parking facilities. The Portuguese Lisbon-s Metropolitan area is used as application scenario.

  17. Panorama 2014 - Car-sharing

    International Nuclear Information System (INIS)

    Vinot, Simon

    2013-10-01

    Car-sharing is a new mode of transportation that consists of multiple users sharing the same vehicle. This type of service is expanding with the arrival of larger players, such as traditional car rental companies, automotive manufacturers, and large firms specializing in transportation. This new mode of transportation offers real potential and is currently finding its users, in France and worldwide. (author)

  18. Comparative analysis of used car price evaluation models

    Science.gov (United States)

    Chen, Chuancan; Hao, Lulu; Xu, Cong

    2017-05-01

    An accurate used car price evaluation is a catalyst for the healthy development of used car market. Data mining has been applied to predict used car price in several articles. However, little is studied on the comparison of using different algorithms in used car price estimation. This paper collects more than 100,000 used car dealing records throughout China to do empirical analysis on a thorough comparison of two algorithms: linear regression and random forest. These two algorithms are used to predict used car price in three different models: model for a certain car make, model for a certain car series and universal model. Results show that random forest has a stable but not ideal effect in price evaluation model for a certain car make, but it shows great advantage in the universal model compared with linear regression. This indicates that random forest is an optimal algorithm when handling complex models with a large number of variables and samples, yet it shows no obvious advantage when coping with simple models with less variables.

  19. Is this car looking at you? How anthropomorphism predicts fusiform face area activation when seeing cars.

    Science.gov (United States)

    Kühn, Simone; Brick, Timothy R; Müller, Barbara C N; Gallinat, Jürgen

    2014-01-01

    Anthropomorphism encompasses the attribution of human characteristics to non-living objects. In particular the human tendency to see faces in cars has long been noticed, yet its neural correlates are unknown. We set out to investigate whether the fusiform face area (FFA) is associated with seeing human features in car fronts, or whether, the higher-level theory of mind network (ToM), namely temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) show a link to anthropomorphism. Twenty participants underwent fMRI scanning during a passive car-front viewing task. We extracted brain activity from FFA, TPJ and MPFC. After the fMRI session participants were asked to spontaneously list adjectives that characterize each car front. Five raters judged the degree to which each adjective can be applied as a characteristic of human beings. By means of linear mixed models we found that the implicit tendency to anthropomorphize individual car fronts predicts FFA, but not TPJ or MPFC activity. The results point to an important role of FFA in the phenomenon of ascribing human attributes to non-living objects. Interestingly, brain regions that have been associated with thinking about beliefs and mental states of others (TPJ, MPFC) do not seem to be related to anthropomorphism of car fronts.

  20. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each person...

  1. Insights into CYP2B6-mediated drug–drug interactions

    Directory of Open Access Journals (Sweden)

    William D. Hedrich

    2016-09-01

    Full Text Available Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR and pregnane X receptor (PXR in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.

  2. Benefits of magnesium wheels for consumer cars

    Science.gov (United States)

    Frishfelds, Vilnis; Timuhins, Andrejs; Bethers, Uldis

    2018-05-01

    Advantages and disadvantages of magnesium wheels are considered based on a mechanical model of a car. Magnesium wheels are usually applied to racing cars as they provide slightly better strength/weight ratio than aluminum alloys. Do they provide notable benefits also for the everyday user when the car speeds do not exceed allowed speed limit? Distinct properties of magnesium rims are discussed. Apart from lighter weight of magnesium alloys, they are also good in dissipating the energy of vibrations. The role of energy dissipation in the rim of a wheel is estimated by a quarter car model. Improvements to safety by using the magnesium wheels are considered. Braking distance and responsiveness of the car is studied both with and without using an Anti Blocking System (ABS). Influence of rim weight on various handling parameters of the car is quantitatively tested.

  3. Rear-facing car seat (image)

    Science.gov (United States)

    A rear-facing car seat position is recommended for a child who is very young. Extreme injury can occur in an accident because ... child. In a frontal crash a rear-facing car seat is best, because it cradles the head, ...

  4. FUEL PRICES AND CAR SALES

    OpenAIRE

    Vlad Cârstea

    2008-01-01

    Automotive industry is a very important economic sector that is highly responsive to changes in the world economy. The fuel price is the biggest enemy of car manufacturers. This is a compared analysis between Europe and Romania regarding new car registrations.

  5. Running performance of racing solar car; Kyogiyo solar car no soko seino

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H [Osaka Sangyo Univ., Osaka (Japan); Ando, Y

    1997-11-25

    The paper reported on `96 World Solar Challenge which is a solar car race traveling a total of 3010km from Darwin to Adelaide of the Australian continent. We accomplished running with general cars on general roads at mean speed of 60.3km/h for 6 days. To reduce vehicle weight, the monocock structure honeycombed with carbon fiber and aramid was adopted to the whole vehicle, and a light alloy to driving system parts. To reduce air resistance, adopted were reduction in the front projection area and the smooth body form. The required power is 44.8 kWh, and the power consumption ratio during travel is very high, approximately 67 km/kWh. In the travel of solar car in the unstable weather, dependence upon battery becomes higher, and therefore the battery capacity of 3.5 kWh with which the car was loaded is small, which resulted in affecting the race totally. To predict the travel in the race and determine the travel method, needed are collection and management of realtime and accurate travel data. The measuring management system developed this time together with the vehicle was applicable to the actual race and high in practicality. 2 refs., 7 figs., 1 tab.

  6. Modelling strategic responses to car and fuel taxation

    NARCIS (Netherlands)

    Heijnen, P.; Kooreman, P.

    We develop a model to analyse the interactions between actors involved in car and fuel taxation: consumers, car producers, fuel producers and the government. Heterogeneous consumers choose between two versions of a car that differ in engine type (diesel or gasoline). Car manufacturers and fuel

  7. Consumer Behavior towards Safer Car Purchasing Decisions

    OpenAIRE

    Khairil Anwar Abu Kassim; Mohd Hafzi Md Isa; Yahaya Ahmad; Intan Osman; Lawrence Arokiasamy

    2016-01-01

    In Malaysia, the car safety level has been elevated through regulations and a consumer-based approach, i.e. the New Car Assessment Program in Southeast Asian Countries (ASEAN NCAP). Nevertheless, the availability of information on consumers' car purchasing decisions towards safety is still limited in Malaysia. Thus, this study was aimed at evaluating consumers' purchasing decisions of their present cars and investigating their awareness of ASEAN NCAP. Self-administered questionnaires were dis...

  8. Company car study 2011. Reduction of environmental impacts by influencing the selection process of company cars; Tyoesuhdeautotutkimus 2011. Ympaeristoehaittojen vaehentaeminen autonvalinnan ohjauksella

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The purpose of the study is to identify: What kinds of operational models directing towards eco-friendlier company car use there are and which are in use. What kinds of practical impacts these operational models have had. What is the demand for company car use and what changes have taken place from the viewpoint of companies and beneficiaries. What factors should the best company car taxation include in terms of directiveness (from the environmental point of view). The main objective is to find directive factors in company car use which would result in smaller environmental impacts and which company car users could commit themselves to. The main target groups of the study were the recipients of company car benefits, and enterprises using company cars. Company cars are mainly used for two reasons: in many organisations, work is carried out where the customer is, in which case company cars are used for reducing travel costs. On the other hand, a company car is a significant means for attracting and motivating employees, especially skilled experts and management staff. Company cars also play a significant role in the replacement rate of Finnish motor vehicles. The car selection rules of organisations determine the roles that entitle an employee to have a company car and how they can choose their car. Factors restricting the choice are usually CO{sub 2} and the price and make of the car. The CO{sub 2} limit is used by about 70% of organisations. According to this study, the average emission limit is 168 g/km, depending on the company and the position of the beneficiary. However, the average CO{sub 2} emissions of new company cars are currently about 140 g/km, and therefore the emission limits of organisations have not followed the development of motor technology. In entrepreneurship, environmental issues will be regarded as very important in the future, and there is also a notion for this to be reflected in the guidelines for selecting company cars. Emissions reduction

  9. Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition.

    Directory of Open Access Journals (Sweden)

    Maud Condomines

    Full Text Available Adoptive T cell therapy represents a promising treatment for cancer. Human T cells engineered to express a chimeric antigen receptor (CAR recognize and kill tumor cells in a MHC-unrestricted manner and persist in vivo when the CAR includes a CD28 costimulatory domain. However, the intensity of the CAR-mediated CD28 activation signal and its regulation by the CTLA-4 checkpoint are unknown. We investigated whether T cells expressing an anti-CD19, CD3 zeta and CD28-based CAR (19-28z displayed the same proliferation and anti-tumor abilities than T cells expressing a CD3 zeta-based CAR (19z1 costimulated through the CD80/CD28, ligand/receptor pathway. Repeated in vitro antigen-specific stimulations indicated that 19-28z+ T cells secreted higher levels of Th1 cytokines and showed enhanced proliferation compared to those of 19z1+ or 19z1-CD80+ T cells. In an aggressive pre-B cell leukemia model, mice treated with 19-28z+ T cells had 10-fold reduced tumor progression compared to those treated with 19z1+ or 19z1-CD80+ T cells. shRNA-mediated CTLA-4 down-regulation in 19z1-CD80+ T cells significantly increased their in vivo expansion and anti-tumor properties, but had no effect in 19-28z+ T cells. Our results establish that CTLA-4 down-regulation may benefit human adoptive T cell therapy and demonstrate that CAR design can elude negative checkpoints to better sustain T cell function.

  10. City Car = The City Car / Andres Sevtshuk

    Index Scriptorium Estoniae

    Sevtshuk, Andres, 1981-

    2008-01-01

    Massachusettsi Tehnoloogiainstituudi (MIT) meedialaboratooriumi juures tegutseva Targa Linna Grupi (Smart City Group) ja General Motorsi koostööna sündinud kaheistmelisest linnasõbralikust elektriautost City Car. Nimetatud töögrupi liikmed (juht William J. Mitchell, töögruppi kuulus A. Sevtshuk Eestist)

  11. Genome-wide discovery of drug-dependent human liver regulatory elements.

    Directory of Open Access Journals (Sweden)

    Robin P Smith

    2014-10-01

    Full Text Available Inter-individual variation in gene regulatory elements is hypothesized to play a causative role in adverse drug reactions and reduced drug activity. However, relatively little is known about the location and function of drug-dependent elements. To uncover drug-associated elements in a genome-wide manner, we performed RNA-seq and ChIP-seq using antibodies against the pregnane X receptor (PXR and three active regulatory marks (p300, H3K4me1, H3K27ac on primary human hepatocytes treated with rifampin or vehicle control. Rifampin and PXR were chosen since they are part of the CYP3A4 pathway, which is known to account for the metabolism of more than 50% of all prescribed drugs. We selected 227 proximal promoters for genes with rifampin-dependent expression or nearby PXR/p300 occupancy sites and assayed their ability to induce luciferase in rifampin-treated HepG2 cells, finding only 10 (4.4% that exhibited drug-dependent activity. As this result suggested a role for distal enhancer modules, we searched more broadly to identify 1,297 genomic regions bearing a conditional PXR occupancy as well as all three active regulatory marks. These regions are enriched near genes that function in the metabolism of xenobiotics, specifically members of the cytochrome P450 family. We performed enhancer assays in rifampin-treated HepG2 cells for 42 of these sequences as well as 7 sequences that overlap linkage-disequilibrium blocks defined by lead SNPs from pharmacogenomic GWAS studies, revealing 15/42 and 4/7 to be functional enhancers, respectively. A common African haplotype in one of these enhancers in the GSTA locus was found to exhibit potential rifampin hypersensitivity. Combined, our results further suggest that enhancers are the predominant targets of rifampin-induced PXR activation, provide a genome-wide catalog of PXR targets and serve as a model for the identification of drug-responsive regulatory elements.

  12. Tonic 4-1BB Costimulation in Chimeric Antigen Receptors Impedes T Cell Survival and Is Vector-Dependent

    Directory of Open Access Journals (Sweden)

    Diogo Gomes-Silva

    2017-10-01

    Full Text Available Antigen-independent tonic signaling by chimeric antigen receptors (CARs can increase differentiation and exhaustion of T cells, limiting their potency. Incorporating 4-1BB costimulation in CARs may enable T cells to resist this functional exhaustion; however, the potential ramifications of tonic 4-1BB signaling in CAR T cells remain unclear. Here, we found that tonic CAR-derived 4-1BB signaling can produce toxicity in T cells via continuous TRAF2-dependent activation of the nuclear factor κB (NF-κB pathway and augmented FAS-dependent cell death. This mechanism was amplified in a non-self-inactivating gammaretroviral vector through positive feedback on the long terminal repeat (LTR promoter, further enhancing CAR expression and tonic signaling. Attenuating CAR expression by substitution with a self-inactivating lentiviral vector minimized tonic signaling and improved T cell expansion and anti-tumor function. These studies illuminate the interaction between tonic CAR signaling and the chosen expression platform and identify inhibitory properties of the 4-1BB costimulatory domain that have direct implications for rational CAR design.

  13. Shopping for a safer car

    Science.gov (United States)

    2010-01-01

    This brochure provides some helpful tips on what to look for when shopping for a safer car. Automakers are increasingly advertising the safety features of their cars. The problem is sorting out their claims and zeroing in on the safety features that ...

  14. Dwelling on Everyday Car Journeys

    DEFF Research Database (Denmark)

    Tølbøll, Lene; Jensen, Hanne Louise

    different traffic conditions as well as the emotional states related to the drivers’ thoughts about work and family issues, the materiality of the car and the recreational activities inside the car. Analyses are based on a web-based questionnaire, sent to 373 participating drivers in the Big Data research...... project Intelligent Transportation System Platform North Denmark (Lahrmann 2012). In that project data on e.g. position and speed was collected via an On Board Unit from more than 400 cars in 2012-2014 (Tøfting et. al. 2014). The full dataset includes a driven distance of approximately 14 million km...... experiences related to commuting. The findings will be discussed using theoretical inspiration from Sheller (2004), Bull (2003) and Thrift (2004) and we will suggest that the various emotional experiences of the commuters are of great importance for their ability to use of the car as a dwelling place....

  15. Pollutants Characterization of Car Wash Wastewater

    Directory of Open Access Journals (Sweden)

    Hashim Nor Haslina

    2016-01-01

    Full Text Available The huge quantity of water consumed per car during washing cars yields the untreated effluents discharged to the stormwater system. Wastewater samples from snow car wash and two full hand service car wash station were analyzed for pH and the presence of PO43-,TP, O&G, alkalinity, TSS, NO3-, NO2-, COD and surfactant in accordance Standard Method of Water and Wastewater 2012. Two full hand wash service stations and one station of snow foam service were investigated in this study. Amongst the stations, snow foam car wash station indicates the highest concentration of PO43-, TP, O&G, TSS, COD and surfactant with the average value of 10.18 ± 0.87 mg/L, 30.93 ± 0.31 mg/L , 85.00 ± 0.64 mg/L 325.0 ± 0.6 mg/L, 485.0 ± 0.3 mg/L and 54.00 ± 2.50 mg/L as MBAS, respectively. Whereas, in parameters characterization in different stages throughout the car wash process, O&G was found to be the highest in pre soak stage, PO43-, TP, TSS and COD in washing stage and NO3- and NO2- in rinse stage. All parameters were compared to Environmental Quality (Industrial Effluent Regulations, 2009. There is a strong need to study on the characterization of car wash water in order to suggest the suitable treatment need for this type of wastewater.

  16. A phase I clinical trial of adoptive transfer of folate receptor-alpha redirected autologous T cells for recurrent ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kandalaft Lana E

    2012-08-01

    Full Text Available Abstract Purpose In spite of increased rates of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Rationale Genetically reprogrammed, patient-derived chimeric antigen receptor (CAR-T lymphocytes with the ability to recognize predefined surface antigens with high specificity in a non-MHC restricted manner have shown increasing anti-tumor efficacy in preclinical and clinical studies. Folate receptor-α (FRα is an ovarian cancer-specific tumor target; however, it is expressed at low levels in certain organs with risk for toxicity. Design Here we propose a phase I study testing the feasibility, safety and preliminary activity of FRα-redirected CAR-T cells bearing the CD137 (4-1BB costimulatory domain, administered after lymphodepletion for the treatment of recurrent ovarian cancer. A novel trial design is proposed that maximizes safety features. Innovation This design involves an initial accelerated dose escalation phase of FR-α CAR-T cells followed by a standard 3 + 3 escalation phase. A split-dose approach is proposed to mitigate acute adverse events. Furthermore, infusion of bulk untransduced autologous peripheral blood lymphocytes (PBL is proposed two days after CAR-T cell infusion at the lower dose levels of CAR-T cells, to suppress excessive expansion of CAR-T cells in vivo and mitigate toxicity.

  17. 49 CFR 215.119 - Defective freight car truck.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective freight car truck. 215.119 Section 215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension System § 215.119 Defective freight car truck. A railroad may not place or continue in service a...

  18. 19 CFR 151.26 - Molasses in tank cars.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Molasses in tank cars. 151.26 Section 151.26....26 Molasses in tank cars. When molasses is imported in tank cars, the importer shall file with the... sugars or the character of the molasses in the different cars. ...

  19. High-Throughput Flow Cytometric Method for the Simultaneous Measurement of CAR-T Cell Characterization and Cytotoxicity against Solid Tumor Cell Lines.

    Science.gov (United States)

    Martinez, Emily M; Klebanoff, Samuel D; Secrest, Stephanie; Romain, Gabrielle; Haile, Samuel T; Emtage, Peter C R; Gilbert, Amy E

    2018-04-01

    High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.

  20. Effect of constitutive androstane receptor on radiosensitization of mictomycin C and its homologoue-629

    International Nuclear Information System (INIS)

    Zhang Jianghong; Jin Yizun

    2008-01-01

    The object of this work is to evaluate radiosensitization of MMC and its analogue 5-(aziridin-l-yl)-3- hydroxymethyl-1-methylindole-4,7-dione(629) and how transfection of constitutive androstane receptor (CAR) affect their biological effects. The expressions of CAR mRNA and CYP2B6 mRNA in HepG2 cells and g2car cells were detected by RT-PCR. The radiosensitization of MMC and 629 in vitro were evaluated in HepG2 cells and g2car cells by colony formation under anaerobic and aerobic condition. The effect of 629 on cell cycle and apoptosis of HepG2 cells and g2car cells were assayed by flow cytometry. It was found that plasmid mCAR1/pCR3 was transfected into g2car cells successfully and target CYP2B6 was transactivated by CAR. To compare with aerobic and anaerobic, the radiosensitization of MMC and 629 to HepG2 cells and g2car cells had significantly enhanced, the radiosensitization of 629 was stronger than its parent compound-MMC under aerobic and anaerobic condition, and transfect CAR gene could improve the radiosensitization of MMC and 629. Furthermore, CYP2B6 is one master enzyme for the metabolism of MMC and 629. Transfection of CAR can increase expression of CYP2B6 mRNA in HepG2 cells, and can affect radiosensitization of MMC and 629. (authors)

  1. Influence in the car taxation system. Henkiloeautojen vermuutosten vaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Alppivuori, K; Kallberg, H; Pekki, M

    1986-06-01

    In Finland the car prices are exeptionally high due to car taxes included in the new car prices. The gasoline price, which is at international leve, includes also taxes. The aim of this study was to calculate the effects of reducing the car taxes and correspondingly rising fuel taxes so that the state income car taxation does not change. The study was performed in two stages: an interview and a simulation study. The interview was aimed at the general public (postal poll) and at experts in car trade (personal interview). The aim was to reveal the parameters in the economic models explaining the behaviour of the public in car purchasing and car use. The simulation study was performed to calculate quantitative changes in, e.g. car park, traffic volumes and energy consumption caused by supposed changes in the taxation. One of the main results was that unchanged taxation is leading to rapidly increasing traffic volumes and total taxes for car use.

  2. Flex cars and the alcohol price

    International Nuclear Information System (INIS)

    Ferreira, Alex Luiz; Da Silveira, Jaylson Jair; De Almeida Prado, Fernando Pigeard

    2009-01-01

    We build a model that incorporates the effect of the innovative 'flex' car, an automobile that is able to run with either gasoline or alcohol, on the dynamics of fuel prices in Brazil. Our model shows that differences regarding fuel prices will now depend on the proportions of alcohol, gasoline and flex cars in the total stock. Conversely, the demand for each type of car will also depend on the expected future prices of alcohol and gasoline (in addition to the car prices). The model reflects our findings that energy prices are tied in the long run and that causality runs stronger from gasoline to alcohol. The estimated error correction parameter is stable, implying that the speed of adjustment towards equilibrium remains unchanged. The latter result is probably due to a still small fraction of flex cars in the total stock (approx. 5%), despite the fact that its sales nearly reached 100% in 2006. (author)

  3. 49 CFR 231.11 - Caboose cars without platforms.

    Science.gov (United States)

    2010-10-01

    ... inches end-ladder clearance, within 30 inches of side of car, until car is shopped for work amounting to... 49 Transportation 4 2010-10-01 2010-10-01 false Caboose cars without platforms. 231.11 Section 231... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.11 Caboose cars without...

  4. 49 CFR 215.303 - Stenciling of restricted cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Stenciling of restricted cars. 215.303 Section 215... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Stenciling § 215.303 Stenciling of restricted cars. (a) Each restricted railroad freight car that is described in § 215.205(a) of...

  5. Rational-driver approximation in car-following theory

    Science.gov (United States)

    Lubashevsky, Ihor; Wagner, Peter; Mahnke, Reinhard

    2003-11-01

    The problem of a car following a lead car driven with constant velocity is considered. To derive the governing equations for the following car dynamics a cost functional is constructed. This functional ranks the outcomes of different driving strategies, which applies to fairly general properties of the driver behavior. Assuming rational-driver behavior, the existence of the Nash equilibrium is proved. Rational driving is defined by supposing that a driver corrects continuously the car motion to follow the optimal path minimizing the cost functional. The corresponding car-following dynamics is described quite generally by a boundary value problem based on the obtained extremal equations. Linearization of these equations around the stationary state results in a generalization of the widely used optimal velocity model. Under certain conditions (the “dense traffic” limit) the rational car dynamics comprises two stages, fast and slow. During the fast stage a driver eliminates the velocity difference between the cars, the subsequent slow stage optimizes the headway. In the dense traffic limit an effective Hamiltonian description is constructed. This allows a more detailed nonlinear analysis. Finally, the differences between rational and bounded rational driver behavior are discussed. The latter, in particular, justifies some basic assumptions used recently by the authors to construct a car-following model lying beyond the frameworks of rationality.

  6. Long-term persistence and function of hematopoietic stem cell-derived chimeric antigen receptor T cells in a nonhuman primate model of HIV/AIDS.

    Directory of Open Access Journals (Sweden)

    Anjie Zhen

    2017-12-01

    Full Text Available Chimeric Antigen Receptor (CAR T-cells have emerged as a powerful immunotherapy for various forms of cancer and show promise in treating HIV-1 infection. However, significant limitations are persistence and whether peripheral T cell-based products can respond to malignant or infected cells that may reappear months or years after treatment remains unclear. Hematopoietic Stem/Progenitor Cells (HSPCs are capable of long-term engraftment and have the potential to overcome these limitations. Here, we report the use of a protective CD4 chimeric antigen receptor (C46CD4CAR to redirect HSPC-derived T-cells against simian/human immunodeficiency virus (SHIV infection in pigtail macaques. CAR-containing cells persisted for more than 2 years without any measurable toxicity and were capable of multilineage engraftment. Combination antiretroviral therapy (cART treatment followed by cART withdrawal resulted in lower viral rebound in CAR animals relative to controls, and demonstrated an immune memory-like response. We found CAR-expressing cells in multiple lymphoid tissues, decreased tissue-associated SHIV RNA levels, and substantially higher CD4/CD8 ratios in the gut as compared to controls. These results show that HSPC-derived CAR T-cells are capable of long-term engraftment and immune surveillance. This study demonstrates for the first time the safety and feasibility of HSPC-based CAR therapy in a large animal preclinical model.

  7. CARS diagnostics of high pressure discharges

    International Nuclear Information System (INIS)

    Uhlenbusch, J.

    2001-01-01

    After a short description of the principles of the CARS, RECARS and POLCARS techniques and a discussion of setups for CARS experiments some experimental results are summarized. The results concern mainly plasma under atmospheric pressure, in particular the determination of temperature in a CO 2 laser-induced pyrolysis flame burning in a silane-acetylene gas mixture, the measurements of N 2 vibrational and rotational temperatures as well as the electron density by CARS and of an NO minority by POLCARS in an atmospheric microwave discharge, and finally RECARS experiments on indium iodide, Which is present in metal halide discharge lamps. Guided by these examples some problems and difficulties arising when performing CARS measurements are discussed

  8. CarSim: Automatic 3D Scene Generation of a Car Accident Description

    OpenAIRE

    Egges, A.; Nijholt, A.; Nugues, P.

    2001-01-01

    The problem of generating a 3D simulation of a car accident from a written description can be divided into two subtasks: the linguistic analysis and the virtual scene generation. As a means of communication between these two system parts, we designed a template formalism to represent a written accident report. The CarSim system processes formal descriptions of accidents and creates corresponding 3D simulations. A planning component models the trajectories and temporal values of every vehicle ...

  9. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response.

    Science.gov (United States)

    Xue, Qiong; Bettini, Emily; Paczkowski, Patrick; Ng, Colin; Kaiser, Alaina; McConnell, Timothy; Kodrasi, Olja; Quigley, Máire F; Heath, James; Fan, Rong; Mackay, Sean; Dudley, Mark E; Kassim, Sadik H; Zhou, Jing

    2017-11-21

    It remains challenging to characterize the functional attributes of chimeric antigen receptor (CAR)-engineered T cell product targeting CD19 related to potency and immunotoxicity ex vivo, despite promising in vivo efficacy in patients with B cell malignancies. We employed a single-cell, 16-plex cytokine microfluidics device and new analysis techniques to evaluate the functional profile of CD19 CAR-T cells upon antigen-specific stimulation. CAR-T cells were manufactured from human PBMCs transfected with the lentivirus encoding the CD19-BB-z transgene and expanded with anti-CD3/anti-CD28 coated beads. The enriched CAR-T cells were stimulated with anti-CAR or control IgG beads, stained with anti-CD4 RPE and anti-CD8 Alexa Fluor 647 antibodies, and incubated for 16 h in a single-cell barcode chip (SCBC). Each SCBC contains ~12,000 microchambers, covered with a glass slide that was pre-patterned with a complete copy of a 16-plex antibody array. Protein secretions from single CAR-T cells were captured and subsequently analyzed using proprietary software and new visualization methods. We demonstrate a new method for single-cell profiling of CD19 CAR-T pre-infusion products prepared from 4 healthy donors. CAR-T single cells exhibited a marked heterogeneity of cytokine secretions and polyfunctional (2+ cytokine) subsets specific to anti-CAR bead stimulation. The breadth of responses includes anti-tumor effector (Granzyme B, IFN-γ, MIP-1α, TNF-α), stimulatory (GM-CSF, IL-2, IL-8), regulatory (IL-4, IL-13, IL-22), and inflammatory (IL-6, IL-17A) functions. Furthermore, we developed two new bioinformatics tools for more effective polyfunctional subset visualization and comparison between donors. Single-cell, multiplexed, proteomic profiling of CD19 CAR-T product reveals a diverse landscape of immune effector response of CD19 CAR-T cells to antigen-specific challenge, providing a new platform for capturing CAR-T product data for correlative analysis. Additionally, such high

  10. Car radiator burns: a prevention issue.

    Science.gov (United States)

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  11. Automated Coal-Mine Shuttle Car

    Science.gov (United States)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  12. MODERN ELECTRIC CARS OF TESLA MOTORS COMPANY

    Directory of Open Access Journals (Sweden)

    O. F. Vynakov

    2016-08-01

    Full Text Available This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья describes the history of this firm, provides technical and tactical characteristics of three modifications of electric vehicles produced by Tesla Motors. Modern electric cars are not less powerful than cars with combustion engines both in speed and acceleration amount. They are reliable, economical and safe in operation. With every year the maximum range of an electric car is increasing and its battery charging time is decreasing.Solving the problem of environmental safety, the governments of most countries are trying to encourage people to switch to electric cars by creating subsidy programs, lending and abolition of taxation. Therefore, the advent of an electric vehicle in all major cities of the world is inevitable.

  13. 49 CFR 173.314 - Compressed gases in tank cars and multi-unit tank cars.

    Science.gov (United States)

    2010-10-01

    ... or secondary Division 2.1 (flammable gas) hazard. For single unit tank cars, interior pipes of... lading exceeding 1.52 mm (0.060 inch) diameter must be equipped with excess flow valves. For single unit... inches) glass fiber placed over 5.08 cm (2 inches) of ceramic fiber. Tank cars must have excess flow...

  14. 49 CFR 173.31 - Use of tank cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Use of tank cars. 173.31 Section 173.31... SHIPMENTS AND PACKAGINGS Preparation of Hazardous Materials for Transportation § 173.31 Use of tank cars. (a) General. (1) No person may offer a hazardous material for transportation in a tank car unless the tank car...

  15. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  16. CHANGE TRENDS IN THE USE OF PASSENGER CARS ON URBAN TRIPS: CAR-POOLING IN GDYNIA

    Directory of Open Access Journals (Sweden)

    Katarzyna HEBEL

    2017-09-01

    Full Text Available The wide accessibility of European citizens to cars results in problems caused by their excessive use as a means of urban transport. Given this situation, it is necessary to find new solutions for the more efficient use of passenger cars in cities. This problem affects almost all European cities, including those in Poland. The paper analyses the level of motorization and modal split in Polish cities with county status, while selected European cities serve as a background to determine the scale of the problem. In the search of solutions in relation to Poland, an analysis of different documents outlining the directions of urban mobility was conducted. One of these documents concerned the promotion of car-pooling, the history of which dates back to the Second World War and the 1950s. Initially introduced in the USA, its increasing development in European cities has been witnessed in recent years. Research on the evaluation of real car-pooling in Polish cities was conducted in Gdynia by the authors of this study. The results of marketing research presented in the article have determined the degree to which participants in urban mobility are inclined to take part in car-pooling schemes in Polish cities.

  17. Human CD3+ T-Cells with the Anti-ERBB2 Chimeric Antigen Receptor Exhibit Efficient Targeting and Induce Apoptosis in ERBB2 Overexpressing Breast Cancer Cells

    Science.gov (United States)

    Munisvaradass, Rusheni; Kumar, Suresh; Govindasamy, Chandramohan; Alnumair, Khalid S.; Mok, Pooi Ling

    2017-01-01

    Breast cancer is a common malignancy among women. The innate and adaptive immune responses failed to be activated owing to immune modulation in the tumour microenvironment. Decades of scientific study links the overexpression of human epidermal growth factor receptor 2 (ERBB2) antigen with aggressive tumours. The Chimeric Antigen Receptor (CAR) coding for specific tumour-associated antigens could initiate intrinsic T-cell signalling, inducing T-cell activation, and cytotoxic activity without the need for major histocompatibility complex recognition. This renders CAR as a potentially universal immunotherapeutic option. Herein, we aimed to establish CAR in CD3+ T-cells, isolated from human peripheral blood mononucleated cells that could subsequently target and induce apoptosis in the ERBB2 overexpressing human breast cancer cell line, SKBR3. Constructed CAR was inserted into a lentiviral plasmid containing a green fluorescent protein tag and produced as lentiviral particles that were used to transduce activated T-cells. Transduced CAR-T cells were then primed with SKBR3 cells to evaluate their functionality. Results showed increased apoptosis in SKBR3 cells co-cultured with CAR-T cells compared to the control (non–transduced T-cells). This study demonstrates that CAR introduction helps overcome the innate limitations of native T-cells leading to cancer cell apoptosis. We recommend future studies should focus on in vivo cytotoxicity of CAR-T cells against ERBB2 expressing tumours. PMID:28885562

  18. MODERN ELECTRIC CARS OF TESLA MOTORS COMPANY

    OpenAIRE

    O. F. Vynakov; E. V. Savolova; A. I. Skrynnyk

    2016-01-01

    This overview article shows the advantages of a modern electric car as compared with internal combustion cars by the example of the electric vehicles of Tesla Motors Company. It (в смысле- статья) describes the history of this firm, provides technical and tactical characteristics of three modifications of electric vehicles produced by Tesla Motors. Modern electric cars are not less powerful than cars with combustion engines both in speed and acceleration amount. They are reliable, economical ...

  19. Clean cars

    Energy Technology Data Exchange (ETDEWEB)

    Piffaretti, M.

    2008-07-01

    This well-illustrated presentation made at the Swiss 2008 research conference on traffic by the Protoscar company takes a look at research, design, engineering and communication topics in the area of 'clean cars'. The present situation with electrically driven and hybrid-drive cars is reviewed and the chances and problems of the present-day vehicles are examined. New developments and a number of vehicles that should be on the market in the period from 2012 to 2015 are presented. Also, 'clean' specialist vehicles such as trucks and buses are reviewed. Battery systems and associated problems and new developments are looked at. The promotion scheme in Mendrisio, Switzerland is reviewed. Bottom-up and top-down approaches are discussed and future market developments are looked at, as are promotional activities in various countries.

  20. Initial heating in cold cars

    NARCIS (Netherlands)

    Daanen, H.A.M.; Teunissen, L.P.J.; Hoogh, I.M. de

    2012-01-01

    During the initial minutes after entering a cold car, people feel uncomfortably cold. Six different warming systems were investigated in a small car in order to find out how to improve the feeling of comfort using 16 volunteers. The methods were: no additional warming next to a standard heating