WorldWideScience

Sample records for receptors decreased nicotine

  1. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  2. Intraportal nicotine infusion in rats decreases hepatic blood flow through endothelin-1 and both endothelin A and endothelin B receptors

    International Nuclear Information System (INIS)

    Hashimoto, Takashi; Yoneda, Masashi; Shimada, Tadahito; Kurosawa, Mieko; Terano, Akira

    2004-01-01

    Smoking has been demonstrated to aggravate liver injury. Nicotine, a major pharmacological component of tobacco smoke, affects a multitude of functions. Smoking and nicotine induce synthesis of endothelin (ET)-1. The effect of intraportal infusion of nicotine on hepatic circulation and an involvement of ET-1 and ET receptor in the action of nicotine were investigated in rats. Nicotine (0-100 μg/kg/h) was infused into the portal vein of urethane-anesthetized rats, and changes of hepatic blood flow were evaluated. Intraportal infusion of nicotine dose-dependently decreased hepatic blood flow and increased portal pressure without any alteration of heart rate or arterial blood pressure. This action of intraportal nicotine was completely abolished by pretreatment of ET-1 antibody. Either BQ485 (ET A receptor antagonist) or BQ788 (ET B receptor antagonist) partially reversed the effect of nicotine, and combination of BQ788 and BQ485 completely abolished it. These findings suggest that nicotine inhibits hepatic circulation through ET-1, and ET A and ET B receptor

  3. Decreased sensitivity to nicotine-induced seizures as a consequence of nicotine pretreatment in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1988-01-01

    Male and female long-sleep (LS) and short-sleep (SS) mice were pretreated with a subseizure-producing dose of nicotine (2.0 mg/kg) 7.5, 15 and 30 minutes prior to challenge with seizure-producing doses of this drug. Nicotine pretreated animals were less susceptible to nicotine-induced seizures than were saline pretreated animals. The latency to seizure following nicotine challenge was greater in nicotine pretreated animals than in saline controls. Nicotine pretreated LS mice show a greater decrease in nicotine-induced seizure susceptibility than do nicotine pretreated SS mice. This decrease in seizure susceptibility is consistent with induction of nicotinic receptor desensitization via nicotine pretreatment. It is hypothesized that LS and SS mice might differ in sensitivity to nicotine in part because they differ in baseline levels of desensitized versus functional nicotinic receptors.

  4. Nicotine Receptor Subtype-Specific Effects on Auditory Evoked Oscillations and Potentials

    Science.gov (United States)

    Featherstone, Robert E.; Phillips, Jennifer M.; Thieu, Tony; Ehrlichman, Richard S.; Halene, Tobias B.; Leiser, Steven C.; Christian, Edward; Johnson, Edwin; Lerman, Caryn; Siegel, Steven J.

    2012-01-01

    Background Individuals with schizophrenia show increased smoking rates which may be due to a beneficial effect of nicotine on cognition and information processing. Decreased amplitude of the P50 and N100 auditory event-related potentials (ERPs) is observed in patients. Both measures show normalization following administration of nicotine. Recent studies identified an association between deficits in auditory evoked gamma oscillations and impaired information processing in schizophrenia, and there is evidence that nicotine normalizes gamma oscillations. Although the role of nicotine receptor subtypes in augmentation of ERPs has received some attention, less is known about how these receptor subtypes regulate the effect of nicotine on evoked gamma activity. Methodology/Principal Findings We examined the effects of nicotine, the α7 nicotine receptor antagonist methyllycaconitine (MLA) the α4β4/α4β2 nicotine receptor antagonist dihydro-beta-erythroidine (DHβE), and the α4β2 agonist AZD3480 on P20 and N40 amplitude as well as baseline and event-related gamma oscillations in mice, using electrodes in hippocampal CA3. Nicotine increased P20 amplitude, while DHβE blocked nicotine-induced enhancements in P20 amplitude. Conversely, MLA did not alter P20 amplitude either when presented alone or with nicotine. Administration of the α4β2 specific agonist AZD3480 did not alter any aspect of P20 response, suggesting that DHβE blocks the effects of nicotine through a non-α4β2 receptor specific mechanism. Nicotine and AZD3480 reduced N40 amplitude, which was blocked by both DHβE and MLA. Finally, nicotine significantly increased event-related gamma, as did AZD3480, while DHβE but not MLA blocked the effect of nicotine on event-related gamma. Conclusions/Significance These results support findings showing that nicotine-induced augmentation of P20 amplitude occurs via a DHβE sensitive mechanism, but suggests that this does not occur through activation of α4β2

  5. Selective decreases of nicotinic acetylcholine receptors in PC12 cells exposed to fluoride

    International Nuclear Information System (INIS)

    Chen Jia; Shan, K.-R.; Long, Y.-G.; Wang, Y.-N.; Nordberg, Agneta; Guan, Z.-Z.

    2003-01-01

    In an attempt to elucidate the mechanism by which excessive fluoride damages the central nervous system, the effects of exposure of PC12 cells to different concentrations of fluoride for 48 h on nicotinic acetylcholine receptors (nAChRs) were characterized here. Significant reductions in the number of binding sites for both [ 3 H]epibatidine and [ 125 I]α-bungarotoxin, as well as a significant decrease in the B max value for the high-affinity of epibatidine binding site were observed in PC12 cells subjected to high levels of fluoride. On the protein level, the α3 and α7 subunits of nAChRs were also significantly decreased in the cells exposed to high concentrations of fluoride. In contrast, such exposure had no significant effect on the level of the β2 subunit. These findings suggest that selective decreases in the number of nAChRs may play an important role in the mechanism(s) by which fluoride causes dysfunction of the central nervous system

  6. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala.

    Science.gov (United States)

    Kenny, Paul J; Chartoff, Elena; Roberto, Marisa; Carlezon, William A; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5-2.5 mg per kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg per kg) or intravenously self-administered (0.03 mg per kg per infusion) nicotine injections. The highest LY235959 dose (5 mg per kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 microM) increased NMDA receptor-mediated excitatory postsynaptic currents in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1-10 ng per side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug.

  7. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors.

    NARCIS (Netherlands)

    de Kloet, S.F.; Mansvelder, H.D.; de Vries, T.J.

    2015-01-01

    Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are

  8. The effect of coniine on presynaptic nicotinic receptors.

    Science.gov (United States)

    Erkent, Ulkem; Iskit, Alper B; Onur, Rustu; Ilhan, Mustafa

    2016-01-01

    Toxicity of coniine, an alkaloid of Conium maculatum (poison hemlock), is manifested by characteristic nicotinic clinical signs including excitement, depression, hypermetria, seizures, opisthotonos via postsynaptic nicotinic receptors. There is limited knowledge about the role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine in the literature. The present study was undertaken to evaluate the possible role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine. For this purpose, the rat anococcygeus muscle and guinea-pig atria were used in vitro. Nicotine (100 μM) elicited a biphasic response composed of a relaxation followed by contraction through the activation of nitrergic and noradrenergic nerve terminals in the phenylephrine-contracted rat anococcygeus muscle. Coniine inhibited both the nitrergic and noradrenergic response in the muscle (-logIC(50) = 3.79 ± 0.11 and -logIC(50) = 4.57 ± 0.12 M, respectively). The effect of coniine on nicotinic receptor-mediated noradrenergic transmission was also evaluated in the guinea-pig atrium (-logIC(50) = 4.47 ± 0.12 M) and did not differ from the -logIC(50) value obtained in the rat anococcygeus muscle. This study demonstrated that coniine exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic transmitter response.

  9. α-4 subunit of nicotinic acetylcholine receptor polymorphisms exhibit ...

    African Journals Online (AJOL)

    Background: Smoking behavior is influenced by both genetic and environmental factors. Nicotine is the major addictive substance in cigarettes. Nicotinic acetylcholine receptors (nAChRs) are thought to play an important role in nicotine addiction of smokers. One of the genes, α-4 subunit of nicotinic acetylcholine receptor ...

  10. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  11. Brain nicotinic acetylcholine receptors are involved in stress-induced potentiation of nicotine reward in rats.

    Science.gov (United States)

    Javadi, Parastoo; Rezayof, Ameneh; Sardari, Maryam; Ghasemzadeh, Zahra

    2017-07-01

    The aim of the present study was to examine the possible role of nicotinic acetylcholine receptors of the dorsal hippocampus (CA1 regions), the medial prefrontal cortex or the basolateral amygdala in the effect of acute or sub-chronic stress on nicotine-induced conditioned place preference. Our results indicated that subcutaneous administration of nicotine (0.2 mg/kg) induced significant conditioned place preference. Exposure to acute or sub-chronic elevated platform stress potentiated the response of an ineffective dose of nicotine. Pre-conditioning intra-CA1 (0.5-4 µg/rat) or intra-medial prefrontal cortex (0.2-0.3 µg/rat) microinjection of mecamylamine (a non-selective nicotinic acetylcholine receptor antagonist) reversed acute stress-induced potentiation of nicotine reward as measured in the conditioned place preference paradigm. By contrast, pre-conditioning intra-basolateral amygdala microinjection of mecamylamine (4 µg/rat) potentiated the effects of acute stress on nicotine reward. Our findings also showed that intra-CA1 or intra-medial prefrontal cortex, but not intra-basolateral amygdala, microinjection of mecamylamine (4 µg/rat) prevented the effect of sub-chronic stress on nicotine reward. These findings suggest that exposure to elevated platform stress potentiates the rewarding effect of nicotine which may be associated with the involvement of nicotinic acetylcholine receptors. It seems that there is a different contribution of the basolateral amygdala, the medial prefrontal cortex or the CA1 nicotinic acetylcholine receptors in stress-induced potentiation of nicotine-induced conditioned place preference.

  12. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  13. Functional interaction between Lypd6 and nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Arvaniti, Maria; Jensen, Majbrit M; Soni, Neeraj

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with n...... brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit n......AChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our...

  14. Attenuated nicotine‐like effects of varenicline but not other nicotinic ACh receptor agonists in monkeys receiving nicotine daily

    Science.gov (United States)

    Cunningham, Colin S; Moerke, Megan J; Javors, Martin A; Carroll, F Ivy

    2016-01-01

    Background and Purpose Chronic treatment can differentially impact the effects of pharmacologically related drugs that differ in receptor selectivity and efficacy. Experimental Approach The impact of daily nicotine treatment on the effects of nicotinic ACh receptor (nAChR) agonists was examined in two groups of rhesus monkeys discriminating nicotine (1.78 mg·kg−1 base weight) from saline. One group received additional nicotine treatment post‐session (1.78 mg·kg−1 administered five times daily, each dose 2 h apart; i.e. Daily group), and the second group did not (Intermittent group). Key Results Daily repeated nicotine treatment produced a time‐related increase in saliva cotinine. There was no significant difference in the ED50 values of the nicotine discriminative stimulus between the Daily and Intermittent group. Mecamylamine antagonized the effects of nicotine, whereas dihydro‐β‐erythroidine did not. Midazolam produced 0% nicotine‐lever responding. The nAChR agonists epibatidine, RTI‐36, cytisine and varenicline produced >96% nicotine‐lever responding in the Intermittent group. The respective maximum effects in the Daily group were 100, 72, 59 and 28%, which shows that the ability of varenicline to produce nicotine‐like responding was selectively decreased in the Daily as compared with the Intermittent group. When combined with nicotine, both varenicline and cytisine increased the potency of nicotine to produce discriminative stimulus effects. Conclusion and Implications Nicotine treatment has a greater impact on the sensitivity to the effects of varenicline as compared with some other nAChR agonists. Collectively, these results strongly suggest that varenicline differs from nicotine in its selectivity for multiple nAChR subtypes. PMID:27667659

  15. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    Science.gov (United States)

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-05-15

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  17. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    International Nuclear Information System (INIS)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-01

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  18. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    Science.gov (United States)

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  19. In vivo positron emission tomography studies on the novel nicotinic receptor agonist [11C]MPA compared with [11C]ABT-418 and (S)(-)[11C]nicotine in Rhesus monkeys

    International Nuclear Information System (INIS)

    Sihver, Wiebke; Fasth, Karl-Johan; Oegren, Matthias; Lundqvist, Hans; Bergstroem, Mats; Watanabe, Yasuyoshi; Laangstroem, Bengt; Nordberg, Agneta

    1999-01-01

    The novel 11 C-labeled nicotinic agonist (R,S)-1-[ 11 C]methyl-2(3-pyridyl)azetidine ([ 11 C]MPA) was evaluated as a positron emission tomography (PET) ligand for in vivo characterization of nicotinic acetylcholine receptors in the brain of Rhesus monkeys in comparison with the nicotinic ligands (S)-3-methyl-5-(1-[ 11 C]methyl-2-pyrrolidinyl)isoxazol ([ 11 C]ABT-418) and (S)(-)[ 11 C]nicotine. The nicotinic receptor agonist [ 11 C]MPA demonstrated rapid uptake into the brain to a similar extent as (S)(-) [ 11 C]nicotine and [ 11 C]ABT-418. When unlabeled (S)(-)nicotine (0.02 mg/kg) was administered 5 min before the radioactive tracers, the uptake of [ 11 C]MPA was decreased by 25% in the thalamus, 19% in the temporal cortex, and 11% in the cerebellum, whereas an increase was found for the uptake of (S)(-)[ 11 C]nicotine and [ 11 C]ABT-418. This finding indicates specific binding of [ 11 C]MPA to nicotinic receptors in the brain in a simple classical displacement study. [ 11 C]MPA seems to be a more promising radiotracer than (S)(-)[ 11 C]nicotine or [ 11 C]ABT-418 for PET studies to characterize nicotinic receptors in the brain

  20. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  1. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    International Nuclear Information System (INIS)

    Suarez, S.V.; Changeux, J.P.; Granon, S.; Amadon, A.; Giacomini, E.; Le Bihan, D.; Wiklund, A.

    2009-01-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  2. [3H]cytisine binding to nicotinic cholinergic receptors in brain

    International Nuclear Information System (INIS)

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J.

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic 3 H-agonist ligands. Here we have examined the binding of [ 3 H]cytisine in rat brain homogenates. [ 3 H]Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for [ 3 H]cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that [ 3 H]cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of [ 3 H]cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of [ 3 H]cytisine should make it a very useful ligand for studying neuronal nicotinic receptors

  3. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  4. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  5. Stimulation of Na+ -K+ -pump currents by epithelial nicotinic receptors in rat colon.

    Science.gov (United States)

    Bader, Sandra; Lottig, Lena; Diener, Martin

    2017-05-01

    Acetylcholine-induced epithelial Cl - secretion is generally thought to be mediated by epithelial muscarinic receptors and nicotinic receptors on secretomotor neurons. However, recent data have shown expression of nicotinic receptors by intestinal epithelium and the stimulation of Cl - secretion by nicotine, in the presence of the neurotoxin, tetrodotoxin. Here, we aimed to identify the transporters activated by epithelial nicotinic receptors and to clarify their role in cholinergic regulation of intestinal ion transport. Ussing chamber experiments were performed, using rat distal colon with intact epithelia. Epithelia were basolaterally depolarized to measure currents across the apical membrane. Apically permeabilized tissue was also used to measure currents across the basolateral membrane in the presence of tetrodotoxin. Nicotine had no effect on currents through Cl - channels in the apical membrane or on currents through K + channels in the apical or the basolateral membrane. Instead, nicotine stimulated the Na + -K + -pump as indicated by Na + -dependency and sensitivity of the nicotine-induced current across the basolateral membrane to cardiac steroids. Effects of nicotine were inhibited by nicotinic receptor antagonists such as hexamethonium and mimicked by dimethyl-4-phenylpiperazinium, a chemically different nicotinic agonist. Simultaneous stimulation of epithelial muscarinic and nicotinic receptors led to a strong potentiation of transepithelial Cl - secretion. These results suggest a novel concept for the cholinergic regulation of transepithelial ion transport by costimulation of muscarinic and nicotinic epithelial receptors and a unique role of nicotinic receptors controlling the activity of the Na + -K + -ATPase. © 2017 The British Pharmacological Society.

  6. Tying up Nicotine: New Selective Competitive Antagonist of the Neuronal Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Petersen, Ida Nymann; Crestey, François; Jensen, Anders A

    2015-01-01

    Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers...

  7. Nicotine response and nicotinic receptors in long-sleep and short-sleep mice.

    Science.gov (United States)

    De Fiebre, C M; Medhurst, L J; Collins, A C

    1987-01-01

    Nicotine response and nicotinic receptor binding were characterized in long-sleep (LS) and short-sleep (SS) mice which have been selectively bred for differential "sleep-time" following ethanol administration. LS mice are more sensitive than SS mice to nicotine as measured by a battery of behavioral and physiological tests and as measured by sensitivity to nicotine-induced seizures. The greater sensitivity of the LS mice is not due to differences in binding of [3H]nicotine. Unlike inbred mouse strains which differ in sensitivity to nicotine-induced seizures, these selected mouse lines do not differ in levels of binding of [125I]alpha-bungarotoxin (BTX) in the hippocampus. Significant differences in BTX binding were found in the cerebellum and striatum. Although these two mouse lines do not differ in blood levels of nicotine following nicotine administration, they differ slightly in brain levels of nicotine indicating differential distribution of the drug. Since this distribution difference is much smaller than the observed behavioral differences, these mice probably differ in CNS sensitivity to nicotine; however, follow-up studies are necessary to test whether the differential response of these mice is due to subtle differences in distribution of nicotine to the brain.

  8. The role of adrenergic receptors in nicotine-induced hyperglycemia ...

    African Journals Online (AJOL)

    The role of adrenergic receptors in nicotine-induced hyperglycaemia has not been well studied in amphibians. Thus, this study investigates the effects of alpha and beta adrenergic receptor blockers in nicotine-induced hyperglycaemia in the common African toad Bufo regularis. Toads fasted for 24 h were anaesthetized with ...

  9. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Maneckjee, R.; Minna, J.D.

    1990-01-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for μ, δ, and κ opioid agonists and for nicotine and α-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas μ, δ, and κ opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides (β-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer

  10. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maneckjee, R.; Minna, J.D. (National Cancer Institute-Navy Medical Oncology Branch, Bethesda, MD (USA) Uniformed Services Univ. of the Health Sciences, Bethesda, MD (USA))

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  11. Structural Studies of Nicotinic Acetylcholine Receptors

    DEFF Research Database (Denmark)

    Shahsavar, Azadeh; Gajhede, Michael; Kastrup, Jette

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) are members of the pentameric ligand-gated ion channel superfamily that play important roles in control of neurotransmitter release in the central and peripheral nervous system. These receptors are important therapeutic targets for development of drugs...

  12. Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption

    Directory of Open Access Journals (Sweden)

    Marta A Ślimak

    2014-01-01

    Full Text Available The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3 and β4 nicotinic acetylcholine receptor (nAChR subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN tract is particularly enriched in α3β4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb in mice altered nicotine consumption. Given that β4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of β4 to nicotine receptor activity in the MHb. We screened for missense SNPs with allele frequencies > 0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that β4A90I and β4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant β4D447Y, significantly increased nicotine-evoked current amplitudes, while β4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS, showed reduced nicotine currents. We employed lentiviruses to express β4 or β4 variants in the MHb. Immunoprecipitation studies confirmed that β4 lentiviral-mediated expression leads to specific upregulation of α3β4 but not β2 nAChRs in the Mhb. Mice injected with the β4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the β4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the β4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular β4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine

  13. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...

  14. Docking to flexible nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Sander, Tommy; Bruun, Anne T; Balle, Thomas

    2010-01-01

    Computational docking to nicotinic acetylcholine receptors (nAChRs) and other members of the Cys-loop receptor family is complicated by the flexibility of the so-called C-loop. As observed in the large number of published crystal structures of the acetylcholine binding protein (AChBP), a structural...

  15. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    Science.gov (United States)

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  16. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  17. Neuronal nicotinic acetylcholine receptors: Common molecular substrates of nicotine and alcohol dependence

    Directory of Open Access Journals (Sweden)

    Linzy M. Hendrickson

    2013-04-01

    Full Text Available Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs, ligand-gated cation channels normally activated by endogenous acetylcholine (ACh, ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA which project to the nucleus accumbens (NAc. Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from preclinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.

  18. Comparison of nicotinic receptor binding and biotransformation of coniine in the rat and chick.

    Science.gov (United States)

    Forsyth, C S; Speth, R C; Wecker, L; Galey, F D; Frank, A A

    1996-12-31

    Coniine, an alkaloid from Conium maculatum (poison hemlock), is a known teratogen in many domestic species with maternal ingestion resulting in arthrogryposis of the offspring. We have previously shown that rats are not susceptible and rabbits only weakly susceptible to coniine-induced arthrogryposis. However, the chick embryo does provide a reproducible laboratory animal model of coniine-induced teratogenesis. The reason for this cross-species variation is unknown. The purpose of this study was to evaluate coniine binding to nicotinic receptors and to measure coniine metabolism in vitro between susceptible and non-susceptible species. Using the chick model, neither the peripheral nicotinic receptor antagonist d-tubocurarine chloride nor the central nicotinic receptor antagonist trimethaphan camsylate blocked the teratogenesis or lethality of 1.5% coniine (50 microliters/egg). Trimethaphan camsylate enhanced coniine-induced lethality in a dose-dependent manner. Neither nicotinic receptor blocker prevented nicotine sulfate-induced malformations but d-tubocurarine chloride did block lethality in a dose-dependent manner. Competition by coniine for [125I]-alpha-bungarotoxin to nicotinic receptors isolated from adult rat diaphragm and chick thigh muscle and competition by coniine for [3H]-cytisine to receptors from rat and chick brain were used to assess coniine binding to nicotinic receptors. The IC50 for coniine in rat diaphragm was 314 microM while that for chick leg muscle was 70 microM. For neuronal nicotinic receptors, the IC50s of coniine for maternal rat brain, fetal rat brain, and chick brain were 1100 microM, 820 microM, and 270 microM, respectively. There were no differences in coniine biotransformation in vitro by microsomes from rat or chick livers. Differences in apparent affinity of coniine for nicotinic receptors or differences in the quantity of the nicotinic receptor between the rat and chick may explain, in part, the differences in susceptibility of

  19. Nicotinic modulaton of neuronal networks: from receptors to cognition

    NARCIS (Netherlands)

    Mansvelder, H.D.; van Aerde, K.I.; Couey, J.J.; Brussaard, A.B.

    2006-01-01

    Rationale: Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and

  20. T-type calcium channel antagonism decreases motivation for nicotine and blocks nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine.

    Science.gov (United States)

    Uslaner, Jason M; Vardigan, Joshua D; Drott, Jason M; Uebele, Victor N; Renger, John J; Lee, Ariel; Li, Zhaoxia; Lê, A D; Hutson, Pete H

    2010-10-15

    Recent evidence suggests an involvement of T-type calcium channels in the effects of drugs of abuse. We examined the influence of the novel, potent, and selective T-type calcium channel antagonist [2-(4-cyclopropylphenyl)-N-((1R)-1-{5-[2,2,2-trifluoroethyl]oxo}pyridine-2-yl)ethyl]acetamide] (TTA-A2) (.3, 1, or 3 mg/kg) on motivation for nicotine, as measured by nicotine self-administration on a progressive ratio (PR) schedule, and nicotine- and cue-induced reinstatement for a response previously reinforced with nicotine delivery (n = 11 or 12 Long Evans rats/group). Furthermore, we examined the specificity of the TTA-A2 effects by characterizing its influence on PR responding for food (in the absence or presence of nicotine-potentiated responding), food- versus nicotine-induced cue-potentiated reinstatement for a response previously reinforced by food administration (n = 11 or 12 Wistar Hannover rats/group), and its ability to induce a conditioned place aversion. TTA-A2 dose-dependently decreased self-administration of nicotine on a PR schedule and the ability of both nicotine and a cue paired with nicotine to reinstate responding. The effects were specific for nicotine's incentive motivational properties, as TTA-A2 did not influence responding for food on a PR schedule but did attenuate the ability of nicotine to potentiate responding for food. Likewise, TTA-A2 did not alter food-induced cue-potentiated reinstatement for a response previously reinforced by food but did decrease nicotine-induced cue-potentiated reinstatement. Finally, TTA-A2 did not produce an aversive state, as indicated by a lack of ability to induce conditioned place aversion. These data suggest that T-type calcium channel antagonists have potential for alleviating nicotine addiction by selectively decreasing the incentive motivational properties of nicotine. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Evidence for thymopoietin and thymopoietin/α-bungarotoxin/nicotinic receptors within the brain

    International Nuclear Information System (INIS)

    Quik, M.; Babu, U.; Audhya, T.; Goldstein, G.

    1991-01-01

    Thymopoietin, a polypeptide hormone of the thymus that has pleiotropic actions on the immune, endocrine, and nervous systems, potently interacts with the neuromuscular nicotinic acetylcholine receptor. Thymopoietin binds to the nicotinic α-bungarotoxin (α-BGT) receptor in muscle and, like αBGT, inhibits cholinergic transmission at this site. Evidence is given that radiolabeled thymopoietin similarly binds to a nicotinic α-BGT-binding site within the brain and does so with the characteristics of a specific receptor ligand. Thus specific binding to neuronal membranes was saturable, of high affinity linear with increased tissue concentration, and readily reversible; half-time was ∼5 min for association and 10 min for dissociation. Binding of 125 I-labeled thymopoietin was displaced not only by unlabeled thymopoietin but also by α-BGT and the nicotinic receptor ligands d-tubocurarine and nicotine; various other receptor ligands (muscarinic, adrenergic, and dopaminergic) did not affect binding of 125 I-labeled thymopoietin. Thymopoietin was shown by ELISA to be present in brain extracts, displacement curves of thymus and brain extracts being parallel to the standard thymopoietin curve, and Western (immuno) blot identified in brain and thymus extracts a thymopoietin-immunoreactive polypeptide of the same molecular mass as purified thymopoietin polypeptide. The authors conclude that thymopoietin and thymopoietin-binding sites are present within the brain and that the receptor for thymopoietin is the previously identified nicotinic α-BGT-binding site of neuronal tissue

  2. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Arvaniti, Maria; Jensen, Majbrit M

    2016-01-01

    Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification....... Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 n...

  3. Prior nicotine self-administration attenuates subsequent dopaminergic deficits of methamphetamine in rats: role of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Baladi, Michelle G; Nielsen, Shannon M; McIntosh, J Michael; Hanson, Glen R; Fleckenstein, Annette E

    2016-08-01

    Preclinical studies have demonstrated that oral nicotine exposure attenuates long-term dopaminergic damage induced by toxins, including repeated, high doses of methamphetamine. It is suggested that alterations in nicotinic acetylcholine receptor (nAChR) expression, including α4β2* and α6β2* subtypes, likely contribute to this protection. The current study extended these findings by investigating whether nicotine self-administration in male, Sprague-Dawley rats (a) attenuates short-term dopaminergic damage induced by methamphetamine and (b) causes alterations in levels of α4β2* and α6β2* nAChR subtypes. The findings indicate that nicotine self-administration (0.032 mg/kg/infusion for 14 days) per se did not alter α4β2* and α6β2* nAChR expression or dopamine transporter (DAT) expression and function. Interestingly, prior nicotine self-administration attenuated methamphetamine-induced decreases in DAT function when assessed 24 h, but not 1 h, after methamphetamine treatment (4×7.5 mg/kg/injection). The ability of nicotine to attenuate the effects of methamphetamine on DAT function corresponded with increases in α4β2*, but not α6β2*, nAChR binding density. Understanding the role of nAChRs in methamphetamine-induced damage has the potential to elucidate mechanisms underlying the etiology of disorders involving dopaminergic dysfunction, as well as to highlight potential new therapeutic strategies for prevention or reduction of dopaminergic neurodegeneration.

  4. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Pedro Setti-Perdigão

    Full Text Available Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+-11á-hydroxyerysotrine was the lowest, whereas (+-erythravine and (+-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+-erythravine and (+-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  5. Activation of the GABAB receptor prevents nicotine-induced locomotor stimulation in mice

    Directory of Open Access Journals (Sweden)

    Carla eLobina

    2011-12-01

    Full Text Available Recent studies demonstrated that activation of the GABAB receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs, inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABAB receptor agonist, baclofen, and GABAB PAMs, CGP7930 and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p., CGP7930 (0, 25, and 50 mg/kg, i.g., or GS39783 (0, 25, and 50 mg/kg, i.g., then treated with nicotine (0 and 0.05 mg/kg, s.c., and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABAB PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABAB receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  6. Evaluation of PET Radioligands for the neuronal nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Schoenbaechler, R.; Westera, G.; Nan-Horng Lin

    2002-01-01

    Full text: A-186253.1, a compound made by Abbott laboratories, was labelled with carbon-11 and evaluated as a PET ligand for the neuronal nicotinic acetylcholine receptor (nAChR). The compound was labelled with C-11 by methylation with 11C-MeI of the desmethyl precursor A-183828.1. The affinity of A-186253.1 for the α4β2 and the α7 subtype of the nAChR was determined in displacement studies. PET-studies were performed in rats and pigs Inhibitory constants (K i ) versus cytsine were 461 ± 99 pM for A-186253.1 and versus α-Bungarotoxin >100 μM. which means a very high selectivity for the α4β2-receptor (>227,000). Highest uptake of [ 11 C]-A-186253.1 was observed in the thalamus where an increase in radiotracer uptake was seen until 45 min p.i.. Thereafter, the radiotracer concentration remained constant until the end of the scan indicating slow washout of [ 11 C]-A-186253.1. Application of cold A-186253.1 (0.5 mg/kg) 40 min p.i. resulted in a decrease in radiotracer concentration in the thalamus and the cortex indicating displacement of [ 11 C]-A-186253.1. Blockade studies with cytisine (0.5 mg/kg), a selective ligand for the α4β2 nicotinic receptor, showed just a slight reduction of the radioligand uptake in the thalamus and in the cortex whereas the blockade with cold A-186253.1 (1 mg/kg) resulted in a 50 % reduction. These results suggest, that 50 % of the [ 11 C]-A-186253.1 in the brain corresponds to specifically bound radioligand, but not to the α4β2 subtype of the nicotinic receptor. (author)

  7. Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin.

    Science.gov (United States)

    Trigo, José M; Zimmer, Andreas; Maldonado, Rafael

    2009-06-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, micro-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking beta-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking beta-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of beta-endorphin in these addictive related responses.

  8. Nicotine anxiogenic and rewarding effects are decreased in mice lacking β-endorphin

    Science.gov (United States)

    Trigo, José M.; Zimmer, Andreas; Maldonado, Rafael

    2009-01-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, μ-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking β-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking β-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of β-endorphin in these addictive related responses. PMID:19376143

  9. Brief Report: Initial Trial of Alpha7-Nicotinic Receptor Stimulation in Two Adult Patients with Autism Spectrum Disorder

    Science.gov (United States)

    Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R.; Freedman, Robert

    2016-01-01

    Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational…

  10. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Zong-Zhuang Li

    2012-01-01

    Full Text Available Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs, although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs. In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs.

  11. Cannabinoid CB1 receptor antagonist rimonabant disrupts nicotine reward-associated memory in rats.

    Science.gov (United States)

    Fang, Qin; Li, Fang-Qiong; Li, Yan-Qin; Xue, Yan-Xue; He, Ying-Ying; Liu, Jian-Feng; Lu, Lin; Wang, Ji-Shi

    2011-10-01

    Exposure to cues previously associated with drug intake leads to relapse by activating previously acquired memories. Based on previous findings, in which cannabinoid CB(1) receptors were found to be critically involved in specific aspects of learning and memory, we investigated the role of CB(1) receptors in nicotine reward memory using a rat conditioned place preference (CPP) model. In Experiment 1, rats were trained for CPP with alternating injections of nicotine (0.5mg/kg, s.c.) and saline to acquire the nicotine-conditioned memory. To examine the effects of rimonabant on the reconsolidation of nicotine reward memory, rats were administered rimonabant (0, 0.3, and 3.0mg/kg, i.p.) immediately after reexposure to the drug-paired context. In Experiment 2, rats were trained for CPP similarly to Experiment 1. To examine the effects of rimonabant on the reinstatement of nicotine reward memory, rimonabant (0, 0.3, and 3.0mg/kg, i.p.) was administered before the test of nicotine-induced CPP reinstatement. In Experiment 3, to evaluate whether rimonabant itself produces a reward memory, rats were trained for CPP with alternating injections of different doses of rimonabant (0, 0.3, and 3.0mg/kg) and saline. Rimonabant at a dose of 3.0mg/kg significantly disrupted the reconsolidation of nicotine memory and significantly blocked the reinstatement of nicotine-induced CPP. However, rimonabant itself did not produce CPP. These findings provide clear evidence that CB(1) receptors play a role in nicotine reward memory, suggesting that CB(1) receptor antagonists may be a potential target for managing nicotine addiction. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and β-adrenergic receptor signaling pathways

    International Nuclear Information System (INIS)

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-01-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE 2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE 2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis

  13. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    Science.gov (United States)

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  14. The μ-opioid receptor gene and smoking initiation and nicotine dependence

    Directory of Open Access Journals (Sweden)

    Kendler Kenneth S

    2006-08-01

    Full Text Available Abstract The gene encoding the mu-opioid receptor (OPRM1 is reported to be associated with a range of substance dependence. Experiments in knockout mice indicate that the mu-opioid receptor may mediate reinforcing effects of nicotine. In humans, opioid antagonist naltrexone may reduce the reinforcing effects of tobacco smoking. Additionally, the OPRM1 gene is located in a region showing linkage to nicotine dependence. The OPRM1 is thus a plausible candidate gene for smoking behavior. To investigate whether OPRM1 contributes to the susceptibility of smoking initiation and nicotine dependence, we genotyped 11 SNPs in the gene for 688 Caucasian subjects of lifetime smokers and nonsmokers. Three SNPs showed nominal significance for smoking initiation and one reached significance for nicotine dependence. The global test for three-marker (rs9479757-rs2075572-rs10485057 haplotypes was significant for smoking initiation (p = 0.0022. The same three-marker haplotype test was marginal (p = 0.0514 for nicotine dependence. These results suggest that OPRM1 may be involved in smoking initiation and nicotine dependence.

  15. Chronic nicotine modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman.

    Directory of Open Access Journals (Sweden)

    Alexander V Chibalin

    Full Text Available Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ∼3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV while the activity of the α1 isoform decreased (-4.4 mV. Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM, measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63 and Ser(68. Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.

  16. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens.

    Science.gov (United States)

    Yu, C-J; Debski, E A

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.

  17. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  18. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  19. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    Science.gov (United States)

    Sukhanov, Ilya; Dorofeikova, Mariia; Dolgorukova, Antonina; Dorotenko, Artem; Gainetdinov, Raul R.

    2018-01-01

    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted. PMID:29681856

  20. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    Directory of Open Access Journals (Sweden)

    Ilya Sukhanov

    2018-04-01

    Full Text Available Trace amine-associated receptor 1 (TAAR1 has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg. The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted.

  1. Receptor protection studies comparing recombinant and native nicotinic receptors: Evidence for a subpopulation of mecamylamine-sensitive native alpha3beta4* nicotinic receptors.

    Science.gov (United States)

    Free, R Benjamin; Kaser, Daniel J; Boyd, R Thomas; McKay, Dennis B

    2006-01-09

    Studies involving receptor protection have been used to define the functional involvement of specific receptor subtypes in tissues expressing multiple receptor subtypes. Previous functional studies from our laboratory demonstrate the feasibility of this approach when applied to neuronal tissues expressing multiple nicotinic acetylcholine receptors (nAChRs). In the current studies, the ability of a variety of nAChR agonists and antagonists to protect native and recombinant alpha3beta4 nAChRs from alkylation were investigated using nAChR binding techniques. Alkylation of native alpha3beta4* nAChRs from membrane preparations of bovine adrenal chromaffin cells resulted in a complete loss of specific [(3)H]epibatidine binding. This loss of binding to native nAChRs was preventable by pretreatment with the agonists, carbachol or nicotine. The partial agonist, cytisine, produced partial protection. Several nAChR antagonists were also tested for their ability to protect. Hexamethonium and decamethonium were without protective activity while mecamylamine and tubocurarine were partially effective. Addition protection studies were performed on recombinant alpha3beta4 nAChRs. As with native alpha3beta4* nAChRs, alkylation produced a complete loss of specific [(3)H]epibatidine binding to recombinant alpha3beta4 nAChRs which was preventable by pretreatment with nicotine. However, unlike native alpha3beta4* nAChRs, cytisine and mecamylamine, provide no protection for alkylation. These results highlight the differences between native alpha3beta4* nAChRs and recombinant alpha3beta4 nAChRs and support the use of protection assays to characterize native nAChR subpopulations.

  2. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons.

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Nistri, Andrea

    2016-11-15

    Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists

  3. Blockade of rat alpha3beta4 nicotinic receptor function by methadone, its metabolites, and structural analogs.

    Science.gov (United States)

    Xiao, Y; Smith, R D; Caruso, F S; Kellar, K J

    2001-10-01

    The opioid agonist properties of (+/-)-methadone are ascribed almost entirely to the (-)-methadone enantiomer. To extend our knowledge of the pharmacological actions of methadone at ligand-gated ion channels, we investigated the effects of the two enantiomers of methadone and its metabolites R-(+)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium perchlorate (EDDP) and R-(+)-2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline hydrochloride (EMDP), as well as structural analogs of methadone, including (-)-alpha-acetylmethadol hydrochloride (LAAM) and (+)-alpha-propoxyphene, on rat alpha3beta4 neuronal nicotinic acetylcholine receptors (nAChRs) stably expressed in a human embryonic kidney 293 cell line, designated KXalpha3beta4R2. (+/-)-methadone inhibited nicotine-stimulated 86Rb+ efflux from the cells in a concentration-dependent manner with an IC50 value of 1.9 +/- 0.2 microM, indicating that it is a potent nAChR antagonist. The (-)- and (+)-enantiomers of methadone have similar inhibitory potencies on nicotine-stimulated 86Rb+ efflux, with IC50 values of approximately 2 microM. EDDP, the major metabolite of methadone, is even more potent, with an IC50 value of approximately 0.5 microM, making it one of the most potent nicotinic receptor blockers reported. In the presence of (+/-)-methadone, EDDP, or LAAM, the maximum nicotine-stimulated 86Rb+ efflux was markedly decreased, but the EC50 value for nicotine stimulation was altered only slightly, if at all, indicating that these compounds block alpha3beta4 nicotinic receptor function by a noncompetitive mechanism. Consistent with a noncompetitive mechanism, (+/-)-methadone, its metabolites, and structural analogs have very low affinity for nicotinic receptor agonist binding sites in membrane homogenates from KXalpha3beta4R2 cells. We conclude that both enantiomers of methadone and its metabolites as well as LAAM and (+)-alpha-propoxyphene are potent noncompetitive antagonists of alpha3beta4 nAChRs.

  4. GLP-1 acts on habenular avoidance circuits to control nicotine intake.

    Science.gov (United States)

    Tuesta, Luis M; Chen, Zuxin; Duncan, Alexander; Fowler, Christie D; Ishikawa, Masago; Lee, Brian R; Liu, Xin-An; Lu, Qun; Cameron, Michael; Hayes, Matthew R; Kamenecka, Theodore M; Pletcher, Matthew; Kenny, Paul J

    2017-05-01

    Tobacco smokers titrate their nicotine intake to avoid its noxious effects, sensitivity to which may influence vulnerability to tobacco dependence, yet mechanisms of nicotine avoidance are poorly understood. Here we show that nicotine activates glucagon-like peptide-1 (GLP-1) neurons in the nucleus tractus solitarius (NTS). The antidiabetic drugs sitagliptin and exenatide, which inhibit GLP-1 breakdown and stimulate GLP-1 receptors, respectively, decreased nicotine intake in mice. Chemogenetic activation of GLP-1 neurons in NTS similarly decreased nicotine intake. Conversely, Glp1r knockout mice consumed greater quantities of nicotine than wild-type mice. Using optogenetic stimulation, we show that GLP-1 excites medial habenular (MHb) projections to the interpeduncular nucleus (IPN). Activation of GLP-1 receptors in the MHb-IPN circuit abolished nicotine reward and decreased nicotine intake, whereas their knockdown or pharmacological blockade increased intake. GLP-1 neurons may therefore serve as 'satiety sensors' for nicotine that stimulate habenular systems to promote nicotine avoidance before its aversive effects are encountered.

  5. Neural Signatures of Cognitive Flexibility and Reward Sensitivity Following Nicotinic Receptor Stimulation in Dependent Smokers: A Randomized Trial.

    Science.gov (United States)

    Lesage, Elise; Aronson, Sarah E; Sutherland, Matthew T; Ross, Thomas J; Salmeron, Betty Jo; Stein, Elliot A

    2017-06-01

    . Similarly, decreased mesocorticolimbic activity associated with cognitive flexibility in abstinent smokers was restored to the level of nonsmokers following stimulation of nicotinic acetylcholine receptors (familywise error-corrected P < .05). Conversely, neural signatures of decreased reward sensitivity in smokers (vs nonsmokers; familywise error-corrected P < .05) in the dorsal striatum and anterior cingulate cortex were not mitigated by nicotine or varenicline. There was a double dissociation between the effects of chronic nicotine dependence on neural representations of reward sensitivity and acute effects of stimulation of nicotinic acetylcholine receptors on behavioral and neural signatures of cognitive flexibility in smokers. These chronic and acute pharmacologic effects were observed in overlapping mesocorticolimbic regions, suggesting that available pharmacotherapies may alleviate deficits in the same circuitry for certain mental computations but not for others. clinicaltrials.gov Identifier: NCT00830739.

  6. Effect of chronic (-)-nicotine treatment on rat cerebral benzodiazepine receptors

    International Nuclear Information System (INIS)

    Magata, Yasuhiro; Kitano, Haruhiro; Shiozaki, Toshiki; Iida, Yasuhiko; Nishizawa, Sadahiko; Saji, Hideo; Konishi, Junji

    2000-01-01

    The purpose of this study was to clarify the effect of (-)-nicotine on cerebral benzodiazepine receptors (BzR) with radiotracer methods. The effect of (-)-nicotine on BzR was examined in in vitro studies using chronic (-)-nicotine-treated rats using 3 H-diazepam. The in vitro radioreceptor assay showed a 14% increase in the maximum number of binding sites of BzR in chronic (-)-nicotine-treated rats in comparison with the control rats. Moreover, a convenient in vivo uptake index of 125 I-iomazenil was calculated and a higher uptake of the radioactivity was observed in the chronic (-)-nicotine-treated group than in the control group. Although further studies of the mechanism of (-)-nicotine on such BzR changes are required, an increase in the amount of BzR in the cerebral cortex was found in rats that underwent chronic (-)-nicotine treatment, and this result contributed to the understanding of the effects of (-)-nicotine and smoking on neural functions

  7. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Fouda, Mohamed A.; Saad, Evan I.

    2011-01-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100 μg/kg i.v.) dose-dependently reduced BRS SNP in contrast to no effect on BRS PE . BRS SNP was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS SNP were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS SNP was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A 2A antagonist), or VUF5574 (A 3 antagonist). In contrast, BRS SNP was preserved after blockade of A 1 (DPCPX) or A 2B (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS SNP depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A 2A receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms. - Research highlights: → The role of central adenosinergic sites in

  8. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jensen, Majbrit Myrup; Mikkelsen, Jens D.; Arvaniti, Maria

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes...... are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal...

  9. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  10. Isotopic rubidium ion efflux assay for the functional characterization of nicotinic acetylcholine receptors on clonal cell lines

    International Nuclear Information System (INIS)

    Lukas, R.J.; Cullen, M.J.

    1988-01-01

    An isotopic rubidium ion efflux assay has been developed for the functional characterization of nicotinic acetylcholine receptors on cultured neurons. This assay first involves the intracellular sequestration of isotopic potassium ion analog by the ouabain-sensitive action of a sodium-potassium ATPase. Subsequently, the release of isotopic rubidium ion through nicotinic acetylcholine receptor-coupled monovalent cation channels is activated by application of nicotinic agonists. Specificity of receptor-mediated efflux is demonstrated by its sensitivity to blockade by nicotinic, but not muscarinic, antagonists. The time course of agonist-mediated efflux, within the temporal limitations of the assay, indicates a slow inactivation of receptor function on prolonged exposure to agonist. Dose-response profiles (i) have characteristic shapes for different nicotinic agonists, (ii) are described by three operationally defined parameters, and (iii) reflect different affinities of agonists for binding sites that control receptor activation and functional inhibition. The rubidium ion efflux assay provides fewer hazards but greater sensitivity and resolution than isotopic sodium or rubidium ion influx assays for functional nicotinic receptors

  11. The effects of nicotine in the neonatal quinpirole rodent model of psychosis: Neural plasticity mechanisms and nicotinic receptor changes.

    Science.gov (United States)

    Peterson, Daniel J; Gill, W Drew; Dose, John M; Hoover, Donald B; Pauly, James R; Cummins, Elizabeth D; Burgess, Katherine C; Brown, Russell W

    2017-05-15

    Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal's lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking. Copyright © 2017. Published by Elsevier B.V.

  12. Alpha7 nicotinic receptor mediated protection against ethanol-induced cytotoxicity in PC12 cells.

    Science.gov (United States)

    Li, Y; King, M A; Grimes, J; Smith, N; de Fiebre, C M; Meyer, E M

    1999-01-16

    Ethanol caused a concentration-dependent loss of PC12 cells over a 24 h interval, accompanied by an increase in intracellular calcium. The specific alpha7 nicotinic receptor partial agonist DMXB attenuated both of these ethanol-induced actions at a concentration (3 microM) found previously to protect against apoptotic and necrotic cell loss. The alpha7 nicotinic receptor antagonist methylylaconitine blocked the neuroprotective action of DMXB when applied with but not 30 min after the agonist. These results indicate that activation of alpha7 nicotinic receptors may be therapeutically useful in preventing ethanol-neurotoxicity. Copyright 1999 Elsevier Science B.V.

  13. Effects of BMS-902483, an α7 nicotinic acetylcholine receptor partial agonist, on cognition and sensory gating in relation to receptor occupancy in rodents.

    Science.gov (United States)

    Pieschl, Rick L; Miller, Regina; Jones, Kelli M; Post-Munson, Debra J; Chen, Ping; Newberry, Kimberly; Benitex, Yulia; Molski, Thaddeus; Morgan, Daniel; McDonald, Ivar M; Macor, John E; Olson, Richard E; Asaka, Yukiko; Digavalli, Siva; Easton, Amy; Herrington, James; Westphal, Ryan S; Lodge, Nicholas J; Zaczek, Robert; Bristow, Linda J; Li, Yu-Wen

    2017-07-15

    The α7 nicotinic acetylcholine receptor is thought to play an important role in human cognition. Here we describe the in vivo effects of BMS-902483, a selective potent α7 nicotinic acetylcholine receptor partial agonist, in relationship to α7 nicotinic acetylcholine receptor occupancy. BMS-902483 has low nanomolar affinity for rat and human α7 nicotinic acetylcholine receptors and elicits currents in cells expressing human or rat α7 nicotinic acetylcholine receptors that are about 60% of the maximal acetylcholine response. BMS-902483 improved 24h novel object recognition memory in mice with a minimal effective dose (MED) of 0.1mg/kg and reversed MK-801-induced deficits in a rat attentional set-shifting model of executive function with an MED of 3mg/kg. Enhancement of novel object recognition was blocked by the silent α7 nicotinic acetylcholine receptor agonist, NS6740, demonstrating that activity of BMS-902483 was mediated by α7 nicotinic acetylcholine receptors. BMS-902483 also reversed ketamine-induced deficits in auditory gating in rats, and enhanced ex vivo hippocampal long-term potentiation examined 24h after dosing in mice. Results from an ex vivo brain homogenate binding assay showed that α7 receptor occupancy ranged from 64% (novel object recognition) to ~90% (set shift and gating) at the MED for behavioral and sensory processing effects of BMS-902483. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  15. Nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties

    International Nuclear Information System (INIS)

    Raftery, M.A.; Dunn, S.M.J.; Conti-Tronconi, B.M.; Middlemas, D.S.; Crawford, R.D.

    1983-01-01

    The structure of the nicotinic acetylcholine receptor has been highly conserved during animal evolution, and in all the species and tissues studied so far, including mammals, it is a pseudosymmetric, pentameric complex of related subunits with very similar physical properties. All subunits of these nicotinic receptors were derived from a common ancestral gene, probably by way of gene duplications occurring very early in animal evolution. 45 refs., 8 figs., 2 tabs

  16. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease?

    International Nuclear Information System (INIS)

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-01-01

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of ( 3 H)-ketanserin to serotonin receptors in frontal cortex and of ( 3 H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of ( 3 H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens

  17. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    Science.gov (United States)

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hellier

    Full Text Available Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7 in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP, an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5-18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21, mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits.

  19. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors

    NARCIS (Netherlands)

    Poorthuis, R.B.; Bloem, B.; Schak, B.; Wester, J.; de Kock, C.P.J.; Mansvelder, H.D.

    2013-01-01

    Acetylcholine signaling through nicotinic receptors (nAChRs) in the prefrontal cortex (PFC) is crucial for attention. Nicotinic AChRs are expressed on glutamatergic inputs to layer V (LV) cells and on LV interneurons and LVI pyramidal neurons. Whether PFC layers are activated by nAChRs to a similar

  20. Neuroprotection of rat retinal ganglion cells mediated through alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Iwamoto, K; Mata, D; Linn, D M; Linn, C L

    2013-05-01

    Glutamate-induced excitotoxicity is thought to play an important role in several neurodegenerative diseases in the central nervous system (CNS). In this study, neuroprotection against glutamate-induced excitotoxicity was analyzed using acetylcholine (ACh), nicotine and the α7 specific nicotinic acetylcholine receptor (α7 nAChR) agonist, N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride (PNU-282987), in cultured adult rat retinal neurons. Adult Long Evans rat retinas were dissociated and retinal ganglion cells (RGCs) were isolated from all other retinal tissue using a two-step panning technique. Once isolated, RGCs were cultured under various pharmacological conditions to demonstrate excitotoxicity and neuroprotection against excitotoxicity. After 3 days, RGCs were immunostained with antibodies against the glycoprotein, Thy 1.1, counted and cell survival was assessed relative to control untreated conditions. 500 μM glutamate induced excitotoxicity in large and small RGCs in an adult rat dissociated culture. After 3 days in culture with glutamate, the cell survival of large RGCs decreased by an average of 48.16% while the cell survival of small RGCs decreased by an average of 42.03%. Using specific glutamate receptor agonists and antagonists, we provide evidence that the excitotoxic response was mediated through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) and N-methyl-d-aspartate (NMDA) glutamate receptors through an apoptotic mechanism. However, the excitotoxic effect of glutamate on all RGCs was eliminated if cells were cultured for an hour with 10 μM ACh, 100 μM nicotine or 100 nM of the α7 nAChR agonist, PNU-282987, before the glutamate insult. Inhibition studies using 10nM methyllycaconitine (MLA) or α-bungarotoxin (α-Bgt) supported the hypothesis that neuroprotection against glutamate-induced excitotoxicity on rat RGCs was mediated through α7 nAChRs. In immunocytochemical studies, double

  1. Tyrosine receptor kinase B receptor activation reverses the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Cole, Robert D; Connor, David A; Natwora, Brendan; Gould, Thomas J

    2018-03-01

    Anxiety and stress disorders have been linked to deficits in fear extinction. Our laboratory and others have demonstrated that acute nicotine impairs contextual fear extinction, suggesting that nicotine exposure may have negative effects on anxiety and stress disorder symptomatology. However, the neurobiological mechanisms underlying the acute nicotine-induced impairment of contextual fear extinction are unknown. Therefore, based on the previous studies showing that brain-derived neurotrophic factor is central for fear extinction learning and acute nicotine dysregulates brain-derived neurotrophic factor signaling, we hypothesized that the nicotine-induced impairment of contextual fear extinction may involve changes in tyrosine receptor kinase B signaling. To test this hypothesis, we systemically, intraperitoneally, injected C57BL/6J mice sub-threshold doses (2.5 and 4.0 mg/kg) of 7,8-dihydroxyflavone, a small-molecule tyrosine receptor kinase B agonist that fully mimics the effects of brain-derived neurotrophic factor, or vehicle an hour before each contextual fear extinction session. Mice also received injections, intraperitoneally, of acute nicotine (0.18 mg/kg) or saline 2-4 min before extinction sessions. While the animals that received only 7,8-dihydroxyflavone did not show any changes in contextual fear extinction, 4.0 mg/kg of 7,8-dihydroxyflavone ameliorated the extinction deficits in mice administered acute nicotine. Overall, these results suggest that acute nicotine-induced impairment of context extinction may be related to a disrupted brain-derived neurotrophic factor signaling.

  2. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages.

    Directory of Open Access Journals (Sweden)

    Maria C Maldifassi

    Full Text Available Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs, has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M, a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3 or two convergent cascades (JAK2/STAT3 and PI3K/STAT3, is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the 'endotoxin tolerant' phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.

  3. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  4. A behavioral economic analysis of the value-enhancing effects of nicotine and varenicline and the role of nicotinic acetylcholine receptors in male and female rats.

    Science.gov (United States)

    Barrett, Scott T; Geary, Trevor N; Steiner, Amy N; Bevins, Rick A

    2018-04-09

    Reinforcement value enhancement by nicotine of non-nicotine rewards is believed to partially motivate smoking behavior. Recently, we showed that the value-enhancing effects of nicotine are well characterized by reinforcer demand models and that the value-enhancing effects of the smoking-cessation aid bupropion (Zyban) are distinct from those of nicotine and differ between the sexes. The present study evaluated potential sex differences in the enhancement effects of nicotine and varenicline (Chantix) using a reinforcer demand methodology. The role of α4β2* and α7 nicotinic acetylcholine receptors (nAChRs) in the enhancing effects of nicotine and varenicline is also evaluated. Male and female rats (n=12/sex) were trained to lever press maintained by sensory reinforcement by visual stimulus (VS) presentations. Changes in the VS value following nicotine and varenicline administration were assessed using an established reinforcer demand approach. Subsequently, the effects of antagonism of α4β2* and α7 nAChRs on varenicline and nicotine-induced enhancement active lever-pressing were assessed using a progressive ratio schedule. Nicotine and varenicline enhanced VS demand equivalently between the sexes as evaluated by reinforcer demand. However, α4β2* receptor antagonism attenuated value enhancement by nicotine and varenicline in females, but only of nicotine in males.

  5. Autoradiographic localization of putative nicotinic receptors in the rat brain using 125I-neuronal bungarotoxin

    International Nuclear Information System (INIS)

    Schulz, D.W.; Loring, R.H.; Aizenman, E.; Zigmond, R.E.

    1991-01-01

    Neuronal bungarotoxin (NBT), a snake venom neurotoxin, selectively blocks nicotinic receptors in many peripheral and central neuronal preparations. alpha-Bungarotoxin (alpha BT), on the other hand, a second toxin isolated from the venom of the same snake, is an ineffective nicotinic antagonist in most vertebrate neuronal preparations studied thus far. To examine central nicotinic receptors recognized by NBT, we have characterized the binding of 125I-labeled NBT (125I-NBT) to rat brain membranes and have mapped the distribution of 125I-NBT binding in brain sections using quantitative light microscopic autoradiography. The binding of 125I-NBT was found to be saturable, of high affinity, and heterogeneously distributed in the brain. Pharmacological studies suggested that more than one population of sites is labeled by 125I-NBT. For example, one component of 125I-NBT binding was also recognized by alpha BT, while a second component, not recognized by alpha BT, was recognized by the nicotinic agonist nicotine. The highest densities of these alpha BT-insensitive, nicotine-sensitive sites were found in the fasciculus retroflexus, the lateral geniculate nucleus, the medial terminal nucleus of the accessory optic tract, and the olivary pretectal nucleus. alpha BT-sensitive NBT binding sites were found in highest density in the lateral geniculate nucleus, the subthalamic nucleus, the dorsal tegmental nucleus, and the medial mammillary nucleus (lateral part). The number of brain regions with a high density of 125I-NBT binding sites, blocked either by alpha BT or by nicotine, is low when compared with results obtained using other approaches to studying the central distribution of nicotinic receptors, such as labeling with 3H-nicotine or labeling with cDNA probes to mRNAs coding for putative receptor subunits

  6. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply.

    Science.gov (United States)

    Shang, Cui; Chen, Anwei; Chen, Guiqiu; Li, Huanke; Guan, Song; He, Jianmin

    2017-01-01

    Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO 3 - -N, NH 4 + -N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16-18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO 3 - -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH 4 + -N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

  7. Tritiated-nicotine- and 125I-alpha-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular destruction

    International Nuclear Information System (INIS)

    Clarke, P.B.; Hamill, G.S.; Nadi, N.S.; Jacobowitz, D.M.; Pert, A.

    1986-01-01

    The cholinergic innervation of the interpeduncular nucleus (IPN) is wholly extrinsic and is greatly attenuated by bilateral habenular destruction. We describe changes in the labeling of putative nicotinic receptors within this nucleus at 3, 5, or 11 days after bilateral habenular lesions. Adjacent tissue sections of the rat IPN were utilized for 3 H-nicotine and 125 I-alpha-bungarotoxin ( 125 I-BTX) receptor autoradiography. Compared to sham-operated controls, habenular destruction significantly reduced autoradiographic 3 H-nicotine labeling in rostral (-25%), intermediate (-13%), and lateral subnuclei (-36%). Labeling in the central subnucleus was unchanged. Loss of labeling was maximal at the shortest survival time (3 days) and did not change thereafter. In order to establish whether this loss was due to a reduction in the number or the affinity of 3 H-nicotine-binding sites, a membrane assay was performed on microdissected IPN tissue from rats that had received surgery 3 days previously. Bilateral habenular lesions produced a 35% reduction of high-affinity 3 H-nicotine-binding sites, with no change in binding affinity. Bilateral habenular lesions reduced 125 I-BTX labeling in the intermediate subnuclei, and a slight increase occurred in the rostral subnucleus. In the lateral subnuclei, 125 I-BTX labeling was significantly reduced (27%) at 3 days but not at later survival times. In view of the known synaptic morphology of the habenulointerpeduncular tract, it is concluded that a subpopulation of 3 H-nicotine binding sites within the IPN is located on afferent axons and/or terminals. This subpopulation, located within rostral, intermediate, and lateral subnuclei, may correspond to presynaptic nicotinic cholinergic receptors. Sites that bind 125 I-BTX may include a presynaptic subpopulation located in the lateral and possibly the intermediate subnuclei

  8. Immunolocalization of androgen and oestrogen receptors in the ventral lobe of rat (Rattus norvegicus) prostate after long-term treatment with ethanol and nicotine.

    Science.gov (United States)

    Fávaro, W J; Cagnon, V H A

    2008-12-01

    Nicotine and alcohol adversely affect prostate gland function. In this work, immunohistochemistry was used to investigate the immunoreactivity and distribution of androgen and alpha, beta-oestrogen receptors following chronic treatment with alcohol, nicotine or a combination of both substances, as well as to relate these results to the development of possible prostatic pathologies. Forty male rats were divided into four groups: the Control group received tap water; the Alcoholic group received diluted 10% Gay Lussac ethanol; the Nicotine group received a 0.125 mg/100 g body weight dose of nicotine injected subcutaneously on a daily basis (Sigma Chemical Company, St. Louis, MO, USA); the Nicotine-Alcohol group received simultaneous alcohol and nicotine treatment. After 90 days of treatment, samples of the ventral lobe of the prostate were collected and processed for immunohistochemistry, light microscopy and the quantification of serum hormonal concentrations. The results showed significantly decreased serum testosterone levels and increased serum oestrogen levels in the animals from the nicotine-alcohol, the alcoholic and the nicotine groups, as well as their hormonal receptor levels. Then, it was concluded that ethanol and nicotine compromised the prostatic hormonal balance, which is a crucial factor to maintain the morphological and physiological features of this organ.

  9. COLOCALIZATION OF MUSCARINIC AND NICOTINIC RECEPTORS IN CHOLINOCEPTIVE NEURONS OF THE SUPRACHIASMATIC REGION IN YOUNG AND AGED RATS

    NARCIS (Netherlands)

    VANDERZEE, EA; STREEFLAND, C; STROSBERG, AD; SCHRODER, H; LUITEN, PGM; Schröder, H.

    1991-01-01

    In the present study muscarinic and nicotinic cholinergic receptors in the SCN region were demonstrated and analyzed, employing monoclonal antibodies to purified muscarinic and nicotinic cholinergic receptor proteins. A near-total colocalization of the two acetylcholine receptor subclasses in

  10. Endogenous fatty acid ethanolamides suppress nicotine-induced activation of mesolimbic dopamine neurons through nuclear receptors.

    Science.gov (United States)

    Melis, Miriam; Pillolla, Giuliano; Luchicchi, Antonio; Muntoni, Anna Lisa; Yasar, Sevil; Goldberg, Steven R; Pistis, Marco

    2008-12-17

    Nicotine stimulates the activity of mesolimbic dopamine neurons, which is believed to mediate the rewarding and addictive properties of tobacco use. Accumulating evidence suggests that the endocannabinoid system might play a major role in neuronal mechanisms underlying the rewarding properties of drugs of abuse, including nicotine. Here, we investigated the modulation of nicotine effects by the endocannabinoid system on dopamine neurons in the ventral tegmental area with electrophysiological techniques in vivo and in vitro. We discovered that pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme that catabolizes fatty acid ethanolamides, among which the endocannabinoid anandamide (AEA) is the best known, suppressed nicotine-induced excitation of dopamine cells. Importantly, this effect was mimicked by the administration of the FAAH substrates oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), but not methanandamide, the hydrolysis resistant analog of AEA. OEA and PEA are naturally occurring lipid signaling molecules structurally related to AEA, but devoid of affinity for cannabinoid receptors. They blocked the effects of nicotine by activation of the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), a nuclear receptor transcription factor involved in several aspects of lipid metabolism and energy balance. Activation of PPAR-alpha triggered a nongenomic stimulation of tyrosine kinases, which might lead to phosphorylation and negative regulation of neuronal nicotinic acetylcholine receptors. These data indicate for the first time that the anorexic lipids OEA and PEA possess neuromodulatory properties as endogenous ligands of PPAR-alpha in the brain and provide a potential new target for the treatment of nicotine addiction.

  11. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking.

    Science.gov (United States)

    Lubbers, Bart R; van Mourik, Yvar; Schetters, Dustin; Smit, August B; De Vries, Taco J; Spijker, Sabine

    2014-11-01

    Current smoking cessation therapies offer limited success, as relapse rates remain high. Nicotine, which is the major component of tobacco smoke, is thought to be primarily responsible for the addictive properties of tobacco. However, little is known about the molecular mechanisms underlying nicotine relapse, hampering development of more effective therapies. The objective of this study was to elucidate the role of medial prefrontal cortex (mPFC) glutamatergic and gamma-aminobutyric acid (GABA)ergic receptors in controlling relapse to nicotine seeking. Using an intravenous self-administration model, we studied glutamate and gamma-aminobutyric acid receptor regulation in the synaptic membrane fraction of the rat mPFC following extinction and cue-induced relapse to nicotine seeking. Subsequently, we locally intervened at the level of GABAergic signaling by using a mimetic peptide of the GABA receptor associated protein-interacting domain of GABA type A (GABAA) receptor subunit γ2 (TAT-GABAγ2) and muscimol, a GABAA receptor agonist. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptors were not regulated after the 30-min relapse test. However, GABAA receptor subunits α1 and γ2 were upregulated, and interference with GABAA receptor insertion in the cell membrane using the TAT-GABAγ2 peptide in the dorsal mPFC, but not the ventral mPFC, significantly increased responding during relapse. Increasing GABAA transmission with muscimol in the dorsal and ventral mPFC attenuated relapse. These data indicate that cue-induced relapse entails a GABAergic plasticity mechanism that limits nicotine seeking by restoring inhibitory control in the dorsal mPFC. GABAA receptor-mediated neurotransmission in the dorsal mPFC constitutes a possible future therapeutic target for maintaining smoking abstinence. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. ANTAGONISM OF PROGESTERONE RECEPTOR SUPPRESSES CAROTID BODY RESPONSES TO HYPOXIA AND NICOTINE IN RAT PUPS

    Science.gov (United States)

    JOSEPH, V.; NIANE, L. M.; BAIRAM, A.

    2013-01-01

    We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between post-natal days 3 and 15. In 11–14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in vitro, 10% O2 in vivo) and to nicotinic receptor agonists (as an excitatory modulator of carotid body activity—nicotine 100 μM for in vitro studies, and epibatidine 5 μg/kg, i.p., which mainly acts on peripheral nicotinic receptors, for in vivo studies). The carotid body responses to hypoxia and nicotine were drastically reduced by mifepristone. Compared with vehicle, mifepristone-treated rats had a reduced body weight. The ventilatory response to epibatidine was attenuated; however, the hypoxic ventilatory response was similar between vehicle and mifepristone-treated pups. Immunohistochemical staining revealed that mifepristone treatment did not change carotid body morphology. We conclude that PR activity is a critical factor ensuring proper carotid body function in newborn rats. PMID:22326965

  13. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism 5b. GRANT NUMBER W81XWH-13-1-0144 5c...ABSTRACT Autism spectrum disorder (ASD) is a polygenic signaling disorder that may result, in part, from an imbalance in excitatory and inhibitory

  14. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    Science.gov (United States)

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  15. Inhibition of allergen-induced basophil activation by ASM-024, a nicotinic receptor ligand.

    Science.gov (United States)

    Watson, Brittany M; Oliveria, John Paul; Nusca, Graeme M; Smith, Steven G; Beaudin, Sue; Dua, Benny; Watson, Rick M; Assayag, Evelynne Israël; Cormier, Yvon F; Sehmi, Roma; Gauvreau, Gail M

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) were identified on eosinophils and shown to regulate inflammatory responses, but nAChR expression on basophils has not been explored yet. We investigated surface receptor expression of nAChR α4, α7 and α1/α3/α5 subunits on basophils. Furthermore, we examined the effects of ASM-024, a synthetic nicotinic ligand, on in vitro anti-IgE and in vivo allergen-induced basophil activation. Basophils were enriched from the peripheral blood of allergic donors and the expression of nAChR subunits and muscarinic receptors was determined. Purified basophils were stimulated with anti-IgE in the presence of ASM-024 with or without muscarinic or nicotinic antagonists for the measurement of CD203c expression and histamine release. The effect of 9 days of treatment with 50 and 200 mg ASM-024 on basophil CD203c expression was examined in the blood of mild allergic asthmatics before and after allergen inhalation challenge. nAChR α4, α7 and α1/α3/α5 receptor subunit expression was detected on basophils. Stimulation of basophils with anti-IgE increased CD203c expression and histamine release, which was inhibited by ASM-024 (10(-5) to 10(-)(3) M, p ASM-024 was reversed in the presence of muscarinic and nicotinic antagonists. In subjects with mild asthma, ASM-024 inhalation significantly inhibited basophil CD203c expression measured 24 h after allergen challenge (p = 0.03). This study shows that ASM-024 inhibits IgE- and allergen-induced basophil activation through both nicotinic and muscarinic receptors, and suggests that ASM-024 may be an efficacious agent for modulating allergic asthma responses. © 2015 S. Karger AG, Basel.

  16. The α7 nicotinic acetylcholine receptor complex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Mikkelsen, Jens D

    2012-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds and prote......The α7 nicotinic acetylcholine receptor (nAChR) is a promising drug target for a number of diseases ranging from schizophrenia and Alzheimer's disease to chronic pain and inflammatory diseases. Focusing on the central nervous system, we describe how endogenous and experimental compounds...... in diseases such as schizophrenia and Alzheimer's disease. Furthermore, α7 nAChR agonists and allosteric modulators differentially alter expression and functionality of the α7 nAChR with repeated administration, which suggests that there may be fundamentally different outcomes of long-term administration...... with these different types of compounds. Finally, we describe the special case of Aβ1-42 binding to the α7 nAChR, which may pose a unique challenge to drug development of α7 nAChR-specific ligands for Alzheimer's disease. Hopefully, a greater knowledge of the many factors influencing α7 nAChR function as well...

  17. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid.

    Science.gov (United States)

    Li, Ping; Ann, Jason; Akk, Gustav

    2011-08-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors. Copyright © 2011 Wiley-Liss, Inc.

  18. Effects of the Sazetidine-a Family of Compounds on the Body Temperature in Wildtype, Nicotinic Receptor B2(-/-) and a7(-/-) Mice

    Science.gov (United States)

    Nicotine elicits hypothermic responses in rodents. This effect appears to be related to nicotinic receptor desensitization because sazetidine-A, an a4B2 nicotinic receptor desensitizing agent, produces marked hypothermia and potentiates nicotine-induced hypothermia in mice. To de...

  19. Nicotinic Acetylcholine Receptors in the Pathophysiology of Alzheimer's Disease

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Andreasen T., Jesper; Arvaniti, Maria

    2016-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been pursued for decades as potential molecular targets to treat cognitive dysfunction in Alzheimer's disease (AD) due to their positioning within regions of the brain critical in learning and memory, such as the prefrontal cortex and hippocampus...

  20. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    International Nuclear Information System (INIS)

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-01-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining [ 3 H]nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure [ 3 H]nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-[ 3 H]nicotine-binding characteristics

  1. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder.

    Science.gov (United States)

    Somogyi, G T; de Groat, W C

    1992-02-01

    Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

  2. Nicotine and endogenous opioids: neurochemical and pharmacological evidence.

    Science.gov (United States)

    Hadjiconstantinou, Maria; Neff, Norton H

    2011-06-01

    Although the mesolimbic dopamine hypothesis is the most influential theory of nicotine reward and reinforcement, there has been a consensus that other neurotransmitter systems contribute to the addictive properties of nicotine as well. In this regard, the brain opioidergic system is of interest. Striatum is rich in opioid peptides and opioid receptors, and striatal opioidergic neurons are engaged in a bidirectional communication with midbrain dopaminergic neurons, closely regulating each other's activity. Enkephalins and dynorphins exert opposing actions on dopaminergic neurons, increasing and decreasing dopamine release respectively, and are components of circuits promoting positive or negative motivational and affective states. Moreover, dopamine controls the synthesis of striatal enkephalins and dynorphins. Evidence suggests that opioidergic function is altered after nicotine and endogenous opioids are involved in nicotine's behavioral effects. 1) The synthesis and release of β-endorphin, met-enkephalin and dynorphin in brain, especially nucleus accumbens (NAc), are altered after acute or chronic nicotine treatment and during nicotine withdrawal. 2) Although opioid receptor binding and mRNA do not appear to change in the striatum during nicotine withdrawal, the activity of κ-opioid (KOPr) and δ-opioid (DOPr) receptors is attenuated in NAc. 3) The nicotine withdrawal syndrome reminisces that of opiates, and naloxone precipitates some of its somatic, motivational, and affective signs. 4) Genetic and pharmacological studies indicate that μ-opioid (MOPr) receptors are mainly involved in nicotine reward, while DOPrs contribute to the emotional and KOPrs to the aversive responses of nicotine. 5) Finally, MOPrs and enkephalin, but not β-endorphin or dynorphin, are necessary for the physical manifestations of nicotine withdrawal. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Copyright © 2010 Elsevier

  3. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Li, Ruisheng [Institute of Infectious Diseases, 302 Military Hospital, Beijing 100039 (China); Jia, Ying; Zhao, Yun; Xiao, Dongjie [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Dang, Ningning [Department of Dermatology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China); Wang, Yunshan [Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013 (China)

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  4. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan; Li, Ruisheng; Jia, Ying; Zhao, Yun; Xiao, Dongjie; Dang, Ningning; Wang, Yunshan

    2014-01-01

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  5. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    Science.gov (United States)

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Tolerance to and cross tolerance between ethanol and nicotine.

    Science.gov (United States)

    Collins, A C; Burch, J B; de Fiebre, C M; Marks, M J

    1988-02-01

    Female DBA mice were subjected to one of four treatments: ethanol-containing or control diets, nicotine (0.2, 1.0, 5.0 mg/kg/hr) infusion or saline infusion. After removal from the liquid diets or cessation of infusion, the animals were challenged with an acute dose of ethanol or nicotine. Chronic ethanol-fed mice were tolerant to the effects of ethanol on body temperature and open field activity and were cross tolerant to the effects of nicotine on body temperature and heart rate. Nicotine infused animals were tolerant to the effects of nicotine on body temperature and rotarod performance and were cross tolerant to the effects of ethanol on body temperature. Ethanol-induced sleep time was decreased in chronic ethanol- but not chronic nicotine-treated mice. Chronic drug treatment did not alter the elimination rate of either drug. Chronic ethanol treatment did not alter the number or affinity of brain nicotinic receptors whereas chronic nicotine treatment elicited an increase in the number of [3H]-nicotine binding sites. Tolerance and cross tolerance between ethanol and nicotine is discussed in terms of potential effects on desensitization of brain nicotinic receptors.

  7. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  8. Nicotine dependence and psychiatric disorders.

    Science.gov (United States)

    Salín-Pascual, Rafael J; Alcocer-Castillejos, Natasha V; Alejo-Galarza, Gabriel

    2003-01-01

    Nicotine addiction is the single largest preventable cause of morbidity and mortality in the Western World. Smoking is not any more just a bad habit, but a substance addiction problem. The pharmacological aspects of nicotine show that this substance has a broad distribution in the different body compartnents, due mainly to its lipophilic characteristic. There are nicotinic receptors as members of cholinergic receptors' family. They are located in neuromuscular junction and in the central nervous system (CNS). Although they are similar, pentameric structure with an ionic channel to sodium, there are some differences in the protein chains characteristics. Repeated administration of nicotine in rats, results in the sensitization phenomenon, which produces increase in the behavioral locomotor activity response. It has been found that most psychostimulants-induced behavioral sensitization through a nicotine receptor activation. Nicotine receptors in CNS are located mainly in presynaptic membrane and in that way they regulated the release of several neurotransmitters, among them acetylcholine, dopamine, serotonin, and norepinephrine. In some activities like sleep-wake cycle, nicotine receptors have a functional significance. Nicotine receptor stimulation promotes wake time, reduces both, total sleep time and rapid eye movement sleep (REMS). About nicotine dependence, this substance full fills all the criteria for dependence and withdrawal syndrome. There are some people that have more vulnerability for to become nicotine dependent, those are psychiatric patients. Among them schizophrenia, major depression, anxiety disorders and attention deficit disorder, represent the best example in this area. Nicotine may have some beneficial effects, among them are some neuroprotective effects in disorders like Parkinson's disease, and Gilles de la Tourette' syndrome. Also there are several evidences that support the role of nicotine in cognitive improvement functions like attention

  9. Covalent attachment of antagonists to the a7 nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides

    DEFF Research Database (Denmark)

    Ambrus, Joseph I; Halliday, Jill I; Kanizaj, Nicholas

    2012-01-01

    The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR).......The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR)....

  10. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression...... kinases (MAPK). However, the effects of moist tobacco on the expression of GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine...... was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  11. Nicotinic Acetylcholine Receptor Expression and Susceptibility to Cholinergic Immunomodulation in Human Monocytes of Smoking Individuals

    NARCIS (Netherlands)

    van der Zanden, Esmerij P.; Hilbers, Francisca W.; Verseijden, Caroline; van den Wijngaard, Rene M.; Skynner, Mike; Lee, Kevin; Ulloa, Luis; Boeckxstaens, Guy E.; de Jonge, Wouter J.

    2012-01-01

    Objective: Smoking is generally accepted as a factor that affects the disease course in inflammatory bowel disease patients. Whether these effects can be contributed to the immunomodulatory effects of nicotine via nicotinic acetylcholine receptor (nAChR) activation is unclear. As previous data

  12. Contrasting actions of philanthotoxin-343 and philanthotoxin-(12) on human muscle nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Brier, Tim J; Mellor, Ian R; Tikhonov, Denis B

    2003-01-01

    Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation-dependent, nonc......Whole-cell recordings and outside-out patch recordings from TE671 cells were made to investigate antagonism of human muscle nicotinic acetylcholine receptors (nAChR) by the philanthotoxins, PhTX-343 and PhTX-(12). When coapplied with acetylcholine (ACh), PhTX-343 caused activation...

  13. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  14. Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Ahring, Philip K; Christensen, Jeppe K

    2011-01-01

    The neuronal a4ß2 nicotinic acetylcholine receptors exist as two distinct subtypes, (a4)(2)(ß2)(3) and (a4)(3)(ß2)(2), and biphasic responses to acetylcholine and other agonists have been ascribed previously to coexistence of these two receptor subtypes. We offer a novel and radical explanation...

  15. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.

    Science.gov (United States)

    Perry, E K; Smith, C J; Court, J A; Perry, R H

    1990-01-01

    Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.

  16. Use of Monoclonal Antibodies to Study the Structural Basis of the Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    Science.gov (United States)

    1989-09-30

    of chicken neurona .4receptor subunits. Sequences of al and a2 are from Net .Ot al. -l Sequences of a3 and a4 were determintl from clones described...Sucrose gradient analysis of neurona & nicotinic receptors was conducted as follows. Chicken ind rat brain receptors were extracted from crude

  17. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  18. Visualization of cholinoceptive neurons in the rat neocortex : colocalization of muscarinic and nicotinic acetylcholine receptors

    NARCIS (Netherlands)

    Zee, E.A. van der; Streefland, C.; Strosberg, A.D.; Schröder, H.; Luiten, P.G.M.

    The present investigation analyzes the cellular distribution of muscarinic and nicotinic acetylcholine receptors in rat neocortex, by use of monoclonal antibodies raised against purified receptor proteins. The degree of colocalization of both types of receptors was determined by way of

  19. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts

    Directory of Open Access Journals (Sweden)

    Luketich James D

    2004-12-01

    Full Text Available Abstract Background Non-neuronal cells, including those derived from lung, are reported to express nicotinic acetylcholine receptors (nAChR. We examined nAChR subunit expression in short-term cultures of human airway cells derived from a series of never smokers, ex-smokers, and active smokers. Methods and Results At the mRNA level, human bronchial epithelial (HBE cells and airway fibroblasts expressed a range of nAChR subunits. In multiple cultures of both cell types, mRNA was detected for subunits that constitute functional muscle-type and neuronal-type pentomeric receptors. Two immortalized cell lines derived from HBE cells also expressed muscle-type and neuronal-type nAChR subunits. Airway fibroblasts expressed mRNA for three muscle-type subunits (α1, δ, and ε significantly more often than HBE cells. Immunoblotting of HBE cell and airway fibroblast extracts confirmed that mRNA for many nAChR subunits is translated into detectable levels of protein, and evidence of glycosylation of nAChRs was observed. Some minor differences in nAChR expression were found based on smoking status in fibroblasts or HBE cells. Nicotine triggered calcium influx in the immortalized HBE cell line BEAS2B, which was blocked by α-bungarotoxin and to a lesser extent by hexamethonium. Activation of PKC and MAPK p38, but not MAPK p42/44, was observed in BEAS2B cells exposed to nicotine. In contrast, nicotine could activate p42/44 in airway fibroblasts within five minutes of exposure. Conclusions These results suggest that muscle-type and neuronal-type nAChRs are functional in airway fibroblasts and HBE cells, that prior tobacco exposure does not appear to be an important variable in nAChR expression, and that distinct signaling pathways are observed in response to nicotine.

  20. Allosteric modulation of the nicotinic acetylcholine receptor by physostigmine

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Lucie; Krůšek, Jan; Hendrych, Tomáš; Vyskočil, František

    2005-01-01

    Roč. 1048, - (2005), s. 355-358 ISSN 0077-8923 R&D Projects: GA ČR(CZ) GA202/02/1213; GA ČR(CZ) GA305/02/1333; GA ČR(CZ) GD305/03/H148 Institutional research plan: CEZ:AV0Z5011922 Keywords : nicotinic ACh receptor * serine * desensitization Subject RIV: ED - Physiology Impact factor: 1.971, year: 2005

  1. Nicotine facilitates nicotinic acetylcholine receptor targeting to mitochondria but makes them less susceptible to selective ligands.

    Science.gov (United States)

    Uspenska, Kateryna; Lykhmus, Olena; Gergalova, Galyna; Chernyshov, Volodymyr; Arias, Hugo R; Komisarenko, Sergiy; Skok, Maryna

    2017-08-24

    Several nicotinic acetylcholine receptor (nAChR) subtypes are expressed in mitochondria to regulate the internal pathway of apoptosis in ion channel-independent manner. However, the mechanisms of nAChR activation in mitochondria and targeting to mitochondria are still unknown. Nicotine has been shown to favor nAChR pentamer assembly, folding, and maturation on the way of biosynthesis. The idea of the present work was to determine whether nicotine affects the content, glycosylation, and function of mitochondrial nAChRs. Experiments were performed in isolated liver mitochondria from mice, that either consumed or not nicotine with the drinking water (200μL/L) for 7days. Mitochondria detergent lysates were studied by sandwich or lectin ELISA for the presence and carbohydrate composition of different nAChR subunits. Intact mitochondria were examined by flow cytometry for the binding of fluorescently labeled α-cobratoxin and were tested in functional assay of cytochrome c release under the effect of either Ca 2+ or wortmannin in the presence or absence of nAChR-selective ligands, including PNU-282987 (1nM), dihydro-β-erythroidine (DhβE, 1μM), PNU-120596 (0.3, 3, or 10μM) and desformylflustrabromine hydrochloride (dFBr, 0.001, 0.3, or 1μM). It was found that nicotine consumption increased the ratio of mitochondrial vs non-mitochondrial nAChRs in the liver, enhanced fucosylation of mitochondrial nAChRs, but prevented the binding of α-cobratoxin and the cytochrome c release-attenuating effects of nAChR-specific agonists, antagonists, or positive allosteric modulators. It is concluded that nicotine consumption in vivo favors nAChR glycosylation and trafficking to mitochondria but makes them less susceptible to the effects of specific ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The interaction of quaternary reversible acetylcholinesterase inhibitors with the nicotinic receptor

    Czech Academy of Sciences Publication Activity Database

    Šepsová, V.; Krůšek, Jan; Zdarová Karasová, J.; Zemek, F.; Musílek, K.; Kuča, K.; Soukup, O.

    2014-01-01

    Roč. 63, č. 6 (2014), s. 771-777 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : acetylcholinesterase inhibitor * nicotin receptor Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  3. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism.

    Science.gov (United States)

    Rahman, Shafiqur; Engleman, Eric A; Bell, Richard L

    2016-01-01

    Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions. Copyright © 2016. Published by Elsevier Inc.

  4. Activation of α7 nicotinic acetylcholine receptor decreases on-site mortality in crush syndrome through insulin signaling-Na/K-ATPase pathway

    Directory of Open Access Journals (Sweden)

    Bo-Shi eFan

    2016-03-01

    Full Text Available On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with anisodamine decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with anisodamine (20 mg/kg and 28 mg/kg respectively, i.p. 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist and PNU282987 (selective α7nAChR agonist, or in α7nAChR knockout mice. Effect of anisodamine was also appraised in C2C12 myotubes. Anisodamine reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by anisodamine. Phosphorylation of Na/K-ATPase was enhanced by anisodamine in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of anisodamine on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway.

  5. Nicotine inhibits potassium currents in Aplysia bag cell neurons

    Science.gov (United States)

    White, Sean H.; Sturgeon, Raymond M.

    2016-01-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  6. The α4β2 nicotine acetylcholine receptor agonist ispronicline induces c-Fos expression in selective regions of the rat forebrain

    DEFF Research Database (Denmark)

    Jacobsen, Julie; Hansen, Henrik H; Kiss, Alexander

    2012-01-01

    The dominant nicotine acetylcholine receptor (nAChR) subtype in the brain is the pentameric receptor containing both α4 and β2 subunits (α4β2). Due to the lack of selective agonists it has not been ruled out what neuronal circuits that are stimulated after systemic administration with nicotine. We...... or indirectly involved in acute stress regulation after a single dose of ispronicline, supports earlier studies that the α4β2 receptors are strongly involved in nicotine-dependent activation of the hypothalamo-pituitary adrenocortical axis....

  7. Super agonist actions of clothianidin and related compounds on the SAD beta 2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Ihara, Makoto; Matsuda, Kazuhiko; Shimomura, Masaru; Sattelle, David B; Komai, Koichiro

    2004-03-01

    To compare the actions of clothianidin, a neonicotinoid acting on insect nicotinic acetylcholine receptors, and related compounds with that of imidacloprid, the compounds were tested on the Drosophila SAD-chicken beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. The maximum response of the SAD beta 2 nicotinic receptor to clothianidin was larger than that observed for acetylcholine. Ring breakage of the imidazolidine ring of imidacloprid resulting in the generation of a guanidine group was critical for this super agonist action.

  8. The anthelmintic levamisole is an allosteric modulator of human neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Levandoski, Mark M; Piket, Barbara; Chang, Jane

    2003-06-13

    L-[-]-2,3,5,6-Tetrahydro-6-phenylimidazo[2,1b]-thiazole hydrochloride (levamisole) is an anthelmintic that targets the nicotinic acetylcholine receptors of parasitic nematodes. We report here the effects of levamisole on human neuronal alpha 3 beta 2 and alpha 3 beta 4 nicotinic receptors, heterologously expressed in Xenopus oocytes and studied with the voltage clamp method. Applied alone, levamisole was a very weak partial agonist for the two subunit combinations. When co-applied with acetylcholine, micromolar concentrations of levamisole potentiated responses, while millimolar concentrations inhibited them; these effects were complex functions of both acetylcholine and levamisole concentrations. The differences in the levamisole effects on the two receptor combinations suggest that the effects are mediated by the beta subunit. Several combinations of agonist and anthelmintic gave the dual potentiation/inhibition behavior, suggesting that the modulatory effects are general. Levamisole inhibition showed macroscopic characteristics of open channel block. Several results led us to conclude that levamisole potentiation occurs through noncompetitive binding to the receptor. We propose pseudo-site binding for noncompetitive potentiation by levamisole.

  9. Effects of NPY and the specific Y1 receptor agonist [D-His(26)]-NPY on the deficit in brain reward function and somatic signs associated with nicotine withdrawal in rats.

    Science.gov (United States)

    Rylkova, Daria; Boissoneault, Jeffrey; Isaac, Shani; Prado, Melissa; Shah, Hina P; Bruijnzeel, Adrie W

    2008-06-01

    Tobacco addiction is a chronic disorder that is characterized by dysphoria upon smoking cessation and relapse after periods of abstinence. Previous research suggests that Neuropeptide Y (NPY) and Y1 receptor agonists attenuate negative affective states and somatic withdrawal signs. The aim of the present experiments was to investigate the effects of NPY and the specific Y1 receptor agonist [D-His(26)]-NPY on the deficit in brain reward function and somatic signs associated with nicotine withdrawal in rats. The intracranial self-stimulation procedure was used to assess the effects of nicotine withdrawal on brain reward function as this procedure can provide a quantitative measure of emotional states in rodents. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. In the first experiment, NPY did not prevent the elevations in brain reward thresholds associated with precipitated nicotine withdrawal and elevated the brain reward thresholds of the saline-treated control rats. Similar to NPY, [D-His(26)]-NPY did not prevent the elevations in brain reward thresholds associated with precipitated nicotine withdrawal and elevated the brain reward thresholds of the saline-treated control rats. Neither NPY nor [D-His(26)]-NPY affected the response latencies. In a separate experiment, it was demonstrated that the specific Y1 receptor antagonist BIBP-3226 prevented the NPY-induced elevations in brain reward thresholds. NPY attenuated the overall somatic signs associated with precipitated nicotine withdrawal. [D-His(26)]-NPY did not affect the overall somatic signs associated with precipitated nicotine withdrawal, but decreased the number of abdominal constrictions. Both NPY and [D-His(26)]-NPY attenuated the overall somatic signs associated with spontaneous nicotine withdrawal. These findings indicate that NPY and [D-His(26)]-NPY attenuate somatic nicotine withdrawal signs, but do not prevent the deficit in brain reward function associated

  10. Melatonin modulation of presynaptic nicotinic acetylcholine receptors located on short noradrenergic neurons of the rat vas deferens: a pharmacological characterization

    Directory of Open Access Journals (Sweden)

    Zago W.M.

    1999-01-01

    Full Text Available Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

  11. Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor (R)-modafinil on co-use of ethanol and nicotine in female P rats.

    Science.gov (United States)

    Maggio, Sarah E; Saunders, Meredith A; Baxter, Thomas A; Nixon, Kimberly; Prendergast, Mark A; Zheng, Guangrong; Crooks, Peter; Dwoskin, Linda P; Slack, Rachel D; Newman, Amy H; Bell, Richard L; Bardo, Michael T

    2018-05-01

    Co-users of alcohol and nicotine are the largest group of polysubstance users worldwide. Commonalities in mechanisms of action for ethanol (EtOH) and nicotine proposes the possibility of developing a single pharmacotherapeutic to treat co-use. Toward developing a preclinical model of co-use, female alcohol-preferring (P) rats were trained for voluntary EtOH drinking and i.v. nicotine self-administration in three phases: (1) EtOH alone (0 vs. 15%, two-bottle choice), (2) nicotine alone (0.03 mg/kg/infusion, active vs. inactive lever), and (3) concurrent access to both EtOH and nicotine. Using this model, we examined the effects of (1) varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist with high affinity for the α4β2* subtype; (2) r-bPiDI, a subtype-selective antagonist at α6β2* nAChRs; and (3) (R)-modafinil, an atypical inhibitor of the dopamine transporter (DAT). In phases 1 and 2, pharmacologically relevant intake of EtOH and nicotine was achieved. In the concurrent access phase (phase 3), EtOH consumption decreased while nicotine intake increased relative to phases 1 and 2. For drug pretreatments, in the EtOH access phase (phase 1), (R)-modafinil (100 mg/kg) decreased EtOH consumption, with no effect on water consumption. In the concurrent access phase, varenicline (3 mg/kg), r-bPiDI (20 mg/kg), and (R)-modafinil (100 mg/kg) decreased nicotine self-administration but did not alter EtOH consumption, water consumption, or inactive lever pressing. These results indicate that therapeutics which may be useful for smoking cessation via selective inhibition of α4β2* or α6β2* nAChRs, or DAT inhibition, may not be sufficient to treat EtOH and nicotine co-use.

  12. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.

    Science.gov (United States)

    Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R

    2004-01-01

    In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.

  13. Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Laura Foucault-Fruchard

    2017-01-01

    Full Text Available Neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, are all characterized by a component of innate immunity called neuroinflammation. Neuronal loss and neuroinflammation are two phenomena closely linked. Hence, the neuroinflammation is a relevant target for the management of the neurodegenerative diseases given that, to date, there is no treatment to stop neuronal loss. Several studies have investigated the potential effects of activators of alpha 7 nicotinic acetylcholine receptors in animal models of neurodegenerative diseases. These receptors are widely distributed in the central nervous system. After activation, they seem to mediate the cholinergic anti-inflammatory pathway in the brain. This anti-inflammatory pathway, first described in periphery, regulates activation of microglial cells considered as the resident macrophage population of the central nervous system. In this article, we shortly review the agonists of the alpha 7 nicotinic acetylcholine receptors that have been evaluated in vivo and we focused on the selective positive allosteric modulators of these receptors. These compounds represent a key element to enhance receptor activity only in the presence of the endogenous agonist.

  14. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    Science.gov (United States)

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-06-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC 50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl - channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm

    International Nuclear Information System (INIS)

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F.; Sadek, Bassem; Oz, Murat

    2017-01-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100 μM)-induced currents with an IC 50 value of 24.7 μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl − channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25 mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.

  16. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    Science.gov (United States)

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  17. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  18. Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Haj-Mirzaian, Arvin; Ostadhadi, Sattar; Ghasemi, Mehdi; Amiri, Shayan; Faizi, Mehrdad; Dehpour, AhmadReza

    2015-10-01

    The antidepressant action of acute nicotine administration in clinical and animal studies is well recognized. But the underlying mechanism for this effect has not been carefully discovered. We attempted to evaluate the possible role of N-Methyl-D-aspartate (NMDA) receptors in the antidepressant-like effect of nicotine. After the assessment of locomotor activity in the open-field test, forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant-like effect of nicotine in mice. We performed intraperitoneal administration of nicotine at different doses and periods before the tests. To assess the possible involvement of NMDA receptors, non-effective doses of NMDA antagonists and an NMDA agonist were obtained and were administered simultaneously with the non-effective and effective doses of nicotine, respectively. Nicotine (0.2 mg/kg, 30 min before FST/TST) significantly reduced the immobility time of mice similar to fluoxetine (20 mg/kg). Nicotine did not affect the locomotor behavior of mice in open-field test. Co-administration of non-effective doses of NMDA receptor antagonists, ketamine (1 or 0.3 mg/kg), MK-801 (0.05 or 0.005 mg/kg), and magnesium sulfate (10 or 5 mg/kg) with nicotine (0.1 or 0.03 mg/kg) had remarkable synergistic antidepressant effect in both FST and TST. Also, non-effective NMDA (75 or 30 mg/kg) reversed the anti-immobility effect of nicotine (0.2 mg/kg) on mouse FST and TST. Our study has for the first time confirmed that the antidepressant-like effect of nicotine on mice is NMDA-mediated, and nicotine presumably exerts this effect by antagonizing the glutamatergic NMDA receptors.

  19. Gold nanoparticle–choline complexes can block nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Chur Chin

    2010-04-01

    Full Text Available Chur Chin1, In Kyeom Kim2, Dong Yoon Lim3, Ki Suk Kim4, Hyang Ae Lee4, Eun Joo Kim41Department of Pediatrics, Fatima Hospital, Daegu, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea; 3Department of Pharmacology, School of Medicine, Chosun University, Gwangju, Korea; 4Korea Institute of Toxicology, Daejeon, KoreaAbstract: We identified a novel class of direct ion-channel blockers of ligand-gated ion channels called the gold nanoparticle–choline complex. Negatively charged gold nanoparticles (1.4 nm block ion pores by binding to the sulfur group of the cysteine loop of nicotinic acetylcholine receptors (nAChRs, and currents evoked by acetylcholine (Ach can break these bonds. The current evoked by ACh in nAChRs was blocked directly in ion pores by the gold nanoparticle–choline complex. In adrenal-gland perfusion studies, the complex also blocked nAChRs by diminishing catecholamine release by about 75%. An in vivo study showed muscle relaxation in rats after injection of the complex. These results will foster the application of gold nanoparticles as a direct ion-channel blocker. Keywords: negatively charged gold nanoparticle, choline, gold–sulfur bond, nicotinic acetylcholine receptor, direct ion-channel blocker

  20. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    DEFF Research Database (Denmark)

    Kachel, Hamid S; Patel, Rohit N; Franzyk, Henrik

    2016-01-01

    -fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents...

  1. Effects of nicotine on homeostatic and hedonic components of food intake.

    Science.gov (United States)

    Stojakovic, Andrea; Espinosa, Enma P; Farhad, Osman T; Lutfy, Kabirullah

    2017-10-01

    Chronic tobacco use leads to nicotine addiction that is characterized by exaggerated urges to use the drug despite the accompanying negative health and socioeconomic burdens. Interestingly, nicotine users are found to be leaner than the general population. Review of the existing literature revealed that nicotine affects energy homeostasis and food consumption via altering the activity of neurons containing orexigenic and anorexigenic peptides in the brain. Hypothalamus is one of the critical brain areas that regulates energy balance via the action of these neuropeptides. The equilibrium between these two groups of peptides can be shifted by nicotine leading to decreased food intake and weight loss. The aim of this article is to review the existing literature on the effect of nicotine on food intake and energy homeostasis and report on the changes that nicotine brings about in the level of these peptides and their receptors that may explain changes in food intake and body weight induced by nicotine. Furthermore, we review the effect of nicotine on the hedonic aspect of food intake. Finally, we discuss the involvement of different subtypes of nicotinic acetylcholine receptors in the regulatory action of nicotine on food intake and energy homeostasis. © 2017 Society for Endocrinology.

  2. Effects of chronic inhalation of electronic cigarettes containing nicotine on glial glutamate transporters and α-7 nicotinic acetylcholine receptor in female CD-1 mice.

    Science.gov (United States)

    Alasmari, Fawaz; Crotty Alexander, Laura E; Nelson, Jessica A; Schiefer, Isaac T; Breen, Ellen; Drummond, Christopher A; Sari, Youssef

    2017-07-03

    Alteration in glutamate neurotransmission has been found to mediate the development of drug dependence, including nicotine. We and others, through using western blotting, have reported that exposure to drugs of abuse reduced the expression of glutamate transporter-1 (GLT-1) as well as cystine/glutamate antiporter (xCT), which consequently increased extracellular glutamate concentrations in the mesocorticolimbic area. However, our previous studies did not reveal any changes in glutamate/aspartate transporter (GLAST) following exposure to drugs of abuse. In the present study, for the first time, we investigated the effect of chronic exposure to electronic (e)-cigarette vapor containing nicotine, for one hour daily for six months, on GLT-1, xCT, and GLAST expression in frontal cortex (FC), striatum (STR), and hippocampus (HIP) in outbred female CD1 mice. In this study, we also investigated the expression of alpha-7 nicotinic acetylcholine receptor (α-7 nAChR), a major pre-synaptic nicotinic receptor in the glutamatergic neurons, which regulates glutamate release. We found that inhalation of e-cigarette vapor for six months increased α-7 nAChR expression in both FC and STR, but not in the HIP. In addition, chronic e-cigarette exposure reduced GLT-1 expression only in STR. Moreover, e-cigarette vapor inhalation induced downregulation of xCT in both the STR and HIP. We did not find any significant changes in GLAST expression in any brain region. Finally, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques, we detected high concentrations of nicotine and cotinine, a major metabolite of nicotine, in the FC tissues of e-cigarette exposed mice. These data provide novel evidence about the effects of chronic nicotine inhalation on the expression of key glial glutamate transporters as well as α-7 nAChR. Our work may suggest that nicotine exposure via chronic inhalation of e-cigarette vapor may be mediated in part by alterations in the glutamatergic

  3. Nicotine promotes cell proliferation via α7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    International Nuclear Information System (INIS)

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee; Tai, Emily Kin Ki; Wu, William Ka Kei; Cho, Chi Hin

    2007-01-01

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a β 1 - and β 2 -selective antagonist, respectively, suggesting the role of β-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DβH) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of α7-nicotinic acetylcholine receptor (α7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an α7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and DβH expression as well as adrenaline production. Taken together, through the action on α7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and β-adrenergic activation. These data reveal the contributory role α7-nAChR and β-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer

  4. Nicotinic α4β2 receptor imaging agents

    International Nuclear Information System (INIS)

    Pichika, Rama; Easwaramoorthy, Balasubramaniam; Collins, Daphne; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Potkin, Steven G.; Mukherjee, Jogeshwar

    2006-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using 3 H-cytisine exhibited a K i =0.50 nM for the α4β2 sites. The radiosynthesis of 2- 18 F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ( 18 F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/μmol. In vitro autoradiography in rat brain slices indicated selective binding of 18 F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for 18 F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 μM nicotine in these brain regions. Positron emission tomography imaging study of 18 F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of 18 F-nifene indicates promise as a PET imaging agent and thus needs further evaluation

  5. A synthetic combinatorial strategy for developing a-conotoxin analogs as potent a7 nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Armishaw, Christopher J; Singh, Narender; Medina-Franco, Jose L

    2010-01-01

    alpha-Conotoxins are peptide neurotoxins isolated from venomous cone snails that display exquisite selectivity for different subtypes of nicotinic acetylcholine receptors (nAChR). They are valuable research tools that have profound implications in the discovery of new drugs for a myriad of neurop......alpha-Conotoxins are peptide neurotoxins isolated from venomous cone snails that display exquisite selectivity for different subtypes of nicotinic acetylcholine receptors (nAChR). They are valuable research tools that have profound implications in the discovery of new drugs for a myriad...

  6. Extended nicotine self-administration increases sensitivity to nicotine, motivation to seek nicotine and the reinforcing properties of nicotine-paired cues.

    Science.gov (United States)

    Clemens, Kelly J; Lay, Belinda P P; Holmes, Nathan M

    2017-03-01

    An array of pharmacological and environmental factors influence the development and maintenance of tobacco addiction. The nature of these influences likely changes across the course of an extended smoking history, during which time drug seeking can become involuntary and uncontrolled. The present study used an animal model to examine the factors that drive nicotine-seeking behavior after either brief (10 days) or extended (40 days) self-administration training. In Experiment 1, extended training increased rats' sensitivity to nicotine, indicated by a leftward shift in the dose-response curve, and their motivation to work for nicotine, indicated by an increase in the break point achieved under a progressive ratio schedule. In Experiment 2, extended training imbued the nicotine-paired cue with the capacity to maintain responding to the same high level as nicotine itself. However, Experiment 3 showed that the mechanisms involved in responding for nicotine or a nicotine-paired cue are dissociable, as treatment with the partial nicotine receptor agonist, varenicline, suppressed responding for nicotine but potentiated responding for the nicotine-paired cue. Hence, across extended nicotine self-administration, pharmacological and environmental influences over nicotine seeking increase such that nicotine seeking is controlled by multiple sources, and therefore highly resistant to change. © 2015 Society for the Study of Addiction.

  7. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I...... expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596...... is involved in A-582941-induced up-regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist-dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine...

  8. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control.

    Science.gov (United States)

    Decker, M W; Meyer, M D; Sullivan, J P

    2001-10-01

    Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.

  9. Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine.

    Science.gov (United States)

    Ward, Melissa; Norman, Haval; D'Souza, Manoranjan S

    2018-02-15

    Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking.

    Directory of Open Access Journals (Sweden)

    Islam Gamaleddin

    Full Text Available Over the last decade there have been significant advances in the discovery and understanding of the cannabinoid system along with the development of pharmacologic tools that modulate its function. Characterization of the crosstalk between nicotine addiction and the cannabinoid system may have significant implications on our understanding of the neurobiological mechanisms underlying nicotine dependence. Two types of cannabinoid receptors (CB1 and CB2 have been identified. CB1 receptors are expressed in the brain and modulate drug taking and drug seeking for various drugs of abuse, including nicotine. CB2 receptors have been recently identified in the brain and have been proposed to play a functional role in mental disorders and drug addiction. Our objective was to explore the role of CB2 receptors on intravenous nicotine self administration under two schedules of reinforcement (fixed and progressive ratio and on nicotine seeking induced by nicotine priming or by nicotine associated cues. For this, we evaluated the effects of various doses of the selective CB2 antagonist AM630 (1.25 to 5 mg/kg and CB2 agonist AM1241 (1 to 10 mg/kg on these behavioral responses in rats. Different groups of male Long Evans rats were trained to lever press for nicotine at a unit dose of 30 µg/kg/infusion. Subsequently, animals were randomized using a Latin-square design and injected with either AM1241 or AM630 using a counterbalanced within subject design. Administration of the CB2 ligands did not affect either nicotine-taking nicotine-seeking behavior. Our results do not support the involvement of CB2 receptors in nicotine-taking or nicotine-seeking behavior.

  11. Expression of nicotinic acetylcholine receptors on human B-lymphoma cells

    Directory of Open Access Journals (Sweden)

    Skok M. V.

    2009-12-01

    Full Text Available Aim. To find a correlation between the level of nicotinic acetylcholine receptor (nAChR expression and B lymphocyte differentiation or activation state. Methods. Expression of nAChRs in the REH, Ramos and Daudi cell lines was studied by flow cytometry using nAChR subunit-specific antibodies; cell proliferation was studied by MTT test. Results. It is shown that the level of 42/4 and 7 nAChRs expression increased along with B lymphocyte differentiation (Ramos > REH and activation (Daudi > > Ramos and depended on the antigen-specific receptor expression. The nAChR stimulation/blockade did not influence the intensity of cell proliferation.

  12. Effects of chronic sazetidine-A, a selective α4β2 neuronal nicotinic acetylcholine receptors desensitizing agent on pharmacologically-induced impaired attention in rats.

    Science.gov (United States)

    Rezvani, Amir H; Cauley, Marty; Xiao, Yingxian; Kellar, Kenneth J; Levin, Edward D

    2013-03-01

    Nicotine and nicotinic agonists have been shown to improve attentional function. Nicotinic receptors are easily desensitized, and all nicotinic agonists are also desensitizing agents. Although both receptor activation and desensitization are components of the mechanism that mediates the overall effects of nicotinic agonists, it is not clear how each of the two opposed actions contributes to attentional improvements. Sazetidine-A has high binding affinity at α4β2 nicotinic receptors and causes a relatively brief activation followed by a long-lasting desensitization of the receptors. Acute administration of sazetidine-A has been shown to significantly improve attention by reversing impairments caused by the muscarinic cholinergic antagonist scopolamine and the NMDA glutamate antagonist dizocilpine. In the current study, we tested the effects of chronic subcutaneous infusion of sazetidine-A (0, 2, or 6 mg/kg/day) on attention in Sprague-Dawley rats. Furthermore, we investigated the effects of chronic sazetidine-A treatment on attentional impairment induced by an acute administration of 0.02 mg/kg scopolamine. During the first week period, the 6-mg/kg/day sazetidine-A dose significantly reversed the attentional impairment induced by scopolamine. During weeks 3 and 4, the scopolamine-induced impairment was no longer seen, but sazetidine-A (6 mg/kg/day) significantly improved attentional performance on its own. Chronic sazetidine-A also reduced response latency and response omissions. This study demonstrated that similar to its acute effects, chronic infusions of sazetidine-A improve attentional performance. The results indicate that the desensitization of α4β2 nicotinic receptors with some activation of these receptors may play an important role in improving effects of sazetidine-A on attention.

  13. Nicotinic acetylcholine receptor polymorphism, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases: a cohort study

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Bojesen, Stig E; Tybjærg-Hansen, Anne

    2011-01-01

    We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population.......We examined the associations between the nicotinic acetylcholine receptor polymorphism (rs1051730) on chromosome 15q25 marking the gene cluster CHRNA3-CHRNB4-CHRNA5, smoking behavior, and tobacco-related cancer and lung and cardiovascular diseases in the general population....

  14. Serotonergic modulation of nicotine-induced kinetic tremor in mice

    Directory of Open Access Journals (Sweden)

    Naofumi Kunisawa

    2017-06-01

    Full Text Available We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT, significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT1A antagonist. In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI, significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT2 antagonist. The 5-HT3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT3 antagonist or SB-258585 (5-HT6 antagonist. These results suggest that postsynaptic 5-HT1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT2 receptors have an inhibitory modulatory role in induction of nicotine tremor.

  15. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    Science.gov (United States)

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  16. Maximizing the effect of an α7 nicotinic receptor PAM in a mouse model of schizophrenia-like sensory inhibition deficits.

    Science.gov (United States)

    Stevens, Karen E; Zheng, Lijun; Floyd, Kirsten L; Stitzel, Jerry A

    2015-06-22

    Positive allosteric modulators (PAMs) for the α7 nicotinic receptor hold promise for the treatment of sensory inhibition deficits observed in schizophrenia patients. Studies of these compounds in the DBA/2 mouse, which models the schizophrenia-related deficit in sensory inhibition, have shown PAMs to be effective in improving the deficit. However, the first published clinical trial of a PAM for both sensory inhibition deficits and related cognitive difficulties failed, casting a shadow on this therapeutic approach. The present study used both DBA/2 mice, and C3H Chrna7 heterozygote mice to assess the ability of the α7 PAM, PNU-120596, to improve sensory inhibition. Both of these strains of mice have reduced hippocampal α7 nicotinic receptor numbers and deficient sensory inhibition similar to schizophrenia patients. Low doses of PNU-120596 (1 or 3.33mg/kg) were effective in the DBA/2 mouse but not the C3H Chrna7 heterozygote mouse. Moderate doses of the selective α7 nicotinic receptor agonist, choline chloride (10 or 33mg/kg), were also ineffective in improving sensory inhibition in the C3H Chrna7 heterozygote mouse. However, combining the lowest doses of both PNU-120596 and choline chloride in this mouse model did improve sensory inhibition. We propose here that the difference in efficacy of PNU-120596 between the 2 mouse strains is driven by differences in hippocampal α7 nicotinic receptor numbers, such that C3H Chrna7 heterozygote mice require additional direct stimulation of the α7 receptors. These data may have implications for further clinical testing of putative α7 nicotinic receptor PAMs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The Effects of Nicotinic and Muscarinic Receptor Activation on Patch-Clamped Cells in the Optic Tectum of Rana Pipiens

    OpenAIRE

    Yu, C.-J.; Debski, E. A.

    2003-01-01

    Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 μM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in sponta...

  18. EFFECTS OF THE NICOTINIC RECEPTOR ANTAGONIST MECAMYLAMINE ON AD-LIB SMOKING BEHAVIOR, TOPOGRAPHY, AND NICOTINE LEVELS IN SMOKERS WITH AND WITHOUT SCHIZOPHRENIA: A PRELIMINARY STUDY

    OpenAIRE

    McKee, Sherry A.; Weinberger, Andrea H.; Harrison, Emily L. R.; Coppola, Sabrina; George, Tony P.

    2009-01-01

    Individuals with schizophrenia have higher plasma nicotine levels in comparison to non-psychiatric smokers, even when differences in smoking are equated. This difference may be related to how intensely cigarettes are smoked but this has not been well-studied. Mecamylamine (MEC), a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist, which has been shown to increase ad-lib smoking and to affect smoking topography, was used in the current study as a pharmacological probe to incr...

  19. Nicotinic and muscarinic cholinergic receptors are recruited by acetylcholine-mediated neurotransmission within the locus coeruleus during the organisation of post-ictal antinociception.

    Science.gov (United States)

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Franceschi; Falconi-Sobrinho, Luiz Luciano; Dos Anjos-Garcia, Tayllon; Coimbra, Norberto Cysne

    2016-10-01

    Post-ictal antinociception is characterised by an increase in the nociceptive threshold that accompanies tonic and tonic-clonic seizures (TCS). The locus coeruleus (LC) receives profuse cholinergic inputs from the pedunculopontine tegmental nucleus. Different concentrations (1μg, 3μg and 5μg/0.2μL) of the muscarinic cholinergic receptor antagonist atropine and the nicotinic cholinergic receptor antagonist mecamylamine were microinjected into the LC of Wistar rats to investigate the role of cholinergic mechanisms in the severity of TCS and the post-ictal antinociceptive response. Five minutes later, TCS were induced by systemic administration of pentylenetetrazole (PTZ) (64mg/kg). Seizures were recorded inside the open field apparatus for an average of 10min. Immediately after seizures, the nociceptive threshold was recorded for 130min using the tail-flick test. Pre-treatment of the LC with 1μg, 3μg and 5μg/0.2μL concentrations of both atropine and mecamylamine did not cause a significant effect on seizure severity. However, the same treatments decreased the post-ictal antinociceptive phenomenon. In addition, mecamylamine caused an earlier decrease in the post-ictal antinociception compared to atropine. These results suggest that muscarinic and mainly nicotinic cholinergic receptors of the LC are recruited to organise tonic-clonic seizure-induced antinociception. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation

    Directory of Open Access Journals (Sweden)

    Tasnim S. Mohamed

    2015-11-01

    Full Text Available Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.

  1. Studies of Nicotinic Receptors in Non-human Primates Using PET and SPECT

    International Nuclear Information System (INIS)

    Kassiou, M.; University of Sydney,

    2002-01-01

    Full text: Observations of abnormalities in the densities of nicotinic acetylcholine receptors (nAChRs) in the brains of smokers and patients with various CNS disorders has suggested that noninvasive imaging and quantification of nAChRs using PET and SPECT would be useful. This offers further the understanding of the involvement of these receptors in these conditions as well as insight into their role in the normal functioning of the brain. As a prelude to human studies, newly developed PET and SPECT radioligands are first evaluated in animals to determine their suitability for clinical imaging. In the neurosciences the most widespread application of PET and SPECT in animal imaging has been in the study of non-human primates. The larger animals allow the performance of quantitative imaging to be achieved on conventional clinical human scanners. The use of non-human primates for imaging nAChRs in models of Parkinson's disease and smoking is described below. Nicotinic acetylcholine receptors have been implicated in PD's since it has been demonstrated postmortem that cortical nAChRs are reduced and parallel the increase in dementia that occurs in PD patients. In experimental animals it has shown that nicotine protects against MPTP-induced degeneration. MPTP degeneration representing the most widely used and validated animal model of PD. Also, a number of studies have indicated that smokers have a lower than expected incidence of PD, suggesting a protective effect of nicotine. In order to study nAChRs using PET we have developed [ 76 Br]bromoepibatidine. This work was carried out at the Service Hospitalier Frederic Joliot, Orsay France as part of the France-Australia collaboration. In papio papio baboon the brain uptake of [ 76 Br]bromoepibatidine was high with preferential localisation in the thalamus. The [ 76 Br]bromoepibatidine uptake is consistent with the known cerebral nAChR distribution in primates. The radioactivity in thalamus, striatum and cortices was

  2. Hippocampal nicotinic receptors have a modulatory role for ethanol and MDMA interaction in memory retrieval.

    Science.gov (United States)

    Rostami, Maryam; Rezayof, Ameneh; Alijanpour, Sakineh; Sharifi, Khadijeh Alsadat

    2017-08-15

    The aim of the current study was to examine the effect of dorsal hippocampal nicotinic acetylcholine receptors (nAChRs) activation on the functional interaction between ethanol and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) in memory retrieval. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated and memory retrieval was measured in a step-down type passive avoidance apparatus. Post-training or pre-test systemic administration of ethanol (1g/kg, i.p.) induced amnesia. Pre-test administration of ethanol reversed pre-training ethanol-induced amnesia, suggesting ethanol state-dependent learning. Pre-test intra-CA1 microinjection of different doses of MDMA (0.25-1µg/mouse) with an ineffective dose of ethanol (0.25g/kg, i.p.) also induced amnesia. Interestingly, pre-test intra-CA1 microinjection of MDMA (0.25-1µg/mouse) potentiated ethanol state-dependent learning. On the other hand, the activation of the dorsal hippocampal nAChRs by pre-test microinjection of nicotine (0.1-1µg/mouse, intra-CA1) improved amnesia induced by the co-administration of MDMD and ethanol. It is important to note that intra-CA1 microinjection of the same doses of MDMA or nicotine could not affect memory formation by itself. Pre-test intra-CA1 microinjection of nicotine (0.3-0.9µg/mouse) could not reverse amnesia induced by pre-training administration of ethanol while this treatment enhanced MDMA response on ethanol state-dependent learning. Thus, it can be concluded that there may be functional interactions among ethanol, MDMA and nicotine via the dorsal hippocampal nicotinic acetylcholine receptor mechanism in memory retrieval and drug state-dependent learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Promoted neuronal differentiation after activation of alpha4/beta2 nicotinic acetylcholine receptors in undifferentiated neural progenitors.

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    Full Text Available BACKGROUND: Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains. METHODOLOGY/PRINCIPAL FINDINGS: Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl-N-methyl-(3E-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice

  4. Nicotinic {alpha}4{beta}2 receptor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Pichika, Rama [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Easwaramoorthy, Balasubramaniam [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Collins, Daphne [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Christian, Bradley T. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Shi, Bingzhi [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Narayanan, Tanjore K. [Department of Nuclear Medicine, Kettering Medical Center, Dayton, OH 45429 (United States); Potkin, Steven G. [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States); Mukherjee, Jogeshwar [Brain Imaging Center, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-3960 (United States)]. E-mail: j.mukherjee@uci.edu

    2006-04-15

    The {alpha}4{beta}2 nicotinic acetylcholine receptor (nAChR) has been implicated in various neurodegenerative diseases. Optimal positron emission tomography (PET) imaging agents are therefore highly desired for this receptor. We report here the development and initial evaluation of 2-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (nifene). In vitro binding affinity of nifene in rat brain homogenate using {sup 3}H-cytisine exhibited a K {sub i}=0.50 nM for the {alpha}4{beta}2 sites. The radiosynthesis of 2-{sup 18}F-fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ({sup 18}F-nifene) was accomplished in 2.5 h with an overall radiochemical yield of 40-50%, decay corrected. The specific activity was estimated to be approx. 37-185 GBq/{mu}mol. In vitro autoradiography in rat brain slices indicated selective binding of {sup 18}F-nifene to anteroventral thalamic (AVT) nucleus, thalamus, subiculum, striata, cortex and other regions consistent with {alpha}4{beta}2 receptor distribution. Rat cerebellum showed some binding, whereas regions in the hippocampus had the lowest binding. The highest ratio of >13 between AVT and cerebellum was measured for {sup 18}F-nifene in rat brain slices. The specific binding was reduced (>95%) by 300 {mu}M nicotine in these brain regions. Positron emission tomography imaging study of {sup 18}F-nifene (130 MBq) in anesthetized rhesus monkey was carried out using an ECAT EXACT HR+ scanner. PET study showed selective maximal uptake in the regions of the anterior medial thalamus, ventro-lateral thalamus, lateral geniculate, cingulate gyrus, temporal cortex including the subiculum. The cerebellum in the monkeys showed lower binding than the other regions. Thalamus-to-cerebellum ratio peaked at 30-35 min postinjection to a value of 2.2 and subsequently reduced. The faster binding profile of {sup 18}F-nifene indicates promise as a PET imaging agent and thus needs further evaluation.

  5. Impulsive behavior and nicotinic acetylcholine receptors.

    Science.gov (United States)

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  6. Serotonergic modulation of nicotine-induced kinetic tremor in mice.

    Science.gov (United States)

    Kunisawa, Naofumi; Iha, Higor A; Nomura, Yuji; Onishi, Misaki; Matsubara, Nami; Shimizu, Saki; Ohno, Yukihiro

    2017-06-01

    We previously demonstrated that nicotine elicited kinetic tremor by elevating the neural activity of the inferior olive via α7 nicotinic acetylcholine (nACh) receptors. Since α7 nACh receptors reportedly facilitate synaptic monoamine release, we explored the role of 5-HT receptors in induction and/or modulation of nicotine tremor. Treatment of mice with nicotine induced kinetic tremor that normally appeared during movement. The 5-HT 1A agonist, 8-hydroxydipropylaminotetraline (8-OH-DPAT), significantly enhanced nicotine-induced tremor and the action of 8-OH-DPAT was antagonized by WAY-100135 (5-HT 1A antagonist). In addition, the cerebral 5-HT depletion by repeated treatment with p-chlorophenylalanine did not reduce, but rather potentiated the facilitatory effects of 8-OH-DPAT. In contrast, the 5-HT 2 agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI), significantly attenuated nicotine tremor, which was antagonized by ritanserin (5-HT 2 antagonist). The 5-HT 3 agonist SR-57227 did not affect nicotine-induced tremor. Furthermore, when testing the direct actions of 5-HT antagonists, nicotine tremor was inhibited by WAY-100135, but was unaffected by ritanserin, ondansetron (5-HT 3 antagonist) or SB-258585 (5-HT 6 antagonist). These results suggest that postsynaptic 5-HT 1A receptors are involved in induction of nicotine tremor mediated by α7 nACh receptors. In addition, 5-HT 2 receptors have an inhibitory modulatory role in induction of nicotine tremor. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Nicotinic acetylcholine receptor β2-subunits in the medial prefrontal cortex control attention

    NARCIS (Netherlands)

    Guillem, K.; Bloem, B.; Poorthuis, R.B.; Loos, M.; Smit, A.B.; Maskos, U.; Spijker, S.; Mansvelder, H.D.

    2011-01-01

    More than one-third of all people are estimated to experience mild to severe cognitive impairment as they age. Acetylcholine (ACh) levels in the brain diminish with aging, and nicotinic ACh receptor (nAChR) stimulation is known to enhance cognitive performance. The prefrontal cortex (PFC) is

  8. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    Science.gov (United States)

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-11-15

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Intermittent hypercapnic hypoxia effects on the nicotinic acetylcholine receptors in the developing piglet hippocampus and brainstem.

    Science.gov (United States)

    Vivekanandarajah, Arunnjah; Aishah, Atqiya; Waters, Karen A; Machaalani, Rita

    2017-05-01

    This study investigated the effects of acute (1 day) vs repeated (4 days) exposure to intermittent hypercapnic hypoxia (IHH) on the immunohistochemical expression of α2, α3, α5, α7, α9 and β2 nicotinic acetylcholine receptor (nAChR) subunits in the developing piglet hippocampus and brainstem medulla, and how prior nicotine exposure alters the response to acute IHH. Five piglet groups included: 1day IHH (1D IHH, n=9), 4days IHH (4D IHH, n=8), controls exposed only to air cycles for 1day (1D Air, n=6) or 4days (4D Air, n=5), and pre-exposed to nicotine for 13days prior to 1day IHH (Nic+1D IHH, n=7). The exposure period alternated 6min of HH (8%O 2 , 7%CO 2 , balance N 2 ) and 6min of air over 48min, while controls were switched from air-to-air. Results showed that: 1. repeated IHH induces more changes in nAChR subunit expression than acute IHH in both the hippocampus and brainstem medulla, 2. In the hippocampus, α2 and β2 changed the most (increased) following IHH and the CA3, CA2 and DG were mostly affected. In the brainstem medulla, α2, α5, α9 and β2 were changed (decreased) in most nuclei with the hypoglossal and nucleus of the solitary tract being mostly affected. 3. Pre-exposure to nicotine enhanced the changes in the hippocampus but dampened those in the brainstem medulla. These findings indicate that the nAChRs (predominantly with the α2/β2 complex) are affected by IHH in critical hippocampal and brainstem nuclei during early brain development, and that pre-exposure to nicotine alters the pattern of susceptibility to IHH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of mecamylamine (a nicotinic receptor antagonist on harman induced-amnesia in an inhibitory avoidance test

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2011-10-01

    Full Text Available Introduction: β-carbolines alkaloids suchv as harmane have been found in common plant-derived foodstuffs (wheat, rice, corn, barley, grape and mushrooms. These alkaloids have many cognitive effects including alteration short and long term memory. In the present study, the effect of intra-CA1 injection of the nicotinic receptor antagonist mecamylamine on amnesia induced by harmane was examined in mice. Materials and Methods: Mice were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus. One week after cannulae implantation, mice were trained in a step-down type inhibitory avoidance task, and were tested 24 h after training to measure step-down latency as a scale of memory. Results: Pre-training or post-training systemic injection of harmane induced amnesia. Pre-testing intra-dorsal hippocampus administration of the high dose of nicotinic receptor antagonist, mecamylamine (4 µg/mice also induced amnesia. On the other hand, pre-test intra-CA1 injection of ineffective doses of mecamylamine (0.5, 1 and 2 µg/mice fully restored harmane induced amnesia. Conclusion: The present finding in this study indicated that a complex interaction exists between nicotinic receptor of dorsal hippocampus and amnesia induced by Harmane.

  11. Overexpression of CRF in the BNST diminishes dysphoria but not anxiety-like behavior in nicotine withdrawing rats.

    Science.gov (United States)

    Qi, Xiaoli; Guzhva, Lidia; Yang, Zhihui; Febo, Marcelo; Shan, Zhiying; Wang, Kevin K W; Bruijnzeel, Adriaan W

    2016-09-01

    Smoking cessation leads to dysphoria and anxiety, which both increase the risk for relapse. This negative affective state is partly mediated by an increase in activity in brain stress systems. Recent studies indicate that prolonged viral vector-mediated overexpression of stress peptides diminishes stress sensitivity. Here we investigated whether the overexpression of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis (BNST) diminishes nicotine withdrawal symptoms in rats. The effect of nicotine withdrawal on brain reward function was investigated with an intracranial self-stimulation (ICSS) procedure. Anxiety-like behavior was investigated in the elevated plus maze test and a large open field. An adeno-associated virus (AAV) pseudotype 2/5 vector was used to overexpress CRF in the lateral BNST and nicotine dependence was induced using minipumps. Administration of the nicotinic receptor antagonist mecamylamine and cessation of nicotine administration led to a dysphoria-like state, which was prevented by the overexpression of CRF in the BNST. Nicotine withdrawal also increased anxiety-like behavior in the elevated plus maze test and large open field test and slightly decreased locomotor activity in the open field. The overexpression of CRF in the BNST did not prevent the increase in anxiety-like behavior or decrease in locomotor activity. The overexpression of CRF increased CRF1 and CRF2 receptor gene expression and increased the CRF2/CRF1 receptor ratio. In conclusion, the overexpression of CRF in the BNST prevents the dysphoria-like state associated with nicotine withdrawal and increases the CRF2/CRF1 receptor ratio, which may diminish the negative effects of CRF on mood. Published by Elsevier B.V.

  12. Radiosynthesis and in vitro validation of 3H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand

    DEFF Research Database (Denmark)

    Magnussen, Janus H.; Ettrup, Anders; Donat, Cornelius K.

    2015-01-01

    The neuronal alpha 7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer's disease and schizophrenia. We have previously described 11C-NS14492 as a suitable agonist radioligand for in vivo positron...... emission tomography (PET) occupancy studies of the alpha 7 nicotinic receptor in the pig brain. In order to investigate the utility of the same compound for in vitro studies, 3H-NS14492 was synthesized and its binding properties were characterized using in vitro autoradiography and homogenate binding...... assays in pig frontal cortex. 3H-NS14492 showed specific binding to alpha 7 nicotinic receptors in autoradiography, revealing a dissociation constant (Kd) of 2.1 ± 0.7 nM and a maximum number of binding sites (Bmax) of 15.7±2.0 fmol/mg tissue equivalent. Binding distribution was similar...

  13. Changes in serotoninergic receptors 1A and 2A in the piglet brainstem after intermittent hypercapnic hypoxia (IHH) and nicotine.

    Science.gov (United States)

    Say, Meichien; Machaalani, Rita; Waters, Karen A

    2007-06-04

    We studied the effects of intermittent hypercapnic hypoxia (IHH) and/or nicotine on the immunoreactivity of serotoninergic (5-HT) receptors 1A and 2A in the piglet brainstem. These exposures were developed to mimic two common risk factors for Sudden Infant Death Syndrome (SIDS); prone sleeping (IHH) and cigarette smoke exposure (nicotine). Immunoreactivity for 5-HT(1A)R and 5-HT(2A)R were studied in four nuclei of the caudal medulla. Three exposure groups were compared to controls (n=14): IHH (n=10), nicotine (n=14), and nicotine+IHH (n=14). In control piglets, the immunoreactivity of 5-HT(1A)R was highest in the hypoglossal nucleus (XII), followed by inferior olivary nucleus (ION), nucleus of the solitary tract (NTS) and dorsal motor nucleus of the vagus (DMNV), whereas for 5-HT(2A)R, the immunoreactivity was highest in DMNV/NTS and then ION. Compared to controls, IHH reduced 5-HT(1A)R immunoreactivity in all studied nuclei (pIHH reduced 5-HT(1A)R in DMNV, ION and NTS (pIHH and/or nicotine can reduce 5-HT receptor immunoreactivity within functionally important nuclei of the piglet medulla. The findings support our hypothesis that 5-HT receptor abnormalities may be caused by postnatal exposures to clinically-relevant stimuli such as cigarette smoke exposure and/or prone sleeping.

  14. Glial cell-derived neurotrophic factor alleviates sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nicotinic acetylcholine receptors in an experimental rat model of neuromyopathy.

    Science.gov (United States)

    Wang, Xin; Min, Su; Xie, Fei; Yang, Jun; Li, Liang; Chen, Jingyuan

    2018-02-05

    Sepsis-induced neuromuscular dysfunction results from up-regulation of the expression of γ- and α7-nicotinic acetylcholine receptors (nAChR). Although glial cell derived neurotrophic factor (GDNF) has been implicated in repairing and supporting neurons, little is known about the effects of GDNF on demyelination of nerves in sepsis. In this study, we tested the hypothesis that GDNF could alleviate sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nAChR in an experimental rat model of neuromyopathy. Rats were randomly divided into a sham group and a sepsis group. Levels of inflammatory factors, muscle function, and nicotinic acetylcholine receptors were tested in rats after cecal ligation and puncture (CLP). At 24 h after CLP, GDNF was injected around the sciatic nerve of sepsis rats, cytokines were detected by enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining was used to detect the expression of nAChRs. GDNF and its downstream effector (Erk1/2 and GFR-α), neuregulin-1 (NRG-1) and γ- and α7-nAChR were measured using Western blot analysis. The expression of GDNF reached a minimum at 24 h after CLP. Compared with the sham group, the release of cytokines and the expression of γ- and α7-nAChR were significantly increased in the sepsis group. The administration of GDNF significantly alleviated sepsis-induced neuromuscular dysfunction, as well as reducing the expression of γ- and α7-nAChR. In addition, the expression of Erk1/2, GFR-α, NRG-1 were significantly increased after GDNF treatment. GDNF administration may improve patient outcomes by reducing the demyelination of nerves and the expression of γ- and α7-nAChR. Copyright © 2018. Published by Elsevier Inc.

  15. Rapid relief of block by mecamylamine of neuronal nicotinic acetylcholine receptors of rat chromaffin cells in vitro: an electrophysiological and modeling study.

    Science.gov (United States)

    Giniatullin, R A; Sokolova, E M; Di Angelantonio, S; Skorinkin, A; Talantova, M V; Nistri, A

    2000-10-01

    The mechanism responsible for the blocking action of mecamylamine on neuronal nicotinic acetylcholine receptors (nAChRs) was studied on rat isolated chromaffin cells recorded under whole-cell patch clamp. Mecamylamine strongly depressed (IC(50) = 0.34 microM) inward currents elicited by short pulses of nicotine, an effect slowly reversible on wash. The mecamylamine block was voltage-dependent and promptly relieved by a protocol combining membrane depolarization with a nicotine pulse. Either depolarization or nicotine pulses were insufficient per se to elicit block relief. Block relief was transient; response depression returned in a use-dependent manner. Exposure to mecamylamine failed to block nAChRs if they were not activated by nicotine or if they were activated at positive membrane potentials. These data suggest that mecamylamine could not interact with receptors either at rest or at depolarized level. Other nicotinic antagonists like dihydro-beta-erythroidine or tubocurarine did not share this action of mecamylamine although proadifen partly mimicked it. Mecamylamine is suggested to penetrate and block open nAChRs that would subsequently close and trap this antagonist. Computer modeling indicated that the mechanism of mecamylamine blocking action could be described by assuming that 1) mecamylamine-blocked receptors possessed a much slower, voltage-dependent isomerization rate, 2) the rate constant for mecamylamine unbinding was large and poorly voltage dependent. Hence, channel reopening plus depolarization allowed mecamylamine escape and block relief. In the presence of mecamylamine, therefore, nAChRs acquire the new property of operating as coincidence detectors for concomitant changes in membrane potential and receptor occupancy.

  16. Cerebellar nicotinic cholinergic receptors are intrinsic to the cerebellum: implications for diverse functional roles.

    Science.gov (United States)

    Turner, Jill R; Ortinski, Pavel I; Sherrard, Rachel M; Kellar, Kenneth J

    2011-12-01

    Although recent studies have delineated the specific nicotinic subtypes present in the mammalian cerebellum, very little is known about their location or function within the cerebellum. This is of increased interest since nicotinic receptors (nAChRs) in the cerebellum have recently been implicated in the pathology of autism spectrum disorders. To begin to better understand the roles of these heteromeric nAChRs in the cerebellar circuitry and their therapeutic potential as targets for drug development, we used various chemical and stereotaxic lesion models in conjunction with slice electrophysiology to examine how specific heteromeric nAChR subtypes may influence the surrounding cerebellar circuitry. Using subunit-specific immunoprecipitation of radiolabeled nAChRs in the cerebella following N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, p-chloroamphetamine, and pendunculotomy lesions, we show that most, if not all, cerebellar nicotinic receptors are present in cells within the cerebellum itself and not in extracerebellar afferents. Furthermore, we demonstrate that the β4-containing, but not the β2-containing, nAChRs intrinsic to the cerebellum can regulate inhibitory synaptic efficacy at two major classes of cerebellar neurons. These tandem findings suggest that nAChRs may present a potential drug target for disorders involving the cerebellum.

  17. Nicotine Lozenges

    Science.gov (United States)

    Nicotine lozenges are used to help people stop smoking. Nicotine lozenges are in a class of medications called smoking cessation aids. They work by providing nicotine to your body to decrease the withdrawal symptoms ...

  18. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat.

    Science.gov (United States)

    Ugur, Muzeyyen; Kaya, Egemen; Gozen, Oguz; Koylu, Ersin O; Kanit, Lutfiye; Keser, Aysegul; Balkan, Burcu

    2017-09-01

    Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied. © 2017 Wiley Periodicals, Inc.

  19. Nicotinic plant poisoning.

    Science.gov (United States)

    Schep, Leo J; Slaughter, Robin J; Beasley, D Michael G

    2009-09-01

    A wide range of plants contain nicotinic and nicotinic-like alkaloids. Of this diverse group, those that have been reported to cause human poisoning appear to have similar mechanisms of toxicity and presenting patients therefore have comparable toxidromes. This review describes the taxonomy and principal alkaloids of plants that contain nicotinic and nicotinic-like alkaloids, with particular focus on those that are toxic to humans. The toxicokinetics and mechanisms of toxicity of these alkaloids are reviewed and the clinical features and management of poisoning due to these plants are described. This review was compiled by systematically searching OVID MEDLINE and ISI Web of Science. This identified 9,456 papers, excluding duplicates, all of which were screened. Reviewed plants and their principal alkaloids. Plants containing nicotine and nicotine-like alkaloids that have been reported to be poisonous to humans include Conium maculatum, Nicotiana glauca and Nicotiana tabacum, Laburnum anagyroides, and Caulophyllum thalictroides. They contain the toxic alkaloids nicotine, anabasine, cytisine, n-methylcytisine, coniine, n-methylconiine, and gamma-coniceine. These alkaloids act agonistically at nicotinic-type acetylcholine (cholinergic) receptors (nAChRs). The nicotinic-type acetylcholine receptor can vary both in its subunit composition and in its distribution within the body (the central and autonomic nervous systems, the neuromuscular junctions, and the adrenal medulla). Agonistic interaction at these variable sites may explain why the alkaloids have diverse effects depending on the administered dose and duration of exposure. Nicotine and nicotine-like alkaloids are absorbed readily across all routes of exposure and are rapidly and widely distributed, readily traversing the blood-brain barrier and the placenta, and are freely distributed in breast milk. Metabolism occurs predominantly in the liver followed by rapid renal elimination. Following acute exposure

  20. The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control.

    Science.gov (United States)

    Higgins, Guy A; Silenieks, Leo B; Rossmann, Anne; Rizos, Zoe; Noble, Kevin; Soko, Ashlie D; Fletcher, Paul J

    2012-04-01

    Lorcaserin ((1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCl) is a selective 5-HT(2C) receptor agonist with clinical efficacy in phase-III obesity trials. Based on evidence that this drug class also affects behaviors motivated by drug reinforcement, we compared the effect of lorcaserin on behavior maintained by food and nicotine reinforcement, as well as the stimulant and discriminative stimulus properties of nicotine in the rat. Acutely administered lorcaserin (0.3-3 mg/kg, subcutaneous (SC)) dose dependently reduced feeding induced by 22-h food deprivation or palatability. Effects up to 1 mg/kg were consistent with a specific effect on feeding motivation. Lorcaserin (0.6-1 mg/kg, SC) reduced operant responding for food on progressive and fixed ratio schedules of reinforcement. In this dose range lorcaserin also reversed the motor stimulant effect of nicotine, reduced intravenous self-administration of nicotine, and attenuated the nicotine cue in rats trained to discriminate nicotine from saline. Lorcaserin also reduced the reinstatement of nicotine-seeking behavior elicited by a compound cue comprising a nicotine prime and conditioned stimulus previously paired with nicotine reinforcement. Lorcaserin did not reinstate nicotine-seeking behavior or substitute for a nicotine cue. Finally, lorcaserin (0.3-1 mg/kg) reduced nicotine-induced increases in anticipatory responding, a measure of impulsive action, in rats performing the five-choice serial reaction time task. Importantly, these results indicate that lorcaserin, and likely other selective 5-HT(2C) receptor agonists, similarly affect both food- and nicotine-motivated behaviors, and nicotine-induced impulsivity. Collectively, these findings highlight a therapeutic potential for 5-HT(2C) agonists such as lorcaserin beyond obesity into addictive behaviors, such as nicotine dependence.

  1. Structural differences in the two agonist binding sites of the Torpedo nicotinic acetylcholine receptor revealed by time-resolved fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Martinez, K. L.; Corringer, P. J.; Edelstein, S. J.

    2000-01-01

    The nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata carries two nonequivalent agonist binding sites at the αδ and αγ subunit interfaces. These sites have been characterized by time-resolved fluorescence with the partial nicotinic agonist dansyl-C6-choline (Dnscho). When bound...

  2. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system.

    Science.gov (United States)

    Kotagale, Nandkishor R; Walke, Sonali; Shelkar, Gajanan P; Kokare, Dadasaheb M; Umekar, Milind J; Taksande, Brijesh G

    2014-04-01

    The purpose of the present study was to examine the effect of agmatine on nicotine induced conditioned place preference (CPP) in male albino mice. Intra-peritoneal (ip) administration of nicotine (1mg/kg) significantly increased time spent in drug-paired compartment. Agmatine (20 and 40 mg/kg, ip) co-administered with nicotine during the 6 days conditioning sessions completely abolished the acquisition of nicotine-induced CPP in mice. Concomitant administration of neuropeptide Y (NPY) (1 pg/mouse, icv) or [Leu(31), Pro(34)]-NPY (0.1 pg/mouse, icv), selective NPY Y1 receptor agonist potentiated the inhibitory effect of agmatine (10 mg/kg, ip) on nicotine CPP. Conversely, pretreatment with NPY Y1 receptor antagonist, BIBP3226 (0.01 ng/mouse, icv) blocked the effect of agmatine (20 mg/kg, ip) on nicotine induced CPP. In immunohistochemical study, nicotine decreased NPY-immunoreactivity in nucleus accumbens shell (AcbSh), bed nucleus of stria terminalis, lateral part (BNSTl), arcuate nucleus (ARC) and paraventricular nucleus (PVN). Conversely, administration of agmatine prior to the nicotine significantly reversed the effect of nicotine on NPY-immunoreactivity in the above brain nuclei. This data indicate that agmatine attenuate nicotine induced CPP via modulation of NPYergic neurotransmission in brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Association of nicotinic acetylcholine receptors with central respiratory control in isolated brainstem-spinal cord preparation of neonatal rats

    Directory of Open Access Journals (Sweden)

    EIKI HATORI

    2006-01-01

    Full Text Available Nicotine exposure is a risk factor in several breathing disorders Nicotinic acetylcholine receptors (nAChRs exist in the ventrolateral medulla, an important site for respiratory control. We examined the effects of nicotinic acetylcholine neurotransmission on central respiratory control by addition of a nAChR agonist or one of various antagonists into superfusion medium in the isolated brainstem-spinal cord from neonatal rats. Ventral C4 neuronal activity was monitored as central respiratory output, and activities of respiratory neurons in the ventrolateral medulla were recorded in whole-cell configuration. RJR-2403 (0.1-10mM, alpha4beta2 nAChR agonist induced dose-dependent increases in respiratory frequency. Non-selective nAChR antagonist mecamylamine (0.1-100mM, alpha4beta2 antagonist dihydro-beta-erythroidine (0.1-100mM, alpha7 antagonist methyllycaconitine (0.1-100mM, and a-bungarotoxin (0.01-10mM all induced dose-dependent reductions in C4 respiratory rate. We next examined effects of 20mM dihydro-beta-erythroidine and 20mM methyllycaconitine on respiratory neurons. Dihydro-beta-erythroidine induces hyperpolarization and decreases intraburst firing frequency of inspiratory and preinspiratory neurons. In contrast, methyllycaconitine has no effect on the membrane potential of inspiratory neurons, but does decrease their intraburst firing frequency while inducing hyperpolarization and decreasing intraburst firing frequency in preinspiratory neurons. These findings indicate that alpha4beta2 nAChR is involved in both inspiratory and preinspiratory neurons, whereas alpha7 nAChR functions only in preinspiratory neurons to modulate C4 respiratory rate

  4. Identification of a negative allosteric site on human α4β2 and α3β4 neuronal nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Ryan E Pavlovicz

    Full Text Available Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs. These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological

  5. Effects of the nicotinic receptor antagonist mecamylamine on ad-lib smoking behavior, topography, and nicotine levels in smokers with and without schizophrenia: a preliminary study.

    Science.gov (United States)

    McKee, Sherry A; Weinberger, Andrea H; Harrison, Emily L R; Coppola, Sabrina; George, Tony P

    2009-12-01

    Individuals with schizophrenia have higher plasma nicotine levels in comparison to non-psychiatric smokers, even when differences in smoking are equated. This difference may be related to how intensely cigarettes are smoked but this has not been well studied. Mecamylamine (MEC), a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist, which has been shown to increase ad-lib smoking and to affect smoking topography, was used in the current study as a pharmacological probe to increase our understanding of smoking behavior, smoking topography, and resulting nicotine levels in smokers with schizophrenia. This preliminary study used a within-subject, placebo-controlled design in smokers with schizophrenia (n=6) and healthy control smokers (n=8) to examine the effects of MEC (10mg/day) on ad-lib smoking behavior, topography, nicotine levels, and tobacco craving across two smoking deprivation conditions (no deprivation and 12-h deprivation). MEC, compared to placebo, increased the number of cigarettes smoked and plasma nicotine levels. MEC increased smoking intensity and resulted in greater plasma nicotine levels in smokers with schizophrenia compared to controls, although these results were not consistent across deprivation conditions. MEC also increased tobacco craving in smokers with schizophrenia but not in control smokers. Our results suggest that antagonism of high-affinity nAChRs in smokers with schizophrenia may prompt compensatory smoking, increasing the intensity of smoking and nicotine exposure without alleviating craving. Further work is needed to assess whether nicotine levels are directly mediated by how intensely the cigarettes are smoked, and to confirm whether this effect is more pronounced in smokers with schizophrenia.

  6. Nicotinic receptor imaging with F-18 A85380 PET in Alzheimer's disease and normal ageing

    International Nuclear Information System (INIS)

    Bottlaender, M.; Maziere, B.; Pappata, S.; Dolle, F.; Rowe, C.; Tochon-Danguy, H.; Reutens, D.; Chan, G.; Woodward, M.

    2002-01-01

    Full text: Central nicotinic acetylcholine receptors (nAChR) mediate excitatory neurotransmission and contribute to a variety of brain functions including learning and memory. Post mortem studies in patients with Alzheimer's disease have revealed losses of nAChR from the neocortex and hippocampal formation with ligand binding studies showing a reduction of over 50% compared to normal elderly brains in the temporal cortex and hippocampus (Sabbagh 1998). This is consistent with the loss of cholinergic neurones that has been well documented in this condition. Nicotinic AChR are predominantly located presynaptically on the cholinergic neurones. Consequently the ability to image and quantify these receptors may provide a measure of cholinergic loss and therefore a test for the early diagnosis of Alzheimer's disease and for monitoring therapy designed' to preserve cholinergic neurones. Aging is known to effect nAChR (Hellstrom-Lindahl 2000) so this variable must be quantified and incorporated into analysis of the scans. Nicotinic receptors also have important modulatory effects on glutamate, dopamine, serotonin and noradrenaline release and profound receptor loss has been documented in Parkinson's disease and Diffuse Lewy Body disease in addition to AD. Abnormalities in the alpha 7 subtype have been reported in schizophrenia. Imaging studies of nAChR have been hampered by the lack of a suitable tracer for in-vivo imaging. Nicotine itself labelled with carbon-11 for PET imaging has been used but has been shown to reflect regional cerebral blood flow not nAChR due to high nonspecific binding (Nyback et al, 1994). Potent nAChR ligands such as Epibatidine have been very useful for in-vitro studies but are too toxic for routine human use due to strong activation of nAChR including those in the sympathetic ganglia (A3B4 subtype). Recently, the Abbott Laboratories developed A85380 (3-[2(S)-2- azetidinylmethoxyl]pyridine) an azetidine derivative of the 3-pyridyl ethers that has

  7. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  8. The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors

    DEFF Research Database (Denmark)

    Wieskopf, Jeffrey S; Mathur, Jayanti; Limapichat, Walrati

    2015-01-01

    expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated...... with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6's role in analgesia is at least partially due to direct interaction and cross...

  9. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Zhang, Yixi; Wang, Xin; Yang, Baojun; Hu, Yuanyuan; Huang, Lixin; Bass, Chris; Liu, Zewen

    2015-11-01

    Target-site resistance is commonly caused by qualitative changes in insecticide target-receptors and few studies have implicated quantitative changes in insecticide targets in resistance. Here we show that resistance to imidacloprid in a selected strain of Nilaparvata lugens is associated with a reduction in expression levels of the nicotinic acetylcholine receptor (nAChR) subunit Nlα8. Synergism bioassays of the selected strain suggested resistance was conferred, in part, by a target-site mechanism. Sequencing of N. lugens nAChR subunit genes identified no mutations associated with resistance, however, a decrease in mRNA and protein levels of Nlα8 was observed during selection. RNA interference knockdown of Nlα8 decreased the sensitivity of N. lugens to imidacloprid, demonstrating that a decrease in Nlα8 expression is sufficient to confer resistance in vivo. Radioligand binding assays revealed that the affinity of the high-affinity imidacloprid-binding site of native nAChRs was reduced by selection, and reducing the amount of Nlα8 cRNA injected into Xenopus oocytes significantly decreased imidacloprid potency on recombinant receptors. Taken together, these results provide strong evidence that a decrease in Nlα8 levels confers resistance to imidacloprid in N. lugens, and thus provides a rare example of target-site resistance associated with a quantitative rather than qualitative change. In insects, target-site mutations often cause high resistance to insecticides, such as neonicotinoids acting on nicotinic acetylcholine receptors (nAChRs). Here we found that a quantitative change in target-protein level, decrease in mRNA and protein levels of Nlα8, contributed importantly to imidacloprid resistance in Nilaparvata lugens. This finding provides a new target-site mechanism of insecticide resistance. © 2015 International Society for Neurochemistry.

  10. Inflammation-induced increase in nicotinic acetylcholine receptor current in cutaneous nociceptive DRG neurons from the adult rat.

    Science.gov (United States)

    Zhang, X-L; Albers, K M; Gold, M S

    2015-01-22

    The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha 7/125I-alpha-bungarotoxin receptor subtypes.

    Science.gov (United States)

    de Fiebre, C M; Meyer, E M; Henry, J C; Muraskin, S I; Kem, W R; Papke, R L

    1995-01-01

    Investigation of the naturally occurring, nicotinic agonist anabaseine and novel derivatives has shown that these compounds have cytoprotective and memory-enhancing effects. The hypothesis that these arise at least in part through actions on brain nicotinic receptors was evaluated by examining the ability of these compounds to displace the binding of nicotinic ligands and to affect the function of the alpha 4 beta 2 and alpha 7 receptor subtypes expressed in Xenopus oocytes. The derivative 3-(4)-dimethylaminocinnamylidine anabaseine (DMAC) was found to be a selective alpha 7 receptor agonist; it was more potent than nicotine, acetylcholine, anabaseine, and other derivatives at activating the alpha 7 receptor subtype, while displaying little agonist activity at alpha 4 beta 2 and other receptor subtypes. Compared with anabaseine and the other derivatives, DMAC was the most potent at displacing 125I-alpha-bungarotoxin binding (putative alpha 7) and the least potent at displacing [3H]cytisine binding (putative alpha 4 beta 2) to brain membranes. Independently of agonist activities, all of the novel compounds displayed secondary inhibitory activity at both receptor subtypes. At the alpha 4 beta 2 receptor subtype, inhibition by the 3-(2,4)-dimethoxybenzylidene derivative was enhanced by coapplication of acetylcholine, suggesting a noncompetitive form of inhibition. Anabaseine and nicotine prolonged the time course of activation of alpha 4 beta 2 receptors, compared with acetylcholine, suggesting sequential channel-blocking activity. As selective agonists, anabaseine derivatives such as DMAC may be useful for elucidating the function of alpha 7 nicotinic receptors, including their potential role(s) in the cytoprotective and memory-enhancing effects of nicotinic agents.

  12. The role of alpha-7 nicotinic receptors in food intake behaviors

    Directory of Open Access Journals (Sweden)

    Kristina L. McFadden

    2014-06-01

    Full Text Available Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin (POMC and neuropeptide Y (NPY. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.

  13. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Zwart, Ruud; Ursu, Daniel

    2015-01-01

    The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer's disease, it is critical to determine whether α7β2 nAChRs are present in the h......The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer's disease, it is critical to determine whether α7β2 nAChRs are present...

  14. Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site

    OpenAIRE

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.; Papke, Roger L.

    2009-01-01

    We have shown previously that a highly conserved Tyr in the nicotinic acetylcholine receptor (nAChR) ligand-binding domain (LBD) (α7 Tyr188 or α4 Tyr195) differentially regulates the activity of acetylcholine (ACh) and the α7-selective agonist 3-(4-hydroxy,2-methoxybenzylidene)anabaseine (4OH-GTS-21) in α4β2 and α7 nAChR. In this study, we mutated two highly conserved LBD Trp residues in human α7 and α4β2 and expressed the receptors in Xenopus laevis oocytes. α7 Re...

  15. Nootropic α7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators

    Science.gov (United States)

    Ng, Herman J.; Whittemore, Edward R.; Tran, Minhtam B.; Hogenkamp, Derk J.; Broide, Ron S.; Johnstone, Timothy B.; Zheng, Lijun; Stevens, Karen E.; Gee, Kelvin W.

    2007-01-01

    Activation of brain α7 nicotinic acetylcholine receptors (α7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of α7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective α7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-α-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at α7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of α7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction. PMID:17470817

  16. Nicotinic Acid-Mediated Activation of Both Membrane and Nuclear Receptors towards Therapeutic Glucocorticoid Mimetics for Treating Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    W. Todd Penberthy

    2009-01-01

    Full Text Available Acute attacks of multiple sclerosis (MS are most commonly treated with glucocorticoids, which can provide life-saving albeit only temporary symptomatic relief. The mechanism of action (MOA is now known to involve induction of indoleamine 2,3-dioxygenase (IDO and interleukin-10 (IL-10, where IL-10 requires subsequent heme oxygenase-1 (HMOX-1 induction. Ectopic expression studies reveal that even small changes in expression of IDO, HMOX-1, or mitochondrial superoxide dismutase (SOD2 can prevent demyelination in experimental autoimmune encephalomyelitis (EAE animal models of MS. An alternative to glucocorticoids is needed for a long-term treatment of MS. A distinctly short list of endogenous activators of both membrane G-protein-coupled receptors and nuclear peroxisome proliferating antigen receptors (PPARs demonstrably ameliorate EAE pathogenesis by MOAs resembling that of glucocorticoids. These dual activators and potential MS therapeutics include endocannabinoids and the prostaglandin 15-deoxy-Δ12,14-PGJ2. Nicotinamide profoundly ameliorates and prevents autoimmune-mediated demyelination in EAE via maintaining levels of nicotinamide adenine dinucleotide (NAD, without activating PPAR nor any G-protein-coupled receptor. By comparison, nicotinic acid provides even greater levels of NAD than nicotinamide in many tissues, while additionally activating the PPAR-dependent pathway already shown to provide relief in animal models of MS after activation of GPR109a/HM74a. Thus nicotinic acid is uniquely suited for providing therapeutic relief in MS. However nicotinic acid is unexamined in MS research. Nicotinic acid penetrates the blood brain barrier, cures pellagric dementia, has been used for over 50 years clinically without toxicity, and raises HDL concentrations to a greater degree than any pharmaceutical, thus providing unparalleled benefits against lipodystrophy. Summary analysis reveals that the expected therapeutic benefits of high-dose nicotinic

  17. Design, synthesis and biological evaluation of Erythrina alkaloid analogues as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Crestey, François; Jensen, Anders A.; Borch, Morten

    2013-01-01

    The synthesis of a new series of Erythrina alkaloid analogues and their pharmacological characterization at various nicotine acetylcholine receptor (nAChR) subtypes are described. The compounds were designed to be simplified analogues of aromatic erythrinanes with the aim of obtaining subtype...

  18. Long-term improvements in sensory inhibition with gestational choline supplementation linked to α7 nicotinic receptors through studies in Chrna7 null mutation mice.

    Science.gov (United States)

    Stevens, Karen E; Choo, Kevin S; Stitzel, Jerry A; Marks, Michael J; Adams, Catherine E

    2014-03-13

    Perinatal choline supplementation has produced several benefits in rodent models, from improved learning and memory to protection from the behavioral effects of fetal alcohol exposure. We have shown that supplemented choline through gestation and lactation produces long-term improvement in deficient sensory inhibition in DBA/2 mice which models a similar deficit in schizophrenia patients. The present study extends that research by feeding normal or supplemented choline diets to DBA/2 mice carrying the null mutation for the α7 nicotinic receptor gene (Chrna7). DBA/2 mice heterozygotic for Chrna7 were bred together. Dams were placed on supplemented (5 gm/kg diet) or normal (1.1 gm/kg diet) choline at mating and remained on the specific diet until offspring weaning. Thereafter, offspring were fed standard rodent chow. Adult offspring were assessed for sensory inhibition. Brains were obtained to ascertain hippocampal α7 nicotinic receptor levels. Choline-supplemented mice heterozygotic or null-mutant for Chrna7 failed to show improvement in sensory inhibition. Only wildtype choline-supplemented mice showed improvement with the effect solely through a decrease in test amplitude. This supports the hypothesis that gestational-choline supplementation is acting through the α7 nicotinic receptor to improve sensory inhibition. Although there was a significant gene-dose-related change in hippocampal α7 receptor numbers, binding studies did not reveal any choline-dose-related change in binding in any hippocampal region, the interaction being driven by a significant genotype main effect (wildtype>heterozygote>null mutant). These data parallel a human study wherein the offspring of pregnant women receiving choline supplementation during gestation, showed better sensory inhibition than offspring of women on placebo. Published by Elsevier B.V.

  19. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (5...

  20. Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine alpha4beta2 receptors

    DEFF Research Database (Denmark)

    Rohde, Line Aagot Hede; Ahring, Philip Kiær; Jensen, Marianne Lerbech

    2012-01-01

    The a4ß2 subtype of the nicotinic acetylcholine receptor (nAChR) has been pursued as a drug target for treatment of psychiatric and neurodegenerative disorders and smoking cessation aids for decades. Still, a thorough understanding of structure-function relationships of a4ß2 agonists is lacking...

  1. Carbamoylcholine analogs as nicotinic acetylcholine receptor agonists--structural modifications of 3-(dimethylamino)butyl dimethylcarbamate (DMABC)

    DEFF Research Database (Denmark)

    Hansen, Camilla Petrycer; Jensen, Anders Asbjørn; Balle, Thomas

    2009-01-01

    Compounds based on the 3-(dimethylamino)butyl dimethylcarbamate (DMABC) scaffold were synthesized and pharmacologically characterized at the alpha(4)beta(2), alpha(3)beta(4,) alpha(4)beta(4) and alpha(7) neuronal nicotinic acetylcholine receptors (nAChRs). The carbamate functionality and a small...

  2. Menthol binding and inhibition of α7-nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Abrar Ashoor

    Full Text Available Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca(2+-dependent Cl(- channels, since menthol inhibition remained unchanged by intracellular injection of the Ca(2+ chelator BAPTA and perfusion with Ca(2+-free bathing solution containing Ba(2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [(125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca(2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner.

  3. The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2012-01-01

    The anti-inflammatory properties of, particularly the α7, nicotinic acetylcholine receptors (nAChRs) in the peripheral immune system are well documented. There are also reports of anti-inflammatory actions of nicotine in the CNS, but it is unclear, whether this is due to activation or inhibition...

  4. Nicotine-Mediated Regulation of Nicotinic Acetylcholine Receptors in Non-Small Cell Lung Adenocarcinoma by E2F1 and STAT1 Transcription Factors.

    Directory of Open Access Journals (Sweden)

    Courtney Schaal

    Full Text Available Cigarette smoking is the major risk factor for non-small cell lung cancer (NSCLC, which accounts for 80% of all lung cancers. Nicotine, the addictive component of tobacco smoke, can induce proliferation, migration, invasion, epithelial-mesenchymal transition (EMT, angiogenesis, and survival in NSCLC cell lines, as well as growth and metastasis of NSCLC in mice. This nicotine-mediated tumor progression is facilitated through activation of nicotinic acetylcholine receptors (nAChRs, specifically the α7 subunit; however, how the α7 nAChR gene is regulated in lung adenocarcinoma is not fully clear. Here we demonstrate that the α7 nAChR gene promoter is differentially regulated by E2F and STAT transcription factors through a competitive interplay; E2F1 induces the promoter, while STAT transcription factors repress it by binding to an overlapping site at a region -294 through -463bp upstream of the transcription start site. Treatment of cells with nicotine induced the mRNA and protein levels of α7 nAChR; this could be abrogated by treatment with inhibitors targeting Src, PI3K, MEK, α7 nAChR, CDK4/6 or a disruptor of the Rb-Raf-1 interaction. Further, nicotine-mediated induction of α7 nAChR was reduced when E2F1 was depleted and in contrast elevated when STAT1 was depleted by siRNAs. Interestingly, extracts from e-cigarettes, which have recently emerged as healthier alternatives to traditional cigarette smoking, can also induce α7 nAChR expression in a manner similar to nicotine. These results suggest an autoregulatory feed-forward loop that induces the levels of α7 nAChR upon exposure to nicotine, which enhances the strength of the signal. It can be imagined that such an induction of α7 nAChR contributes to the tumor-promoting functions of nicotine.

  5. Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain

    DEFF Research Database (Denmark)

    Wu, Jie; Liu, Qiang; Tang, Pei

    2016-01-01

    The α7 nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the brain, where it maintains various neuronal functions including (but not limited to) learning and memory. In addition, the protein expression levels of α7 nAChRs are altered in various brain disorders. The classic rule...... governing α7 nAChR assembly in the mammalian brain was that it was assembled from five α7 subunits to form a homomeric receptor pentamer. However, emerging evidence demonstrates the presence of heteromeric α7 nAChRs in heterologously expressed systems and naturally in brain neurons, where α7 subunits are co...... nAChR, which have provided new insights into the understanding of a novel target of cholinergic signaling....

  6. Molecular determinants of subtype-selective efficacies of cytisine and the novel compound NS3861 at heteromeric nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Harpsøe, Kasper; Hald, Helle; Timmermann, Daniel B

    2013-01-01

    Deciphering which specific agonist-receptor interactions affect efficacy levels is of high importance, because this will ultimately aid in designing selective drugs. The novel compound NS3861 and cytisine are agonists of nicotinic acetylcholine receptors (nAChRs) and both bind with high affinity...

  7. Cooperative regulation of non-small cell lung carcinoma by nicotinic and beta-adrenergic receptors: a novel target for intervention.

    Directory of Open Access Journals (Sweden)

    Hussein A N Al-Wadei

    Full Text Available Lung cancer is the leading cause of cancer death; 80-85% of lung cancer cases are non-small cell lung cancer (NSCLC. Smoking is a documented risk factor for the development of this cancer. Although nicotine does not have the ability to initiate carcinogenic events, recent studies have implicated nicotine in growth stimulation of NSCLC. Using three NSCLC cell lines (NCI-H322, NCI-H441 and NCI-H1299, we identified the cooperation of nicotinic acetylcholine receptors (nAChRs and β-adrenergic receptors (β-ARs as principal regulators of these effects. Proliferation was measured by thymidine incorporation and MTT assays, and Western blots were used to monitor the upregulation of the nAChRs and activation of signaling molecules. Noradrenaline and GABA were measured by immunoassays. Nicotine-treated NSCLC cells showed significant induction of the α7nAChR and α4nAChR, along with significant inductions of p-CREB and p-ERK1/2 accompanied by increases in the stress neurotransmitter noradrenaline, which in turn led to the observed increase in DNA synthesis and cell proliferation. Effects on cell proliferation and signaling proteins were reversed by the α7nAChR antagonist α-BTX or the β-blocker propranolol. Nicotine treatment also down-regulated expression of the GABA synthesizing enzyme GAD 65 and the level of endogenous GABA, while treatment of NSCLC cells with GABA inhibited cell proliferation. Interestingly, GABA acts by reducing β-adrenergic activated cAMP signaling. Our findings suggest that nicotine-induced activation of this autocrine noradrenaline-initiated signaling cascade and concomitant deficiency in inhibitory GABA, similar to modulation of these neurotransmitters in the nicotine-addicted brain, may contribute to the development of NSCLC in smokers. Our data suggest that exposure to nicotine either by tobacco smoke or nicotine supplements facilitates growth and progression of NSCLC and that pharmacological intervention by β blocker may

  8. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues.

    Directory of Open Access Journals (Sweden)

    Karine Guillem

    Full Text Available Nicotine self-administration (SA is maintained by several variables, including the reinforcing properties of nicotine-paired cues and the nicotine-induced amplification of those cue properties. The nucleus accumbens (NAc is implicated in mediating the influence of these variables, though the underlying neurophysiological mechanisms are not yet understood. In the present study, Long-Evans rats were trained to self-administer nicotine. During SA sessions each press of a lever was followed by an intravenous infusion of nicotine (30 µg/kg paired with a combined light-tone cue. Extracellular recordings of single-neuron activity showed that 20% of neurons exhibited a phasic change in firing during the nicotine-directed operant, the light-tone cue, or both. The phasic change in firing for 98% of neurons was an increase. Sixty-two percent of NAc neurons additionally or alternatively showed a sustained decrease in average firing during the SA session relative to a presession baseline period. These session decreases in firing were significantly less prevalent in a group of neurons that were activated during either the operant or the cue than in a group of neurons that were nonresponsive during those events (referred to as task-activated and task-nonactivated neurons, respectively. Moreover, the session decrease in firing was dose-dependent for only the task-nonactivated neurons. The data of the present investigation provide supportive correlational evidence for two hypotheses: (1 excitatory neurophysiological mechanisms mediate the NAc role in cue-maintenance of nicotine SA, and (2 a differential nicotine-induced inhibition of task-activated and task-nonactivated neurons mediates the NAc role in nicotine-induced amplification of cue effects on nicotine SA.

  9. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    Science.gov (United States)

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  10. A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus.

    Science.gov (United States)

    Hunter, B E; de Fiebre, C M; Papke, R L; Kem, W R; Meyer, E M

    1994-02-28

    Long-term potentiation (LTP) can be modulated by a number of neurotransmitter receptors including muscarinic and GABAergic receptor types. We have found that a novel nicotinic agonist, 2,4-dimethoxybenzylidene anabaseine (DMXB), facilitated the induction of LTP in the hippocampus in a dose-dependent and mecamylamine-sensitive manner. DMXB displaced high affinity nicotinic [125I]alpha-bungarotoxin and [3H]acetylcholine binding in rat brain. Xenopus oocyte studies demonstrated that DMXB has agonist activity at alpha 7 but not alpha 4/beta 2 nicotinic receptor subtypes. These results indicated that DMXB is a novel nicotinic agonist with apparent specificity for the alpha 7/alpha-bungarotoxin nicotinic receptor subtype and indicate that nicotinic receptor activation is capable of modulating the induction of long-term potentiation.

  11. Synthesis and pharmacological evaluation of DHβE analogs as neuronal nicotinic acetylcholine receptor antagonists

    DEFF Research Database (Denmark)

    Jepsen, Tue H.; Jensen, Anders A.; Lund, Mads Henrik

    2014-01-01

    Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis...

  12. Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations

    DEFF Research Database (Denmark)

    de la Fuente Revenga, M; Balle, Thomas; Jensen, Anders A.

    2015-01-01

    Exploration of small selective ligands for the nicotinic acetylcholine receptors (nAChRs) based on acetylcholine (ACh) has led to the development of potent agonists with clear preference for the α4β2 nAChR, the most prevalent nAChR subtype in the central nervous system. In this work we present...

  13. Dianicline, a novel α4β2 nicotinic acetylcholine receptor partial agonist, for smoking cessation: a randomized placebo-controlled clinical trial

    DEFF Research Database (Denmark)

    Tonstad, Serena; Holme, Ingar; Tønnesen, Philip

    2011-01-01

    Dianicline is a α4β2 nicotinic acetylcholine receptor partial agonist, a class of drugs that includes varenicline and cytisine. Varenicline is efficacious for smoking cessation, while cytisine has not been studied systematically. The efficacy of dianicline has not been previously tested in an ade......Dianicline is a α4β2 nicotinic acetylcholine receptor partial agonist, a class of drugs that includes varenicline and cytisine. Varenicline is efficacious for smoking cessation, while cytisine has not been studied systematically. The efficacy of dianicline has not been previously tested...

  14. Modification of the philanthotoxin-343 polyamine moiety results in different structure-activity profiles at muscle nicotinic ACh, NMDA and AMPA receptors

    DEFF Research Database (Denmark)

    Mellor, I R; Brier, T J; Pluteanu, F

    2003-01-01

    Voltage-dependent, non-competitive inhibition by philanthotoxin-343 (PhTX-343) analogues, with reduced charge or length, of nicotinic acetylcholine receptors (nAChR) of TE671 cells and ionotropic glutamate receptors (N-methyl-D-aspartate receptors (NMDAR) and alpha-amino-3-hydroxy-5-methyl-4...

  15. Up-regulation of the Neuronal Nicotinic Receptor α7 by HIV Glycoprotein 120

    Science.gov (United States)

    Ballester, Leomar Y.; Capó-Vélez, Coral M.; García-Beltrán, Wilfredo F.; Ramos, Félix M.; Vázquez-Rosa, Edwin; Ríos, Raymond; Mercado, José R.; Meléndez, Roberto I.; Lasalde-Dominicci, José A.

    2012-01-01

    Approximately 30–50% of the >30 million HIV-infected subjects develop neurological complications ranging from mild symptoms to dementia. HIV does not infect neurons, and the molecular mechanisms behind HIV-associated neurocognitive decline are not understood. There are several hypotheses to explain the development of dementia in HIV+ individuals, including neuroinflammation mediated by infected microglia and neuronal toxicity by HIV proteins. A key protein associated with the neurological complications of HIV, gp120, forms part of the viral envelope and can be found in the CSF of infected individuals. HIV-1-gp120 interacts with several receptors including CD4, CCR5, CXCR4, and nicotinic acetylcholine receptors (nAChRs). However, the role of nAChRs in HIV-associated neurocognitive disorder has not been investigated. We studied the effects of gp120IIIB on the expression and function of the nicotinic receptor α7 (α7-nAChR). Our results show that gp120, through activation of the CXCR4 chemokine receptor, induces a functional up-regulation of α7-nAChRs. Because α7-nAChRs have a high permeability to Ca2+, we performed TUNEL staining to investigate the effects of receptor up-regulation on cell viability. Our data revealed an increase in cell death, which was blocked by the selective antagonist α-bungarotoxin. The in vitro data are supported by RT-PCR and Western blot analysis, confirming a remarkable up-regulation of the α7-nAChR in gp120-transgenic mice brains. Specifically, α7-nAChR up-regulation is observed in mouse striatum, a region severely affected in HIV+ patients. In summary, CXCR4 activation induces up-regulation of α7-nAChR, causing cell death, suggesting that α7-nAChR is a previously unrecognized contributor to the neurotoxicity associated with HIV infection. PMID:22084248

  16. Functional aspects of dexamethasone upregulated nicotinic acetylcholine receptors in C2C12 myotubes

    NARCIS (Netherlands)

    Maestrone, E; Lagostena, L; Henning, RH; DenHertog, A; Nobile, M

    Three days of treatment with the glucocorticoid dexamethasone (1 nM-mu M) induced a concentration-dependent up-regulation of muscle nicotinic acetylcholine receptor (nAChR) in C2C12 mouse myotubes (EC(50)=10+/-7.3 nM), as assessed by [H-3]alpha-BuTx binding. The maximum increase in binding amounted

  17. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n...

  18. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures.

    Science.gov (United States)

    Martin, Shelley E; de Fiebre, Nancy Ellen C; de Fiebre, Christopher M

    2004-10-01

    Studies have suggested that the neuroprotective actions of alpha7 nicotinic agonists arise from activation of receptors and not from the extensive desensitization which rapidly follows activation. Here, we report that the alpha7-selective nicotinic antagonist, methyllycaconitine (MLA), protects against beta-amyloid-induced neurotoxicity; whereas the alpha4beta2-selective antagonist, dihydro-beta-erythroidine, does not. These findings suggest that neuroprotective actions of alpha7-acting agents arise from receptor inhibition/desensitization and that alpha7 antagonists may be useful neuroprotective agents.

  19. α6β2* and α4β2* Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease

    Science.gov (United States)

    Wonnacott, Susan

    2011-01-01

    Parkinson's disease is a debilitating movement disorder characterized by a generalized dysfunction of the nervous system, with a particularly prominent decline in the nigrostriatal dopaminergic pathway. Although there is currently no cure, drugs targeting the dopaminergic system provide major symptomatic relief. As well, agents directed to other neurotransmitter systems are of therapeutic benefit. Such drugs may act by directly improving functional deficits in these other systems, or they may restore aberrant motor activity that arises as a result of a dopaminergic imbalance. Recent research attention has focused on a role for drugs targeting the nicotinic cholinergic systems. The rationale for such work stems from basic research findings that there is an extensive overlap in the organization and function of the nicotinic cholinergic and dopaminergic systems in the basal ganglia. In addition, nicotinic acetylcholine receptor (nAChR) drugs could have clinical potential for Parkinson's disease. Evidence for this proposition stems from studies with experimental animal models showing that nicotine protects against neurotoxin-induced nigrostriatal damage and improves motor complications associated with l-DOPA, the “gold standard” for Parkinson's disease treatment. Nicotine interacts with multiple central nervous system receptors to generate therapeutic responses but also produces side effects. It is important therefore to identify the nAChR subtypes most beneficial for treating Parkinson's disease. Here we review nAChRs with particular emphasis on the subtypes that contribute to basal ganglia function. Accumulating evidence suggests that drugs targeting α6β2* and α4β2* nAChR may prove useful in the management of Parkinson's disease. PMID:21969327

  20. [The effect of Toll-like receptor 4 in nicotine suppressing the osteogenic potential of periodontal ligament stem cells].

    Science.gov (United States)

    Luan, Yan; Deqin, Yang

    2017-08-01

    Objective To explore the impact of nicotine on proliferation and osteogenic capability of periodontal ligament stem cells (PDLSCs), and the role of Toll-like receptor 4 (TLR4) in nicotine, suppressing the osteogenic capability of PDLSCs. Methods PDLSCs were cultured in vitro, and the flow cytometer was used to identify the surface antigen markers of PDLSCs. WST-1 was used to detect the proliferation ability of PDLSCs, which were stimulated by different concentrations of nicotine. Alizarin red staining was used to observe the formation of mineralized nodules after PDLSCs stimulation with different concentrations of nicotine. Real-time polymerase chain reaction (RT-PCR) and Western blot were used to detect the change in osteogenic potential of PDLSCs stimulated by nicotine, after TAK-242, and with the inhibitor of TLR4. Results PDLSCs expressed mesenchymal stem cell-associated markers CD90 and CD105. When the concentration of nicotine was 10⁻⁴ mol·L⁻¹, the PDLSC proliferation could be suppressed after 3 d compared with the control group (Pnicotine suppressed the PDLSCs (PNicotine suppresses the proliferation and osteogenic capability of PDLSCs, which may be regulated by TLR4.

  1. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin

    International Nuclear Information System (INIS)

    Clarke, P.B.; Schwartz, R.D.; Paul, S.M.; Pert, C.B.; Pert, A.

    1985-01-01

    Three radioligands have been commonly used to label putative nicotinic cholinoceptors in the mammalian central nervous system: the agonists [ 3 H]nicotine and [ 3 H]acetylcholine ([ 3 H]ACh--in the presence of atropine to block muscarinic receptors), and the snake venom extract, [ 125 I]-alpha-bungarotoxin([ 125 I]BTX), which acts as a nicotinic antagonist at the neuromuscular junction. Binding studies employing brain homogenates indicate that the regional distributions of both [ 3 H]nicotine and [ 3 H]ACh differ from that of [ 125 I]BTX. The possible relationship between brain sites bound by [ 3 H]nicotine and [ 3 H]ACh has not been examined directly. The authors have used the technique of autoradiography to produce detailed maps of [ 3 H]nicotine, [ 3 H]ACh, and [ 125 I]BTX labeling; near-adjacent tissue sections were compared at many levels of the rat brain. The maps of high affinity agonist labeling are strikingly concordant, with highest densities in the interpeduncular nucleus, most thalamic nuclei, superior colliculus, medial habenula, presubiculum, cerebral cortex (layers I and III/IV), and the substantia nigra pars compacta/ventral tegmental area. The pattern of [ 125 I]BTX binding is strikingly different, the only notable overlap with agonist binding being the cerebral cortex (layer I) and superior colliculus. [ 125 I]BTX binding is also dense in the inferior colliculus, cerebral cortex (layer VI), hypothalamus, and hippocampus, but is virtually absent in thalamus. Various lines of evidence suggest that the high affinity agonist-binding sites in brain correspond to nicotinic cholinergic receptors similar to those found at autonomic ganglia; BTX-binding sites may also serve as receptors for nicotine and are possibly related to neuromuscular nicotinic cholinoceptors

  2. Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability

    Science.gov (United States)

    Fowler, Christie D.; Kenny, Paul J.

    2013-01-01

    Nicotine stimulates brain reward circuitries, most prominently the mesocorticolimbic dopamine system, and this action is considered critical in establishing and maintaining the tobacco smoking habit. Compounds that attenuate nicotine reward are considered promising therapeutic candidates for tobacco dependence, but many of these agents have other actions that limit their potential utility. Nicotine is also highly noxious, particularly at higher doses, and aversive reactions to nicotine after initial exposure can decrease the likelihood of developing a tobacco habit in many first time smokers. Nevertheless, relatively little is known about the mechanisms of nicotine aversion. The purpose of this review is to present recent new insights into the neurobiological mechanisms that regulate avoidance of nicotine. First, the role of the mesocorticolimbic system, so often associated with nicotine reward, in regulating nicotine aversion is highlighted. Second, genetic variation that modifies noxious responses to nicotine and thereby influences vulnerability to tobacco dependence, in particular variation in the CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster, will be discussed. Third, the role of the habenular complex in nicotine aversion, primarily medial habenular projections to the interpeduncular nucleus (IPN) but also lateral habenular projections to rostromedial tegmental nucleus (RMTg) and ventral tegmental area (VTA) are reviewed. Forth, brain circuits that are enriched in nAChRs, but whose role in nicotine avoidance has not yet been assessed, will be proposed. Finally, the feasibility of developing novel therapeutic agents for tobacco dependence that act not by blocking nicotine reward but by enhancing nicotine avoidance will be considered. PMID:24055497

  3. Protection against MDMA-induced dopaminergic neurotoxicity in mice by methyllycaconitine: involvement of nicotinic receptors.

    Science.gov (United States)

    Chipana, C; Camarasa, J; Pubill, D; Escubedo, E

    2006-09-01

    Methylenedioxymethamphetamine (MDMA) is a relatively selective dopaminergic neurotoxin in mice. Previous studies demonstrated the participation of alpha-7 nicotinic receptors (nAChR) in the neurotoxic effect of methamphetamine. The aim of this paper was to study the role of this receptor type in the acute effects and neurotoxicity of MDMA in mice. In vivo, methyllycaconitine (MLA), a specific alpha-7 nAChR antagonist, significantly prevented MDMA-induced neurotoxicity at dopaminergic but not at serotonergic level, without affecting MDMA-induced hyperthermia. Glial activation was also fully prevented by MLA. In vitro, MDMA induced intrasynaptosomal reactive oxygen species (ROS) generation, which was calcium-, nitric-oxide synthase-, and protein kinase C-dependent. Also, the increase in ROS was prevented by MLA and alpha-bungarotoxin. Experiments with reserpine point to endogenous dopamine (DA) as the main source of MDMA-induced ROS. MLA also brought the MDMA-induced inhibition of [3H]DA uptake down, from 73% to 11%. We demonstrate that a coordinated activation of alpha-7 nAChR, blockade of DA transporter function and displacement of DA from intracellular stores induced by MDMA produces a neurotoxic effect that can be prevented by MLA, suggesting that alpha-7 nAChR have a key role in the MDMA neurotoxicity in mice; however, the involvement of nicotinic receptors containing the beta2 subunit cannot be conclusively ruled out.

  4. Interaction of alpha-conotoxin ImII and its analogs with nicotinic receptors and acetylcholine-binding proteins: additional binding sites on Torpedo receptor

    NARCIS (Netherlands)

    Kasheverov, I.E.; Zhmak, M.N.; Fish, A.; Rucktooa, P.; Khruschov, A.Y.; Osipov, A.V.; Ziganshin, R.H.; D'Hoedt, D.; Bertrand, D.; Sixma, T.K.; Smit, A.B.; Tsetlin, V.I.

    2009-01-01

    α-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. α-Conotoxins blocking muscle-type or α7 nAChRs compete with α-bungarotoxin. However, α-conotoxin ImII, a close homolog of the α7

  5. Neonatal Nicotine Exposure Increases Excitatory Synaptic Transmission and Attenuates Nicotine-stimulated GABA release in the Adult Rat Hippocampus

    Science.gov (United States)

    Damborsky, Joanne C.; Griffith, William H.; Winzer-Serhan, Ursula H.

    2014-01-01

    Developmental exposure to nicotine has been linked to long-lasting changes in synaptic transmission which may contribute to behavioral abnormalities seen in offspring of women who smoke during pregnancy. Here, we examined the long-lasting effects of developmental nicotine exposure on glutamatergic and GABAergic neurotransmission, and on acute nicotine-induced glutamate and GABA release in the adult hippocampus, a structure important in cognitive and emotional behaviors. We utilized a chronic neonatal nicotine treatment model to administer nicotine (6 mg/kg/day) to rat pups from postnatal day (P) 1–7, a period that falls developmentally into the third human trimester. Using whole-cell voltage clamp recordings from CA1 pyramidal neurons in hippocampal slices, we measured excitatory and inhibitory postsynaptic currents in neonatally control- and nicotine-treated young adult males. Neonatal nicotine exposure significantly increased AMPA receptor-mediated spontaneous and evoked excitatory signaling, with no change in glutamate release probability in adults. Conversely, there was no increase in spontaneous GABAergic neurotransmission in nicotine-males. Chronic neonatal nicotine treatment had no effect on acute nicotine-stimulated glutamate release in adults, but acute nicotine-stimulated GABA release was significantly attenuated. Thus, neonatal nicotine exposure results in a persistent net increase in excitation and a concurrent loss of nicotinic acetylcholine receptor (nAChR)-mediated regulation of presynaptic GABA but not glutamate release, which would exacerbate excitation following endogenous or exogenous nAChR activation. Our data underscore an important role for nAChRs in hippocampal excitatory synapse development, and suggest selective long-term changes at specific presynaptic nAChRs which together could explain some of the behavioral abnormalities associated with maternal smoking. PMID:24950455

  6. Inside-out neuropharmacology of nicotinic drugs.

    Science.gov (United States)

    Henderson, Brandon J; Lester, Henry A

    2015-09-01

    Upregulation of neuronal nicotinic acetylcholine receptors (AChRs) is a venerable result of chronic exposure to nicotine; but it is one of several consequences of pharmacological chaperoning by nicotine and by some other nicotinic ligands, especially agonists. Nicotinic ligands permeate through cell membranes, bind to immature AChR oligomers, elicit incompletely understood conformational reorganizations, increase the interaction between adjacent AChR subunits, and enhance the maturation process toward stable AChR pentamers. These changes and stabilizations in turn lead to increases in both anterograde and retrograde traffic within the early secretory pathway. In addition to the eventual upregulation of AChRs at the plasma membrane, other effects of pharmacological chaperoning include modifications to endoplasmic reticulum stress and to the unfolded protein response. Because these processes depend on pharmacological chaperoning within intracellular organelles, we group them as "inside-out pharmacology". This term contrasts with the better-known, acute, "outside-in" effects of activating and desensitizing plasma membrane AChRs. We review current knowledge concerning the mechanisms and consequences of inside-out pharmacology. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. ANTAGONISM OF PROGESTERONE RECEPTOR SUPPRESSES CAROTID BODY RESPONSES TO HYPOXIA AND NICOTINE IN RAT PUPS

    OpenAIRE

    JOSEPH, V.; NIANE, L. M.; BAIRAM, A.

    2012-01-01

    We tested the hypothesis that antagonism of progesterone receptor (PR) in newborn rats alters carotid body and respiratory responses to hypoxia and nicotinic receptor agonists. Rats were treated with the PR antagonist mifepristone (daily oral gavage 40 μg/g/d) or vehicle between post-natal days 3 and 15. In 11–14-day-old rats, we used in vitro carotid body/carotid sinus nerve preparation and whole body plethysmography to assess the carotid body and ventilatory responses to hypoxia (65 mmHg in...

  8. Nicotine and caffeine alter the effects of the LPS- primed mesenchymal stem cells on the co-cultured neutrophils.

    Science.gov (United States)

    Abbasi, Ardeshir; Kukia, Nasim Rahmani; Froushani, Seyyed Meysam Abtahi; Hashemi, Seyed Mahmoud

    2018-04-15

    Mesenchymal stem cells (MSCs) express some of the nicotinic receptor subunits and adenosine receptors. The communication between tissue MSCs with neutrophils has been shown in previous studies. The aim of the present study is to determine the role of nicotine or caffeine on MSCs and its effects on neutrophils. After the isolation, MSCs were pulsed with LPS (10 ng/ml) for 1 h. Then, MSCs were incubated with different concentrations of caffeine (0.1, 0.5 and 1 mM) and or with different concentrations of nicotine (0.1, 0.5, and 1 μM) for 48 h. Afterwards, the medium was aspirated and the cells were used for co-culture experiment with neutrophil. The obtained data showed that LPS primed MSCs could decrease neutrophil vitality, whereas the treatment of MSCs with nicotine and/or especially a treatment with caffeine reverse this effect. Obtained data showed that when the LPS-primed MSCs were treated with nicotine or caffeine, the vitality of co-cultured neutrophils was significantly increased. The rate of the respiratory burst of neutrophils after co-culture by LPS-primed MSCs was decreased compared to the respiratory burst of neutrophil alone. Nicotine and/or caffeine treatment could reverse this reduction. Generally, these findings provide a new insight into understanding the anti-inflammatory and immunomodulatory effects of nicotine and caffeine. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Olsen, G M; Wiborg, O

    2009-01-01

    Current literature suggests involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. However, it is controversial whether the antidepressant-like effect of nAChR modulation is induced by activation, desensitization or inhibition of central nAChRs. In addition, the specific n......AChR subtype/s involved remains unknown. In this study, we systematically compared the effects of non-selective and selective nicotinic agonists and antagonists in two different tests for antidepressant effects in mice: the tail suspension test and the forced swim test. Compounds: nicotine, RJR-2403 (alpha4...

  10. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  11. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    International Nuclear Information System (INIS)

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-01-01

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  12. Nicotinic cholinergic receptor in brain detected by binding of. cap alpha. -(/sup 3/H)bungarotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Eterovic, V A; Bennett, E L

    1974-01-01

    ..cap alpha..-(/sup 3/H)bungarotoxin was prepared by catalytic reduction of iodinated ..cap alpha..-bungarotoxin with tritium gas. Crude mitochondrial fraction from rat cerebral cortex bound 40 x 10/sup -15/ to 60 x 10/sup -15/ moles of ..cap alpha..-(/sup 3/H)bungarotoxin per mg of protein. This binding was reduced by 50% in the presence of approx. 10/sup -6/ M d-tubocurarine or nicotine, 10/sup -5/ M acetylcholine, 10/sup -4/ M carbamylcholine or decamethonium or 10/sup -3/ M atropine. Hexamethonium and eserine were the least effective of the drugs tested. Crude mitochondrial fraction was separated into myelin, nerve endings, and mitochondria. The highest binding of toxin per mg of protein was found in nerve endings, as well as the greatest inhibition of toxin binding by d-tubocurarine. Binding of ..cap alpha..-(/sup 3/H)bungarotoxin to membranes obtained by osmotic shock of the crude mitochondrial fraction indicates that the receptor for the toxin is membrane bound. /sup 125/I-labeled ..cap alpha..-bungarotoxin, prepared with Na/sup 125/I and chloramine T, was highly specific for the acetylcholine receptor in diaphragm, however, it was less specific and less reliable than ..cap alpha..-(/sup 3/H)bungarotoxin in brain. It is concluded that a nicotinic cholinergic receptor exists in brain, and that ..cap alpha..-(/sup 3/H)bungarotoxin is a suitable probe for this receptor.

  13. The Nicotinic Acetylcholine Receptor as a Target for Antidepressant Drug Development

    Directory of Open Access Journals (Sweden)

    Noah S. Philip

    2012-01-01

    Full Text Available An important new area of antidepressant drug development involves targeting the nicotinic acetylcholine receptor (nAChR. This receptor, which is distributed widely in regions of the brain associated with depression, is also implicated in other important processes that are relevant to depression, such as stress and inflammation. The two classes of drugs that target nAChRs can be broadly divided into mecamylamine- and cytisine-based compounds. These drugs probably exert their effects via antagonism at α4β2 nAChRs, and strong preclinical data support the antidepressant efficacy of both classes when used in conjunction with other primary antidepressants (e.g., monoamine reuptake inhibitors. Although clinical data remain limited, preliminary results in this area constitute a compelling argument for further evaluation of the nAChR as a target for future antidepressant drug development.

  14. A7DB: a relational database for mutational, physiological and pharmacological data related to the α7 nicotinic acetylcholine receptor

    Directory of Open Access Journals (Sweden)

    Sansom Mark SP

    2005-01-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs are pentameric proteins that are important drug targets for a variety of diseases including Alzheimer's, schizophrenia and various forms of epilepsy. One of the most intensively studied nAChR subunits in recent years has been α7. This subunit can form functional homomeric pentamers (α75, which can make interpretation of physiological and structural data much simpler. The growing amount of structural, pharmacological and physiological data for these receptors indicates the need for a dedicated and accurate database to provide a means to access this information in a coherent manner. Description A7DB http://www.lgics.org/a7db/ is a new relational database of manually curated experimental physiological data associated with the α7 nAChR. It aims to store as much of the pharmacology, physiology and structural data pertaining to the α7 nAChR. The data is accessed via web interface that allows a user to search the data in multiple ways: 1 a simple text query 2 an incremental query builder 3 an interactive query builder and 4 a file-based uploadable query. It currently holds more than 460 separately reported experiments on over 85 mutations. Conclusions A7DB will be a useful tool to molecular biologists and bioinformaticians not only working on the α7 receptor family of proteins but also in the more general context of nicotinic receptor modelling. Furthermore it sets a precedent for expansion with the inclusion of all nicotinic receptor families and eventually all cys-loop receptor families.

  15. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Emiliane Taillebois

    Full Text Available Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI, thiamethoxam (TMX and clothianidin (CLT. Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM. Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml and TMX (LC50 = 0.034 µg/ml were more toxic than CLT (LC50 = 0.118 µg/ml. The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  16. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    DEFF Research Database (Denmark)

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  17. Oxime reactivators and their in vivo and in vitro effects on nicotinic receptors

    Czech Academy of Sciences Publication Activity Database

    Soukup, O.; Krůšek, Jan; Kaniaková, Martina; Kumar, U. K.; Oz, M.; Jun, D.; Fusek, J.; Kuča, K.; Tobin, G.

    2011-01-01

    Roč. 60, č. 4 (2011), s. 679-686 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA202/09/0806; GA MŠk(CZ) LC554 Grant - others:GA ČR(CZ) GAP303/11/1907 Institutional research plan: CEZ:AV0Z50110509 Keywords : organophosphates * patch-clamp * nicotinic receptors * reactivator * isometric muscle contraction * TE671 cells Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.555, year: 2011

  18. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    Science.gov (United States)

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  19. Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system.

    Science.gov (United States)

    Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N

    2015-12-01

    Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.

  20. The Novel, Nicotinic Alpha7 Receptor Partial Agonist, BMS-933043, Improves Cognition and Sensory Processing in Preclinical Models of Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Linda J Bristow

    Full Text Available The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R-N-(6-(1H-imidazol-1-yl-4-pyrimidinyl-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043, in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat and 0.29 micromolar (human. BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM. BMS-933043 treatment i improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc, ii reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc and set shift performance in rats (1-10 mg/kg, po and iii reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po. BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc and mismatch negativity (0.03-3 mg/kg, sc in rats treated with S(+ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.

  1. Covalent Trapping of Methyllycaconitine at the α4-α4 Interface of the α4β2 Nicotinic Acetylcholine Receptor

    DEFF Research Database (Denmark)

    Absalom, Nathan L; Quek, Gracia; Lewis, Trevor M

    2013-01-01

    The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh), but their pharmacologi......The α4β2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, with different sensitivities to acetylcholine (ACh...

  2. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H

    2009-01-01

    in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment induced by PCP...

  3. NMR Structure and Action on Nicotinic Acetylcholine Receptors of Water-soluble Domain of Human LYNX1

    Czech Academy of Sciences Publication Activity Database

    Lyukmanova, E. N.; Shenkarev, Z. O.; Shulepko, M. A.; Mineev, K. S.; D´Hoedt, D.; Kasheverov, I. E.; Filkin, S. Yu.; Krivolapova, A. P.; Janíčková, Helena; Doležal, Vladimír; Dolgikh, D. A.; Arseniev, A. S.; Bertrand, D.; Tsetlin, V.I.; Kirpichnikov, M. P.

    2011-01-01

    Roč. 286, č. 12 (2011), s. 10618-10627 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA305/09/0681 Institutional research plan: CEZ:AV0Z50110509 Keywords : NMR structure * nicotinic acetylcholine receptor * water-soluble domain Subject RIV: FH - Neurology Impact factor: 4.773, year: 2011

  4. Melatonin protects uterus and oviduct exposed to nicotine in mice

    Directory of Open Access Journals (Sweden)

    Seyed Saadat Seyedeh Nazanin

    2014-03-01

    Full Text Available Smoking is associated with higher infertility risk. The aim of this study was to evaluate protective effects of melatonin on the uterus and oviduct in mice exposed to nicotine. Adult female mice (n=32 were divided into four groups. Group A: control animals received normal saline, Group B: injected with nicotine 40 μg/kg, Group C: injected with melatonin 10 μg, Group D: injected with nicotine 40 μg/kg and melatonin 10 μg. All animals were treated over 15 days intraperitoneally. On the 16th day, animals in the estrus phase were dissected and their uterus and oviducts were removed. Immunohistochemistry was recruited for studying apoptosis and for detection of estrogen receptor (ER alpha in luminal epithelium of the uterus and oviduct. Enzyme-linked immunosorbent assay was used for serum estradiol level determination. Nicotine in group B decreased estradiol level and ERalpha numbers both in the uterus and oviduct (p<0.05. Co-administration of melatonin-nicotine in Group D ameliorated the histology of the uterus and oviduct, increased ERalpha numbers and reduced apoptosis in the uterus and oviduct compared with the nicotine Group B (p<0.05. This study indicates that nicotine impairs the histology of the uterus and oviduct and co-administration of melatonin-nicotine ameliorates these findings, partly through alteration in ERalpha numbers and reduction of apoptosis

  5. Nicotine receptor partial agonists for smoking cessation.

    Science.gov (United States)

    Cahill, Kate; Stead, Lindsay F; Lancaster, Tim

    2012-04-18

    Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist) and reducing smoking satisfaction (acting as an antagonist). The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist') in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialised register was in December 2011. We also searched online clinical trials registers. We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up.The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs), using the Mantel-Haenszel fixed-effect model. Two recent cytisine trials (937 people) found that more participants taking cytisine stopped smoking compared with placebo at longest follow-up, with a pooled RR of

  6. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  7. Effects of Nicotine on the Neurophysiological and Behavioral Effects of Ketamine in Humans

    Directory of Open Access Journals (Sweden)

    Daniel H Mathalon

    2014-01-01

    Full Text Available Background: N-methyl-D-aspartate (NMDA receptor hypofunction has been implicated in the pathophysiology of schizophrenia and its associated neurocognitive impairments. The high rate of cigarette smoking in schizophrenia raises questions about how nicotine modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined the modulatory effects of brain nicotinic acetylcholine receptor (nAChR stimulation on NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR agonist, and ketamine, a noncompetitive NMDA receptor antagonist, on behavioral and neurophysiological measures in healthy human volunteers.Methods: From an initial sample of 17 subjects (age range 18 - 55 years, 8 subjects successfully completed 4 test sessions, each separated by at least 3 days, during which they received ketamine or placebo and two injections of nicotine or placebo in a double-blind, counterbalanced manner. Schizophrenia-like effects (PANSS, perceptual alterations (CADSS, subjective effects (VAS and auditory event-related brain potentials (mismatch negativity, P300 were assessed during each test session.Results: Consistent with existing studies, ketamine induced transient schizophrenia-like behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it was elicited by a target or novel stimulus, while nicotine only reduced the amplitude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions of ketamine and nicotine were not significant. While nicotine significantly reduced MMN amplitude, ketamine did not. Conclusion: Nicotine failed to modulate ketamine-induced schizophrenia-like effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and nAChR in the generation of P3b and P3a, respectively.

  8. Monepantel is a non-competitive antagonist of nicotinic acetylcholine receptors from Ascaris suum and Oesophagostomum dentatum

    Directory of Open Access Journals (Sweden)

    Melanie Abongwa

    2018-04-01

    Full Text Available Zolvix® is a recently introduced anthelmintic drench containing monepantel as the active ingredient. Monepantel is a positive allosteric modulator of DEG-3/DES-2 type nicotinic acetylcholine receptors (nAChRs in several nematode species. The drug has been reported to produce hypercontraction of Caenorhabditis elegans and Haemonchus contortus somatic muscle. We investigated the effects of monepantel on nAChRs from Ascaris suum and Oesophagostomum dentatum heterologously expressed in Xenopus laevis oocytes. Using two-electrode voltage-clamp electrophysiology, we studied the effects of monepantel on a nicotine preferring homomeric nAChR subtype from A. suum comprising of ACR-16; a pyrantel/tribendimidine preferring heteromeric subtype from O. dentatum comprising UNC-29, UNC-38 and UNC-63 subunits; and a levamisole preferring subtype (O. dentatum comprising UNC-29, UNC-38, UNC-63 and ACR-8 subunits. For each subtype tested, monepantel applied in isolation produced no measurable currents thereby ruling out an agonist action. When monepantel was continuously applied, it reduced the amplitude of acetylcholine induced currents in a concentration-dependent manner. In all three subtypes, monepantel acted as a non-competitive antagonist on the expressed receptors. ACR-16 from A. suum was particularly sensitive to monepantel inhibition (IC50 values: 1.6 ± 3.1 nM and 0.2 ± 2.3 μM. We also investigated the effects of monepantel on muscle flaps isolated from adult A. suum. The drug did not significantly increase baseline tension when applied on its own. As with acetylcholine induced currents in the heterologously expressed receptors, contractions induced by acetylcholine were antagonized by monepantel. Further investigation revealed that the inhibition was a mixture of competitive and non-competitive antagonism. Our findings suggest that monepantel is active on multiple nAChR subtypes. Keywords: Monepantel, Zolvix®, Nicotinic acetylcholine

  9. In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT

    International Nuclear Information System (INIS)

    Kassiou, Michael; Eberl, Stefan; Meikle, Steven R.; Birrell, Alex; Constable, Chris; Fulham, Michael J.; Wong, Dean F.; Musachio, John L.

    2001-01-01

    To quantify changes in neuronal nAChR binding in vivo, quantitative dynamic SPECT studies were performed with 5-[ 123 I]-iodo-A-85380 in baboons pre and post chronic treatment with (-)-nicotine or saline control. Infusion of (-)-nicotine at a dose of 2.0 mg/kg/24h for 14 days resulted in plasma (-)-nicotine levels of 27.3 ng/mL. This is equivalent to that found in an average human smoker (20 cigarettes a day). In the baboon brain the regional distribution of 5-[ 123 I]-iodo-A-85380 was consistent with the known densities of nAChRs (thalamus > frontal cortex > cerebellum). Changes in nAChR binding were estimated from the volume of distribution (V d ) and binding potential (BP) derived from 3-compartment model fits. In the (-)-nicotine treated animal V d was significantly increased in the thalamus (52%) and cerebellum (50%) seven days post cessation of (-)-nicotine treatment, suggesting upregulation of nAChRs. The observed 33% increase in the frontal cortex failed to reach significance. A significant increase in BP was seen in the thalamus. In the saline control animal no changes were observed in V d or BP under any experimental conditions. In this preliminary study, we have demonstrated for the first time in vivo upregulation of neuronal nAChR binding following chronic (-)-nicotine treatment

  10. Mechanics of channel gating of the nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Xinli Liu

    2008-01-01

    Full Text Available The nicotinic acetylcholine receptor (nAChR is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD and steered rotation molecular dynamics (SRMD simulations have been conducted on the cryo-electron microscopy (cryo-EM structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh binding pockets induced an inward and upward motion of the outer beta-sheet composed of beta9 and beta10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC, transmembrane (TM, and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA. To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O C motion. The present MD simulations explore the structural dynamics of the receptor under its

  11. Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine- and clothianidin-induced currents.

    Science.gov (United States)

    List, Olivier; Calas-List, Delphine; Taillebois, Emiliane; Juchaux, Marjorie; Heuland, Emilie; Thany, Steeve H

    2014-08-01

    Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with α-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through α-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via α-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is

  12. Agonist and antagonist effects of tobacco-related nitrosamines on human α4β2 nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Simone eBrusco

    2015-09-01

    Full Text Available Regulation of the ‘neuronal’ nicotinic acetylcholine receptors (nAChRs is implicated in both tobacco addiction and smoking-dependent tumor promotion. Some of these effects are caused by the tobacco-derived N-nitrosamines, which are carcinogenic compounds that avidly bind to nAChRs. However, the functional effects of these drugs on specific nAChR subtypes are largely unknown. By using patch-clamp methods, we tested 4-(methylnitrosamine-1-(3-pyridyl-1-butanone (NNK and N’-nitrosonornicotine (NNN on human α4β2 nAChRs. These latter are widely distributed in the mammalian brain and are also frequently expressed outside the nervous system. NNK behaved as a partial agonist, with an apparent EC50 of 16.7 μM. At 100 μM, it activated 16 % of the maximal current activated by nicotine. When NNK was co-applied with nicotine, it potentiated the currents elicited by nicotine concentrations ≤ 100 nM. At higher concentrations of nicotine, NNK always inhibited the α4β2 nAChR. In contrast, NNN was a pure inhibitor of this nAChR subtype, with IC50 of approximately 1 nM in the presence of 10 μM nicotine. The effects of both NNK and NNN were mainly competitive and largely independent of Vm. The different actions of NNN and NNK must be taken into account when interpreting their biological effects in vitro and in vivo.

  13. The α7 nicotinic ACh receptor agonist compound B and positive allosteric modulator PNU-120596 both alleviate inflammatory hyperalgesia and cytokine release in the rat

    DEFF Research Database (Denmark)

    Munro, G; Hansen, Rikke Rie; Erichsen, Hk

    2012-01-01

    BACKGROUND AND PURPOSE: Agonists selective for the α7 nicotinic acetylcholine (nACh) receptor produce anti-hyperalgesic effects in rodent models of inflammatory pain, via direct actions on spinal pain circuits and possibly via attenuated release of peripheral pro-inflammatory mediators. Increasin......BACKGROUND AND PURPOSE: Agonists selective for the α7 nicotinic acetylcholine (nACh) receptor produce anti-hyperalgesic effects in rodent models of inflammatory pain, via direct actions on spinal pain circuits and possibly via attenuated release of peripheral pro-inflammatory mediators...

  14. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    International Nuclear Information System (INIS)

    Tang, Yuting; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-01-01

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A 2 (PLA 2 )/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca 2+ -mobilization and enhanced bradykinin-promoted Ca 2+ -mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARγ agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs

  15. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yuting [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Zhou, Lubing [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Gunnet, Joseph W [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Wines, Pamela G [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Cryan, Ellen V [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States); Demarest, Keith T [Endocrine Therapeutics and Metabolic Disorders, Johnson and Johnson Pharmaceutical Research and Development, L.L.C., 1000 Rt. 202, Raritan, NJ 08869 (United States)

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  16. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways.

    Science.gov (United States)

    Rogers, Scott W; Gahring, Lorise C

    2015-01-01

    High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.

  17. The expression, localization and function of α7 nicotinic acetylcholine receptor in rat corpus cavernosum.

    Science.gov (United States)

    Faghir-Ghanesefat, Hedyeh; Rahimi, Nastaran; Yarmohammadi, Fatemeh; Mokhtari, Tahmineh; Abdollahi, Ali Reza; Ejtemaei Mehr, Shahram; Dehpour, Ahmad R

    2017-12-01

    Alpha7 nicotinic acetylcholine receptor (α7-nAChR), an emerging pharmacological target for a variety of medical conditions, is expressed in the most mammalian tissues with different effects. So, this study was designed to investigate the expression, localization and effect of α7-nAChR in rat corpus cavernosum (CC). Reverse transcription polymerase chain reaction (RT-PCR) revealed that α7-nAChR was expressed in rat CC and double immunofluorescence studies demonstrated the presence of α7-nAChR in corporal neurons. The rat CC segments were mounted in organ bath chambers and contracted with phenylephrine (0.1 μm -300 μm) to investigate the relaxation effect of electrical field stimulation (EFS,10 Hz) assessed in the presence of guanethidine (adrenergic blocker, 5 μm) and atropine (muscarinic cholinergic blocker, 1 μm) to obtain non-adrenergic non-cholinergic (NANC) response. Cumulative administration of nicotine significantly potentiated the EFS-induced NANC relaxation (-log EC50 = 7.5 ± 0.057). Whereas, the potentiated NANC relaxation of nicotine was significantly inhibited with different concentrations of methyllycaconitine citrate (α7-nAChR antagonist, P < 0.05) in preincubated strips. L-NAME (non-specific nitric oxide synthase inhibitor, 1 μm) completely blocked the neurogenic relaxation induced by EFS plus nicotine. To conclude α7-nAChR is expressed in rat CC and modulates the neurogenic relaxation response to nicotine. © 2017 Royal Pharmaceutical Society.

  18. Decreased cerebral {alpha}4{beta}2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kendziorra, Kai; Meyer, Philipp Mael; Barthel, Henryk; Hesse, Swen; Becker, Georg Alexander; Luthardt, Julia; Schildan, Andreas; Patt, Marianne; Sorger, Dietlind; Seese, Anita; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Old Age Psychiatry and Psychiatry Research, Psychiatric University Hospital (PUK) Zurich, Zurich (Switzerland); Gertz, Herman-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany)

    2011-03-15

    Postmortem studies indicate a loss of nicotinic acetylcholine receptor (nAChRs) in Alzheimer's disease (AD). In order to establish whether these changes in the cholinergic system occur at an early stage of AD, we carried out positron emission tomography (PET) with a specific radioligand for the {alpha}4{beta}2* nicotinic acetylcholine receptor ({alpha}4{beta}2* nAChR) in patients with mild to moderate AD and in patients with amnestic mild cognitive impairment (MCI), who have a high risk to progress to AD. Nine patients with moderate AD, eight patients with MCI and seven age-matched healthy controls underwent 2-[{sup 18}F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[{sup 18}F]FA-85380) PET. After coregistration with individual magnetic resonance imaging the binding potential (BP{sub ND}) of 2-[{sup 18}F]FA-85380 was calculated using either the corpus callosum or the cerebellum as reference regions. PET data were analysed by region of interest analysis and by voxel-based analysis. Both patients with AD and MCI showed a significant reduction in 2-[{sup 18}F]FA-85380 BP{sub ND} in typical AD-affected brain regions. Thereby, the corpus callosum was identified as the most suitable reference region. The 2-[{sup 18}F]FA-85380 BP{sub ND} correlated with the severity of cognitive impairment. Only MCI patients that converted to AD in the later course (n = 5) had a reduction in 2-[{sup 18}F]FA-85380 BP{sub ND}. 2-[{sup 18}F]FA-85380 PET appears to be a sensitive and feasible tool for the detection of a reduction in {alpha}4{beta}2* nAChRs which seems to be an early event in AD. In addition, 2-[{sup 18}F]FA-85380 PET might give prognostic information about a conversion from MCI to AD. (orig.)

  19. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  20. Effects of acute nicotine on hemodynamics and binding of [11C]raclopride to dopamine D2,3 receptors in pig brain.

    Science.gov (United States)

    Cumming, Paul; Rosa-Neto, Pedro; Watanabe, Hideaki; Smith, Donald; Bender, Dirk; Clarke, Paul B S; Gjedde, Albert

    2003-07-01

    Positive reinforcing properties of nicotine and the psychostimulants have been attributed to elevated dopamine release in the basal ganglia. It is well known that the specific binding of [(11)C]raclopride to dopamine D(2,3) receptors in living striatum is reduced by cocaine and amphetamines, revealing increased competition between endogenous dopamine and [(11)C]raclopride for dopamine D(2,3) receptors. However, the sensitivity of [(11)C]raclopride binding to nicotine-induced dopamine release is less well documented. In order to provide the basis for mapping effects of nicotine, we first optimized reference tissue methods for quantifying [(11)C]raclopride binding sites in striatum of living pigs (n = 16). In the same animals, the rate of cerebral blood flow (CBF) was mapped using [(15)O]water. Neither a low dose of nicotine (50 mu kg(-1), iv) nor a high dose of nicotine (500 microg kg(-1), iv) altered CBF in the pig brain, an important condition for calculating the binding of radioligands when using a reference tissue to estimate the free ligand concentration. The methods of Logan and of Lammertsma were compared using the cerebellum or the occipital cortex as reference tissues for calculating the binding potential (pB) of [(11)C]raclolpride in brain. Irrespective of the method used, the mean undrugged baseline pB in striatum (ca. 2.0) was significantly asymmetric, with highest binding in the left caudate and right putamen. Test-retest estimates of pB were stable. Subtraction of Logan pB maps revealed that the low dose of nicotine reduced the pB of [(11)C]raclopride by 10% in a cluster of voxels in the left anteroventral striatum, but this effect did not persist after correction for multiple comparisons. The high dose of nicotine (n = 9) acutely reduced pB by 10% bilaterally in the ventral striatum; 3 h after the high nicotine dose, the reductions had shifted dorsally and caudally into the caudate and putamen. Evidently, nicotine challenge enhances the competition

  1. Hippocampal α7 nicotinic acetylcholine receptor levels in patients with schizophrenia, bipolar disorder, or major depressive disorder

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Weyn, Annelies; Mikkelsen, Jens D

    2011-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is involved in cognitive function and synaptic plasticity. Consequently, changes in α7 nAChR function have been implicated in a variety of mental disorders, especially schizophrenia. However, there is little knowledge regarding the levels of the α7 n...

  2. Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides

    Science.gov (United States)

    Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.

    2009-01-01

    Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501

  3. Nicotine receptor partial agonists for smoking cessation

    Directory of Open Access Journals (Sweden)

    Kate Cahill

    Full Text Available BACKGROUND: Nicotine receptor partial agonists may help people to stop smoking by a combination of maintaining moderate levels of dopamine to counteract withdrawal symptoms (acting as an agonist and reducing smoking satisfaction (acting as an antagonist. OBJECTIVES: The primary objective of this review is to assess the efficacy and tolerability of nicotine receptor partial agonists, including cytisine, dianicline and varenicline for smoking cessation. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's specialised register for trials, using the terms ('cytisine' or 'Tabex' or 'dianicline' or 'varenicline' or 'nicotine receptor partial agonist' in the title or abstract, or as keywords. The register is compiled from searches of MEDLINE, EMBASE, PsycINFO and Web of Science using MeSH terms and free text to identify controlled trials of interventions for smoking cessation and prevention. We contacted authors of trial reports for additional information where necessary. The latest update of the specialized register was in December 2011. We also searched online clinical trials registers. SELECTION CRITERIA: We included randomized controlled trials which compared the treatment drug with placebo. We also included comparisons with bupropion and nicotine patches where available. We excluded trials which did not report a minimum follow-up period of six months from start of treatment. DATA COLLECTION AND ANALYSIS: We extracted data on the type of participants, the dose and duration of treatment, the outcome measures, the randomization procedure, concealment of allocation, and completeness of follow-up. The main outcome measured was abstinence from smoking at longest follow-up. We used the most rigorous definition of abstinence, and preferred biochemically validated rates where they were reported. Where appropriate we pooled risk ratios (RRs, using the Mantel-Haenszel fixed-effect model. MAIN RESULTS: Two recent cytisine trials (937 people

  4. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements

    DEFF Research Database (Denmark)

    Ettrup, Anders; Mikkelsen, Jens D; Lehel, Szabolcs

    2011-01-01

    Small-molecule α(7) nicotinic acetylcholine receptor (α(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled α(7)nAChR PET tracer would be important for in vivo quantification of α(7)nAChR bind......Small-molecule α(7) nicotinic acetylcholine receptor (α(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled α(7)nAChR PET tracer would be important for in vivo quantification of α(7)n...

  5. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements

    DEFF Research Database (Denmark)

    Ettrup, Anders; Mikkelsen, Jens D; Lehel, Szabolcs

    2011-01-01

    Small-molecule a(7) nicotinic acetylcholine receptor (a(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled a(7)nAChR PET tracer would be important for in vivo quantification of a(7)nAChR bind......Small-molecule a(7) nicotinic acetylcholine receptor (a(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled a(7)nAChR PET tracer would be important for in vivo quantification of a(7)n...

  6. Radioligand imaging of α4β2* nicotinic acetylcholine receptors in Alzheimer’s disease and Parkinson’s disease

    International Nuclear Information System (INIS)

    Meyer, P. M.; Tiepolt, S.; Barthel, H.; Hesse, S.; Sabri, O.

    2014-01-01

    The α4β2 * nicotinic acetylcholine receptors (α4β2 * -nAChR) are highly abundant in the human brain. As neuromodulators they play an important role in cognitive functions such as memory, learning and attention as well as mood and motor function. Post mortem studies suggest that abnormalities of α4β2 * -nAChRs are closely linked to histopathological hallmarks of Alzheimer’s disease (AD), such as amyloid aggregates/oligomers and tangle pathology and of Parkinson’s disease (PD) such as Lewy body pathology and the nigrostriatal dopaminergic deficit. In this review we summarize and discuss nicotinic receptor imaging findings of 2-[18F]FA-85380 PET, [ 11 C]nicotine PET and 5-[ 123 I]IA-85380 SPECT studies investigating α4β2 * -nAChR binding in vivo and their relationship to mental dysfunction in the brain of patients with AD and patients out of the spectrum of Lewy body disorders such as PD and Lewy body dementia (DLB). Furthermore, recent developments of novel α4β2*-nAChR-specific PET radioligands, such as (-)[ 18 F]Flubatine or [ 18 F]AZAN are summarized. We conclude that α4β2*-nAChR-specific PET might become a biomarker for early diagnostics and drug developments in patients with AD, DLB and PD, even at early or prodromal stages.

  7. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    Science.gov (United States)

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634

  8. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  9. Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Wang, Jingyi; Lindstrom, Jon

    2018-06-01

    Heteromeric nicotinic ACh receptors (nAChRs) were thought to have two orthodox agonist-binding sites at two α/β subunit interfaces. Highly selective ligands are hard to develop by targeting orthodox agonist sites because of high sequence similarity of this binding pocket among different subunits. Recently, unorthodox ACh-binding sites have been discovered at some α/α and β/α subunit interfaces, such as α4/α4, α5/α4 and β3/α4. Targeting unorthodox sites may yield subtype-selective ligands, such as those for (α4β2) 2 α5, (α4β2) 2 β3 and (α6β2) 2 β3 nAChRs. The unorthodox sites have unique pharmacology. Agonist binding at one unorthodox site is not sufficient to activate nAChRs, but it increases activation from the orthodox sites. NS9283, a selective agonist for the unorthodox α4/α4 site, was initially thought to be a positive allosteric modulator (PAM). NS9283 activates nAChRs with three engineered α4/α4 sites. PAMs, on the other hand, act at allosteric sites where ACh cannot bind. Known PAM sites include the ACh-homologous non-canonical site (e.g. morantel at β/α), the C-terminus (e.g. Br-PBTC and 17β-estradiol), a transmembrane domain (e.g. LY2087101) or extracellular and transmembrane domain interfaces (e.g. NS206). Some of these PAMs, such as Br-PBTC and 17β-estradiol, require only one subunit to potentiate activation of nAChRs. In this review, we will discuss differences between activation from orthosteric and allosteric sites, their selective ligands and clinical implications. These studies have advanced understanding of the structure, assembly and pharmacology of heteromeric neuronal nAChRs. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  10. Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-01-01

    Full Text Available Vagus nerve stimulation through alpha7 nicotine acetylcholine receptors (α7-nAChR signaling had been demonstrated attenuation of inflammation. This study aimed to determine whether PNU-282987, a selective α7-nAChR agonist, affected activities of matrix metalloproteinase (MMP and inflammatory cytokines in nicotine-treatment RAW264.7 and MOVAS cells and to assess the underlying molecular mechanisms. RAW264.7 and MOVAS cells were treated with nicotine at different concentrations (0, 1, 10, and 100 ng/ml for 0–120 min. Nicotine markedly stimulated the phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2 and c-Jun in RAW264.7 cells. Pretreatment with U0126 significantly suppressed phosphorylation of ERK1/2 and further attenuated nicotine-induced activation of c-Jun and upregulation of MMP-2, MMP-9, monocyte chemotactic protein- (MCP- 1, and regulated upon activation normal T cell expressed and secreted (RANTES. Similarly, nicotine treatment also increased phosphorylation of c-Jun and expressions of MMP-2, MMP-9, MCP-1, and RANTES in MOVAS cells. When cells were pretreated with PNU-282987, nicotine-induced activations of ERK1/2 and c-Jun in RAW264.7 cells and c-Jun in MOVAS cells were effectively inhibited. Furthermore, nicotine-induced secretions of MMP-2, MMP-9, MCP-1, and RANTES were remarkably downregulated. Treatment with α7-nAChR agonist inhibits nicotine-induced upregulation of MMP and inflammatory cytokines through modulating ERK1/2/AP-1 signaling in RAW264.7 cells and AP-1 in MOVAS cells, providing a new therapeutic for abdominal aortic aneurysm.

  11. Human Secreted Ly-6/uPAR Related Protein-1 (SLURP-1) Is a Selective Allosteric Antagonist of α7 Nicotinic Acetylcholine Receptor

    DEFF Research Database (Denmark)

    Lyukmanova, Ekaterina N; Shulepko, Mikhail A; Kudryavtsev, Denis

    2016-01-01

    of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-n...

  12. Pharmacological characterisation of α6β4* nicotinic acetylcholine receptors assembled from three different α6/α3 subunit chimeras in tsA201 cells

    DEFF Research Database (Denmark)

    Jensen, Anne Bjørnskov; Hoestgaard-Jensen, Kirsten; Jensen, Anders A.

    2014-01-01

    by their inefficient functional expression in vitro. In the present study we have characterized and compared the pharmacological properties displayed by α6β4 and α6β4β3 nicotinic acetylcholine receptors assembled in tsA201 cells from the classical α6/α3 chimera (C1) and two novel α6/α3 chimeras (C6F223L and C16F223L...... should be made keeping the molecular modifications in the α6 surrogate subunits in mind, this study sheds light on the pharmacological properties of α6β4⁎ nicotinic acetylcholine receptors and demonstrates the applicability of the C6F223L and C16F223L chimeras for studies of these receptors....

  13. Global actions of nicotine on the striatal microcircuit.

    Science.gov (United States)

    Plata, Víctor; Duhne, Mariana; Pérez-Ortega, Jesús; Hernández-Martinez, Ricardo; Rueda-Orozco, Pavel; Galarraga, Elvira; Drucker-Colín, René; Bargas, José

    2013-01-01

    what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs) in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA), the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA) such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non-specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.

  14. Levamisole: A Positive Allosteric Modulator for the α3β4 Nicotinic Acetylcholine Receptors Prevents Weight Gain in the CD-1 Mice on a High Fat Diet.

    Science.gov (United States)

    Lewis, Jeanne A; Yakel, Jerrel L; Pandya, Anshul A

    2017-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the function of multiple neurotransmitter pathways throughout the central nervous system. This includes nAChRs found on the proopiomelanocortin neurons in the hypothalamus. Activation of these nAChRs by nicotine causes a decrease in the consumption of food in rodents. This study tested the effect of subtype selective allosteric modulators for nAChRs on the body weight of CD-1 mice. Levamisole, an allosteric modulator for the α3β4 subtype of nAChRs, prevented weight gain in mice that were fed a high fat diet. PNU-120596 and desformylflustrabromine were observed to be selective PAMs for the α7 and α4β2 nAChR, respectively. Both of these compounds failed to prevent weight gain in the CD-1 mice. These results suggest that the modulation of hypothalamic α3β4 nAChRs is an important factor in regulating food intake, and the PAMs for these receptors need further investigation as potential therapeutic agents for controlling weight gain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. a7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the a7 nicotinic acetylcholine receptor (n...

  16. α7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the α7 nicotinic acetylcholine receptor (n...

  17. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  18. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation.

    Directory of Open Access Journals (Sweden)

    Anna Chikova

    Full Text Available Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR. BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.

  19. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    International Nuclear Information System (INIS)

    Churchill, L.; Pazdernik, T.L.; Cross, R.S.; Nelson, S.R.; Samson, F.E.

    1990-01-01

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  20. Calcium pathways such as cAMP modulate clothianidin action through activation of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors.

    Science.gov (United States)

    Calas-List, Delphine; List, Olivier; Quinchard, Sophie; Thany, Steeve H

    2013-07-01

    Clothianidin is a neonicotinoid insecticide developed in the early 2000s. We have recently demonstrated that it was a full agonist of α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptors expressed in the cockroach dorsal unpaired median neurons. Clothianidin was able to act as an agonist of imidacloprid-insensitive nAChR2 receptor and internal regulation of cAMP concentration modulated nAChR2 sensitivity to clothianidin. In the present study, we demonstrated that cAMP modulated the agonist action of clothianidin via α-bungarotoxin-sensitive and insensitive receptors. Clothianidin-induced current-voltage curves were dependent to clothianidin concentrations. At 10 μM clothianidin, increasing cAMP concentration induced a linear current-voltage curve. Clothianidin effects were blocked by 0.5 μM α-bungarotoxin suggesting that cAMP modulation occurred through α-bungarotoxin-sensitive receptors. At 1 mM clothianidin, cAMP effects were associated to α-bungarotoxin-insensitive receptors because clothianidin-induced currents were blocked by 5 μM mecamylamine and 20 μM d-tubocurarine. In addition, we found that application of 1mM clothianidin induced a strong increase of intracellular calcium concentration. These data reinforced the finding that calcium pathways including cAMP modulated clothianidin action on insect nicotinic acetylcholine receptors. We proposed that intracellular calcium pathways such as cAMP could be a target to modulate the mode of action of neonicotinoid insecticides. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Interaction between Harmane and Nicotinic in the Passive Avoidance Test

    Directory of Open Access Journals (Sweden)

    M Piri

    2011-01-01

    Full Text Available Introduction & Objective: A number of β-carboline alkaloids such as harmane are naturally present in the human food chain. Furthermore, some plants which contain β-carboline have behavioral effects such as hallucination. In the present study, the effect of intra-dorsal hippocampus injection of nicotinic receptor agonist on memory impairment induced by harmane was examined in mice. Materials & Methods: This study was conducted at Shahid Beheshti University in 2009. Two hundred and forty mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride, plus xylazine which afterwards were placed in a stereotaxic apparatus. Two cannuale were placed in the CA1 regions of the dorsal hippocampus. All animals were allowed to recover for a total week before beginning of the behavioral testing. After that, the animals were trained in a step-down type inhibitory avoidance task and tested 24 hours after training to measure step-down latency as a scale of memory. Results: Pre-training and post-training, intra-peritoneal injection of harmane impairs inhibitory avoidance memory, but pre-testing injection of harmane did not alter memory retrieval. Pre-testing administration of high dose of nicotine (0.5 µg/mice, intra-CA1 decreased memory retrieval. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 2.5 µg/mice fully reversed harmane induced impairment of memory. Conclusion: The present results indicated that complex interaction exists between nicotinic receptor of dorsal hippocampus and the impairment of inhibitory avoidance memory induced by harmane.

  2. Contribution of adrenal hormones to nicotine-induced inhibition of synovial plasma extravasation in the rat.

    Science.gov (United States)

    Miao, F J; Benowitz, N L; Heller, P H; Levine, J D

    1997-01-01

    1. In this study, we examined the mechanism(s) by which s.c. nicotine inhibits synovial plasma extravasation. We found that nicotine dose-dependently inhibited bradykinin (BK)- and platelet activating factor (PAF)-induced plasma extravasation. 2. The effect of nicotine on both BK- and PAF-induced plasma extravasation was attenuated by adrenal medullectomy. ICI-118,551 (a selective beta 2-adrenoceptor blocker) (30 micrograms ml-1, intra-articularly) significantly attenuated the inhibitory action of high-dose (1 mg kg-1) nicotine on BK-induced plasma extravasation without affecting the inhibition by low- (0.01 microgram kg-1) dose nicotine or that on PAF-induced plasma extravasation by nicotine at any dose. This suggested that beta 2-adrenoceptors mediate the inhibitory actions of high-dose, but not low-dose, nicotine. We also found that systemic naloxone (an opioid receptor antagonist) (two hourly injections of 1 mg kg-1, i.p.) attenuated the inhibitory action produced by all doses of nicotine on BK- or PAF-induced plasma extravasation, suggesting the contribution of endogenous opioids. 3. RU-38,486 (a glucocorticoid receptor antagonist) (30 mg kg-1, s.c.), and metyrapone (a glucocorticoid synthesis inhibitor) (two hourly injections of 100 mg kg-1, i.p.) both attenuated the action of high-dose nicotine without affecting that of low-dose nicotine. 4. Spinal mecamylamine (a nicotinic receptor antagonist) (0.025 mg kg-1, intrathecally, i.t.) attenuated the action of high-dose, but not low-dose, nicotine, suggesting that part of the action of high-dose nicotine is mediated by spinal nicotinic receptors. 5. Combined treatment with ICI-118,551, naloxone and RU-38,486 attenuated the action of low-dose nicotine by an amount similar to that produced by naloxone alone but produced significantly greater attenuation of the effect of high-dose nicotine when compared to the action of any of the three antagonists alone.

  3. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion.

    Science.gov (United States)

    Thany, Steeve H

    2009-11-01

    Clothianidin is new neonicotinoid insecticide acting selectively on insect nicotinic acetylcholine receptors (nAChRs). Its effects on nAChRs expressed on cercal afferent/giant interneuron synapses and DUM neurons have been studied using mannitol-gap and whole-cell patch-clamp techniques, respectively. Bath-application of clothianidin-induced dose-dependent depolarizations of cockroach cercal afferent/giant interneuron synapses which were not reversed after wash-out suggesting a strong desensitization of postsynaptic interneurons at the 6th abdominal ganglion (A6). Clothinidin activity on the nerve preparation was characterized by an increased firing rate of action potentials which then ceased when the depolarization reached a peak. Clothianidin responses were insensitive to all muscarinic antagonists tested but were blocked by co-application of specific nicotinic antagonists methyllicaconitine, alpha-bungarotoxin and d-tubocurarine. In a second round of experiment, clothianidin actions were tested on DUM neurons isolated from the A6. There was a strong desensitization of nAChRs which was not affected by muscarinic antagonists, pirenzepine and atropine, but was reduced with nicotinic antagonist alpha-bungarotoxin. In addition, clothianidin-induced currents were completely blocked by methyllicaconitine suggesting that (1) clothianidin acted as a specific agonist of nAChR subtypes and (2) a small proportion of receptors blocked by MLA was insensitive to alpha-bungarotoxin. Moreover, because clothianidin currents were blocked by d-tubocurarine and mecamylamine, we provided that clothianidin was an agonist of both nAChRs: imidacloprid-sensitive nAChR1 and -insensitive nAChR2 subtypes.

  4. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Flores, África; Maldonado, Rafael; Berrendero, Fernando

    2012-02-01

    Hypocretin (orexin) signaling is involved in drug addiction. In this study, we investigated the role of these hypothalamic neuropeptides in nicotine withdrawal by using behavioral and neuroanatomical approaches. Nicotine withdrawal syndrome was precipitated by mecamylamine (2 mg/kg, subcutaneous) in C57BL/6J nicotine-dependent mice (25 mg/kg/day for 14 days) pretreated with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 (5 and 10 mg/kg, intraperitoneal), the hypocretin receptor 2 antagonist TCSOX229 (5 and 10 mg/kg, intraperitoneal), and in preprohypocretin knockout mice. c-Fos expression was analyzed in several brain areas related to nicotine dependence by immunofluorescence techniques. Retrograde tracing with rhodamine-labeled fluorescent latex microspheres was used to determine whether the hypocretin neurons project directly to the paraventricular nucleus of the hypothalamus (PVN), and SB334867 was locally administered intra-PVN (10 nmol/side) to test the specific involvement of Hcrtr-1 in this brain area during nicotine withdrawal. Somatic signs of nicotine withdrawal were attenuated in mice pretreated with SB334867 and in preprohypocretin knockout mice. No changes were found in TCSOX229 pretreated animals. Nicotine withdrawal increased the percentage of hypocretin cells expressing c-Fos in the perifornical, dorsomedial, and lateral hypothalamus. In addition, the increased c-Fos expression in the PVN during withdrawal was dependent on hypocretin transmission through Hcrtr-1 activation. Hypocretin neurons directly innervate the PVN and the local infusion of SB334867 into the PVN decreased the expression of nicotine withdrawal. These data demonstrate that hypocretin signaling acting on Hcrtr-1 in the PVN plays a crucial role in the expression of nicotine withdrawal. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. New trends in the treatment of nicotine addiction.

    Science.gov (United States)

    Sliwińska-Mossoń, Mariola; Zieleń, Iwona; Milnerowicz, Halina

    2014-01-01

    The aim of this study was to discuss the therapeutic substances used to treat nicotine addiction, not registered in Poland. This paper presents the results of the latest clinical trials and the possibility of their use in the treatment of nicotine addiction. The first two discussed drugs clonidine and nortriptyline are recommended by clinical practice guidelines AHRQ (Agency for Healthcare Research and Quality) as the substance of the second line in the fight against addiction. Nortriptyline belongs to tricyclic antidepressants. Its mechanism of action is the inhibition of the reuptake of norepinephrine. It is suggested as the antagonist of activity of nicotinic receptors. The results confirm its efficacy in the treatment of nicotine addiction, but many side effects limit its use. Clonidine acts presumably by inhibition of sympathetic hyperactivity characteristic of symptoms associated with nicotine rehab. The remaining compounds under discussion, such as: venlafaxine, fluoxetine, moclobemide and rimonabant, are not registered in any country with an indication to use in the treatment of nicotine addiction, however, due to the mechanism in which they act, the possibility of their use in the treatment of this disease is considered. The possibility of using anxiolytics such as: buspirone, diazepam, meprobamate and beta-blockers: metoprolol and oxprenolol is also considered in order to treat the anxiety appearing as one of the symptoms of abstinence. An interesting proposal to combat nicotine addiction are vaccines--NicVAX, CYT002-NicQb and TA-NIC. Currently, they are in clinical phase I and II of their development. Their operation would be based on the induction of specific antibodies that bind nicotine in the plasma, thus prevent it reaching the nicotinic receptors. Preliminary results confirm the possible positive effects in the prevention and treatment of nicotine addiction.

  6. An anti-nicotinic cognitive challenge model using mecamylamine in comparison with the anti-muscarinic cognitive challenge using scopolamine.

    Science.gov (United States)

    Baakman, Anne Catrien; Alvarez-Jimenez, Ricardo; Rissmann, Robert; Klaassen, Erica S; Stevens, Jasper; Goulooze, Sebastiaan C; den Burger, Jeroen C G; Swart, Eleonora L; van Gerven, Joop M A; Groeneveld, Geert Jan

    2017-08-01

    The muscarinic acetylcholine receptor antagonist scopolamine is often used for proof-of-pharmacology studies with pro-cognitive compounds. From a pharmacological point of view, it would seem more rational to use a nicotinic rather than a muscarinic anticholinergic challenge to prove pharmacology of a nicotinic acetylcholine receptor agonist. This study aims to characterize a nicotinic anticholinergic challenge model using mecamylamine and to compare it to the scopolamine model. In this double-blind, placebo-controlled, four-way cross-over trial, 12 healthy male subjects received oral mecamylamine 10 and 20 mg, intravenous scopolamine 0.5 mg and placebo. Pharmacokinetics were analysed using non-compartmental analysis. Pharmacodynamic effects were measured with a multidimensional test battery that includes neurophysiological, subjective, (visuo)motor and cognitive measurements. All treatments were safe and well tolerated. Mecamylamine had a t max of 2.5 h and a C max of 64.5 ng ml -1 for the 20 mg dose. Mecamylamine had a dose-dependent effect decreasing the adaptive tracking performance and VAS alertness, and increasing the finger tapping and visual verbal learning task performance time and errors. Scopolamine significantly affected almost all pharmacodynamic tests. This study demonstrated that mecamylamine causes nicotinic receptor specific temporary decline in cognitive functioning. Compared with the scopolamine model, pharmacodynamic effects were less pronounced at the dose levels tested; however, mecamylamine caused less sedation. The cognitive effects of scopolamine might at least partly be caused by sedation. Whether the mecamylamine model can be used for proof-of-pharmacology of nicotinic acetylcholine receptor agonists remains to be established. © 2017 The British Pharmacological Society.

  7. The neuroprotective effect of nicotine in Parkinson’s disease models is associated with inhibiting PARP-1 and caspase-3 cleavage

    Directory of Open Access Journals (Sweden)

    Justin Y.D. Lu

    2017-10-01

    Full Text Available Clinical evidence points to neuroprotective effects of smoking in Parkinson’s disease (PD, but the molecular mechanisms remain unclear. We investigated the pharmacological pathways involved in these neuroprotective effects, which could provide novel ideas for developing targeted neuroprotective treatments for PD. We used the ETC complex I inhibitor methylpyridinium ion (MPP+ to induce cell death in SH-SY5Y cells as a cellular model for PD and found that nicotine inhibits cell death. Using choline as a nicotinic acetylcholine receptor (nAChR agonist, we found that nAChR stimulation was sufficient to protect SH-SY5Y cells against cell death from MPP+. Blocking α7 nAChR with methyllycaconitine (MLA prevented the protective effects of nicotine, demonstrating that these receptors are necessary for the neuroprotective effects of nicotine. The neuroprotective effect of nicotine involves other pathways relevant to PD. Cleaved Poly (ADP-ribose polymerase-1 (PARP-1 and cleaved caspase-3 were decreased by nicotine in 6-hydroxydopamine (6-OHDA lesioned mice and in MPP+-treated SH-SY5Y cells. In conclusion, our data indicate that nicotine likely exerts neuroprotective effects in PD through the α7 nAChR and downstream pathways including PARP-1 and caspase-3. This knowledge could be pursued in future research to develop neuroprotective treatments for PD.

  8. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    Directory of Open Access Journals (Sweden)

    Sally M Williamson

    2009-07-01

    Full Text Available Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29, nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29, levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the

  9. Acute administration of nicotine into the higher order auditory Te2 cortex specifically decreases the fear-related charge of remote emotional memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Concina, Giulia; Sacchetti, Benedetto

    2015-12-01

    Nicotine elicits several behavioural effects on mood as well as on stress and anxiety processes. Recently, it was found that the higher order components of the sensory cortex, such as the secondary auditory cortex Te2, are essential for the long-term storage of remote fear memories. Therefore, in the present study, we examined the effects of acute nicotine injection into the higher order auditory cortex Te2, on the remote emotional memories of either threat or incentive experiences in rats. We found that intra-Te2 nicotine injection decreased the fear-evoked responses to a tone previously paired with footshock. This effect was cue- and dose-specific and was not due to any interference with auditory stimuli processing, innate anxiety and fear processes, or with motor responses. Nicotine acts acutely in the presence of threat stimuli but it did not determine the permanent degradation of the fear-memory trace, since memories tested one week after nicotine injection were unaffected. Remarkably, nicotine did not affect the memory of a similar tone that was paired to incentive stimuli. We conclude from our results that nicotine, when acting acutely in the auditory cortex, relieves the fear charge embedded by learned stimuli. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor.

    Directory of Open Access Journals (Sweden)

    Feng Chi

    Full Text Available Alpha7 nicotinic acetylcholine receptor (nAChR, an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/- mouse brain microvascular endothelial cells (BMEC and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN transmigration across the blood-brain barrier (BBB were significantly reduced in α7(-/- BMEC and α7(-/- mice. Stimulation by nicotine was abolished in the α7(-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist. The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES and adhesion molecules (CD44 and ICAM-1 were significantly reduced in the cerebrospinal fluids of the α7(-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.

  11. Global actions of nicotine on the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Victor E Plata

    2013-11-01

    Full Text Available The question to solve in the present work is: what is the predominant action induced by the activation of cholinergic-nicotinic receptors (nAChrs in the striatal network given that nAChrs are expressed by several elements of the circuit: cortical terminals, dopamine terminals, and various striatal GABAergic interneurons. To answer this question some type of multicellular recording has to be used without losing single cell resolution. Here, we used calcium imaging and nicotine. It is known that in the presence of low micromolar N-Methyl-D-aspartate (NMDA, the striatal microcircuit exhibits neuronal activity consisting in the spontaneous synchronization of different neuron pools that interchange their activity following determined sequences. The striatal circuit also exhibits profuse spontaneous activity in pathological states (without NMDA such as dopamine depletion. However, in this case, most pathological activity is mostly generated by the same neuron pool. Here, we show that both types of activity are inhibited during the application of nicotine. Nicotine actions were blocked by mecamylamine, a non specific antagonist of nAChrs. Interestingly, inhibitory actions of nicotine were also blocked by the GABAA-receptor antagonist bicuculline, in which case, the actions of nicotine on the circuit became excitatory and facilitated neuronal synchronization. We conclude that the predominant action of nicotine in the striatal microcircuit is indirect, via the activation of networks of inhibitory interneurons. This action inhibits striatal pathological activity in early Parkinsonian animals almost as potently as L-DOPA.

  12. Autoradiographic localization of nicotinic acetylcholine receptors in the brain of the zebra finch (Poephila guttata)

    International Nuclear Information System (INIS)

    Watson, J.T.; Adkins-Regan, E.; Whiting, P.; Lindstrom, J.M.; Podleski, T.R.

    1988-01-01

    We have localized nicotinic acetylcholine receptors in the zebra finch brain by using three 125I-labelled ligands: alpha bungarotoxin and two monoclonal antibodies to neuronal nicotinic receptors. Unfixed brains from intact adult male and female zebra finches were prepared for in vitro autoradiography. Low-resolution film autoradiograms and high-resolution emulsion autoradiograms were prepared for each of the three ligands. The major brain structures that bind all three of the ligands are hippocampus; hyperstriatum dorsalis; hyperstriatum ventralis; nucleus lentiformis mesencephali; nucleus pretectalis, some layers of the optic tectum; nucleus mesencephalicus lateralis; pars dorsalis; locus ceruleus; and all cranial motor nuclei except nucleus nervi hypoglossi. The major structures labelled only by [125I]-alpha bungarotoxin binding included hyperstriatum accessorium and the nuclei: preopticus medialis, medialis hypothalami posterioris, semilunaris, olivarius inferior, and the periventricular organ. Of the song control nuclei, nucleus magnocellularis of the anterior neostriatum; hyperstriatum ventralis, pars caudalis; nucleus intercollicularis; and nucleus hypoglossus were labelled. The binding patterns of the two antibodies were similar to one another but not identical. Both labelled nucleus spiriformis lateralis and nucleus geniculatus lateralis, pars ventralis especially heavily and also labelled the nucleus habenula medialis; nucleus subpretectalis; nucleus isthmi, pars magnocellularis; nucleus reticularis gigantocellularis; nucleus reticularis lateralis; nucleus tractus solitarii; nucleus vestibularis dorsolateralis; nucleus vestibularis lateralis; nucleus descendens nervi trigemini; and the deep cerebellar nuclei

  13. Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys.

    Science.gov (United States)

    Secci, Maria E; Auber, Alessia; Panlilio, Leigh V; Redhi, Godfrey H; Thorndike, Eric B; Schindler, Charles W; Schwarcz, Robert; Goldberg, Steven R; Justinova, Zuzana

    2017-07-01

    The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.

  14. [[sup 3]H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Latli, B.; Casida, J.E. (California Univ., Berkeley, CA (United States). Dept. of Entomological Sciences)

    1992-08-01

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [[sup 3]H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB[sup 2]H[sub 4] (in model studies) or NaB[sup 3]H[sub 4] in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [[sup 2]H[sub 2

  15. Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making.

    Science.gov (United States)

    Hosking, Jay G; Lam, Fred C W; Winstanley, Catharine A

    2014-01-01

    Successful decision making in our daily lives requires weighing an option's costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer's disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each). As per previous rCET studies, animals were divided by their baseline preferences, with "worker" rats choosing high-effort/high-reward options more than their "slacker" counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers' choice. Despite slackers' decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals' choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest that its modest

  16. Nicotinic receptor-associated modulation of stimulatory and inhibitory neurotransmitters in NNK-induced adenocarcinoma of the lungs and pancreas

    Science.gov (United States)

    Al-Wadei, Hussein A. N.; Schuller, Hildegard M.

    2012-01-01

    Small airway-derived pulmonary adenocarcinoma (PAC) and pancreatic ductal adenocarcinoma (PDAC) are among the most common human cancers and smoking is a risk factor for both. Emerging research has identified cAMP signaling stimulated by the stress neurotransmitters adrenaline and noradrenaline as important stimulators of several adenocarcinomas, including PAC and PDAC. The nicotine-derived nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent mutagen and the most powerful tobacco carcinogen. NNK is also an agonist for nicotinic acetylcholine receptors (nAChRs). Using hamster models of NNK-induced PAC and PDAC, we have tested the hypothesis that in analogy to chronic effects of nicotine in the brain, NNK may modulate the α7- and α4β2nAChRs, causing an increase in stress neurotransmitters and decrease in the inhibitory neurotransmitter γ-aminobutyric acid (GABA). In support of our hypothesis, immunoassays showed a significant increase in serum adrenaline/noradrenaline and increased intracellular cAMP in the cellular fraction of blood of NNK treated hamsters. Western blots were done with cells harvested by laser capture microcopy from control small airway epithelia, alveolar epithelia, pancreatic islet and pancreatic duct epithelia and from NNK-induced PACs and PDACs. The GABA synthesizing enzyme glutamate decarboxylase 65 (GAD65) and GABA were suppressed in NNK-induced PACs and PDACs whereas protein expression of the α7nAChR, α4nAChR as well as p-CREB and p-ERK1/2 were upregulated. These findings suggest, for the first time, that NNK-induced alterations in regulatory nAChRs may contribute to the development of smoking-associated PAC and PDAC by disturbing the balance between cancer stimulating and inhibiting neurotransmitters. PMID:19274673

  17. Menthol Enhances Nicotine Reward-Related Behavior by Potentiating Nicotine-Induced Changes in nAChR Function, nAChR Upregulation, and DA Neuron Excitability.

    Science.gov (United States)

    Henderson, Brandon J; Wall, Teagan R; Henley, Beverley M; Kim, Charlene H; McKinney, Sheri; Lester, Henry A

    2017-11-01

    Understanding why the quit rate among smokers of menthol cigarettes is lower than non-menthol smokers requires identifying the neurons that are altered by nicotine, menthol, and acetylcholine. Dopaminergic (DA) neurons in the ventral tegmental area (VTA) mediate the positive reinforcing effects of nicotine. Using mouse models, we show that menthol enhances nicotine-induced changes in nicotinic acetylcholine receptors (nAChRs) expressed on midbrain DA neurons. Menthol plus nicotine upregulates nAChR number and function on midbrain DA neurons more than nicotine alone. Menthol also enhances nicotine-induced changes in DA neuron excitability. In a conditioned place preference (CPP) assay, we observed that menthol plus nicotine produces greater reward-related behavior than nicotine alone. Our results connect changes in midbrain DA neurons to menthol-induced enhancements of nicotine reward-related behavior and may help explain how smokers of menthol cigarettes exhibit reduced cessation rates.

  18. The Influence of Puff Characteristics, Nicotine Dependence, and Rate of Nicotine Metabolism on Daily Nicotine Exposure in African American Smokers.

    Science.gov (United States)

    Ross, Kathryn C; Dempsey, Delia A; St Helen, Gideon; Delucchi, Kevin; Benowitz, Neal L

    2016-06-01

    African American (AA) smokers experience greater tobacco-related disease burden than Whites, despite smoking fewer cigarettes per day (CPD). Understanding factors that influence daily nicotine intake in AA smokers is an important step toward decreasing tobacco-related health disparities. One factor of interest is smoking topography, or the study of puffing behavior. (i) to create a model using puff characteristics, nicotine dependence, and nicotine metabolism to predict daily nicotine exposure, and (ii) to compare puff characteristics and nicotine intake from two cigarettes smoked at different times to ensure the reliability of the puff characteristics included in our model. Sixty AA smokers smoked their preferred brand of cigarette at two time points through a topography device. Plasma nicotine, expired CO, and changes in subjective measures were measured before and after each cigarette. Total nicotine equivalents (TNE) was measured from 24-hour urine collected during ad libitum smoking. In a model predicting daily nicotine exposure, total puff volume, CPD, sex, and menthol status were significant predictors (R(2) = 0.44, P smokers. Cancer Epidemiol Biomarkers Prev; 25(6); 936-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  19. Repeated potentiation of the metabotropic glutamate receptor 5 and the alpha 7 nicotinic acetylcholine receptor modulates behavioural and GABAergic deficits induced by early postnatal phencyclidine (PCP) treatment

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Bundgaard, Christoffer; Fejgin, Kim

    2013-01-01

    GluR5), ADX47273, and the partial agonist of the α7 nicotinic acetylcholine receptor (α7 nAChR), SSR180711. Adolescent rats (4-5 weeks) subjected to PCP treatment during the second postnatal week displayed a consistent deficit in prepulse inhibition (PPI), which was reversed by a one-week treatment...

  20. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface

    DEFF Research Database (Denmark)

    Ahring, Philip K.; Olsen, Jeppe A.; Nielsen, Elsebet O.

    2015-01-01

    The nicotinic acetylcholine receptor alpha 4 beta 2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (alpha 4)(2)(beta 2)(3) and (alpha 4)(3)(beta 2)(2). While these are similar in many aspects, the (alpha 4)(3)(beta 2)(2) stoichiometry...... differs by harboring a third orthosteric acetylcholine binding site located at the alpha 4-alpha 4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known....... The present study was therefore aimed at determining binding affinities of nicotinic ligands to the alpha 4-alpha 4 interface. Given that epibatidine shows large functional potency differences at alpha 4-beta 2 vs. alpha 4-alpha 4 interfaces, biphasic binding properties would be expected at (alpha 4)(3)(beta...

  1. Differential Modulation of GABAA and NMDA Receptors by an α7-nicotinic Acetylcholine Receptor Agonist in Chronic Glaucoma

    Directory of Open Access Journals (Sweden)

    Xujiao Zhou

    2017-12-01

    Full Text Available Presynaptic modulation of γ-aminobutyric acid (GABA release by an alpha7 nicotinic acetylcholine receptor (α7-nAChR agonist promotes retinal ganglion cell (RGC survival and function, as suggested by a previous study on a chronic glaucomatous model from our laboratory. However, the role of excitatory and inhibitory amino acid receptors and their interaction with α7-nAChR in physiological and glaucomatous events remains unknown. In this study, we investigated GABAA and N-methyl-D-aspartate (NMDA receptor activity in control and glaucomatous retinal slices and the regulation of amino acid receptor expression and function by α7-nAChR. Whole-cell patch-clamp recordings from RGCs revealed that the α7-nAChR specific agonist PNU-282987 enhanced the amplitude of currents elicited by GABA and reduced the amplitude of currents elicited by NMDA. The positive modulation of GABAA receptor and the negative modulation of NMDA receptor (NMDAR by PNU-282987-evoked were prevented by pre-administration of the α7-nAChR antagonist methyllycaconitine (MLA. The frequency and the amplitude of glutamate receptor-mediated miniature glutamatergic excitatory postsynaptic currents (mEPSCs were not significantly different between the control and glaucomatous RGCs. Additionally, PNU-282987-treated slices showed no alteration in the frequency or amplitude of mEPSCs relative to control RGCs. Moreover, we showed that expression of the α1 subunit of the GABAA receptor was downregulated and the expression of the NMDAR NR2B subunit was upregulated by intraocular pressure (IOP elevation, and the changes of high IOP were blocked by PNU-282987. In conclusion, retina GABAA and NMDARs are modulated positively and negatively, respectively, by activation of α7-nAChR in in vivo chronic glaucomatous models.

  2. Alpha-conotoxin analogs with additional positive charge show increased selectivity towards Torpedo californica and some neuronal subtypes of nicotinic acetylcholine receptors

    NARCIS (Netherlands)

    Kasheverov, I.E.; Zhmak, M.N.; Vulfius, C.A.; Corbacheva, E.V.; Mordvintsev, D.Y.; Utkin, Y.N.; van Elk, R.; Smit, A.B.; Tsetlin, V.I.

    2006-01-01

    α-Conotoxins from Conus snails are indispensable tools for distinguishing various subtypes of nicotinic acetylcholine receptors (nAChRs), and synthesis of α-conotoxin analogs may yield novel antagonists of higher potency and selectivity. We incorporated additional positive charges into α-conotoxins

  3. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Jozwiak, Krzysztof; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Kozak, Joanna; Ligeza, Agnieszka; Szacon, Elzbieta; Wrobel, Tomasz M; Budzynska, Barbara; Biala, Grazyna; Fornal, Emilia; Poso, Antti; Wainer, Irving W; Matosiuk, Dariusz

    2014-12-15

    9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. INDUCTION OF NA+/K+-ATPASE ACTIVITY BY LONG-TERM STIMULATION OF NICOTINIC ACETYLCHOLINE-RECEPTORS IN C2CL2 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; NELEMANS, SA; VANDENAKKER, J; DENHERTOG, A

    1 To investigate the role of long-term stimulation of nicotinic acety]choline receptors (AChRs) on the regulation of membrane potential, non-contracting C2C12 myotubes were stimulated for 1-4 days with carbachol (10 mu M) and membrane potentials were measured by the intracellular microelectrode

  5. Solid-phase synthesis and pharmacological evaluation of analogues of PhTX-12-A potent and selective nicotinic acetylcholine receptor antagonist

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian R; Andersen, Kim

    2002-01-01

    Philanthotoxin-12 (PhTX-12) is a novel potent and selective, noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). Homologues of PhTX-12 with 7-11 methylene groups between the primary amino group and the aromatic head-group were synthesized using solid-phase methodology. In vitro...

  6. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice

    International Nuclear Information System (INIS)

    Viberg, Henrik; Fredriksson, Anders; Eriksson, Per

    2003-01-01

    Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Flame retardants are used to suppress or inhibit combustion processes in an effort to reduce the risk of fire. One class of flame retardants, polybrominated diphenyl ethers (PBDEs), are present and increasing in the environment and in human milk. The present study shows that neonatal exposure to 2,2',4,4',5,5'-hexaBDE (PBDE 153), a PBDE persistent both in environment and in human milk, can induce developmental neurotoxic effects, such as changes in spontaneous behaviour (hyperactivity), impairments in learning and memory, and reduced amounts of nicotinic receptors, effects that get worse with age. Neonatal NMRI male mice were orally exposed on day 10 to 0.45, 0.9, or 9.0 mg of PBDE 153/kg of body weight. Spontaneous behaviour (locomotion, rearing, and total activity) was observed in 2-, 4-, and 6-month-old mice, Morris water maze at an age of 6 months. The behaviour tests showed that the effects were dose-response and time-response related. Animals showing defects in learning and memory also showed significantly reduced amounts of nicotinic receptors in hippocampus, using α-bungarotoxin binding assay. The observed developmental neurotoxic effects seen for PBDE 153 are similar to those seen for PBDE 99 and for certain PCBs. Furthermore, PBDEs appear to as potent as the PCBs

  7. Changes of learning and memory ability and brain nicotinic receptors of rat offspring with coal burning fluorosis

    Energy Technology Data Exchange (ETDEWEB)

    Gui, C.Z.; Ran, L.Y.; Li, J.P.; Guan, Z.Z. [Guiyang Medical College, Guiyang (China). Dept. of Pathology

    2010-09-15

    The purpose of the investigation is to reveal the mechanism of the decreased ability of learning and memory induced by coal burning fluorosis. Ten offspring SD rats aged 30 days, who were born from the mothers with chronic coal burning fluorosis, and ten offspring with same age from the normal mothers as controls were selected. Spatial learning and memory of the rats were evaluated by Morris Water Maze test. Cholinesterase activity was detected by photometric method. The expressions of nicotinic acetylcholine receptors (nAChRs) at protein and mRNA levels were detected by Western blotting and Real-time PCR, respectively. The results showed that in the rat offspring exposed to higher fluoride as compared to controls, the learning and memory ability declined; the cholinesterase activities in the brains were inhibited; the protein levels of alpha 3, alpha 4 and alpha 7 nAChR subunits were decreased which showed certain significant correlations with the declined learning and memory ability; and the mRNA levels of alpha 3 and alpha 4 nAChRs were decreased, whereas the alpha 7 mRNA increased. The data indicated that coal burning fluorosis can induce the decreased ability of learning and memory of rat offspring, in which the mechanism might be connected to the changed nAChRs and cholinesterase.

  8. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta.

    Science.gov (United States)

    Hu, J; DeChon, J; Yan, K C; Liu, Q; Hu, G; Wu, J

    2006-07-31

    Iptakalim hydrochloride, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, has shown remarkable antihypertensive and neuroprotective effects in a variety of studies using in vivo and in vitro preparations. We recently found that iptakalim blocked human alpha4-containing nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the human SH-EP1 cell line. In the present study, we examined the effects of iptakalim on several neurotransmitter-induced current responses in single DA neurons freshly dissociated from rat substantia nigra pars compacta (SNc), using perforated patch-clamp recordings combined with a U-tube rapid drug application. In identified DA neurons under voltage-clamp configuration, glutamate-, NMDA-, and GABA-induced currents were insensitive to co-application with iptakalim (100 microM), while whole-cell currents induced by ACh (1 mM+1 microM atropine) or an alpha4beta2 nicotinic acetylcholine receptors relatively selective agonist, RJR-2403 (300 microM), were eliminated by iptakalim. Iptakalim inhibited RJR-2403-induced current in a concentration-dependent manner, and reduced maximal RJR-2403-induced currents at the highest agonist concentration, suggesting a non-competitive block. In current-clamp mode, iptakalim failed to affect resting membrane potential and spontaneous action potential firing, but abolished RJR-2403-induced neuronal firing acceleration. Together, these results indicate that in dissociated SNc DA neurons, alpha4-containing nAChRs, rather than ionotropic glutamate receptors, GABA(A) receptors or perhaps K-ATP channels are the sensitive targets to mediate iptakalim's pharmacological roles.

  9. Beta amyloid differently modulate nicotinic and muscarinic receptor subtypes which regulate in vitro and in vivo the release of glycine in the rat hippocampus

    Directory of Open Access Journals (Sweden)

    Stefania eZappettini

    2012-07-01

    Full Text Available Using both in vitro (hippocampal synaptosomes in superfusion and in vivo (microdialysis approaches we investigated whether and to what extent β amyloid peptide 1-40 (Aβ 1-40 interferes with the cholinergic modulation of the release of glycine (GLY in the rat hippocampus. The nicotine-evoked overflow of endogenous GLY in hippocampal synaptosomes in superfusion was significantly inhibited by Aβ 1-40 (10 nM while increasing the concentration to 100 nM the inhibitory effect did not further increase. Both the Choline (Ch (α7 agonist; 1 mM and the 5-Iodo-A-85380 dihydrochloride (5IA85380, α4β2 agonist; 10 nM-evoked GLY overflow were inhibited by Aβ1-40 at 100 nM but not at 10nM concentrations. The KCl evoked [3H]GLY and [3H]Acetylcholine (ACh overflow were strongly inhibited in presence of oxotremorine; however this inhibitory muscarinic effect was not affected by Aβ1-40. The effects of Aβ1-40 on the administration of nicotine, veratridine, 5IA85380 and PHA 543613 hydrochloride (PHA543613 (a selective agonist of α7 subtypes on hippocampal endogenous GLY release in vivo were also studied. Aβ 1-40 significantly reduced (at 10 μM but not at 1 μM the nicotine evoked in vivo release of GLY. Aβ 1-40 (at 10 μM but not at 1 μM significantly inhibited the PHA543613 (1 mM-elicited GLY overflow while was ineffective on the GLY overflow evoked by 5IA85380 (1 mM. Aβ 40-1 (10 μM did not produce any inhibitory effect on nicotine evoked GLY overflow both in the in vitro and in vivo experiments. Our results indicate that a the cholinergic modulation of the release of GLY occurs by the activation of both α7 and α4β2 nicotinic ACh receptors (nAChRs as well as by the activation of inhibitory muscarinic ACh receptors (mAChRs and b Aβ 1-40 can modulate cholinergic evoked GLY release exclusively through the interaction with α7 and the α4β2 nAChR nicotinic receptors but not through mAChR subtypes.

  10. BDNF Up-Regulates α7 Nicotinic Acetylcholine Receptor Levels on Subpopulations of Hippocampal Interneurons

    Science.gov (United States)

    Massey, Kerri A.; Zago, Wagner M.; Berg, Darwin K.

    2006-01-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of α7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABAA receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased α7-nAChR clusters were most prominent on interneuron subtypes known to innervate directly excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling α7-nAChR levels. PMID:17029981

  11. Neuroscience of nicotine for addiction medicine: novel targets for smoking cessation medications.

    Science.gov (United States)

    D'Souza, Manoranjan S

    2016-01-01

    Morbidity and mortality associated with tobacco smoking constitutes a significant burden on healthcare budgets all over the world. Therefore, promoting smoking cessation is an important goal of health professionals and policy makers throughout the world. Nicotine is a major psychoactive component in tobacco that is largely responsible for the widespread addiction to tobacco. A majority of the currently available FDA-approved smoking cessation medications act via neuronal nicotinic receptors. These medications are effective in approximately half of all the smokers, who want to quit and relapse among abstinent smokers continues to be high. In addition to relapse among abstinent smokers, unpleasant effects associated with nicotine withdrawal are a major motivational factor in continued tobacco smoking. Over the last two decades, animal studies have helped in identifying several neural substrates that are involved in nicotine-dependent behaviors including those associated with nicotine withdrawal and relapse to tobacco smoking. In this review, first the role of specific brain regions/circuits that are involved in nicotine dependence will be discussed. Next, the review will describe the role of specific nicotinic receptor subunits in nicotine dependence. Finally, the review will discuss the role of classical neurotransmitters (dopamine, serotonin, noradrenaline, glutamate, and γ-aminobutyric acid) as well as endogenous opioid and endocannabinoid signaling in nicotine dependence. The nicotinic and nonnicotinic neural substrates involved in nicotine-dependent behaviors can serve as possible targets for future smoking cessation medications. © 2016 Elsevier B.V. All rights reserved.

  12. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats

    DEFF Research Database (Denmark)

    Bortz, D M; Upton, B A; Mikkelsen, J D

    2016-01-01

    Positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (α7nAChRs) exhibit pro-cognitive effects in animal models of schizophrenia and are targets for the discovery of cognition-enhancing drugs. However, little is known about their in vivo mechanism of action because...

  13. Ethanol-nicotine interactions in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marks, M J; Collins, A C

    1990-01-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  14. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  15. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  16. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H

    2010-01-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target...

  17. (S-5-ethynyl-anabasine, a novel compound, is a more potent agonist than other nicotine alkaloids on the nematode Asu-ACR-16 receptor

    Directory of Open Access Journals (Sweden)

    Fudan Zheng

    2017-04-01

    Here, we describe the synthesis of a novel agonist, (S-5-ethynyl-anabasine, and show that it is more potent (EC50 0.14 ± 0.01 μM than other nicotine alkaloids on Asu-ACR-16. Agonists acting on ACR-16 receptors have the potential to circumvent drug resistance to anthelmintics, like levamisole, that do not act on the ACR-16 receptors.

  18. Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making.

    Directory of Open Access Journals (Sweden)

    Jay G Hosking

    Full Text Available Successful decision making in our daily lives requires weighing an option's costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer's disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET, wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each. As per previous rCET studies, animals were divided by their baseline preferences, with "worker" rats choosing high-effort/high-reward options more than their "slacker" counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers' choice. Despite slackers' decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals' choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest

  19. Mecamylamine, dihydro-β-erythroidine, and dextromethorphan block conditioned responding evoked by the conditional stimulus effects of nicotine

    Science.gov (United States)

    Struthers, Amanda M.; Wilkinson, Jamie L.; Dwoskin, Linda P.; Crooks, Peter A.; Bevins, Rick A.

    2009-01-01

    Current smokers express the desire to quit. However, the majority find it difficult to remain abstinent. As such, research efforts continually seek to develop more effective treatment. One such area of research involves the interoceptive stimulus effects of nicotine as either a discriminative stimulus in an operant drug discrimination task, or more recently as a conditional stimulus (CS) in a discriminated goal-tracking task. The present work investigated the potential role nicotinic acetylcholine receptors in the CS effects of nicotine (0.4 mg/kg) using antagonists with differential selectivity for β2*, α7*, α6β2*, and α3β4* receptors. Methyllycaconitine (MLA) had no effect on nicotine-evoked conditioned responding. Mecamylamine and dihydro-β-erythroidine (DHβE) dose dependently blocked responding evoked by the nicotine CS. In a time-course assessment of mecamylamine and DHβE, each blocked conditioned responding when given 5 min before testing and still blocked conditioned responding when administered 200 min before testing. Two novel bis-picolinium analogs (N, N’-(3, 3′-(dodecan-1,12-diyl)-bis-picolinium dibromide [bPiDDB], and N, N’-(decan-1,10-diyl)-bis-picolinium diiodide [bPiDI]) did not block nicotine-evoked conditioned responding. Finally, pretreatment with low dose combinations of mecamylamine, dextromethorphan, and/or bupropion were used to target α3β4* receptors. No combination blocked conditioned responding evoked by the training dose of nicotine. However, a combination of mecamylamine and dextromethorphan partially blocked nicotine-evoked conditioned responding to a lower dose of nicotine (0.1 mg/kg). These results indicate that β2* and potentially α3β4* nicotinic acetylcholine receptors play a role in the CS effects of nicotine and are potential targets for the development of nicotine cessation aids. PMID:19778551

  20. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Ghazavi, E. [Bosch Institute, The University of Sydney, NSW 2006 (Australia); School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Hinton, T. [School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Waters, K.A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Hennessy, A. [School of Medicine, University of Western Sydney, NSW 2751 (Australia); Heart Research Institute, 7 Eliza St Newtown, NSW 2042 (Australia)

    2014-05-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.

  1. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    International Nuclear Information System (INIS)

    Machaalani, R.; Ghazavi, E.; Hinton, T.; Waters, K.A.; Hennessy, A.

    2014-01-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta

  2. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  3. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release

    DEFF Research Database (Denmark)

    Bortz, D M; Mikkelsen, J D; Bruno, J P

    2013-01-01

    The ability of local infusions of the alpha 7 nicotinic acetycholine receptor (α7 nAChR) partial agonist SSR180711 to evoke glutamate release in prefrontal cortex was determined in awake rats using a microelectrode array. Infusions of SSR180711 produced dose-dependent increases in glutamate levels...

  4. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    Science.gov (United States)

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  5. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    Science.gov (United States)

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry. © 2014 Society for the Study of Addiction.

  6. Dual Nicotinic Acetylcholine Receptor α4β2 Antagonists/α7 Agonists: Synthesis, Docking Studies, and Pharmacological Evaluation of Tetrahydroisoquinolines and Tetrahydroisoquinolinium Salts

    DEFF Research Database (Denmark)

    Crestey, François; Jensen, Anders A; Soerensen, Christian

    2018-01-01

    We describe the synthesis of tetrahydroisoquinolines and tetrahydroisoquinolinium salts together with their pharmacological properties at various nicotinic acetylcholine receptors. In general, the compounds were α4β2 nAChR antagonists, with the tetrahydroisoquinolinium salts being more potent than...

  7. Synthesis and nicotinic receptor activity of a hydroxylated tropane

    DEFF Research Database (Denmark)

    Bremner, John B; Godfrey, Colette A; Jensen, Anders A.

    2004-01-01

    (+/-)-3alpha-hydroxy homoepibatidine 4 has been synthesized from the alkaloid scopolamine 5 and its properties as a nicotinic agonist assessed. While still binding strongly, the compound showed reduced agonist potency for the alpha(4)beta(2) nAChR compared with the parent compound epibatidine 1....... Compound 4 also displayed generally similar binding and selectivity profiles at alpha(4)beta(2), alpha(2)beta(4), alpha(3)beta(4), and alpha(4)beta(4) nAChR subtypes to those for nicotine....

  8. Radiosynthesis and preliminary evaluation of Z.W.-90 and Z.W.-110, two novel acetylenic pyridines for imaging the nicotinic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kassiou, M.; Giboureau, N. [Sydney Univ., Brain and Mind Research Institute, NSW (Australia); Chellapan, S.; Wei, Z.L.; Kozikowski, A. [Illinois Univ., Chicago, Dept. of Medicinal Chemistry and Pharmacognosy, IL (United States); Henderson, D.; Fulton, R. [RPAH Sydney, Dept. PET and Nuclear Medicine (Australia); Xiao, Y.; Kellar, K. [Georgetown Univ., Dept. of Pharmacology, School of Medicine, Washington, DC (United States); Guilloteau, D.; Emond, P. [Institut National de la Sante et de la Recherche Medicale (INSERM), U619, 37 - Tours (France); Dolle, F. [Service Hospitalier Frederic Joliot, CEA/DSV, Institut d' Imagerie BioMedicale, 91 - Orsay (France)

    2008-02-15

    Central nicotinic acetylcholine receptors (n.A.Ch.R.s) have been implicated in learning memory processes and neuro-psychiatric disorders. Recently it was reported that the introduction of a substituted alkynyl group into the C-5 position of the pyridinyl ring of A-84543, significantly increased the selectivity for the n.A.Ch.R. containing {beta}{sub 2} subunits over {beta}{sub 4} subunits. Two selected candidates, Z.W.-90 and Z.W.-110 were labelled with carbon{sup 11} and evaluated in vivo.{sup 11}C Z.W.-90 penetrated rapidly into the brain, with maximum uptake in the thalamus and cerebellum 2 min post injection followed by clearance. The washout from cerebellum was faster than from thalamus, suggesting that specific binding can be optimally measured at 20 min post injection; Pretreatment of the baboon with nicotine resulted in markedly decreased uptake of the radioligand. {sup 11}C Z.W.-110 also penetrated rapidly into the brain, with a high evident uptake in the thalamus within 5 min. Surprisingly there was also considerable uptake in the striatum. Pretreatment with nicotine resulted in inhibition of uptake of 8 and 1%, in the thalamus and cerebellum, respectively. In pretreatment studies using unlabelled Z.W.-110, 32% inhibition of radioligand uptake was observed in the thalamus and striatum while uptake in the cerebellum was reduced by 24 %.While further work will be necessary in the development of optimal imaging agents for n.A.Ch.Rs, efforts will be made to examine the potential of these newly developed radioligands to serve diagnostic agents in the early detection of neurological disorders. (N.C.)

  9. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    Science.gov (United States)

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  10. Revisiting nicotine's role in the ageing brain and cognitive impairment

    DEFF Research Database (Denmark)

    Majdi, Alireza; Kamari, Farzin; Vafaee, Manouchehr Seyedi

    2017-01-01

    stress, excitotoxicity, amyloid-β toxicity, apoptosis, neuroinflammation, and perturb neurotrophic factors in the brain. Nicotine is an exogenous agonist of nicotinic acetylcholine receptors (nAChRs) and acts as a pharmacological chaperone in the regulation of nAChR expression, potentially intervening...... in age-related changes in diverse molecular pathways leading to pathology. Although nicotine has therapeutic potential, paradoxical effects have been reported, possibly due to its inverted U-shape dose-response effects or pharmacokinetic factors. Additionally, nicotine administration should result...... in optimum therapeutic effects without imparting abuse potential or toxicity. Overall, this review aims to compile the previous and most recent data on nicotine and its effects on cognition-related mechanisms and age-related cognitive impairment....

  11. Effect of the MK 801 and (-) nicotine intracerebral administration on Glu and Gaba extracellular concentration in the pedunculopontine nucleus from rats

    International Nuclear Information System (INIS)

    Blanco Lezcano, Lisette; Lorigados Pedre, Lourdes del Carmen; Gonzalez Fraguela, Maria Elena and others

    2011-01-01

    Although the pharmacological manipulation of the glutamatergic and cholinergic systems have been studied in animal models of Parkinson's Disease (PD), only some authors have done work on this topic at the pedunculopontine nucleus (PPN). The present work studied the changes in glutamate (Glu) and δ-aminobutyric acid (GABA) extracellular concentrations (EC) in the PPN from hemiparkinsonian rats by 6hydroxydopamine injection. The rats were locally perfused by MK-801 (10 μ mol/l) or (-) nicotine (10 mm) solutions by cerebral microdialysis. The biochemical studies were carried out through high performance liquid chromatography coupled to fluorescence detection. Mk-801 infusion induced a significant decrease of Glu (p< 0.01) and GABA (p< 0.01) EC in PPN. On the other hand (-) nicotine infusion induced a significant increase of Glu (p< 0.001) and GABA (p< 0.001) EC in PPN from hemiparkinsonian rats. The local blockade of NMDA receptors by MK-801 infusion facilitates the interaction between Glu and their metabotropic receptors that take part in presynaptic inhibition mechanisms and interfere with neurotransmitters release. Meanwhile, the nicotine infusion sums the effects of nicotinic receptor activation with the glutamatergic and gabaergic neurotransmission changes produced in the PPN in the parkinsonian condition. The cholinergic and glutamergic drug infusion in PPN impose a new adjustment to the neurotransmission at this level that is added to the neurochemical changes associated to dopaminergic denervation.

  12. Α4β2 and α7 nicotinic acetylcholine receptor binding predicts choice preference in two cost benefit decision-making tasks.

    Science.gov (United States)

    Mendez, I A; Damborsky, J C; Winzer-Serhan, U H; Bizon, J L; Setlow, B

    2013-01-29

    Nicotinic receptors have been linked to a wide range of cognitive and behavioral functions, but surprisingly little is known about their involvement in cost benefit decision making. The goal of these experiments was to determine how nicotinic acetylcholine receptor (nAChR) expression is related to two forms of cost benefit decision making. Male Long Evans rats were tested in probability- and delay-discounting tasks, which required discrete trial choices between a small reward and a large reward associated with varying probabilities of omission and varying delays to reward delivery, respectively. Following testing, radioligand binding to α4β2 and α7 nAChR subtypes in brain regions implicated in cost benefit decision making was examined. Significant linear relationships were observed between choice of the large delayed reward in the delay discounting task and α4β2 receptor binding in both the dorsal and ventral hippocampus. Additionally, trends were found suggesting that choice of the large costly reward in both discounting tasks was inversely related to α4β2 receptor binding in the medial prefrontal cortex and nucleus accumbens shell. Similar trends suggested that choice of the large delayed reward in the delay discounting task was inversely related to α4β2 receptor binding in the orbitofrontal cortex, nucleus accumbens core, and basolateral amygdala, as well as to α7 receptor binding in the basolateral amygdala. These data suggest that nAChRs (particularly α4β2) play both unique and common roles in decisions that require consideration of different types of reward costs. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 {+-} 235% (mean {+-} SEM) of basal level vs. 520 {+-} 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 {+-} 83% of basal level vs. 969 {+-} 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine.

  14. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    International Nuclear Information System (INIS)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun

    2005-01-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 ± 235% (mean ± SEM) of basal level vs. 520 ± 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 ± 83% of basal level vs. 969 ± 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine

  15. The α7-nACh nicotinic receptor and its role in memory and selected diseases of the central nervous system

    Directory of Open Access Journals (Sweden)

    Urszula Baranowska

    2017-07-01

    Full Text Available α7-nACh is one of the major nicotinic cholinergic receptor subtypes found in the brain. It is broadly expressed in the hippocampal and cortical neurons, the regions which play a key role in memory formation. Although α7-nACh receptors may serve as postsynaptic receptors mediating classical neurotransmission, they usually function as presynaptic modulators responsible for the release of other neurotransmitters, such as glutamate, γ-aminobutyric acid, dopamine, and norepinephrine. They can, therefore, affect a wide array of neurobiological functions. In recent years, research has found that a large number of agonists and positive allosteric modulators of α7-nAChR induce beneficial effects on learning and memory. Consistently, mice deficient in chrna7 (the gene encoding α7-nAChR protein, are characterized by memory deficits. In addition, decreased expression and function of α7-nAChR is associated agoniwith many neurological diseases including schizophrenia, bipolar disorder, learning disability, attention deficit hyperactivity disorder, Alzheimer disease, autism, and epilepsy. In the recent years many animal experiments and clinical trials using α7-nAChR ligands were conducted. The results of these studies strongly indicate that agonists and positive allosteric modulators of α7-nAChR are promising therapeutic agents for diseases associated with cognitive deficits.

  16. Analogues of neuroactive polyamine wasp toxins that lack inner basic sites exhibit enhanced antagonism toward a muscle-type mammalian nicotinic acetylcholine receptor

    DEFF Research Database (Denmark)

    Stromgaard, K; Brierley, M J; Andersen, K

    1999-01-01

    noncompetitively antagonized the nicotinic acetylcholine receptor (nAChR) in a concentration-, time-, and voltage-dependent manner. The amplitudes of acetylcholine-induced currents were compared at their peaks and at the end of a 1 s application in the presence or absence of the analogues. Most of the analogues...

  17. Role of the cholinergic nervous system in rheumatoid arthritis: aggravation of arthritis in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice

    NARCIS (Netherlands)

    van Maanen, Marjolein A.; Stoof, Susanne P.; Larosa, Gregory J.; Vervoordeldonk, Margriet J.; Tak, Paul P.

    2010-01-01

    BACKGROUND: The alpha7 subunit of nicotinic acetylcholine receptors (alpha7nAChR) can negatively regulate the synthesis and release of proinflammatory cytokines by macrophages and fibroblast-like synoviocytes in vitro. In addition, stimulation of the alpha7nAChR can reduce the severity of arthritis

  18. From the Cover: Prenatal Nicotinic Exposure Attenuates Respiratory Chemoreflexes Associated With Downregulation of Tyrosine Hydroxylase and Neurokinin 1 Receptor in Rat Pup Carotid Body.

    Science.gov (United States)

    Zhao, Lei; Zhuang, Jianguo; Gao, Xiuping; Ye, Chunyan; Lee, Lu-Yuan; Xu, Fadi

    2016-09-01

    Maternal cigarette smoke is the major risk of sudden infant death syndrome (SIDS). A depressed ventilatory response to hypoxia (HVR) and hypercapnia (HCVR) is thought to be responsible for the pathogenesis of SIDS and the carotid body is critically involved in these responses. We have recently reported that prenatal nicotinic exposure (PNE) over the full gestation induces depressed HVR in rat pups. Here, we asked whether PNE (1) depressed not only HVR but also HCVR that were dependent on the carotid body, (2) affected some important receptors and neurochemicals expressed in the carotid body, such as tyrosine hydroxylase (TH), neurokinin-1 receptor (NK1R), and α7 nicotinic acetylcholine receptor (α7nAChR), and (3) blunted the ventilatory responses to activation of these receptors. To this end, HVR and HCVR in Ctrl and PNE pups were measured with plethysmography before and after carotid body ablation (Series I), mRNA expression and/or immunoreactivity (IR) of TH, NK1R, and α7nAChR in the carotid body were examined by RT-PCR and immunohistochemistry (Series II), and the ventilatory responses were tested before and after intracarotid injection of substance P (NK1R agonist) and AR-R17779 (α7nAChR agonist) (Series III). Our results showed that PNE (1) significantly depressed both HVR and HCVR and these depressions were abolished by carotid body ablation, (2) reduced the relative population of glomus cells, mRNA NK1R, and α7nAChR and IR of NK1R and TH in the carotid body, and (3) decreased ventilatory responses to intracarotid injection of substance P or AR-R17779. These results suggest that PNE acting via the carotid body could strikingly blunt HVR and HCVR, likely through downregulating TH and NK1R. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection.

    Directory of Open Access Journals (Sweden)

    Julian Taranda

    2009-01-01

    Full Text Available The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9'T line of knockin mice with a threonine for leucine change (L9'T at position 9' of the second transmembrane domain of the alpha9 nicotinic cholinergic subunit, rendering alpha9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9'T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9'T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the alpha9alpha10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9(L9'T/L9'T mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter alpha9alpha10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.

  20. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    Science.gov (United States)

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  1. Pharmacological Characterisation of Nicotinic Acetylcholine Receptors Expressed in Human iPSC-Derived Neurons.

    Directory of Open Access Journals (Sweden)

    Anna Chatzidaki

    Full Text Available Neurons derived from human induced pluripotent stem cells (iPSCs represent a potentially valuable tool for the characterisation of neuronal receptors and ion channels. Previous studies on iPSC-derived neuronal cells have reported the functional characterisation of a variety of receptors and ion channels, including glutamate receptors, γ-aminobutyric acid (GABA receptors and several voltage-gated ion channels. In the present study we have examined the expression and functional properties of nicotinic acetylcholine receptors (nAChRs in human iPSC-derived neurons. Gene expression analysis indicated the presence of transcripts encoding several nAChR subunits, with highest levels detected for α3-α7, β1, β2 and β4 subunits (encoded by CHRNA3-CHRNA7, CHRNB1, CHRNB2 and CHRNB4 genes. In addition, similarly high transcript levels were detected for the truncated dupα7 subunit transcript, encoded by the partially duplicated gene CHRFAM7A, which has been associated with psychiatric disorders such as schizophrenia. The functional properties of these nAChRs have been examined by calcium fluorescence and by patch-clamp recordings. The data obtained suggest that the majority of functional nAChRs expressed in these cells have pharmacological properties typical of α7 receptors. Large responses were induced by a selective α7 agonist (compound B, in the presence of the α7-selective positive allosteric modulator (PAM PNU-120596, which were blocked by the α7-selective antagonist methyllycaconitine (MLA. In addition, a small proportion of the neurons express nAChRs with properties typical of heteromeric (non-α7 containing nAChR subtypes. These cells therefore represent a great tool to advance our understanding of the properties of native human nAChRs, α7 in particular.

  2. AZD3480, a novel nicotinic receptor agonist, for the treatment of attention-deficit/hyperactivity disorder in adults.

    Science.gov (United States)

    Potter, Alexandra S; Dunbar, Geoffrey; Mazzulla, Emily; Hosford, David; Newhouse, Paul A

    2014-02-01

    Laboratory studies have found that acute stimulation of nicotinic acetylcholine receptors improves cognition in adult attention-deficit/hyperactivity disorder (ADHD). Clinical trials of nicotinic agonists have been mixed, underscoring the need to understand the mechanisms for individual differences in clinical response. Using cognitive models within a clinical trial framework may provide insight into these differences. This was a within-subjects, randomized, placebo-controlled double-blind trial of the nicotinic agonist AZD3480 (also termed TC-1734) at doses of 5 mg and 50 mg and placebo in adults with ADHD. The order of the 2-week treatment periods was randomized, and a 3-week wash out separated each drug treatment period. Response inhibition (Stop Signal Task [SST]) and clinical efficacy (Investigator Rated Conners Adult ADHD Rating Scale [CAARS-INV]) were the a priori primary outcome measures of cognitive and clinical effects. We hypothesized that AZD3480 treatment would improve SST performance and clinical symptoms (CAARS-INV Total ADHD Symptoms Score). Thirty subjects were randomized, with 24 included in the intent-to-treat analyses. SST performance and total ADHD symptoms were significantly improved with 50 mg of AZD3480. CAARS-INV ratings of inattention, memory problems, and emotional lability/impulsivity were significantly improved with 50 mg of AZD3480. These results support previous work suggesting that nicotinic agonists are viable as treatments for adult ADHD. Measuring cognitive endophenotypes related to both the disorder and mechanism of treatment may help further rational drug development for dimensional features that cross-cut psychiatric disorders. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. A Two-Day Continuous Nicotine Infusion Is Sufficient to Demonstrate Nicotine Withdrawal in Rats as Measured Using Intracranial Self-Stimulation

    Science.gov (United States)

    Muelken, Peter; Schmidt, Clare E.; Shelley, David; Tally, Laura; Harris, Andrew C.

    2015-01-01

    Avoidance of the negative affective (emotional) symptoms of nicotine withdrawal (e.g., anhedonia, anxiety) contributes to tobacco addiction. Establishing the minimal nicotine exposure conditions required to demonstrate negative affective withdrawal signs in animals, as well as understanding moderators of these conditions, could inform tobacco addiction-related research, treatment, and policy. The goal of this study was to determine the minimal duration of continuous nicotine infusion required to demonstrate nicotine withdrawal in rats as measured by elevations in intracranial self-stimulation (ICSS) thresholds (anhedonia-like behavior). Administration of the nicotinic acetylcholine receptor antagonist mecamylamine (3.0 mg/kg, s.c.) on alternate test days throughout the course of a 2-week continuous nicotine infusion (3.2 mg/kg/day via osmotic minipump) elicited elevations in ICSS thresholds beginning on the second day of infusion. Magnitude of antagonist-precipitated withdrawal did not change with further nicotine exposure and mecamylamine injections, and was similar to that observed in a positive control group receiving mecamylamine following a 14-day nicotine infusion. Expression of a significant withdrawal effect was delayed in nicotine-infused rats receiving mecamylamine on all test days rather than on alternate test days. In a separate study, rats exhibited a transient increase in ICSS thresholds following cessation of a 2-day continuous nicotine infusion (3.2 mg/kg/day). Magnitude of this spontaneous withdrawal effect was similar to that observed in rats receiving a 9-day nicotine infusion. Our findings demonstrate that rats exhibit antagonist-precipitated and spontaneous nicotine withdrawal following a 2-day continuous nicotine infusion, at least under the experimental conditions studied here. Magnitude of these effects were similar to those observed in traditional models involving more prolonged nicotine exposure. Further development of these models

  4. Modes of Action, Resistance and Toxicity of Insecticides Targeting Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-01-01

    Nicotinic acetylcholine receptors (nAChRs) of insects play a key role in fast excitatory neurotransmission. Several classes of insecticides target insect nAChRs, which are composed of subunit members of a family of multiple subunit encoding genes. Alternative splicing and RNA A-to-I editing can add further to receptor diversity. Native and recombinant receptors have been explored as sites of insecticide action using radioligands, electrophysiology and site-directed mutagenesis. We have reviewed the properties of native and recombinant insect nAChRs, the challenges of functional recombinant insect nAChR expression, nAChR interactions with ligands acting at orthosteric and allosteric sites and in particular their interactions with insecticides. Actions on insect nAChRs of cartap, neonicotinoids, spinosyns, sulfoxamines, butenolides and mesoionic insecticides are reviewed and current knowledge of their modes of action are addressed. Mutations that add to our understanding of insecticide action and those leading to resistance are discussed. Co-crystallisation of neonicotinoids with the acetylcholine binding protein (AChBP), a surrogate for the nAChR ligand binding domain, has proved instructive. Toxicity issues relating to insecticides targeting nAChRs are also considered. An overview of insecticide classes targeting insect nAChRs has enhanced our understanding of these important receptors and their insecticide binding sites. However, the subunit composition of native nAChRs remains poorly understood and functional expression still presents difficulties. These topics together with improved understanding of the precise sites of insecticide actions on insect nAChRs will be the subject of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  6. Effect of α7 nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    International Nuclear Information System (INIS)

    Welch, Kevin D.; Pfister, James A.; Lima, Flavia G.; Green, Benedict T.; Gardner, Dale R.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  7. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  8. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    Science.gov (United States)

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  9. Maternal exposure of rats to nicotine via infusion during gestation produces neurobehavioral deficits and elevated expression of glial fibrillary acidic protein in the cerebellum and CA1 subfield in the offspring at puberty

    International Nuclear Information System (INIS)

    Abdel-Rahman, Ali; Dechkovskaia, Anjelika M.; Sutton, Jazmine M.; Chen, Wei-Chung; Guan, Xiangrong; Khan, Wasiuddin A.; Abou-Donia, Mohamed B.

    2005-01-01

    Maternal smoking during pregnancy is known to be a significant contributor to developmental neurological health problems in the offspring. In animal studies, nicotine treatment via injection during gestation has been shown to produce episodic hypoxia in the developing fetus. Nicotine delivery via mini osmotic pump, while avoiding effects due to hypoxia-ischemia, it also provides a steady level of nicotine in the plasma. In the present study timed-pregnant Sprague-Dawley rats (300-350 g) were treated with nicotine (3.3 mg/kg, in bacteriostatic water via s.c. implantation of mini osmotic pump) from gestational days (GD) 4-20. Control animals were treated with bacteriostatic water via s.c. implantation of mini osmotic pump. Offspring on postnatal day (PND) 30 and 60, were evaluated for changes in the ligand binding for various types of nicotinic acetylcholine receptors and neuropathological alterations. Neurobehavioral evaluations for sensorimotor functions, beam-walk score, beam-walk time, incline plane and grip time response were carried out on PND 60 offspring. Beam-walk time and forepaw grip time showed significant impairments in both male and female offspring. Ligand binding densities for [ 3 H]epibatidine, [ 3 H]cytisine and [ 3 H]α-bungarotoxin did not show any significant changes in nicotinic acetylcholine receptors subtypes in the cortex at PND 30 and 60. Histopathological evaluation using cresyl violet staining showed significant decrease in surviving Purkinje neurons in the cerebellum and a decrease in surviving neurons in the CA1 subfield of hippocampus on PND 30 and 60. An increase in glial fibrillary acidic protein (GFAP) immuno-staining was observed in cerebellum white matter as well as granular cell layer of cerebellum and the CA1 subfield of hippocampus on PND 30 and 60 of both male and female offspring. These results indicate that maternal exposure to nicotine produces significant neurobehavioral deficits, a decrease in the surviving neurons and an

  10. Double dissociation of working memory and attentional processes in smokers and non-smokers with and without nicotine.

    Science.gov (United States)

    Grundey, Jessica; Amu, Rosa; Ambrus, Géza Gergely; Batsikadze, Georgi; Paulus, Walter; Nitsche, Michael A

    2015-07-01

    Nicotine has been shown to affect cortical excitability measured using transcranial magnetic stimulation in smoking and non-smoking subjects in different ways. In tobacco-deprived smokers, administration of nicotine restores compromised cortical facilitation while in non-smokers, it enhances cortical inhibition. As cortical excitability and activity are closely linked to cognitive processes, we aimed to explore whether nicotine-induced physiological alterations in non-smokers and smokers are associated with cognitive changes. Specifically, we assessed the impact of nicotine on working memory performance (n-back letter task) and on attentional processes (Stroop interference test) in healthy smokers and non-smokers. Both tasks have been shown to rely on prefrontal areas, and nicotinic receptors are relevantly involved in prefrontal function. Sixteen smoking and 16 non-smoking subjects participated in the 3-back letter task and 21 smoking and 21 non-smoking subjects in the Stroop test after the respective application of placebo or nicotine patches. The results show that working memory and attentional processes are compromised in nicotine-deprived smokers compared to non-smoking individuals. After administration of nicotine, working memory performance in smokers improved, while non-smoking subjects displayed decreased accuracy with increased number of errors. The effects have been shown to be more apparent for working memory performance than attentional processes. In summary, cognitive functions can be restored by nicotine in deprived smokers, whereas non-smokers do not gain additional benefit. The respective changes are in accordance with related effects of nicotine on cortical excitability in both groups.

  11. Nicotinic receptors modulate the onset of reactive oxygen species production and mitochondrial dysfunction evoked by glutamate uptake block in the rat hypoglossal nucleus.

    Science.gov (United States)

    Tortora, Maria; Corsini, Silvia; Nistri, Andrea

    2017-02-03

    In several neurodegenerative diseases, glutamate-mediated excitotoxicity is considered to be a major process to initiate cell degeneration. Indeed, subsequent to excessive glutamate receptor stimulation, reactive oxygen species (ROS) generation and mitochondrial dysfunction are regarded as two major gateways leading to neuron death. These processes are mimicked in an in vitro model of rat brainstem slice when excitotoxicity is induced by DL-threo-β-benzyloxyaspartate (TBOA), a specific glutamate-uptake blocker that increases extracellular glutamate. Our recent study has demonstrated that brainstem hypoglossal motoneurons, which are very vulnerable to this damage, were neuroprotected from excitotoxicity with nicotine application through the activation of nicotinic acetylcholine receptors (nAChRs) and subsequent inhibition of ROS and mitochondrial dysfunction. The present study examined if endogenous cholinergic activity exerted any protective effect in this pathophysiological model and how ROS production (estimated with rhodamine fluorescence) and mitochondrial dysfunction (measured as methyltetrazolium reduction) were time-related during the early phase of excitotoxicity (0-4h). nAChR antagonists did not modify TBOA-evoked ROS production (that was nearly doubled over control) or mitochondrial impairment (25% decline), suggesting that intrinsic nAChR activity was insufficient to contrast excitotoxicity and needed further stimulation with nicotine to become effective. ROS production always preceded mitochondrial dysfunction by about 2h. Nicotine prevented both ROS production and mitochondrial metabolic depression with a delayed action that alluded to a complex chain of events targeting these two lesional processes. The present data indicate a relatively wide time frame during which strong nAChR activation can arrest a runaway neurotoxic process leading to cell death. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Long-term exposure to nicotine markedly reduces kynurenic acid in rat brain - In vitro and ex vivo evidence

    International Nuclear Information System (INIS)

    Zielinska, Elzbieta; Kuc, Damian; Zgrajka, Wojciech; Turski, Waldemar A.; Dekundy, Andrzej

    2009-01-01

    Kynurenic acid (KYNA) is a recognized broad-spectrum antagonist of excitatory amino acid receptors with a particularly high affinity for the glycine co-agonist site of the N-methyl-D-aspartate (NMDA) receptor complex. KYNA is also a putative endogenous neuroprotectant. Recent studies show that KYNA strongly blocks α7 subtype of nicotinic acetylcholine receptors (nAChRs). The present studies were aimed at assessing effects of acute and chronic nicotine exposure on KYNA production in rat brain slices in vitro and ex vivo. In brain slices, nicotine significantly increased KYNA formation at 10 mM but not at 1 or 5 mM. Different nAChR antagonists (dihydro-β-erythroidine, methyllycaconitine and mecamylamine) failed to block the influence exerted by nicotine on KYNA synthesis in cortical slices in vitro. Effects of acute (1 mg/kg, i.p.), subchronic (10-day) and chronic (30-day) administration of nicotine in drinking water (100 μg/ml) on KYNA brain content were evaluated ex vivo. Acute treatment with nicotine (1 mg/kg i.p.) did not affect KYNA level in rat brain. The subchronic exposure to nicotine in drinking water significantly increased KYNA by 43%, while chronic exposure to nicotine resulted in a reduction in KYNA by 47%. Co-administration of mecamylamine with nicotine in drinking water for 30 days reversed the effect exerted by nicotine on KYNA concentration in the cerebral cortex. The present results provide evidence for the hypothesis of reciprocal interaction between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  13. Chronic Nicotine Treatment During Adolescence Attenuates the Effects of Acute Nicotine in Adult Contextual Fear Learning.

    Science.gov (United States)

    Holliday, Erica D; Gould, Thomas J

    2017-01-01

    Adolescent onset of nicotine abuse is correlated with worse chances at successful abstinence in adulthood. One reason for this may be due to enduring learning deficits resulting from nicotine use during adolescence. Previous work has indicated that chronic nicotine administration beginning in late adolescence (PND38) caused learning deficits in contextual fear when tested in adulthood. The purpose of this study was to determine if chronic nicotine treatment during adolescence would alter sensitivity to nicotine's cognitive enhancing properties in adulthood. C57BL/6J mice received saline or chronic nicotine (12.6mg/kg/day) during adolescence (postnatal day 38) or adulthood (postnatal day 54) for a period of 12 days. Following a 30-day protracted abstinence, mice received either an acute injection of saline or nicotine (0.045, 0.18, and 0.36mg/kg) prior to training and testing a mouse model of contextual fear. It was found that chronic nicotine administration in adult mice did not alter sensitivity to acute nicotine following a protracted abstinence. In adolescent mice, chronic nicotine administration disrupted adult learning and decreased sensitivity to acute nicotine in adulthood as only the highest dose tested (0.36mg/kg) was able to enhance contextual fear learning. These results suggest that adolescent nicotine exposure impairs learning in adulthood, which could increase the risk for continued nicotine use in adulthood by requiring administration of higher doses of nicotine to reverse learning impairments caused by adolescent nicotine exposure. Results from this study add to the growing body of literature suggesting chronic nicotine exposure during adolescence leads to impaired learning in adulthood and demonstrates that nicotine exposure during adolescence attenuates the cognitive enhancing effects of acute nicotine in adulthood, which suggests altered cholinergic function. © The Author 2016. Published by Oxford University Press on behalf of the Society for

  14. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization

    Directory of Open Access Journals (Sweden)

    Amanda Clause

    2017-06-01

    Full Text Available Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cells as genetic deletion of the α9 subunit results in functional cholinergic de-efferentation of the cochlea. Cholinergic modulation of spontaneous cochlear activity before hearing onset is important for the maturation of central auditory circuits. In α9KO mice, the developmental refinement of inhibitory afferents to the lateral superior olive is disturbed, resulting in decreased tonotopic organization of this sound localization nucleus. In this study, we used behavioral tests to investigate whether the circuit anomalies in α9KO mice correlate with sound localization or sound frequency processing. Using a conditioned lick suppression task to measure sound localization, we found that three out of four α9KO mice showed impaired minimum audible angles. Using a prepulse inhibition of the acoustic startle response paradigm, we found that the ability of α9KO mice to detect sound frequency changes was impaired, whereas their ability to detect sound intensity changes was not. These results demonstrate that cholinergic, nicotinic α9 subunit mediated transmission in the developing cochlear plays an important role in the maturation of hearing.

  15. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  16. Association of nicotine metabolism and sex with relapse following varenicline and nicotine replacement therapy.

    Science.gov (United States)

    Glatard, Anaïs; Dobrinas, Maria; Gholamrezaee, Mehdi; Lubomirov, Rubin; Cornuz, Jacques; Csajka, Chantal; Eap, Chin B

    2017-10-01

    Nicotine is metabolized into cotinine and then into trans-3'-hydroxycotinine, mainly by cytochrome P450 2A6. Recent studies reported better effectiveness of varenicline in women and in nicotine normal metabolizers phenotypically determined by nicotine-metabolite ratio. Our objective was to study the influence of nicotine-metabolite ratio, CYP2A6 genotype and sex on the response to nicotine replacement therapy and varenicline. Data were extracted from a longitudinal study which included smokers participating in a smoking cessation program. Response to treatment was defined by the absence of relapse when a set threshold of reduction in cigarettes per day relative to the week before the study was no more reached. The analysis considered total and partial reduction defined by a diminution of 100% and of 90% in cigarettes per day, respectively. The hazard ratio of relapsing was estimated in multivariate Cox regression models including the sex and the nicotine metabolism determined by the phenotype or by CYP2A6 genotyping (rs1801272 and rs28399433). In the normal metabolizers determined by phenotyping and in women, the hazard ratio for relapsing was significantly lower with varenicline for a partial decrease (HR = 0.33, 95% CI [0.12, 0.89] and HR = 0.20, 95% CI [0.04, 0.91], respectively) and nonsignificantly lower for a total cessation (HR = 0.45, 95% CI [0.20, 1.0] and HR = 0.38, 95% CI [0.14, 1.0]). When compared with the normal metabolizers determined by phenotyping, the hazard ratio for a partial decrease was similar in the normal metabolizers determined by genotyping (HR = 0.42, 95% CI [0.18, 0.94]) while it was significantly lower with varenicline for a total cessation (HR = 0.50, 95% CI [0.26, 0.98]). Women and normal nicotine metabolizers may benefit more from varenicline over nicotine replacement therapy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Waterpipe tobacco products: nicotine labelling versus nicotine delivery.

    Science.gov (United States)

    Vansickel, Andrea R; Shihadeh, Alan; Eissenberg, Thomas

    2012-05-01

    Waterpipe tobacco package labelling typically indicates "0.0% tar" and "0.05% or 0.5% nicotine". To determine the extent to which nicotine labeling is related to nicotine delivery. 110 waterpipe smokers engaged in a 45-minute waterpipe smoking session. Puff topography and plasma nicotine were measured. Three waterpipe tobacco brands were used: Nakhla (0.5% nicotine), Starbuzz (0.05% nicotine), and Al Fakher (0.05% nicotine). Data were analyzed by one-way ANOVA. Topography did not differ across brands. Peak plasma nicotine varied significantly across brands. Al Fakher had the highest nicotine delivery (11.4 ng/ml) followed by Nakhla (9.8 ng/ml) and Starbuzz (5.8 ng/ml). Nicotine labelling on waterpipe tobacco products does not reflect delivery; smoking a brand with a "0.05% nicotine" label led to greater plasma nicotine levels than smoking a brand with a "0.5% nicotine" label. Waterpipe tobacco products should be labelled in a manner that does not mislead consumers.

  18. [3H]imidacloprid: synthesis of a candidate radioligand for the nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Latli, B.; Casida, J.E.

    1992-01-01

    Imidacloprid is an exceptionally potent insecticide known from physiological studies to act at the nicotinic acetylcholine receptor. To prepare [ 3 H]imidacloprid as a candidate radioligand, 6-chloronicotinoyl chloride was reduced with NaB 2 H 4 (in model studies) or NaB 3 H 4 in absolute ethanol to 2-chloro-5-pyridinylmethanol which was transformed to 2-chloro-5-chloromethylpyridine on refluxing with thionyl chloride. Coupling with 4,5-dihydro-N-nitro-1H-imidazol-2-amine then gave [ 2 H 2 ]imidacloprid incorporating about 95% of the deuterium or [ 3 H 2 ]imidacloprid (25 Ci/mmol) in 80% radiochemical yield. In studies not detailed here [ 3 H] imidacloprid was found to undergo high affinity, specific and saturable binding to a site in insect brain. (author)

  19. Sympathomimetic Effects of Acute E-Cigarette Use: Role of Nicotine and Non-Nicotine Constituents.

    Science.gov (United States)

    Moheimani, Roya S; Bhetraratana, May; Peters, Kacey M; Yang, Benjamin K; Yin, Fen; Gornbein, Jeffrey; Araujo, Jesus A; Middlekauff, Holly R

    2017-09-20

    Chronic electronic (e) cigarette users have increased resting cardiac sympathetic nerve activity and increased susceptibility to oxidative stress. The purpose of the present study is to determine the role of nicotine versus non-nicotine constituents in e-cigarette emissions in causing these pathologies in otherwise healthy humans. Thirty-three healthy volunteers who were not current e-cigarette or tobacco cigarette smokers were studied. On different days, each participant used an e-cigarette with nicotine, an e-cigarette without nicotine, or a sham control. Cardiac sympathetic nerve activity was determined by heart rate variability, and susceptibility to oxidative stress was determined by plasma paraoxonase activity. Following exposure to the e-cigarette with nicotine, but not to the e-cigarette without nicotine or the sham control, there was a significant and marked shift in cardiac sympathovagal balance towards sympathetic predominance. The decrease in high-frequency component and the increases in the low-frequency component and the low-frequency to high-frequency ratio were significantly greater following exposure to the e-cigarette with nicotine compared with exposure to the e-cigarette without nicotine or to sham control. Oxidative stress, as estimated by plasma paraoxonase, did not increase following any of the 3 exposures. The acute sympathomimetic effect of e-cigarettes is attributable to the inhaled nicotine, not to non-nicotine constituents in e-cigarette aerosol, recapitulating the same heart rate variability pattern associated with increased cardiac risk in multiple populations with and without known cardiac disease. Evidence of oxidative stress, as estimated by plasma paraoxonase activity, was not uncovered following acute e-cigarette exposure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. The Distribution of Charged Amino Acid Residues and the Ca2+ Permeability of Nicotinic Acetylcholine Receptors: A Predictive Model

    Directory of Open Access Journals (Sweden)

    Sergio Fucile

    2017-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are cation-selective ligand-gated ion channels exhibiting variable Ca2+ permeability depending on their subunit composition. The Ca2+ permeability is a crucial functional parameter to understand the physiological role of nAChRs, in particular considering their ability to modulate Ca2+-dependent processes such as neurotransmitter release. The rings of extracellular and intracellular charged amino acid residues adjacent to the pore-lining TM2 transmembrane segment have been shown to play a key role in the cation selectivity of these receptor channels, but to date a quantitative relationship between these structural determinants and the Ca2+ permeability of nAChRs is lacking. In the last years the Ca2+ permeability of several nAChR subtypes has been experimentally evaluated, in terms of fractional Ca2+ current (Pf, i.e., the percentage of the total current carried by Ca2+ ions. In the present study, the available Pf-values of nAChRs are used to build a simplified modular model describing the contribution of the charged residues in defined regions flanking TM2 to the selectivity filter controlling Ca2+ influx. This model allows to predict the currently unknown Pf-values of existing nAChRs, as well as the hypothetical Ca2+ permeability of subunit combinations not able to assemble into functional receptors. In particular, basing on the amino acid sequences, a Pf > 50% would be associated with homomeric nAChRs composed by different α subunits, excluding α7, α9, and α10. Furthermore, according to the model, human α7β2 receptors should have Pf-values ranging from 3.6% (4:1 ratio to 0.1% (1:4 ratio, much lower than the 11.4% of homomeric α7 nAChR. These results help to understand the evolution and the function of the large diversity of the nicotinic receptor family.

  1. The alpha7 nicotinic receptor agonist SSR180711 increases activity regulated cytoskeleton protein (Arc) gene expression in the prefrontal cortex of the rat

    DEFF Research Database (Denmark)

    Kristensen, Søren E; Thomsen, Morten S; Hansen, Henrik H

    2007-01-01

    Nicotinic alpha7 acetylcholine receptors (alpha7 nAChR) have been shown to enhance attentional function and aspects of memory function in experimental models and in man. The protein Arc encoded by the effector immediate early gene arc or arg3.1 has been shown to be strongly implicated in long...

  2. Central estrogenic pathways protect against the depressant action of acute nicotine on reflex tachycardia in female rats

    International Nuclear Information System (INIS)

    El-Mas, Mahmoud M.; Fouda, Mohamed A.; El-gowilly, Sahar M.; Saad, Evan I.

    2012-01-01

    We have previously shown that acute exposure of male rats to nicotine preferentially attenuates baroreceptor-mediated control of reflex tachycardia in contrast to no effect on reflex bradycardia. Here, we investigated whether female rats are as sensitive as their male counterparts to the baroreflex depressant effect of nicotine and whether this interaction is modulated by estrogen. Baroreflex curves relating reflex chronotropic responses evoked by i.v. doses (1–16 μg/kg) of phenylephrine (PE) or sodium nitroprusside (SNP), were constructed in conscious freely moving proestrus, ovariectomized (OVX), and estrogen (50 μg/kg/day s.c., 5 days)-replaced OVX (OVXE 2 ) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRS PE and BRS SNP ). Nicotine (100 μg/kg i.v.) reduced BRS SNP in OVX rats but not in proestrus or OVXE 2 rats. The attenuation of reflex tachycardia by nicotine was also evident in diestrus rats, which exhibited plasma estrogen levels similar to those of OVX rats. BRS PE was not affected by nicotine in all rat preparations. Experiments were then extended to determine whether central estrogenic receptors modulate the nicotine–BRS SNP interaction. Intracisteral (i.c.) treatment of OVX rats with estrogen sulfate (0.2 μg/rat) abolished the BRS SNP attenuating effect of i.v. nicotine. This protective effect of estrogen disappeared when OVX rats were pretreated with i.c. ICI 182,780 (50 μg/rat, selective estrogen receptor antagonist). Together, these findings suggest that central neural pools of estrogen receptors underlie the protection offered by E 2 against nicotine-induced baroreceptor dysfunction in female rats. -- Highlights: ► Estrogen protects against the depressant effect of nicotine on reflex tachycardia. ► The baroreflex response and estrogen status affect the nicotine–BRS interaction. ► The protection offered by estrogen is mediated via central estrogen receptors.

  3. The neurosteroid pregnenolone sulfate neutralized the learning impairment induced by intrahippocampal nicotine in alcohol-drinking rats.

    Science.gov (United States)

    Martín-García, E; Pallarès, M

    2005-01-01

    The effects of intrahippocampal administration of nicotine and the neurosteroids pregnenolone sulfate and allopregnanolone on acquiring the lever-press response and extinction in a Skinner box were examined using voluntary alcohol-drinking rats. A free-choice drinking procedure that implies early availability of the alcoholic solution (10% ethanol v/v+3% glucose w/v in distilled water) was used. Alcohol and control rats were deprived of food and assigned at random to six groups. Each group received two consecutive intrahippocampal (dorsal CA1) injections immediately after 1-h of drinking ethanol and before the free lever-press response shaping and extinction session. The groups were: saline-saline; saline-pregnenolone sulfate (5 ng, 24 microM); saline-allopregnanolone (0.2 microg, 1.26 microM); nicotine (4.6 microg, 20 mM)-saline; nicotine-pregnenolone sulfate; nicotine-allopregnanolone. Blood alcohol concentrations were assessed the day before conditioning. The combination of the oral self-administration of ethanol and the intrahippocampal injection of nicotine deteriorated the ability to acquire the lever-press response. This effect was neutralized by intrahippocampal pregnenolone sulfate (negative modulator of the GABA(A) receptor complex), and it was not affected by intrahippocampal allopregnanolone (positive GABA receptor complex A modulator). Pregnenolone sulfate and allopregnanolone had no effects per se on lever-press acquisition, neither in alcohol-drinking rats nor in controls. Alcohol consumption facilitated operant extinction just as anxiolytics that act as positive modulators of the GABA receptor complex A receptors do, possibly reducing the anxiety or aversion related to non-reinforcement. This effect was increased by intrahippocampal nicotine.

  4. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Pfister, James A. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Lima, Flavia G. [Federal University of Goías, School of Veterinary Medicine, Goiânia, Goías (Brazil); Green, Benedict T.; Gardner, Dale R. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States)

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  5. Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors.

    Science.gov (United States)

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Welch, Kevin D; Cook, Daniel; Pfister, James A; Kem, William R

    2010-01-01

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and cleft palate. A pharmacodynamic comparison of the alkaloids ammodendrine, anabasine, anabaseine, anagyrine, and coniine in SH-SY5Y cells and TE-671 cells was made. These alkaloids and their enantiomers were more effective in depolarizing TE-671 cells which express the human fetal-muscle type nicotinic acetylcholine receptor (nAChR) relative to SH-SY5Y cells which predominately express autonomic nAChRs. The rank order of potency in TE-671 cells was: anabaseine>(+)-anabasine>(-)-anabasine > (+/-)-anabasine>anagyrine>(-)-coniine > (+/-)-coniine>(+)-coniine>(+/-)-ammodendrine>(+)-ammodendrine. The rank order potency in SH-SY5Y cells was: anabaseine>(+)-anabasine>(-)-coniine>(+)-coniine>(+)-ammodendrine>anagyrine>(-)-anabasine>(+/-)-coniine>(+/-)-anabasine>(-)-ammodendrine. The actions of these alkaloids at nAChRs in both cell lines could be distinguished by their maximum effects in depolarizing cell membrane potential. The teratogenic action of these compounds may be related to their ability to activate and subsequently desensitize nAChRs.

  6. Effect of a nicotine vaccine on nicotine binding to the beta2-nAChRs in vivo in human tobacco smokers

    Science.gov (United States)

    Esterlis, Irina; Hannestad, Jonas O.; Perkins, Evgenia; Bois, Frederic; D’Souza, D. Cyril; Tyndale, Rachel F.; Seibyl, John P.; Hatsukami, Dorothy M.; Cosgrove, Kelly P.; O’Malley, Stephanie S.

    2013-01-01

    Objective Nicotine acts in the brain to promote smoking in part by binding to the beta2-containing nicotinic acetylcholine receptors (β2*-nAChRs) and acting in the mesolimbic reward pathway. The effects of nicotine from smoking one tobacco cigarette are significant (80% of β2*-nAChRs occupied for >6h). This likely contributes to the maintenance of smoking dependence and low cessation outcomes. Development of nicotine vaccines provides potential for alternative treatments. We used [123I]5IA-85380 SPECT to evaluate the effect of 3′-AmNic-rEPA on the amount of nicotine that binds to the β2*-nAChRs in the cortical and subcortical regions in smokers. Method Eleven smokers (36years (SD=13); 19cig/day (SD=11) for 10years (SD=7) who were dependent on nicotine (Fagerström Test of Nicotine Dependence score =5.5 (SD=3); plasma nicotine 9.1 ng/mL (SD=5)) participated in 2 SPECT scan days: before and after immunization with 4–400μg doses of 3′-AmNic-rEPA. On SPECT scan days, 3 30-min baseline emission scans were obtained, followed by administration of IV nicotine (1.5mg/70kg) and up to 9 30-min emission scans. Results β2*-nAChR availability was quantified as VT/fP and nicotine binding was derived using the Lassen plot approach. Immunization led to a 12.5% reduction in nicotine binding (F=5.19, df=1,10, p=0.05). Significant positive correlations were observed between nicotine bound to β2*-nAChRs and nicotine injected before but not after vaccination (p=0.05 vs. p=0.98). There was a significant reduction in the daily number of cigarettes and desire for a cigarette (p=.01 and p=.04, respectively). Conclusions This proof-of-concept study demonstrates that immunization with nicotine vaccine can reduce the amount of nicotine binding to β2*-nAChRs and disrupt the relationship between nicotine administered vs. nicotine available to occupy β2*-nAChRs. PMID:23429725

  7. 6-[18F]fluoro-A-85380: an in vivo tracer for the nicotinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Scheffel, Ursula; Horti, Andrew G.; Koren, Andrei O.; Ravert, Hayden T.; Banta, Jeffrey P.; Finley, Paige A.; London, Edythe D.; Dannals, Robert F.

    2000-01-01

    6-[ 18 F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (6-[ 18 F]fluoro-A-85380 or 6-[ 18 F]FA), a new tracer for positron emission tomography, was synthesized by no-carrier-added [ 18 F] fluorination of 6-iodo-3-((1-tert-butoxycarbonyl-2(S)-azetidinyl)methoxy)pyridine followed by acidic deprotection. 6-[ 18 F]FA followed the regional densities of brain nicotinic acetylcholine receptors (nAChRs) reported in the literature. Evidence of binding to nAChRs and high specificity of the binding in vivo was demonstrated by inhibition with nAChR selective ligands as well as with unlabeled 6-FA. A preliminary toxicology study of the 6-FA showed a relatively low biological effect

  8. Structural Characterization of the Putative Cholinergic Binding Region alpha(179-201) of the Nicotinic Acetylcholine Receptor. Part 1. Review and Experimental Design.

    Science.gov (United States)

    1993-04-01

    SUBJCT TERMS .. 15. NUMBER OF PAGES Nicotinic acetylcholine receptor FTIR 21 Vibrational spectroscopy Cholinergic 16. PRICE COOE Resonance raman 17...Wilson et al 1955). FMR spectroscopy measures the absorbance of infra-red rad iation, where as Raman spectroscopy measures inelastic scattering of...frequency is domrunated by that chromophore, then Raman scattering involving vibrations localized in that chromophore will be sharply enhanced(Cantor and

  9. Changes in the α4β2* nicotinic acetylcholine system during chronic controlled alcohol exposure in nonhuman primates.

    Science.gov (United States)

    Hillmer, Ansel T; Tudorascu, Dana L; Wooten, Dustin W; Lao, Patrick J; Barnhart, Todd E; Ahlers, Elizabeth O; Resch, Leslie M; Larson, Julie A; Converse, Alexander K; Moore, Colleen F; Schneider, Mary L; Christian, Bradley T

    2014-05-01

    The precise nature of modifications to the nicotinic acetylcholine receptor (nAChR) system in response to chronic ethanol exposure is poorly understood. The present work used PET imaging to assay α4β2* nAChR binding levels of eight rhesus monkeys before and during controlled chronic ethanol intake. [(18)F]Nifene PET scans were conducted prior to alcohol exposure, and then again after at least 8 months controlled ethanol exposure, including 6 months at 1.5 g/kg/day following a dose escalation period. Receptor binding levels were quantified with binding potentials (BPND) using the cerebellum as a reference region. Alcohol self-administration was assessed as average daily alcohol intake during a 2 month free drinking period immediately following controlled alcohol. Significant decreases in α4β2* nAChR binding were observed in both frontal and insular cortex in response to chronic ethanol exposure. During chronic alcohol exposure, BPND in the lateral geniculate region correlated positively with the amount of alcohol consumed during free drinking. The observed decreases in nAChR availability following chronic alcohol consumption suggest alterations to this receptor system in response to repeated alcohol administration, making this an important target for further study in alcohol abuse and alcohol and nicotine codependence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2014-06-15

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  11. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    International Nuclear Information System (INIS)

    Yan, You-e; Liu, Lian; Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan; Wang, Hui

    2014-01-01

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  12. Evaluation of the antagonism of nicotine by mecamylamine and pempidine in the brain

    International Nuclear Information System (INIS)

    Martin, T.J.

    1989-01-01

    Antagonists have been crucial in the characterization of nicotine's pharmacology. Initial evidence for the existence of central nicotinic receptors was based on the fact that nicotine produced a number of behavioral effects that were antagonized by ganglionic blockers that crossed the blood-brain barrier, such as mecamylamine and pempidine. These compounds are thought to be noncompetitive antagonists due to the fact that they do not compete for agonist binding to brain homogenate in vitro. However, pharmacological evidence in support of noncompetitive antagonism is lacking. Dose-response curves for nicotine were determined in the presence of various doses of pempidine for depression of spontaneous activity and antinociception in mice. Pempidine was found to shift the dose response curves for these effects of nicotine in a manner consistent with noncompetitive antagonism. A number of mecamylamine analogs were investigated for antagonism of these central effects of nicotine as well. These studies revealed that the N-, 2-, and 3-methyls were crucial for optimal efficacy and potency and suggests that these compounds possess a specific mechanism of action, possibly involving a receptor. Furthermore, the structure-activity relationships for the mecamylamine analogs were found to be different than that previously reported for the agonists, suggesting that they do not act at the same site. The binding of [ 3 H]-L-nicotine and [ 3 H]-pempidine was studied in vitro to mouse brain homogentate and in situ to rat brain slices. The in situ binding of [ 3 H]-L-nicotine to rat brain slices was quantitated autoradiographically to discrete brain areas in the presence and absence of 1, 10 and 100 μM nicotine and pempidine. Pempidine did not effectively displace [ 3 H]-L-nicotine binding

  13. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  14. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-01-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H 2 O 2 ) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H 2 O 2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  15. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    Science.gov (United States)

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  16. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice

    Directory of Open Access Journals (Sweden)

    Pascal Jorratt

    2017-11-01

    Full Text Available The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  17. Impact of acetylcholine and nicotine on human osteoclastogenesis in vitro.

    Science.gov (United States)

    Ternes, Sebastian; Trinkaus, Katja; Bergen, Ivonne; Knaack, Sven; Gelinsky, Michael; Kilian, Olaf; Heiss, Christian; Lips, Katrin Susanne

    2015-11-01

    Recent studies showed that the non-neuronal cholinergic system (NNCS) is taking part in bone metabolism. Most studies investigated its role in osteoblasts, but up to now, the involvement of the NNCS in human osteoclastogenesis remains relatively unclear. Thus, aim of the present study was to determine whether the application of acetylcholine (ACh, 10(−4) M), nicotine (10(−6) M), mineralized collagen membranes or brain derived neurotrophic factor (BDNF, 40 ng/mL) influences the mRNA regulation of molecular components of the NNCS and the neurotrophin family during osteoclastogenesis. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of young healthy donors (n = 8) and incubated with bone fragments and osteoclast differentiation media for 21 days. All the results are based on the measurement of RNA. Real-time RT-PCR analysis demonstrated a down-regulation of nicotinic acetylcholine receptor (nAChR) subunit α2 and muscarinic acetylcholine receptor (mAChR) M3by osteoclastogenesis while BDNF mRNA expression was not regulated. Application of ACh, nicotine, BDNF or collagen membranes did not affect osteoclastic differentiation.No regulation was detected for nAChR subunit α7, tropomyosin-related kinase receptor B (TrkB), and cholineacetyl transferase (ChAT). Taken together, we assume that the transcriptional level of osteoclastogenesis of healthy young humans is not regulated by BDNF, ACh, and nicotine. Thus, these drugs do not seem to worsen bone degradation and might therefore be suitable as modulators of bone substitution materials if having a positive effect on bone formation.

  18. Design, synthesis, and pharmacological characterization of novel spirocyclic quinuclidinyl-Delta2 -isoxazoline derivatives as potent and selective agonists of alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Dallanoce, Clelia; Magrone, Pietro; Matera, Carlo

    2011-01-01

    A set of racemic spirocyclic quinuclidinyl-¿(2) -isoxazoline derivatives was synthesized using a 1,3-dipolar cycloaddition-based approach. Target compounds were assayed for binding affinity toward rat neuronal homomeric (a7) and heteromeric (a4ß2) nicotinic acetylcholine receptors. ¿(2) -Isoxazol...

  19. Nicotine enhances modulation of food-cue reactivity by leptin and ghrelin in the ventromedial prefrontal cortex.

    Science.gov (United States)

    Kroemer, Nils B; Wuttig, Franziska; Bidlingmaier, Martin; Zimmermann, Ulrich S; Smolka, Michael N

    2015-07-01

    Endocrine signals such as ghrelin and leptin are known to modulate the mesocorticolimbic dopaminergic system and, consequently, show associations with food and drug reward. In animal models, nicotine was demonstrated to reduce body weight by attenuating food intake and effects of leptin and ghrelin are partly modulated by nicotinic acetylcholine receptors which hint at potential interactions. However, the neuropharmacological modulation of endocrine signals by nicotine in healthy humans remains to be tested experimentally. We used functional magnetic resonance imaging to investigate food-cue reactivity after an overnight fast and following a caloric load (oral glucose tolerance test, OGTT) in 26 healthy normal-weight never-smokers. Moreover, we administered either nicotine (2 mg) or placebo gums using a randomized cross-over design and assessed blood plasma levels of ghrelin and leptin. During fasting, nicotine administration decreased correlations with ghrelin levels in the mesocorticolimbic system whereas correlations with leptin were increased. After the OGTT, nicotine increased the modulatory effects of ghrelin and leptin on food-cue reactivity, particularly in the ventromedial prefrontal cortex (vmPFC) and the amygdala. Critically, this led to an indirect modulation of the behavioral 'appetizer effect' (i.e. cue-induced increases in subjective appetite) by homeostatic feedback signals via food-cue reactivity in vmPFC. We conclude that nicotine enhances the effect of ghrelin and leptin in the valuation and relevance network which might, in turn, reduce appetite. This highlights that amplifying the impact of homeostatic signals such as ghrelin and leptin in normal-weight individuals might hint at a mechanism contributing to nicotine's anorexic potential. © 2014 Society for the Study of Addiction.

  20. Transmembrane potential polarization, calcium influx, and receptor conformational state modulate the sensitivity of the imidacloprid-insensitive neuronal insect nicotinic acetylcholine receptor to neonicotinoid insecticides.

    Science.gov (United States)

    Bodereau-Dubois, Béatrice; List, Olivier; Calas-List, Delphine; Marques, Olivier; Communal, Pierre-Yves; Thany, Steeve H; Lapied, Bruno

    2012-05-01

    Neonicotinoid insecticides act selectively on insect nicotinic acetylcholine receptors (nAChRs). Recent studies revealed that their efficiency was altered by the phosphorylation/dephosphorylation process and the intracellular signaling pathway involved in the regulation of nAChRs. Using whole-cell patch-clamp electrophysiology adapted for dissociated cockroach dorsal unpaired median (DUM) neurons, we demonstrated that intracellular factors involved in the regulation of nAChR function modulated neonicotinoid sensitivity. DUM neurons were known to express two α-bungarotoxin-insensitive nAChR subtypes: nAChR1 and nAChR2. Whereas nAChR1 was sensitive to imidacloprid, nAChR2 was insensitive to this insecticide. Here, we demonstrated that, like nicotine, acetamiprid and clothianidin, other types of neonicotinoid insecticides, acted as agonists on the nAChR2 subtype. Using acetamiprid, we revealed that both steady-state depolarization and hyperpolarization affected nAChR2 sensitivity. The measurement of the input membrane resistance indicated that change in the acetamiprid-induced agonist activity was related to the receptor conformational state. Using cadmium chloride, ω-conotoxin GVIA, and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-acetamide (LOE 908), we found that inhibition of calcium influx through high voltage-activated calcium channels and transient receptor potential γ (TRPγ) activated by both depolarization and hyperpolarization increased nAChR2 sensitivity to acetamiprid. Finally, using N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), forskolin, and cAMP, we demonstrated that adenylyl cyclase sensitive to the calcium/calmodulin complex regulated internal cAMP concentration, which in turn modulated TRPγ function and nAChR2 sensitivity to acetamiprid. Similar TRPγ-induced modulatory effects were also obtained when clothianidin was tested. These findings bring insights into the signaling pathway modulating

  1. E-Cigarette and Liquid Nicotine Exposures Among Young Children.

    Science.gov (United States)

    Govindarajan, Preethi; Spiller, Henry A; Casavant, Marcel J; Chounthirath, Thitphalak; Smith, Gary A

    2018-04-23

    To investigate exposures to liquid nicotine (including electronic cigarette devices and liquids) among children <6 years old in the United States and evaluate the impact of legislation requiring child-resistant packaging for liquid nicotine containers. Liquid nicotine exposure data from the National Poison Data System for January 2012 through April 2017 were analyzed. There were 8269 liquid nicotine exposures among children <6 years old reported to US poison control centers during the study period. Most (92.5%) children were exposed through ingestion and 83.9% were children <3 years old. Among children exposed to liquid nicotine, 35.1% were treated and released from a health care facility, and 1.4% were admitted. The annual exposure rate per 100 000 children increased by 1398.2% from 0.7 in 2012 to 10.4 in 2015, and subsequently decreased by 19.8% from 2015 to 8.3 in 2016. Among states without a preexisting law requiring child-resistant packaging for liquid nicotine containers, there was a significant decrease in the mean number of exposures during the 9 months before compared with the 9 months after the federal child-resistant packaging law went into effect, averaging 4.4 (95% confidence interval: -7.1 to -1.7) fewer exposures per state after implementation of the law. Pediatric exposures to liquid nicotine have decreased since January 2015, which may, in part, be attributable to legislation requiring child-resistant packaging and greater public awareness of risks associated with electronic cigarette products. Liquid nicotine continues to pose a serious risk for young children. Additional regulation of these products is warranted. Copyright © 2018 by the American Academy of Pediatrics.

  2. Nicotine promotes cell proliferation and induces resistance to cisplatin by α7 nicotinic acetylcholine receptor‑mediated activation in Raw264.7 and El4 cells.

    Science.gov (United States)

    Wang, Yan Yan; Liu, Yao; Ni, Xiao Yan; Bai, Zhen Huan; Chen, Qiong Yun; Zhang, Ye; Gao, Feng Guang

    2014-03-01

    Although nicotine is a risk factor for carcinogenesis and atherosclerosis, epidemiological data indicate that nicotine has therapeutic benefits in treating Alzheimer's disease. Our previous studies also showed that nicotine-treated dendritic cells have potential antitumor effects. Hence, the precise effects of nicotine on the biological characterizations of cells are controversial. The aim of the present study was to assess the roles of α7 nicotinic acetylcholine receptors (nAChRs), Erk1/2-p38-JNK and PI3K-Akt pathway in nicotine-mediated proliferation and anti-apoptosis effects. The results firstly showed that nicotine treatment clearly augmented cell viability and upregulated PCNA expression in both Raw264.7 and El4 cells. Meanwhile, nicotine afforded protection against cisplatin-induced toxicity through inhibiting caspase-3 activation and upregulating anti-apoptotic protein expression. Further exploration demonstrated that nicotine efficiently abolished cisplatin-promoted mitochondria translocation of Bax and the release of cytochrome c. The pretreatment of α-bungarotoxin and tubocurarine chloride significantly attenuated nicotine-augmented cell viability, abolished caspase-3 activation and α7 nAChR upregulation. Both Erk-JNK-p38 and PI3K-Akt signaling pathways could be activated by nicotine treatment in Raw264.7 and El4 cells. Notably, when Erk-JNK and PI3K-Akt activities were inhibited, nicotine-augmented cell proliferation and anti-apoptotic effects were abolished accordingly. The results presented here indicate that nicotine could achieve α7 nAChR-mediated proliferation and anti-apoptotic effects by activating Erk-JNK and PI3K-Akt pathways respectively, providing potential therapeutic molecules to deal with smoking-associated human diseases.

  3. Bioelectronic sniffer for nicotine using enzyme inhibition.

    Science.gov (United States)

    Mitsubayashi, Kohji; Nakayama, Kazumi; Taniguchi, Midori; Saito, Hirokazu; Otsuka, Kimio; Kudo, Hiroyuki

    2006-07-28

    A novel bioelectronic sniffer for nicotine in the gas phase was developed with enzyme inhibition principle to butyrylcholinesterase activity. The bioelectronic devices for nicotine in the gas and liquid phases were constructed using a Clark-type dissolved oxygen electrode and a membrane immobilized butyrylcholinesterase and choline oxidase. After the assessment of the sensor performances to choline and butyrylcholine as pre-examinations, the characteristics of the biosensor and bio-sniffer for nicotine were evaluated in the liquid and gas phases, respectively. The sensor signal of the bio-devices with 300 micromol l(-1) of butyrylcholine decreased quickly following application of nicotine and reached to the steady-state current, thus relating the concentration of nicotine in the liquid and gas phases. The biosensor was used to measure nicotine solution from 10 to 300 micromol l(-1). In the gas-phase experiment, the current signal of the bio-sniffer was also found to be linearly to the nicotine concentration over the range of 10.0-1000 ppb including 75.0 ppb as threshold limit value (TLV) by American Conference of Governmental Industrial Hygienists (ACGIH).

  4. Central estrogenic pathways protect against the depressant action of acute nicotine on reflex tachycardia in female rats

    Energy Technology Data Exchange (ETDEWEB)

    El-Mas, Mahmoud M., E-mail: mahelm@hotmail.com; Fouda, Mohamed A.; El-gowilly, Sahar M.; Saad, Evan I.

    2012-02-01

    We have previously shown that acute exposure of male rats to nicotine preferentially attenuates baroreceptor-mediated control of reflex tachycardia in contrast to no effect on reflex bradycardia. Here, we investigated whether female rats are as sensitive as their male counterparts to the baroreflex depressant effect of nicotine and whether this interaction is modulated by estrogen. Baroreflex curves relating reflex chronotropic responses evoked by i.v. doses (1–16 μg/kg) of phenylephrine (PE) or sodium nitroprusside (SNP), were constructed in conscious freely moving proestrus, ovariectomized (OVX), and estrogen (50 μg/kg/day s.c., 5 days)-replaced OVX (OVXE{sub 2}) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRS{sub PE} and BRS{sub SNP}). Nicotine (100 μg/kg i.v.) reduced BRS{sub SNP} in OVX rats but not in proestrus or OVXE{sub 2} rats. The attenuation of reflex tachycardia by nicotine was also evident in diestrus rats, which exhibited plasma estrogen levels similar to those of OVX rats. BRS{sub PE} was not affected by nicotine in all rat preparations. Experiments were then extended to determine whether central estrogenic receptors modulate the nicotine–BRS{sub SNP} interaction. Intracisteral (i.c.) treatment of OVX rats with estrogen sulfate (0.2 μg/rat) abolished the BRS{sub SNP} attenuating effect of i.v. nicotine. This protective effect of estrogen disappeared when OVX rats were pretreated with i.c. ICI 182,780 (50 μg/rat, selective estrogen receptor antagonist). Together, these findings suggest that central neural pools of estrogen receptors underlie the protection offered by E{sub 2} against nicotine-induced baroreceptor dysfunction in female rats. -- Highlights: ► Estrogen protects against the depressant effect of nicotine on reflex tachycardia. ► The baroreflex response and estrogen status affect the nicotine–BRS interaction. ► The protection offered by estrogen is mediated via central estrogen receptors.

  5. Nicotine Prevents and Reverses Paclitaxel-Induced Mechanical Allodynia in a Mouse Model of CIPN.

    Science.gov (United States)

    Kyte, S Lauren; Toma, Wisam; Bagdas, Deniz; Meade, Julie A; Schurman, Lesley D; Lichtman, Aron H; Chen, Zhi-Jian; Del Fabbro, Egidio; Fang, Xianjun; Bigbee, John W; Damaj, M Imad; Gewirtz, David A

    2018-01-01

    Chemotherapy-induced peripheral neuropathy (CIPN), a consequence of peripheral nerve fiber dysfunction or degeneration, continues to be a dose-limiting and debilitating side effect during and/or after cancer chemotherapy. Paclitaxel, a taxane commonly used to treat breast, lung, and ovarian cancers, causes CIPN in 59-78% of cancer patients. Novel interventions are needed due to the current lack of effective CIPN treatments. Our studies were designed to investigate whether nicotine can prevent and/or reverse paclitaxel-induced peripheral neuropathy in a mouse model of CIPN, while ensuring that nicotine will not stimulate lung tumor cell proliferation or interfere with the antitumor properties of paclitaxel. Male C57BL/6J mice received paclitaxel every other day for a total of four injections (8 mg/kg, i.p.). Acute (0.3-0.9 mg/kg, i.p.) and chronic (24 mg/kg per day, s.c.) administration of nicotine respectively reversed and prevented paclitaxel-induced mechanical allodynia. Blockade of the antinociceptive effect of nicotine with mecamylamine and methyllycaconitine suggests that the reversal of paclitaxel-induced mechanical allodynia is primarily mediated by the α 7 nicotinic acetylcholine receptor subtype. Chronic nicotine treatment also prevented paclitaxel-induced intraepidermal nerve fiber loss. Notably, nicotine neither promoted proliferation of A549 and H460 non-small cell lung cancer cells nor interfered with paclitaxel-induced antitumor effects, including apoptosis. Most importantly, chronic nicotine administration did not enhance Lewis lung carcinoma tumor growth in C57BL/6J mice. These data suggest that the nicotinic acetylcholine receptor-mediated pathways may be promising drug targets for the prevention and treatment of CIPN. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments.

    Science.gov (United States)

    D'Souza, Manoranjan S; Markou, Athina

    2011-07-01

    Tobacco smoking causes high rates of mortality and morbidity throughout the world. Despite the availability of smoking-cessation medications, maintenance of long-term abstinence is difficult, and most individuals who attempt to quit smoking relapse. Although tobacco smoke contains many substances, researchers and policymakers agree that nicotine is a major cause of tobacco dependence. Understanding the neural substrates of nicotine dependence is essential for the development of more effective antismoking medications than those currently available. This article focuses on the neural substrates, especially nicotinic acetylcholine receptors, that mediate the reinforcing effects of nicotine and the development of nicotine dependence. Neuroadaptations in the function of the neurotransmitters dopamine, glutamate, and gamma-aminobutyric acid (GABA), which have been shown to be critically involved in nicotine dependence, are also reviewed. Finally, the article discusses progress in the discovery and development of smoking-cessation medications.

  7. The Effects of Nicotine on the Stimulation of the Cholinergic System and Immune Responses Changes in Animal Models of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    M Shahmoradi

    2016-06-01

    Full Text Available Background & aim: Lately, it has been demonstrated that the signaling by the α7 nicotinic receptors produces the anti-inflammatory condition in both macrophages and T cells. Moreover, activation of macrophages and T cells play an important role in multiple sclerosis (MS.  In the present study, the therapeutic effect of nicotine on experimental autoimmune encephalomyelitis (EAE, an animal model of MS, and its effects on T-helper cells responses was evaluated. Methods: In the present experimental study, EAE was induced by homogenised guinea pig spinal cord and complete Freund’s adjuvant in wistar rats. Animals were allocated in two therapeutic groups (n=7 per group. Treatment with nicotine (2.5 mg/kg-daily was started in treatment group when the treatment group developed a disability score (at day 12. At the same time, the control group received only the solvent with the same program. Signs of disease were recorded daily until the day 36 when animals were sacrificed. The Splenocytes were checked for proliferation by MTT test and cytokine production by ELISA. The level of nitric oxide in serum was checked by griess test. The data was analyzed using the Student t test and Mann-Whitney U. Results: Nicotine administration in the treatment group significantly reduced the clinical symptoms after the onset of symptoms. Simultaneously with the decrease of the level of serum nitric oxide, nicotine significantly decreased the pro-inflammatory cytokine IL-17 and IFN-γ. The levels of anti-inflammatory IL-10 were not changed significantly. Lymphocyte proliferation was significantly decreased in treatment group compared to control group Conclusion: The results of this study indicated that nicotine had immune modulatory effects and could be used to control MS disease.

  8. Reduced-Nicotine Cigarettes in Young Smokers: Impact of Nicotine Metabolism on Nicotine Dose Effects.

    Science.gov (United States)

    Faulkner, Paul; Ghahremani, Dara G; Tyndale, Rachel F; Cox, Chelsea M; Kazanjian, Ari S; Paterson, Neil; Lotfipour, Shahrdad; Hellemann, Gerhard S; Petersen, Nicole; Vigil, Celia; London, Edythe D

    2017-07-01

    The use of cigarettes delivering different nicotine doses allows evaluation of the contribution of nicotine to the smoking experience. We compared responses of 46 young adult smokers to research cigarettes, delivering 0.027, 0.110, 0.231, or 0.763 mg nicotine, and conventional cigarettes. On five separate days, craving, withdrawal, affect, and sustained attention were measured after overnight abstinence and again after smoking. Participants also rated each cigarette, and the nicotine metabolite ratio (NMR) was used to identify participants as normal or slow metabolizers. All cigarettes equally alleviated craving, withdrawal, and negative affect in the whole sample, but normal metabolizers reported greater reductions of craving and withdrawal than slow metabolizers, with dose-dependent effects. Only conventional cigarettes and, to a lesser degree, 0.763-mg nicotine research cigarettes increased sustained attention. Finally, there were no differences between ratings of lower-dose cigarettes, but the 0.763-mg cigarettes and (even more so) conventional cigarettes were rated more favorably than lower-dose cigarettes. The findings indicate that smoking-induced relief of craving and withdrawal reflects primarily non-nicotine effects in slow metabolizers, but depends on nicotine dose in normal metabolizers. By contrast, relief of withdrawal-related attentional deficits and cigarette ratings depend on nicotine dose regardless of metabolizer status. These findings have bearing on the use of reduced-nicotine cigarettes to facilitate smoking cessation and on policy regarding regulation of nicotine content in cigarettes. They suggest that normal and slow nicotine metabolizers would respond differently to nicotine reduction in cigarettes, but that irrespective of metabolizer status, reductions to <0.763 mg/cigarette may contribute to temporary attentional deficits.

  9. Pharmacological receptors of nematoda as target points for action of antiparasitic drugs

    Directory of Open Access Journals (Sweden)

    Trailović Saša M.

    2010-01-01

    Full Text Available Cholinergic receptors of parasitic nematodes are one of the most important possible sites of action of antiparasitic drugs. This paper presents some of our own results of electrophysiological and pharamcological examinations of nicotinic and muscarinic receptors of nematodes, as well as data from literature on a new class of anthelmintics that act precisely on cholinergic receptors. The nicotinic acetylcholine receptor (nAChR is located on somatic muscle cells of nematodes and it is responsible for the coordination of parasite movement. Cholinomimetic anthelmintics act on this receptor, as well as acetylcholine, an endogenic neurotransmitter, but they are not sensitive to enzyme acetylcholineesterase which dissolves acetylcholine. As opposed to the nicotinic receptor of vertebra, whose structure has been examined thoroughly, the stoichiometry of the nicotinic receptor of nematodes is not completely known. However, on the grounds of knowledge acquired so far, a model has been constructed recently of the potential composition of a type of nematodes nicotinic receptor, as the site of action of anthelmintics. Based on earlier investigations, it is supposed that a conventional muscarinic receptor exists in nematodes as well, so that it can also be a new pharamocological target for the development of antinematode drugs. The latest class of synthesized anthelmintics, named aminoacetonitriles (AAD, act via the nicotinic receptor. Monepantel is the first drug from the AAD group as a most significant candidate for registration in veterinary medicine. Even though several groups of cholinomimetic anthelmintics (imiodazothiazoles, tetrahydropyrimidines, organophosphat anthelmintics have been in use in veterinary practice for many years now, it is evident that cholinergic receptors of nematodes still present an attractive place in the examinations and development of new antinematode drugs. .

  10. Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders

    Directory of Open Access Journals (Sweden)

    Joan Y. Holgate

    2015-06-01

    Full Text Available Stress is a major driving force in alcohol use disorders (AUDs. It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.

  11. Nicotine poisoning

    Science.gov (United States)

    Nicotine is found in: Chewing tobacco Cigarettes E-cigarettes Liquid nicotine Nicotine gum (Nicorette) Nicotine patches (Habitrol, Nicoderm) Pipe tobacco Some insecticides Tobacco leaves Note: This list may not be all-inclusive.

  12. Reduced number of (/sup 3/H)nicotine and (/sup 3/H)acelylcholine binding sites in the frontal cortex of Alzheimer brains

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, A; Winblad, B

    1986-12-03

    Nicotinic cholinergic receptors were measured in human frontal cortex using (/sup 3/H)nicotine and (/sup 3/H)acetylcholine (in the presence of atropine) as receptor ligands. A parallel marked reduction in number of (/sup 3/H)nicotine (52%, P<0.01) and (/sup 3/H)acetylcholine (-55%, P<0.05) binding was found in the frontal cortex of Alzheimer brains (AD/SDAT) when compared to age-matched control brains. As a comparison the number of muscarinic receptors was quantified using (/sup 3/H)quinuclidinyl benzilate and found to be significantly increased (+23%, P<0.01) in AD/SDAT compared to controls. 26 refs.

  13. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    International Nuclear Information System (INIS)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    2009-01-01

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.

  14. Growth and development, nicotine concentrations and sources of nicotine-n in flue-cured tobacco plants influenced by basal n fertilization time and n fertilizer (15N)

    International Nuclear Information System (INIS)

    Xie Zhijian; Tu Shuxin; Li Jinping; Xu Rubing; Chen Zhenguo; Cao Shiming; Wang Xuelong

    2010-01-01

    A field experiment with 15 N isotope tracing micro-plots was carried out to study the effects of basal N fertilizer application time (15 d, 30 d before the transplanting) of flue-cured tobacco (FCT) seedlings and nitrogen fertilization (with N and without N) on growth and development, nicotine concentrations and sources of nicotine N of FCT in Laowan (N 31 degree 27', E 111 degree 14', 1 130 m above sea level), a main tobacco production area of Xiangfan city, Hubei province. The results showed that both dry matter accumulation and nicotine concentrations of different parts of FCT increased with growing of plants. The concentrations of nicotine decreased with the ascending of leaf position before topping period, but just opposite after the removal of apex. The proportion of nicotine N from fertilizer to total nicotine N decreased with growing of FCT plants and the rising of leaf position. Applying N fertilizer significantly increased dry matter accumulation of shoot and the nicotine concentrations of different poisional tobacco leaves by 2.1-2.7 fold and 0.1-0.7 fold respectively. Compared with the basal fertilization time 15 d before transplanting, applying basal fertilizer 30 d before transplanting increased the dry matter accumulation and nicotine concentrations of flue-cured tobacco by 2.2%-8.0% and 6.3%-18.5% respectively. There was no significant effects of basal N fertilization time on the proportion of nicotine-N from fertilizer in organs of FCT plants at mature stage. These results suggested that properly putting forward the basal N fertilization time before transplanting make for decrease of nicotine concentrations and improvement of quality of FCT leaves, so as to improve its industrial utilities. (authors)

  15. Monkey Adrenal Chromaffin Cells Express α6β4* Nicotinic Acetylcholine Receptors

    Science.gov (United States)

    Scadden, Mick´l; Carmona-Hidalgo, Beatriz; McIntosh, J. Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs. PMID:24727685

  16. Genetics of addictive behavior: the example of nicotine dependence.

    Science.gov (United States)

    Gorwood, Philip; Le Strat, Yann; Ramoz, Nicolas

    2017-09-01

    The majority of addictive disorders have a significant heritability-roughly around 50%. Surprisingly, the most convincing association (a nicotinic acetylcholine receptor CHRNA5-A3-B4 gene cluster in nicotine dependence), with a unique attributable risk of 14%, was detected through a genome-wide association study (GWAS) on lung cancer, although lung cancer has a low heritability. We propose some explanations of this finding, potentially helping to understand how a GWAS strategy can be successful. Many endophenotypes were also assessed as potentially modulating the effect of nicotine, indirectly facilitating the development of nicotine dependence. Challenging the involved phenotype led to the demonstration that other potentially overlapping disorders, such as schizophrenia and Parkinson disease, could also be involved, and further modulated by parent monitoring or the existence of a smoking partner. Such a complex mechanism of action is compatible with a gene-environment interaction, most clearly explained by epigenetic factors, especially as such factors were shown to be, at least partly, genetically driven.

  17. Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice123

    Science.gov (United States)

    Storey, Granville P.; Heimbigner, Lauren; Walwyn, Wendy M.; Bamford, Nigel S.

    2016-01-01

    Abstract Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca2+ influx and desensitizes α4β2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following

  18. Striatal increase of neurotrophic factors as a mechanism of nicotine protection in experimental parkinsonism.

    Science.gov (United States)

    Maggio, R; Riva, M; Vaglini, F; Fornai, F; Racagni, G; Corsini, G U

    1997-01-01

    The repeated finding of an apparent protective effect of cigarette smoking on the risk of Parkinson's disease is one of the few consistent results in the epidemiology of this disorder. Among the innumerous substances that originate from tobacco smoke, nicotine is by far the most widely studied, and the most likely candidate for a protective effect against neuronal degeneration in Parkinson's disease. Nicotine is a natural alkaloid that has considerable stimulatory effects on the central nervous system (CNS). Its effects on the CNS are mediated by the activation of neuronal heteromeric acetylcholine-gated ion channel receptors (nAChR, also termed nicotinic acetylcholine receptors). In the present study, we describe the neuroprotective effects of (-)nicotine in two animal models of parkinsonism: the diethyldithiocarbamate (DDC)-induced enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice, and the methamphetamine-induced neurotoxicity in rats and mice. In parallel experiments, we found that (-)nicotine induces the basic fibroblast growth factor (FGF-2) and the brain-derived neurotrophic factor (BDNF) in rat striatum. As FGF-2 and BDNF have been reported to be neuroprotective for dopaminergic cells, our data indicate that the increase in neurotrophic factors is a possible mechanism by which (-)nicotine protects from experimental parkinsonisms. Moreover, they suggest that nAChR agonists could be of potential benefit in the progression of Parkinson's disease.

  19. Behavioral economic substitutability of e-cigarettes, tobacco cigarettes, and nicotine gum.

    Science.gov (United States)

    Johnson, Matthew W; Johnson, Patrick S; Rass, Olga; Pacek, Lauren R

    2017-07-01

    The public health impact of e-cigarettes may depend on their substitutability for tobacco cigarettes. Dual users of e-cigarettes and tobacco cigarettes completed purchasing tasks in which they specified daily use levels under hypothetical conditions that varied the availability and price of e-cigarettes, tobacco cigarettes, and nicotine gum (for those with nicotine gum experience). When either e-cigarettes or tobacco cigarettes were the only available commodity, as price per puff increased, purchasing decreased, revealing similar reinforcement profiles. When available concurrently, as the price of tobacco puffs increased, purchasing of tobacco puffs decreased while purchasing of fixed-price e-cigarette puffs increased. Among those with nicotine gum experience, when the price of tobacco puffs was closest to the actual market value of tobacco puffs, e-cigarette availability decreased median tobacco puff purchases by 44% compared to when tobacco was available alone. In contrast, nicotine gum availability caused no decrease in tobacco puff purchases. E-cigarettes may serve as a behavioral economic substitute for tobacco cigarettes, and may be a superior substitute compared to nicotine gum in their ability to decrease tobacco use. Although important questions remain regarding the health impacts of e-cigarettes, these data are consistent with the possibility that e-cigarettes may serve as smoking cessation/reduction aids.

  20. Nicotine Vapor Method to Induce Nicotine Dependence in Rodents.

    Science.gov (United States)

    Kallupi, Marsida; George, Olivier

    2017-07-05

    Nicotine, the main addictive component of tobacco, induces potentiation of brain stimulation reward, increases locomotor activity, and induces conditioned place preference. Nicotine cessation produces a withdrawal syndrome that can be relieved by nicotine replacement therapy. In the last decade, the market for electronic cigarettes has flourished, especially among adolescents. The nicotine vaporizer or electronic nicotine delivery system is a battery-operated device that allows the user to simulate the experience of tobacco smoking without inhaling smoke. The device is designed to be an alternative to conventional cigarettes that emits vaporized nicotine inhaled by the user. This report describes a procedure to vaporize nicotine in the air to produce blood nicotine levels in rodents that are clinically relevant to those that are observed in humans and produce dependence. We also describe how to construct the apparatus to deliver nicotine vapor in a stable, reliable, and consistent manner, as well as how to analyze air for nicotine content. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  1. Vitamin E Nicotinate

    Directory of Open Access Journals (Sweden)

    Kimbell R. Duncan

    2017-03-01

    Full Text Available Vitamin E refers to a family of compounds that function as lipid-soluble antioxidants capable of preventing lipid peroxidation. Naturally occurring forms of vitamin E include tocopherols and tocotrienols. Vitamin E in dietary supplements and fortified foods is often an esterified form of α-tocopherol, the most common esters being acetate and succinate. The vitamin E esters are hydrolyzed and converted into free α-tocopherol prior to absorption in the intestinal tract. Because its functions are relevant to many chronic diseases, vitamin E has been extensively studied in respect to a variety of diseases as well as cosmetic applications. The forms of vitamin E most studied are natural α-tocopherol and the esters α-tocopheryl acetate and α-tocopheryl succinate. A small number of studies include or focus on another ester form, α-tocopheryl nicotinate, an ester of vitamin E and niacin. Some of these studies raise the possibility of differences in metabolism and in efficacy between vitamin E nicotinate and other forms of vitamin E. Recently, through metabolomics studies, we identified that α-tocopheryl nicotinate occurs endogenously in the heart and that its level is dramatically decreased in heart failure, indicating the possible biological importance of this vitamin E ester. Since knowledge about vitamin E nicotinate is not readily available in the literature, the purpose of this review is to summarize and evaluate published reports, specifically with respect to α-tocopheryl nicotinate with an emphasis on the differences from natural α-tocopherol or α-tocopheryl acetate.

  2. A combined α7 nicotinic acetylcholine receptor agonist and monoamine reuptake inhibitor, NS9775, represents a novel profile with potential benefits in emotional and cognitive disturbances

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2013-01-01

    also improve by nicotinic acetylcholine receptor (nAChR) activation. Preclinical studies have corroborated this and also demonstrated a synergistic antidepressant-like action when nAChR agonists and MRIs are combined. Here, we present the in vitro and in vivo profile of NS9775, a combined full α7 n...

  3. Emergence of dormant conditioned incentive approach by conditioned withdrawal in nicotine addiction.

    Science.gov (United States)

    Scott, Daniel; Hiroi, Noboru

    2010-10-15

    Nicotine is one of the determinants for the development of persistent smoking, and this maladaptive behavior is characterized by many symptoms, including withdrawal and nicotine seeking. The process by which withdrawal affects nicotine seeking is poorly understood. The impact of a withdrawal-associated cue on nicotine (.2 mg/kg)-conditioned place preference was assessed in male C57BL/6J mice (n = 8-17/group). To establish a cue selectively associated with withdrawal distinct from those associated with nicotine, a tone was paired with withdrawal in their home cages; mice were chronically exposed to nicotine (200 μg/mL for 15 days) from drinking water in their home cages and received the nicotinic acetylcholine receptor antagonist mecamylamine (2.5 mg/kg) to precipitate withdrawal in the presence of a tone. The effect of the withdrawal-associated tone on nicotine-conditioned place preference was then evaluated in the place-conditioning apparatus after a delay, when nicotine-conditioned place preference spontaneously disappeared. A cue associated with precipitated withdrawal reactivated the dormant effect of nicotine-associated cues on conditioned place preference. This effect occurred during continuous exposure to nicotine but not during abstinence. A conditioned withdrawal cue could directly amplify the incentive properties of cues associated with nicotine. This observation extends the contemporary incentive account of the role of withdrawal in addiction to cue-cue interaction. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Requirement of Nicotinic Acetylcholine Receptor Subunit β2 in the Maintenance of Spiral Ganglion Neurons during Aging

    Science.gov (United States)

    Bao, Jianxin; Lei, Debin; Du, Yafei; Ohlemiller, Kevin K.; Beaudet, Arthur L.; Role, Lorna W.

    2008-01-01

    Age-related hearing loss (presbycusis) is a major health concern for the elderly. Loss of spiral ganglion neurons (SGNs), the primary sensory relay of the auditory system, is associated consistently with presbycusis. The causative molecular events responsible for age-related loss of SGNs are unknown. Recent reports directly link age-related neuronal loss in cerebral cortex with the loss of high-affinity nicotine acetylcholine receptors (nAChRs). In cochlea, cholinergic synapses are made by olivocochlear efferent fibers on the outer hair cells that express α9 nAChR subunits and on the peripheral projections of SGNs that express α2, α4 –7, and β2–3 nAChR subunits. A significantly decreased expression of the β2 nAChR subunit in SGNs was found specifically in mice susceptible to presbycusis. Furthermore, mice lacking the β2 nAChR subunit (β2−/−), but not mice lacking the α5 nAChR subunit (α5−/−), have dramatic hearing loss and significant reduction in the number of SGNs. Our findings clearly established a requirement for β2 nAChR subunit in the maintenance of SGNs during aging. PMID:15788760

  5. cap alpha. -bungarotoxin binding properties of a central nervous system nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lukasiewicz, R J; Bennett, E L

    1978-01-01

    High-affinity, specific binding of radiolabeled ..cap alpha..-bungarotoxin to particulate fractions derived from rat brain shows saturability (B/sub max/ approx. = 37fmol/mg, K/sub D//sup app/ = 1.7 nM) and insensitivity to ionic strength, and is essentially irreversible (K/sub on/ = 5 x 10/sup 6/ min/sup -1/ x mol/sup -1/; K(displacement) = 1.9 x 10/sup -4/ min/sup -1/, tau/sub 1/2/ = 62 h). Subcellular distribution of specific sites is consistent with their location on synaptic junctional complex and post-synaptic membranes. These membrane-bound binding sites exhibit unique sensitivity to cholinergic ligands; pretreatment of membranes with cholinergic agonists (but not antagonists) induces transformation of ..cap alpha..-bungarotoxin binding sites to a high affinity form toward agonist. The effect is most marked for the natural agonist, acetylcholine. These results strongly support the notion that the entity under study is an authentic nicotinic acetylcholine receptor.

  6. Synthesis and 125I labelling of a precursor for imaging nicotinic acetylcholine receptors

    International Nuclear Information System (INIS)

    Liu Yuxia; Liu Ning; Yang Yuanyou; Zan Liangbiao; Liao Jiali; Jin Jiannan; Sichuan Univ., Chengdu

    2006-01-01

    Nicotinic Acetylcholine Receptors (nAChRs) are involved in various pharmacological effects or diseases, such as Alzheimer's Disease, Parkinson's Disease and tobacco addiction. It will be very appealing to image nAChRs in vivo, diagnose and treat the above diseases, and probe the mechanism of nAChRs in tobacco addiction if the suitable radioactive labeled compound can be synthesized. In this study, (s)-5-(tri-butylstannyl)-3{[1-(tert-butoxycarbonyl)-2-azetidinyl]methoxy} pyridine, a precursor for imaging nAChRs, was synthesized with commercial 2-furfurylamine and (s)-2-azetidinecarboxylic acid as starting materials, and was further labeled with 125/123 I. The whole procedure for radiosynthesis needs 50-55 min and more than 30% of the 125 I are found in the purified 5-[ 125 I]-A-85380. Even staying for 3 days at room temperature in vitro, the purified 5-[ 125 I]-I-85380 can maintain its stability, with a radiochemical purity of more than 95%. (authors)

  7. Use of Nicotine in Electronic Nicotine and Non-Nicotine Delivery Systems by US Adults, 2015.

    Science.gov (United States)

    Weaver, Scott R; Kemp, Catherine B; Heath, J Wesley; Pechacek, Terry F; Eriksen, Michael P

    Nicotine in electronic nicotine and non-nicotine delivery systems (ENDS/ENNDS) may present a risk of harm to those with cardiovascular disease and the fetuses of pregnant women. We assessed the extent to which adult users of ENDS/ENNDS used these products with nicotine. We obtained data for this study from a national probability survey of 6051 US adults that was conducted in August and September 2015. Of 399 adult ENDS/ENNDS users who were current smokers, 337 (80.7%) used ENDS/ENNDS containing nicotine, whereas only 29 of 71 (36.9%) ENDS/ENNDS users who were never smokers used ENDS/ENNDS containing nicotine. Assessments of the population health impact of ENDS/ENNDS use among never smokers should take into account the extent to which use involves nicotine.

  8. Skin contamination as pathway for nicotine intoxication in vapers.

    Science.gov (United States)

    Maina, Giovanni; Castagnoli, Carlotta; Ghione, Giordana; Passini, Valter; Adami, Gianpiero; Larese Filon, Francesca; Crosera, Matteo

    2017-06-01

    Growing warnings on health effects related to electronic cigarettes have met inconclusive findings at present. This study analyzed the in vitro percutaneous absorption of nicotine resulting by skin contamination with two e-liquids (refill 1 and 2) containing nicotine at 1.8%. Donor chambers of 6 Franz cells for each refill liquid were filled with 1mL of nicotine e-liquid for 24h; at selected intervals, 1.5mL of the receptor solutions were collected for nicotine concentration analysis by mean gas chromatography-mass spectrometry (LOD: 0.01μg/mL). The experiment was repeated removing the nicotine donor solution after 10min from the application and rinsing the skin surface three times with 3.0mL of milliQ water. A total of 12 cells with 24h exposure and 12 cells washed were studied. The mean concentration of nicotine in the receiving phase at the end of the experiment was 54.9±29.5 and 30.2±18.4μg/cm 2 for refill 1 and 2 respectively and significantly lower in washed cells (4.7±2.4 and 3.5±1.3μg/cm 2 ). The skin absorption of nicotine can lead to minor health illness in vapers, while caution must be paid to dermal contamination by e liquids in children. The skin cleaning significantly reduced the transdermal absorption kinetic and intradermal deposition of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula.

    Science.gov (United States)

    Shih, Pei-Yu; Engle, Staci E; Oh, Gyeon; Deshpande, Purnima; Puskar, Nyssa L; Lester, Henry A; Drenan, Ryan M

    2014-07-16

    Neuronal nAChRs in the medial habenula (MHb) to the interpeduncular nucleus (IPN) pathway are key mediators of nicotine's aversive properties. In this paper, we report new details regarding nAChR anatomical localization and function in MHb and IPN. A new group of knock-in mice were created that each expresses a single nAChR subunit fused to GFP, allowing high-resolution mapping. We find that α3 and β4 nAChR subunit levels are strong throughout the ventral MHb (MHbV). In contrast, α6, β2, β3, and α4 subunits are selectively found in some, but not all, areas of MHbV. All subunits were found in both ChAT-positive and ChAT-negative cells in MHbV. Next, we examined functional properties of neurons in the lateral and central part of MHbV (MHbVL and MHbVC) using brain slice patch-clamp recordings. MHbVL neurons were more excitable than MHbVC neurons, and they also responded more strongly to puffs of nicotine. In addition, we studied firing responses of MHbVL and MHbVC neurons in response to bath-applied nicotine. Cells in MHbVL, but not those in MHbVC, increased their firing substantially in response to 1 μm nicotine. Additionally, MHbVL neurons from mice that underwent withdrawal from chronic nicotine were less responsive to nicotine application compared with mice withdrawn from chronic saline. Last, we characterized rostral and dorsomedial IPN neurons that receive input from MHbVL axons. Together, our data provide new details regarding neurophysiology and nAChR localization and function in cells within the MHbV. Copyright © 2014 the authors 0270-6474/14/349789-14$15.00/0.

  10. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  11. Chronic ethanol or nicotine treatment results in partial cross-tolerance between these agents.

    Science.gov (United States)

    Burch, J B; de Fiebre, C M; Marks, M J; Collins, A C

    1988-01-01

    Female DBA/2Ibg mice were treated chronically (21 days) with ethanol- or dextrin-containing liquid diets or infused chronically with nicotine (8 mg/kg/h) or saline for 10 days. The responses of these animals to challenge doses of ethanol (2.5 g/kg) or nicotine (1 or 2 mg/kg) were measured using a test battery consisting of respiration rate, acoustic startle response, Y-maze crosses and rears, heart rate and body temperature. Chronic ethanol-treated animals were tolerant to the effects elicited by a challenge dose of ethanol on four of the six measures and were cross-tolerant to nicotine's effects on the acoustic startle test. Chronic nicotine-treated animals were tolerant to nicotine's effects on five of the six measures and cross-tolerant to ethanol's effects on heart rate and body temperature. Thus, partial cross-tolerance between ethanol and nicotine exists. Chronic nicotine treatment resulted in significant increases in L-[3H]-nicotine binding in six of seven brain regions and in alpha-[125I]-bungarotoxin binding in three of seven brain regions. Chronic ethanol treatment failed to alter the binding of either ligand. Therefore, the cross-tolerance that develops between ethanol and nicotine is not totally dependent on alterations in the number of brain nicotinic receptors.

  12. Glucose attenuates impairments in memory and CREB activation produced by an α4β2 but not an α7 nicotinic receptor antagonist.

    Science.gov (United States)

    Morris, Ken A; Li, Sisi; Bui, Duat D; Gold, Paul E

    2013-04-01

    Glucose improves memory for a variety of tasks when administered to rats and mice near the time of training. Prior work indicates glucose may enhance memory by increasing the synthesis and release of the neurotransmitter acetylcholine in the brain. To investigate if specific acetylcholine receptor subtypes may mediate some of the memory-enhancing actions of glucose, we examined the effects of subtype-specific nicotinic acetylcholine receptor antagonists on memory in Fischer-344 rats and also examined the ability of glucose to reverse drug-induced impairments. Pre-training peripheral injections of methyllycaconitine (MLA) or dihydro-beta-erythroidine (DHβE), which are specific α7 and α4β2 nicotinic receptor antagonists, respectively, dose-dependently impaired retention latencies in an inhibitory avoidance task when tested 7-days but not 1 h after training. Immediate post-training glucose injections attenuated the impairments, but were more effective in attenuating the DHβE-induced impairments. Likewise, peripheral or direct intrahippocampal injections of MLA or DHβE dose-dependently impaired spatial working memory scores on a spontaneous alternation task. Concurrent administration of glucose reversed DHβE- but not MLA-induced impairments. CREB phosphorylation downstream of cholinergic signaling was assessed 30 min after spontaneous alternation testing and intrahippocampal drug infusions. Both MLA and DHβE impaired hippocampal CREB phosphorylation; glucose reversed DHβE- but not MLA-induced deficits. The effectiveness of glucose in reversing DHβE- but not MLA-induced impairments in behavioral performance and CREB phosphorylation suggests that activation of α7 receptors may play an important role in memory enhancement by glucose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The GABAA Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse

    Directory of Open Access Journals (Sweden)

    Irina Balan

    2018-04-01

    Full Text Available Alcoholism initiates with episodes of excessive alcohol drinking, known as binge drinking, which is one form of excessive drinking (NIAAA Newsletter, 2004 that is related to impulsivity and anxiety (Ducci et al., 2007; Edenberg et al., 2004 and is also predictive of smoking status. The predisposition of non-alcohol exposed subjects to initiate binge drinking is controlled by neuroimmune signaling that includes an innately activated neuronal Toll-like receptor 4 (TLR4 signal. This signal also regulates cognitive impulsivity, a heritable trait that defines drug abuse initiation. However, the mechanism of signal activation, its function in dopaminergic (TH+ neurons within the reward circuitry implicated in drug-seeking behavior [viz. the ventral tegmental area (VTA], and its contribution to nicotine co-abuse are still poorly understood. We report that the γ-aminobutyric acidA receptor (GABAAR α2 subunit activates the TLR4 signal in neurons, culminating in the activation (phosphorylation/nuclear translocation of cyclic AMP response element binding (CREB but not NF-kB transcription factors and the upregulation of corticotropin-releasing factor (CRF and tyrosine hydroxylase (TH. The signal is activated through α2/TLR4 interaction, as evidenced by co-immunoprecipitation, and it is present in the VTA from drug-untreated alcohol-preferring P rats. VTA infusion of neurotropic herpes simplex virus (HSV vectors for α2 (pHSVsiLA2 or TLR4 (pHSVsiTLR4 but not scrambled (pHSVsiNC siRNA inhibits signal activation and both binge alcohol drinking and nicotine sensitization, suggesting that the α2-activated TLR4 signal contributes to the regulation of both alcohol and nicotine abuse.

  14. Effects of Nicotine Metabolites on Nicotine Withdrawal Behaviors in Mice.

    Science.gov (United States)

    Elhassan, Sagi; Bagdas, Deniz; Damaj, M Imad

    2017-06-01

    Rodent studies suggest that nicotine metabolites and minor tobacco alkaloids such as nornicotine and cotinine may promote cigarette smoking by enhancing nicotine rewarding and reinforcing effects. However, there is little information on the effects of these minor tobacco alkaloids on nicotine withdrawal. The present studies were conducted to determine whether the minor tobacco alkaloids nornicotine and cotinine exhibit nicotine-like behavioral effects in a mouse model of spontaneous nicotine withdrawal. Mice were infused with nicotine or saline for 14 days. Experiments were conducted on day 15, 18-24 hours after minipump removal. Ten minutes prior to testing, nicotine-dependent ICR male mice received an acute injection of nicotine (0.05 and 0.5 mg/kg), nornicotine (2.5 and 25 mg/kg), or cotinine (5 and 50 mg/kg) to determine effects on somatic signs, anxiety-like behaviors, and hyperalgesia spontaneous signs of withdrawal. Nicotine and the minor tobacco alkaloid nornicotine, but not cotinine, produced dose-dependent reversal of nicotine withdrawal signs in the mouse. The minor tobacco alkaloid and nicotine metabolite nornicotine at high doses have nicotinic like effects that may contribute to tobacco consumption and dependence. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Intrauterine low-functional programming of IGF1 by prenatal nicotine exposure mediates the susceptibility to osteoarthritis in female adult rat offspring.

    Science.gov (United States)

    Tie, Kai; Zhang, Xianrong; Tan, Yang; Deng, Yu; Li, Jing; Ni, Qubo; Wang, Hui; Chen, Liaobin

    2016-02-01

    This study aimed to evaluate whether female adult offspring born with intrauterine growth retardation induced by prenatal nicotine exposure (PNE) are susceptible to osteoarthritis (OA) and to explore the underlying programming mechanisms. Pregnant rats were treated with nicotine or saline at 2.0 mg/kg/d from gestational d 11 to 20. The female adult offspring with or without PNE were forced with a strenuous treadmill running for 6 wk to induce OA. Nicotine's effects on fetal articular chondrocytes were studied by exposing chondrocytes to nicotine for 10 d, and dihydro-β-erythroidine, a selective α4β2-nicotinic acetylcholine receptor (nAChR) inhibitor, was used to identify the change of nicotine's effect. For adult offspring, increased cartilage destruction and accelerated OA progression were observed in the PNE group with running; the expression of α1 chain of type II collagen (Col2A1), aggrecan, SRY-type high mobility group box 9 (Sox9), and IGF1 signaling molecules in the cartilage of PNE offspring were decreased. For fetuses, elevated serum corticosteroid and nicotine levels and suppressed IGF1 levels were observed; expression of Col2A1, aggrecan, Sox9, and IGF1 were reduced. The result of chondrocytes revealed that nicotine impeded the expression of Col2A1, aggrecan, and IGF1; blocking α4β2-nAChR rescued nicotine's suppression. In conclusion, PNE increases the susceptibility of adult offspring to OA; the potential mechanism involves IGF1 low-functional programming in articular cartilage caused directly by the action of nicotine on α4β2-nAChR. © FASEB.

  16. 6-[{sup 18}F]fluoro-A-85380: an in vivo tracer for the nicotinic acetylcholine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Scheffel, Ursula; Horti, Andrew G.; Koren, Andrei O.; Ravert, Hayden T.; Banta, Jeffrey P.; Finley, Paige A.; London, Edythe D.; Dannals, Robert F. E-mail: robert_dannals@tracer.nm.jhu.edu

    2000-01-01

    6-[{sup 18}F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (6-[{sup 18}F]fluoro-A-85380 or 6-[{sup 18}F]FA), a new tracer for positron emission tomography, was synthesized by no-carrier-added [{sup 18}F] fluorination of 6-iodo-3-((1-tert-butoxycarbonyl-2(S)-azetidinyl)methoxy)pyridine followed by acidic deprotection. 6-[{sup 18}F]FA followed the regional densities of brain nicotinic acetylcholine receptors (nAChRs) reported in the literature. Evidence of binding to nAChRs and high specificity of the binding in vivo was demonstrated by inhibition with nAChR selective ligands as well as with unlabeled 6-FA. A preliminary toxicology study of the 6-FA showed a relatively low biological effect.

  17. Nicotine patches improve mood and response speed in a lexical decision task.

    Science.gov (United States)

    Gentry, M V; Hammersley, J J; Hale, C R; Nuwer, P K; Meliska, C J

    2000-01-01

    The effects of smoking a cigarette or wearing a transdermal nicotine patch on mood and lexical decision-making were tested in eight smokers. Each participant was tested after 4 hours of smoking abstinence, under 4 conditions: placebo (very low nicotine) cigarette, nicotine cigarette, placebo patch, and nicotine patch. Relative to placebo, wearing the nicotine patch reduced Profile of Mood States (POMS) Total Mood Disturbance and Fatigue/Inertia scores, while increasing the speed of some types of lexical decisions. Smoking a nicotine cigarette did not affect reaction times, but unexpectedly decreased the accuracy of Word/ Nonword lexical decisions. Thus, transdermal nicotine may improve mood and facilitate longterm memory search and/or attentional processes in nicotine-deprived smokers.

  18. Nicotine Reduction Revisited: Science and Future Directions

    Science.gov (United States)

    Hatsukami, Dorothy K.; Perkins, Kenneth A.; LeSage, Mark G.; Ashley, David L.; Henningfield, Jack E.; Benowitz, Neal L.; Backinger, Cathy; Zeller, Mitch

    2015-01-01

    Regulation of nicotine levels in cigarettes and other tobacco products is now possible with the passage of the Family Smoking Prevention and Tobacco Control Act (FSPTCA) in 2009 giving the U.S. Food and Drug Administration authority to regulate tobacco products, and with Articles 9-11 of the World Health Organization Framework Convention on Tobacco Control.[1-2] Both regulatory approaches allow establishing product standards for tobacco constituents, including nicotine. The FSPTCA does not allow nicotine levels to be decreased to zero, although FDA has the authority to reduce nicotine yields to very low, presumably non-addicting levels. The proposal to reduce levels of nicotine to a level that is non-addicting was originally suggested in 1994.[3] Reduction of nicotine in tobacco products could potentially have a profound impact on reducing tobacco-related morbidity and mortality. To examine this issue, two meetings were convened in the United States with non-tobacco-industry scientists of varied disciplines, tobacco control policy-makers and representatives of government agencies. This article provides an overview of the current science in the area of reduced nicotine content cigarettes and key conclusions and recommendations for research and policy that emerged from the deliberations of the meeting members. PMID:20876072

  19. PACAP Protects Against Ethanol and Nicotine Toxicity in SH-SY5Y Cells: Implications for Drinking-Smoking Co-morbidity.

    Science.gov (United States)

    Manavalan, Sridharan; Getachew, Bruk; Manaye, Kebreten F; Khundmiri, Syed J; Csoka, Antonei B; McKinley, Raechel; Tamas, Andrea; Reglodi, Dora; Tizabi, Yousef

    2017-07-01

    The detrimental effects of heavy drinking and smoking are multiplied when the two are combined. Treatment modalities for each and especially for the combination are very limited. Although in low concentration, alcohol and nicotine, each may have beneficial effects including neuroprotection, their combination, instead of providing additive protection, may actually lead to toxicity in cell cultures. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino-acid peptide with demonstrated protection against neuronal injury, trauma as well as various endogenous and exogenous toxic agents. The aim of this study was to investigate whether PACAP may also protect against toxicity induced by high alcohol, high nicotine, or the combination of low alcohol and nicotine concentrations, and if so, whether this effect was mediated via PAC1 receptor. We used the neuroblastoma-derived SH-SY5Y cells and applied various colorimetric assays for determination of cell viability or toxicity. Results indicate that PACAP blocks toxicity induced by high alcohol and high nicotine as well as their combination at low concentrations. The effects of PACAP in turn were blocked by the PACAP antagonist (PACAP 6-38), indicating involvement of the PACAP receptor PAC1 and possibly vasoactive intestinal peptide (VIP) receptors in PACAP's protection. Moreover, no combined toxicity of low alcohol and low nicotine could be detected in calcium-free medium. These findings suggest possible beneficial effects of PACAP in preventing alcohol and nicotine toxicity and that calcium contributes to the damage induced by combination of low alcohol and nicotine in SH-SY5Y cells.

  20. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  1. Anti-inflammatory effects of nicotine in obesity and ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Kirchgessner Annette

    2011-08-01

    Full Text Available Abstract Cigarette smoke is a major risk factor for a number of diseases including lung cancer and respiratory infections. Paradoxically, it also contains nicotine, an anti-inflammatory alkaloid. There is increasing evidence that smokers have a lower incidence of some inflammatory diseases, including ulcerative colitis, and the protective effect involves the activation of a cholinergic anti-inflammatory pathway that requires the α7 nicotinic acetylcholine receptor (α7nAChR on immune cells. Obesity is characterized by chronic low-grade inflammation, which contributes to insulin resistance. Nicotine significantly improves glucose homeostasis and insulin sensitivity in genetically obese and diet-induced obese mice, which is associated with suppressed adipose tissue inflammation. Inflammation that results in disruption of the epithelial barrier is a hallmark of inflammatory bowel disease, and nicotine is protective in ulcerative colitis. This article summarizes current evidence for the anti-inflammatory effects of nicotine in obesity and ulcerative colitis. Selective agonists for the α7nAChR could represent a promising pharmacological strategy for the treatment of inflammation in obesity and ulcerative colitis. Nevertheless, we should keep in mind that the anti-inflammatory effects of nicotine could be mediated via the expression of several nAChRs on a particular target cell.

  2. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides, and Fibronectin Expression in Lung

    National Research Council Canada - National Science Library

    Roman, Jesse

    2005-01-01

    We hypothesize that prenatal exposure to nicotine, a major component of tobacco that transverses the placenta, is largely responsible for the development of asthma in children born of mothers who smoke...

  3. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  4. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem

    International Nuclear Information System (INIS)

    Machaalani, Rita; Say, Meichien; Waters, Karen A.

    2011-01-01

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared α7 and β2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased α7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased β2 in the cNTS and increased β2 in the facial. When considering only the SIDS cohort: 1—cigarette smoke exposure was associated with increased α7 in the vestibular nucleus and increased β2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2—there was a gender interaction for α7 in the gracile and cuneate, and β2 in the cNTS and rostral arcuate nucleus, and 3—there was no effect of sleep position on α7, but prone sleep was associated with decreased β2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of α7 and β2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure (β2), gender (α7 and β2) and sleep position (β2) evident. -- Highlights: ► The ‘normal’ response to smoke exposure is decreased α7 and β2 in certain nuclei. ► SIDS infants have decreased α7 in cNTS, Grac and Cun. ► SIDS infants have decreased β2 in cNTS and increased β2 in facial. ► The NTS is more sensitive to both α7 and β2 regulation in SIDS. ► Smoke exposure

  5. Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

    Science.gov (United States)

    Terreros, Gonzalo; Jorratt, Pascal; Aedo, Cristian; Elgoyhen, Ana Belén; Delano, Paul H

    2016-07-06

    During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear

  6. Effect of ispronicline, a neuronal nicotinic acetylcholine receptor partial agonist, in subjects with age associated memory impairment (AAMI).

    Science.gov (United States)

    Dunbar, Geoffrey C; Inglis, Fraser; Kuchibhatla, Ramana; Sharma, Tonmoy; Tomlinson, Mark; Wamsley, James

    2007-03-01

    Cognitive decline seen in the normal elderly is associated with selective loss of neuronal nicotinic acetylcholine receptors (nAChRs). Nicotine given either by inhalation or transdermally helps cognition, but unacceptable side effects limit its utility. The present study assessed the safety, tolerability and effect on cognition of ispronicline, a highly selective partial agonist at the 4beta2 nAChR, in elderly subjects (n =76) with age associated memory impairment (AAMI). This double-blind, placebo-controlled cross-over study explored ascending oral doses of ispronicline in the range 50-150 mg given as a single morning dose for a period of 3 weeks. Pharmacokinetics (PK) were assessed, as well as cognitive function measured by means of the Cognitive Drug Research (CDR) computerized test battery. Ispronicline had a favourable safety profile and was well tolerated at doses below 150 mg. No effect of clinical importance was seen on biochemistry, haematology, urine analysis, vital signs, electrocardiogram (ECG) or Holter monitoring. The most frequent drug induced adverse event was light-headedness (dizziness). A beneficial effect was seen on cognition across the dose range. This was most marked at 50 mg on factors measuring attention and episodic memory. PK analysis indicated a plasma Cmax range of 5-25/35 ng/ml ispronicline was associated with the most beneficial effect. These early results demonstrate ispronicline was well tolerated and did not display the side effects typical of nicotine. Ispronicline also had a beneficial effect on cognition in subjects with AAMI. This was seen most strongly in a Cmax range that had been predicted from pre-clinical animal studies.

  7. Nicotinic acetylcholine receptors containing the α7-like subunit mediate contractions of muscles responsible for space positioning of the snail, Helix pomatia L. tentacle.

    Directory of Open Access Journals (Sweden)

    Tibor Kiss

    Full Text Available Three recently discovered tentacle muscles are crucial to perform patterned movements of upper tentacles of the terrestrial snail, Helix pomatia. The muscles receive central and peripheral excitatory cholinergic innervation lacking inhibitory innervation. Here, we investigate the pharmacology of acetylcholine (ACh responses in muscles to determine the properties of the ACh receptor (AChR, the functional availability of which was assessed using isotonic contraction measurement. Using broad spectrum of nicotinic and muscarinic ligands, we provide the evidence that contractions in the muscles are attributable to the activation of nAChRs that contain the α7-like subunit. Contractions could be evoked by nicotine, carbachol, succinylchloride, TMA, the selective α7-nAChR agonist choline chloride, 3-Bromocytisine and PNU-282987, and blocked by nAChR selective antagonists such as mytolon, hexamethonium, succinylchloride, d-tubocurarine, hemicholinium, DMDA (decamethonium, methyllycaconitine, α-Bungarotoxin (αBgTx and α-Conotoxin IMI. The specific muscarinic agonist oxotremorine and arecoline failed to elicit contractions. Based on these pharmacological properties we conclude that the Na+ and Ca2+ permeable AChRs of the flexor muscle are nicotinic receptors that contain the α7-like subunit. Immunodetection experiments confirmed the presence of α7- or α7-like AChRs in muscle cells, and α4-AChRs in nerves innervating the muscle. These results support the conclusion that the slowly desensitizing αBgTx-sensitive responses obtained from flexor muscles are produced by activation of α7- like AChRs. This is the first demonstration of postsynaptic expression and an obligatory role for a functional α7-like nAChR in the molluscan periphery.

  8. Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy

    Science.gov (United States)

    Rogers, Scott W.; Gahring, Lorise C.

    2012-01-01

    The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ. PMID:22666322

  9. Nicotinic acetylcholine receptor availability in cigarette smokers: effect of heavy caffeine or marijuana use.

    Science.gov (United States)

    Brody, Arthur L; Hubert, Robert; Mamoun, Michael S; Enoki, Ryutaro; Garcia, Lizette Y; Abraham, Paul; Young, Paulina; Mandelkern, Mark A

    2016-09-01

    Upregulation of α4β2* nicotinic acetylcholine receptors (nAChRs) is one of the most well-established effects of chronic cigarette smoking on the brain. Prior research by our group gave a preliminary indication that cigarette smokers with concomitant use of caffeine or marijuana have altered nAChR availability. We sought to determine if smokers with heavy caffeine or marijuana use have different levels of α4β2* nAChRs than smokers without these drug usages. One hundred and one positron emission tomography (PET) scans, using the radiotracer 2-FA (a ligand for β2*-containing nAChRs), were obtained from four groups of males: non-smokers without heavy caffeine or marijuana use, smokers without heavy caffeine or marijuana use, smokers with heavy caffeine use (mean four coffee cups per day), and smokers with heavy marijuana use (mean 22 days of use per month). Total distribution volume (Vt/fp) was determined for the brainstem, prefrontal cortex, and thalamus, as a measure of nAChR availability. A significant between-group effect was found, resulting from the heavy caffeine and marijuana groups having the highest Vt/fp values (especially for the brainstem and prefrontal cortex), followed by smokers without such use, followed by non-smokers. Direct between-group comparisons revealed significant differences for Vt/fp values between the smoker groups with and without heavy caffeine or marijuana use. Smokers with heavy caffeine or marijuana use have higher α4β2* nAChR availability than smokers without these drug usages. These findings are likely due to increased nicotine exposure but could also be due to an interaction on a cellular/molecular level.

  10. Cigarette nicotine yields and nicotine intake among Japanese male workers

    OpenAIRE

    Ueda, K; Kawachi, I; Nakamura, M; Nogami, H; Shirokawa, N; Masui, S; Okayama, A; Oshima, A

    2002-01-01

    Objectives: To analyse brand nicotine yield including "ultra low" brands (that is, cigarettes yielding ≤ 0.1 mg of nicotine by Federal Trade Commission (FTC) methods) in relation to nicotine intake (urinary nicotine, cotinine and trans-3'-hydroxycotinine) among 246 Japanese male smokers.

  11. Glutamine 57 at the complementary binding site face is a key determinant of morantel selectivity for {alpha}7 nicotinic receptors.

    Science.gov (United States)

    Bartos, Mariana; Price, Kerry L; Lummis, Sarah C R; Bouzat, Cecilia

    2009-08-07

    Nicotinic receptors (AChRs) play key roles in synaptic transmission. We explored activation of neuronal alpha7 and mammalian muscle AChRs by morantel and oxantel. Our results revealed a novel action of morantel as a high efficacy and more potent agonist than ACh of alpha7 receptors. The EC(50) for activation by morantel of both alpha7 and alpha7-5HT(3A) receptors is 7-fold lower than that determined for ACh. The minimum morantel concentration required to activate alpha7-5HT(3A) channels is 6-fold lower than that of ACh, and activation episodes are more prolonged than in the presence of ACh. By contrast, oxantel is a weak agonist of alpha7 and alpha7-5HT(3A), and both drugs are very low efficacy agonists of muscle AChRs. The replacement of Gln(57) in alpha7 by glycine, which is found in the equivalent position of the muscle AChR, decreases the efficacy for activation and turns morantel into a partial agonist. The reverse mutation in the muscle AChR (epsilonG57Q) increases 7-fold the efficacy of morantel. The mutations do not affect activation by ACh or oxantel, indicating that this position is selective for morantel. In silico studies show that the tetrahydropyrimidinyl group, common to both drugs, is close to Trp(149) of the principal face of the binding site, whereas the other cyclic group is proximal to Gln(57) of the complementary face in morantel but not in oxantel. Thus, position 57 at the complementary face is a key determinant of the high selectivity of morantel for alpha7. These results provide new information for further progress in drug design.

  12. Effect of Nicotine on Cognitive Performance in Non-smokers in a ...

    African Journals Online (AJOL)

    Nicotine was administered via chewing 4 mg nicotine gum for 15 minutes ... state examination MMSE), working memory (Two-back task, reaction time: 1 sec.) ... of the improvements increased significantly with decrease in baseline PS.

  13. Detoxification and elimination of nicotine by nectar-feeding birds.

    Science.gov (United States)

    Lerch-Henning, S; Du Rand, E E; Nicolson, S W

    2017-05-01

    Many dilute nectars consumed by bird pollinators contain secondary metabolites, potentially toxic chemicals produced by plants as defences against herbivores. Consequently, nectar-feeding birds are challenged not only by frequent water excess, but also by the toxin content of their diet. High water turnover, however, could be advantageous to nectar consumers by enabling them to excrete secondary metabolites or their transformation products more easily. We investigated how the alkaloid nicotine, naturally present in nectar of Nicotiana species, influences osmoregulation in white-bellied sunbirds Cinnyris talatala and Cape white-eyes Zosterops virens. We also examined the metabolic fate of nicotine in these two species to shed more light on the post-ingestive mechanisms that allow nectar-feeding birds to tolerate nectar nicotine. A high concentration of nicotine (50 µM) decreased cloacal fluid output and increased its osmolality in both species, due to reduced food intake that led to dehydration. White-eyes excreted a higher proportion of the ingested nicotine-containing diet than sunbirds. However, sugar concentration did not affect nicotine detoxification and elimination. Both species metabolised nicotine, excreting very little unchanged nicotine. Cape white-eyes mainly metabolised nicotine through the cotinine metabolic pathway, with norcotinine being the most abundant metabolite in the excreta, while white-bellied sunbirds excreted mainly nornicotine. Both species also utilized phase II conjugation reactions to detoxify nicotine, with Cape white-eyes depending more on the mercapturic acid pathway to detoxify nicotine than white-bellied sunbirds. We found that sunbirds and white-eyes, despite having a similar nicotine tolerance, responded differently and used different nicotine-derived metabolites to excrete nicotine.

  14. Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways.

    Science.gov (United States)

    Zdanowski, Robert; Krzyżowska, Małgorzata; Ujazdowska, Dominika; Lewicka, Aneta; Lewicki, Sławomir

    2015-01-01

    Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.

  15. Gating of long-term potentiation by nicotinic acetylcholine receptors at the cerebellum input stage.

    Directory of Open Access Journals (Sweden)

    Francesca Prestori

    Full Text Available The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.

  16. Tribute to: Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area [William Corrigall, Kathleen Coen and Laurel Adamson, Brain Res. 653 (1994) 278-284].

    Science.gov (United States)

    Leri, Francesco; Vaccarino, Franco J

    2016-08-15

    In this paper, Dr. Corrigall and collaborators described elegant experiments designed to elucidate the neurobiology of nicotine reinforcement. The nicotinic receptor antagonist dihydro-β-erythroidine (DHβE) was infused in the ventral tegmental area (VTA) or nucleus accumbens (NAC) of rats trained to self-administer nicotine intravenously. Additionally, DHβE was infused in the VTA of rats trained to self-administer food or cocaine, and nicotine self-administration was assessed in rats with lesions to the peduculopontine tegmental nucleus (PPT). A number of key themes emerged from this fundamental study that remain relevant today. The primary finding was that infusions of DHβE in the VTA, but not in the NAC, lowered nicotine self-administration, suggesting that nicotinic receptors in VTA are involved in the reinforcing action of nicotine. This conclusion has been confirmed by subsequent findings, and the nature of the nicotinic receptors has also been elucidated. The authors also reported that DHβE in the VTA had no effect on food or cocaine self-administration, and that lesions to the PPT did not alter nicotine self-administration. Since this initial investigation, the question of whether nicotinic receptors in the VTA are necessary for the reinforcing action of other stimuli, and by which mechanisms, has been extensively explored. Similarly, many groups have further investigated the role of mesopontine cholinergic nuclei in reinforcement. This paper not only contributed in important ways to our understanding of the neurochemical basis of nicotine reinforcement, but was also a key catalyst that gave rise to several research themes central to the neuropharmacology of substance abuse. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Nicotinic cholinergic receptors in esophagus: Early alteration during carcinogenesis and prognostic value.

    Science.gov (United States)

    Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho

    2016-08-21

    To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with those with low expression. The corresponding age- and tumor stage-adjusted hazard ratio was 0.2684 (95%CI: 0.075-0.97, P = 0.0448). Expression of CHRNs is homogeneous along healthy esophagus and deregulated in ESCC, suggesting a

  18. Acute nicotine alteration of sensory memory impairment in smokers with schizophrenia.

    Science.gov (United States)

    Dulude, Louise; Labelle, Alain; Knott, Verner J

    2010-10-01

    Patients with schizophrenia have a high rate of cigarette smoking and also exhibit profound deficits in sensory processing, which may in part be ameliorated by the acute actions of smoke-inhaled nicotine. The mismatch negativity (MMN), a preattentive event-related potential index of auditory sensory memory, is diminished in schizophrenia. The MMN is increased in healthy controls with acute nicotine. To utilize the MMN to compare auditory sensory memory in minimally tobacco-deprived (3 hours) patients and matched tobacco-deprived smoking controls and to assess the effects of acute nicotine on MMN-indexed sensory memory processing in the patients. Event-related potentials were recorded in 2 auditory oddball paradigms, one involving tone frequency changes (frequency MMN) and one involving tone duration changes (duration MMN). Controls were assessed once under nontreatment conditions, and patients were assessed twice under randomized double-blind treatment conditions involving placebo and nicotine (8 mg) gum. Outpatient mental health center. Twelve smokers with schizophrenia and twelve control smokers. Compared with the controls, the patients showed reduced frequency-MMN (P sensory memory processing in patients with schizophrenia, an effect that may be mediated by activation of α7 nicotinic acetylcholine receptors, the function of which is diminished in schizophrenia. These ameliorating actions of nicotine may have implications for understanding the close relationship between tobacco smoking and schizophrenia and for developing nicotinic pharmacotherapies to alleviate sensory memory impairments in schizophrenia.

  19. In vitro pharmacological characterization of (+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol hydrochloride (SIB-1553A), a nicotinic acetylcholine receptor ligand.

    Science.gov (United States)

    Rao, Tadimeti S; Adams, Pamala B; Correa, Lucia D; Santori, Emily M; Sacaan, Aida I; Reid, Richard T; Suto, Carla M; Vernier, Jean Michel

    2003-08-15

    SIB-1553A ((+/-)-4-[2-(1-methyl-2-pyrrolidinyl)ethyl]thio]phenol HCl) is a neuronal nicotinic acetylcholine receptor (nAChR) ligand which displaced the binding of [3H]nicotine (NIC) to the rat brain nAChRs with an IC(50) value of 110 nM with no appreciable affinity to the alpha7 nAhRs. SIB-1553A showed modest affinity for histaminergic (H3) and serotonergic (5-HT1 and 5-HT2) receptors, and sigma binding sites. In calcium flux assays, SIB-1553A (0.1-5 microM), in contrast to nicotine, showed a greater selectivity for beta4-subunit containing recombinant hnAChRs (alpha2beta4, alpha3beta4 and alpha4beta4) vs. beta2-subunit containing nAChRs (alpha4beta2 and alpha3beta2) both in terms of efficacy and potency. While NIC (10-30 microM) and epibatidine (0.01-0.1 microM) fully activated human muscle-type AChRs expressed by RD cell line, SIB-1553A was virtually ineffective for up to >100 microM and elicited less than 10% of the response due to suberyldicholine. SIB-1553A (< or =30 microM) evoked [3H]DA release from striatum, olfactory tubercles and prefrontal cortex (PFC), and [3H]NE release from hippocampus and PFC, and this evoked release was sensitive to mecamylamine (MEC). SIB-1553A-evoked neurotransmitter release exhibited region- and transmitter-specific antagonism by dehydro-beta-erythroidine (DHbetaE). SIB-1553A was less efficacious than NIC at evoking [3H]NE from the rat hippocampus and antagonized NIC response upon co-application implying partial agonist properties. SIB-1553A did not evoke basal [3H]ACh release from the rat striatum or hippocampus, but attenuated NMDA-evoked [3H]ACh release from the rat striatum. SIB-1553A did not inhibit rat brain cholinesterase for up to 1 mM. Multiple receptor affinities and release of several neurotransmitters may underlie the cognitive-enhancing effects of SIB-1553A documented in rodent and primate models.

  20. Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats.

    Science.gov (United States)

    Feltenstein, Matthew W; Ghee, Shannon M; See, Ronald E

    2012-03-01

    Tobacco addiction is a relapsing disorder that constitutes a substantial worldwide health problem, with evidence suggesting that nicotine and nicotine-associated stimuli play divergent roles in maintaining smoking behavior in men and women. While animal models of tobacco addiction that utilize nicotine self-administration have become more widely established, systematic examination of the multiple factors that instigate relapse to nicotine-seeking have been limited. Here, we examined nicotine self-administration and subsequent nicotine-seeking in male and female Sprague-Dawley rats using an animal model of self-administration and relapse. Rats lever pressed for nicotine (0.03 and 0.05 mg/kg/infusion, IV) during 15 daily 2-h sessions, followed by extinction of lever responding. Once responding was extinguished, we examined the ability of previously nicotine-paired cues (tone+light), the anxiogenic drug yohimbine (2.5mg/kg, IP), a priming injection of nicotine (0.3mg/kg, SC), or combinations of drug+cues to reinstate nicotine-seeking. Both males and females readily acquired nicotine self-administration and displayed comparable levels of responding and intake at both nicotine doses. Following extinction, exposure to the previously nicotine-paired cues or yohimbine, but not the nicotine-prime alone, reinstated nicotine-seeking in males and females. Moreover, when combined with nicotine-paired cues, both yohimbine and nicotine enhanced reinstatement. No significant sex differences or estrous cycle dependent changes were noted across reinstatement tests. These results demonstrate the ability to reinstate nicotine-seeking with multiple modalities and that exposure to nicotine-associated cues during periods of a stressful state or nicotine can increase nicotine-seeking. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    Science.gov (United States)

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  3. Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice.

    Science.gov (United States)

    Kotagale, Nandkishor R; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2015-05-05

    Smoking cessation exhibits an aversive withdrawal syndrome characterized by both increases in somatic signs and affective behaviors including anxiety and depression. In present study, abrupt withdrawal of daily nicotine injections (2mg/kg, s.c., four times daily, for 10 days) significantly increased somatic signs viz. rearing, grooming, jumping, genital licking, leg licking, head shakes with associated depression (increased immobility in forced swim test) as well as anxiety (decreased the number of entries and time spent in open arm in elevated plus maze) in nicotine dependent animals. The peak effect was observed at 24h time point of nicotine withdrawal. Repeated administration of agmatine (40-80µg/mouse, i.c.v.) before the first daily dose of nicotine from day 5 to 10 attenuated the elevated scores of somatic signs and abolished the depression and anxiety like behavior induced by nicotine withdrawal in dependent animals. However, in separate groups, its acute administration 30min before behavior analysis of nicotine withdrawal was ineffective. This result clearly shows the role of agmatine in development of nicotine dependence and its withdrawal. In extension to behavioral experiments, brain agmatine analyses, carried out at 24h time point of nicotine withdrawal demonstrated marked decrease in basal brain agmatine concentration as compared to control animals. Taken together, these data support the role of agmatine as common biological substrate for somatic signs and affective symptoms of nicotine withdrawal. This data may project therapies based on agmatine in anxiety, depression and mood changes associated with tobacco withdrawal. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nicotinic α4β2 receptor imaging agents. Part III. Synthesis and biological evaluation of 3-(2-(S)-azetidinylmethoxy)-5-(3′-18F-fluoropropyl)pyridine (18F-nifzetidine)

    International Nuclear Information System (INIS)

    Pichika, Rama; Easwaramoorthy, Balu; Christian, Bradley T.; Shi, Bingzhi; Narayanan, Tanjore K.; Collins, Daphne; Mukherjee, Jogeshwar

    2011-01-01

    Thalamic and extrathalamic nicotinic α4β2 receptors found in the brain have been implicated in Alzheimer's disease, Parkinson's disease, substance abuse and other disorders. We report here the development of 3-(2-(S)-azetidinylmethoxy)-5-(3′-fluoropropyl)pyridine (nifzetidine) as a new putative high-affinity antagonist for nicotinic α4β2 receptors. Nifzetidine in rat brain homogenate assays containing α4β2 sites labeled with 3 H-cytisine exhibited a binding affinity: Ki=0.67 nM. The fluorine-18 analog, 3-(2-(S)-azetidinylmethoxy)-5-(3′- 18 F-fluoropropyl)pyridine ( 18 F-nifzetidine), was synthesized in 20%–40% yield, and apparent specific activity was estimated to be above 2 Ci/μmol. Rat brain slices indicated selective binding of 18 F-nifzetidine to thalamus, subiculum, striata, cortex and other regions consistent with α4β2 receptor distribution. This selective binding was displaced >85% by 150 μM nicotine. Positron emission tomography (PET) imaging studies of 18 F-nifzetidine in anesthetized rhesus monkey showed slow uptake in the various brain regions. Retention of 18 F-nifzetidine was maximal in the thalamus and lateral geniculate followed by regions of the temporal and frontal cortex. Cerebellum showed the least uptake. Thalamus to cerebellum ratio was about 2.3 at 180 min postinjection and continued to rise. 18 F-Nifzetidine shows promise as a new PET imaging agent for α4β2 nAChR. However, the slow kinetics suggests a need for >3-h PET scans for quantitative studies of the α4β2 nAChRs.

  5. Nicotine facilitates memory consolidation in perceptual learning.

    Science.gov (United States)

    Beer, Anton L; Vartak, Devavrat; Greenlee, Mark W

    2013-01-01

    Perceptual learning is a special type of non-declarative learning that involves experience-dependent plasticity in sensory cortices. The cholinergic system is known to modulate declarative learning. In particular, reduced levels or efficacy of the neurotransmitter acetylcholine were found to facilitate declarative memory consolidation. However, little is known about the role of the cholinergic system in memory consolidation of non-declarative learning. Here we compared two groups of non-smoking men who learned a visual texture discrimination task (TDT). One group received chewing tobacco containing nicotine for 1 h directly following the TDT training. The other group received a similar tasting control substance without nicotine. Electroencephalographic recordings during substance consumption showed reduced alpha activity and P300 latencies in the nicotine group compared to the control group. When re-tested on the TDT the following day, both groups responded more accurately and more rapidly than during training. These improvements were specific to the retinal location and orientation of the texture elements of the TDT suggesting that learning involved early visual cortex. A group comparison showed that learning effects were more pronounced in the nicotine group than in the control group. These findings suggest that oral consumption of nicotine enhances the efficacy of nicotinic acetylcholine receptors. Our findings further suggest that enhanced efficacy of the cholinergic system facilitates memory consolidation in perceptual learning (and possibly other types of non-declarative learning). In that regard acetylcholine seems to affect consolidation processes in perceptual learning in a different manner than in declarative learning. Alternatively, our findings might reflect dose-dependent cholinergic modulation of memory consolidation. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  7. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  8. Nicotine Modulates the Long-Lasting Storage of Fear Memory

    Science.gov (United States)

    Lima, Ramon H.; Radiske, Andressa; Kohler, Cristiano A.; Gonzalez, Maria Carolina; Bevilaqua, Lia R.; Rossato, Janine I.; Medina, Jorge H.; Cammarota, Martin

    2013-01-01

    Late post-training activation of the ventral tegmental area (VTA)-hippocampus dopaminergic loop controls the entry of information into long-term memory (LTM). Nicotinic acetylcholine receptors (nAChR) modulate VTA function, but their involvement in LTM storage is unknown. Using pharmacological and behavioral tools, we found that…

  9. Evaluation of nicotine in tobacco-free-nicotine commercial products.

    Science.gov (United States)

    Hellinghausen, Garrett; Lee, Jauh T; Weatherly, Choyce A; Lopez, Diego A; Armstrong, Daniel W

    2017-06-01

    Recently, a variety of new tobacco-free-nicotine, TFN, products have been commercialized as e-liquids. Tobacco-derived nicotine contains predominantly (S)-(-)-nicotine, whereas TFN products may not. The TFN products are said to be cleaner, purer substances, devoid of toxic components that come from the tobacco extraction process. A variety of commercial tobacco and TFN products were analyzed to identify the presence and composition of each nicotine enantiomer. A rapid and effective enantiomeric separation of nicotine has been developed using a modified macrocyclic glycopeptide bonded to superficially porous particles. The enantiomeric assay can be completed in nicotine, which is present in much greater quantities in commercial TFN products compared to commercial tobacco-derived products. Such studies are required by the FDA for new enantiomeric pharmacological products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T

    International Nuclear Information System (INIS)

    Lim, S-I; Yoo, C-H; Song, K-H; Choe, B-Y; Woo, D-C

    2016-01-01

    Purpose: Nicotine exerts its effects through the activation of nicotinic acetylcholine receptors (nAChRs). Varenicline, a smoking cessation aid, is a partial agonist acting at the α4β2 nAChRs. Although nicotine and varenicline contribute to the reward system at the same time, the influence of the substances on hippocampal neurochemical changes has not been investigated yet. We therefore studied the effects of repeated nicotine exposure and varenicline administration on hippocampus of rats by using in vivo proton magnetic resonance spectroscopy (1H MRS) at 9.4T. Methods: Male Wistar rats (n = 11; mean body weight, 304.9 ± 9.9 g) were divided into 3 groups: control rats (control, n = 3); nicotine-induced rats (nicotine, n = 4); and nicotine- and varenicline-induced rats (varenicline, n = 4). Acquisition of in vivo MRS was conducted by using 9.4 T Agilent Scanner. The linear combination of model spectra (LCModel, version 6.3, Stephen W. Provencher) fitting software was used to quantify the metabolites in the frequency domain, using the basis metabolites. Results: In this study, the results show the tendency of increased Glu level in nicotine group than in the control and varenicline groups. Moreover, GSH and NAA levels tended to decrease in the nicotine group in comparison with those in the control and varenicline groups. Conclusion: These findings indicate that the hippocampus is integrally linked to the brain reward sensitization involved in addiction and glutamate release through mobilization of intracellular calcium stores. Further, oxidative stress and toxicity of nicotine on brain would cause the decline of GSH and NAA. In conclusion, we found that varenicline effectively inhibits the reward cycle.

  11. SU-F-I-66: The Effects of Nicotinic Agonists On Rat Hippocampal Glutamatergic Fluctuation by Using Proton Magnetic Resonance Spectroscopy at 9.4T

    Energy Technology Data Exchange (ETDEWEB)

    Lim, S-I; Yoo, C-H [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul (Korea, Republic of); Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul (Korea, Republic of); Song, K-H; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Seoul (Korea, Republic of); Woo, D-C [Asan Institute for Life Sciences, Asan Medical Center, Seoul, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Nicotine exerts its effects through the activation of nicotinic acetylcholine receptors (nAChRs). Varenicline, a smoking cessation aid, is a partial agonist acting at the α4β2 nAChRs. Although nicotine and varenicline contribute to the reward system at the same time, the influence of the substances on hippocampal neurochemical changes has not been investigated yet. We therefore studied the effects of repeated nicotine exposure and varenicline administration on hippocampus of rats by using in vivo proton magnetic resonance spectroscopy (1H MRS) at 9.4T. Methods: Male Wistar rats (n = 11; mean body weight, 304.9 ± 9.9 g) were divided into 3 groups: control rats (control, n = 3); nicotine-induced rats (nicotine, n = 4); and nicotine- and varenicline-induced rats (varenicline, n = 4). Acquisition of in vivo MRS was conducted by using 9.4 T Agilent Scanner. The linear combination of model spectra (LCModel, version 6.3, Stephen W. Provencher) fitting software was used to quantify the metabolites in the frequency domain, using the basis metabolites. Results: In this study, the results show the tendency of increased Glu level in nicotine group than in the control and varenicline groups. Moreover, GSH and NAA levels tended to decrease in the nicotine group in comparison with those in the control and varenicline groups. Conclusion: These findings indicate that the hippocampus is integrally linked to the brain reward sensitization involved in addiction and glutamate release through mobilization of intracellular calcium stores. Further, oxidative stress and toxicity of nicotine on brain would cause the decline of GSH and NAA. In conclusion, we found that varenicline effectively inhibits the reward cycle.

  12. Joint association of nicotinic acetylcholine receptor variants with abdominal obesity in American Indians: the Strong Heart Family Study.

    Science.gov (United States)

    Zhu, Yun; Yang, Jingyun; Yeh, Fawn; Cole, Shelley A; Haack, Karin; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying

    2014-01-01

    Cigarette smoke is a strong risk factor for obesity and cardiovascular disease. The effect of genetic variants involved in nicotine metabolism on obesity or body composition has not been well studied. Though many genetic variants have previously been associated with adiposity or body fat distribution, a single variant usually confers a minimal individual risk. The goal of this study is to evaluate the joint association of multiple variants involved in cigarette smoke or nicotine dependence with obesity-related phenotypes in American Indians. To achieve this goal, we genotyped 61 tagSNPs in seven genes encoding nicotine acetylcholine receptors (nAChRs) in 3,665 American Indians participating in the Strong Heart Family Study. Single SNP association with obesity-related traits was tested using family-based association, adjusting for traditional risk factors including smoking. Joint association of all SNPs in the seven nAChRs genes were examined by gene-family analysis based on weighted truncated product method (TPM). Multiple testing was controlled by false discovery rate (FDR). Results demonstrate that multiple SNPs showed weak individual association with one or more measures of obesity, but none survived correction for multiple testing. However, gene-family analysis revealed significant associations with waist circumference (p = 0.0001) and waist-to-hip ratio (p = 0.0001), but not body mass index (p = 0.20) and percent body fat (p = 0.29), indicating that genetic variants are jointly associated with abdominal, but not general, obesity among American Indians. The observed combined genetic effect is independent of cigarette smoking per se. In conclusion, multiple variants in the nAChR gene family are jointly associated with abdominal obesity in American Indians, independent of general obesity and cigarette smoking per se.

  13. [11C]CHIBA-1001 as a novel PET ligand for alpha7 nicotinic receptors in the brain: a PET study in conscious monkeys.

    Directory of Open Access Journals (Sweden)

    Kenji Hashimoto

    Full Text Available BACKGROUND: The alpha7 nicotinic acetylcholine receptors (nAChRs play an important role in the pathophysiology of neuropsychiatric diseases such as schizophrenia and Alzheimer's disease. However, there are currently no suitable positron emission tomography (PET radioligands for imaging alpha7 nAChRs in the intact human brain. Here we report the novel PET radioligand [11C]CHIBA-1001 for in vivo imaging of alpha7 nAChRs in the non-human primate brain. METHODOLOGY/PRINCIPAL FINDINGS: A receptor binding assay showed that CHIBA-1001 was a highly selective ligand at alpha7 nAChRs. Using conscious monkeys, we found that the distribution of radioactivity in the monkey brain after intravenous administration of [11C]CHIBA-1001 was consistent with the regional distribution of alpha7 nAChRs in the monkey brain. The distribution of radioactivity in the brain regions after intravenous administration of [11C]CHIBA-1001 was blocked by pretreatment with the selective alpha7 nAChR agonist SSR180711 (5.0 mg/kg. However, the distribution of [11C]CHIBA-1001 was not altered by pretreatment with the selective alpha4beta2 nAChR agonist A85380 (1.0 mg/kg. Interestingly, the binding of [11C]CHIBA-1001 in the frontal cortex of the monkey brain was significantly decreased by subchronic administration of the N-methyl-D-aspartate (NMDA receptor antagonist phencyclidine (0.3 mg/kg, twice a day for 13 days; which is a non-human primate model of schizophrenia. CONCLUSIONS/SIGNIFICANCE: The present findings suggest that [11C]CHIBA-1001 could be a novel useful PET ligand for in vivo study of the receptor occupancy and pathophysiology of alpha7 nAChRs in the intact brain of patients with neuropsychiatric diseases such as schizophrenia and Alzheimer's disease.

  14. Effect of urinary pH and nicotine excretion rate on plasma nicotine during cigarette smoking and chewing nicotine gum

    Science.gov (United States)

    Feyerabend, C.; Russell, M. A. H.

    1978-01-01

    1 Plasma nicotine levels produced by chewing nicotine gum were compared with those obtained by cigarette smoking under conditions of controlled urinary pH. 2 Although absorption was slower, plasma levels comparable to cigarette smoking were built up on 4 mg (but not 2 mg) nicotine gum. 3 Urinary excretion of nicotine was influenced markedly by pH and the rate of urine flow. 4 Plasma nicotine was higher under alkaline compared to acidic conditions (P < 0.001) but the rate of urinary nicotine excretion appeared to have little effect on the plasma level.

  15. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Denis Kudryavtsev

    2015-05-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt, and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.

  16. Partial agonism at the α7 nicotinic acetylcholine receptor improves attention, impulsive action and vigilance in low attentive rats.

    Science.gov (United States)

    Hayward, Andrew; Adamson, Lisa; Neill, Joanna C

    2017-04-01

    Inattention is a disabling symptom in conditions such as schizophrenia and attention deficit/hyperactivity disorder. Nicotine can improve attention and vigilance, but is unsuitable for clinical use due to abuse liability. Genetic knockout of the α7 nicotinic acetylcholine receptor (nAChR) induces attention deficits therefore selective agonism may improve attention, without the abuse liability associated with nicotine. The α7 nAChR partial agonist encenicline (formerly EVP-6124) enhances memory in rodents and humans. Here we investigate, for the first time, efficacy of encenicline to improve attention and vigilance in animals behaviourally grouped for low attentive traits in the 5 choice-continuous performance task (5C-CPT). Female Lister Hooded rats were trained to perform the 5C-CPT with a variable stimulus duration (SD). Animals were then grouped based on performance into upper and lower quartiles of d' (vigilance) and accuracy (selective attention), producing high-attentive (HA) and low-attentive (LA) groups. LA animals showed an increase in selective attention and vigilance at 0.3mg/kg encenicline, a reduction in impulsive action (probability of false alarms) and increase in vigilance following 1mg/kg at 0.75sSD. At 1mg/kg, HA animals had reduced selective attention at 0.75sSD and reduced vigilance at 0.75 and 1.25sSD. Improvement of attention, vigilance and impulsive action in LA animals demonstrates that encenicline has pro-attentive properties dependent on baseline levels of performance. Our work suggests that α7 nAChR partial agonism may improve attention particularly in conditions with low attention. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  17. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette Sandholm Jensen

    2014-01-01

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive...... on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4β2 nAChRs....... modulator that targets the α4-α4 interface of α4β2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4β2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface...

  18. NICOTINE-RECEPTOR BLOCKADE AND THE EFFECTS OF ANATOXIN-A ON THE MOTOR ACTIVITY OF RATS: COMPARISON WITH NICOTINE.

    Science.gov (United States)

    Anatoxin-a is produced by several species of freshwater cyanobacteria and has caused several poisoning episodes in terrestrial and aquatic wildlife, livestock and domestic animals. Anatoxin-a is also a potent nicotinic agonist in the nervous system and at the neuromuscular juncti...

  19. Acetylcholine receptors in the human retina

    International Nuclear Information System (INIS)

    Hutchins, J.B.; Hollyfield, J.G.

    1985-01-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand 3 H-propylbenzilylcholine mustard ( 3 H-PrBCM) to label muscarinic receptors. 3 H- or 125 I-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that 3 H-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina

  20. Change of central cholinergic receptors following lesions of nucleus basalis magnocellularis in rats: search for an imaging index suitable for the early detection of Alzheimer's disease

    International Nuclear Information System (INIS)

    Ogawa, Mikako; Iida, Yasuhiko; Nakagawa, Masaki; Kuge, Yugi; Kawashima, Hidekazu; Tominaga, Akiko; Ueda, Masashi; Magata, Yasuhiro; Saji, Hideo

    2006-01-01

    Cholinergic system in the central nervous system is involved in the memory function. Thus, because the dysfunction of cholinergic system that project to the cerebral cortex from nucleus basalis of Meynert (nbM) would be implicated in the memory function deficits in Alzheimer's disease (AD), evaluating cholinergic function may be useful for the early detection of AD. In this study, because the nucleus basalis magnocellularis (NBM) in rats is equivalent to nbM in human, we investigated the change in cholinergic receptors in the frontal cortex of rats with unilateral lesion to the NBM to find an appropriate index for the early detection of AD using techniques of nuclear medicine. The right NBM was injected with ibotenic acid. [ 18 F]FDG-PET images were obtained 3 days later. Some rats were sacrificed at 1 week, whereas others were subjected to a second [ 18 F]FDG-PET at 4 weeks then sacrificed for membrane preparation. The prepared membranes were subjected to radioreceptor assays to measure the density of nicotinic and muscarinic acetylcholine receptors. Glucose metabolism had decreased on the damaged side compared to the control side at 3 days, but at 4 weeks, there was no difference between the sides. Nicotinic acetylcholine receptors had significantly decreased in density compared to the control side at both 1 and 4 weeks. However, muscarinic receptors were not affected. These results suggested that neuronal dysfunction in AD could be diagnosed at an early stage by imaging nicotinic acetylcholine receptors

  1. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  2. The nicotine + alcohol interoceptive drug state: contribution of the components and effects of varenicline in rats.

    Science.gov (United States)

    Randall, Patrick A; Cannady, Reginald; Besheer, Joyce

    2016-08-01

    Nicotine and alcohol co-use is highly prevalent, and as such, individuals experience the interoceptive effects of both substances together. Therefore, examining sensitivity to a compound nicotine and alcohol (N + A) interoceptive cue is critical to broaden our understanding of mechanisms that may contribute to nicotine and alcohol co-use. This work assessed the ability of a N + A interoceptive cue to gain control over goal-tracking behavior and determined the effects of the α4β2 nicotinic partial agonist and smoking cessation compound varenicline on sensitivity to N + A. Two groups of male Long Evans rats were trained to discriminate N + A (0.4 mg/kg nicotine + 1 g/kg alcohol, intragastric gavage (IG)) from water under two different training conditions using a Pavlovian drug discrimination task. The effects of varenicline (0, 1, 3 mg/kg, intraperitoneally (IP)) administered alone and on sensitivity to N + A and the components were determined. Under both training conditions, N + A rapidly gained control over behavior, with a greater contribution of nicotine to the N + A compound cue. Varenicline fully substituted for the N + A training dose, and varenicline (1 mg/kg) enhanced sensitivity to the lowest N + A dose (0.1 N + 0.1 A). Given the high selectivity of varenicline for the α4β2 receptor, this finding suggests a functional role for α4β2 nicotinic acetylcholine receptors (nAChRs) in modulating sensitivity to N + A. The N + A compound cue is a unique cue that is modulated, in part, by activity at the α4β2 nAChR. These findings advance understanding of the interoceptive effects of nicotine and alcohol in combination and may have implications in relation to their co-use.

  3. Fetal-muscle type nicotinic acetylcholine receptor activation in TE-671 cells, and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine

    Science.gov (United States)

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be due to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR which re...

  4. Effects of nicotine and nicotine expectancy on attentional bias for emotional stimuli.

    Science.gov (United States)

    Adams, Sally; Attwood, Angela S; Munafò, Marcus R

    2015-06-01

    Nicotine's effects on mood are thought to enhance its addictive potential. However, the mechanisms underlying the effects of nicotine on affect regulation have not been reliably demonstrated in human laboratory studies. We investigated the effects of nicotine abstinence (Experiment 1), and nicotine challenge and expectancy (Experiment 2) on attentional bias towards facial emotional stimuli differing in emotional valence. In Experiment 1, 46 nicotine-deprived smokers were randomized to either continue to abstain from smoking or to smoke immediately before testing. In Experiment 2, 96 nicotine-deprived smokers were randomized to smoke a nicotinized or denicotinized cigarette and to be told that the cigarette did or did not contain nicotine. In both experiments participants completed a visual probe task, where positively valenced (happy) and negatively valenced (sad) facial expressions were presented, together with neutral facial expressions. In Experiment 1, there was evidence of an interaction between probe location and abstinence on reaction time, indicating that abstinent smokers showed an attentional bias for neutral stimuli. In Experiment 2, there was evidence of an interaction between probe location, nicotine challenge and expectation on reaction time, indicating that smokers receiving nicotine, but told that they did not receive nicotine, showed an attentional bias for emotional stimuli. Our data suggest that nicotine abstinence appears to disrupt attentional bias towards emotional facial stimuli. These data provide support for nicotine's modulation of attentional bias as a central mechanism for maintaining affect regulation in cigarette smoking. © The Author 2014. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    Science.gov (United States)

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  6. Synthesis and evaluation of [125I]I-TSA as a brain nicotinic acetylcholine receptor α7 subtype imaging agent

    International Nuclear Information System (INIS)

    Ogawa, Mikako; Tatsumi, Ryo; Fujio, Masakazu; Katayama, Jiro; Magata, Yasuhiro

    2006-01-01

    Introduction: Some in vitro investigations have suggested that the nicotinic acetylcholine receptor (nAChR) α 7 subtype is implicated in Alzheimer's disease, schizophrenia and others. Recently, we developed (R)-3'-(5-bromothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'-[1',3'] oxazolidin]-2'-one (Br-TSA), which has a high affinity and selectivity for α 7 nAChRs. Therefore we synthesized (R)-3'-(5-[ 125 I]iodothiophen-2-yl)spiro[1-azabicyclo[2.2.2]octane-3,5'- [1',3']oxazolidin]-2'-one ([ 125 I]I-TSA) and evaluated its potential for the in vivo detection of α 7 nAChR in brain. Methods: In vitro binding affinity of I-TSA was measured in rat brain homogenates. Radioiodination was accomplished by a Br-I exchange reaction. Biodistribution studies were undertaken in mice by tail vein injection of [ 125 I]I-TSA. In vivo receptor blocking studies were carried out by treating mice with methyllycaconitine (MLA; 5 nmol/5 μl, i.c.v.) or nonradioactive I-TSA (50 μmol/kg, i.v.). Results: I-TSA exhibited a high affinity and selectivity for the α 7 nAChR (K i for α 7 nAChR=0.54 nM). Initial uptake in the brain was high (4.42 %dose/g at 5 min), and the clearance of radioactivity was relatively slow in the hippocampus (α 7 nAChR-rich region) and was rather rapid in the cerebellum (α 7 nAChR poor region). The hippocampus to cerebellum uptake ratio was 0.9 at 5 min postinjection, but it was increased to 1.8 at 60 min postinjection. Although the effect was not statistically significant, administration of I-TSA and MLA decreased the accumulation of radioactivity in hippocampus. Conclusion: Despite its high affinity and selectivity, [ 125 I]I-TSA does not appear to be a suitable tracer for in vivo α 7 nAChR receptor imaging studies due to its high nonspecific binding. Further structural optimization is needed

  7. Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance

    NARCIS (Netherlands)

    Hoekstra, R.; Visser, A.; Wiley, L. J.; Weiss, A. S.; Sangster, N. C.; Roos, M. H.

    1997-01-01

    The anthelminitic drug levamisole is thought to bind to nicotinic acetylcholine receptors of nematodes. It is possible that resistance to this drug is associated with either a change in binding characteristics or a reduction in the number of nicotinic acetylcholine receptors. Therefore, the

  8. Synthesis and in-vivo evaluation of C-11 p-PVP-MEMA as a PET radioligand for imaging nicotinic receptors

    International Nuclear Information System (INIS)

    Paine, T.; Kassiou, M.; Dolle, F.; Langle, S.; Roger, G.; Lagnel-de Bruin, B.; Hinnen, F.; Valette, H.; Bottlaender, M.; Fulton, R.R.; Henderson, D.J.; Coster, M.J.; Kassiou, M.

    2008-01-01

    Within the class of (4-pyridinyl)vinyl-pyridines developed by Abbott laboratories as potent neuronal nicotinic acetylcholine receptor ligands, p-PVP-MEMA ({oro-5-((E)-2-pyridin-4-yl-vinyl) pyridin-3-yloxy]-1-methylethyl} is the lead compound of a novel series that do not display the traditional nicotinic-like pyrrole-ring but still possessing high sub-nanomolar affinity (K-i 0.077 nm-displacement of [H-3](-)cytisine from whole rat brain synaptic membranes). In the present study, p-PVP-MEMA and its nor-derivative ({oro-5-((E)-2-pyridin-4- yl-vinyl) pyridin-3-yloxy]-1-methylethyl} as precursor for labelling with the short-lived positron-emitter carbon-11 (T 1/2 = 20.4 min) were synthesized in 10 chemical steps from 2-hydroxy-5-nitropyridine and Boc-D-alanine. N-Alkylation of nor-p-PVP-MEMA with [C-11] methyl iodide afforded [C-11]p-PVP-MEMA (≥ 98% radiochemically pure, specific activity of 86.4 GBq μ mol -1 ) in 2% (non-decay corrected and non-optimized) radiochemical yield, in 34 min (including HPLC purification and formulation). Preliminary positron emission tomography PET) results obtained in a Papio hamadryas baboon showed that [C-11] p-PVP-MEMA is not a suitable PET-radioligand. (authors)

  9. An Exploratory Study on the Development of an Animal Model of Acute Pancreatitis Following Nicotine Exposure

    Directory of Open Access Journals (Sweden)

    Chowdhury P

    2003-09-01

    Full Text Available Abstract Cigarette smoking is known to be a major risk factor for pancreatic cancer and pancreatitis is believed to be a predisposed condition for pancreatic cancer. As of this date, there is no established experimental animal model to conduct detailed studies on these two deadly diseases. Our aim is to establish a rodent model by which we can systematically study the pathogenesis of pancreatitis and pancreatic cancer. Methods Adult Male Sprague Dawley rats were exposed to graded doses of nicotine by various routes for periods of three to 16 weeks. Blood samples were measured for hormonal and metabolic parameters. The pancreas was evaluated for histopathological changes and its function was assessed in isolated pancreatic acini upon stimulation with cholecystokinin (CCK or carbachol (Cch. The pancreatic tissue was evaluated further for oncogene expression. Results Body weight, food and fluid intakes, plasma glucose and insulin levels were significantly reduced in animals with nicotine exposure when compared to control. However, CCK and gastrin levels in the blood were significantly elevated. Pancreatic function was decreased significantly with no alteration in CCK receptor binding. Pancreatic histology revealed vacuolation, swelling, cellular pyknosis and karyorrhexis. Mutant oncogene, H-ras, was overexpressed in nicotine-treated pancreatic tissue. Summary and conclusion The results suggest that alterations in metabolic, hormonal and pathologic parameters following nicotine-treatment appear consistent with diagnostic criteria of human pancreatitis. It is proposed that rats could be considered as a potential animal model to study the pathogenesis of pancreatitis.

  10. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (--209B, (--231C, (--233D, (--235B", (--221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors

    Directory of Open Access Journals (Sweden)

    Garraffo H Martin

    2007-09-01

    Full Text Available Abstract Background The 5,8-disubstituted indolizidines constitute the largest class of poison-frog alkaloids. Some alkaloids have been shown to act as noncompetitive blockers at nicotinic acetylcholine receptors but the proposed structures and the biological activities of most of the 5,8-disubstituted indolizidines have not been determined because of limited supplies of the natural products. We have therefore conducted experiments to confirm proposed structures and determine biological activities using synthetic compounds. Recently, we reported that one of this class of alkaloids, (--235B', acts as a noncompetitive antagonist for α4β2 nicotinic receptors, and its sensitivity is comparable to that of the classical competitive antagonist for this receptor, dihydro-β-erythroidine. Results The enantioselective syntheses of (--209B, (--231C, (--233D, (--235B", (--221I, and what proved to be an epimer of natural 193E, starting from common chiral lactams have been achieved. When we performed electrophysiological recordings to examine the effects of the synthetic alkaloids on two major subtypes of nicotinic receptors (α4β2 and α7 expressed in Xenopus laevis oocytes, (--231C effectively blocked α4β2 receptor responses (IC50 value, 1.5 μM with a 7.0-fold higher potency than for blockade of α7 receptor responses. In contrast, synthetic (--221I and (--epi-193E were more potent in blocking α7 receptor responses (IC50 value, 4.4 μM and 9.1 μM, respectively than α4β2 receptor responses (5.3-fold and 2.0-fold, respectively. Conclusion We achieved the total synthesis of (--209B, (--231C, (--233D, (--235B", (--221I, and an epimer of 193E starting from common chiral lactams, and the absolute stereochemistry of natural (--233D was determined. Furthermore, the relative stereochemistry of (--231C and (--221I was also determined. The present asymmetric synthesis of the proposed structure for 193E revealed that the C-8 configuration of natural 193E

  11. Nicotine Withdrawal Induces Neural Deficits in Reward Processing.

    Science.gov (United States)

    Oliver, Jason A; Evans, David E; Addicott, Merideth A; Potts, Geoffrey F; Brandon, Thomas H; Drobes, David J

    2017-06-01

    Nicotine withdrawal reduces neurobiological responses to nonsmoking rewards. Insight into these reward deficits could inform the development of targeted interventions. This study examined the effect of withdrawal on neural and behavioral responses during a reward prediction task. Smokers (N = 48) attended two laboratory sessions following overnight abstinence. Withdrawal was manipulated by having participants smoke three regular nicotine (0.6 mg yield; satiation) or very low nicotine (0.05 mg yield; withdrawal) cigarettes. Electrophysiological recordings of neural activity were obtained while participants completed a reward prediction task that involved viewing four combinations of predictive and reward-determining stimuli: (1) Unexpected Reward; (2) Predicted Reward; (3) Predicted Punishment; (4) Unexpected Punishment. The task evokes a medial frontal negativity that mimics the phasic pattern of dopaminergic firing in ventral tegmental regions associated with reward prediction errors. Nicotine withdrawal decreased the amplitude of the medial frontal negativity equally across all trial types (p nicotine dependence (p Nicotine withdrawal had equivocal impact across trial types, suggesting reward processing deficits are unlikely to stem from changes in phasic dopaminergic activity during prediction errors. Effects on tonic activity may be more pronounced. Pharmacological interventions directly targeting the dopamine system and behavioral interventions designed to increase reward motivation and responsiveness (eg, behavioral activation) may aid in mitigating withdrawal symptoms and potentially improving smoking cessation outcomes. Findings from this study indicate nicotine withdrawal impacts reward processing signals that are observable in smokers' neural activity. This may play a role in the subjective aversive experience of nicotine withdrawal and potentially contribute to smoking relapse. Interventions that address abnormal responding to both pleasant and

  12. Varenicline: a selective alpha4beta2 nicotinic acetylcholine receptor partial agonist approved for smoking cessation.

    Science.gov (United States)

    Lam, Sum; Patel, Priti N

    2007-01-01

    Tobacco smoking remains a significant health problem in the United States. It has been associated with staggering morbidity and mortality, specifically due to malignancies and cardiovascular disease. Smoking cessation can be difficult and frequently requires pharmacologic interventions in addition to nonpharmacologic measures. Previously available agents are nicotine replacement products and bupropion, which increased quit rates by about 2-fold compared with placebo. Varenicline is the first drug in a new class known as the selective alpha4beta2 nicotinic receptor partial agonists. In several randomized, double-blind, 52-week clinical trials involving healthy chronic smokers, varenicline demonstrated superiority to placebo and bupropion in terms of efficacy measures. Additionally, it improved tobacco withdrawal symptoms and reinforcing effects of smoking in relapsed patients. Patients should start therapy in combination with tobacco cessation counseling 1 week before quit date and continue the regimen for 12 weeks. The dose of varenicline should be titrated to minimize nausea. The recommended dosage is 0.5 mg once daily (QD) on days 1-3; titrate to 0.5 mg twice daily (BID) on days 4-7; and 1 mg BID starting on day 8. An additional 12-week maintenance therapy may be considered for those who achieve abstinence. The most common side effects are nausea (30%), insomnia (18%), headache (15%), abnormal dreams (13%), constipation (8%), and abdominal pain (7%). Overall, varenicline is a breakthrough in the management of tobacco addiction and has demonstrated good efficacy in motivated quitters. It also provides an option for smokers who cannot tolerate other pharmacologic interventions.

  13. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats.

    Science.gov (United States)

    Seoane-Collazo, Patricia; Martínez de Morentin, Pablo B; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén; López, Miguel

    2014-05-01

    Nicotine, the main addictive component of tobacco, promotes body weight reduction in humans and rodents. Recent evidence has suggested that nicotine acts in the central nervous system to modulate energy balance. Specifically, nicotine modulates hypothalamic AMP-activated protein kinase to decrease feeding and to increase brown adipose tissue thermogenesis through the sympathetic nervous system, leading to weight loss. Of note, most of this evidence has been obtained in animal models fed with normal diet or low-fat diet (LFD). However, its effectiveness in obese models remains elusive. Because obesity causes resistance towards many factors involved in energy homeostasis, the aim of this study has been to compare the effect of nicotine in a diet-induced obese (DIO) model, namely rats fed a high-fat diet, with rats fed a LFD. Our data show that chronic peripheral nicotine treatment reduced body weight by decreasing food intake and increasing brown adipose tissue thermogenesis in both LFD and DIO rats. This overall negative energy balance was associated to decreased activation of hypothalamic AMP-activated protein kinase in both models. Furthermore, nicotine improved serum lipid profile, decreased insulin serum levels, as well as reduced steatosis, inflammation, and endoplasmic reticulum stress in the liver of DIO rats but not in LFD rats. Overall, this evidence suggests that nicotine diminishes body weight and improves metabolic disorders linked to DIO and might offer a clear-cut strategy to develop new therapeutic approaches against obesity and its metabolic complications.

  14. Characterisation of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance

    NARCIS (Netherlands)

    Hoekstra, R.; Visser, A.; Wiley, L.; Weiss, A.S.; Sangster, N.C.; Roos, M.H.

    1997-01-01

    The anthelmintic drug levamisole is thought to bind to nicotinic acetylcholine receptors of nematodes. It is possible that resistance to this drug is associated with either a change in binding characteristics or a reduction in the number of nicotinic acetylcholine receptors. Therefore, the molecular

  15. Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory.

    Science.gov (United States)

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-03-01

    The hippocampus is a key brain structure involved in synaptic plasticity associated with long-term declarative memory formation. Importantly, nicotine and activation of nicotinic acetylcholine receptors (nAChRs) can alter hippocampal plasticity and these changes may occur through modulation of hippocampal kinases and transcription factors. Hippocampal kinases such as cAMP-dependent protein kinase (PKA), calcium/calmodulin-dependent protein kinases (CAMKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and c-jun N-terminal kinase 1 (JNK1), and the transcription factor cAMP-response element-binding protein (CREB) that are activated either directly or indirectly by nicotine may modulate hippocampal plasticity and in parallel hippocampus-dependent learning and memory. Evidence suggests that nicotine may alter hippocampus-dependent learning by changing the time and magnitude of activation of kinases and transcription factors normally involved in learning and by recruiting additional cell signaling molecules. Understanding how nicotine alters learning and memory will advance basic understanding of the neural substrates of learning and aid in understanding mental disorders that involve cognitive and learning deficits. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Fetal muscle-type nicotinic acetylcholine receptor activation in TE-671 cells and inhibition of fetal movement in a day 40 pregnant goat model by optical isomers of the piperidine alkaloid coniine.

    Science.gov (United States)

    Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Panter, Kip E

    2013-01-01

    Coniine is an optically active toxic piperidine alkaloid and nicotinic acetylcholine receptor (nAChR) agonist found in poison hemlock (Conium maculatum L.). Coniine teratogenicity is hypothesized to be attributable to the binding, activation, and prolonged desensitization of fetal muscle-type nAChR, which results in the complete inhibition of fetal movement. However, pharmacological evidence of coniine actions at fetal muscle-type nAChR is lacking. The present study compared (-)-coniine, (+)-coniine, and nicotine for the ability to inhibit fetal movement in a day 40 pregnant goat model and in TE-671 cells that express fetal muscle-type nAChR. Furthermore, α-conotoxins (CTx) EI and GI were used to antagonize the actions of (+)- and (-)-coniine in TE-671 cells. (-)-Coniine was more effective at eliciting electrical changes in TE-671 cells and inhibiting fetal movement than was (+)-coniine, suggesting stereoselectivity by the receptor. The pyridine alkaloid nicotine did not inhibit fetal movement in a day 40 pregnant goat model, suggesting agonist specificity for the inhibition of fetal movement. Low concentrations of both CTxs potentiated the TE-671 cell response and higher concentrations of CTx EI, and GI antagonized the actions of both coniine enantiomers demonstrating concentration-dependent coagonism and selective antagonism. These results provide pharmacological evidence that the piperidine alkaloid coniine is acting at fetal muscle-type nAChR in a concentration-dependent manner.

  17. Nicotinic Acetylcholine Receptor α4 Subunit Gene Variation Associated with Attention Deficit Hyperactivity Disorder

    Institute of Scientific and Technical Information of China (English)

    HUANG Xuezhu; XU Yong; LI Qianqian; LIU Pozi; YANG Yuan; ZHANG Fuquan; GUO Tianyou; YANG Chuang; GUO Lanting

    2009-01-01

    Previous pharmacological, human genetics, and animal models have implicated the nicotinic ace-tylcholine receptor a4 subunit (CHRNA4) gene in the pathogenesis of attention deficit/hyperactivity disorder (ADHD). The objective of this study is to examine the genetic association between single nucleotide poly-morphisms in the CHRNA4 gene (rs2273502, rs1044396, rs1044397, and rs3827020 loci) and ADHD. Both case-control and family-based designs are used. Children aged 6 to 16 years were interviewed and as-sessed with the children behavior checklist and the revised conner' parent rating scale to identify probands. No significant differences in the frequency distribution of genotypes or alleles were found between the case and control groups. However, further haplotype analyses showed the CCGG haplotype on dsk for ADHD in 164 case-control samples and the standard transmission disequilibrium test analyses suggest that the allele C of rs2273502 was over-transferred in 98 ADHD parent-offspring tdos. These findings suggest that the CHRNA4 gene may play a role in the pathogenesis of ADHD.

  18. Nereistoxin and cartap neurotoxicity attributable to direct block of the insect nicotinic receptor/channel.

    Science.gov (United States)

    Lee, Seog-Jong; Tomizawa, Motohiro; Casida, John E

    2003-04-23

    Nereistoxin (NTX) (4-dimethylamino-1,2-dithiolane) is the naturally occurring prototype for cartap [the bis(thiocarbamate) derivative of the NTX dithiol], which is generally regarded as a proinsecticide reverting to NTX. The aim of this study is to define the target site(s) for dithiolanes and dithiol esters. The affinity of [(3)H]NTX was not suitable for binding assays with honeybee (Apis mellifera) head membranes. However, NTX and cartap are equally potent, direct-acting, and competitive displacers of [(3)H]thienylcyclohexylpiperidine binding at the noncompetitive blocker (NCB) site of the Apis nicotinic acetylcholine receptor (nAChR)/channel. NTX also binds at the Apis [(3)H]imidacloprid agonist site, but cartap does not. As candidate metabolic pathways, sequential N-desmethylation and S-oxidation of NTX progressively reduce its potency at the NCB site and toxicity to houseflies. A P450 inhibitor reduces the toxicity of NTX and enhances it with cartap. Surprisingly, cartap is not just a pro-NTX but instead directly induces inhibitory neurotoxicity by blocking the nAChR/channel, whereas NTX may have dual NCB and agonist targets.

  19. Nicotinic cholinergic receptors in esophagus: Early alteration during carcinogenesis and prognostic value

    Science.gov (United States)

    Chianello Nicolau, Marina; Pinto, Luis Felipe Ribeiro; Nicolau-Neto, Pedro; de Pinho, Paulo Roberto Alves; Rossini, Ana; de Almeida Simão, Tatiana; Soares Lima, Sheila Coelho

    2016-01-01

    AIM To compare expression of nicotinic cholinergic receptors (CHRNs) in healthy and squamous cell carcinoma-affected esophagus and determine the prognostic value. METHODS We performed RT-qPCR to measure the expression of CHRNs in 44 esophageal samples from healthy individuals and in matched normal surrounding mucosa, and in tumors from 28 patients diagnosed with esophageal squamous cell carcinoma (ESCC). Next, we performed correlation analysis for the detected expression of these receptors with the habits and clinico-pathological characteristics of all study participants. In order to investigate the possible correlations between the expression of the different CHRN subunits in both healthy esophagus and tissues from ESCC patients, correlation matrices were generated. Subsequently, we evaluated whether the detected alterations in expression of the various CHRNs could precede histopathological modifications during the esophageal carcinogenic processes by using receiver operating characteristic curve analysis. Finally, we evaluated the impact of CHRNA5 and CHRNA7 expression on overall survival by using multivariate analysis. RESULTS CHRNA3, CHRNA5, CHRNA7 and CHRNB4, but not CHRNA1, CHRNA4, CHRNA9 or CHRNA10, were found to be expressed in normal (healthy) esophageal mucosa. In ESCC, CHRNA5 and CHRNA7 were overexpressed as compared with patient-matched surrounding non-tumor mucosa (ESCC-adjacent mucosa; P < 0.0001 and P = 0.0091, respectively). Positive correlations were observed between CHRNA3 and CHRNB4 expression in all samples analyzed. Additionally, CHRNB4 was found to be differentially expressed in the healthy esophagus and the normal-appearing ESCC-adjacent mucosa, allowing for distinguishment between these tissues with a sensitivity of 75.86% and a specificity of 78.95% (P = 0.0002). Finally, CHRNA5 expression was identified as an independent prognostic factor in ESCC; patients with high CHRNA5 expression showed an increased overall survival, in comparison with

  20. Influence of cigarette filter ventilation on smokers' mouth level exposure to tar and nicotine.

    Science.gov (United States)

    Caraway, John W; Ashley, Madeleine; Bowman, Sheri A; Chen, Peter; Errington, Graham; Prasad, Krishna; Nelson, Paul R; Shepperd, Christopher J; Fearon, Ian M

    2017-12-01

    Cigarette filter ventilation allows air to be drawn into the filter, diluting the cigarette smoke. Although machine smoking reveals that toxicant yields are reduced, it does not predict human yields. The objective of this study was to investigate the relationship between cigarette filter ventilation and mouth level exposure (MLE) to tar and nicotine in cigarette smokers. We collated and reviewed data from 11 studies across 9 countries, in studies performed between 2005 and 2013 which contained data on MLE from 156 products with filter ventilation between 0% and 87%. MLE among 7534 participants to tar and nicotine was estimated using the part-filter analysis method from spent filter tips. For each of the countries, MLE to tar and nicotine tended to decrease as filter ventilation increased. Across countries, per-cigarette MLE to tar and nicotine decreased as filter ventilation increased from 0% to 87%. Daily MLE to tar and nicotine also decreased across the range of increasing filter ventilation. These data suggest that on average smokers of highly ventilated cigarettes are exposed to lower amounts of nicotine and tar per cigarette and per day than smokers of cigarettes with lower levels of ventilation. Copyright © 2017 British American Tobacco. Published by Elsevier Inc. All rights reserved.

  1. R-Modafinil Attenuates Nicotine-Taking and Nicotine-Seeking Behavior in Alcohol-Preferring Rats

    Science.gov (United States)

    Wang, Xiao-Fei; Bi, Guo-Hua; He, Yi; Yang, Hong-Ju; Gao, Jun-Tao; Okunola-Bakare, Oluyomi M; Slack, Rachel D; Gardner, Eliot L; Xi, Zheng-Xiong; Newman, Amy Hauck

    2015-01-01

    (±)-Modafinil (MOD) is used clinically for the treatment of sleep disorders and has been investigated as a potential medication for the treatment of psychostimulant addiction. However, the therapeutic efficacy of (±)-MOD for addiction is inconclusive. Herein we used animal models of self-administration and in vivo microdialysis to study the pharmacological actions of R-modafinil (R-MOD) and S-modafinil (S-MOD) on nicotine-taking and nicotine-seeking behavior, and mechanisms underlying such actions. We found that R-MOD is more potent and effective than S-MOD in attenuating nicotine self-administration in Long–Evans rats. As Long–Evans rats did not show a robust reinstatement response to nicotine, we used alcohol-preferring rats (P-rats) that display much higher reinstatement responses to nicotine than Long–Evans rats. We found that R-MOD significantly inhibited intravenous nicotine self-administration, nicotine-induced reinstatement, and nicotine-associated cue-induced drug-seeking behavior in P-rats. R-MOD alone neither sustained self-administration in P-rats previously self-administering nicotine nor reinstated extinguished nicotine-seeking behavior. The in vivo brain microdialysis assays demonstrated that R-MOD alone produced a slow-onset moderate increase in extracellular DA. Pretreatment with R-MOD dose-dependently blocked nicotine-induced dopamine (DA) release in the nucleus accumbens (NAc) in both naive and nicotine self-administrating rats, suggesting a DA-dependent mechanism underlying mitigation of nicotine's effects. In conclusion, the present findings support further investigation of R-MOD for treatment of nicotine dependence in humans. PMID:25613829

  2. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    International Nuclear Information System (INIS)

    Zgoda-Pols, Joanna R.; Chowdhury, Swapan; Wirth, Mark; Milburn, Michael V.; Alexander, Danny C.; Alton, Kevin B.

    2011-01-01

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research highlights: → Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. → MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. → 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than

  3. Anticonvulsants Based on the α-Substituted Amide Group Pharmacophore Bind to and Inhibit Function of Neuronal Nicotinic Acetylcholine Receptors.

    Science.gov (United States)

    Krivoshein, Arcadius V

    2016-03-16

    Although the antiepileptic properties of α-substituted lactams, acetamides, and cyclic imides have been known for over 60 years, the mechanism by which they act remains unclear. I report here that these compounds bind to the nicotinic acetylcholine receptor (nAChR) and inhibit its function. Using transient kinetic measurements with functionally active, nondesensitized receptors, I have discovered that (i) α-substituted lactams and cyclic imides are noncompetitive inhibitors of heteromeric subtypes (such as α4β2 and α3β4) of neuronal nAChRs and (ii) the binding affinity of these compounds toward the nAChR correlates with their potency in preventing maximal electroshock (MES)-induced convulsions in mice. Based on the hypothesis that α-substituted amide group is the essential pharmacophore of these drugs, I found and tested a simple compound, 2-phenylbutyramide. This compound indeed inhibits nAChR and shows good anticonvulsant activity in mice. Molecular docking simulations suggest that α-substituted lactams, acetamides, and cyclic imides bind to the same sites on the extracellular domain of the receptor. These new findings indicate that inhibition of brain nAChRs may play an important role in the action of these antiepileptic drugs, a role that has not been previously recognized.

  4. Smoking, nicotine and psychiatric disorders: evidence for therapeutic role, controversies and implications for future research.

    Science.gov (United States)

    Dursun, S M; Kutcher, S

    1999-02-01

    Researchers interested in investigating the possible therapeutic effects and the mechanisms of action of nicotine in neuropsychiatric disorders face a social-scientific-ethical dilemma. This dilemma comprises three components: (1) the known addictive potential of nicotine makes careful evaluation of the therapeutic potential of this compound socially unattractive; (2) the potential misuse of scientifically determined data by the tobacco 'lobby' creates ethical concerns; and (3) the possible confusion between the differential effects of nicotine in human smokers versus non-smokers creates difficulties in study designs in voluntary human subjects. Therefore, it is imperative that, at the onset of this review, the authors stress that they do not advocate cigarette-smoking as a route of nicotine intake under any circumstances on the basis that controlled dosing of nicotine may be of potential benefit in some neuropsychiatric disorders. In this article, we review the psychopharmacology of nicotine and its effects in a variety of neuropsychiatric disorders including schizophrenia, depression, anxiety and Tourette's syndrome. Possible mechanisms of action of nicotine directly or indirectly via its interaction with other neurotransmitter systems (i.e. serotonin, dopamine and noradrenaline) in relation to its potential role in these disorders are discussed. It is postulated that new drugs may need to be developed that selectively interact with nicotinic receptors without addiction potential.

  5. The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Laura Tiberio

    Full Text Available Angiogenesis plays a crucial role in tumor growth and progression. Low expression of mineralocorticoid receptor (MR in several malignant tumors correlates with disease recurrence and overall survival. Previous studies have shown that MR expression is decreased in colorectal cancer (CRC. Here we hypothesize that decreased MR expression can contribute to angiogenesis and poor patient survival in colorectal malignancies. In a cohort of CRC patients, we analyzed tumor MR expression, its correlation with tumor microvascular density and its impact on survival. Subsequently, we interrogated the role of MR in angiogenesis in an in vitro model, based on the colon cancer cell line HCT116, ingenierized to re-express a physiologically controlled MR. In CRC, decreased MR expression was associated with increased microvascular density and poor patient survival. In pchMR transfected HCT116, aldosterone or natural serum steroids largely inhibited mRNA expression levels of both VEGFA and its receptor 2/KDR. In CRC, MR activation may significantly decrease angiogenesis by directly inhibiting dysregulated VEGFA and hypoxia-induced VEGFA mRNA expression. In addition, MR activation attenuates the expression of the VEGF receptor 2/KDR, possibly dampening the activation of a VEGFA/KDR dependent signaling pathway important for the survival of tumor cells under hypoxic conditions.

  6. Nicotine replacement therapy

    Science.gov (United States)

    Smoking cessation - nicotine replacement; Tobacco - nicotine replacement therapy ... Before you start using a nicotine replacement product, here are some things to know: The more cigarettes you smoke, the higher the dose you may need to ...

  7. Synthesis and evaluation of new imaging agent for central nicotinic acetylcholine receptor α7 subtype

    International Nuclear Information System (INIS)

    Ogawa, Mikako; Nishiyama, Shingo; Tsukada, Hideo; Hatano, Kentaro; Fuchigami, Takeshi; Yamaguchi, Hiroshi; Matsushima, Yoshitaka; Ito, Kengo; Magata, Yasuhiro

    2010-01-01

    Introduction: The nicotinic acetylcholine receptor (nAChR) α7 subtype (α 7 nAChR) is one of the major nAChR subtypes in the brain. We synthesized C-11 labeled α 7 nAChR ligands, (R)-2-[ 11 C]methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-3-yl ester ([ 11 C](R)-MeQAA) and its isomer (S)-[ 11 C]MeQAA, for in vivo investigation with positron emission tomography (PET). Then, the potential of (R)- and (S)-[ 11 C]MeQAA for in vivo imaging of α 7 nAChR in the brain was evaluated in mice and monkeys. Methods: The binding affinity for α 7 nAChR was measured using rat brain. Biodistribution and in vivo receptor blocking studies were undertaken in mice. Dynamic PET scans were performed in conscious monkeys. Results: The affinity for α 7 nAChR was 41 and 182 nM for (R)- and (S)-MeQAA, respectively. The initial uptake in the mouse brain was high ([ 11 C](R)-MeQAA: 7.68 and [ 11 C](S)-MeQAA: 6.65 %dose/g at 5 min). The clearance of [ 11 C](R)-MeQAA was slow in the hippocampus (α 7 nAChR-rich region) but was rapid in the cerebellum (α 7 nAChR-poor region). On the other hand, the clearance was fast for [ 11 C](S)-MeQAA in all regions. The brain uptake of [ 11 C](R)-MeQAA was decreased by methyllycaconitine (α 7 nAChR antagonist) treatment. In monkeys, α 7 nAChRs were highly distributed in the thalamus and cortex but poorly distributed in the cerebellum. The high accumulation was observed in the cortex and thalamus for [ 11 C](R)-MeQAA, while the uptake was rather homogeneous for [ 11 C](S)-MeQAA. Conclusions: [ 11 C](R)-MeQAA was successfully synthesized and showed high uptake to the brain. However, since the in vivo selectivity for α 7 nAChR was not enough, further PET kinetic analysis or structure optimization is needed for specific visualization of brain α 7 nAChRs in vivo.

  8. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  9. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Andrea eBecchetti

    2015-02-01

    Full Text Available Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE is a focal epilepsy with attacks typically arising in the frontal lobe during non rapid eye movement (NREM sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs. This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel, DEPD5 (Dishevelled, Egl-10 and Pleckstrin Domain-containing protein 5, and CRH (Corticotropin-Releasing Hormone. Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.

  10. Acute nicotine induced pressor response is in part due to interaction ...

    African Journals Online (AJOL)

    Arterial baro-reception is regarded as one of the most powerful rapidly acting homeostatic mechanism regulating blood pressure. Investigation had suggested that nicotine may interact with aortic baro-receptors to produce its sustained presser response, an effect that had received little attention. Anaesthetized Wister albino ...

  11. Methamphetamine and 3,4-methylenedioxymethamphetamine interact with central nicotinic receptors and induce their up-regulation

    International Nuclear Information System (INIS)

    Garcia-Rates, Sara; Camarasa, Jordi; Escubedo, Elena; Pubill, David

    2007-01-01

    Previous work from our group indicated that α7 nicotinic acetylcholine receptors (α7 nAChR) potentially play a role in methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA) neurotoxicity. The aims of the present study were two-fold: (1) to demonstrate the interaction of METH and MDMA with homomeric α7 nAChR ([ 3 H]methyllycaconitine binding) and other heteromeric subtypes ([ 3 H]epibatidine binding); and (2) to show the effects of amphetamine derivative pretreatment on the density of binding sites. METH and MDMA displaced [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding in membranes from NGF-differentiated PC 12 cells and mouse brain, with K i values in the micromolar range, MDMA revealing a greater affinity than METH. In addition, METH and MDMA induced a time- and concentration-dependent increase in [ 3 H]methyllycaconitine and [ 3 H]epibatidine binding; which had already been apparent after 6 h of pretreatment, and which peaked in differentiated PC 12 cells after 48 h. The highest increases were found in [ 3 H]epibatidine binding, with MDMA inducing higher increases than METH. Treatment with METH and MDMA increased B max of high-affinity sites for both radioligands without affecting K d . The heightened binding was inhibited by pretreatment with cycloheximide, suggesting the participation of newly synthesised proteins while inhibition of protein trafficking to plasma membrane did not block up-regulation. The effects of protein kinase and cyclophilin inhibitors on such up-regulation were explored, revealing a rapid, differential and complex regulation, similar to that described for nicotinic ligands. All of these results demonstrate that METH and MDMA have affinity for, and can interact with, nAChR, inducing their up-regulation, specially when higher doses are used. Such effects may have a role in METH- and MDMA-induced neurotoxicity, cholinergic neurotransmission, and in processes related to addiction and dependence

  12. Unpredictability of nectar nicotine promotes outcrossing by hummingbirds in Nicotiana attenuata.

    Science.gov (United States)

    Kessler, Danny; Bhattacharya, Samik; Diezel, Celia; Rothe, Eva; Gase, Klaus; Schöttner, Matthias; Baldwin, Ian T

    2012-08-01

    Many plants use sophisticated strategies to maximize their reproductive success via outcrossing. Nicotiana attenuata flowers produce nectar with nicotine at concentrations that are repellent to hummingbirds, increasing the number of flowers visited per plant. In choice tests using native hummingbirds, we show that these important pollinators learn to tolerate high-nicotine nectar but prefer low-nicotine nectar, and show no signs of nicotine addiction. Nectar nicotine concentrations, unlike those of other vegetative tissues, are unpredictably variable among flowers, not only among populations, but also within populations, and even among flowers within an inflorescence. To evaluate whether variations in nectar nicotine concentrations increase outcrossing, polymorphic microsatellite markers, optimized to evaluate paternity in native N. attenuata populations, were used to compare outcrossing in plants silenced for expression of a biosynthetic gene for nicotine production (Napmt1/2) and in control empty vector plants, which were antherectomized and transplanted into native populations. When only exposed to hummingbird pollinators, seeds produced by flowers with nicotine in their nectar had a greater number of genetically different sires, compared to seeds from nicotine-free flowers. As the variation in nectar nicotine levels among flowers in an inflorescence decreased in N. attenuata plants silenced in various combinations of three Dicer-like (DCL) proteins, small RNAs are probably involved in the unpredictable variation in nectar nicotine levels within a plant. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  13. Synthesis and in-vivo evaluation of C-11 p-PVP-MEMA as a PET radioligand for imaging nicotinic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Paine, T.; Kassiou, M. [Univ Sydney, Sch Chem, Sydney, NSW 2006 (Australia); Dolle, F.; Langle, S.; Roger, G.; Lagnel-de Bruin, B.; Hinnen, F.; Valette, H.; Bottlaender, M. [CEA, Serv Hosp Frederic Joliot, Inst Imagerie Biomed, F-91401 Orsay (France); Fulton, R.R.; Henderson, D.J. [Royal Prince Alfred Hosp, Dept PET and Nucl Med, Camperdown, NSW 2050 (Australia); Coster, M.J. [Griffith Univ, Eskitis Inst Cell and Mol Therapies, Nathan, Qld 4121 (Australia); Kassiou, M. [Univ Sydney, Discipline Med Radiat Sci, Sydney, NSW2006 (Australia); Brain and Mind Res Inst, Camperdown, NSW2050 (Australia)

    2008-07-01

    Within the class of (4-pyridinyl)vinyl-pyridines developed by Abbott laboratories as potent neuronal nicotinic acetylcholine receptor ligands, p-PVP-MEMA ({l_brace}oro-5-((E)-2-pyridin-4-yl-vinyl) pyridin-3-yloxy]-1-methylethyl{r_brace} is the lead compound of a novel series that do not display the traditional nicotinic-like pyrrole-ring but still possessing high sub-nanomolar affinity (K-i 0.077 nm-displacement of [H-3](-)cytisine from whole rat brain synaptic membranes). In the present study, p-PVP-MEMA and its nor-derivative ({l_brace}oro-5-((E)-2-pyridin-4- yl-vinyl) pyridin-3-yloxy]-1-methylethyl{r_brace} as precursor for labelling with the short-lived positron-emitter carbon-11 (T{sub 1/2} = 20.4 min) were synthesized in 10 chemical steps from 2-hydroxy-5-nitropyridine and Boc-D-alanine. N-Alkylation of nor-p-PVP-MEMA with [C-11] methyl iodide afforded [C-11]p-PVP-MEMA ({>=} 98% radiochemically pure, specific activity of 86.4 GBq {mu} mol{sup -1}) in 2% (non-decay corrected and non-optimized) radiochemical yield, in 34 min (including HPLC purification and formulation). Preliminary positron emission tomography PET) results obtained in a Papio hamadryas baboon showed that [C-11] p-PVP-MEMA is not a suitable PET-radioligand. (authors)

  14. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Science.gov (United States)

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  15. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 (PLA2s are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which

  16. Nicotine enhances an auditory Event-Related Potential component which is inversely related to habituation.

    Science.gov (United States)

    Veltri, Theresa; Taroyan, Naira; Overton, Paul G

    2017-07-01

    Nicotine is a psychoactive substance that is commonly consumed in the context of music. However, the reason why music and nicotine are co-consumed is uncertain. One possibility is that nicotine affects cognitive processes relevant to aspects of music appreciation in a beneficial way. Here we investigated this possibility using Event-Related Potentials. Participants underwent a simple decision-making task (to maintain attentional focus), responses to which were signalled by auditory stimuli. Unlike previous research looking at the effects of nicotine on auditory processing, we used complex tones that varied in pitch, a fundamental element of music. In addition, unlike most other studies, we tested non-smoking subjects to avoid withdrawal-related complications. We found that nicotine (4.0 mg, administered as gum) increased P2 amplitude in the frontal region. Since a decrease in P2 amplitude and latency is related to habituation processes, and an enhanced ability to disengage from irrelevant stimuli, our findings suggest that nicotine may cause a reduction in habituation, resulting in non-smokers being less able to adapt to repeated stimuli. A corollary of that decrease in adaptation may be that nicotine extends the temporal window during which a listener is able and willing to engage with a piece of music.

  17. Oxytocin attenuates aversive response to nicotine and anxiety-like behavior in adolescent rats.

    Science.gov (United States)

    Lee, Hyunchan; Jang, Minji; Noh, Jihyun

    2017-02-01

    Initial tobacco use is initiated with rewarding and aversive properties of nicotine and aversive response to nicotine plays a critical role in nicotine dependency. Decrease of nicotine aversion increases the nicotine use that causes behavioral and neuronal changes of animals. Oxytocin influences drug abuse and reciprocally affect vulnerability to drug use. To assess the effect of oxytocin on initial nicotine aversion and anxiety, we examined voluntary oral nicotine intake and anxiety-like behavior following oxytocin treatment in adolescent rats. Sprague-Dawley male rats (4 weeks old) were used. For oxytocin administration, rats were injected subcutaneously with saline or oxytocin (0.01, 0.1 and 1mg/kg) according to the assigned groups. Voluntary oral nicotine consumption test was performed by two bottle free-choice paradigm. To examine anxiety-like behavior in rats, we performed a light/dark box test. Oxytocin not only significantly increased the nicotine intake but also alleviated nicotine aversion after acclimation to nicotine solution in a concentration dependent manner. Meanwhile, oxytocin significantly reduced anxiety-like behavior. We suggest that oxytocin itself mitigates aversive response toward initial nicotine intake and anxiety-like behavior. These results widen the psychophysiological perspective on oxytocin for better understanding of nicotine addiction related behaviors influenced by diverse social factors. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  18. Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling α7-type neuronal nicotinic acetylcholine receptors

    International Nuclear Information System (INIS)

    Davies, A.R.L.; Wolstenholme, A.J.; Wonnacott, S.; Hardick, D.J.; Blagbrough, I.S.; Potter, B.V.L.

    1999-01-01

    Methyllycaconitine (MLA), a norditerpenoid alkaloid isolated from Delphinium seeds, is one of the most potent non-proteinacious ligands that is selective for αbungarotoxin-sensitive neuronal nicotinic acetylcholine receptors (nAChR). [ 3 H]MLA bound to rat brain membranes with high affinity (K d =1.86±0.31 nM) with a good ratio of specific to non-specific binding. The binding of [ 3 H]MLA was characterised by rapid association (t 1/2 =2.3 min) and dissociation (t 1/2 =12.6 min) kinetics. The radioligand binding displayed nicotinic pharmacology, consistent with an interaction with αbungarotoxin-sensitive nAChR. The snake α-toxins, αbungarotoxin and αcobratoxin, displaced [ 3 H]MLA with high affinity (K i =1.8±0.5 and 5.5±0.9 nM, respectively), whereas nicotine was less potent (K i =6.1±1.1 μM). The distribution of [ 3 H]MLA binding sites in crudely dissected rat brain regions was identical to that of [ 125 I]αbungarotoxin binding sites, with a high binding site density in hippocampus and hypothalamus, but low density in striatum and cerebellum. [ 3 H]MLA also labelled a sub-population of binding sites which are not sensitive to the snake αtoxins, but which did not differ significantly from the major population with respect to their other pharmacological properties or regional distribution. [ 3 H]MLA, therefore, is a novel radiolabel for characterising α7-type nAChR. A good signal to noise ratio and rapid binding kinetics provide advantages over the use of radiolabelled αbungarotoxin for rapid and accurate equilibrium binding assays. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Gut-Sourced Vasoactive Intestinal Polypeptide Induced by the Activation of α7 Nicotinic Acetylcholine Receptor Substantially Contributes to the Anti-inflammatory Effect of Sinomenine in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    MengFan Yue

    2018-06-01

    Full Text Available Sinomenine has long been used for the treatment of rheumatoid arthritis in China. However, its anti-inflammatory mechanism is still debatable because the in vitro minimal effective concentration (≥250 μM is hardly reached in either synovium or serum after oral administration at a therapeutic dose. Recent findings suggest that the α7 nicotinic acetylcholine receptor (α7nAChR might mediate the inhibitory effect of sinomenine on macrophage activation, which attracts us to explore the anti-arthritis mechanism of sinomenine by taking neuroendocrine-inflammation axis into consideration. Here, we showed that orally administered sinomenine ameliorated the systemic inflammation of collagen-induced arthritis (CIA rats, which was significantly diminished by either vagotomy or the antagonists of nicotinic acetylcholine receptors (especially the antagonist of α7nAChR, but not by the antagonists of muscarinic receptor. Sinomenine might bind to α7nAChR through interacting with the residues Tyr184 and Tyr191 in the pocket. In addition, the generation of vasoactive intestinal polypeptide (VIP from the gut of CIA rats and cultured neuron-like cells was selectively enhanced by sinomenine through the activation of α7nAChR-PI3K/Akt/mTOR pathway. The elevated levels of VIP in the serum and small intestine of rats were negatively correlated with the scores of joint destruction. The crucial role of VIP in the anti-arthritic effect of sinomenine was confirmed by using VIP hybrid, a non-specific antagonist of VIP receptor. Taken together, intestine-sourced VIP mediates the anti-arthritic effect of sinomenine, which is generated by the activation of α7nAChR.

  20. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats.

    Science.gov (United States)

    Briggs, Scott A; Hall, Brandon J; Wells, Corinne; Slade, Susan; Jaskowski, Paul; Morrison, Margaret; Rezvani, Amir H; Rose, Jed E; Levin, Edward D

    2016-03-01

    Combining effective treatments with diverse mechanisms of action for smoking cessation may provide better therapy by targeting multiple points of control in the neural circuits underlying addiction. Previous research in a rat model has shown that dextromethorphan, which has α3β4 nicotinic and NMDA glutamatergic antagonist actions, significantly decreases nicotine self-administration. We have found in the rat model that the H1 histamine antagonist pyrilamine and the serotonin 5HT2C agonist lorcaserin also significantly reduce nicotine self-administration. The current studies were conducted to determine the interactive effects of dextromethorphan with pyrilamine and lorcaserin on nicotine self-administration in rats. Young adult female rats were fitted with jugular IV catheters and trained to self-administer a nicotine infusion dose of 0.03-mg/kg/infusion. In an initial dose-effect function study of dextromethorphan, we found a monotonic decrease in nicotine self-administration over a dose range of 1 to 30-mg/kg with the lowest effective dose of 3-mg/kg. Then, with two separate cohorts of rats, dextromethorphan (0, 3.3, and 10-mg/kg) interactions with pyrilamine (0, 4.43, and 13.3-mg/kg) were investigated as well as interactions with lorcaserin (0, 0.3125 and 0.625-mg/kg). In the pyrilamine-dextromethorphan interaction study, an acute dose of pyrilamine (13.3-mg/kg) as well as an acute dose of dextromethorphan caused a significant decrease in nicotine self-administration. There were mutually augmenting effects of these two drugs. The combination of dextromethorphan (10-mg/kg) and pyrilamine (13.3-mg/kg) significantly lowered nicotine self-administration relative to either 10-mg/kg of dextromethorphan alone (pdextromethorphan study, an acute dose of lorcaserin (0.312-mg/kg) as well as an acute dose of dextromethorphan (10-mg/kg) caused a significant decrease in nicotine self-administration replicating previous findings. Augmenting interactions were observed with