WorldWideScience

Sample records for receptor positron emission

  1. Imaging opiate receptors with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Wong, D.F.; Links, J.M.; Burns, H.D.; Kuhar, M.J.; Snyder, S.H.; Wagner, H.N. Jr.

    1984-01-01

    Opiate receptors exist in the mammalian brain and are thought to meditate the diverse pharmacological actions of the opiates, such as analgesia, euphoria, and sedation. The 4-carbomethoxyl derivatives of fentanyl, such as lofentanil and R31833 (4-carbomethoxyfentanyl) bind to the opiate receptor with high affinity. C-11 R31833 was synthesized by reacting C-11 methyl iodide with the appropriate carboxylate. Male ICR mice were injected intravenously with C-11 R31833 (5..mu..g/kg), killed 30 minutes later, and the brains rapidly dissected. The thalami, striata, and cerebral cortex are rich in opiate receptors, but the cerebellum contains a very low concentration of opiate receptors. The thalamus/cerebellum and striatum/cerebellum activity ratios, calculated per mg of wet tissue, were 4.1 and 5.2 respectively. Coinjection of 5mg/kg naloxone reduced the ratios to 1.1, which indicates that the preferential localization of C-11 R31833 in the thalami and striata is due to binding to opiate is due to binding to opiate receptors. A 22 kg anesthetized male baboon was imaged using the NeuroECAT after injection of 18.9 mCi of C-11 R13833 (0.50 ..mu..g/kg, specific activity 616 Ci/mmole at time of injection). From 15-70 minutes after injection preferential accumulation of activity could be seen in the thalami, caudate nuclei, and cerebral cortex and, conversely, low activity was demonstrated in the cerebellum. At one hour postinjection the maximum measured caudate/cerebellum activity ratio per pixel was 2.9. For the NeuroECAT the recovery coefficient for the baboon caudate is ca. 0.2-0.3, and therefore the actual caudate/cerebellum ratio is ca. 10-15.

  2. Positron Emission Tomography (PET) Imaging of Opioid Receptors

    NARCIS (Netherlands)

    van Waarde, Aren; Absalom, Anthony; Visser, Anniek; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; De Vries, Erik FJ; Van Waarde, Aren; Luiten, Paul GM

    2014-01-01

    The opioid system consists of opioid receptors (which mediate the actions of opium), their endogenous ligands (the enkephalins, endorphins, endomorphins, dynorphin, and nociceptin), and the proteins involved in opioid production, transport, and degradation. PET tracers for the various opioid

  3. Positron Emission Tomography (PET Quantification of GABAA Receptors in the Brain of Fragile X Patients.

    Directory of Open Access Journals (Sweden)

    Charlotte D'Hulst

    Full Text Available Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS, a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome.

  4. Positron Emission Tomography (PET) Quantification of GABAA Receptors in the Brain of Fragile X Patients

    Science.gov (United States)

    Van der Aa, Nathalie; Goffin, Karolien; Koole, Michel; Porke, Kathleen; Van De Velde, Marc; Rooms, Liesbeth; Van Paesschen, Wim; Van Esch, Hilde; Van Laere, Koen; Kooy, R. Frank

    2015-01-01

    Over the last several years, evidence has accumulated that the GABAA receptor is compromised in animal models for fragile X syndrome (FXS), a common hereditary form of intellectual disability. In mouse and fly models, agonists of the GABAA receptor were able to rescue specific consequences of the fragile X mutation. Here, we imaged and quantified GABAA receptors in vivo in brain of fragile X patients using Positron Emission Topography (PET) and [11C]flumazenil, a known high-affinity and specific ligand for the benzodiazepine site of GABAA receptors. We measured regional GABAA receptor availability in 10 fragile X patients and 10 control subjects. We found a significant reduction of on average 10% in GABAA receptor binding potential throughout the brain in fragile X patients. In the thalamus, the brain region showing the largest difference, the GABAA receptor availability was even reduced with 17%. This is one of the first reports of a PET study of human fragile X brain and directly demonstrates that the GABAA receptor availability is reduced in fragile X patients. The study reinforces previous hypotheses that the GABAA receptor is a potential target for rational pharmacological treatment of fragile X syndrome. PMID:26222316

  5. Facile synthesis of ( sup 11 C)buprenorphine for positron emission tomographic studies of opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lever, J.R.; Dannals, R.F.; Wagner, H.N. Jr. (Johns Hopkins Univ., Baltimore, MD (USA). School of Hygiene and Public Health Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Radiology); Mazza, S.M. (Johns Hopkins Univ., Baltimore, MD (USA). School of Hygiene and Public Health); Ravert, H.T.; Wilson, A.A. (Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Radiology)

    1990-01-01

    We have developed a simple and rapid method for the production of buprenorphine (BPN), a potent opioid partial agonist, labelled with carbon-11 at the 6-methoxy position. The procedure uses a precursor synthesized in high yield (89%) from BPN in two steps and employs ({sup 11}C)iodomethane as the radiolabelling reagent. ({sup 11}C)BPN of 97% radiochemical purity can be prepared in high specific activity (41 GBq/{mu}mol; 1120 mCi/{mu}mol) in a radiochemical yield of 10% at end-of-synthesis (not decay corrected). The ({sup 11}C)BPN is available for use in studies of cerebral opioid receptors by positron emission tomography within 24 min from end-of-bombardment, including radiosynthesis, purification, formulation for i.v. injection and determination of specific activity. (author).

  6. A fluorine-18 labeled progestin as an imaging agent for progestin receptor positive tumors with positron emission tomography

    NARCIS (Netherlands)

    Verhagen, Aalt; Elsinga, Philippus; DEGROOT, TJ; Paans, Anne; DEGOEIJ, CCJ; SLUYSER, M; Vaalburg, Willem

    The potential of the fluorine-18 labeled progestin 21-[F-18]fluoro-16-alpha-ethyl-19-norpregn-4-ene-3,20-dione ([F-18]FENP) as an imaging agent for the in vivo assessment of progestin receptor (PR) positive neoplasms with positron emission tomography has been investigated. Tissue distribution

  7. Noninvasive quantification of muscarinic receptors in vivo with positron emission tomography in the dog heart

    Energy Technology Data Exchange (ETDEWEB)

    Delforge, J.; Janier, M.; Syrota, A.; Crouzel, C.; Vallois, J.M.; Cayla, J.; Lancon, J.P.; Mazoyer, B.M. (Commission a l' Energie Atomique, Orsay (France))

    1990-10-01

    The in vivo quantification of myocardial muscarinic receptors has been obtained in six closed-chest dogs by using positron emission tomography. The dogs were injected with a trace amount of 11C-labeled methylquinuclidinyl benzilate (MQNB), a nonmetabolized antagonist of the muscarinic receptor. This was followed 30 minutes later by an injection of an excess of unlabeled MQNB (displacement experiment). Two additional injections of unlabeled MQNB with (11C)MQNB and without (11C)MQNB (second displacement experiment) were administered after 70 and 120 minutes, respectively. This protocol allowed a separate evaluation of the quantity of available receptors (B'max) as well as the association and dissociation rate constants (k+1 and k-1) in each dog. The parameters were calculated by using a nonlinear mathematical model in regions of interest over the left ventricle and the interventricular septum. The average value of B'max was 42 +/- 11 pmol/ml tissue, the rate constants k+1, k-1, and Kd were 0.6 +/- 0.1 ml.pmol-1.min-1, 0.27 +/- 0.03 ml.pmol-1.min-1, and 0.49 +/- 0.14 pmol.ml-1, respectively, taking into account the MQNB reaction volume estimated to 0.15 ml/ml tissue. Although (11C)MQNB binding would appear irreversible, our findings indicate that the association of the antagonist is very rapid and that the dissociation is far from negligible. The dissociated ligand, however, has a high probability of rebinding to a free receptor site instead of escaping into the microcirculation. We deduce that the positron emission tomographic images obtained after injecting a trace amount of (11C)MQNB are more representative of blood flow than of receptor density or affinity. We also suggest a simplified protocol consisting of a tracer injection of (11C)MQNB and a second injection of an excess of cold MQNB, which is sufficient to measure B'max and Kd in humans.

  8. Dopamine D1 receptor availability is related to social behavior: a positron emission tomography study.

    Science.gov (United States)

    Plavén-Sigray, Pontus; Gustavsson, Petter; Farde, Lars; Borg, Jacqueline; Stenkrona, Per; Nyberg, Lars; Bäckman, Lars; Cervenka, Simon

    2014-11-15

    Dysfunctional interpersonal behavior is thought to underlie a wide spectrum of psychiatric disorders; however, the neurobiological underpinnings of these behavioral disturbances are poorly understood. Previous molecular imaging studies have shown associations between striatal dopamine (DA) D2-receptor binding and interpersonal traits, such as social conformity. The objective of this study was to explore, for the first time, the role of DA D1-receptors (D1-Rs) in human interpersonal behavior. Twenty-three healthy subjects were examined using positron emission tomography and the radioligand [(11)C]SCH23390, yielding D1-R binding potential values. Striatal D1-R binding was related to personality scales selected to specifically assess one dimension of interpersonal behavior, namely a combination of affiliation and dominance (i.e., the Social Desirability, Verbal Trait Aggression and Physical Trait Aggression scales from Swedish Universities Scales of Personality). An exploratory analysis was also performed for extrastriatal brain regions. D1-R binding potential values in the limbic striatum (r = .52; p = .015), associative striatum (r = .55; p = .009), and sensorimotor striatum (r = .67; p = .001) were positively related to Social Desirability scores. D1-R binding potential in the limbic striatum (r = -.51; p = .019) was negatively associated with Physical Trait Aggression scores. For extrastriatal regions, Social Desirability scores showed positive correlations in the amygdala (r = .60; p = .006) and medial frontal cortex (r = .60; p = .004). This study provides further support for the role of DA function in the expression of disaffiliative and dominant traits. Specifically, D1-R availability may serve as a marker for interpersonal behavior in humans. Associations were demonstrated for the same dimension of interpersonal behavior as for D2-R, but in the opposite direction, suggesting that the two receptor subtypes are involved in the same behavioral processes, but

  9. Positron emission tomography

    CERN Document Server

    Paans, A M J

    2006-01-01

    Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology.

  10. Positron Emission Tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  11. In-vivo detection of the erythropoietin receptor in tumours using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Fuge, Felix; Doleschel, Dennis; Rix, Anne; Gremse, Felix; Lederle, Wiltrud; Kiessling, Fabian [RWTH Aachen University, Department for Experimental Molecular Imaging (ExMI), Medical Faculty, Aachen (Germany); Wessner, Axel [Roche Diagnostics GmbH, R and D RPD Protein Chemistry, Penzberg (Germany); Winz, Oliver; Mottaghy, Felix [University Clinic RWTH Aachen, Clinic for Nuclear Medicine, Aachen (Germany)

    2014-09-09

    Recombinant human erythropoietin (rhuEpo) is used clinically to treat anaemia. However, rhuEpo-treated cancer patients show decreased survival rates and erythropoietin receptor (EpoR) expression has been found in patient tumour tissue. Thus, rhuEpo application might promote EpoR{sup +} tumour progression. We therefore developed the positron emission tomography (PET)-probe {sup 68}Ga-DOTA-rhuEpo and evaluated its performance in EpoR{sup +} A549 non-small-cell lung cancer (NSCLC) xenografts. {sup 68}Ga-DOTA-rhuEpo was generated by coupling DOTA-hydrazide to carbohydrate side-chains of rhuEpo. Biodistribution was determined in tumour-bearing mice 0.5, 3, 6, and 9 h after probe injection. Competition experiments were performed by co-injecting {sup 68}Ga-DOTA-rhuEpo and rhuEpo in five-fold excess. Probe specificity was further evaluated histologically using Epo-Cy5.5 stainings. The blood half-life of {sup 68}Ga-DOTA-rhuEpo was 2.6 h and the unbound fraction was cleared by the liver and kidney. After 6 h, the highest tumour to muscle ratio was reached. The highest {sup 68}Ga-DOTA-rhuEpo accumulation was found in liver (10.06 ± 6.26%ID/ml), followed by bone marrow (1.87 ± 0.53%ID/ml), kidney (1.58 ± 0.39 %ID/ml), and tumour (0.99 ± 0.16%ID/ml). EpoR presence in these organs was histologically confirmed. Competition experiments showed significantly (p < 0.05) lower PET-signals in tumour and bone marrow at 3 and 6 h. {sup 68}Ga-DOTA-rhuEpo shows favourable pharmacokinetic properties and detects EpoR specifically. Therefore, it might become a valuable radiotracer to monitor EpoR status in tumours and support decision-making in anaemia therapy. (orig.)

  12. Positron emission mammography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  13. Development of radiotracers for imaging NR2B subtype NMDA receptors with positron emission tomography; Developpement de radiotraceurs pour la visualisation des recepteurs NMDA de sous-type NR2B par tomographie par emission de positons

    Energy Technology Data Exchange (ETDEWEB)

    Labas, R

    2007-07-01

    The aim of this thesis was to develop new radioactive tracers for imaging NR2B subtype NMDA receptors with positron emission tomography. Several compounds including 4-(4-fluoro-benzyl)piperidine and presenting interesting in vivo biological properties were the object of a labelling with a positrons emitter atom ({sup 11}C or {sup 18}F)

  14. Stereoselective synthesis and biodistribution of potent [11C]-labeled antagonists for positron emission tomography imaging of muscarinic receptors in the airways.

    NARCIS (Netherlands)

    Visser, T.J; van Waarde, Aaren; Jansen, T.J H; Visser, G.M; van der Mark, T.W; Kraan, J; Ensing, K; Vaalburg, W.

    1997-01-01

    Quantitation of muscarinic receptors in the lungs in vivo with positron emission tomography (PET) is of clinical interest. For that purpose we decided to develop [C-11]-labeled ligands with a high affinity (K-D <0.1 nM). Three quaternary muscarinic antagonists, racemic N-methylpiperidin-4-yl

  15. Synthesis and evaluation of fluorinated derivatives of fentanyl as candidates for opiate receptor studies using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dahren Hwang; Feliu, A.L.; Wolf, A.P.; MacGregor, R.R.; Fowler, J.S.; Arnett, C.D.

    1986-03-01

    Three fluorinated derivatives of fentanyl, fluorofentanyl (3), keto-fluorofentanyl (5), and fluorofentanol (6), were synthesized and their abilities to compete with /sup 3/diprenorphine for binding sites in guinea pig brain membranes were determined. The relative potencies were fentanyl > 3 approx.= 6 >> 5. On the basis of its apparent affinity for opiate receptors and its relative ease of synthesis, 6 was selected for further study. Fentanyl was slightly better than 6 in its ability to compete with (/sup 3/H)naltrexone for binding sites in rat brain membranes. Both fentayl and 6 exhibited a similar high ''sodium ratio'' (quotient of the IC/sub 50/'s against (/sup 3/H)naltrexone in the presence and absence of sodium chloride) generally characteristic of opiate agonists. The analgesic potencies of fentanyl and 6 were determined in rats by measuring suppression of locomotion and vocalization responses to footshock. 6 appeared slightly less potent than fentanyl, but produced a similar analgesia and catalepsy which was entirely blocked by pretreatment of rats with naloxone, an opiate antagonist. A rapid synthesis of (/sup 18/F)-6 was developed and the tissue distribution of (/sup 18/F)-6 in mice was determined 5, 60, and 120 minutes after intravenous injection. The use of this general route to /sup 18/F-labeled derivatives of fentanyl for studies of the opiate receptor using positron emission tomography is planned.

  16. Cholinergic Receptor Binding in Alzheimer Disease and Healthy Aging: Assessment In Vivo with Positron Emission Tomography Imaging.

    Science.gov (United States)

    Sultzer, David L; Melrose, Rebecca J; Riskin-Jones, Hannah; Narvaez, Theresa A; Veliz, Joseph; Ando, Timothy K; Juarez, Kevin O; Harwood, Dylan G; Brody, Arthur L; Mandelkern, Mark A

    2017-04-01

    To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms. Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[ 18 F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used. 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p < 0.05, corrected cluster), but binding was not associated with cognition. The C group had significant inverse correlations between 2FA binding in the thalamus (left: r s  = -0.55, p = 0.008; right: r s  = -0.50, p = 0.02; N = 22) and hippocampus (left: r s  = -0.65, p = 0.001; right: r s  = -0.55, p = 0.009; N = 22) and the Trails A score. The AD group had inverse correlation between 2FA binding in anterior cingulate (left: r s  = -0.50, p = 0.01; right: r s  = -0.50, p = 0.01; N = 24) and Neurobehavioral Rating Scale agitation/disinhibition factor score. Cholinergic receptor binding is reduced in specific brain regions in mild to moderate AD and is related to neuropsychiatric symptoms. Among healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target. Published by Elsevier Inc.

  17. A New Positron Emission Tomography (PET) Radioligand for Imaging Sigma-1 Receptors in Living Subjects

    DEFF Research Database (Denmark)

    James, Michelle L; Shen, Bin; Zavaleta, Cristina L

    2012-01-01

    Sigma-1 receptor (S1R) radioligands have the potential to detect and monitor various neurological diseases. Herein we report the synthesis, radiofluorination and evaluation of a new S1R ligand 6-(3-fluoropropyl)-3-(2-(azepan-1-yl)ethyl)benzo[d]thiazol-2(3H)-one ([(18)F]FTC-146, [(18)F]13). [(18)F....... These results indicate that [(18)F]13 is a promising candidate radiotracer for further evaluation as a tool for studying S1Rs in living subjects....

  18. Imaging benzodiazepine receptors in man with C-11-suriclone and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Dannals, R.F.; Ravert, H.T.; Wilson, A.A.; Links, J.M.; Trifiletti, R.; Snyder, S.H.; Wagner, H.N. Jr.

    1985-05-01

    Suriclone is a potent cyclopyrrolone, anti-anxiety drug which binds to the benzodiazepine receptor complex (BZR) with high affinity. Suriclone binds to a site on the BZR distinct from the site where benzodiazepines bind. The K/sub D/ of suriclone at 37oC is 0.03 nM. C-11-suriclone (SUR) was synthesized by reacting C-CH3I with the appropriate amine precursor. SUR (1 ..mu..g/kg) was injected IV into a baboon alone or with 1 mg/kg of Ro-151788, a benzodiazepine antagonist, and serial PET scans of the brain were obtained. High radioactivity concentrations were observed in the cerebral cortex and cerebellum which contain high densities of BZR, intermediate concentrations in thalamus and low concentrations in the striatum. When Ro-151788 was given a uniform distribution of radioactivity was observed; the radioactivity was reduced to ca. 25% of control values in the brain which was contained within the PET slice. SUR (0.2 ..mu..g/kg) was next administered to a human subject. From 30-60 minutes after injection high radioactivity concentrations were observed in the cerebral cortex and cerebellum, intermediate concentrations in the thalamus and a low concentration in the caudate. Radioactivity in the cerebral cortex and cerebellum decreased slowly with time, implying that binding of SUR to a high affinity site had occurred. These results demonstrate utility of SUR for measuring binding to the benzodiazepine receptor complex non-invasively in man.

  19. Bilastine vs. hydroxyzine: occupation of brain histamine H1 -receptors evaluated by positron emission tomography in healthy volunteers.

    Science.gov (United States)

    Farré, Magí; Pérez-Mañá, Clara; Papaseit, Esther; Menoyo, Esther; Pérez, Marta; Martin, Soraya; Bullich, Santiago; Rojas, Santiago; Herance, José-Raúl; Trampal, Carlos; Labeaga, Luis; Valiente, Román

    2014-11-01

    A close correlation exists between positron emission tomography (PET)-determined histamine H1 -receptor occupancy (H1 RO) and the incidence of sedation. Antihistamines with H1 RO bilastine, a second generation antihistamine, with that of hydroxyzine. This randomized, double-blind, crossover study used PET imaging with [(11) C]-doxepin to evaluate H1 RO in 12 healthy males (mean age 26.2 years), after single oral administration of bilastine (20 mg), hydroxyzine (25 mg) or placebo. Binding potentials and H1 ROs were calculated in five cerebral cortex regions of interest: frontal, occipital, parietal, temporal, insula. Plasma bilastine concentrations, subjective sedation (visual analogue scale), objective psychomotor performance (digital symbol substitution test), physiological variables and safety (adverse events, AEs), were also evaluated. The mean binding potential of all five regions of interest (total binding potential) was significantly greater with bilastine than hydroxyzine (mean value 0.26 vs. 0.13, P bilastine and placebo. Overall H1 RO by bilastine was significantly lower than that by hydroxyzine (mean value -3.92% vs. 53.95%, P bilastine plasma concentrations and total binding potential values. No significant between-treatment differences were observed for sedation and psychomotor performance. Twenty-six non-serious AEs were reported. Sleepiness or sedation was not reported with bilastine but appeared in some subjects with hydroxyzine. A single oral dose of bilastine 20 mg had minimal H1 RO, was not associated with subjective sedation or objective impairment of psychomotor performance and was devoid of treatment-related sedative AEs, thus satisfying relevant subjective, objective and PET criteria as a non-sedating antihistamine. © 2014 The British Pharmacological Society.

  20. Positron emission tomography imaging of the glucagon-like peptide-1 receptor in healthy and streptozotocin-induced diabetic pigs

    Energy Technology Data Exchange (ETDEWEB)

    Nalin, Lovisa; Andreasson, Susanne; Wikstrand, Anna; Ryden, Anneli; Nyman, Goerel; Jensen-Waern, Marianne [Swedish University of Agricultural Sciences, Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Uppsala (Sweden); Selvaraju, Ram K.; Eriksson, Olof [Uppsala University, Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala (Sweden); Velikyan, Irina [Uppsala University, Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala (Sweden); Uppsala University, Department of Radiology, Oncology and Radiation Sciences, Uppsala (Sweden); Uppsala University Hospital, PET Centre, Centre for Medical Imaging, Uppsala (Sweden); Berglund, Marie [Uppsala University, Department of Medicinal Chemistry, Preclinical PET Platform, Uppsala (Sweden); Uppsala University, Department of Radiology, Oncology and Radiation Sciences, Uppsala (Sweden); Lubberink, Mark [Uppsala University, Department of Radiology, Oncology and Radiation Sciences, Uppsala (Sweden); Kandeel, Fouad [Beckman Research Institute of the City of Hope, Duarte, CA (United States); Korsgren, Olle [Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala (Sweden)

    2014-09-15

    The glucagon-like peptide-1 receptor (GLP-1R) has been proposed as a target for molecular imaging of beta cells. The feasibility of non-invasive imaging and quantification of GLP-1R in pancreas using the positron emission tomography (PET) tracer [{sup 68}Ga]Ga-DO3A-VS-Cys{sup 40}-Exendin-4 in non-diabetic and streptozotocin (STZ)-induced diabetic pigs treated with insulin was investigated. Non-diabetic (n = 4) and STZ-induced diabetic pigs (n = 3) from the same litter were examined. Development of diabetes was confirmed by blood glucose values, clinical examinations and insulin staining of pancreatic sections post mortem. Tissue perfusion in the pancreas and kidneys was evaluated by [{sup 15}O]water PET/computed tomography (CT) scans. The in vivo receptor specificity of [{sup 68}Ga]Ga-DO3A-VS-Cys{sup 40}-Exendin-4 was assessed by administration of either tracer alone or by competition with 3-6.5 μg/kg of Exendin-4. Volume of distribution and occupancy in the pancreas were quantified with a single tissue compartment model. [{sup 15}O]water PET/CT examinations showed reduced perfusion in the pancreas and kidneys in diabetic pigs. [{sup 68}Ga]Ga-DO3A-VS-Cys{sup 40}-Exendin-4 uptake in the pancreas of both non-diabetic and diabetic pigs was almost completely abolished by co-injection of unlabeled Exendin-4 peptide. [{sup 68}Ga]Ga-DO3A-VS-Cys{sup 40}-Exendin-4 uptake did not differ between non-diabetic and diabetic pigs. In all animals, administration of the tracer resulted in an immediate increase in the heart rate (HR). Pancreatic uptake of [{sup 68}Ga]Ga-DO3A-VS-Cys{sup 40}-Exendin-4 was not reduced by destruction of beta cells in STZ-induced diabetic pigs. (orig.)

  1. Positron Emission Tomography Quantification of Serotonin1A Receptor Binding in Suicide Attempters With Major Depressive Disorder

    Science.gov (United States)

    Sullivan, Gregory M.; Oquendo, Maria A.; Milak, Matthew; Miller, Jeffrey M.; Burke, Ainsley; Ogden, R. Todd; Parsey, Ramin V.; Mann, J. John

    2015-01-01

    IMPORTANCE Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin1A autoreceptor in the brainstem raphe of individuals who die by suicide. OBJECTIVES To determine the relationships between brain serotonin1A binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin1A antagonist radiotracer carbon C 11 [11C]–labeled WAY-100635. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin1A binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. MAIN OUTCOMES AND MEASURES The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. RESULTS Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin1A BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin1A BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin1A BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in

  2. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Sullivan, Gregory M; Oquendo, Maria A; Milak, Matthew; Miller, Jeffrey M; Burke, Ainsley; Ogden, R Todd; Parsey, Ramin V; Mann, J John

    2015-02-01

    Serotonergic system dysfunction has been associated with increased lethal suicide attempts and suicide. Dysfunction includes higher binding of serotonin(1A) autoreceptor in the brainstem raphe of individuals who die by suicide. To determine the relationships between brain serotonin(1A) binding and suicidal behavior in vivo in major depressive disorder (MDD) using positron emission tomography and the serotonin(1A) antagonist radiotracer carbon C 11 [11C]-labeled WAY-100635. Cross-sectional positron emission tomography study at an academic medical center from 1999 through 2009. We compared serotonin(1A) binding between individuals with MDD who did not attempt suicide (nonattempters) (n = 62) and those who attempted suicide (attempters) (n = 29). We subdivided the attempters into those with lower (n = 16) and higher (n = 13) levels of lethality. The binding potential (BPF) of [11C]WAY-100635 (calculated as the number of receptors available divided by affinity) in the prefrontal cortex (PFC) and brainstem, estimated by kinetic modeling with an arterial input function; the severity of suicidal behaviors, including lethality and intent of suicide attempts; and suicidal ideation. Using a linear mixed-effects model, we found no difference between attempters and nonattempters with MDD in serotonin(1A) BPF in the PFC regions (F1,88 = 0.03; P = .87) or in the raphe nuclei (F1,88 = 0.29; P = .59). Raphe nuclei serotonin(1A) BPF was 45.1% greater in higher-lethality attempters compared with lower-lethality attempters (F1,25 = 7.33; P = .01), whereas no difference was observed in the PFC regions (F1,25 = 0.12; P = .73). Serotonin(1A )BPF in the raphe nuclei of suicide attempters was positively correlated with the lethality rating (F1,25 = 10.56; P = .003) and the subjective lethal intent factor (F1,25 = 10.63; P = .003; R2 = 0.32) based on the most recent suicide attempt. Suicide ideation in participants with

  3. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  4. ITI-007 demonstrates brain occupancy at serotonin 5-HT₂A and dopamine D₂ receptors and serotonin transporters using positron emission tomography in healthy volunteers.

    Science.gov (United States)

    Davis, Robert E; Vanover, Kimberly E; Zhou, Yun; Brašić, James R; Guevara, Maria; Bisuna, Blanca; Ye, Weiguo; Raymont, Vanessa; Willis, William; Kumar, Anil; Gapasin, Lorena; Goldwater, D Ronald; Mates, Sharon; Wong, Dean F

    2015-08-01

    Central modulation of serotonin and dopamine underlies efficacy for a variety of psychiatric therapeutics. ITI-007 is an investigational new drug in development for treatment of schizophrenia, mood disorders, and other neuropsychiatric disorders. The purpose of this study was to determine brain occupancy of ITI-007 at serotonin 5-HT2A receptors, dopamine D2 receptors, and serotonin transporters using positron emission tomography (PET) in 16 healthy volunteers. Carbon-11-MDL100907, carbon-11-raclopride, and carbon-11-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile) (carbon-11-DASB) were used as the radiotracers for imaging 5-HT2A receptors, D2 receptors, and serotonin transporters, respectively. Brain regions of interest were outlined using magnetic resonance tomography (MRT) with cerebellum as the reference region. Binding potentials were estimated by fitting a simplified reference tissue model to the measured tissue-time activity curves. Target occupancy was expressed as percent change in the binding potentials before and after ITI-007 administration. Oral ITI-007 (10-40 mg) was safe and well tolerated. ITI-007 rapidly entered the brain with long-lasting and dose-related occupancy. ITI-007 (10 mg) demonstrated high occupancy (>80 %) of cortical 5-HT2A receptors and low occupancy of striatal D2 receptors (~12 %). D2 receptor occupancy increased with dose and significantly correlated with plasma concentrations (r (2) = 0.68, p = 0.002). ITI-007 (40 mg) resulted in peak occupancy up to 39 % of striatal D2 receptors and 33 % of striatal serotonin transporters. The results provide evidence for a central mechanism of action via dopaminergic and serotonergic pathways for ITI-007 in living human brain and valuable information to aid dose selection for future clinical trials.

  5. Synthesis, radiolabeling and evaluation of novel amine guanidine derivatives as potential positron emission tomography tracers for the ion channel of the N-methyl-d-aspartate receptor.

    Science.gov (United States)

    Klein, Pieter J; Chomet, Marion; Metaxas, Athanasios; Christiaans, Johannes A M; Kooijman, Esther; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2016-08-08

    The N-Methyl-d-Aspartate receptor (NMDAR) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. The aim of this study was to develop a positron emission tomography (PET) ligand to assess the bio-availability of the NMDAR ion channel in vivo. A series of tri-N-substituted diarylguanidines was synthesized and their in vitro binding affinities for the NMDAR ion channel assessed in rat forebrain membrane fractions. Compounds 21, 23 and 26 were radiolabeled with either carbon-11 or fluorine-18 and ex vivo biodistribution and metabolite studies were performed in Wistar rats. Biodistribution studies showed high uptake especially in prefrontal cortex and lowest uptake in cerebellum. Pre-treatment with MK-801, however, did not decrease uptake of the radiolabeled ligands. In addition, all three ligands showed fast metabolism. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Heightened D3 dopamine receptor levels in cocaine dependence and contributions to the addiction behavioral phenotype: a positron emission tomography study with [11C]-+-PHNO.

    Science.gov (United States)

    Payer, Doris E; Behzadi, Arian; Kish, Stephen J; Houle, Sylvain; Wilson, Alan A; Rusjan, Pablo M; Tong, Junchao; Selby, Peter; George, Tony P; McCluskey, Tina; Boileau, Isabelle

    2014-01-01

    The dopamine system is a primary treatment target for cocaine dependence (CD), but research on dopaminergic abnormalities (eg, D2 receptor system deficiencies) has so far failed to translate into effective treatment strategies. The D3 receptor system has recently attracted considerable clinical interest, and D3 antagonism is now under investigation as a novel avenue for addiction treatment. The objective here was to evaluate the status and behavioral relevance of the D3 receptor system in CD, using the positron emission tomography (PET) radiotracer [(11)C]-(+)-PHNO. Fifteen CD subjects (many actively using, but all abstinent 7-240 days on scan day) and fifteen matched healthy control (HC) subjects completed two PET scans: one with [(11)C]-(+)-PHNO to assess D3 receptor binding (BPND; calculated regionally using the simplified reference tissue model), and for comparison, a second scan with [(11)C]raclopride to assess D2/3 binding. CD subjects also completed a behavioral battery to characterize the addiction behavioral phenotype. CD subjects showed higher [(11)C]-(+)-PHNO BPND than HC in the substantia nigra, which correlated with behavioral impulsiveness and risky decision making. In contrast, [(11)C]raclopride BPND was lower across the striatum in CD, consistent with previous literature in 2 week abstinence. The data suggest that in contrast to a D2 deficiency, CD individuals may have heightened D3 receptor levels, which could contribute to addiction-relevant traits. D3 upregulation is emerging as a biomarker in preclinical models of addiction, and human PET studies of this receptor system can help guide novel pharmacological strategies for treatment.

  7. Dopamine D1 receptor imaging in the rodent and primate brain using the isoquinoline (+)-[{sup 11}C]A-69024 and positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Besret, L.; Herard, A.S.; Guillermier, M.; Hantraye, P. [CNRS, URA 2210, F-91406 Orsay (France); Dolle, F.; Demphel, S.; Hinnen, F.; Coulon, C.; Ottaviani, M.; Bottlaender, M. [CEA, DSV, I2BM, SHFJ, Lab Imagerie Mol Expt, F-91406 Orsay (France); Herard, A.S.; Guillermier, M.; Hantraye, P. [CEA, DSV, I2BM, Mol Imaging Res Ctr, F-92265 Fontenay Aux Roses (France); Kassiou, M. [Univ Sydney, Discipline Med Radiat Sci, Sydney, NSW 2006 (Australia); Kassiou, M. [Univ Sydney, Brain and Mind Res Inst, Sydney, NSW 2050 (Australia); Kassiou, M. [Univ Sydney, Sch Chem, Sydney, NSW 2006 (Australia)

    2008-07-01

    In vivo pharmacokinetic and brain binding characteristics of (+)-[{sup 11}C]A-69024, a high-affinity-D1-selective dopamine receptor antagonist, were assessed with micro-PET and {beta}-microprobes in the rat and PET in the baboon. The biodistribution of (+)-[{sup 11}C]A-69024 in rats and baboons showed a rapid brain uptake (reaching a maximal value at 5 and 15 min postinjection in rats and baboons, respectively), followed by a slow wash out. The region/cerebellum concentration ratio was characterized by a fourfold higher uptake in striatum and a twofold higher uptake in cortical regions, consistent with in vivo specific binding of the radiotracer in these cerebral regions. Furthermore, this specific (+)-[{sup 11}C]A-69024 binding significantly correlated with the reported in vitro distribution of dopamine D1-receptors. Finally, the specific uptake of the tracer in the striatum and cortical regions was completely prevented by either a pretreatment with large doses of nonradioactive {+-}A-69024 or of the D1-selective antagonist SCH23390, resulting in a similar uptake in the reference region (cerebellum) and in other brain regions. Thus, (+)-[{sup 11}C]A-69024 appears to be a specific and enantioselective radioligand to visualize and quantify brain dopamine D1 receptors in vivo using positron emission tomography. (authors)

  8. Galactic annihilation emission from nucleosynthesis positrons

    OpenAIRE

    Martin, P.; Strong, A. W.; Jean, P.; Alexis, A.; Diehl, R.

    2012-01-01

    The Galaxy hosts a widespread population of low-energy positrons revealed by successive generations of gamma-ray telescopes through a bright annihilation emission from the bulge region, with a fainter contribution from the inner disk. The exact origin of these particles remains currently unknown. We estimate the contribution to the annihilation signal of positrons generated in the decay of radioactive 26Al, 56Ni and 44Ti. We adapted the GALPROP propagation code to simulate the transport and a...

  9. Striatal adenosine A{sub 2A} receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [{sup 18}F]-MRS5425

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Abesh Kumar; Lang Lixin; Jacobson, Orit [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Shinkre, Bidhan [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Ma Ying [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Niu Gang [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Department of Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Trenkle, William C. [Chemical Biology Unit, Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Jacobson, Kenneth A. [Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Chen Xiaoyuan [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States); Kiesewetter, Dale O., E-mail: dk7k@nih.gov [Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892 (United States)

    2011-08-15

    Introduction: A{sub 2A} receptors are expressed in the basal ganglia, specifically in striatopallidal GABAergic neurons in the striatum (caudate-putamen). This brain region undergoes degeneration of presynaptic dopamine projections and depletion of dopamine in Parkinson's disease. We developed an {sup 18}F-labeled A{sub 2A} analog radiotracer ([{sup 18}F]-MRS5425) for A{sub 2A} receptor imaging using positron emission tomography (PET). We hypothesized that this tracer could image A{sub 2A} receptor changes in the rat model for Parkinson's disease, which is created following unilateral injection of the monoaminergic toxin 6-hydroxydopamine (6-OHDA) into the substantia nigra. Methods: [{sup 18}F]-MRS5425 was injected intravenously in anesthetized rats, and PET imaging data were collected. Image-derived percentage injected doses per gram (%ID/g) in regions of interest was measured in the striatum of normal rats and in rats unilaterally lesioned with 6-OHDA after intravenous administration of saline (baseline), D{sub 2} agonist quinpirole (1.0 mg/kg) or D{sub 2} antagonist raclopride (6.0 mg/kg). Results: Baseline %ID/g reached a maximum at 90 s and maintained plateau for 3.5 min, and then declined slowly thereafter. In 6-OHDA-lesioned rats, %ID/g was significantly higher in the lesioned side compared to the intact side, and the baseline total %ID/g (data from both hemispheres were combined) was significantly higher compared to quinpirole stimulation starting from 4.5 min until the end of acquisition at 30 min. Raclopride did not produce any change in uptake compared to baseline or between the hemispheres. Conclusion: Thus, increase of A{sub 2A} receptor-mediated uptake of radioactive MRS5425 could be a superior molecular target for Parkinson's imaging.

  10. Regional distribution of the opioid receptor agonist N-(methyl- sup 11 C)pethidine in the brain of the rhesus monkey studied with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig, P. (Hospital Pharmacy, University Hospital, Uppsala (Sweden)); Eckernaes, S.Aa. (Departments of Neurology, University Hospital, Uppsala (Sweden)); Lindberg, B.S. (Department of Obstetrics and Gynaelogy, University Hospital, Uppsala (Sweden)); Lundqvist, H. (Centre for Radiation Sciences, University of Uppsala (Sweden)); Antoni, G.; Rimland, A.; Laangstroem, B. (Department of Organic Chemistry, University of Uppsala (Sweden))

    1990-01-01

    The regional distribution and kinetics in the brain of Rhesus monkeys of N-(methyl-{sup 11}C)-pethidine have been studied by positron emission tomography, PET. {sup 11}C-Pethidine reached the brain with peak radioactivities appearing within 6-10 min. after administration. Highest radioactivities were measured in areas corresponding to the thalamus, the striatal area and also the lowest transection of the temporal lobes, with an uptake of 2.7-3.1 times the homogenous dilution of the radioactive dose. Low radioactivities were seen in the cerebellum and the occipital lobes. This distribution corresponds to the regional density of opioid receptors using in vitro binding techniques. The {sup 11}C-pethidine derived radioactivity left the brain with an initial half-life of 40--60 minutes, followed by an elimination which paralleled the plasma elimination of unlabelled pethidine. After pretreatment of the monkey with a small dose of naloxone, the radioactivities decreased about 40% in areas corresponding to the thalamus, striatum and lowest section of the temporal lobes, indicating competition for the same binding sties. By the use of a three-compartment model, it was possible to get an estimate of {sup 11}C-pethidine receptor binding characteristics in the brain. The ratio of Kon/Koff, equal to Bmax.Kd, was 0.06-0.1. This indicates that pethidine is bound with low affinity to the opioid receptors and is a poor ligand for studies of opioid receptor function with PET. Brain kinetics of {sup 11}C-pethidine is mainly determined by its blood kinetics. (author).

  11. Lack of age-dependent decrease in dopamine D3 receptor availability: a [11C]-(+)-PHNO and [11C]-raclopride positron emission tomography study

    Science.gov (United States)

    Nakajima, Shinichiro; Caravaggio, Fernando; Boileau, Isabelle; Chung, Jun K; Plitman, Eric; Gerretsen, Philip; Wilson, Alan A; Houle, Sylvain; Mamo, David C; Graff-Guerrero, Ariel

    2015-01-01

    Positron emission tomography with antagonist radiotracers has showed that striatal dopamine D2/3 receptor (D2/3R) availability decreases with age. However, no study has specifically assessed whether D2/3R availability decreases with age in healthy persons as measured with agonist radiotracers. Moreover, it is unknown whether D3R availability changes with age in healthy humans. Thus, we explored the relationship between age and D2/3R availability in healthy humans using the D3 receptor (D3R)-preferential agonist radiotracer [11C]-(+)-PHNO (n=72, mean±s.d. age=40±15, range=18 to 73) and the antagonist [11C]-Raclopride (n=70, mean±s.d. age =40±14, range=18 to 73) (both, n=33). The contribution of D3R to the [11C]-(+)-PHNO signal varies across regions of interest; the substantia nigra and hypothalamus represent D3R-specific regions, the ventral pallidum, globus pallidus, and ventral striatum represent D2/3R-mixed regions, and the caudate and putamen represent D2 receptor (D2R)-specific regions. With [11C]-(+)-PHNO, a negative correlation was observed between age and nondisplaceable binding potential (BPND) in the caudate (r(70)=−0.32, P=0.005). No correlations were observed in the other regions. With [11C]-Raclopride, negative correlations were observed between age and BPND in the caudate (r(68)=−0.50, P<0.001), putamen (r(68)=−0.41, P<0.001), and ventral striatum (r(68)=−0.43, P<0.001). In conclusion, in contrast with the age-dependent decrease in D2R availability, these findings suggest that D3R availability does not change with age. PMID:26058690

  12. Lack of age-dependent decrease in dopamine D3 receptor availability: a [(11)C]-(+)-PHNO and [(11)C]-raclopride positron emission tomography study.

    Science.gov (United States)

    Nakajima, Shinichiro; Caravaggio, Fernando; Boileau, Isabelle; Chung, Jun K; Plitman, Eric; Gerretsen, Philip; Wilson, Alan A; Houle, Sylvain; Mamo, David C; Graff-Guerrero, Ariel

    2015-11-01

    Positron emission tomography with antagonist radiotracers has showed that striatal dopamine D2/3 receptor (D2/3R) availability decreases with age. However, no study has specifically assessed whether D2/3R availability decreases with age in healthy persons as measured with agonist radiotracers. Moreover, it is unknown whether D3R availability changes with age in healthy humans. Thus, we explored the relationship between age and D2/3R availability in healthy humans using the D3 receptor (D3R)-preferential agonist radiotracer [(11)C]-(+)-PHNO (n=72, mean±s.d. age=40±15, range=18 to 73) and the antagonist [(11)C]-Raclopride (n=70, mean±s.d. age =40±14, range=18 to 73) (both, n=33). The contribution of D3R to the [(11)C]-(+)-PHNO signal varies across regions of interest; the substantia nigra and hypothalamus represent D3R-specific regions, the ventral pallidum, globus pallidus, and ventral striatum represent D2/3R-mixed regions, and the caudate and putamen represent D2 receptor (D2R)-specific regions. With [(11)C]-(+)-PHNO, a negative correlation was observed between age and nondisplaceable binding potential (BPND) in the caudate (r(70)=-0.32, P=0.005). No correlations were observed in the other regions. With [(11)C]-Raclopride, negative correlations were observed between age and BPND in the caudate (r(68)=-0.50, P<0.001), putamen (r(68)=-0.41, P<0.001), and ventral striatum (r(68)=-0.43, P<0.001). In conclusion, in contrast with the age-dependent decrease in D2R availability, these findings suggest that D3R availability does not change with age.

  13. Advanced Instrumentation for Positron Emission Tomography [PET

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  14. Obesity and Brain Positron Emission Tomography.

    Science.gov (United States)

    Pak, Kyoungjune; Kim, Seong-Jang; Kim, In Joo

    2018-02-01

    Obesity, an increasingly common problem in modern societies, results from energy intake chronically exceeding energy expenditure. This imbalance of energy can be triggered by the internal state of the caloric equation (homeostasis) and non-homeostatic factors, such as social, cultural, psychological, environmental factors or food itself. Nowadays, positron emission tomography (PET) radiopharmaceuticals have been examined to understand the cerebral control of food intake in humans. Using 15O-H2 PET, changes in regional cerebral blood flow (rCBF) coupled to neuronal activity were reported in states of fasting, satiation after feeding, and sensory stimulation. In addition, rCBF in obese subjects showed a greater increase in insula, the primary gustatory cortex. 18F-fluorodeoxyglucose PET showed higher metabolic activity in postcentral gyrus of the parietal cortex and lower in prefrontal cortex and anterior cingulate cortex in obese subjects. In addition, dopamine receptor (DR) PET demonstrated lower DR availability in obese subjects, which might lead to overeating to compensate. Brain PET has been utilized to reveal the connectivity between obesity and brain. This could improve understanding of obesity and help develop a new treatment for obesity.

  15. Comparison of Cannabinoid CB1 Receptor Binding in Adolescent and Adult Rats: A Positron Emission Tomography Study Using [18F]MK-9470

    Directory of Open Access Journals (Sweden)

    Mathieu Verdurand

    2011-01-01

    Full Text Available Despite the important role of cannabinoid CB1 receptors (CB1R in brain development, little is known about their status during adolescence, a critical period for both the development of psychosis and for initiation to substance abuse. In the present study, we assessed the ontogeny of CB1R in adolescent and adult rats in vivo using positron emission tomography with [18F]MK-9470. Analysis of covariance (ANCOVA to control for body weight that would potentially influence [18F]MK-9470 values between the two groups revealed a main effect of age (F(1,109=5.0, P=0.02 on [18F]MK-9470 absolute binding (calculated as percentage of injected dose with adult estimated marginal means being higher compared to adolescents amongst 11 brain regions. This finding was confirmed using in vitro autoradiography with [3H]CP55,940 (F(10,99=140.1, P<0.0001. This ontogenetic pattern, suggesting increase of CB1R during the transition from adolescence to adulthood, is the opposite of most other neuroreceptor systems undergoing pruning during this period.

  16. Lack of association between dopaminergic antagonism and negative symptoms in schizophrenia: a positron emission tomography dopamine D2/3 receptor occupancy study.

    Science.gov (United States)

    Fervaha, Gagan; Caravaggio, Fernando; Mamo, David C; Mulsant, Benoit H; Pollock, Bruce G; Nakajima, Shinichiro; Gerretsen, Philip; Rajji, Tarek K; Mar, Wanna; Iwata, Yusuke; Plitman, Eric; Chung, Jun Ku; Remington, Gary; Graff-Guerrero, Ariel

    2016-10-01

    Several pre-clinical studies suggest that antipsychotic medications cause secondary negative symptoms. However, direct evidence for a relationship among antipsychotic medications, their direct effects on neurotransmitter systems, and negative symptoms in schizophrenia remains controversial. The objective of this study was to examine the relationship between antipsychotic-related dopamine D2/3 receptor occupancy and negative symptoms in patients with schizophrenia. Forty-one clinically stable outpatients with schizophrenia participated in this prospective dose reduction positron emission tomography (PET) study. Clinical assessments and [11C]-raclopride PET scans were performed before and after participants underwent gradual dose reduction of their antipsychotic medication by up to 40 % from the baseline dose. No significant relationship was found between antipsychotic-related dopamine D2/3 receptor occupancy and negative symptom severity at baseline or follow-up. Similar null findings were found for subdomains of negative symptoms (amotivation and diminished expression). Occupancy was significantly lower following dose reduction; however, negative symptom severity did not change significantly, though a trend toward reduction was noted. Examination of change scores between these two variables revealed no systematic relationship. Our cross-sectional and longitudinal results failed to find a significant dose-dependent relationship between severity of negative symptoms and antipsychotic-related dopaminergic antagonism in schizophrenia. These findings argue against the notion that antipsychotics necessarily cause secondary negative symptoms. Our results are also in contrast with the behavioral effects of dopaminergic antagonism routinely reported in pre-clinical investigations, suggesting that the role of this variable in the context of chronic treatment and schizophrenia needs to be re-examined.

  17. Decreased cerebral {alpha}4{beta}2* nicotinic acetylcholine receptor availability in patients with mild cognitive impairment and Alzheimer's disease assessed with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kendziorra, Kai; Meyer, Philipp Mael; Barthel, Henryk; Hesse, Swen; Becker, Georg Alexander; Luthardt, Julia; Schildan, Andreas; Patt, Marianne; Sorger, Dietlind; Seese, Anita; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Old Age Psychiatry and Psychiatry Research, Psychiatric University Hospital (PUK) Zurich, Zurich (Switzerland); Gertz, Herman-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany)

    2011-03-15

    Postmortem studies indicate a loss of nicotinic acetylcholine receptor (nAChRs) in Alzheimer's disease (AD). In order to establish whether these changes in the cholinergic system occur at an early stage of AD, we carried out positron emission tomography (PET) with a specific radioligand for the {alpha}4{beta}2* nicotinic acetylcholine receptor ({alpha}4{beta}2* nAChR) in patients with mild to moderate AD and in patients with amnestic mild cognitive impairment (MCI), who have a high risk to progress to AD. Nine patients with moderate AD, eight patients with MCI and seven age-matched healthy controls underwent 2-[{sup 18}F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[{sup 18}F]FA-85380) PET. After coregistration with individual magnetic resonance imaging the binding potential (BP{sub ND}) of 2-[{sup 18}F]FA-85380 was calculated using either the corpus callosum or the cerebellum as reference regions. PET data were analysed by region of interest analysis and by voxel-based analysis. Both patients with AD and MCI showed a significant reduction in 2-[{sup 18}F]FA-85380 BP{sub ND} in typical AD-affected brain regions. Thereby, the corpus callosum was identified as the most suitable reference region. The 2-[{sup 18}F]FA-85380 BP{sub ND} correlated with the severity of cognitive impairment. Only MCI patients that converted to AD in the later course (n = 5) had a reduction in 2-[{sup 18}F]FA-85380 BP{sub ND}. 2-[{sup 18}F]FA-85380 PET appears to be a sensitive and feasible tool for the detection of a reduction in {alpha}4{beta}2* nAChRs which seems to be an early event in AD. In addition, 2-[{sup 18}F]FA-85380 PET might give prognostic information about a conversion from MCI to AD. (orig.)

  18. The role of metabotropic glutamate receptor 5 in the pathogenesis of mood disorders and addiction:Combining preclinical evidence with human Positron Emission Tomography (PET studies

    Directory of Open Access Journals (Sweden)

    Sylvia eTerbeck

    2015-03-01

    Full Text Available In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5 activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET and combined the findings with preclinical animal research. This combined view of different methodological approaches — from basic neurobiological approaches to human studies — might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC. Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays in important role in systems for social functioning and the response to social stress. Finally, mGluR5’s important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC’s arousal and modulatory systems domain. Glutamate was previously mostly investigate in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.

  19. [{sup 11}C]-MeJDTic: a novel radioligand for {kappa}-opioid receptor positron emission tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Poisnel, Geraldine; Oueslati, Farhana; Dhilly, Martine; Delamare, Jerome [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France); Perrio, Cecile [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: perrio@cyceron.fr; Debruyne, Daniele [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)], E-mail: debruyne@cyceron.fr; Barre, Louisa [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, DSV/DRM UMR CEA 2E, Universite de Caen-Basse Normandie, Centre Cyceron, 14074 Caen Cedex (France)

    2008-07-15

    Introduction: Radiopharmaceuticals that can bind selectively the {kappa}-opioid receptor may present opportunities for staging clinical brain disorders and evaluating the efficiency of new therapies related to stroke, neurodegenerative diseases or opiate addiction. The N-methylated derivative of JDTic (named MeJDTic), which has been recently described as a potent and selective antagonist of {kappa}-opioid receptor in vitro, was labeled with carbon-11 and evaluated for in vivo imaging the {kappa}-opioid receptor in mice. Methods: [{sup 11}C]-MeJDTic was prepared by methylation of JDTic with [{sup 11}C]-methyl triflate. The binding of [{sup 11}C]-MeJDTic to {kappa}-opioid receptor was investigated ex vivo by biodistribution and competition studies using nonfasted male CD1 mice. Results: [{sup 11}C]-MeJDTic exhibited a high and rapid distribution in peripheral organs. The uptake was maximal in lung where the {kappa} receptor is largely expressed. [{sup 11}C]-MeJDTic rapidly crossed the blood-brain barrier and accumulated in the brain regions of interest (hypothalamus). The parent ligand remained the major radioactive compound in brain during the experiment. Chase studies with U50,488 (a {kappa} referring agonist), morphine (a {mu} agonist) and naltrindole (a {delta} antagonist) demonstrated that this uptake was the result of specific binding to the {kappa}-opioid receptor. Conclusion: These findings suggested that [{sup 11}C]-MeJDTic appeared to be a promising selective 'lead' radioligand for {kappa}-opioid receptor PET imaging.

  20. In vivo positron emission tomography imaging with [{sup 11}C]ABP688: binding variability and specificity for the metabotropic glutamate receptor subtype 5 in baboons

    Energy Technology Data Exchange (ETDEWEB)

    DeLorenzo, Christine; Brennan, Kathleen G. [Columbia University College of Physicians and Surgeons, Division of Molecular Imaging and Neuropathology, Department of Psychiatry, NYSPI Mail Unit 42, New York, NY (United States); Milak, Matthew S.; Parsey, Ramin V. [Columbia University College of Physicians and Surgeons, Division of Molecular Imaging and Neuropathology, Department of Psychiatry, NYSPI Mail Unit 42, New York, NY (United States); New York State Psychiatric Institute, New York, NY (United States); Kumar, J.S.D.; Mann, J.J. [Columbia University College of Physicians and Surgeons, Division of Molecular Imaging and Neuropathology, Department of Psychiatry, NYSPI Mail Unit 42, New York, NY (United States); New York State Psychiatric Institute, New York, NY (United States); Columbia University College of Physicians and Surgeons, Department of Radiology, New York, NY (United States)

    2011-06-15

    Metabotropic glutamate receptor subtype 5 (mGluR5) dysfunction has been implicated in several disorders. [{sup 11}C]ABP688, a positron emission tomography (PET) ligand targeting mGluR5, could be a valuable tool in the development of novel therapeutics for these disorders by establishing in vivo drug occupancy. Due to safety concerns in humans, these studies may be performed in nonhuman primates. Therefore, in vivo characterization of [{sup 11}C]ABP688 in nonhuman primates is essential. Test-retest studies were performed in baboons (Papio anubis) to compare modeling approaches and determine the optimal reference region. The mGluR5-specific antagonist 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP) was then used in test-block studies, in which ligand binding was measured before and after MTEP administration. Test/block data were analyzed both by calculating changes in binding and using a graphical approach, which allowed estimation of both MTEP occupancy and nonspecific binding. Test-retest results, which have not been previously reported for [{sup 11}C]ABP688, indicated that [{sup 11}C]ABP688 variability is low using an unconstrained two-tissue compartment model. The most appropriate, though not ideal, reference region was found to be the gray matter of the cerebellum. Using these optimal modeling techniques on the test/block data, about 90% occupancy was estimated by the graphical approach. These studies are the first to demonstrate the specificity of [{sup 11}C]ABP688 for mGluR5 with in vivo PET in nonhuman primates. The results indicate that, in baboons, occupancy of mGluR5 is detectable by in vivo PET, a useful finding for proceeding to human studies, or performing further baboon studies, quantifying the in vivo occupancy of novel therapeutics targeting mGluR5. (orig.)

  1. No evidence for a role of the serotonin 4 receptor in five-factor personality traits: A positron emission tomography brain study.

    Directory of Open Access Journals (Sweden)

    Dea Siggaard Stenbæk

    Full Text Available Serotonin (5-HT brain architecture appears to be implicated in normal personality traits as supported by genetic associations and studies using molecular brain imaging. However, so far, no studies have addressed potential contributions to variation in normal personality traits from in vivo serotonin 4 receptor (5-HT4R brain availability, which has recently become possible to image with Positron Emission Tomography (PET. This is particularly relevant since availability of 5-HT4R has been shown to adapt to synaptic levels of 5-HT and thus offers information about serotonergic tone in the healthy brain. In 69 healthy participants (18 females, the associations between personality traits assessed with the five-factor NEO Personality Inventory-Revised (NEO PI-R and regional cerebral 5-HT4R binding in neocortex, amygdala, hippocampus, and anterior cingulate cortex (ACC were investigated using linear regression models. The associations between each of the five personality traits and a latent variable construct of global 5-HT4R levels were also evaluated using latent variable structural equation models. We found no significant associations between the five NEO personality traits and regional 5-HT4R binding (all p-values > .17 or the latent construct of global 5-HT4R levels (all p-values > .37. Our findings indicate that NEO personality traits and 5-HT4R are not related in healthy participants. Under the assumption that global 5-HT4R levels index 5-HT tone, our data also suggest that 5-HT tone per se is not directly implicated in normal personality traits.

  2. In Vivo Monitoring of the Antiangiogenic Effect of Neurotensin Receptor-Mediated Radiotherapy by Small-Animal Positron Emission Tomography: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Simone Maschauer

    2014-04-01

    Full Text Available The neurotensin receptor (NTS1 has emerged as an interesting target for molecular imaging and radiotherapy of NTS-positive tumors due to the overexpression in a range of tumors. The aim of this study was to develop a 177Lu-labeled NTS1 radioligand, its application for radiotherapy in a preclinical model and the imaging of therapy success by small-animal positron emission tomography (µPET using [68Ga]DOTA-RGD as a specific tracer for imaging angiogenesis. The 177Lu-labeled peptide was subjected to studies on HT29-tumor-bearing nude mice in vivo, defining four groups of animals (single dose, two fractionated doses, four fractionated doses and sham-treated animals. Body weight and tumor diameters were determined three times per week. Up to day 28 after treatment, µPET studies were performed with [68Ga]DOTA-RGD. At days 7–10 after treatment with four fractionated doses of 11–14 MBq (each at days 0, 3, 6 and 10, the tumor growth was slightly decreased in comparison with untreated animals. Using a single high dose of 51 MBq, a significantly decreased tumor diameter of about 50% was observed with the beginning of treatment. Our preliminary PET imaging data suggested decreased tumor uptake values of [68Ga]DOTA-RGD in treated animals compared to controls at day 7 after treatment. This pilot study suggests that early PET imaging with [68Ga]DOTA-RGD in radiotherapy studies to monitor integrin expression could be a promising tool to predict therapy success in vivo. Further successive PET experiments are needed to confirm the significance and predictive value of RGD-PET for NTS-mediated radiotherapy.

  3. Positron emission tomography evaluation of sedative properties of antihistamines.

    Science.gov (United States)

    Yanai, Kazuhiko; Zhang, Dongying; Tashiro, Manabu; Yoshikawa, Takeo; Naganuma, Fumito; Harada, Ryuichi; Nakamura, Tadaho; Shibuya, Katsuhiko; Okamura, Nobuyuki

    2011-07-01

    H(1) antihistamines are often used in the medication for allergic diseases, coughs and colds, and insomnia, with or without prescription, even though their sedative properties are a potentially dangerous unwanted side effect that is not properly recognized. These sedative properties have been evaluated using the incidence of subjective sleepiness, objective cognitive and psychomotor functions, and positron emission tomography (PET) measurement of H(1) receptor occupancy. This article reviews the current updated literature on the sedative properties of antihistamines examined by PET measurement of H(1) receptor occupancy. The use of PET to examine antihistamine penetration in the human brain in relation to psychometric and other functional measures of CNS effects is a major breakthrough and provides a new standard by which the functional CNS effects of antihistamines can be related directly to H(1) receptor occupancy. Therapy with antihistamines can be better guided by considering histamine H(1) receptor occupancy from the view of their sedative properties.

  4. Positron emission tomography makes cerebral metabolism visible

    Energy Technology Data Exchange (ETDEWEB)

    Meermann, H.

    1982-05-12

    In the present publication the principle and advantage of positron emission topography as a nuclear medical method for the diagnosis of brain diseases are described. By this method the metabolic processes in the brain are measured using labelled compounds which are actively metabolized in the brain. These are for instance glucose, aminoacids and psychopharmaceutics, whose main site of action is in the brain. Thus not only tumorous processes but also regional blood circulation, oxygen absorption, regional protein synthesis, distribution and utilization of carrier substances and the absorption of drugs can be established.

  5. Fluorine-18 labeling and biodistribution studies on peroxisome proliferator-activated receptor-{gamma} ligands: potential positron emission tomography imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chul [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Dence, Carmen S. [Division of Radiological Sciences, Washington University School of Medicine, St. Louis, MO 63110 (United States); Zhou Haibing; Parent, Ephraim E. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Welch, Michael J. [Division of Radiological Sciences, Washington University School of Medicine, St. Louis, MO 63110 (United States); Katzenellenbogen, John A. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States)], E-mail: jkatzene@uiuc.edu

    2009-02-15

    Introduction: Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) is an important regulator of lipid metabolism; it controls the differentiation of preadipocytes and is also found at high levels in small metastatic tumors. In this report, we describe the radiochemical synthesis and evaluation of two {sup 18}F-labeled analogs of the potent and selective PPAR{gamma} agonist farglitazar. Materials and methods: The isomeric aromatic fluorine-substituted target compounds [(2S)-(2-benzoylphenylamino)-3-(4-(2-[2-(4-[{sup 18}F]fluorophenyl) -5-methyloxazol-4-yl]ethoxy)-phenyl)propionic acid ([{sup 18}F]-1) and (2S)-[2-(4-fluorobenzoyl)phenylamino] -3-(4-[2-(5-methyl-2-phenyloxazol-4-yl)ethoxy]-phenyl)propionic acid ([{sup 18}F]-2)] were prepared in fluorine-18-labeled form, respectively, by radiofluorination of an iodonium salt precursor or by Ullmann-type condensation with 2-iodo-4'-[{sup 18}F]fluorobenzophenone after nucleophilic aromatic substitution with [{sup 18}F]fluoride ion. Each compound was obtained in high specific activity and good radiochemical yield. Results and Discussion: {sup 18}F-1 and {sup 18}F-2 have high and selective PPAR{gamma} binding affinities comparable to that of the parent molecule farglitazar, and they were found to have good metabolic stability. Tissue biodistribution studies of {sup 18}F-1 and {sup 18}F-2 were conducted, but PPAR{gamma}-mediated uptake of both agents was minimal. Conclusion: This study completes our first look at an important class of PPAR{gamma} ligands as potential positron emission tomography (PET) imaging agents for breast cancer and vascular disease. Although {sup 18}F-1 and {sup 18}F-2 have high affinities for PPAR{gamma} and good metabolic stability, their poor target-tissue distribution properties, which likely reflect their high lipophilicity combined with the low titer of PPAR{gamma} in target tissues, indicate that they have limited potential as PPAR{gamma} PET imaging agents.

  6. Studies of the brain cannabinoid system using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gatley, S.J.; Volkow, N.D.

    1995-10-01

    Studies using radiolabeled psychoactive drugs in conjunction with positron emission tomography (PET) have permitted the imaging of binding sites in the human brain. Similar studies of marijuana have been hampered by the unsuitability of radiolabeled THC for PET studies, and the current unavailability of other in vivo imaging agents for cannabinoid receptors. Recent developments in medicinal chemistry suggest that a PET radiotracer for cannabinoid receptors will soon become available. This chapter briefly reviews these developments, together with the results of PET studies of the effects of marijuana and other abused drugs on brain metabolism. It also reviews PET studies of cocaine binding sites, to demonstrate the kind of investigations that will be possible when a cannabinoid receptor PET radioligand becomes available.

  7. Structure-activity relationship study towards non-peptidic positron emission tomography (PET) radiotracer for gastrin releasing peptide receptors : Development of [F-18] (S)-3-(1H-indol-3-yl)-N-[1-[5-(2-fluoroethoxy) pyridin-2-yl]cyclohexylmethyl]-2-methyl-2-[3-(4-nitrophenyl)ureido]propionamide

    NARCIS (Netherlands)

    Lacivita, Enza; Lucente, Ermelinda; Kwizera, Chantal; Farinha Antunes, Ines; Niso, Mauro; De Giorgio, Paola; Perrone, Roberto; Colabufo, Nicola A.; Elsinga, Philip H.; Leopoldo, Marcello

    2017-01-01

    Gastrin-releasing peptide receptors (GRP-Rs, also known as bombesin 2 receptors) are overexpressed in a variety of human cancers, including prostate cancer, and therefore they represent a promising target for in vivo imaging of tumors using positron emission tomography (PET). Structural

  8. Positron Emission Tomography of the Heart

    Science.gov (United States)

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1979-01-01

    Positron emission computed tomography (PCT) represents an important new tool for the noninvasive evaluation and, more importantly, quantification of myocardial performance. Most currently available techniques permit assessment of only one aspect of cardiac function, i.e., myocardial perfusion by gamma scintillation camera imaging with Thallium-201 or left ventricular function by echocardiography or radionuclide angiocardiography. With PCT it may become possible to study all three major segments of myocardial performance, i.e., regional blood flow, mechanical function and, most importantly, myocardial metabolism. Each of these segments can either be evaluated separately or in combination. This report briefly describes the principles and technological advantages of the imaging device, reviews currently available radioactive tracers and how they can be employed for the assessment of flow, function and metabolism; and, lastly, discusses possible applications of PCT for the study of cardiac physiology or its potential role in the diagnosis of cardiac disease.

  9. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  10. Instrumentation optimization for positron emission mammography

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.; Qi, Jinyi

    2003-06-05

    The past several years have seen designs for PET cameras optimized to image the breast, commonly known as Positron Emission Mammography or PEM cameras. The guiding principal behind PEM instrumentation is that a camera whose field of view is restricted to a single breast has higher performance and lower cost than a conventional PET camera. The most common geometry is a pair of parallel planes of detector modules, although geometries that encircle the breast have also been proposed. The ability of the detector modules to measure the depth of interaction (DOI) is also a relevant feature. This paper finds that while both the additional solid angle coverage afforded by encircling the breast and the decreased blurring afforded by the DOI measurement improve performance, the ability to measure DOI is more important than the ability to encircle the breast.

  11. Fundamental limits of positron emission mammography

    Energy Technology Data Exchange (ETDEWEB)

    Moses, William W.; Qi, Jinyi

    2001-06-01

    We explore the causes of performance limitation in positron emission mammography cameras. We compare two basic camera geometries containing the same volume of 511 keV photon detectors, one with a parallel plane geometry and another with a rectangular geometry. We find that both geometries have similar performance for the phantom imaged (in Monte Carlo simulation), even though the solid angle coverage of the rectangular camera is about 50 percent higher than the parallel plane camera. The reconstruction algorithm used significantly affects the resulting image; iterative methods significantly outperform the commonly used focal plane tomography. Finally, the characteristics of the tumor itself, specifically the absolute amount of radiotracer taken up by the tumor, will significantly affect the imaging performance.

  12. Adenosine A{sub 1} receptors in human sleep regulation studied by electroencephalography (EEG) and positron emission tomography (PET)[Dissertation 17227

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, E

    2007-07-01

    Sleep is an essential physiological process. However, the functions of sleep and the endogenous mechanisms involved in sleep regulation are only partially understood. Convergent lines of evidence support the hypothesis that the build-up of sleep propensity during wakefulness and its decline during sleep are associated with alterations in brain adenosine levels and adenosine receptor concentrations. The non-selective A{sub 1} and A{sub 2A} adenosine receptor antagonist caffeine stimulates alertness and is known to attenuate changes in the waking and sleep electroencephalogram (EEG) typically observed after prolonged waking. Several findings point to an important function of the adenosine A{sub 1} receptor (A{sub 1}AR) in the modulation of vigilance states. The A{sub 1}AR is densely expressed in brain regions involved in sleep regulation, and pharmacological manipulations affecting the A{sub 1}AR were shown to influence sleep propensity and sleep depth. However, an involvement of the A{sub 2A} adenosine receptor (A{sub 2A}AR) is also assumed. The distinct functions of the A{sub 1} and A{sub 2A} receptor subtypes in sleep-wake regulation and in mediating the effects of caffeine have not been identified so far. The selective adenosine A{sub 1} receptor antagonist, 8-cyclopentyl-3-(3-{sup 18}Ffluoropropyl)- 1-propylxanthine ({sup 18}F-CPFPX), offers the opportunity to get further insights into adenosinergic mechanisms by in vivo imaging of the A{sub 1}AR subtype with positron emission tomography (PET). The aim of this thesis was to elucidate the role of adenosine A{sub 1} receptors in human sleep regulation, combining {sup 18}F-CPFPX PET brain imaging and EEG recordings, the gold standard in sleep research. It was hypothesized that sleep deprivation would induce adenosine accumulation and/or changes in A{sub 1}AR density. Thus, the question was addressed whether these effects of prolonged wakefulness can be visualized by altered {sup 18}F-CPFPX binding. Moreover, it was

  13. Positron Emission Tomographic Imaging of the Cannabinoid Type 1 Receptor System with [11C]OMAR ([11C]JHU75528: Improvements in Image Quantification Using Wild-Type and Knockout Mice

    Directory of Open Access Journals (Sweden)

    Raúl Herance

    2011-11-01

    Full Text Available In this study, we assessed the feasibility of using positron emission tomography (PET and the tracer [11C]OMAR ([11C]JHU75528, an analogue of rimonabant, to study the brain cannabinoid type 1 (CB1 receptor system. Wild-type (WT andCB1 knockout (KO animals were imaged at baseline and after pretreatment with blocking doses of rimonabant. Brain uptake in WT animals was higher (50% than in KO animals in baseline conditions. After pretreatment with rimonabant, WT uptake lowered to the level of KO animals. The results of this study support the feasibility of using PET with the radiotracer [11C]JHU75528 to image the brain CB1 receptor system in mice. In addition, this methodology can be used to assess the effect of new drugs in preclinical studies using genetically manipulated animals.

  14. Radiosynthesis of an opiate receptor-binding radiotracer for positron emission tomography: (C-11 methyl)-methyl-4-(N-(1-oxopropyl)-N-phenylamino)-4-piperidine carboxylate (C-11 4-carbomethoxyfentanyl)

    Energy Technology Data Exchange (ETDEWEB)

    Dannals, R.F.; Ravert, H.T.; Frost, J.J.; Wilson, A.A.; Burns, H.D.; Wagner, H.N. Jr.

    1984-01-01

    The development of high affinity, high specific activity tritium-labeled neurotransmitter receptor ligands has made it possible to determine the spatial distribution and relative regional concentration of several neuroreceptors by means of in vivo receptor labeling techniques in animals. This development made possible the biochemical identification of opiate receptors by autoradiographic visualization in experimental animals. The quantitation and localization of opiate receptors in man using non-invasive methods, such as positron emission tomography, could provide a means of obtaining information about a variety of receptor-linked neuropsychiatric diseases as well as normal brain mechanisms regulating pain and emotions. As part of a continuing program to identify and radiolabel high affinity, highly specific ligands for the opiate receptor, the authors have selected two derivatives of fentanyl, a well-known analgesic, as candidates for radiolabeling: R-31,833 (4-carbomethoxy-fentanyl) and R-34,995 (lofentanil). Carbon-11 labeled R-31,833 was synthesized by the methylation of the appropriate carboxylate with C-11 methyl iodide in dimethylformamide at room temperature and purified by high performance liquid chromatography. The average synthesis time from end-of-bombardment (E.O.B.) was 30 minutes. The average specific activity was determined by ultraviolet spectroscopy to be 890 mCi/..mu..mole end-of-synthesis (approx. 2500 mCi/..mu..mole E.O.B.).

  15. Positron emissions tomografi af hjertet. Fra forskning til klinisk praksis

    DEFF Research Database (Denmark)

    Bøtker, H E; Bøttcher, M; Gjedde, A

    1998-01-01

    Positron emission tomography (PET) is used as diagnostic and in identifying patients with reversible ischaemic dysfunction, and for non-invasive investigation of myocardial perfusion. The development of new positron-emitting tracers and user-friendly techniques suggests that the method is suitabl...

  16. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    Science.gov (United States)

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  17. Recent developments in positron emission tomography (PET) instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Budinger, T.F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors. 117 refs., 4 figs., 4 tabs.

  18. Amorphous silicon detectors in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Conti, M. (Istituto Nazionale di Fisica Nucleare, Pisa (Italy) Lawrence Berkeley Lab., CA (USA)); Perez-Mendez, V. (Lawrence Berkeley Lab., CA (USA))

    1989-12-01

    The physics of the detection process is studied and the performances of different Positron Emission Tomography (PET) system are evaluated by theoretical calculation and/or Monte Carlo Simulation (using the EGS code) in this paper, whose table of contents can be summarized as follows: a brief introduction to amorphous silicon detectors and some useful equation is presented; a Tantalum/Amorphous Silicon PET project is studied and the efficiency of the systems is studied by Monte Carlo Simulation; two similar CsI/Amorphous Silicon PET projects are presented and their efficiency and spatial resolution are studied by Monte Carlo Simulation, light yield and time characteristics of the scintillation light are discussed for different scintillators; some experimental result on light yield measurements are presented; a Xenon/Amorphous Silicon PET is presented, the physical mechanism of scintillation in Xenon is explained, a theoretical estimation of total light yield in Xenon and the resulting efficiency is discussed altogether with some consideration of the time resolution of the system; the amorphous silicon integrated electronics is presented, total noise and time resolution are evaluated in each of our applications; the merit parameters {epsilon}{sup 2}{tau}'s are evaluated and compared with other PET systems and conclusions are drawn; and a complete reference list for Xenon scintillation light physics and its applications is presented altogether with the listing of the developed simulation programs.

  19. Positron emission particle tracking in pulsatile flow

    Science.gov (United States)

    Patel, Nitant; Wiggins, Cody; Ruggles, Arthur

    2017-05-01

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with 18F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s.

  20. Positron emission tomography in generalized seizures

    Energy Technology Data Exchange (ETDEWEB)

    Theodore, W.H.; Brooks, R.; Margolin, R.; Patronas, N.; Sato, S.; Porter, R.J.; Mansi, L.; Bairamian, D.; DiChiro, G.

    1985-05-01

    The authors used /sup 18/F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to study nine patients with clinical absence or generalized seizures. One patient had only absence seizures, two had only generalized tonic-clonic seizures, and six had both seizure types. Interictal scans in eight failed to reveal focal or lateralized hypometabolism. No apparent abnormalities were noted. Two patients had PET scans after isotope injection during hyperventilation-induced generalized spike-wave discharges. Diffusely increased metabolic rates were found in one compared with an interictal scan, and in another compared with control values. Another patient had FDG injected during absence status: EEG showed generalized spike-wave discharges (during which she was unresponsive) intermixed with slow activity accompanied by confusion. Metabolic rates were decreased, compared with the interictal scan, throughout both cortical and subcortical structures. Interictal PET did not detect specific anatomic regions responsible for absence seizure onset in any patient, but the results of the ictal scans did suggest that pathophysiologic differences exist between absence status and single absence attacks.

  1. Positron emission particle tracking in pulsatile flow

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nitant; Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering, Knoxville, TN (United States); Wiggins, Cody [University of Tennessee-Knoxville, Department of Physics and Astronomy, Knoxville, TN (United States)

    2017-05-15

    Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with {sup 18}F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s. (orig.)

  2. Microfluidics for Positron Emission Tomography Probe Development

    Directory of Open Access Journals (Sweden)

    Ming-Wei Wang

    2010-07-01

    Full Text Available Owing to increased needs for positron emission tomography (PET, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidics-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates, and easier purification processes with greater yield and higher specific activity of desired probes. Several proof-of-principle examples along with the basics of device architecture and operation and the potential limitations of each design are discussed. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”, an easy-to-use, stand-alone, flexible, fully automated, radiochemical microfluidic platform can provide simpler and more cost-effective procedures for molecular imaging using PET.

  3. Positron emission tomography (PET): evaluation of chronic periaortitis

    National Research Council Canada - National Science Library

    Salvarani, Carlo; Pipitone, Nicolò; Versari, Annibale; Vaglio, Augusto; Serafini, Desiderio; Bajocchi, Gianluigi; Salvo, Diana; Buzio, Carlo; Greco, Paolo; Boiardi, Luigi

    2005-01-01

    ...)F-fluorodeoxyglucose-positron emission tomography (FDG-PET). A consecutive case series consisting of 7 patients with CP seen over a 3-year period and a control group of 14 patients with malignancy were evaluated with FDG-PET...

  4. Positron emission tomography/computed tomography scanning for ...

    African Journals Online (AJOL)

    making positron emission tomography (PET) an attractive alternative for ... 1Department of Surgery, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, ..... This emphasises the benefit of this hybrid.

  5. Positron emission tomography : measurement of transgene expression

    NARCIS (Netherlands)

    de Vries, EFJ; Vaalburg, W

    Noninvasive and repetitive imaging of transgene expression can play a pivotal role in the development of gene therapy strategies, as it offers investigators a means to determine the effectiveness of their gene transfection protocols. In the last decade, imaging of transgene expression using positron

  6. Comparison of dopamine D3 and D2 receptor occupancies by a single dose of blonanserin in healthy subjects: A positron emission tomography study with [11C]-(+)-PHNO.

    Science.gov (United States)

    Tateno, Amane; Sakayori, Takeshi; Kim, Woo-Chan; Honjo, Kazuyoshi; Nakayama, Haruo; Arakawa, Ryosuke; Okubo, Yoshiro

    2018-01-13

    Blockade of D3 receptor, a member of the dopamine D2-like receptor family, has been suggested as a possible medication for schizophrenia. Blonanserin has high affinity in vitro for D3 as well as D2 receptors. We investigated whether a single dose of 12 mg blonanserin, which was within the daily clinical dose range (i.e., 8-24 mg) for the treatment of schizophrenia, occupies D3 as well as D2 receptors in healthy subjects. Six healthy males (mean 35.7±7.6 years) received two positron emission tomography scans, the first prior to taking blonanserin, and the second 2 hours after the administration of a single dose of 12 mg blonanserin. Dopamine receptor occupancies by blonanserin were evaluated by [11C]-(+)-PHNO. Occupancy of each region by 12 mg blonanserin was: caudate (range 64.3-81.5%; mean±SD, 74.3±5.6%), putamen (range 60.4-84.3%; mean±SD, 73.3±8.2%), ventral striatum (range 40.1-88.2%; mean±SD, 60.8±17.1%), globus pallidus (range 65.8-87.6%; mean±SD, 75.7±8.6%), and substantia nigra (range 56.0-88.7%; mean±SD, 72.4±11.0%). Correlation analysis between plasma concentration of blonanserin and receptor occupancy in D2-rich (caudate and putamen) and D3-rich (globus pallidus and substantia nigra) regions showed that EC50 for D2-rich region was 0.39 ng/mL (r=0.43) and EC50 for D3-rich region was 0.40 ng/mL (r=0.79). A single dose of 12 mg blonanserin occupied D3 receptor to the same degree as D2 receptor in vivo. Our results were consistent with previous studies that reported that some of the pharmacological effect of blonanserin is mediated via D3 receptor antagonism.

  7. Positron emission tomography study on pancreatic somatostatin receptors in normal and diabetic rats with {sup 68}Ga-DOTA-octreotide: A potential PET tracer for beta cell mass measurement

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Takeo [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Division of Molecular Imaging, Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Hasegawa, Koki; Nishimura, Mie; Kanayama, Yousuke; Wada, Yasuhiro; Hayashinaka, Emi; Cui, Yilong; Kataoka, Yosky [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Senda, Michio [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Division of Molecular Imaging, Institute of Biomedical Research and Innovation, 2-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan); Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 (Japan); Watanabe, Yasuyoshi, E-mail: yywata@riken.jp [Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047 (Japan)

    2013-12-06

    Highlights: •PET images showed high uptake of {sup 68}Ga-DOTA-octreotide in the normal pancreas. •{sup 68}Ga-DOTA-octreotide specifically binds to somatostatin receptors in the pancreas. •The pancreatic uptake of {sup 68}Ga-DOTA-octreotide was decreased in the diabetic rats. •{sup 68}Ga-DOTA-octreotide could be a candidate PET probe to measure the beta cell mass. -- Abstract: Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, and the loss or dysfunction of pancreatic beta cells has been reported before the appearance of clinical symptoms and hyperglycemia. To evaluate beta cell mass (BCM) for improving the detection and treatment of DM at earlier stages, we focused on somatostatin receptors that are highly expressed in the pancreatic beta cells, and developed a positron emission tomography (PET) probe derived from octreotide, a metabolically stable somatostatin analog. Octreotide was conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a chelating agent, and labeled with {sup 68}Gallium ({sup 68}Ga). After intravenous injection of {sup 68}Ga-DOTA-octreotide, a 90-min emission scan of the abdomen was performed in normal and DM model rats. The PET studies showed that {sup 68}Ga-DOTA-octreotide radioactivity was highly accumulated in the pancreas of normal rats and that the pancreatic accumulation was significantly reduced in the rats administered with an excess amount of unlabeled octreotide or after treatment with streptozotocin, which was used for the chemical induction of DM in rats. These results were in good agreement with the ex vivo biodistribution data. These results indicated that the pancreatic accumulation of {sup 68}Ga-DOTA-octreotide represented specific binding to the somatostatin receptors and reflected BCM. Therefore, PET imaging with {sup 68}Ga-DOTA-octreotide could be a potential tool for evaluating BCM.

  8. Evaluation of 1-azabicyclo[2.2.2]oct-3-yl {alpha}-fluoroalkyl-{alpha}-hydroxy-{alpha}-phenylacetates as potential ligands for the study of muscarinic receptor density by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Luo, H.; Hasan, A.; Sood, V.; McRee, R.C.; Zeeberg, B.; Reba, R.C.; McPherson, D.W.; Knapp, F.F

    1996-04-01

    Both 1-azabicyclo[2.2.2]oct-3-yl {alpha}-(1-fluoroeth-2-yl)-{alpha}-hydroxy-{alpha}-phenylacetate (FQNE, 5) and 1-azabicyclo[2.2.2]oct-3-yl {alpha}-(1-fluoropent-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe, 6) were prepared and evaluated as potential candidates for the determination of muscarinic cholinergic receptor (mAChR) density by positron emission tomography (PET). The results of in vitro binding assays demonstrated that although both 5 and 6 had high binding affinities for m{sub 1} and m{sub 2} mAChR subtypes, 6 displayed a higher affinity (nM, m{sub 1}; K{sub D}, 0.45, m{sub 2}; K{sub D}, 3.53) as compared to 5 (nM, m{sub 1}; K{sub D}, 12.5, m{sub 2}; K{sub D}, 62.8). It was observed that pretreatment of female Fisher rats with either 5 or 6 prior to the i.v. administration of Z-(-)(-)-[{sup 131}I]-IQNP, a high-affinity muscarinic ligand, significantly blocked the uptake of radioactivity in the brain and heart measured 3 h postinjection of the radiolabeled ligand. These new fluoro QNB analogues represent important target ligands for evaluation as potential receptor imaging agents in conjunction with PET.

  9. The role of baseline Ga-68 DOTATATE positron emission tomography/computed tomography in the prediction of response to fixed-dose peptide receptor radionuclide therapy with Lu-177 DOTATATE.

    Science.gov (United States)

    Soydal, Çiğdem; Peker, Ahmet; Özkan, Elgin; Küçük, Özlem Nuriye; Kir, Metin Kemal

    2016-02-17

    To describe the role of baseline gallium (Ga)-68 DOTATATE positron emission tomography (PET)/computed tomography (CT) in the prediction of the response to peptide receptor radionuclide therapy (PRRT) using lutetium (Lu)-177 DOTATATE. Analysis was made of baseline Ga-68 DOTATATE PET/CT images of 29 patients (17 females and 12 males; mean age: 50.7 ± 14.6 years) with metastatic neuroendocrine tumors who received PRRT with Lu-177 DOTATATE. Maximum standardized uptake values (SUVmax) of reference lesions and their ratios to physiological uptake organs were calculated. The relationship between these values and the radiological response was analyzed. Partial response was observed in 8 (28%) patients, stable disease in 18 (62%) patients, and progressive disease in 3 (10%) patients. Mean SUVmax of reference lesions was calculated as 23.8 ± 20.5 (min-max: 5.1-87.3). There was no significant correlation between radiological responses and SUVmax of reference lesions and their ratios to other organs. Baseline Ga-68 DOTATATE PET/CT helps to show somatostatin receptor expression status and disease stage in patients who are candidates for PRRT. However, SUVs do not have a role in the prediction of treatment response.

  10. Liquid Xenon Detectors for Positron Emission Tomography

    Science.gov (United States)

    Miceli, A.; Amaudruz, P.; Benard, F.; Bryman, D. A.; Kurchaninov, L.; Martin, J. P.; Muennich, A.; Retiere, F.; Ruth, T. J.; Sossi, V.; Stoessl, A. J.

    2011-09-01

    PET is a functional imaging technique based on detection of annihilation photons following beta decay producing positrons. In this paper, we present the concept of a new PET system for preclinical applications consisting of a ring of twelve time projection chambers filled with liquid xenon viewed by avalanche photodiodes. Simultaneous measurement of ionization charge and scintillation light leads to a significant improvement to spatial resolution, image quality, and sensitivity. Simulated performance shows that an energy resolution of < 10% (FWHM) and a sensitivity of 15% are achievable. First tests with a prototype TPC indicate position resolution < 1 mm (FWHM).

  11. Detection of unknown occult primary tumors using positron emission tomography

    NARCIS (Netherlands)

    Kole, AC; Nieweg, OE; Pruim, J; Hoekstra, HJ; Roodenburg, JLN; Vaalburg, W; Vermey, A; Schraffordt Koops, H.

    1998-01-01

    BACKGROUND. The potential of positron emission tomography (PET) with F-18-fluoro-2-deoxy-D-glucose (FDG) to detect primary tumors after unsuccessful conventional diagnostic workup was assessed in patients with metastatic disease from an unknown primary tumor. METHODS. Twenty-nine patients with

  12. Positron emission tomography/computed tomography scanning for ...

    African Journals Online (AJOL)

    Background: Although the site of nosocomial sepsis in the critically ill ventilated patient is usually identifiable, it may remain occult, despite numerous investigations. The rapid results and precise anatomical location of the septic source using positron emission tomography (PET) scanning, in combination with computed ...

  13. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle

    2011-01-01

    We have developed a highly efficient method for utilizing liposomes as imaging agents for positron emission tomography (PET) giving high resolution images and allowing direct quantification of tissue distribution and blood clearance. Our approach is based on remote loading of a copper-radionuclid...

  14. Sentence comprehension and word repetition : A positron emission tomography investigation

    NARCIS (Netherlands)

    Stowe, L.A.; Paans, A.M.J.; Wijers, A.A.; Zwarts, F.; Mulder, G.; Vaalburg, W.

    1999-01-01

    Using positron emission tomography, visual presentation of sentences was shown to cause increased regional cerebral blood flow relative to word Lists in the left lateral anterior superior and middle temporal gyri, attributable to cognitive processes that occur during sentence comprehension in

  15. Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography.

    Science.gov (United States)

    Klein, Pieter J; Christiaans, Johannes A M; Metaxas, Athanasios; Schuit, Robert C; Lammertsma, Adriaan A; van Berckel, Bart N M; Windhorst, Albert D

    2015-03-01

    The N-methyl-d-aspartate receptor (NMDAr) is involved in many neurological and psychiatric disorders including Alzheimer's disease and schizophrenia. Currently, it is not possible to assess NMDAr availability in vivo. The purpose of this study was to develop a positron emission tomography (PET) ligand for the NMDAr ion channel. A series of di- and tri-N-substituted diarylguanidines was synthesized. In addition, in vitro binding affinity for the NMDAr ion channel in rat forebrain membrane fractions was assessed. Compounds 10, 11 and 32 were radiolabeled with either carbon-11 or fluorine-18. Ligands [(11)C]10 and [(18)F]32 were evaluated ex vivo in B6C3 mice. Biodistribution studies showed higher uptake of [(11)C]10 and [(18)F]32 in forebrain regions compared with cerebellum. In addition, for [(11)C]10 54% and for [(18)F]32 70% of activity in the brain at 60min was due to intact tracer. Pre-treatment with MK-801 (0.6mg·kg(-1), ip) slightly decreased uptake in NMDAr-specific regions for [(18)F]32, but not for [(11)C]10. As such [(18)F]32 has the best characteristics as a PET tracer for the ion channel of the NMDAr. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Synthesis and biological evaluation of carbon-11- and fluorine-18-labeled 2-oxoquinoline derivatives for type 2 cannabinoid receptor positron emission tomography imaging

    Energy Technology Data Exchange (ETDEWEB)

    Evens, Nele [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium); Muccioli, Giulio G. [Unite de Chimie Pharmaceutique et de Radiopharmacie, U.C. Louvain, 1200 Bruxelles (Belgium); Houbrechts, Nele [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium); Lambert, Didier M. [Unite de Chimie Pharmaceutique et de Radiopharmacie, U.C. Louvain, 1200 Bruxelles (Belgium); Verbruggen, Alfons M. [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium); Van Laere, Koen [Division of Nuclear Medicine, K.U. Leuven, 3000 Leuven (Belgium); Bormans, Guy M. [Laboratory for Radiopharmacy, K.U. Leuven, 3000 Leuven (Belgium)], E-mail: guy.bormans@pharm.kuleuven.be

    2009-05-15

    Introduction: The type 2 cannabinoid (CB{sub 2}) receptor is part of the endocannabinoid system and has been suggested as a mediator of several central and peripheral inflammatory processes. Imaging of the CB{sub 2} receptor has been unsuccessful so far. We synthesized and evaluated a carbon-11- and a fluorine-18-labeled 2-oxoquinoline derivative as new PET tracers with high specificity and affinity for the CB{sub 2} receptor. Methods: Two 2-oxoquinoline derivatives were synthesized and radiolabeled with either carbon-11 or fluorine-18. Their affinity and selectivity for the human CB{sub 2} receptor were determined. Biological evaluation was done by biodistribution, radiometabolite and autoradiography studies in mice. Results: In vitro studies showed that both compounds are high affinity CB{sub 2}-specific inverse agonists. Biodistribution study of the tracers in mice showed a high in vivo initial brain uptake and fast brain washout, in accordance with the low CB{sub 2} receptor expression levels in normal brain. A persistently high in vivo binding to the spleen was observed, which was inhibited by pretreatment with two structurally unrelated CB{sub 2} selective inverse agonists. In vitro autoradiography studies with the radioligands confirmed CB{sub 2}-specific binding to the mouse spleen. Conclusion: We synthesized two novel CB{sub 2} receptor PET tracers that show high affinity/selectivity for CB{sub 2} receptors. Both tracers show favourable characteristics as radioligands for central and peripheral in vivo visualization of the CB{sub 2} receptor and are promising candidates for primate and human CB{sub 2} PET imaging.

  17. Positron emission tomography and migraine. Tomographie par emission de positons et migraine

    Energy Technology Data Exchange (ETDEWEB)

    Chabriat, H. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1992-04-01

    Positron emission tomography (PET) is a brain imaging technique that allows in vivo studies of numerous physiological parameters. There have been few PET studies in migraine patients. Cerebral blood flow changes with no variations in brain oxygen consumption have been reported in patients with prolonged neurologic manifestations during migraine attacks. Parenteral administration of reserpine during migraine headache has been followed by a fall in the overall cerebral uptake of glucose. The small sample sizes and a number of methodologic problems complicate the interpretation of these results. Recent technical advances and the development of new PET tracers can be expected to provide further insight into the pathophysiology of migraine. Today cerebral cortex 5 HT{sub 2} serotonin receptors can be studied in migraine patients with PET.

  18. Potential of [{sup 11}C]TMSX for the evaluation of adenosine A{sub 2A} receptors in the skeletal muscle by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi E-mail: ishiwata@pet.tmig.or.jp; Mizuno, Masaki; Kimura, Yuichi; Kawamura, Kazunori; Oda, Keiichi; Sasaki, Toru; Nakamura, Yoshio; Muraoka, Isao; Ishii, Kenji

    2004-10-01

    We examined the potential of [7-methyl-{sup 11}C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([{sup 11}C]TMSX) for the assessment of adenosine A{sub 2A} receptors in muscle. In rodents, specific binding of [{sup 11}C]TMSX was observed in muscle and heart by blockade with A{sub 2A}-selective CSC and non-selective theophylline, but not with A{sub 1}-selective DPCPX. Swimming exercise fluctuated radioligand-receptor binding in these tissues. In a PET study of two subjects, theophylline-infusion slightly deceased the distribution volume of [{sup 11}C]TMSX in the heart (20% reduction) and muscle (10% reduction), which suggested the specific binding.

  19. Biodistribution and dosimetry in humans of two inverse agonists to image cannabinoid CB{sub 1} receptors using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Garth E. [National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States); Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden); Hirvonen, Jussi; Liow, Jeih-San; Seneca, Nicholas; Morse, Cheryl L.; Pike, Victor W.; Innis, Robert B. [National Institute of Mental Health, Molecular Imaging Branch, Bethesda, MD (United States); Tauscher, Johannes T.; Schaus, John M.; Phebus, Lee; Felder, Christian C. [Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN (United States); Halldin, Christer [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm (Sweden)

    2010-08-15

    Cannabinoid subtype 1 (CB{sub 1}) receptors are found in nearly every organ in the body, may be involved in several neuropsychiatric and metabolic disorders, and are therefore an active target for pharmacotherapy and biomarker development. We recently reported brain imaging of CB{sub 1} receptors with two PET radioligands: {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2}. Here we describe the biodistribution and dosimetry estimates for these two radioligands. Seven healthy subjects (four men and three women) underwent whole-body PET scans for 120 min after injection with {sup 11}C-MePPEP. Another seven healthy subjects (two men and five women) underwent whole-body PET scans for 300 min after injection with {sup 18}F-FMPEP-d{sub 2}. Residence times were acquired from regions of interest drawn on tomographic images of visually identifiable organs for both radioligands and from radioactivity excreted in urine for {sup 18}F-FMPEP-d{sub 2}. The effective doses of {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2} are 4.6 and 19.7 {mu}Sv/MBq, respectively. Both radioligands demonstrated high uptake of radioactivity in liver, lung, and brain shortly after injection and accumulated radioactivity in bone marrow towards the end of the scan. After injection of {sup 11}C-MePPEP, radioactivity apparently underwent hepatobiliary excretion only, while radioactivity from {sup 18}F-FMPEP-d{sub 2} showed both hepatobiliary and urinary excretion. {sup 11}C-MePPEP and {sup 18}F-FMPEP-d{sub 2} yield an effective dose similar to other PET radioligands labeled with either {sup 11}C or {sup 18}F. The high uptake in brain confirms the utility of these two radioligands to image CB{sub 1} receptors in brain, and both may also be useful to image CB{sub 1} receptors in the periphery. (orig.)

  20. ENVISION, developing Positron Emission Tomography for particle therapy

    CERN Multimedia

    2013-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. ENVISION aims at developing medical imaging tools to improve the dose delivery to the patient, to ensure a safer and more effective treatment. The animation illustrates the use of Positron Emission Tomography (PET) for monitoring the dose during treatment. Produced by: CERN KT/Life Sciences and ENVISION Project Management: Manuela Cirilli 3D animation: Jeroen Huijben, Nymus3d

  1. Introducing Positron Emission Tomography (PET) in Clinical Practice

    OpenAIRE

    Janevik-Ivanovska, Emilija; Avmedovski, Fatmir; YAMAMOTO, Mayumi; Bhonsle, Uday

    2009-01-01

    Positron emission tomography (PET) is a major diagnostic imaging technique predominantly used in determining the presence and severity of cancers, neurological conditions, and cardiovascular diseases. It is currently the most effective way to check for cancer recurrences and it offers significant advantages over other forms of imaging such as computed tomography (CT) or magnetic resonance imaging (MRI) scans in detecting disease in many patients. In the USA, an estimated 1 129 900 clinical PE...

  2. Simultaneous in vivo positron emission tomography and magnetic resonance imaging

    OpenAIRE

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S.; Qi, Jinyi; Pichler, Bernd J.; Jacobs, Russell E.; Cherry, Simon R.

    2008-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution o...

  3. Nonhuman Primate Positron Emission Tomography Neuroimaging in Drug Abuse Research

    Science.gov (United States)

    Murnane, Kevin Sean

    2011-01-01

    Positron emission tomography (PET) neuroimaging in nonhuman primates has led to significant advances in our current understanding of the neurobiology and treatment of stimulant addiction in humans. PET neuroimaging has defined the in vivo biodistribution and pharmacokinetics of abused drugs and related these findings to the time course of behavioral effects associated with their addictive properties. With novel radiotracers and enhanced resolution, PET neuroimaging techniques have also characterized in vivo drug interactions with specific protein targets in the brain, including neurotransmitter receptors and transporters. In vivo determinations of cerebral blood flow and metabolism have localized brain circuits implicated in the effects of abused drugs and drug-associated stimuli. Moreover, determinations of the predisposing factors to chronic drug use and long-term neurobiological consequences of chronic drug use, such as potential neurotoxicity, have led to novel insights regarding the pathology and treatment of drug addiction. However, similar approaches clearly need to be extended to drug classes other than stimulants. Although dopaminergic systems have been extensively studied, other neurotransmitter systems known to play a critical role in the pharmacological effects of abused drugs have been largely ignored in nonhuman primate PET neuroimaging. Finally, the study of brain activation with PET neuroimaging has been replaced in humans mostly by functional magnetic resonance imaging (fMRI). There has been some success in implementing pharmacological fMRI in awake nonhuman primates. Nevertheless, the unique versatility of PET imaging will continue to complement the systems-level strengths of fMRI, especially in the context of nonhuman primate drug abuse research. PMID:21317354

  4. Multicompartmental study of fluorine-18 altanserin binding to brain 5HT[sub 2] receptors in humans using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Biver, F. (Psychiatry Dept., Erasme Hospital, Free Univ. of Brussels (Belgium) PET-Biomedical Cyclotron Unit, Erasme Hospital, Free Univ. of Brussels (Belgium)); Goldman, S. (PET-Biomedical Cyclotron Unit, Erasme Hospital, Free Univ. of Brussels (Belgium)); Luxen, A. (PET-Biomedical Cyclotron Unit, Erasme Hospital, Free Univ. of Brussels (Belgium)); Monclus, M. (PET-Biomedical Cyclotron Unit, Erasme Hospital, Free Univ. of Brussels (Belgium)); Forestini, M. (PET-Biomedical Cyclotron Unit, Erasme Hospital, Free Univ. of Brussels (Belgium)); Mendlewicz, J. (Psychiatry Dept., Erasme Hospital, Free Univ. of Brussels (Belgium)); Lotstra, F. (Psychiatry Dept., Erasme Hospital, Free Univ. of Brussels (Belgium))

    1994-09-01

    Serotoninergic type 2 (5HT[sub 2]) receptors have been implicated in the regulation of many brain functions in humans and may play a role in several neurological and psychiatric diseases. Fluorine-18 altanserin has been proposed as a new radiotracer for the study of 5HT[sub 2] receptors by PET because of its high affinity for 5HT[sub 2] receptors (Ki: 0.13 nM) and its good specificity in in vitro studies. Dynamic PET studies were carried out in 12 healthy volunteers after intravenous injection of 0.1 mCi/kg [[sup 18]F] altanserin. Ninety minutes after injection, we observed mainly cortical binding. Basal ganglia and cerebellum showed very low uptake and the frontal cortex to cerebellum ratio was about 3. To evaluate the quantitative distribution of this ligand in the brain, we used two different methods of data analysis: a four-compartment model was used to achieve quantitative evaluation of rate constants (K[sub 1] and k[sub 2] through k[sub 6]) by non-linear regression, and a multiple-time graphical analysis technique for reversible binding was employed for the measurement of k[sub 1]/k[sub 2] and k[sub 3]/k[sub 4] ratios. Using both methods, we found significant differences in binding capacity (estimated by k[sub 3]/k[sub 4] = B[sub max]/K[sub d]) between regions, the values increasing as follows: occipital, limbic, parietal, frontal and temporal cortex. After correction of values obtained by the graphical method for the existence of non-specific binding, results generated by the two methods were consistent. (orig.)

  5. Biodistribution of [{sup 18}f] SR144385 and [{sup 18}f] SR147963: selective radioligands for positron emission tomographic studies of brain cannabinoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, William B. E-mail: bmathews@petscan.nm.jhu.edu; Scheffel, Ursula; Finley, Paige; Ravert, Hayden T.; Frank, Richard A.; Rinaldi-Carmona, Murielle; Barth, Francis; Dannals, Robert F

    2000-11-01

    [{sup 18}F] SR144385 and [{sup 18}F] SR147963 were synthesized in a multistep reaction in which fluorine-18 was introduced by nucleophilic halogen displacement on a bromo precursor. The fluorine-18-labeled intermediate was deprotected and coupled with the appropriate alkyl amine to give the final products. Both radioligands had appropriate regional brain distribution for cannabinoid receptors with a target to nontarget ratio of 1.7 for [{sup 18}F] SR147963 and 2.5 for [{sup 18}F] SR144385 at 60 and 90 min postinjection, respectively. The uptake of both tracers was blocked with a 1 mg/kg dose of SR141716A.

  6. Reduced Metabotropic Glutamate Receptor 5 Density in Major Depression Determined by [11C]ABP688 Positron Emission Tomography and Postmortem Study

    Science.gov (United States)

    Deschwanden, Alexandra; Karolewicz, Beata; Feyissa, Anteneh M.; Treyer, Valerie; Ametamey, Simon M.; Johayem, Anass; Burger, Cyrill; Auberson, Yves P.; Sovago, Judit; Stockmeier, Craig A.; Buck, Alfred; Hasler, Gregor

    2011-01-01

    Objective Clinical and preclinical evidence suggest a hyperactive glutamatergic system in clinical depression. Recently, the metabotropic glutamate receptor 5 (mGluR5) has been proposed as an attractive target for discovery of novel therapeutic approaches against depression. The goal of this study was to compare mGluR5 binding (PET study) and mGluR5 protein expression (postmortem study) between subjects with major depressive disorder and healthy controls. Method Images of mGluR5 receptor binding were acquired using PET and [11C]ABP688 that binds to an allosteric site with high specificity in 11 unmedicated subjects with major depression and 11 matched healthy controls; the amount of mGluR5 protein was investigated using Western blot method in brain samples of 15 depressed subjects and 15 matched controls (postmortem study). Results The PET study revealed decreased regional mGluR5 binding in the prefrontal cortex, the cingulate cortex, the insula, the thalamus and the hippocampus of the depressed individuals (uncorrected pdepression correlated negatively with mGluR5 binding in the hippocampus (cluster-level corrected p=0.029). The postmortem study showed reduced mGluR5 protein expression in the prefrontal cortex (Brodmann's area 10) in depression (pdepressed sample are compatible with reduced protein expression in postmortem tissue. Thus, both studies suggest that basal or compensatory changes in excitatory neurotransmission play roles in the pathophysiology of major depression. PMID:21498461

  7. Comparison of Diagnostic Performance of Three-Dimensional Positron Emission Mammography versus Whole Body Positron Emission Tomography in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Dong Dai

    2017-01-01

    Full Text Available Objective. To compare the diagnostic performance of three-dimensional (3D positron emission mammography (PEM versus whole body positron emission tomography (WBPET for breast cancer. Methods. A total of 410 women with normal breast or benign or highly suspicious malignant tumors were randomized at 1 : 1 ratio to undergo 3D-PEM followed by WBPET or WBPET followed by 3D-PEM. Lumpectomy or mastectomy was performed on eligible participants after the scanning. Results. The sensitivity and specificity of 3D-PEM were 92.8% and 54.5%, respectively. WBPET showed a sensitivity of 95.7% and specificity of 56.8%. After exclusion of the patients with lesions beyond the detecting range of the 3D-PEM instrument, 3D-PEM showed higher sensitivity than WBPET (97.0% versus 95.5%, P = 0.913, particularly for small lesions (<1 cm (72.0% versus 60.0%, P = 0.685. Conclusions. The 3D-PEM appears more sensitive to small lesions than WBPET but may fail to detect lesions that are beyond the detecting range. This study was approved by the Ethics Committee (E2012052 at the Tianjin Medical University Cancer Institute and Hospital (Tianjin, China. The instrument positron emission mammography (PEMi was approved by China State Food and Drug Administration under the registration number 20153331166.

  8. Investigation of granular impact using positron emission particle tracking

    KAUST Repository

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  9. Direct conversion semiconductor detectors in positron emission tomography

    Science.gov (United States)

    Cates, Joshua W.; Gu, Yi; Levin, Craig S.

    2015-05-01

    Semiconductor detectors are playing an increasing role in ongoing research to improve image resolution, contrast, and quantitative accuracy in preclinical applications of positron emission tomography (PET). These detectors serve as a medium for direct detection of annihilation photons. Early clinical translation of this technology has shown improvements in image quality and tumor delineation for head and neck cancers, relative to conventional scintillator-based systems. After a brief outline of the basics of PET imaging and the physical detection mechanisms for semiconductor detectors, an overview of ongoing detector development work is presented. The capabilities of semiconductor-based PET systems and the current state of these devices are discussed.

  10. Molecular Imaging of Transporters with Positron Emission Tomography

    Science.gov (United States)

    Antoni, Gunnar; Sörensen, Jens; Hall, Håkan

    Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug

  11. Positron Emission Tomography imaging with the SmartPET system

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom)], E-mail: cooperrj@ornl.gov; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Harkness, L.J.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P.; Mather, A.R. [Department of Physics, University of Liverpool, Liverpool, Merseyside L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom)

    2009-07-21

    The Small Animal Reconstruction Tomograph for Positron Emission Tomography (SmartPET) project is the development of a small animal Positron Emission Tomography (PET) demonstrator based on the use of High-Purity Germanium (HPGe) detectors and state of the art digital electronics. The experimental results presented demonstrate the current performance of this unique system. By performing high precision measurements of one of the SmartPET HPGe detectors with a range of finely collimated gamma-ray beams the response of the detector as a function of gamma-ray interaction position has been quantified, facilitating the development of parametric Pulse Shape Analysis (PSA) techniques and algorithms for the correction of imperfections in detector performance. These algorithms have then been applied to data from PET imaging measurements using two such detectors in conjunction with a specially designed rotating gantry. In this paper we show how the use of parametric PSA approaches allows over 60% of coincident events to be processed and how the nature and complexity of an event has direct implications for the quality of the resulting image.

  12. Simulation of the annihilation emission of galactic positrons; Modelisation de l'emission d'annihilation des positrons Galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, W

    2008-01-15

    Positrons annihilate in the central region of our Galaxy. This has been known since the detection of a strong emission line centered on an energy of 511 keV in the direction of the Galactic center. This gamma-ray line is emitted during the annihilation of positrons with electrons from the interstellar medium. The spectrometer SPI, onboard the INTEGRAL observatory, performed spatial and spectral analyses of the positron annihilation emission. This thesis presents a study of the Galactic positron annihilation emission based on models of the different interactions undergone by positrons in the interstellar medium. The models are relied on our present knowledge of the properties of the interstellar medium in the Galactic bulge, where most of the positrons annihilate, and of the physics of positrons (production, propagation and annihilation processes). In order to obtain constraints on the positrons sources and physical characteristics of the annihilation medium, we compared the results of the models to measurements provided by the SPI spectrometer. (author)

  13. Evaluation of 4-[{sup 18}F]fluorobenzoyl-FALGEA-NH{sub 2} as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lund Denholt, Charlotte, E-mail: charlotte.lund.denholt@rh.regionh.d [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Binderup, Tina [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N (Denmark); Stockhausen, Marie-Therese; Skovgaard Poulsen, Hans [Department of Radiation Biology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen O (Denmark); Spang-Thomsen, Mogens [Institute of Molecular Pathology, University of Copenhagen, 2200 Copenhagen N (Denmark); Hansen, Paul Robert [IGM-Bioorganic Chemistry, Faculty of Life Science, University of Copenhagen, 1871 Frederiksberg C (Denmark); Gillings, Nic [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Kjaer, Andreas [Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen O (Denmark); Cluster for Molecular Imaging, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N (Denmark)

    2011-05-15

    Introduction: This study describes the radiosynthesis, in vitro and in vivo evaluation of the novel small peptide radioligand, 4-[{sup 18}F]fluorobenzoyl-Phe-Ala-Leu-Gly-Glu-Ala-NH{sub 2,} ([{sup 18}F]FBA-FALGEA-NH{sub 2}) as a positron emission tomography (PET) tracer for imaging of the cancer specific epidermal growth factor receptor (EGFR) variant III mutation, EGFRvIII. Methods: For affinity, stability and PET measurements, H-FALGEA-NH{sub 2} was radiolabelled using 4-[{sup 18}F]fluorobenzoic acid ([{sup 18}F]FBA). The binding affinity of ([{sup 18}F]FBA)-FALGEA-NH{sub 2} was measured on EGFRvIII expressing cells, NR6M. Stability studies in vitro and in vivo were carried out in blood plasma from nude mice. PET investigations of [{sup 18}F]FBA-FALGEA-NH{sub 2} were performed on a MicroPET scanner, using seven nude mice xenografted subcutaneously with human glioblastoma multiforme (GBM) tumours, expressing the EGFRvIII in its native form, and five nude mice xenografted subcutaneously with GBM tumours lacking EGFRvIII expression. Images of [{sup 18}F]FDG were also obtained for comparison. The mice were injected with 5-10 MBq of the radiolabelled peptide or [{sup 18}F]FDG. Furthermore, the gene expression of EGFRvIII in the tumours was determined using quantitative real-time PCR. Results: Radiolabelling and purification was achieved within 180 min, with overall radiochemical yields of 2.6-9.8% (decay-corrected) and an average specific radioactivity of 6.4 GBq/{mu}mol. The binding affinity (K{sub d}) of [{sup 18}F]FBA-FALGEA-NH{sub 2} to EGFRvIII expressing cells was determined to be 23 nM. The radiolabelled peptide was moderately stable in the plasma from nude mice where 53% of the peptide was intact after 60 min of incubation in plasma but rapidly degraded in vivo, where no intact peptide was observed in plasma 5 min post-injection. The PET imaging showed that [{sup 18}F]FBA-FALGEA-NH{sub 2} accumulated preferentially in the human GBM xenografts which expressed

  14. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  15. Kinetic modeling in pre-clinical positron emission tomography.

    Science.gov (United States)

    Kuntner, Claudia

    2014-12-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges off deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data. Copyright © 2014. Published by Elsevier GmbH.

  16. Differentiation of retroperitoneal tumor using positron emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buonocore, E.; Huebner, K.F.; Collmann, I.R.

    1979-12-01

    Positron emission computed tomography (ECT) with /sup 11/C-DL-tryptophan and /sup 11/C-aminocyclobutanecarboxylic acid (/sup 11/C-ACBC) has produced some promising results in patients with retroperitoneal masses. This brief report gives an example of one patient in whom a retroperitoneal mass could not be differentiated from the pancreas by transmission computed tomography but was suspected to be of pancreatic origin based on arteriographic findings. The ECT scans with /sup 11/C-DL-tryptophan showed a normal pancreas, whereas the tumor localizing agent /sup 11/C-ACBC concentrated in a tumor surrounding the tail and body of the pancreas. This approach with dual radiopharmaceuticals for the differentiation of metabolically active neoplasms and normal tissues warrants further investigation.

  17. Positron emission tomography in CNS drug discovery and drug monitoring.

    Science.gov (United States)

    Piel, Markus; Vernaleken, Ingo; Rösch, Frank

    2014-11-26

    Molecular imaging methods such as positron emission tomography (PET) are increasingly involved in the development of new drugs. Using radioactive tracers as imaging probes, PET allows the determination of the pharmacokinetic and pharmacodynamic properties of a drug candidate, via recording target engagement, the pattern of distribution, and metabolism. Because of the noninvasive nature and quantitative end point obtainable by molecular imaging, it seems inherently suited for the examination of a pharmaceutical's behavior in the brain. Molecular imaging, most especially PET, can therefore be a valuable tool in CNS drug research. In this Perspective, we present the basic principles of PET, the importance of appropriate tracer selection, the impact of improved radiopharmaceutical chemistry in radiotracer development, and the different roles that PET can fulfill in CNS drug research.

  18. Positron emission tomography of incidentally detected small pulmonary nodules

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Dirksen, A

    2004-01-01

    from an ongoing 4-year placebo controlled intervention study of the effect of inhaled steroids in 300 smokers with moderate to severe chronic obstructive pulmonary disease. The participants received yearly CT scans of the chest. Patients with a negative chest radiograph at the time of inclusion......The aim of this study was to assess the value of fluorodeoxyglucose positron emission tomography (FDG PET) imaging of small pulmonary nodules incidentally detected by spiral computed tomography (CT) in a high-risk population. Ten patients (five females, five males, aged 54-72 years) were recruited......, but with pulmonary nodules indeterminate for malignancy detected by conventional spiral CT on a subsequent scan, were referred for FDG PET. Histological diagnoses were sought for all nodules with FDG uptake or where CT showed that they had grown. Ten patients had pulmonary nodules indeterminate for malignancy...

  19. A Case of Corticobasal Degeneration Studied with Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    H. Nagasawa

    1993-01-01

    Full Text Available We measured cerebral blood flow, oxygen metabolism, glucose utilization, and dopamine metabolism in the brain of a patient with corticobasal degeneration using positron emission tomography (PET. The clinical picture is distinctive, comprising features referable to both cortical and basal ganglionic dysfunction. Brain imagings of glucose and dopamine metabolism can demonstrate greater abnormalities in the cerebral cortex and in the striatum contralateral to the more affected side than those of blood flow and oxygen metabolism. This unique combination study measuring both cerebral glucose utilization and dopamine metabolism in the nigrostriatal system can provide efficient information about the dysfunctions which are correlated with individual clinical symptoms, and this study is essential to diagnosis of corticobasal degeneration.

  20. A Review on Segmentation of Positron Emission Tomography Images

    Science.gov (United States)

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  1. [Positron emission tomography (PET) in gastro-intestinal cancer].

    Science.gov (United States)

    Wartski, Myriam

    2016-09-01

    The existing recommendations for fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) use in digestive cancers (excluding neuroendocrine tumours) are summarized in the present article. FDG-PET/CT is nowadays a routine imaging modality for digestive malignancies and its use is currently increasing. FDG-PET/CT is considered to be a crucial tool in pretherapeutic assessment of esophageal, localized pancreatic and anal cancer. It represents a key exam in suspicion of recurrence of colorectal cancer in case of elevated serum tumor markers. New data are emerging regarding FDG-PET/CT in therapeutic efficacy assessment, radiotherapy treatment planning and detection of recurrence in many digestive cancers. Incidental focal colonic FDG uptake has to be explored by colonoscopy, as often associated with premalignant or malignant lesions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Methodological review on functional neuroimaging using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hae Jeong [Yonsei University, College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed.

  3. Temporoparietal cortex in aphasia. Evidence from positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Metter, E.J.; Hanson, W.R.; Jackson, C.A.; Kempler, D.; van Lancker, D.; Mazziotta, J.C.; Phelps, M.E. (National Institute of Aging, Baltimore, MD (USA))

    1990-11-01

    Forty-four aphasic patients were examined with (F18)-fluorodeoxyglucose positron emission tomography in a resting state to determine whether consistent glucose metabolic abnormalities were present. Ninety-seven percent of subjects showed metabolic abnormalities in the angular gyrus, 89% in the supramarginal gyrus, and 87% in the lateral and transverse superior temporal gyrus. Pearson product moment correlations were calculated between regional metabolic measures and performance on the Western Aphasia Battery. No significant correlations were found between the Western Aphasia Battery scores and right hemisphere metabolic measures. Most left hemisphere regions correlated with more than one score from the Western Aphasia Battery. Temporal but not frontal regions had significant correlations to the comprehension score. The left temporoparietal region was consistently affected in these subjects, suggesting that common features in the aphasias were caused by left temporoparietal dysfunction, while behavioral differences resulted from (1) the extent of temporoparietal changes, and (2) dysfunction elsewhere in the brain, particularly the left frontal and subcortical areas.

  4. Quality control of positron emission tomography radiopharmaceuticals: An institutional experience.

    Science.gov (United States)

    Shukla, Jaya; Vatsa, Rakhee; Garg, Nitasha; Bhusari, Priya; Watts, Ankit; Mittal, Bhagwant R

    2013-10-01

    To study quality control parameters of routinely prepared positron emission tomography (PET) radiopharmaceuticals. Three PET radiopharmaceuticals fluorine-18 fluorodeoxyglucose (F-18 FDG), N-13 ammonia (N-13 NH3), and Ga-68 DOTATATE (n = 25 each), prepared by standardized protocols were used. The radionuclide purity, radiochemical purity, residual solvents, pH, endotoxins, and sterility of these radiopharmaceuticals were determined. The physical half-life of radionuclide in radiopharmaceuticals, determined by both graphical and formula method, demonstrated purity of radionuclides used. pH of all PET radiopharmaceuticals used was in the range of 5-6.5. No microbial growth was observed in radiopharmaceutical preparations. The residual solvents, chemical impurity, and pyrogens were within the permissible limits. All three PET radiopharmaceuticals were safe for intravenous administration.

  5. Serotonin synthesis studied with positron emission tomography, (PET)

    DEFF Research Database (Denmark)

    Honoré, Per Gustaf Hartvig; Lundquist, Pinelopi

    Positron emission tomography (PET) has the potential to study the biosynthesis and release of serotonin (5HT) at brain serotonergic neurons. PET requires probe compounds with specific attributes to enable imaging and quantification of biological processes. This section focuses on probes to measure...... seroonin synthesis rate. Knowledge of altered 5HT synthesis and release in disease states may furnish basis for effective pharmacotherapy that may improve the care of psychiatric and neurological disease. Validation of PET measurements of the two PET tracers using perturbation showed that 5-hydroxy......-L-(beta-11C tryptophan) (5HTP) quantifies the activity of amino acid decarboxylase in the conversion to 5HT. On the other hand, alpha-methyl-tryptophan (AMT) measures the conversion to the corresponding 5-hydroxytryptophan analogue. The irreversible binding of the PET probe 5HTP in the monkey brain was lower...

  6. The review of myocardial positron emission computed tomography and positron imaging by gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Tohru [Tokyo Univ. (Japan). Faculty of Medicine

    1998-04-01

    To measure myocardial blood flow, Nitrogen-13 ammonia, Oxygen-15 water, Rubidium-82 and et al. are used. Each has merit and demerit. By measuring myocardial coronary flow reserve, the decrease of flow reserve during dipyridamole in patients with hypercholesterolemia or diabetes mellitus without significant coronary stenosis was observed. The possibility of early detection of atherosclerosis was showed. As to myocardial metabolism, glucose metabolism is measured by Fluorine-18 fluorodeoxyglucose (FDG), and it is considered as useful for the evaluation of myocardial viability. We are using FDG to evaluate insulin resistance during insulin clamp in patients with diabetes mellitus by measuring glucose utilization rate of myocardium and skeletal muscle. FFA metabolism has been measured by {sup 11}C-palmitate, but absolute quantification has not been performed. Recently the method for absolute quantification was reported, and new radiopharmaceutical {sup 18}F-FTHA was reported. Oxygen metabolism has been estimated by {sup 11}C-acetate. Myocardial viability, cardiac efficiency was evaluated by oxygen metabolism. As to receptor or sympathetic nerve end, cardiac insufficiency or cardiac transplantation was evaluated. Imaging of positron emitting radiopharmaceutical by gamma camera has been performed. Collimator method is clinically useful for cardiac imaging of viability study. (author). 54 refs.

  7. Novel targets for positron emission tomography (PET) radiopharmaceutical tracers for visualization of neuroinflammation

    Science.gov (United States)

    Shchepetkin, I.; Shvedova, M.; Anfinogenova, Y.; Litvak, M.; Atochin, D.

    2017-08-01

    Non-invasive molecular imaging techniques can enhance diagnosis of neurological diseases to achieve their successful treatment. Positron emission tomography (PET) imaging can identify activated microglia and provide detailed functional information based on molecular biology. This imaging modality is based on detection of isotope labeled tracers, which emit positrons. The review summarizes the developments of various radiolabeled ligands for PET imaging of neuroinflammation.

  8. European health telematics networks for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kontaxakis, George [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain)]. E-mail: g.kontaxakis@upm.es; Pozo, Miguel Angel [Centro PET Complutense, Madrid 28040 (Spain); Universidad Complutense de Madrid, Instituto Pluridisciplinar, Madrid 28040 (Spain); Ohl, Roland [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Visvikis, Dimitris [U650 INSERM, Lab. du Traitement de L' Information Medicale, University of Brest Occidentale, CHU Morvan, Brest 29609 (France); Sachpazidis, Ilias [Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany); Ortega, Fernando [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Guerra, Pedro [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Cheze-Le Rest, Catherine [Dept. Medicine Nucleaire, CHU Morvan, Brest 29609 (France); Selby, Peter [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Pan, Leyun [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Diaz, Javier [Fundacion Instituto Valenciano de Oncologia, Valencia 46009 (Spain); Dimitrakopoulou-Strauss, Antonia [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Santos, Andres [Universidad Politecnica de Madrid, ETSI Telecomunicacion, Madrid 28040 (Spain); Strauss, Ludwig [German Cancer Research Centre, Clinical Cooperation Unit Nuclear Medicine, Heidelberg 69120 (Germany); Sakas, Georgios [MedCom Gesellschaft fuer medizinische Bildverarbeitung mbH, Darmstadt 64283 (Germany); Fraunhofer Institute for Computer Graphics, Darmstadt 64283 (Germany)

    2006-12-20

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  9. Simultaneous laser speckle imaging and positron emission tomography

    Science.gov (United States)

    Gramer, M.; Feuerstein, D.; Backes, H.; Takagaki, M.; Kumagai, T.; Graf, R.

    2013-06-01

    Complex biological systems often require measurements of multiple parameters with high temporal and spatial resolution. Multimodal approaches and the combination of methods are therefore a powerful tool to address such scientific questions. Laser speckle imaging (LSI) is an optical method that monitors dynamic changes in cortical blood flow (CBF) with high temporal resolution. Positron emission tomography (PET) allows for quantitative imaging of physiological processes and is a gold standard method to determine absolute cerebral blood flow. We developed a setup that allows simultaneous measurement with both modalities. Here, we simultaneously measured CBF with PET and LSI in rats and analyzed how the correlation of PET and LSI is modified when (1) different methods are used for the calculation of speckle inverse correlation time (ICT), (2) speckle data is acquired through thinned or craniectomized skull, (3) influence of surface vessels is removed from the speckle data. For the latter, a method for automated vessel segmentation from LSI data was developed. We obtained the best correlation (R² = 0.890, pICT. Thus, LSI provides CBF in absolute units at high temporal resolution.

  10. Characterization of time resolved photodetector systems for Positron Emission Tomography

    CERN Document Server

    Powolny, François

    The main topic of this work is the study of detector systems composed of a scintillator, a photodetector and readout electronics, for Positron Emission Tomography (PET). In particular, the timing properties of such detector systems are studied. The first idea is to take advantage of the good timing properties of the NINO chip, which is a fast preamplifier-discriminator developed for the ALICE Time of flight detector at CERN. This chip uses a time over threshold technique that is to be applied for the first time in medical imaging applications. A unique feature of this technique is that it delivers both timing and energy information with a single digital pulse, the time stamp with the rising edge and the energy from the pulse width. This entails substantial simplification of the entire readout architecture of a tomograph. The scintillator chosen in the detector system is LSO. Crystals of 2x2x10mm3 were used. For the photodetector, APDs were first used, and were then replaced by SiPMs to make use of their highe...

  11. European health telematics networks for positron emission tomography

    Science.gov (United States)

    Kontaxakis, George; Pozo, Miguel Angel; Ohl, Roland; Visvikis, Dimitris; Sachpazidis, Ilias; Ortega, Fernando; Guerra, Pedro; Cheze-Le Rest, Catherine; Selby, Peter; Pan, Leyun; Diaz, Javier; Dimitrakopoulou-Strauss, Antonia; Santos, Andres; Strauss, Ludwig; Sakas, Georgios

    2006-12-01

    A pilot network of positron emission tomography centers across Europe has been setup employing telemedicine services. The primary aim is to bring all PET centers in Europe (and beyond) closer, by integrating advanced medical imaging technology and health telematics networks applications into a single, easy to operate health telematics platform, which allows secure transmission of medical data via a variety of telecommunications channels and fosters the cooperation between professionals in the field. The platform runs on PCs with Windows 2000/XP and incorporates advanced techniques for image visualization, analysis and fusion. The communication between two connected workstations is based on a TCP/IP connection secured by secure socket layers and virtual private network or jabber protocols. A teleconsultation can be online (with both physicians physically present) or offline (via transmission of messages which contain image data and other information). An interface sharing protocol enables online teleconsultations even over low bandwidth connections. This initiative promotes the cooperation and improved communication between nuclear medicine professionals, offering options for second opinion and training. It permits physicians to remotely consult patient data, even if they are away from the physical examination site.

  12. Quantitative Cardiac Positron Emission Tomography: The Time Is Coming!

    Directory of Open Access Journals (Sweden)

    Roberto Sciagrà

    2012-01-01

    Full Text Available In the last 20 years, the use of positron emission tomography (PET has grown dramatically because of its oncological applications, and PET facilities are now easily accessible. At the same time, various groups have explored the specific advantages of PET in heart disease and demonstrated the major diagnostic and prognostic role of quantitation in cardiac PET. Nowadays, different approaches for the measurement of myocardial blood flow (MBF have been developed and implemented in user-friendly programs. There is large evidence that MBF at rest and under stress together with the calculation of coronary flow reserve are able to improve the detection and prognostication of coronary artery disease. Moreover, quantitative PET makes possible to assess the presence of microvascular dysfunction, which is involved in various cardiac diseases, including the early stages of coronary atherosclerosis, hypertrophic and dilated cardiomyopathy, and hypertensive heart disease. Therefore, it is probably time to consider the routine use of quantitative cardiac PET and to work for defining its place in the clinical scenario of modern cardiology.

  13. Silicon as an unconventional detector in positron emission tomography

    Science.gov (United States)

    Clinthorne, Neal; Brzezinski, Karol; Chesi, Enrico; Cochran, Eric; Grkovski, Milan; Grošičar, Borut; Honscheid, Klaus; Huh, Sam; Kagan, Harris; Lacasta, Carlos; Linhart, Vladimir; Mikuž, Marko; Smith, D. Shane; Stankova, Vera; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2013-01-01

    Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving ˜5 mm FWHM spatial resolution in human studies and ˜1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET "magnifying glass" configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of 22Na having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a 18F-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration.

  14. Quantifying the limitations of small animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, D.C. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)], E-mail: dco@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cooper, R.J.; Cresswell, J.R.; Grint, A.N.; Nolan, P.J.; Scraggs, D.P. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Warrington, WA4 4AD Cheshire (United Kingdom); Beveridge, T.E. [School of Materials and Engineering, Monash University, Melbourne (Australia)

    2009-06-01

    The application of position sensitive semiconductor detectors in medical imaging is a field of global research interest. The Monte-Carlo simulation toolkit GEANT4 [ (http://geant4.web.cern.ch/geant4/)] was employed to improve the understanding of detailed {gamma}-ray interactions within the small animal Positron Emission Tomography (PET), high-purity germanium (HPGe) imaging system, SmartPET [A.J. Boston, et al., Oral contribution, ANL, Chicago, USA, 2006]. This system has shown promising results in the field of PET [R.J. Cooper, et al., Nucl. Instr. and Meth. A (2009), accepted for publication] and Compton camera imaging [J.E. Gillam, et al., Nucl. Instr. and Meth. A 579 (2007) 76]. Images for a selection of single and multiple point, line and phantom sources were successfully reconstructed using both a filtered-back-projection (FBP) [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007] and an iterative reconstruction algorithm [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007]. Simulated data were exploited as an alternative route to a reconstructed image allowing full quantification of the image distortions introduced in each phase of the data processing. Quantifying the contribution of uncertainty in all system components from detector to reconstruction algorithm allows the areas in need of most attention on the SmartPET project and semiconductor PET to be addressed.

  15. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    Science.gov (United States)

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner.

  16. Positron Emission Tomography with Three-Dimensional Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, K.

    1996-10-01

    The development of two different low-cost scanners for positron emission tomography (PET) based on 3D acquisition are presented. The first scanner consists of two rotating scintillation cameras, and produces quantitative images, which have shown to be clinically useful. The second one is a system with two opposed sets of detectors, based on the limited angle tomography principle, dedicated for mammographic studies. The development of low-cost PET scanners can increase the clinical impact of PET, which is an expensive modality, only available at a few centres world-wide and mainly used as a research tool. A 3D reconstruction method was developed that utilizes all the available data. The size of the data-sets is considerably reduced, using the single-slice rebinning approximation. The 3D reconstruction is divided into 1D axial deconvolution and 2D transaxial reconstruction, which makes it relatively fast. This method was developed for the rotating scanner, but was also implemented for multi-ring scanners with and without inter plane septa. An iterative 3D reconstruction method was developed for the limited angle scanner, based on the new concept of `mobile pixels`, which reduces the finite pixel errors and leads to an improved signal to noise ratio. 100 refs.

  17. Epithelioid sarcoma with muscle metastasis detected by positron emission tomography

    Directory of Open Access Journals (Sweden)

    Oya Masafumi

    2008-08-01

    Full Text Available Abstract Background Epithelioid sarcoma is an uncommon high-grade sarcoma, mostly involving the extremities. Case presentation A 33-year-old man was referred to our institute with a diagnosis of Volkmann's contracture with the symptom of flexion contracture of the fingers associated with swelling in his left forearm. Magnetic resonance imaging (MRI showed abnormal signal intensity, comprising iso-signal intensity on T1- and high-signal intensity on T2-weighted images surrounding the flexor tendons in the forearm. Diagnosis of epithelioid sarcoma was made by open biopsy, and amputation at the upper arm was then undertaken. [18F]-2-fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET detected multiple lesions with an increased uptake in the right neck, the bilateral upper arms and the right thigh, as well as in the left axillary lymph nodes, with maximum standardized uptake value (SUVmax ranging from 2.0 to 5.5 g/ml. Magnetic resonance imaging confirmed that there was a lesion within the right thigh muscle which was suggestive of metastasis, even though the lesion was occult clinically. Conclusion Increased uptake on FDG-PET might be representative of epithelioid sarcoma, and for this reason FDG-PET may be useful for detecting metastasis. Muscle metastasis is not well documented in epithelioid sarcoma. Accordingly, the frequency of muscle metastasis, including occult metastasis, needs to be further analyzed.

  18. Quantifying the limitations of small animal positron emission tomography

    Science.gov (United States)

    Oxley, D. C.; Boston, A. J.; Boston, H. C.; Cooper, R. J.; Cresswell, J. R.; Grint, A. N.; Nolan, P. J.; Scraggs, D. P.; Lazarus, I. H.; Beveridge, T. E.

    2009-06-01

    The application of position sensitive semiconductor detectors in medical imaging is a field of global research interest. The Monte-Carlo simulation toolkit GEANT4 [ http://geant4.web.cern.ch/geant4/] was employed to improve the understanding of detailed γ-ray interactions within the small animal Positron Emission Tomography (PET), high-purity germanium (HPGe) imaging system, SmartPET [A.J. Boston, et al., Oral contribution, ANL, Chicago, USA, 2006]. This system has shown promising results in the field of PET [R.J. Cooper, et al., Nucl. Instr. and Meth. A (2009), accepted for publication] and Compton camera imaging [J.E. Gillam, et al., Nucl. Instr. and Meth. A 579 (2007) 76]. Images for a selection of single and multiple point, line and phantom sources were successfully reconstructed using both a filtered-back-projection (FBP) [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007] and an iterative reconstruction algorithm [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007]. Simulated data were exploited as an alternative route to a reconstructed image allowing full quantification of the image distortions introduced in each phase of the data processing. Quantifying the contribution of uncertainty in all system components from detector to reconstruction algorithm allows the areas in need of most attention on the SmartPET project and semiconductor PET to be addressed.

  19. Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, M.S.; Wu, J.; Haier, R.; Hazlett, E.; Ball, R.; Katz, M.; Sokolski, K.; Lagunas-Solar, M.; Langer, D.

    1987-06-22

    Patients with generalized anxiety disorder (n = 18) entered a 21-day, double-blind, placebo-controlled random assignment trial of clorazepate. Positron emission tomography with YF-deoxyglucose was carried out before and after treatment. Decreases in glucose metabolic rate in visual cortex and relative increases in the basal ganglia and thalamus were found. A correlation between regional changes in metabolic rate and regional benzodiazepine receptor binding density from other human autopsy studies was observed; brain regions highest in receptor density showed the greatest decrease in rate.

  20. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both ...

  1. Estimation of intersubject variability of cerebral blood flow measurements using MRI and positron emission tomography

    DEFF Research Database (Denmark)

    Henriksen, Otto Mølby; Larsson, Henrik B W; Hansen, Adam E

    2012-01-01

    PURPOSE: To investigate the within and between subject variability of quantitative cerebral blood flow (CBF) measurements in normal subjects using various MRI techniques and positron emission tomography (PET). MATERIALS AND METHODS: Repeated CBF measurements were performed in 17 healthy, young...

  2. Readout of scintillator light with avalanche photodiodes for positron emission tomography

    CERN Document Server

    Chen, R; Tavernier, Stefaan; Bruyndonckx, P; Clément, D; Loude, J F; Morel, Christian

    1999-01-01

    The noise properties and other relevant characteristics of avalanche photodiodes have been investigated with the perspective of replacing photomultiplier tubes in positron emission tomography. It is clearly demonstrated that they are a valid alternative to photomultiplier tubes in this application.

  3. Imaging prostate cancer: an update on positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Turkbey, Baris; Choyke, Peter

    2010-01-01

    , and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI...

  4. Positron emission tomography: labelling with fluorine 18; Tomographie par emission de positons: les possibilites de marquage au fluor 18

    Energy Technology Data Exchange (ETDEWEB)

    Le Bars, D. [Cermep Imagerie du Vivant, 69 - Lyon (France)

    2005-04-15

    Fluorine 18 labelling of biological molecules leads to radiopharmaceuticals for positron emission tomography. besides [{sup 18}F]F.D.G., various chemical reactions enable development of new tracers. (author)

  5. Recommendations for measurement of tumour vascularity with positron emission tomography in early phase clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Aboagye, Eric O.; Kenny, Laura M.; Myers, Melvyn [Imperial College London, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Gilbert, Fiona J. [University of Cambridge, Radiology Department, Cambridge (United Kingdom); Fleming, Ian N. [University of Aberdeen, NCRI PET Research Network, Aberdeen Bioimaging Centre, Aberdeen (United Kingdom); Beer, Ambros J. [Technische Universitaet Munchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany); Cunningham, Vincent J. [University of Aberdeen, Institute of Medical Sciences, Aberdeen (United Kingdom); Marsden, Paul K. [St. Thomas' Hospital, Division of Imaging Sciences, PET Imaging Centre, London (United Kingdom); Visvikis, Dimitris [INSERM National Institute of Health and Clinical Sciences LaTIM, CHU Morvan, Brest (France); Gee, Antony D. [St. Thomas' Hospital, Division of Imaging Sciences, The Rayne Institute, London (United Kingdom); Groves, Ashley M. [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Cook, Gary J. [St. Thomas' Hospital, KCL Division of Imaging, Sciences and Biomedical Engineering, PET Imaging Centre, London (United Kingdom); Kinahan, Paul E. [University of Washington, 222 Old Fisheries Center (FIS), Box 357987, Seattle, WA (United States); Clarke, Larry [Cancer Imaging Program, Imaging Technology Development Branch, Rockville, MD (United States)

    2012-07-15

    The evaluation of drug pharmacodynamics and early tumour response are integral to current clinical trials of novel cancer therapeutics to explain or predict long term clinical benefit or to confirm dose selection. Tumour vascularity assessment by positron emission tomography could be viewed as a generic pharmacodynamic endpoint or tool for monitoring response to treatment. This review discusses methods for semi-quantitative and quantitative assessment of tumour vascularity. The radioligands and radiotracers range from direct physiological functional tracers like [{sup 15}O]-water to macromolecular probes targeting integrin receptors expressed on neovasculature. Finally we make recommendations on ways to incorporate such measurements of tumour vascularity into early clinical trials of novel therapeutics. (orig.)

  6. Physiologic positron emission tomography/CT imaging of an integrated orbital implant.

    Science.gov (United States)

    Graue, Gerardo F; Finger, Paul T

    2012-01-01

    A 46-year-old woman with a T4N0M0 choroidal melanoma was staged for metastatic disease with whole-body positron emission tomography/CT imaging. She underwent enucleation of the right eye and placement of a 20-mm MEDPOR spherical implant. Four months after surgery, follow-up positron emission tomography/CT imaging revealed physiologic metabolic activity in the MEDPOR implant with no evidence of orbital melanoma or chronic inflammation.

  7. Assessment of Cancer-Associated Biomarkers by Positron Emission Tomography: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    T. Lee Collier

    2002-01-01

    Full Text Available Positron emission tomography (PET provides a powerful means to non-invasively image and quantify protein expression and biochemical changes in living subjects at nano- and picomolar levels. As the field of molecular imaging develops, and as advances in the biochemistry, pharmacology, therapeutics, and molecular biology of disease are made, there is a corresponding increase in the number of clinically relevant, novel disease-associated biomarkers that are brought to the attention of those developing imaging probes for PET. In addition, due to the high specificity of the PET radiotracers being developed, there is a demand for PET cameras with higher sensitivity and resolution. This manuscript reviews advances over the past five years in clinical and pre-clinical PET instrumentation and in new PET probes and imaging methods associated with the latest trends in the molecular imaging of cancer. Included in the PET tracer review is a description of new radioligands for steroid receptors, growth factor receptors, receptor tyrosine kinases, sigma receptors, tumor-associated enzymes, gene reporter probes, markers for tumor hypoxia and metabolism, and sites associated with angiogenesis and cellular proliferation. The use of PET imaging in drug development, including the monitoring of cancer chemotherapy, also is discussed.

  8. 3D fast reconstruction in positron emission tomography; Reconstrucao 3D rapida em tomografia por emissao de positrons

    Energy Technology Data Exchange (ETDEWEB)

    Egger, M.L. [Sao Paulo Univ., SP (Brazil). Instituto do Coracao. Div. de Informatica; Scheurer, A. Hermann; Joseph, C. [Lausanne Univ. (Switzerland). Inst. de Physique Nucleaire; Morel, C. [Geneva Univ. (Switzerland). Hospital. Div. of Nuclear Medicine

    1996-12-31

    The issue of long reconstruction times in positron emission tomography (PET) has been addressed from several points of view, resulting in an affordable dedicated system capable of handling routine 3D reconstructions in a few minutes per frame : on the hardware side using fast processors and a parallel architecture, and on the software side, using efficient implementation of computationally less intensive algorithms 6 refs., 2 figs., 1 tab.

  9. Teflon laryngeal granuloma presenting as laryngeal cancer on combined positron emission tomography and computed tomography scanning.

    Science.gov (United States)

    Ondik, M P; Kang, J; Bayerl, M G; Bruno, M; Goldenberg, D

    2009-05-01

    Positron emission tomography with 18F-fluorodeoxyglucose (18FDG) has been increasingly used in the diagnostic investigation of patients with neoplasms of the head and neck. Positron emission tomography and computed tomography have also proven useful for surveillance of thyroid cancers that no longer concentrate radioiodine. However, certain benign or inflammatory lesions can also accumulate 18F-fluorodeoxyglucose and lead to misdiagnosis. We review and discuss the pitfalls of using positron emission tomography and computed tomography for surveillance of thyroid cancer. We present the case of a 48-year-old woman who was diagnosed with a laryngeal neoplasm on integrated positron emission tomography and computed tomography scanning, after a routine ultrasound demonstrated an enlarged thyroid nodule. On physical examination, she had a laryngeal mass overlying an immobile vocal fold. The mass was biopsied and found to harbour a Teflon granuloma. Positron emission tomography positive Teflon granulomas have previously been reported in the nasopharynx and vocal folds, and should be considered in the differential diagnosis of patients who have undergone prior surgery involving Teflon injection. It is important for otolaryngologists and radiologists to recognise potential causes of false positive positron emission tomography and computed tomography findings, including Teflon granulomas.

  10. In vivo imaging of therapy response to a novel Pan-HER antibody mixture using FDG and FLT positron emission tomography

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Jensen, Mette M; Kristensen, Lotte K

    2015-01-01

    against either EGFR (HER1), HER2, HER3 or all three receptors combined by Pan-HER. Small animal positron emission tomography/computed tomography (PET/CT) with 2'-deoxy-2'-[18F]fluoro-D-glucose (FDG) and 3'-deoxy-3'-[18F]fluorothymidine (FLT) was performed at baseline and at day 1 or 2 after initiation...

  11. Effect of tissue heterogeneity on quantification in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, G. [Dept. of Clinical Neuroscience, Experimental Alcohol and Drug Addiction Research Section, Karolinska Hospital, Stockholm (Sweden); Lammertsma, A.A. [PET Methodology Group, Cyclotron Unit, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom); Mazoyer, B. [Service Hospitalier Frederic Joliot CEA/Dept. de Biologie, Hopital d`Orsay and Antenne d`Informatique Medicale, Hopital Robert Debre, Paris (France); Wienhard, K. [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-07-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR{sub glc} in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k{sub 2} and k{sub 3} for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k{sub on}.B{sub max} could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B{sub max} was found to be insensitive while K{sub d} was very sensitive to tissue heterogeneity. (orig.)

  12. Alcohol ADME in primates studied with positron emission tomography.

    Directory of Open Access Journals (Sweden)

    Zizhong Li

    Full Text Available The sensitivity to the intoxicating effects of alcohol as well as its adverse medical consequences differ markedly among individuals, which reflects in part differences in alcohol's absorption, distribution, metabolism, and elimination (ADME properties. The ADME of alcohol in the body and its relationship with alcohol's brain bioavailability, however, is not well understood.The ADME of C-11 labeled alcohol, CH(3 (11CH(2OH, 1 and C-11 and deuterium dual labeled alcohol, CH(3 (11CD(2OH, 2 in baboons was compared based on the principle that C-D bond is stronger than C-H bond, thus the reaction is slower if C-D bond breaking occurs in a rate-determining metabolic step. The following ADME parameters in peripheral organs and brain were derived from time activity curve (TAC of positron emission tomography (PET scans: peak uptake (C(max; peak uptake time (T(max, half-life of peak uptake (T(1/2, the area under the curve (AUC(60 min, and the residue uptake (C(60 min.For 1 the highest uptake occurred in the kidney whereas for 2 it occurred in the liver. A deuterium isotope effect was observed in the kidneys in both animals studied and in the liver of one animal but not the other. The highest uptake for 1 and 2 in the brain was in striatum and cerebellum but 2 had higher uptake than 1 in all brain regions most evidently in thalamus and cingulate. Alcohol's brain uptake was significantly higher when given intravenously than when given orally and also when the animal was pretreated with a pharmacological dose of alcohol.The study shows that alcohol metabolism in peripheral organs had a large effect on alcohol's brain bioavailability. This study sets the stage for clinical investigation on how genetics, gender and alcohol abuse affect alcohol's ADME and its relationship to intoxication and medical consequences.

  13. Methods and clinical applications of positron emission tomography in endocrinology. Methodologie et applications cliniques en endocrinologie de la tomographie a emission de positons

    Energy Technology Data Exchange (ETDEWEB)

    Landsheere, C. de; Lamotte, D. (Liege Univ. (BE))

    1990-01-01

    Positron emission tomography (PET) allows to detect in coincidence photons issued from annihilation between positrons and electrons nearby situated. Tomographic detection (plane by plane) and tomographic reconstruction will lead to the quantitation of radioactive distribution per voxel, in the organ of interest. Recent tomographs can acquire simultaneously several transaxial slices, with a high sensitivity and a spatial resolution of 3-5 mm. Commonly used positron emitters have a short half-life: 2, 10, 20 and 110 min for {sup 15}0, {sup 13}N, {sup 11}C and {sup 18}F, respectively. The use of these isotopes requires on line production of radionuclides and synthesis of selected molecules. In endocrinology, PET allows among others to study noninvasively the receptor density of hormonodependent neoplasms such as breast, uterus, prostate tumors and prolactinomas. These last tumors represent a particular entity because of several combined characteristics: high turnover rate of amino acids, high density of dopaminergic receptors and response to bromocriptine (analogue of dopamine inhibiting the secretion of prolactine) in relation to the level of receptors. Because PET permits to evaluate the density of dopaminergic receptors and the metabolism of amino acids, theoretical response of the prolactinoma to bromocriptin can be predicted, the achieved therapeutic efficacy can be estimated and the long-term follow up of tumor growth can be assessed. This example illustrates the clinical value of PET in endocrinology.

  14. Ga-68 DOTATATE positron emission tomography/computer tomography in initial staging and therapy response evaluation in a rare case of primary neuroblastoma in neck.

    Science.gov (United States)

    Agrawal, Kanhaiyalal; Kumar, Ritesh; Shukla, Jaya; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2014-07-01

    Gallium-68 (Ga-68) DOTA-peptide positron emission tomography/computer tomography (PET/CT) has higher sensitivity and improved spatial resolution for the detection of somatostatin receptor expressing tumors than conventional somatostatin receptor scintigraphy. We present the findings of Ga-68 DOTATATE PET/CT in a rare case of primary neuroblastoma of the neck in a 12-year-old female child and its role in the evaluation of the treatment response.

  15. Ga-68 DOTATATE positron emission tomography/computer tomography in initial staging and therapy response evaluation in a rare case of primary neuroblastoma in neck

    OpenAIRE

    Agrawal, Kanhaiyalal; Kumar, Ritesh; Shukla, Jaya; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2014-01-01

    Gallium-68 (Ga-68) DOTA-peptide positron emission tomography/computer tomography (PET/CT) has higher sensitivity and improved spatial resolution for the detection of somatostatin receptor expressing tumors than conventional somatostatin receptor scintigraphy. We present the findings of Ga-68 DOTATATE PET/CT in a rare case of primary neuroblastoma of the neck in a 12-year-old female child and its role in the evaluation of the treatment response.

  16. Intraoperative Imaging of Positron Emission Tomographic Radiotracers Using Cerenkov Luminescence Emissions

    Directory of Open Access Journals (Sweden)

    Jason P. Holland

    2011-05-01

    Full Text Available Imaging the location and extent of cancer provides invaluable information before, during, and after surgery. The majority of “image-guided” methods that use, for example, positron emission tomography (PET involve preoperative imaging and do not provide real-time information during surgery. It is now well established that the inherent optical emissions (Cerenkov radiation from various β-emitting radionuclides can be visualized by Cerenkov luminescence imaging (CLI. Here we report the full characterization of CLI using the positron-emitting radiotracer 89Zr-DFO-trastuzumab for target-specific, quantitative imaging of HER2/neu-positive tumors in vivo. We also provide the first demonstration of the feasibility of using CLI for true image-guided, intraoperative surgical resection of tumors. Analysis of optical CLIs provided accurate, quantitative information on radiotracer biodistribution and tissue uptake that correlated well with the concordant PET images. CLI, PET, and biodistribution studies revealed target-specific uptake of 89Zr-DFO-trastuzumab in BT-474 (HER2/neu positive versus MDA-MB-468 (HER2/neu negative xenografts in the same mice. Competitive inhibition (blocking studies followed by CLI also confirmed the in vivo immunoreactivity and specificity of 89Zr-DFO-trastuzumab for HER2/neu. Overall, these results strongly support the continued development of CLI as a preclinical and possible clinical tool for use in molecular imaging and surgical procedures for accurately defining tumor margins.

  17. Positron emission tomography molecular imaging of dopaminergic system in drug addiction.

    Science.gov (United States)

    Hou, Haifeng; Tian, Mei; Zhang, Hong

    2012-05-01

    Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.

  18. Radiolabelled molecules for imaging the translocator protein (18 kDa) using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dolle, F.; Luus, C.; Reynolds, A.; Kassiou, M. [CEA, Institut d' Imagerie BioMedicale, Service Hospitalier Frederic Joliot, Orsay (France)

    2009-07-01

    The translocator protein (18 kDa) (TSPO), formerly known as the peripheral benzodiazepine receptor (PBR), was originally identified as an alternate binding site for the central benzodiazepine receptor (CBR) ligand, diazepam, in the periphery, but has now been distinguished as a novel site. The TSPO is ubiquitously expressed in peripheral tissues but only minimally in the healthy brain and increased levels of TSPO expression have been noted in neuro inflammatory conditions such as Alzheimer's disease, Parkinson's disease and stroke. This increase in TSPO expression has been reported to coincide with the process of micro-glial activation, whereby the brain's intrinsic immune system becomes active. Therefore, by using recently developed high affinity, selective TSPO ligands in conjunction with functional imaging modalities such as positron emission tomography (PET), it becomes possible to study the process of micro-glial activation in the living brain. A number of high affinity ligands, the majority of which are C, N-substituted acetamide derivatives, have been successfully radiolabelled and used in in vivo studies of the TSPO and the process of micro-glial activation. This review highlights recent achievements (up to December 2008) in the field of functional imaging of the TSPO as well as the radio-syntheses involved in such studies. (authors)

  19. Bilateral diffuse fluorodeoxyglucose uptake in thyroid gland diagnosed by fluorodeoxyglucose-positron emission tomography/computed tomography.

    Science.gov (United States)

    Win, Aung Zaw; Aparici, Carina Mari

    2014-05-01

    Our patient is a female who was first diagnosed with breast cancer at the age of 23. A follow-up fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) at age 44 revealed diffuse high FDG uptake in an enlarged thyroid gland. Fine-needle aspiration (FNA) of the thyroid mass revealed estrogen receptor/progesterone receptor negative, human epidermal growth factor receptor 2+ breast cancer. To the best of our knowledge, this is the first case to report breast cancer metastasis to the thyroid in a diffuse pattern on FDG-PET/CT. Bilateral diffuse uptake of FDG in thyroid is the most commonly associated with benign conditions. However, FNA biopsies need to be done to rule out metastatic disease in thyroid lesions with diffuse high FDG uptake, especially for patients with history of cancer.

  20. Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET Imaging Using GEANT4 Toolkit

    Directory of Open Access Journals (Sweden)

    Mohsen Mashayekhi

    2015-05-01

    Full Text Available Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET. In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEANT4 toolkit was used to simulate the transport and interactions of positrons. Calculations were performed for the soft tissue phantom (8 mm ×8 mm × 8 mm. Positrons were emitted isotropically from the center of the phantom. By the application of a magnetic field perpendicular to the path of positrons, lateral scattering of positrons could be prevented due to Lorentz force. When the positron energy was below the cut-off threshold (0.001 MeV, the simulation was terminated. Results The findings showed that the presence of a magnetic field increased the rate of positron annihilation. At magnetic field strengths of 3, 7, and 10 Tesla, 18F with the lowest decay energy showed improvements in the ratio of full width at half maximum (FWHM resolution to the peak of curve by 3.64%, 3.89%, and 5.96%, respectively. In addition, at magnetic field strengths of 3, 7 and 10 Tesla, 82Rb with the highest decay energy showed improvements in resolution by 33%, 85%, and 99%, respectively. Conclusion Application of a magnetic field perpendicular to the positron diffusion plane prevented the scattering of positrons, and consequently, improved the intrinsic spatial resolution of PET imaging, caused by positron range effects.

  1. Fluorodeoxyglucose and C-Choline positron emission tomography for distinction of metastatic plexopathy and neuritis : a case report

    NARCIS (Netherlands)

    Bartels, Anna L.; Zeebregts, Clark J; Enting, Roeline; Slart, Riemer Hja

    2009-01-01

    INTRODUCTION: Fluorodeoxyglucose positron emission tomography scanning has an established role in the diagnostic work-up of many malignant diseases and also in the evaluation of cancer treatment response. Fluorodeoxyglucose positron emission tomography may, however be non-specific as infectious

  2. Positron emission tomography/computed tomography for optimized colon cancer staging and follow up

    DEFF Research Database (Denmark)

    Engelmann, Bodil Elisabeth; Loft, Annika; Kjær, Andreas

    2014-01-01

    OBJECTIVES: Optimal management of colon cancer (CC) requires detailed assessment of extent of disease. This study prospectively investigates the diagnostic accuracy of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (PET/CT) for staging and detection of recurrence...

  3. Positron Emission Tomography Methods with Potential for Increased Understanding of Mental Retardation and Developmental Disabilities

    Science.gov (United States)

    Sundaram, Senthil K.; Chugani, Harry T.; Chugani, Diane C.

    2005-01-01

    Positron emission tomography (PET) is a technique that enables imaging of the distribution of radiolabeled tracers designed to track biochemical and molecular processes in the body after intravenous injection or inhalation. New strategies for the use of radiolabeled tracers hold potential for imaging gene expression in the brain during development…

  4. Positron emission tomography for serial imaging of the contused adult rat spinal cord.

    NARCIS (Netherlands)

    Nandoe, R.D.S.; Yu, J.; Seidel, J.; Rahiem, S.T.; Hurtado, A.; Tsui, B.M.; Grotenhuis, J.A.; Pomper, M.G.; Oudega, M.

    2010-01-01

    We investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was

  5. Fluorine-18-fluorodeoxyglucose Positron Emission Tomography in Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Mylam, Karen Juul; Nielsen, Anne Lerberg; Pedersen, Lars Møller

    2014-01-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive and potentially curable type of lymphoma. Fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET) is part of clinical routine for DLBCL in most hospitals and also recommended for staging and end-of-therapy evaluation. FDG......-PET assessment methods and the clinical application of FDG-PET for management of DLBCL....

  6. Positron emission tomography-computed tomography has a clinical impact for patients with cervical cancer

    DEFF Research Database (Denmark)

    Sandvik, Rikke Mulvad; Jensen, Pernille Tine; Hendel, Helle W

    2011-01-01

    Many studies have found that positron emission tomography-computed tomography (PET-CT) has a high sensitivity and specificity in the identification of metastasis in cervical cancer. Herlev Hospital, Denmark, has been performing PET-CTs in stage I-IV cervical cancer since 1 May 2006. The present...

  7. 77 FR 8262 - Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs...

    Science.gov (United States)

    2012-02-14

    ... HUMAN SERVICES Food and Drug Administration Draft Guidance on Investigational New Drug Applications for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a draft guidance...

  8. 76 FR 47593 - Guidance for Small Business Entities on Current Good Manufacturing Practice for Positron Emission...

    Science.gov (United States)

    2011-08-05

    ... a guidance for small business entities entitled ``PET Drugs--Current Good Manufacturing Practice... entitled ``PET Drugs--Current Good Manufacturing Practice (CGMP); Small Entity Compliance Guide.'' This... Manufacturing Practice for Positron Emission Tomography Drugs; Availability AGENCY: Food and Drug Administration...

  9. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes.

  10. Positron Emission Tomography and Magnetic Resonance Imaging of the Brain in Fabry Disease

    DEFF Research Database (Denmark)

    Korsholm, Kirsten; Feldt-Rasmussen, Ulla; Granqvist, Henrik

    2015-01-01

    risk of cerebrovascular disease at a young age in addition to heart and kidney failure. OBJECTIVE: The objective of this study was to assess brain function and structure in the Danish cohort of patients with Fabry disease in a prospective way using 18-fluoro-deoxyglucose (F-18 FDG) positron emission...

  11. Detection of unknown primary head and neck tumors by positron emission tomography

    NARCIS (Netherlands)

    Braams, JW; Pruim, J; Kole, AC; Nikkels, PGJ; Vaalburg, W; Vermey, A; Roodenburg, JLN

    The purpose of this study was to investigate the potential of using positron emission tomography (PET) with F-18-labeled fluoro-2-deoxy-D-glucose (FDG) to detect unknown primary tumors of cervical metastases. Thirteen patients with various histologic types of cervical metastases of unknown primary

  12. Small animal positron emission tomography imaging and in vivo studies of atherosclerosis

    DEFF Research Database (Denmark)

    Hag, Anne Mette Fisker; Ripa, Rasmus Sejersten; Pedersen, Sune Folke

    2013-01-01

    Atherosclerosis is a growing health challenge globally, and despite our knowledge of the disease has increased over the last couple of decades, many unanswered questions remain. As molecular imaging can be used to visualize, characterize and measure biological processes at the molecular and cellu...... knowledge obtained from in vivo positron emission tomography studies of atherosclerosis performed in small animals....

  13. Preoperative staging of non-small-cell lung cancer with positron-emission tomography.

    NARCIS (Netherlands)

    Pieterman, RM; van Putten, JWG; Meuzelaar, JJ; Mooyaart, EL; Vaalburg, W; Koeter, GH; Fidler, [No Value; Pruim, J; Groen, HJM

    2000-01-01

    Background: Determining the stage of non-small-cell lung cancer often requires multiple preoperative tests and invasive procedures. Whole-body positron-emission tomography (PET) may simplify and improve the evaluation of patients with this tumor. Methods: We prospectively compared the ability of a

  14. Visualization of prostate cancer with C-11-choline positron emission tomography

    NARCIS (Netherlands)

    de Jong, IJ; Pruim, J; Elsinga, PH; Vaalburg, W; Mensink, HJA

    Background and Objective: Visualization of prostate cancer with positron emission tomography (PET) using 2-[F-18]2-deoxy-D-glucose (FDG) as radiopharmaceutical is limited by the low uptake of FDG in the tumor and by radioactivity excreted into the bladder. More specific PET radiopharmaceuticals

  15. Synthesis of ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C)methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15. 1788-/sup 11/C): a specific radioligand for the in vivo study of central benzodiazepine receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Maziere, M.; Hantraye, P.; Prenant, C.; Sastre, J.; Comar, D. (CEA, 91 - Orsay (France). Service Hospitalier Frederic Joliot)

    1984-10-01

    A method of labelling ethyl 8-fluoro-5,6-dihydro-5-(/sup 11/C) methyl-6-oxo-4H-imidazo(1,5-a)(1,4)benzodiazepine-3-carboxylate (RO 15.1788 /sup 11/C), a benzodiazepine antagonist with carbon-11 has been developed. RO 15.1788-/sup 11/C was prepared by methylation of the nor derivative by I/sup 11/CH/sub 3/. About 100 mCi (maximum 153 mCi, 5.66 GBq) of the chemically and radiochemically pure labelled product were obtained within 25 min with a specific activity on average of 1100 mCi/..mu.. mol (maximum 1740 mCi/..mu..mol-64.4 GBq/..mu..mol). Preliminary results obtained after i.v. administration in the baboon have shown RO 15.1788-/sup 11/C to be of interest as a benzodiazepine radioligand for the in vivo study of benzodiazepine receptors by positron emission tomography.

  16. The Rate and Clinical Significance of Incidental Thyroid Uptake as Detected by Gallium-68 DOTATATE Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Nockel, Pavel; Millo, Corina; Keutgen, Xavier; Klubo-Gwiezdzinska, Joanna; Shell, Jasmine; Patel, Dhaval; Nilubol, Naris; Herscovitch, Peter; Sadowski, Samira M.; Kebebew, Electron

    2016-01-01

    Background: Gallium-68 (Ga-68) DOTATATE is a radiolabeled peptide���imaging modality that targets the somatostatin receptor (SSTR), especially subtype 2 (SSTR2). Benign and malignant thyroid tumors have been observed to express SSTR. The aim of this study was to evaluate the frequency and clinical significance of incidental atypical thyroid uptake as detected by Ga-68 DOTATATE positron emission tomography/computed tomography (PET/CT).

  17. What have positron emission tomography and 'Zippy' told us about the neuropharmacology of drug addiction?

    Science.gov (United States)

    Cumming, Paul; Caprioli, Daniele; Dalley, Jeffrey W

    2011-08-01

    Translational molecular imaging with positron emission tomography (PET) and allied technologies offer unrivalled applications in the discovery of biomarkers and aetiological mechanisms relevant to human disease. Foremost among clinical PET findings during the past two decades of addiction research is the seminal discovery of reduced dopamine D(2/3) receptor expression in the striatum of drug addicts, which could indicate a predisposing factor and/or compensatory reaction to the chronic abuse of stimulant drugs. In parallel, recent years have witnessed significant improvements in the performance of small animal tomographs (microPET) and a refinement of animal models of addiction based on clinically relevant diagnostic criteria. This review surveys the utility of PET in the elucidation of neuropharmacological mechanisms underlying drug addiction. It considers the consequences of chronic drug exposure on regional brain metabolism and neurotransmitter function and identifies those areas where further research is needed, especially concerning the implementation of PET tracers targeting neurotransmitter systems other than dopamine, which increasingly have been implicated in the pathophysiology of drug addiction. In addition, this review considers the causal effects of behavioural traits such as impulsivity and novelty/sensation-seeking on the emergence of compulsive drug-taking. Previous research indicates that spontaneously high-impulsive rats--as exemplified by 'Zippy'--are pre-disposed to escalate intravenous cocaine self-administration, and subsequently to develop compulsive drug taking tendencies that endure despite concurrent adverse consequences of such behaviour, just as in human addiction. The discovery using microPET of pre-existing differences in dopamine D(2/3) receptor expression in the striatum of high-impulsive rats suggests a neural endophenotype that may likewise pre-dispose to stimulant addiction in humans. © 2011 The Authors. British Journal of

  18. Glycine transporter type 1 occupancy by bitopertin: a positron emission tomography study in healthy volunteers.

    Science.gov (United States)

    Martin-Facklam, Meret; Pizzagalli, Flavia; Zhou, Yun; Ostrowitzki, Susanne; Raymont, Vanessa; Brašić, James R; Parkar, Nikhat; Umbricht, Daniel; Dannals, Robert F; Goldwater, Ron; Wong, Dean F

    2013-02-01

    Deficient N-methyl-D-aspartate (NMDA) receptor transmission is thought to underlie schizophrenia. An approach for normalizing glutamate neurotransmission by enhancing NMDA receptor transmission is to increase glycine availability by inhibiting the glycine transporter type 1 (GlyT1). This study investigated the relationship between the plasma concentration of the glycine reuptake inhibitor bitopertin (RG1678) and brain GlyT1 occupancy. Healthy male volunteers received up to 175 mg bitopertin once daily, for 10-12 days. Three positron emission tomography scans, preceded by a single intravenous infusion of ∼30 mCi [(11)C]RO5013853, were performed: at baseline, on the last day of bitopertin treatment, and 2 days after drug discontinuation. Eighteen subjects were enrolled. At baseline, regional volume of distribution (V(T)) values were highest in the pons, thalamus, and cerebellum (1.7-2.7 ml/cm(3)) and lowest in cortical areas (∼0.8 ml/cm(3)). V(T) values were reduced to a homogeneous level following administration of 175 mg bitopertin. Occupancy values derived by a two-tissue five-parameter (2T5P) model, a simplified reference tissue model (SRTM), and a pseudoreference tissue model (PRTM) were overall comparable. At steady state, the relationship between bitopertin plasma concentration and GlyT1 occupancy derived by the 2T5P model, SRTM, and PRTM exhibited an EC(50) of ∼190, ∼200, and ∼130 ng/ml, respectively. E(max) was ∼92% independently of the model used. Bitopertin plasma concentration was a reliable predictor of occupancy because the concentration-occupancy relationship was superimposable at steady state and 2 days after drug discontinuation. These data allow understanding of the concentration-occupancy-efficacy relationship of bitopertin and support dose selection of future molecules.

  19. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems.

    Science.gov (United States)

    Vaquero, Juan José; Kinahan, Paul

    2015-01-01

    Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.

  20. Positron-emissionstomografisk kortlaegning af den levende menneskehjernes receptorer

    DEFF Research Database (Denmark)

    Gjedde, A

    2001-01-01

    tracers are used in diseases of the basal ganglia, whereas serotonin, benzodiazepine, and opiate tracers are used in lesions of the cerebral cortex. PET has revealed loss of dopaminergic terminals and dopamine synthetic capacity in Parkinson's disease, MPTP intoxication, and Lesch-Nyhan's syndrome...... receptors in Alzheimer's disease, and benzodiazepine and opiate receptors in stroke, epilepsy, and Huntington's chorea; altered opiate receptors in chronic pain and drug abuse; and release of opiates in analgesia; but changes in serotonin synthesis, transport, and binding in affective or psychotic disorders...

  1. [Positron-emission tomography (PET)--basic considerations].

    Science.gov (United States)

    von Schulthess, G K; Westera, G; Schubiger, P A

    1993-08-24

    A PET installation is a technically complex system composed essentially of two parts. The first consists in isotope production and synthesis of labeled biochemical compounds, the second in measuring the distribution of radioactivity in the body with the PET camera and the generation of image data. The specific advantage of PET lies on one hand in the use of positron emitters that are isotopes of ubiquitous elements in biologic matter, i.e. exact analogs of biomolecules can be produced and utilized and on the other hand quantification is possible. (= enable quantitative...?) Theoretically there are no limits for the synthesis of radioactive compounds and the method therefore provides unlimited test designs. The short half-life of the employed isotopes is advantageous for radioprotection reasons but the production of labeled compounds necessitates a cyclotron accelerator and a special laboratory for the handling of radioactive compounds rendering the production of the test substances relatively expensive. Measurements take place in a PET camera with a large number of coincidence detectors. The best available cameras have a spatial resolution of 5 mm in all three axes with an axial window of about 15 cm diameter. Evaluation of PET images is done in a qualitative way by superposition on anatomic images (CT, MRI) by image fusion. Quantitative determinations require elaborate computer modeling.

  2. Cardiac investigations with positron emission tomography;Les examens cardiaques en tomographie par emission de positons

    Energy Technology Data Exchange (ETDEWEB)

    Marie, P.Y.; Djaballah, W.; Didot, N.; Karcher, G. [CHU de Nancy, Service de medecine nucleaire, hopital de Brabois, 54 - Vandoeuvre (France); Marie, P.Y.; Djaballah, W.; Didot, N.; Karcher, G. [Universite de Nancy, Faculte de medecine, 54 - Nancy (France); Marie, P.Y. [Inserm U961, 54 - Nancy (France); Djaballah, W. [Inserm U947, 54 - Nancy (France)

    2010-03-15

    Cardiac positron emission tomography (PET) is yet considered as a reference imaging technique but remains poorly used in clinical practice. At the present time, the advantages of cardiac PET investigations are far to be evident, when compared with conventional tomo-scintigraphy (SPECT), except for perfusion imaging in the obese and for viability assessment in case of very severe cardiac dysfunction. However, this situation might quickly move because of an enhanced availability of PET imaging, dramatic technical progresses and promising new tracers. In particular, the last-generation PET-cameras allow reaching spatial resolutions and detection sensitivities, which are now spectacularly higher than those from conventional SPECT imaging. In addition, the list mode recording allows the subsequent images reconstruction to be synchronized to cardiac cycle but also to respiratory cycle; and the quantifications of myocardial perfusion flow and of coronary flow reserve are now available in clinical routine. Furthermore, new tracers labelled with fluorine-18 are under development, especially for perfusion investigations, and kinetics properties of these new tracers are dramatically enhanced when compared with current perfusion SPECT tracers. (authors)

  3. Positron emission tomography in digestive neuroendocrine tumors: choice of the tracer; Apport de la tomographie par emission de positons dans les tumeurs endocrines digestives: choix du traceur

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, D.; Tessonnier, L.; Mundler, O. [Centre Hospitalo-Universitaire de La Timone, Service Central de Biophysique et de Medecine Nucleaire, 13 - Marseille (France)

    2009-11-15

    Digestive endocrine tumors represent a heterogeneous group of neoplasm sharing common characteristics such as their high density of peptide receptors, their ability to take up amino acids and de-carboxylate them into biogenic amines and their low glycolytic activity. These features are used for nuclear imaging targeting. To date, somatostatin receptor scintigraphy is considered the 'gold standard' imaging procedure of well-differentiated tumors. Despite the significant contribution of SPECT/CT, the use of positron emission tomography imaging (PET) is growing rapidly. Three PET imaging modalities are currently available: {sup 68}Ga-labeled somatostatin analogs PET, {sup 18}F-dihydroxy-phenylalanine PET ({sup 18}F-DOPA) and {sup 18}F-deoxyglucose PET ({sup 18}F-F.D.G.). This article focuses on the current targets of molecular imaging and highlights the potential clinical applications of new targets. (authors)

  4. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation.

    Science.gov (United States)

    Villeneuve, Sylvia; Rabinovici, Gil D; Cohn-Sheehy, Brendan I; Madison, Cindee; Ayakta, Nagehan; Ghosh, Pia M; La Joie, Renaud; Arthur-Bentil, Samia Kate; Vogel, Jacob W; Marks, Shawn M; Lehmann, Manja; Rosen, Howard J; Reed, Bruce; Olichney, John; Boxer, Adam L; Miller, Bruce L; Borys, Ewa; Jin, Lee-Way; Huang, Eric J; Grinberg, Lea T; DeCarli, Charles; Seeley, William W; Jagust, William

    2015-07-01

    Amyloid-β, a hallmark of Alzheimer's disease, begins accumulating up to two decades before the onset of dementia, and can be detected in vivo applying amyloid-β positron emission tomography tracers such as carbon-11-labelled Pittsburgh compound-B. A variety of thresholds have been applied in the literature to define Pittsburgh compound-B positron emission tomography positivity, but the ability of these thresholds to detect early amyloid-β deposition is unknown, and validation studies comparing Pittsburgh compound-B thresholds to post-mortem amyloid burden are lacking. In this study we first derived thresholds for amyloid positron emission tomography positivity using Pittsburgh compound-B positron emission tomography in 154 cognitively normal older adults with four complementary approaches: (i) reference values from a young control group aged between 20 and 30 years; (ii) a Gaussian mixture model that assigned each subject a probability of being amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B index uptake; (iii) a k-means cluster approach that clustered subjects into amyloid-β-positive or amyloid-β-negative based on Pittsburgh compound-B uptake in different brain regions (features); and (iv) an iterative voxel-based analysis that further explored the spatial pattern of early amyloid-β positron emission tomography signal. Next, we tested the sensitivity and specificity of the derived thresholds in 50 individuals who underwent Pittsburgh compound-B positron emission tomography during life and brain autopsy (mean time positron emission tomography to autopsy 3.1 ± 1.8 years). Amyloid at autopsy was classified using Consortium to Establish a Registry for Alzheimer's Disease (CERAD) criteria, unadjusted for age. The analytic approaches yielded low thresholds (standard uptake value ratiolow = 1.21, distribution volume ratiolow = 1.08) that represent the earliest detectable Pittsburgh compound-B signal, as well as high thresholds (standard

  5. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rumsey, J.M.; Duara, R.; Grady, C.; Rapoport, J.L.; Margolin, R.A.; Rapoport, S.I.; Cutler, N.R.

    1985-05-01

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic rates (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.

  6. A feature point identification method for positron emission particle tracking with multiple tracers

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Cody, E-mail: cwiggin2@vols.utk.edu [University of Tennessee-Knoxville, Department of Physics and Astronomy, 1408 Circle Drive, Knoxville, TN 37996 (United States); Santos, Roque [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States); Escuela Politécnica Nacional, Departamento de Ciencias Nucleares (Ecuador); Ruggles, Arthur [University of Tennessee-Knoxville, Department of Nuclear Engineering (United States)

    2017-01-21

    A novel detection algorithm for Positron Emission Particle Tracking (PEPT) with multiple tracers based on optical feature point identification (FPI) methods is presented. This new method, the FPI method, is compared to a previous multiple PEPT method via analyses of experimental and simulated data. The FPI method outperforms the older method in cases of large particle numbers and fine time resolution. Simulated data show the FPI method to be capable of identifying 100 particles at 0.5 mm average spatial error. Detection error is seen to vary with the inverse square root of the number of lines of response (LORs) used for detection and increases as particle separation decreases. - Highlights: • A new approach to positron emission particle tracking is presented. • Using optical feature point identification analogs, multiple particle tracking is achieved. • Method is compared to previous multiple particle method. • Accuracy and applicability of method is explored.

  7. Estrogen Sulfotransferase-Mediated Imaging with Positron Emission Tomography in Moyamoya Syndrome

    OpenAIRE

    Surmak, Andrew John

    2017-01-01

    Moyamoya syndrome presents a cerebrovascular pathology that progressively introduces chronic ischemia. The network of collateral vessels created in response to arterial stenosis causes hypoperfusion and stimulates inflammatory insults that jeopardize the brain. Within this study, we used positron emission tomography (PET) to image inflammatory responses in patients with moyamoya syndrome and present the first report of [11C]-PiB in moyamoya patients. [11C]-PiB has a high affinity for estrogen...

  8. An Application of Micro-channel Plate Photomultiplier Tube to Positron Emission Tomography

    OpenAIRE

    Kim, H.; Chen, C. -T.; Frisch, H.; Tang, F.; Kao, C.-M.

    2012-01-01

    We are developing a Time-of-Flight Positron Emission Tomography detector using flat panel micro-channel plate photomultiplier tubes (MCP PMT). The high-speed waveform sampling data acquisition is adopted to exploit the fast time response of MCP PMT efficiently by using transmission-line readout scheme. To demonstrate the feasibility of the proposed detector, prototype detector modules were built using Photonis XP85022 MCP PMT, transmission-line board (TL), and high-speed waveform sampling ele...

  9. 18F-Labeling of Sensitive Biomolecules for Positron Emission Tomography

    Science.gov (United States)

    Krishnan, Hema S.; Ma, Longle; Vasdev, Neil; Liang, Steven H.

    2017-01-01

    Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via ‘direct’ or ‘indirect’ bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18F-labeling of biomolecules in PET imaging research studies are highlighted. PMID:28704575

  10. Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects

    OpenAIRE

    Karakatsanis, Nicolas A; Fokou, Eleni; Tsoumpas, Charalampos

    2015-01-01

    Positron emission tomography (PET) is widely used nowadays for tumor staging and therapy response in the clinic. However, average PET radiation exposure has increased due to higher PET utilization. This study aims to review state-of-the-art PET tracer dosage optimization methods after accounting for the effects of human body attenuation and scan protocol parameters on the counting rate. In particular, the relationship between the noise equivalent count rate (NECR) and the dosage (NECR-dosage ...

  11. Dynamic positron emission tomography in man using small bismuth germanate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  12. Oscillator based analog to digital converters applied for charge based radiation detectors in positron emission tomography

    OpenAIRE

    Völker, M.

    2014-01-01

    This thesis presents the development of a readout strategy and a front-end for radiation detectors especially adapted for positron emission tomography. The developed front-end is optimized for the implementation in modern CMOS technologies. On one hand, most of the signal processing is transferred into the digital domain to benefit from the high digital integration density. On the other hand, the circuits have to be robust against cross-talk and power supply noise. Low-power design methods ar...

  13. Usefulness of myocardial positron emission tomography/nuclear imaging in Takotsubo cardiomyopathy.

    Science.gov (United States)

    Testa, Marzia; Feola, Mauro

    2014-07-28

    To analyse and summarize all the articles related to positron emission tomography and Takotsubo cardiomyopathy (TTC). We performed a systematic review of the existing literature on positron emission tomography/nuclear imaging and Takotsubo cardiomyopathy using PUBMED database. We combined search terms such as "takotsubo", "takotsubo syndrome", "myocardial positron emission tomography", "positron emission tomography". All case reports were excluded. The list included only four articles which were reviewed by two independent investigators. It was not possible to undertake a formal meta-analysis because of the heterogeneity of the studies; therefore, we made a narrative synthesis of the collected data. Nuclear medicine techniques can be useful employed in the differential diagnosis of TTC from an acute coronary syndrome (ACS). In fact, transient left ventricular (LV) apical ballooning is a syndrome frequently misdiagnosed as an ACS and can mimic symptoms of myocardial infarction with ST-T segments changes on electrocardiography (ECG), a limited release of myocardial enzyme, mainly reported after sudden emotional or physical stress, and an akinesis or dyskinesis of the left ventricle apex which are completely reversible in a few weeks. In the studies included in this review, nuclear medicine techniques have demonstrated a discrepancy between normal perfusion and a reduced glucose utilization in TTC, commonly known as "inverse flow metabolism mismatch". This suggests that apical ballooning represents a transient metabolic disorder on the cellular level, rather than a structural contractile disease of the myocardium, due to a transient decrease of glucose metabolism that might be related to a coronary microcirculation impairment followed by prolonged myocardial stunning. Nuclear medicine techniques can be usefully used for the diagnosis of TTC and can increase our knowledge of the pathophysiological mechanisms of TTC.

  14. Gliomatosis cerebri mimicking encephalitis evaluated using fluorine-18 fluorodeoxyglucose: Positron emission tomography/computed tomography.

    Science.gov (United States)

    Kamaleshwaran, Koramadai Karuppusamy; Krishnan, Vijayan; Mohanan, Vyshakh; Shibu, Deepu; Shinto, Ajit Sugunan

    2015-01-01

    Gliomatosis cerebri (GC) is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has an important role in demonstrating the appropriate metabolism and differentiating pathologies mimicking GC on CT and magnetic resonance imaging. We describe imaging findings of FDG PET/CT in GC in a 9-year-old male child mimicking encephalitis.

  15. [11C]raclopride and positron emission tomography in previously untreated patients with Parkinson's disease: Influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors.

    Science.gov (United States)

    Antonini, A; Schwarz, J; Oertel, W H; Beer, H F; Madeja, U D; Leenders, K L

    1994-07-01

    We studied cerebral dopamine D2-receptor binding using [11C]raclopride and PET in 18 previously untreated patients with Parkinson's disease (PD) and 14 healthy volunteer subjects. Sixteen patients were scanned before and after 3 to 4 months of stable oral therapy with either L-dopa (300 mg/d) (n = 7) or lisuride (0.8 to 1.2 mg/d) (n = 9). Two additional patients were investigated before and after a continuous IV infusion of L-dopa. In addition, we studied the effect of acute IV L-dopa and lisuride administration on [11C]raclopride binding in a healthy rhesus monkey. At baseline, PD patients showed higher uptake values in the putamen than did healthy subjects (p < 0.0001). Oral lisuride treatment lowered [11C]raclopride uptake in the putamen (-19%) and in the caudate nucleus (-15%) compared with baseline, but the difference did not reach significance upon Bonferroni correction for multiple comparisons. However, putamen tracer uptake returned to baseline in two patients when we repeated [11C]raclopride scans 4 days after lisuride withdrawal. Oral L-dopa treatment did not induce changes in the putamen or caudate nucleus indices. Acute lisuride (25 micrograms) administration in a healthy monkey reduced striatal uptake values, but acute injection of L-dopa (300 mg) did not. The results suggest that lisuride blocks [11C]raclopride binding at dopamine D2-receptor sites and demonstrate that 3 to 4 months' oral therapy with L-dopa or lisuride does not change striatal dopamine D2-receptor density in PD patients.

  16. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  17. Cost Effectiveness of Positron Emission Tomography for the Management of Potentially Operable Non-Small Cell Lung Cancer in Quebec

    Directory of Open Access Journals (Sweden)

    Van Hung Nguyen

    2005-01-01

    Full Text Available BACKGROUND: The potential benefits of positron emission tomography (PET scanning stem from the fact that it can reduce the number of diagnostic examinations; particularly, the number of unnecessary thoracic surgeries.

  18. Monolithic LaBr3 : Ce crystals on silicon photomultiplier arrays for time-of-flight positron emission tomography

    NARCIS (Netherlands)

    Seifert, Stefan; van Dam, Herman T.; Huizenga, Jan; Vinke, Ruud; Dendooven, Peter; Löhner, Herbert; Schaart, Dennis R.

    2012-01-01

    Positron emission tomography detectors based on monolithic scintillation crystals exhibit good spatial and energy resolution, intrinsically provide depth-of-interaction information, have high gamma-photon capture efficiency, and may reduce the manufacturing costs compared to pixelated crystal

  19. Tomography by positrons emission: integral unit to the service of Mexico; Tomografia por emision de positrones: unidad integral al servicio de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez D, F.A. [Unidad PET-Ciclotron, Facultad de Medicina, UNAM (Mexico)]. e-mail: fred-alonso@correo.unam.mx

    2005-07-01

    The applications of the Positron emission tomography (PET) together with the one radiopharmaceutical 2 - [{sup 18} F]-fluoro-2-deoxy-D-glucose in the area of the medical imaging is expanding quickly and it possesses a bigger impact at the moment in favor of those patient to who suffers an oncological, cardiac or neurological illness in Mexico. (Author)

  20. The utility of (68)Ga-DOTATATE positron-emission tomography/computed tomography in the diagnosis, management, follow-up and prognosis of neuroendocrine tumors.

    Science.gov (United States)

    Tirosh, Amit; Kebebew, Electron

    2017-10-26

    Neuroendocrine tumors (NETs) are rare neoplasms that emerge mainly from the GI tract, pancreas and respiratory tract. The incidence of NETs has increased more than sixfold in the last decades. NETs typically express somatostatin receptors on their cell surface, which can be targeted by 'cold' somatostatin analogs for therapy or by 'hot' radiolabeled somatostatin analogs for tumor localization and treatment. 68-Gallium-DOTA peptides (DOTATATE, DOTATOC, DOTANOC) positron emission tomography/computed tomography is a highly accurate imaging modality for NETs that has been found to be more sensitive for NET detection than other imaging modalities. In the current review, we will discuss the clinical utility of 68-Gallium-DOTATATE positron emission tomography/computed tomography for the diagnosis and management of patients with NETs.

  1. Positron emission tomography/computed tomography and biomarkers for early treatment response evaluation in metastatic colon cancer

    DEFF Research Database (Denmark)

    Engelmann, Bodil E.; Loft, Annika; Kjær, Andreas

    2014-01-01

    BACKGROUND: Treatment options for metastatic colon cancer (mCC) are widening. We prospectively evaluated serial 2-deoxy-2-[18F]fluoro-d-glucose positron-emission tomography/computed tomography (PET/CT) and measurements of tissue inhibitor of metalloproteinases-1 (TIMP-1), carcinoembryonic antigen...... (CEA), and liberated domain I of urokinase plasminogen activator receptor (uPAR(I)) for early assessment of treatment response in mCC patients. METHODS: Thirty-three mCC patients scheduled for first-line chemotherapy with capecitabine and oxaliplatin (CAPOX) and bevacizumab participated; 27 were...... evaluated by PET/CT before treatment, after one and four treatment series. Morphological and metabolic response was independently assessed according to Response Evaluation Criteria in Solid Tumors and European Organization for Research and Treatment of Cancer PET criteria. Plasma TIMP-1, plasma u...

  2. Combined use of positron emission tomography and volume doubling time in lung cancer screening with low-dose CT scanning

    DEFF Research Database (Denmark)

    Ashraf, H; Dirksen, A; Jakobsen, Annika Loft

    2011-01-01

    In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules.......In lung cancer screening the ability to distinguish malignant from benign nodules is a key issue. This study evaluates the ability of positron emission tomography (PET) and volume doubling time (VDT) to discriminate between benign and malignant nodules....

  3. Positron emission tomography studies in eating disorders: multireceptor brain imaging, correlates with behavior and implications for pharmacotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Guido K. [Department of Child and Adolescent Psychiatry, Center for Eating Disorders Research, School of Medicine, University of California San Diego, San Diego, CA 92123 (United States); Kaye, Walter H. [Department of Psychiatry, Western Psychiatric Institute and Clinic, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2005-10-01

    Modern imaging techniques that visualize disease-specific organ neurotransmitter or protein receptor sites are increasingly able to define pathological processes on a molecular level. One of those imaging modalities, positron emission tomography (PET), for the assessment of brain neuroreceptor binding has revolutionized the in vivo assessment of biologic markers that may be related to human behavior. Such studies may help identify chemical targets that may be directly related to psychiatric pathology and, thus, opportunities for pharmacological intervention. In this review, we describe results from PET studies in eating disorders (EDs). Eating disorders are frequently debilitating illnesses that are quite homogeneous in their presentation. Those studies that identified particular serotonin and dopamine receptor alterations can distinguish recovered ED subjects from controls as well as ED subgroups. Furthermore, correlations of receptor binding with behavioral constructs, such as harm avoidance or novelty seeking, could be found. These recognized receptors may now help us to move away from rather nonspecific treatment approaches in psychiatric research and clinic to the possibility of more syndrome- and symptom-specific treatment approaches.

  4. Aspects of positron emission tomography radiochemistry as relevant for food chemistry.

    Science.gov (United States)

    Wuest, F

    2005-12-01

    Positron emission tomography (PET) is a medical imaging technique using compounds labelled with short-lived positron emitting radioisotopes to obtain functional information of physiological, biochemical and pharmacological processes in vivo. The need to understand the potential link between the ingestion of individual dietary agents and the effect of health promotion or health risk requires the exact metabolic characterization of food ingredients in vivo. This exciting but rather new research field of PET would provide new insights and perspectives on food chemistry by assessing quantitative information on pharmocokinetics and pharmacodynamics of food ingredients and dietary agents. To fully exploit PET technology in food chemistry appropriately radiolabelled compounds as relevant for food sciences are needed. The most widely used short-lived positron emitters are (11)C (t(1/2) = 20.4 min) and (18)F (t(1/2) = 109.8 min). Longer-lived radioisotopes are available by using (76)Br (t(1/2) = 16.2 h) and (124)I (t(1/2) = 4.12 d). The present review article tries to discuss some aspects for the radiolabelling of food ingredients and dietary agents either by means of isotopic labelling with (11)C or via prosthetic group labelling approaches using the positron emitting halogens (18)F, (76)Br and (124)I.

  5. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    Science.gov (United States)

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  6. Respiratory motion in positron emission tomography for oncology applications: Problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France)]. E-mail: Visvikis.Dimitris@univ-brest.fr; Lamare, F. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France); Bruyant, P. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France); Boussion, N. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France); Cheze Le Rest, C. [INSERM U650, LaTIM, University Hospital Medical School, F-29609, Brest (France)

    2006-12-20

    The effect of physiological motion in emission tomography is a reduction in overall image contrast and loss of sensitivity. In particular, respiratory motion affects imaging in the thoracic and the upper abdomen area, leading to a reduction in lesion detection as a result of the associated blurring. Furthermore, respiratory motion leads to a compromise in quantitative accuracy in terms of functional volume determination and activity concentration recovery for oncology imaging. This paper presents a review of the current state of the art in the implementation of respiratory motion compensation techniques in positron emission tomography (PET) imaging for oncology applications.

  7. Application of Positron Emission Tomography to Aerosol Transport Research in a Model of Human Lungs

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available Positron Emission Tomography (PET is a convenient method for measurement of aerosol deposition in complex models of lungs. It allows not only the evaluation of regional deposition characteristics but also precisely detects deposition hot spots. The method is based on a detection of a pair of annihilation photons moving in opposite directions as a result of positron – electron interaction after the positron emission decay of a suitable radioisotope. Liquid di(2-ethylhexyl sebacate (DEHS particles tagged with fluorine-18 as a radioactive tracer were generated by condensation monodisperse aerosol generator. Aerosol deposition was measured for three different inhalation flowrates and for two sizes of particles. Combination of PET with Computed Tomography (CT in one device allowed precise localisation of particular segments of the model. The results proved correlation of deposition efficiency with Stokes number, which means that the main deposition mechanism is inertial impaction. As a next task the methodology for tagging the solid aerosol particles with radioactive tracer will be developed and deposition of porous and fiber aerosols will be measured.

  8. Geneva University - The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography

    CERN Multimedia

    Université de Genève

    2012-01-01

    Geneva University École de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 14 March 2012 SEMINAIRE DE PHYSIQUE CORPUSCULAIRE 11.15 a.m. - Science II, Auditoire 1S081, 30, quai Ernest-Ansermet, 1211 Genève 4 The AX-PET experiment : A demonstrator for an axial Positron Emission Tomography Dr Chiara CASELLA   ETH Zurich   PET (Positron Emission Tomography) is a tool for in-vivo functional imaging, successfully used since the earliest days of nuclear medicine. It is based on the detection of the two coincident 511 keV photons from the annihilation of a positron, emitted from a radiotracer injected into the body. Tomographic analysis of the coincidence data allows for a 3D reconstructed image of the source distribution. The AX-PET experiment proposes a novel geometrical approach for a PET scanner, in which l...

  9. Current knowledge on the sensitivity of the {sup 68}Ga-somatostatin receptor positron emission tomography and the SUV{sub max} reference range for management of pancreatic neuroendocrine tumours

    Energy Technology Data Exchange (ETDEWEB)

    Virgolini, Irene; Gabriel, Michael; Kroiss, Alexander; Guggenberg, Elisabeth von; Prommegger, Rupert; Warwitz, Boris; Nilica, Bernhard; Roig, Ilanos Geraldo; Rodrigues, Margarida; Uprimny, Christian [Medical University of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria)

    2016-10-15

    Physiologically increased pancreatic uptake at the head/uncinate process is observed in more than one-third of patients after injection of one of the three {sup 68}Ga-labelled octreotide-based peptides used for somatostatin (sst) receptor (r) imaging. There are minor differences between these {sup 68}Ga-sstr-binding peptides in the imaging setting. On {sup 68}Ga-sstr-imaging the physiological uptake can be diffuse or focal and usually remains stable over time. Differences in the maximal standardised uptake values (SUV{sub max}) reported for the normal pancreas as well as for pancreatic neuroendocrine tumour (PNET) lesions may be related to several factors, including (a) differences in the peptide binding affinities as well as differences in sstr subtype expression of pancreatic α- and β-cells, and heterogeneity / density of tumour cells, (b) differences in scanner resolution, image reconstruction techniques and acquisition protocols, (c) mostly retrospective study designs, (d) mixed patient populations, or (e) interference with medications such as treatment with long-acting sst analogues. The major limitation in most of the studies lies in the lack of histopathological confirmation of abnormal findings. There is a significant overlap between the calculated SUV{sub max}-values for physiological pancreas and PNET-lesions of the head/uncinate process that do not favour the use of quantitative parameters in the clinical setting. Anecdotal long-term follow-up studies have even indicated that increased uptake in the head/uncinate process still can turn out to be malignant over years of follow up. SUV{sub max}-data for the pancreatic body and tail are limited. Therefore, any visible focal tracer uptake in the pancreas must be considered as suspicious for malignancy irrespective of quantitative parameters. In general, sstr-PET/CT has significant implications for the management of NET patients leading to a change in treatment decision in about one-third of patients

  10. Phase II Study of Lapatinib in Combination With Trastuzumab in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Breast Cancer: Clinical Outcomes and Predictive Value of Early [18F]Fluorodeoxyglucose Positron Emission Tomography Imaging (TBCRC 003)

    Science.gov (United States)

    Lin, Nancy U.; Guo, Hao; Yap, Jeffrey T.; Mayer, Ingrid A.; Falkson, Carla I.; Hobday, Timothy J.; Dees, E. Claire; Richardson, Andrea L.; Nanda, Rita; Rimawi, Mothaffar F.; Ryabin, Nicole; Najita, Julie S.; Barry, William T.; Arteaga, Carlos L.; Wolff, Antonio C.; Krop, Ian E.; Winer, Eric P.; Van den Abbeele, Annick D.

    2015-01-01

    Purpose Lapatinib plus trastuzumab improves outcomes relative to lapatinib alone in heavily pretreated, human epidermal growth factor receptor 2–positive metastatic breast cancer (MBC). We tested the combination in the earlier-line setting and explored the predictive value of [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG-PET) for clinical outcomes. Patients and Methods Two cohorts were enrolled (cohort 1: no prior trastuzumab for MBC and ≥ 1 year from adjuvant trastuzumab, if given; cohort 2: one to two lines of chemotherapy including trastuzumab for MBC and/or recurrence < 1 year from adjuvant trastuzumab). The primary end point was objective response rate by RECIST v1.0; secondary end points included clinical benefit rate (complete response plus partial response plus stable disease ≥ 24 weeks) and progression-free survival. [18F]FDG-PET scans were acquired at baseline, week 1, and week 8. Associations between metabolic response and clinical outcomes were explored. Results Eighty-seven patients were registered (85 were evaluable for efficacy). The confirmed objective response rate was 50.0% (95% CI, 33.8% to 66.2%) in cohort 1 and 22.2% (95% CI, 11.3% to 37.3%) in cohort 2. Clinical benefit rate was 57.5% (95% CI, 40.9% to 73.0%) in cohort 1 and 40.0% (95% CI, 25.7% to 55.7%) in cohort 2. Median progression-free survival was 7.4 and 5.3 months, respectively. Lack of week-1 [18F]FDG-PET/computed tomography ([18F]FDG-PET/CT) response was associated with failure to achieve an objective response by RECIST (negative predictive value, 91% [95% CI, 74% to 100%] for cohort 1 and 91% [95% CI, 79% to 100%] for cohort 2). Conclusion Early use of lapatinib and trastuzumab is active in human epidermal growth factor receptor 2–positive MBC. Week-1 [18F]FDG-PET/CT may allow selection of patients who can be treated with targeted regimens and spared the toxicity of chemotherapy. PMID:26169615

  11. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    Directory of Open Access Journals (Sweden)

    Aixia Sun

    2018-01-01

    Full Text Available Tumor cells have an increased nutritional demand for amino acids (AAs to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET. Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs, the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers target protein synthesis or amino acid (AA transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small cell lung cancer (NSCLC and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  12. Positron emission tomography in the diagnosis and staging of lung cancer

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Højgaard, L

    2001-01-01

    Lung cancer is the cause of 32% of all male cancer deaths and 25% of all female cancer deaths. Because the prognosis depends on early diagnosis and staging, continuous evaluation of the diagnostic tools available is important. The aim of this study was to assess the diagnostic value of dedicated...... positron emission tomography (PET) and gamma-camera PET in the diagnostic investigation of non-small-cell lung cancer (NSCLC). A systematic literature search was carried out in the MEDLINE and EMBASE databases and the Cochrane Controlled Trials Register. We identified 55 original works on the diagnostic...

  13. Regional cerebral glucose metabolism during sevoflurane anaesthesia in healthy subjects studied with positron emission tomography

    DEFF Research Database (Denmark)

    Schlünzen, L; Juul, N; Hansen, K V

    2010-01-01

    BACKGROUND: The precise mechanism by which sevoflurane exerts its effects in the human brain remains unknown. In the present study, we quantified the effects of sevoflurane on regional cerebral glucose metabolism (rGMR) in the human brain measured with positron emission tomography. METHODS: Eight...... monitored and bispectral index responses were registered. Statistical parametric maps and conventional regions of interest analysis were used to determine rGMR differences. RESULTS: All subjects were unconsciousness at 1.0 MAC sevoflurane. Cardiovascular and respiratory parameters were constant over time...

  14. Evidence for a dopaminergic deficit in sporadic amyotrophic lateral sclerosis on positron emission scanning

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hirohide; Snow, B.J.; Bhatt, M.H.; Peppard, R.; Eisen, A.; Calne, D.B. (Univ. of British Columbia, Vancouver (Canada))

    1993-10-23

    Although rare, the chronic neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and idiopathic parkinsonism coexist to a greater degree than expected by chance. This suggests that patients with ALS may have subclinical lesions of the nigrostriatal dopaminergic pathway. To study this hypothesis, the authors did positron emission tomography with 6-fluorodopa on 16 patients with sporadic ALS and without extrapyramidal disease, and compared the results with age-matched controls. They found a significant progressive fall in 6-fluorodopa uptake with time since diagnosis, and reduced dopaminergic function in 3 patients with ALS of long duration. This supports the hypothesis that ALS and IP may share pathogenesis, and, perhaps, etiology.

  15. Reliability of eye lens dosimetry in workers of a positron emission tomography radiopharmaceutical production facility.

    Science.gov (United States)

    da Silva, Teógenes A; Guimarães, Margarete C; Meireles, Leonardo S; Teles, Luciana L D; Lacerda, Marco Aurélio S

    2016-11-01

    A new regulatory statement was issued concerning the eye lens radiation protection of persons in planned exposures. A debate was raised on the adequacy of the dosimetric quantity and on its method of measurement. The aim of this work was to establish the individual monitoring procedure with the EYE-D™ holder and a MCP-N LiF:Mg,Cu,P thermoluminescent chip detector for measuring the personal dose equivalent Hp(3) in workers of a Positron Emission Tomography Radiopharmaceutical Production Facility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. (18) F-Labeling of Sensitive Biomolecules for Positron Emission Tomography.

    Science.gov (United States)

    Krishnan, Hema S; Ma, Longle; Vasdev, Neil; Liang, Steven H

    2017-11-07

    Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in (18) F-labeling of biomolecules in PET imaging research studies are highlighted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Radiolabeled phosphonium salts as mitocondrial voltage sensors for positron emission tomography myocardial imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yon; Min, Jung Joon [Dept. of Nuclear Medicine,Chonnam National University Medical School and Hwasun Hospital, Gwangju (Korea, Republic of)

    2016-09-15

    Despite substantial advances in the diagnosis of cardiovascular disease, {sup 18}F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenyl phosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  18. Imaging of Carbon Translocation to Fruit Using Carbon-11-Labeled Carbon Dioxide and Positron Emission Tomography

    Science.gov (United States)

    Kawachi, Naoki; Kikuchi, Kaori; Suzui, Nobuo; Ishii, Satomi; Fujimaki, Shu; Ishioka, Noriko S.; Watabe, Hiroshi

    2011-04-01

    Carbon kinetics into the fruit is an agricultural issue on the growth and development of the sink organs to be harvested. Particularly, photoassimilate translocation and distribution are important topics for understanding the mechanism. In the present work, carbon-11 (11C) labeled photoassimilate translocation into fruits of tomato has been imaged using carbon-11-labeled carbon dioxide and the positron emission tomography (PET). Dynamice PET data of gradual increasing of 11C activity and its distribution is acquired quantitatively in intact plant body. This indicates that the 3-D photoassimilate translocation into the fruits is imaged successfully and carbon kinetics is analyzable to understand the plant physiology and nutrition.

  19. Focal nodular hyperplasia (FNH): a potential cause of false-positive positron emission tomography.

    Science.gov (United States)

    Aznar, D López; Ojeda, Reyes; Garcia, E Uruburu; Aparici, F; Sánchez, P Abreu; Flores, D; Martínez, C; Sopena, R

    2005-09-01

    Positron emission tomography (PET) using F-18 fluorodeoxyglucose (FDG) has been proven to be a useful tool in the differential diagnosis of liver tumors. Focal nodular hyperplasia (FNH) is an uncommon benign liver lesion, which can be difficult to differentiate from other benign and malignant liver pathologies. FDG PET imaging usually shows uptake similar or even decreased compared to that of the normal liver. We describe a hypermetabolic FNH lesion in a patient with a history of breast cancer. Computed tomography scan, ultrasonography (US), and magnetic resonance imaging were negative. The lesion was resected, and histologic findings were consistent with FNH.

  20. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    Science.gov (United States)

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  1. In vivo biodistribution of amino-functionalized ceria nanoparticles in rats using positron emission tomography.

    Science.gov (United States)

    Rojas, Santiago; Gispert, Juan Domingo; Abad, Sergio; Buaki-Sogo, Mireia; Victor, Victor M; Garcia, Hermenegildo; Herance, Jose Raúl

    2012-12-03

    A variety of nanoparticles have been proposed for several biomedical applications. To gauge the therapeutic potential of these nanoparticles, in vivo biodistribution is essential and mandatory. In the present study, ceria nanoparticles (5 nm average particle size) were labeled with (18)F to study their in vivo biodistribution in rats by positron emission tomography (PET). The (18)F isotope was anchored by reaction of N-succinimidyl 4-[(18)F]fluorobenzoate ((18)F-SFB) with a modified nanoparticle surface obtained by silylation with 3-aminopropylsilyl. Radiolabeled ceria nanoparticles accumulated mainly in lungs, spleen, and liver. Metabolic products of the radiolabeled nanoparticulate material were excreted into the urinary tract.

  2. Capillaries within compartments: microvascular interpretation of dynamic positron emission tomography data

    DEFF Research Database (Denmark)

    Munk, O L; Keiding, S; Bass, L

    2003-01-01

    Measurement of exchange of substances between blood and tissue has been a long-lasting challenge to physiologists, and considerable theoretical and experimental accomplishments were achieved before the development of the positron emission tomography (PET). Today, when modeling data from modern PET...... single- and multi-capillary systems and include effects of non-exchanging vessels. They are suitable for analysing dynamic PET data from any capillary bed using either intravascular or diffusible tracers, in terms of physiological parameters which include regional blood flow. Udgivelsesdato: 2003-Nov-7...

  3. Radiolabeled Phosphonium Salts as Mitochondrial Voltage Sensors for Positron Emission Tomography Myocardial Imaging Agents.

    Science.gov (United States)

    Kim, Dong-Yeon; Min, Jung-Joon

    2016-09-01

    Despite substantial advances in the diagnosis of cardiovascular disease, (18)F-labeled positron emission tomography (PET) radiopharmaceuticals remain necessary to diagnose heart disease because clinical use of current PET tracers is limited by their short half-life. Lipophilic cations such as phosphonium salts penetrate the mitochondrial membranes and accumulate in mitochondria of cardiomyocytes in response to negative inner-transmembrane potentials. Radiolabeled tetraphenylphosphonium cation derivatives have been developed as myocardial imaging agents for PET. In this review, a general overview of these radiotracers, including their radiosynthesis, in vivo characterization, and evaluation is provided and clinical perspectives are discussed.

  4. Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients

    Energy Technology Data Exchange (ETDEWEB)

    DeLisi, L.E.; Buchsbaum, M.S.; Holcomb, H.H.; Dowling-Zimmerman, S.; Pickar, D.; Boronow, J.; Morihisa, J.M.; van Kammen, D.P.; Carpenter, W.; Kessler, R.

    1985-01-01

    The finding in schizophrenic patients of a reversal of the normal frontal to posterior pattern of brain metabolic activity with positron emission tomography (PET) is of interest, but its relevance to psychopathology is unknown. Using PET, the authors studied 21 patients with chronic schizophrenia and 21 age- and sex-matched control subjects. Although eight of the 21 patients and only one of the control subjects showed a relatively lower anteroposterior metabolic gradient, no clinical correlates of this finding were noted. In addition, cerebral atrophy, as determined by CAT scan, was not associated with this aberrant metabolic pattern.

  5. Applications of nucleoside-based molecular probes for the in vivo assessment of tumour biochemistry using positron emission tomography (PET

    Directory of Open Access Journals (Sweden)

    Leonard I. Wiebe

    2007-05-01

    Full Text Available Positron emission tomography (PET is a non-invasive nuclear imaging technique. In PET, radiolabelled molecules decay by positron emission. The gamma rays resulting from positron annihilation are detected in coincidence and mapped to produce three dimensional images of radiotracer distribution in the body. Molecular imaging with PET refers to the use of positron-emitting biomolecules that are highly specific substrates for target enzymes, transport proteins or receptor proteins. Molecular imaging with PET produces spatial and temporal maps of the target-related processes. Molecular imaging is an important analytical tool in diagnostic medical imaging, therapy monitoring and the development of new drugs. Molecular imaging has its roots in molecular biology. Originally, molecular biology meant the biology of gene expression, but now molecular biology broadly encompasses the macromolecular biology and biochemistry of proteins, complex carbohydrates and nucleic acids. To date, molecular imaging has focused primarily on proteins, with emphasis on monoclonal antibodies and their derivative forms, small-molecule enzyme substrates and components of cell membranes, including transporters and transmembrane signalling elements. This overview provides an introduction to nucleosides, nucleotides and nucleic acids in the context of molecular imaging.A tomografia por emissão de pósitrons (TEP é uma técnica de imagem não invasiva da medicina nuclear. A TEP utiliza moléculas marcadas com emissores de radiação beta positiva (pósitrons. As radiações gama medidas que resultam do aniquilamento dos pósitrons são detectadas por um sistema de coincidência e mapeadas para produzir uma imagem tridimensional da distribuição do radiotraçador no corpo. A imagem molecular com TEP refere-se ao uso de biomoléculas marcadas com emissor de pósitron que são substratos altamente específicos para alvos como enzimas, proteínas transportadoras ou receptores prot

  6. Primary neuroendocrine carcinoma of breast with liver and bone metastasis detected with fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography.

    Science.gov (United States)

    Kamaleshwaran, Koramadai Karuppusamy; Mohanan, Vyshak; Shibu, Deepu; Radhakrishnan, Edathuruthy Kalarikal; Shinto, Ajit Sugunan

    2014-01-01

    Cases of primary neuroendocrine carcinoma (NEC) of the breast have been reported, though rare. We report the case of a 45-year-old woman presented with jaundice and evaluated to have liver metastasis from neuroendocrine origin. She underwent whole body positron emission tomography/computed tomography, which showed left breast lesion and bone metastasis. Fine-needle aspiration (FNA) of breast revealed a NEC. A diagnosis of a primary NEC of the breast was rendered with hepatic and bone metastasis. She was treated with peptide receptor radionuclide therapy and is on follow-up.

  7. The simplified reference tissue model with 18F-fallypride positron emission tomography: choice of reference region.

    Science.gov (United States)

    Ishibashi, Kenji; Robertson, Chelsea L; Mandelkern, Mark A; Morgan, Andrew T; London, Edythe D

    2013-01-01

    The development of high-affinity radiotracers for positron emission tomography (PET) has allowed for quantification of dopamine receptors in extrastriatal and striatal regions of the brain. As these new radiotracers have distinctly different kinetic properties than their predecessors, it is important to examine the suitability of kinetic models to represent their uptake, distribution, and in vivo washout. Using the simplified reference tissue model, we investigated the influence of reference region choice on the striatal binding potential of 18F-fallypride, a high-affinity dopamine D2/D3 receptor ligand. We compared the use of the visual cortex and a white matter region (superior longitudinal fasciculus) to the cerebellum, a commonly used reference tissue, in a PET-fallypride study of healthy and methamphetamine-dependent subjects. Compared to the cerebellum, use of the visual cortex produced significantly greater sample variance in binding potential relative to nondisplaceable uptake (BP(ND)). Use of the white matter region was associated with BP(ND) values and sample variance similar to those obtained with the cerebellum and a larger effect size for the group differences in striatal BP(ND) between healthy and methamphetamine-dependent subjects. Our results do not support the use of the visual cortex as a reference region in 18F-fallypride studies and suggest that white matter may be a reasonable alternative to the cerebellum as it displays similar statistical and kinetic properties.

  8. Positron emission tomography for measurement of copper fluxes in live organisms

    Science.gov (United States)

    Peng, Fangyu

    2014-01-01

    Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography–computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spatial resolution of CT for anatomic localization of radioactive tracer activity. Kinetic analysis of copper metabolism in the liver and other extra-hepatic tissues of Atp7b−/− knockout mice, a mouse model of Wilson’s disease, demonstrated the feasibility of measuring copper fluxes in live organisms with PET/CT using copper-64 chloride (64CuCl2) as a radioactive tracer (64CuCl2-PET/CT). 64CuCl2-PET/CT holds potential as a useful tool for diagnosis of inherited and acquired human copper metabolism disorders, and for monitoring the effects of copper-modulating therapy. PMID:24628290

  9. Whole body muscle activity during the FIFA 11+ program evaluated by positron emission tomography.

    Science.gov (United States)

    Nakase, Junsuke; Inaki, Anri; Mochizuki, Takafumi; Toratani, Tatsuhiro; Kosaka, Masahiro; Ohashi, Yoshinori; Taki, Junichi; Yahata, Tetsutaro; Kinuya, Seigo; Tsuchiya, Hiroyuki

    2013-01-01

    This study investigated the effect of the FIFA 11+ warm-up program on whole body muscle activity using positron emission tomography. Ten healthy male volunteers were divided into a control group and a group that performed injury prevention exercises (The 11+). The subjects of the control group were placed in a sitting position for 20 min and 37 MBq of (18)F-fluorodeoxyglucose (FDG) was injected intravenously. The subjects then remained seated for 45 min. The subjects of the exercise group performed part 2 of the 11+for 20 min, after which FDG was injected. They then performed part 2 of the 11+for 20 min, and rested for 25 min in a sitting position. Positron emission tomography-computed tomography images were obtained 50 min after FDG injection in each group. Regions of interest were defined within 30 muscles. The standardized uptake value was calculated to examine the FDG uptake of muscle tissue per unit volume. FDG accumulation within the abdominal rectus, gluteus medius and minimus were significantly higher in the exercise group than in the control group (PFIFA 11+ program.

  10. Whole body muscle activity during the FIFA 11+ program evaluated by positron emission tomography.

    Directory of Open Access Journals (Sweden)

    Junsuke Nakase

    Full Text Available PURPOSE: This study investigated the effect of the FIFA 11+ warm-up program on whole body muscle activity using positron emission tomography. METHODS: Ten healthy male volunteers were divided into a control group and a group that performed injury prevention exercises (The 11+. The subjects of the control group were placed in a sitting position for 20 min and 37 MBq of (18F-fluorodeoxyglucose (FDG was injected intravenously. The subjects then remained seated for 45 min. The subjects of the exercise group performed part 2 of the 11+for 20 min, after which FDG was injected. They then performed part 2 of the 11+for 20 min, and rested for 25 min in a sitting position. Positron emission tomography-computed tomography images were obtained 50 min after FDG injection in each group. Regions of interest were defined within 30 muscles. The standardized uptake value was calculated to examine the FDG uptake of muscle tissue per unit volume. RESULTS: FDG accumulation within the abdominal rectus, gluteus medius and minimus were significantly higher in the exercise group than in the control group (P<0.05. CONCLUSION: The hip abductor muscles and abdominal rectus were active during part 2 of the FIFA 11+ program.

  11. Positron emission tomography/magnetic resonance hybrid scanner imaging of cerebral blood flow using 15O-water positron emission tomography and arterial spin labeling magnetic resonance imaging in newborn piglets

    DEFF Research Database (Denmark)

    Andersen, Julie B; Henning, William S; Lindberg, Ulrich

    2015-01-01

    Abnormality in cerebral blood flow (CBF) distribution can lead to hypoxic-ischemic cerebral damage in newborn infants. The aim of the study was to investigate minimally invasive approaches to measure CBF by comparing simultaneous (15)O-water positron emission tomography (PET) and single TI pulsed...... arterial spin labeling (ASL) magnetic resonance imaging (MR) on a hybrid PET/MR in seven newborn piglets. Positron emission tomography was performed with IV injections of 20 MBq and 100 MBq (15)O-water to confirm CBF reliability at low activity. Cerebral blood flow was quantified using a one...

  12. High-resolution PET (positron emission tomography) for medical science studies

    Energy Technology Data Exchange (ETDEWEB)

    Budinger, T.F.; Derenzo, S.E.; Huesman, R.H.; Jagust, W.J.; Valk, P.E. (Lawrence Berkeley Lab., CA (USA))

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging. 6 refs., 21 figs.

  13. Positron emission tomography: a clinical and biological research tool; La tomographie par emission de positrons: un outil de recherche clinique et biologique

    Energy Technology Data Exchange (ETDEWEB)

    Kotzki, P.O. [Groupe Hospitalo-Universitaire Caremeau, Service de Medecine Nucleaire et de Biophysique Medicale, 30 - Nimes (France)

    2004-07-01

    Medical and biological imaging has undergone a revolution in the past decade. Positron emission tomography (PET) has been developed to visualize biochemical and physiological phenomena in living humans and animals. For instance, blood flow, blood volume, glucose metabolism, amino acid metabolism, can be quantitatively estimated by means of PET with various radioactive tracers. This functional and molecular imaging technique has progressed rapidly from being a research technique in laboratories to a routine clinical imaging modality. The most widely used radiotracer in routine is {sup 18}F-fluorodeoxyglucose ({sup 18}FDG), which is an analogue of glucose. Since glucose metabolism is increased many fold in malignant tumors, PET has a major role in the field of clinical oncology and recently in cardiology and neurology. PET is also a valuable tool to study cerebral or cardiac binding sites and to image the expression of reporter genes in small animals. In this review, we summarize the most recent developments in PET imaging with particular reference to the radiotracers available and their application. (author)

  14. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma

    DEFF Research Database (Denmark)

    Eigtved, A; Andersson, A P; Dahlstrøm, K

    2000-01-01

    Correct staging is crucial for the management and prognosis of patients with malignant melanoma. The aim of this prospective study was to compare staging by whole-body positron emission tomography using fluorine-18 fluorodeoxyglucose (18F-FDG) with staging by conventional methods. Thirty-eight pa......Correct staging is crucial for the management and prognosis of patients with malignant melanoma. The aim of this prospective study was to compare staging by whole-body positron emission tomography using fluorine-18 fluorodeoxyglucose (18F-FDG) with staging by conventional methods. Thirty...

  15. T cell homing to tumors detected by 3D-coordinated positron emission tomography and magnetic resonance imaging

    DEFF Research Database (Denmark)

    Agger, Ralf; Petersen, Mikkel; Petersen, Charlotte Christie

    2007-01-01

    of magnetic resonance imaging with the high sensitivity and spatial accuracy of positron emission tomography. We have used this technique, together with determination of tissue radioactivity, flow cytometry, and microscopy, to characterize and quantitate the specific accumulation of transferred CD8+ T cells...... was determined by flow cytometry each day for 8 consecutive days after adoptive transfer. From low levels 1 day after injection, their number gradually increased until day 5 when an average of 3.3x10(6) SIINFEKL-specific cells per gram tumor tissue was found. By applying the combined positron emission tomography...

  16. Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph

    Science.gov (United States)

    Moskal, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Khreptak, O.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedńwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Smyrski, J.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.

    2016-11-01

    Discrete symmetries such as parity (P), charge-conjugation (C) and time reversal (T) are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C) and its combination with parity (CP) constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET) which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i) spin vector of the ortho-positronium atom, (ii) momentum vectors of photons originating from the decay of positronium, and (iii) linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.

  17. Studies of discrete symmetries in a purely leptonic system using the Jagiellonian Positron Emission Tomograph

    Directory of Open Access Journals (Sweden)

    Moskal P.

    2016-01-01

    Full Text Available Discrete symmetries such as parity (P, charge-conjugation (C and time reversal (T are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C and its combination with parity (CP constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i spin vector of the ortho-positronium atom, (ii momentum vectors of photons originating from the decay of positronium, and (iii linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.

  18. Diagnostic accuracy of 18F-Fluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer.

    NARCIS (Netherlands)

    Hooft, L.; Hoekstra, O.S.; Devillé, W.; Lips, W.; Teule, J.J.; Boers, M.; Tulder, M.W. van

    2001-01-01

    Positron emission tomography with 18F-fluorodeoxyglucose is a relatively new nuclear imaging technique in oncology. We conducted a systematic review to determine the diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in patients suspected of recurrent papillary or follicular

  19. Routine Bone Marrow Biopsy Has Little or No Therapeutic Consequence for Positron Emission Tomography/Computed Tomography-Staged Treatment-Naive Patients With Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    El-Galaly, Tarec Christoffer; d´Amore, Francesco; Juul Mylam, Karen

    2012-01-01

    Routine Bone Marrow Biopsy Has Little or No Therapeutic Consequence for Positron Emission Tomography/Computed Tomography-Staged Treatment-Naive Patients With Hodgkin Lymphoma......Routine Bone Marrow Biopsy Has Little or No Therapeutic Consequence for Positron Emission Tomography/Computed Tomography-Staged Treatment-Naive Patients With Hodgkin Lymphoma...

  20. Value of 18fluorodeoxyglucose-positron-emission tomography in amyotrophic lateral sclerosis: a prospective study.

    Science.gov (United States)

    Van Laere, Koen; Vanhee, Annelies; Verschueren, Jolien; De Coster, Liesbeth; Driesen, An; Dupont, Patrick; Robberecht, Wim; Van Damme, Philip

    2014-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder primarily affecting the motor system, with extramotor involvement to a variable extent. Biomarkers for early differential diagnosis and prognosis are needed. An autosomal dominant hexanucleotide (GGGGCC) expansion in the noncoding region of the chromosome 9 open reading frame 72 (C9orf72) gene is the most frequent genetic cause of ALS, but its metabolic pattern has not been studied systematically. To evaluate the use of 18fluorodeoxyglucose-positron-emission tomography as a marker of ALS pathology and investigate whether a specific metabolic signature is present in patients with C9orf72 mutations. In total, 81 patients with a suspected diagnosis of ALS at University Hospital Leuven were prospectively investigated. All underwent detailed neurological examination and electrodiagnostic and genetic testing for the major known genetic causes of ALS (C9orf72, SOD1, TARDBP, and FUS). A diagnosis of ALS was made in 70 of 81 patients. Of these, 11 were C9orf72 positive and 59 were C9orf72 negative. In 7 patients, the diagnosis of primary lateral sclerosis was made; 4 patients had progressive muscular atrophy. A screened healthy control population was used for comparison. Positron-emission tomographic data were spatially normalized and analyzed using a predefined volume of interest and a voxel-based analysis (SPM8). Discriminant analysis was done both volume of interest based and voxel based using a support vector machine approach. Compared with control participants, 18fluorodeoxyglucose-positron-emission tomography showed perirolandic and variable prefrontal hypometabolism in most patients. Patients with primary lateral sclerosis showed a similar pattern. Patients with C9orf72-positive ALS had discrete relative hypometabolism in the thalamus and posterior cingulate compared with those with C9orf72-negative ALS. A posteriori-corrected discriminant analysis was able to correctly classify 95% of ALS cases and

  1. Positron Emission Tomography-Determined Hyperemic Flow, Myocardial Flow Reserve, and Flow Gradient-Quo Vadis?

    Science.gov (United States)

    Leucker, Thorsten M; Valenta, Ines; Schindler, Thomas Hellmut

    2017-01-01

    Positron emission tomography/computed tomography (PET/CT) applied with positron-emitting flow tracers such as (13)N-ammonia and (82)Rubidium enables the quantification of both myocardial perfusion and myocardial blood flow (MBF) in milliliters per gram per minute for coronary artery disease (CAD) detection and characterization. The detection of a regional myocardial perfusion defect during vasomotor stress commonly identifies the culprit lesion or most severe epicardial narrowing, whereas adding regional hyperemic MBFs, myocardial flow reserve (MFR), and/or longitudinal flow decrease may also signify less severe but flow-limiting stenosis in multivessel CAD. The addition of regional hyperemic flow parameters, therefore, may afford a comprehensive identification and characterization of flow-limiting effects of multivessel CAD. The non-specific origin of decreases in hyperemic MBFs and MFR, however, prompts an evaluation and interpretation of regional flow in the appropriate context with the presence of obstructive CAD. Conversely, initial results of the assessment of a longitudinal hyperemic flow gradient suggest this novel flow parameter to be specifically related to increases in CAD caused epicardial resistance. The concurrent assessment of myocardial perfusion and several hyperemic flow parameters with PET/CT may indeed open novel avenues of precision medicine to guide coronary revascularization procedures that may potentially lead to a further improvement in cardiovascular outcomes in CAD patients.

  2. Early positron emission tomography response-adapted treatment in stage I and II hodgkin lymphoma

    DEFF Research Database (Denmark)

    André, Marc P.E.; Girinsky, Théodore; Federico, Massimo

    2017-01-01

    Purpose Patients who receive combined modality treatment for stage I and II Hodgkin lymphoma (HL) have an excellent outcome. Early response evaluation with positron emission tomography (PET) scan may improve selection of patients who need reduced or more intensive treatments. Methods We performed...... and II HL. The standard arm consisted of ABVD followed by involved-node radiotherapy (INRT), regardless of ePET result. In the experimental arm, ePET-negative patients received ABVD only (noninferiority design), whereas ePET-positive patients switched to two cycles of bleomycin, etoposide, doxorubicin......, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPPesc) and INRT (superiority design). Primary end point was progression-free survival (PFS). Results Of 1,950 randomly assigned patients, 1,925 received an ePET—361 patients (18.8%) were positive. In ePET-positive patients, 5-year PFS improved from...

  3. Clinical Pearls: Etiologies of Superscan Appearance on Fluorine-18-Fludeoxyglucose Positron Emission Tomography-Computed Tomography.

    Science.gov (United States)

    Manov, John Joseph; Roth, Patrick J; Kuker, Russ

    2017-01-01

    The term "superscan" usually refers to a characteristic pattern on skeletal scintigraphy consisting of symmetrically intense and diffuse radiotracer uptake in the skeleton with absent or diminished visualization of the genitourinary system and soft tissues. Superscans and superscan-like appearances have also been described on fluorine-18-fludeoxyglucose positron emission tomography-computed tomography (18-F-FDG PET/CT). We review reported cases of 18-F-FDG PET/CT superscans and propose criteria for differentiating pathologic superscans from physiologic causes. Knowledge of the 18-F-FDG PET/CT superscan, its reported pathologic causes, its benign imitators, and its clinical implications is important to the nuclear medicine physician or radiologist specializing in the interpretation of nuclear studies to avoid several diagnostic pitfalls.

  4. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    Science.gov (United States)

    Biegon, Anat; Kim, Sung-Won; Logan, Jean; Hooker, Jacob M.; Muench, Lisa; Fowler, Joanna S.

    2010-01-01

    Background Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Methods Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [11C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Results Nicotine administration produced significant, dose-dependent reductions in [11C]vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Conclusions Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior. PMID:20188349

  5. An Application of Micro-channel Plate Photomultiplier Tube to Positron Emission Tomography.

    Science.gov (United States)

    Kim, H; Chen, C-T; Frisch, H; Tang, F; Kao, C-M

    2012-01-01

    We are developing a Time-of-Flight Positron Emission Tomography detector using flat panel micro-channel plate photomultiplier tubes (MCP PMT). The high-speed waveform sampling data acquisition is adopted to exploit the fast time response of MCP PMT efficiently by using transmission-line readout scheme. To demonstrate the feasibility of the proposed detector, prototype detector modules were built using Photonis XP85022 MCP PMT, transmission-line board (TL), and high-speed waveform sampling electronics equipped with DRS4 chips. The MCP/TL module was coupled to single LYSO crystal, and experimental tests have been conducted in a coincidence setup to measure the responses to 511 keV annihilation photon. The details of the prototype module, experimental setup, and the preliminary results are presented and discussed.

  6. Kinetic filtering of [18F]Fluorothymidine in positron emission tomography studies

    Science.gov (United States)

    Gray, Katherine R.; Contractor, Kaiyumars B.; Kenny, Laura M.; Al-Nahhas, Adil; Shousha, Sami; Stebbing, Justin; Wasan, Harpreet S.; Coombes, R. Charles; Aboagye, Eric O.; Turkheimer, Federico E.; Rosso, Lula

    2010-02-01

    [18F]Fluorothymidine (FLT) is a cell proliferation marker that undergoes predominantly hepatic metabolism and therefore shows a high level of accumulation in the liver, as well as in rapidly proliferating tumours. Furthermore, the tracer's uptake is substantial in other organs including the heart. We present a nonlinear kinetic filtering technique which enhances the visualization of tumours imaged with FLT positron emission tomography (FLT-PET). A classification algorithm to isolate cancerous tissue from healthy organs was developed and validated using 29 scan data from patients with locally advanced or metastatic breast cancer. A large reduction in signal from the liver and heart of 80% was observed following application of the kinetic filter, whilst the majority of signal from both primary tumours and metastases was retained. A scan acquisition time of 60 min has been shown to be sufficient to obtain the necessary kinetic data. The algorithm extends utility of FLT-PET imaging in oncology research.

  7. Kinetic filtering of [{sup 18}F]Fluorothymidine in positron emission tomography studies

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Katherine R; Contractor, Kaiyumars B; Kenny, Laura M; Aboagye, Eric O; Turkheimer, Federico E; Rosso, Lula [MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London (United Kingdom); Al-Nahhas, Adil [Department of Nuclear Medicine, Imperial College NHS Trust, Hammersmith Hospital, London (United Kingdom); Shousha, Sami [Department of Pathology, Imperial College NHS Trust, Charing Cross Hospital, London (United Kingdom); Stebbing, Justin; Wasan, Harpreet S; Coombes, R Charles [Department of Oncology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London (United Kingdom)], E-mail: eric.aboagye@imperial.ac.uk

    2010-02-07

    [{sup 18}F]Fluorothymidine (FLT) is a cell proliferation marker that undergoes predominantly hepatic metabolism and therefore shows a high level of accumulation in the liver, as well as in rapidly proliferating tumours. Furthermore, the tracer's uptake is substantial in other organs including the heart. We present a nonlinear kinetic filtering technique which enhances the visualization of tumours imaged with FLT positron emission tomography (FLT-PET). A classification algorithm to isolate cancerous tissue from healthy organs was developed and validated using 29 scan data from patients with locally advanced or metastatic breast cancer. A large reduction in signal from the liver and heart of 80% was observed following application of the kinetic filter, whilst the majority of signal from both primary tumours and metastases was retained. A scan acquisition time of 60 min has been shown to be sufficient to obtain the necessary kinetic data. The algorithm extends utility of FLT-PET imaging in oncology research.

  8. Marked reduction of cerebral oxygen metabolism in patients with advanced cirrhosis; A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Kawatoko, Toshiharu; Murai, Koichiro; Ibayashi, Setsurou; Tsuji, Hiroshi; Nomiyama, Kensuke; Sadoshima, Seizo; Eujishima, Masatoshi; Kuwabara, Yasuo; Ichiya, Yuichi (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine)

    1992-01-01

    Regional cerebral blood flow (rCBF), cerebral metabolic rate of oxygen (rCMRO{sub 2}), and oxygen extraction fraction (rOEF) were measured using positron emission tomography (PET) in four patients with cirrhosis (two males and two females, aged 57 to 69 years) in comparison with those in five age matched controls with previous transient global amnesia. PET studies were carried out when the patients were fully alert and oriented after the episodes of encephalopathy. In the patients, rCBF tended to be lower, while rCMRO{sub 2} was significantly lowered in almost all hemisphere cortices, more markedly in the frontal cortex. Our results suggest that the brain oxygen metabolism is diffusely impaired in patients with advanced cirrhosis, and the frontal cortex seems to be more susceptible to the systemic metabolic derangements induced by chronic liver disease. (author).

  9. Coronary microvascular dysfunction in women with nonobstructive ischemic heart disease as assessed by positron emission tomography.

    Science.gov (United States)

    Campisi, Roxana; Marengo, Fernando D

    2017-04-01

    Traditional approaches for risk assessment of ischemic heart disease (IHD) are based on the physiological consequences of an epicardial coronary stenosis. Of note, normal coronary arteries or nonobstructive coronary artery disease (CAD) is a common finding in women with signs and symptoms of ischemia. Therefore, assessment of risk based on a coronary stenosis approach may fail in women. Positron emission tomography (PET) quantifies absolute myocardial blood flow (MBF) which may help to elucidate other mechanisms involved such as endothelial dysfunction and alterations in the smooth muscle cell relaxation responsible for IHD in women. The objective of the present review is to describe the current state of the art of PET imaging in assessing IHD in women with nonobstructive CAD.

  10. Transthoracic Doppler echocardiography compared with positron emission tomography for assessment of coronary microvascular dysfunction

    DEFF Research Database (Denmark)

    Michelsen, Marie Mide; Mygind, Naja Dam; Pena, Adam

    2017-01-01

    for measuring coronary microvascular function but has limited availability. We compared TTDE CFVR with PET MBFR in women with angina pectoris and no obstructive coronary artery disease and assessed repeatability of TTDE CFVR. METHODS: From a cohort of women with angina and no obstructive coronary artery......BACKGROUND: Coronary microvascular function can be assessed by transthoracic Doppler echocardiography as a coronary flow velocity reserve (TTDE CFVR) and by positron emission tomography as a myocardial blood flow reserve (PET MBFR). PET MBFR is regarded the noninvasive reference standard...... stenosis at invasive coronary angiography, TTDE CFVR by dipyridamole induced stress and MBFR by rubidium-82 PET with adenosine was successfully measured in 107 subjects. Repeatability of TTDE CFVR was assessed in 10 symptomatic women and in 10 healthy individuals. RESULTS: MBFR was systematically higher...

  11. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET)

    DEFF Research Database (Denmark)

    Graebe, M; Pedersen, Sune Folke; Borgwardt, L

    2008-01-01

    before carotid endarterectomy. Plaque mRNA expression of the inflammatory cytokine interleukin 18 (IL-18), the macrophage-specific marker CD68 and the two proteinases, Cathepsin K and matrix metalloproteinase 9 (MMP-9), were quantified using real-time quantitative polymerase chain reaction. RESULTS......OBJECTIVES: Atherosclerosis is recognised as an inflammatory disease, and new diagnostic tools are warranted to evaluate plaque inflammatory activity and risk of cardiovascular events. We investigated [18]-fluorodeoxyglucose (FDG) uptake in vulnerable carotid plaques visualised by positron emission...... tomography (PET). Uptake was correlated to quantitative gene expression of known markers of inflammation and plaque vulnerability. METHODS: Ten patients with recent transient ischaemic attack and carotid artery stenosis (>50%) underwent combined FDG-PET and computed tomography angiography (CTA) the day...

  12. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  13. An objective evaluation framework for segmentation techniques of functional positron emission tomography studies

    CERN Document Server

    Kim, J; Eberl, S; Feng, D

    2004-01-01

    Segmentation of multi-dimensional functional positron emission tomography (PET) studies into regions of interest (ROI) exhibiting similar temporal behavior is useful in diagnosis and evaluation of neurological images. Quantitative evaluation plays a crucial role in measuring the segmentation algorithm's performance. Due to the lack of "ground truth" available for evaluating segmentation of clinical images, automated segmentation results are usually compared with manual delineation of structures which is, however, subjective, and is difficult to perform. Alternatively, segmentation of co-registered anatomical images such as magnetic resonance imaging (MRI) can be used as the ground truth to the PET segmentation. However, this is limited to PET studies which have corresponding MRI. In this study, we introduce a framework for the objective and quantitative evaluation of functional PET study segmentation without the need for manual delineation or registration to anatomical images of the patient. The segmentation ...

  14. Nicotine Blocks Brain Estrogen Synthase (Aromatase): In Vivo Positron Emission Tomography Studies in Female Baboons

    Energy Technology Data Exchange (ETDEWEB)

    Biegon, A.; Biegon, A.; Kim, S.-W.; Logan, J.; Hooker, J.M.; Muench, L.; Fowler, J.S.

    2010-01-12

    Cigarette smoking and nicotine have complex effects on human physiology and behavior, including some effects similar to those elicited by inhibition of aromatase, the last enzyme in estrogen biosynthesis. We report the first in vivo primate study to determine whether there is a direct effect of nicotine administration on brain aromatase. Brain aromatase availability was examined with positron emission tomography and the selective aromatase inhibitor [{sup 11}C]vorozole in six baboons before and after exposure to IV nicotine at .015 and .03 mg/kg. Nicotine administration produced significant, dose-dependent reductions in [{sup 11}C]vorozole binding. The amygdala and preoptic area showed the largest reductions. Plasma levels of nicotine and its major metabolite cotinine were similar to those found in cigarette smokers. Nicotine interacts in vivo with primate brain aromatase in regions involved in mood, aggression, and sexual behavior.

  15. Speech processing system demonstrated by positron emission tomography (PET). A review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Shigeru; Naito, Yasushi; Kojima, Hisayoshi [Kyoto Univ. (Japan)

    1996-03-01

    We review the literature on speech processing in the central nervous system as demonstrated by positron emission tomography (PET). Activation study using PET has been proved to be a useful and non-invasive method of investigating the speech processing system in normal subjects. In speech recognition, the auditory association areas and lexico-semantic areas called Wernicke`s area play important roles. Broca`s area, motor areas, supplementary motor cortices and the prefrontal area have been proved to be related to speech output. Visual speech stimulation activates not only the visual association areas but also the temporal region and prefrontal area, especially in lexico-semantic processing. Higher level speech processing, such as conversation which includes auditory processing, vocalization and thinking, activates broad areas in both hemispheres. This paper also discusses problems to be resolved in the future. (author) 42 refs.

  16. Design And Development Of A Mammary And Axillary Region Positron Emission Tomography System (maxpet)

    CERN Document Server

    Doshi, N K

    2000-01-01

    Breast cancer is the second leading cause of cancer death in women. Currently, mammography and physical breast examination, both non-invasive techniques, provide the two most effective methods available for screening potential breast cancer patients. During the management of patients, however, several invasive techniques such as axillary lymph node dissection, core biopsies and lumpectomies, are utilized to determine the stage or malignancy of the disease with significant cost and morbidity associated with them. Positron Emission Tomography (PET), using [F-18] fluorodeoxyglucose (FDG) tracer is a sensitive and non-invasive imaging modality that may be a cost-effective alternative to certain invasive procedures. In this project we have developed a low cost, high performance, dedicated PET camera (maxPET) for mammary and axillary region imaging. The system consists of two 15x15 cm2 planar scintillation detector arrays composed of modular detectors operating in coincidence. The modular detectors are comprised of...

  17. Interstitial brachytherapy for liver metastases and assessment of response by positron emission tomography: a case report

    Directory of Open Access Journals (Sweden)

    Goura Kishor Rath

    2010-10-01

    Full Text Available For liver metastases (LM, image guided percutaneous ablative procedures such as radiofrequency ablation (RFA, laser induced thermal therapy (LITT and trans-arterial chemo-embolisation (TACE are increasingly being used because they are relatively safer, less invasive and equally effective. CT scan guided interstitial brachytherapy (IBT with a single large dose of radiation by high dose rate (HDR brachytherapy is a novel technique of treating LM and has shown good results. Positron emission tomography (PET scan may provide better information for assessing the response toIBT procedures. We hereby report a case of LM that was treated by HDR IBT and PET scan was done in addition to CT scan for assessing the response.

  18. Risk of malignancy in thyroid incidentalomas detected by (18)f-fluorodeoxyglucose positron emission tomography

    DEFF Research Database (Denmark)

    Soelberg, Kerstin; Bonnema, Steen Joop; Brix, Thomas Heiberg

    2012-01-01

    Background: The expanding use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has led to the identification of increasing numbers of patients with an incidentaloma in the thyroid gland. We aimed to review the proportion of incidental thyroid cancers found by (18)F-FDG PET...... or PET/computed tomography imaging. Methods: Studies evaluating thyroid carcinomas discovered incidentally in patients or healthy volunteers by (18)F-FDG PET were systematically searched in the PubMed database from 2000 to 2011. The main exclusion criteria were known thyroid disease, lack of assigned...... diagnoses, investigation of diffuse uptake only, or investigation of patients with head and neck cancer, or cancer in the upper part of the thorax. Results: Twenty-two studies met our criteria comprising a total of 125,754 subjects. Of these, 1994 (1.6%) had unexpected focal hypermetabolic activity, while...

  19. Prognostic Evaluation of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Endometrial Cancer

    DEFF Research Database (Denmark)

    Vilstrup, Mie Holm; Jochumsen, Kirsten M; Hess, Søren

    2017-01-01

    OBJECTIVE: This study aims to ascertain if semiquantitative measurements derived from F-fluorodeoxyglucose positron emission tomography/computed tomography can be used as prognostic markers in patients with newly diagnosed endometrial cancer. MATERIALS AND METHODS: Patients with endometrial cancer...... proportional regression models were used for prognostic evaluation. RESULTS: Eighty-three patients (median age, 69.9 y; range, 26.8-91.1) with primarily high-risk endometrial cancer or suspected high The International Federation of Gynecology and Obstetrics stage were included. Mean follow-up time was 3......-risk endometrial cancer. Thus, SUVmax and cTLG might help identify patients who could benefit from a more aggressive treatment strategy or closer surveillance....

  20. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr. (Univ. of California, Irvine (USA)); Gillin, J.C. (Univ. of California, San Diego (USA))

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.

  1. Parametric imaging via kinetics-induced filter for dynamic positron emission tomography.

    Science.gov (United States)

    Bian, Zhaoying; Huang, Jing; Lu, Lijun; Ma, Jianhua; Zeng, Dong; Feng, Qianjin; Chen, Wufan

    2013-01-01

    Due to the noisy measurement of the voxel-wise time activity curve (TAC), parametric imaging for dynamic positron emission tomography (PET) is a challenging task. To address this problem, some spatial filters, such as Gaussian filter, bilateral filter, wavelet-based filter, and so on, are often performed to reduce the noise of each frame. However, these filters usually just consider local properties of each frame without exploring the kinetic information. In this paper, aiming to improve the quantitative accuracy of parametric imaging, we present a kinetics-induced filter to lower the noise of dynamic PET images by incorporating the kinetic information. The present kinetics-induced filter is designed via the similarity between voxel-wise TACs under the framework of bilateral filter. Experimental results with a simulation study demonstrate that the present kinetics-induced filter can achieve noticeable gains than other existing methods for parametric images in terms of quantitative accuracy measures.

  2. Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography.

    Science.gov (United States)

    Lee, Ji-Woong; Oliveira, Maria Teresa; Jang, Hyeong Bin; Lee, Sungyul; Chi, Dae Yoon; Kim, Dong Wook; Song, Choong Eui

    2016-08-22

    Due to the tremendous interest in carbon-fluorine bond-forming reactions, research efforts in this area have been dedicated to the development of facile processes to synthesize small fluorine-containing organic molecules. Among others, PET (Positron Emission Tomography) is one of the most important applications of fluorine chemistry. Recognizing the specific requirements of PET processes, some groups have focused on fluorination reactions using alkali metal fluorides, particularly through SN2-type reactions. However, a common "misconception" about the role of protic solvents and hydrogen bonding interactions in this class of reactions has hampered the employment of these excellent promoters. Herein, we would like to review recent discoveries in this context, showing straightforward nucleophilic fluorination reactions using alkali metal fluorides promoted by protic solvents. Simultaneous dual activation of reacting partners by intermolecular hydrogen bonding and the enhancement of the "effective fluoride nucleophilicity", which is Nature's biocatalytic approach with the fluorinase enzyme, are the key to this unprecedentedly successful nucleophilic fluorination.

  3. Extensive Tattoos Mimicking Lymphatic Metastasis on Positron Emission Tomography Scan in a Patient With Cervical Cancer.

    Science.gov (United States)

    Grove, Narine; Zheng, Ma; Bristow, Robert E; Eskander, Ramez N

    2015-07-01

    Positron emission tomography (PET) fused with computed tomography (CT) imaging is common in the clinical assessment of patients with locally advanced cervical cancer. Limitations to the utilization and interpretation of PET-CT scans in patients with cervical cancer have been described, including false-positive findings secondary to tattoo ink. A 32-year-old woman presented with clinical stage 1B1 cervical cancer and extensive tattoos of the lower extremities. Preoperative PET-CT scan identified two ileac lymph nodes with increased fluorine-18-deoxyglucose uptake suspicious for metastatic disease. At the time of surgical resection, bilateral pigmented lymph nodes were identified with histologic examination showing deposition of tattoo ink and no malignant cells. Physicians should be cognizant of the possible effects of tattoos on PET-CT findings while counseling patients and formulating a treatment program.

  4. Asymptomatic Thymic Carcinoma With Solitary Hepatic Metastasis Detected by Fluorodeoxyglucose Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    Lien-Yen Wang

    2009-08-01

    Full Text Available Thymic carcinoma is a rare anterior mediastinal malignancy. Most patients present initially with chest pain, cough or dyspnea. Asymptomatic patients account for less than one third of the total cases. Thymic carcinoma is aggressive and tends to metastasize to the lymph nodes, lungs, and bones, and less commonly to the liver, spleen, brain, and adrenal glands. We present a 49-year-old man who received abdominal ultrasound and magnetic resonance imaging for a health checkup, during which, a necrotic hepatic tumor was found incidentally. Fluorodeoxyglucose (FDG positron emission tomography was performed to search for the primary site of malignancy, and lobulated FDG hypermetabolic lesions in the anterior mediastinum were found. The diagnosis of thymic carcinoma with liver metastasis was then confirmed after morphological and immunohistochemical studies of hepatic and mediastinal biopsy specimens.

  5. Short time bacterial endotoxins test for positron emission tomography by means of positively charged filters

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Nobuhiro; Wakita, Kazuo [Nishijin Hospital, Kyoto (Japan); Mineura, Katsuyoshi [Kyoto Prefectural Univ. of Medicine (Japan)] (and others)

    2002-11-01

    Positron emission tomography (PET) radiotracers have very short physical half-lives. It is hard to complete a bacterial endotoxins test prior to release from medical institutes. For endotoxin quantitative determination, limulus amebocyte lysate (LAL) reagent and kinetic-turbidimetry system were previously developed. We investigated the possibility of a short time test by means of positively charged filters. As a result of this study, the effects of positively charged filters on endotoxin removal were over 99.5% for [{sup 18}F]FDG and [{sup 18}F]NaF, which were contaminated with the indicated concentration of endotoxin. Combining this filter and the kinetic-turbidimetric method, it was possible to complete a bacterial endotoxins test in 5 min prior to the patient's administration. This test should be required prior to release for PET radiopharmaceutical quality control. It has been suggested that this combination is a good method for this purpose. (author)

  6. Fasciola Hepatica Mimicking Malignancy on 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Erdem Sürücü

    2016-10-01

    Full Text Available A 48-year-old female with complaints of gastrointestinal symptoms such as abdominal pain, fatigue, vomiting, nausea, and weight loss was diagnosed with neuroendocrine tumor after removal of a 2 mm lesion from the stomach with endoscopic biopsy. Her magnetic resonance imaging that was performed due to on-going symptoms showed multiple linear hypointense lesions in the liver. Positron emission tomography/computed tomography (PET/CT scan was performed for differential diagnosis, which showed high fluorodeoxyglucose (FDG uptake in these lesions. Clinical and laboratory findings revealed the final diagnosis as Fasciola hepatica. The imaging features of this case is presented to aid in differentiating this infectious disease from malignancy and avoid misdiagnosis on FDG-PET/CT.

  7. CdZnTe detectors for small field of view positron emission tomographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Drezet, Arnaud [CEA, LETI, MINATEC, Grenoble, F-38054 (France); Monnet, Olivier [CEA, LETI, MINATEC, Grenoble, F-38054 (France); Mathy, Francoise [CEA, LETI, MINATEC, Grenoble, F-38054 (France); Montemont, Guillaume [CEA, LETI, MINATEC, Grenoble, F-38054 (France); Verger, Loick [CEA, LETI, MINATEC, Grenoble, F-38054 (France)]. E-mail: loick.verger@cea.fr

    2007-02-01

    We report the timing performance between two 16x20x0.9 mm{sup 3} cadmium zinc telluride (CZT) detectors equipped with a specific orthogonal electrode geometry (16 anodes and 5 cathodes with 1 and 4 mm pitch, respectively) and a dedicated electronic setup for Positron Emission Tomography (PET) application. The measured coincidence times reach 2.6 ns full-width at half-maximum (FWHM) for a 500 V bias voltage and 300 keV energy threshold. Subsequently, a simulation study was carried out to assess the spatial and efficiency performances of these detectors, which allow the depth of interaction (DOI) measurement and so limit the parallax error. Preliminary results show that the proposed design could reach a better homogeneity of the spatial resolution across the field of view than what is achieved with the standard PET scintillation.

  8. Greater left cerebral hemispheric metabolism in bulimia assessed by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.C.; Hagman, J.; Buchsbaum, M.S.; Blinder, B.; Derrfler, M.; Tai, W.Y.; Hazlett, E.; Sicotte, N. (Univ. of California, Irvine (USA))

    1990-03-01

    Eight women with bulimia and eight age- and sex-matched normal control subjects were studied with positron emission tomography using (18F)-fluorodeoxyglucose (FDG) as a tracer of brain metabolic rate. Subjects performed a visual vigilance task during FDG uptake. In control subjects, the metabolic rate was higher in the right hemisphere than in the left, but patients with bulimia did not have this normal asymmetry. Lower metabolic rates in the basal ganglia, found in studies of depressed subjects, and higher rates in the basal ganglia, reported in a study of anorexia nervosa, were not found. This is consistent with the suggestion that bulimia is a diagnostic grouping distinct from these disorders.

  9. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography

    DEFF Research Database (Denmark)

    Lassen, U; Andersen, P; Daugaard, G

    1998-01-01

    Brain metastases from small cell lung cancer respond to chemotherapy, but response duration is short and the intracerebral concentration of chemotherapy may be too low because of the characteristics of the blood-brain barrier. Positron emission tomography has been applied in a variety of tumors...... for studies of metabolic and hemodynamic features. This study was performed to determine regional cerebral metabolic rate of glucose (rCMRglu), regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) in brain metastases from small cell lung cancer and the surrounding brain. Tumor r......CMRglu, rCBF, and rCBV exerted a broad variability, but were higher than the corresponding values in white matter and higher than or similar to those of gray matter. Tumor rCMRglu and rCBF were highly correlated (P

  10. Monitoring variables affecting positron emission tomography measurements of cerebral blood flow in anaesthetized pigs

    DEFF Research Database (Denmark)

    Alstrup, Aage Kristian Olsen; Zois, Nora Elisabeth; Simonsen, Mette

    female pigs. Results: We found that low blood pH, high arterial carbon dioxide tension (PaCO2), high heart rate, high body temperature and long anaesthesia time are associated with high CBF in anaesthetized pigs. No associations were noted between CBF and low arterial oxygen tension, haematocrit......, systolic and diastolic blood pressure. Conclusions: Our observations indicate that monitoring of pH, PaCO2, heart rate and body temperature are crucial for maintaining stable levels of CBF and thus optimizing PET imaging of molecular mechanisms in the brain of living pig. Furtermore, anaesthesia length......Background: Positron emission tomography (PET) imaging of anaesthetised pig brains is a useful tool in neuroscience. Stable cerebral blood flow (CBF) is essential for PET, since variations can affect the kinetics of several radiotracers. However, the impact of physiological factors regulating CBF...

  11. Prediction of arrhythmic events with positron emission tomography: PAREPET study design and methods.

    Science.gov (United States)

    Fallavollita, James A; Luisi, Andrew J; Michalek, Suzanne M; Valverde, Arturo M; deKemp, Robert A; Haka, Michael S; Hutson, Alan D; Canty, John M

    2006-08-01

    In medically-treated patients with ischemic cardiomyopathy, myocardial viability is associated with a worse prognosis than scar. The risk is especially great with hibernating myocardium (chronic regional dysfunction with reduced resting flow), and the excess mortality appears to be due to sudden cardiac death (SCD). Hibernating myocardium also results in sympathetic nerve dysfunction, which has been independently associated with risk of SCD. PAREPET is a prospective, observational cohort study funded by NHLBI. It is designed to determine whether hibernating myocardium and/or inhomogeneity of sympathetic innervation by positron emission tomography imaging identifies patients with ischemic cardiomyopathy who are at high risk for SCD and cardiovascular mortality. Patients with documented ischemic cardiomyopathy, an ejection fraction of positron emission tomography to quantify resting perfusion (13N-ammonia), norepinephrine uptake as an index of sympathetic innervation (11C-meta-hydroxyephedrine), and metabolic viability (18F-2-deoxyglucose during glucose-insulin clamp). The development of SCD or cardiovascular mortality will be determined by telephone follow-up every three months. In patients with an implantable cardiac defibrillator, appropriate device discharge will be considered a surrogate for SCD. The PAREPET study will prospectively determine whether the amount of viable dysfunction myocardium and/or cardiac sympathetic dysinnervation is associated with the risk of SCD. It is anticipated that the

  12. Measurement of lower limb blood flow in patients with neurogenic claudication using positron emission tomography.

    Science.gov (United States)

    Keenan, G F; Ashcroft, G P; Roditi, G H; Hutchison, J D; Evans, N T; Mikecz, P; Chaloner, F; Dodd, M; Leonard, C; Porter, R W

    1995-02-15

    Ten subjects (seven with neurogenic claudication and three control subjects) underwent examination of lower limb muscle blood flow before and after exercise using positron emission tomography. To investigate the hypothesis that lower limb muscle ischemia was the origin of symptoms in neurogenic claudication. Patients with neurogenic claudication secondary to spinal stenosis experience lower limb discomfort after exercise similar to that of ischemic claudication. However, they do not have clinical evidence of peripheral vascular disease. The authors postulated that the lower limb discomfort in patients with neurogenic claudication may arise from muscle ischemia due to inadequate dilatation of arterioles in response to exercise, this itself arising secondary to sympathetic dysfunction due to spinal stenosis. Using O15-labeled water and positron emission tomography measured thigh and leg muscle blood flow response to exercise bilaterally in seven patients with unilateral neurogenic claudication and three control subjects were measured. The average values obtained for mid-thigh and mid-calf muscle perfusion at rest were 2.57 ml/min/100 g tissue (2.23-3.90) and 2.39 ml/min/100 g tissue (2.03-3.46), respectively. The average values obtained from mid-thigh and mid-calf perfusion after exercise were 4.41 ml/min/100 g tissue (2.8-6.0) and 4.87 ml/min/100 g (2.2-11.7). We found no difference in muscle perfusion between symptomatic and asymptomatic limbs in this group of patients. These studies suggest that muscle ischemia is not the origin of symptoms in most patients with neurogenic claudication.

  13. A Conway-Maxwell-Poisson (CMP) model to address data dispersion on positron emission tomography.

    Science.gov (United States)

    Santarelli, Maria Filomena; Della Latta, Daniele; Scipioni, Michele; Positano, Vincenzo; Landini, Luigi

    2016-10-01

    Positron emission tomography (PET) in medicine exploits the properties of positron-emitting unstable nuclei. The pairs of γ- rays emitted after annihilation are revealed by coincidence detectors and stored as projections in a sinogram. It is well known that radioactive decay follows a Poisson distribution; however, deviation from Poisson statistics occurs on PET projection data prior to reconstruction due to physical effects, measurement errors, correction of deadtime, scatter, and random coincidences. A model that describes the statistical behavior of measured and corrected PET data can aid in understanding the statistical nature of the data: it is a prerequisite to develop efficient reconstruction and processing methods and to reduce noise. The deviation from Poisson statistics in PET data could be described by the Conway-Maxwell-Poisson (CMP) distribution model, which is characterized by the centring parameter λ and the dispersion parameter ν, the latter quantifying the deviation from a Poisson distribution model. In particular, the parameter ν allows quantifying over-dispersion (ν1) of data. A simple and efficient method for λ and ν parameters estimation is introduced and assessed using Monte Carlo simulation for a wide range of activity values. The application of the method to simulated and experimental PET phantom data demonstrated that the CMP distribution parameters could detect deviation from the Poisson distribution both in raw and corrected PET data. It may be usefully implemented in image reconstruction algorithms and quantitative PET data analysis, especially in low counting emission data, as in dynamic PET data, where the method demonstrated the best accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Positron emission tomography demonstrates that coronary sinus retroperfusion can restore regional myocardial perfusion and preserve metabolism

    Energy Technology Data Exchange (ETDEWEB)

    O' Byrne, G.T.; Nienaber, C.A.; Miyazaki, A.; Araujo, L.; Fishbein, M.C.; Corday, E.; Schelbert, H.R. (Department of Radiological Sciences, University of California, Los Angeles School of Medicine (USA))

    1991-07-01

    Positron emission tomography was used to image blood flow and metabolic tracers in risk zone myocardium after left anterior descending coronary artery occlusion during synchronized coronary venous retroperfusion. Six control and seven intervention open chest dogs had occlusion of the mid left anterior descending coronary artery. Synchronized retroperfusion commenced 25 min later. Flow tracers (rubidium-82 and nitrogen-13 ammonia) were injected retrogradely. Three hours after coronary occlusion, fluorine-18 (F-18) deoxyglucose uptake in the control and treatment groups was compared. At 200 min of occlusion, infarct size was assessed. Retrograde flow tracer uptake was observed in the risk zone in the seven intervention dogs. Fluorine-18 deoxyglucose uptake in the risk zone was increased in five of the six intervention dogs but was reduced in five of the six control dogs. The risk zone to normal zone F-18 deoxyglucose count ratio was higher in the intervention than the control group (1.13 {plus minus} 0.39 vs. 0.59 {plus minus} 0.51; p less than 0.05). The endocardial subsegment risk zone to normal zone F-18 deoxyglucose count ratio was also significantly higher in the intervention group. Percent infarction in the risk zone was 70% lower in the group treated with synchronized retroperfusion than in the control group (18.4 {plus minus} 22.6% vs. 61.2 {plus minus} 25.4%; p less than 0.02). Thus, positron emission tomography revealed that retroperfusion could deliver oxygenated blood and maintain metabolism in risk zone myocardium. Infarct size was limited to 30% of that of control. In acute closure of the left anterior descending coronary artery, synchronized retroperfusion might be considered for maintaining viability of the jeopardized myocardium if the artery cannot be reopened rapidly.

  15. Usefulness of Positron Emission Tomography in Patients with Syphilis: A Systematic Review of Observational Studies.

    Science.gov (United States)

    Chen, Jian-Hua; Zheng, Xin; Liu, Xiu-Qin

    2017-05-05

    Diagnosis of syphilis is difficult. Follow-up and therapy evaluation of syphilitic patients are poor. Little is known about positron emission tomography (PET) in syphilis. This review was to systematically review usefulness of PET for diagnosis, disease extent evaluation, follow-up, and treatment response assessment in patients with syphilis. We searched PubMed, EMBASE, SCOPUS, Cochrane Library, Web of Science, ClinicalTrials.gov, and three Chinese databases (SinoMed, Wanfang, and CNKI) for English and Chinese language articles from inception to September 2016. We also collected potentially relevant studies and reviews using a manual search. The search keywords included the combined text and MeSH terms "syphilis" and "positron emission tomography". We included studies that reporting syphilis with a PET scan before and/or after antibiotic treatment. The diagnosis of syphilis was based on serological criteria or dark field microscopy. Outcomes include pre- and post-treatment PET scan, pre- and post-treatment computed tomography, and pre- and post-treatment magnetic resonance imaging. We excluded the articles not published in English or Chinese or not involving humans. Of 258 identified articles, 34 observational studies were included. Thirty-three studies were single-patient case reports and one study was a small case series. All patients were adults. The mean age of patients was 48.3 ± 12.1 years. In primary syphilis, increased fluorodeoxyglucose (FDG) accumulation could be seen at the site of inoculation or in the regional lymph nodes. In secondary syphilis with lung, bone, gastrointestinal involvement, or generalized lymphadenopathy, increased FDG uptake was the most commonly detected changes. In tertiary syphilis, increased glucose metabolic activity, hypometabolic lesions, or normal glucose uptake might be seen on PET. There were five types of PET scans in neurosyphilis. A repeated PET scan after treatment revealed apparent or complete resolution of the

  16. Positron emission tomography in pebble beds. Part 1: Liquid particle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T., E-mail: t.barth@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Ludwig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Kulenkampff, J.; Gründig, M. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Franke, K. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy (IRP), Permoserstraße 15, 04318 Leipzig (Germany); Lippmann-Pipke, J. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology (IRE), Permoserstraße 15, 04318 Leipzig (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics (IFD), Bautzner Landstraße 400, 01328 Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering, Technische Universität Dresden, 01062 Dresden (Germany)

    2014-02-15

    Highlights: • Particle deposition in a pebble bed was recorded by positron emission tomography. • The particles were radioactively labelled and their spatial distribution was recorded. • Particle deposition was mainly driven by particle inertia and turbulent dispersion. • Particle deposits form hot spots on the upstream face of the single pebbles. - Abstract: Accidental scenarios such as the depressurisation of the primary circuit of high temperature gas cooled pebble bed reactors may lead to the release of fission products via the discharge of radioactive graphite dust. For a detailed source term assessment in such accident scenarios knowledge of the flow mechanics of dust transport in complex coolant circuit components, like pebble beds, recuperator structures and pipe systems is necessary. In this article an experimental study of aerosol deposition in a pebble bed is described. We investigated the deposition of radiolabelled liquid aerosol particles in a scaled pebble bed in an air-driven small-scale aerosol flow test facility under isothermal ambient conditions. The aerosol particles were generated by means of a condensational aerosol generator with potassium-fluoride (KF) condensation nuclei. Particle concentration measurements upstream and downstream of the pebble bed were performed by isokinetic sampling and particle counting. The results agree with typical deposition curves for turbulent and inertia driven particle deposition. Furthermore, positron emission tomography (PET) was performed to visualize and measure particle deposition distributions in the pebble bed. Results of a selected deposition experiment with moderately large particles (d{sub aero} = 3.5 μm, Re{sup ′}{sub pb}=2200) show that the deposited particles are located in the vicinity of the upstream stagnation points of the pebbles. These findings support the thesis that inertia driven particle deposition is predominating.

  17. Sensitivity of 6-[F-18]fluoro-L-dihydroxyphenylalanine positron emission tomography for localizing tumors causing catecholamine excess

    NARCIS (Netherlands)

    Fiebrich, H.; Brouwers, A H; Kerstens, M. N.; Pijl, M. E.; Kema, I. P.; de Jong, J. R.; van der Wal, J. E.; Sluiter, W. J.; de Vries, E. G.; Links, T. P.

    11064 Background: Positron emission tomography (PET) using the catecholamine precursor 6-[F-18]fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) has emerged as promising technique to localize tumors with catecholamine excess. This study investigated the sensitivity of (18)F-DOPA PET, compared to

  18. 2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) for postchemotherapy seminoma residual lesions

    DEFF Research Database (Denmark)

    Bachner, M; Loriot, Y; Gross-Goupil, M

    2012-01-01

    2-¹⁸fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) has been recommended in international guidelines in the evaluation of postchemotherapy seminoma residuals. Our trial was designed to validate these recommendations in a larger group of patients....

  19. Tyrosine positron emission tomography and protein synthesis rate in pituitary adenoma : Different effects of surgery and radiation therapy

    NARCIS (Netherlands)

    van den Bergh, Alfons C. M.; Pruim, Jan; Links, Thera P.; Vliet , van der Anton M.; Sluiter, Wim; Wolffenbuttel, Bruce H. R.; Langendijk, Johannes A.; Hoving, Eelco W.; Dullaart, Robin P. F.

    Introduction: Positron emission tomography (PET) using amino acid tracers is able to establish biochemical tumour characterization in vivo. The use of PET in the follow-up of non-functioning pituitary adenomas (NFA) and growth hormone producing pituitary adenomas (GHA) after surgery and radiation

  20. In Vivo Treatment Sensitivity Testing With Positron Emission Tomography/Computed Tomography After One Cycle of Chemotherapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Hutchings, Martin; Kostakoglu, Lale; Zaucha, Jan Maciej

    2014-01-01

    PURPOSE: Negative [(18)F]fluorodeoxyglucose (FDG) -positron emission tomography (PET)/computed tomography (CT) after two cycles of chemotherapy indicates a favorable prognosis in Hodgkin lymphoma (HL). We hypothesized that the negative predictive value would be even higher in patients responding...

  1. Levodopa pharmacokinetic-pharmacodynamic modeling and 6-[F-18]levodopa positron emission tomography in patients with Parkinson's disease

    NARCIS (Netherlands)

    Dietz, M; Harder, S; Graff, J; Kunig, G; Vontobel, P; Leenders, KL; Baas, H

    Objective: Parameters of a pharmacokinetic-pharmacodynamic (PK-PD) model of levodopa have been claimed to reflect the magnitude of the dopaminergic deficit in patients with Parkinson's disease. The aim of this study was to correlate such parameters with positron emission tomography (PET) with

  2. Luminescence properties of Ce3+, Pr3+ and Nd3+ activated scintillators for Positron Emission Tomography (PET)

    NARCIS (Netherlands)

    Zych, A.K.

    2011-01-01

    The aging society comes with an increased number of people with serious health problems, including cancer and cardio vascular diseases. To combat these problems, early diagnosis is important and requires the development of new and improvement of existing medical imaging techniques. Positron Emission

  3. Effects of high amphetamine dose on mood and cerebral glucose metabolism in normal volunteers using positron emission tomography (PET)

    NARCIS (Netherlands)

    Vollenweider, FX; Maguire, RP; Leenders, KL; Mathys, K; Angst, J

    1998-01-01

    The effects of high euphorigenic doses of D-amphetamine (0.9-1.0 mg/kg p.o.) on regional cerebral glucose metabolism (rCMRglu) and psychological measures were investigated in 10 healthy human volunteers using a within-subject design and [F-18]-fluorodeoxygrucose positron emission tomography

  4. Positron emission tomography studies of human airways using an inhaled beta-adrenoceptor antagonist, S-11C-CGP 12388

    NARCIS (Netherlands)

    Van Waarde, Aren; Maas, Bram; Doze, Petra; Slart, Riemer H.; Frijlink, Henderik W.; Vaalburg, Willem; Elsinga, Philippus

    2005-01-01

    Objectives: Positron emission tomography (PET) scanning may provide information on changes in the density and affinity of airway beta-adrenoceptors in lung diseases. However, the injection of a radiolabeled P-blocker results in a pulmonary PET signal that reflects the binding of the ligand in the

  5. Exploiting the Metal-Chelating Properties of the Drug Cargo for In Vivo Positron Emission Tomography Imaging of Liposomal Nanomedicines

    DEFF Research Database (Denmark)

    Edmonds, Scott; Volpe, Alessia; Shmeeda, Hilary

    2016-01-01

    The clinical value of current and future nanomedicines can be improved by introducing patient selection strategies based on noninvasive sensitive whole-body imaging techniques such as positron emission tomography (PET). Thus, a broad method to radiolabel and track preformed nanomedicines such as ...

  6. Measurement of clinical and subclinical tumour response using [F-18]-fluorodeoxyglucose and positron emission tomography : Review and 1999 EORTC recommendations

    NARCIS (Netherlands)

    Young, H; Baum, R; Cremerius, U; Herholz, K; Hoekstra, O; Lammertsma, AA; Pruim, J; Price, P

    1999-01-01

    [F-18]-fluorodeoxyglucose ([F-18]-FDG) uptake is enhanced in most malignant tumours which in turn can be measured using positron emission tomography (PET). A number of small clinical trials have indicated that quantification of the change in tumour [F-18]-FDG uptake may provide an early, sensitive,

  7. 18F-2-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography in Staging of Locally Advanced Breast Cancer

    NARCIS (Netherlands)

    Hoeven, J.J.M. van der; Krak, N.C.; Hoekstra, O.S.; Comans, E.F.I.; Boom, R.P.A.; Geldere, D. van; Meijer, S.; Wall, E. van der; Buter, J.; Pinedo, H.M.; Teule, G.J.J.; Lammertsma, A.A.

    2004-01-01

    PURPOSE To prospectively evaluate the effect of adding whole-body 18F-2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) to conventional screening for distant metastases in patients with locally advanced breast cancer (LABC). PATIENTS AND METHODS All women with LABC referred for

  8. Thalamic glucose metabolism in temporal lobe epilepsy measured with 18F-FDG positron emission tomography (PET)

    NARCIS (Netherlands)

    Khan, N; Leenders, KL; Hajek, M; Maguire, P; Missimer, J; Wieser, HG

    1997-01-01

    Thalamic glucose metabolism has been studied in 24 patients suffering from temporal lobe epilepsy (TLE) using interictal F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET). A total of 17 patients had a unilateral TL seizure onset, 11 of these patients had a mesial temporal lobe

  9. Regional myocardial oxygen consumption estimated by carbon-11 acetate and positron emission tomography before and after repetitive ischemia

    DEFF Research Database (Denmark)

    Kofoed, K F; Hansen, P R; Holm, S

    2011-01-01

    Preserved myocardial oxygen consumption estimated by carbon 11-acetate and positron emission tomography (PET) in myocardial regions with chronic but reversibly depressed contractile function in patients with ischemic heart disease have been suggested to be caused by repeated short episodes of acute...

  10. (89)Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art (89)Zr Radiochemistry

    NARCIS (Netherlands)

    Heskamp, S.; Raavé , R.; Boerman, O.C.; Rijpkema, M.J.P.; Goncalves, V.; Denat, F.

    2017-01-01

    Immuno-positron emission tomography (immunoPET) with (89)Zr-labeled antibodies has shown great potential in cancer imaging. It can provide important information about the pharmacokinetics and tumor-targeting properties of monoclonal antibodies and may help in anticipating on toxicity. Furthermore,

  11. 89Zr-Immuno-Positron Emission Tomography in Oncology: State-of-the-Art 89Zr Radiochemistry

    NARCIS (Netherlands)

    Heskamp, S.; Raave, R.; Boerman, O.C.; Rijpkema, M.J.P.; Goncalves, V.; Denat, F.

    2017-01-01

    Immuno-positron emission tomography (immunoPET) with 89Zr-labeled antibodies has shown great potential in cancer imaging. It can provide important information about the pharmacokinetics and tumor-targeting properties of monoclonal antibodies and may help in anticipating on toxicity. Furthermore, it

  12. Implementation of sum-peak method for standardization of positron emission radionuclides; Implementacao do metodo pico-soma para padronizacao de radionuclideos emissores de positrons

    Energy Technology Data Exchange (ETDEWEB)

    Fragoso, Maria da Conceicao de Farias; Oliveira, Mercia Liane de; Lima, Fernando Roberto de Andrade, E-mail: mcfragoso@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    Positron Emission Tomography (PET) is being increasingly recognized as an important quantitative imaging tool for diagnosis and assessing response to therapy. As correct dose administration plays a crucial part in nuclear medicine, it is important that the instruments used to assay the activity of the short-lived radionuclides are calibrated accurately, with traceability to the national or international standards. The sum-peak method has been widely used for radionuclide standardization. The purpose of this study was to implement the methodology for standardization of PET radiopharmaceuticals at the Regional Center for Nuclear Sciences of the Northeast (CRCN-NE). (author)

  13. Imaging of Sleeping Beauty-Modified CD19-Specific T Cells Expressing HSV1-Thymidine Kinase by Positron Emission Tomography.

    Science.gov (United States)

    Najjar, Amer M; Manuri, Pallavi R; Olivares, Simon; Flores, Leo; Mi, Tiejuan; Huls, Helen; Shpall, Elizabeth J; Champlin, Richard E; Turkman, Nashaat; Paolillo, Vincenzo; Roszik, Jason; Rabinovich, Brian; Lee, Dean A; Alauddin, Mian; Gelovani, Juri; Cooper, Laurence J N

    2016-12-01

    We have incorporated a positron emission tomography (PET) functionality in T cells expressing a CD19-specific chimeric antigen receptor (CAR) to non-invasively monitor the adoptively transferred cells. We engineered T cells to express CD19-specific CAR, firefly luciferase (ffLuc), and herpes simplex virus type-1 thymidine kinase (TK) using the non-viral-based Sleeping Beauty (SB) transposon/transposase system adapted for human application. Electroporated primary T cells were propagated on CD19(+) artificial antigen-presenting cells. After 4 weeks, 90 % of cultured cells exhibited specific killing of CD19(+) targets in vitro, could be ablated by ganciclovir, and were detected in vivo by bioluminescent imaging and PET following injection of 2'-deoxy-2'-[(18)F]fluoro-5-ethyl-1-β-D-arabinofuranosyl-uracil ([(18)F]FEAU). This is the first report demonstrating the use of SB transposition to generate T cells which may be detected using PET laying the foundation for imaging the distribution and trafficking of T cells in patients treated for B cell malignancies.

  14. Preoperative [18]fluorodeoxyglucose-positron emission tomography/computed tomography in early stage breast cancer: Rates of distant metastases.

    Science.gov (United States)

    Vinh-Hung, Vincent; Everaert, Hendrik; Farid, Karim; Djassemi, Navid; Baudin-Veronique, Jacqueline; Bougas, Stefanos; Michailovich, Yuriy; Joachim-Contaret, Clarisse; Cécilia-Joseph, Elsa; Verschraegen, Claire; Nguyen, Nam P

    2017-07-28

    To investigate rates of distant metastases (DM) detected with [18]fluorodeoxyglucose-positron emission tomography/computed tomography (18FDG-PET/CT) in early stage invasive breast cancer. We searched the English language literature databases of PubMed, EMBASE, ISI Web of Knowledge, Web of Science and Google Scholar, for publications on DM detected in patients who had 18FDG-PET/CT scans as part of the staging for early stages of breast cancer (stage I and II), prior to or immediately following surgery. Reports published between 2011 and 2017 were considered. The systematic review was conducted according to the PRISMA guidelines. Among the 18 total studies included in the analysis, the risk of DM ranged from 0% to 8.3% and 0% to 12.9% for stage I and II invasive breast cancer, respectively. Among the patients with clinical stage II, the rate of occult metastases diagnosed by 18FDG-PET/CT was 7.2% (range, 0%-19.6%) for stage IIA and 15.8% (range, 0%-40.8%) for stage IIB. In young patients (< 40-year-old), 18FDG-PET/CT demonstrated a higher prevalence of DM at the time of diagnosis for those with aggressive histology (i.e., triple-negative receptors and poorly differentiated grade). Young patients with poorly differentiated tumors and stage IIB triple-negative breast cancer may benefit from 18FDG-PET/CT at initial staging to detect occult DM prior to surgery.

  15. Optimised motion tracking for positron emission tomography studies of brain function in awake rats.

    Directory of Open Access Journals (Sweden)

    Andre Z Kyme

    Full Text Available Positron emission tomography (PET is a non-invasive molecular imaging technique using positron-emitting radioisotopes to study functional processes within the body. High resolution PET scanners designed for imaging rodents and non-human primates are now commonplace in preclinical research. Brain imaging in this context, with motion compensation, can potentially enhance the usefulness of PET by avoiding confounds due to anaesthetic drugs and enabling freely moving animals to be imaged during normal and evoked behaviours. Due to the frequent and rapid motion exhibited by alert, awake animals, optimal motion correction requires frequently sampled pose information and precise synchronisation of these data with events in the PET coincidence data stream. Motion measurements should also be as accurate as possible to avoid degrading the excellent spatial resolution provided by state-of-the-art scanners. Here we describe and validate methods for optimised motion tracking suited to the correction of motion in awake rats. A hardware based synchronisation approach is used to achieve temporal alignment of tracker and scanner data to within 10 ms. We explored the impact of motion tracker synchronisation error, pose sampling rate, rate of motion, and marker size on motion correction accuracy. With accurate synchronisation (20 Hz, and a small head marker suitable for awake animal studies, excellent motion correction results were obtained in phantom studies with a variety of continuous motion patterns, including realistic rat motion (<5% bias in mean concentration. Feasibility of the approach was also demonstrated in an awake rat study. We conclude that motion tracking parameters needed for effective motion correction in preclinical brain imaging of awake rats are achievable in the laboratory setting. This could broaden the scope of animal experiments currently possible with PET.

  16. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, Katia, E-mail: Katia.parodi@physik.uni-muenchen.de [Faculty of Physics, Department of Medical Physics, Ludwig Maximilians University Munich, Munich 85748 (Germany)

    2015-12-15

    Positron emission tomography (PET) is increasingly considered as an effective imaging method to support several stages of radiation therapy. The combined usage of functional and morphological imaging in state-of-the-art PET/CT scanners is rapidly emerging to support the treatment planning process in terms of improved tumor delineation, and to assess the tumor response in follow-up investigations after or even during the course of fractionated therapy. Moreover, active research is being pursued on new tracers capable of providing different insights into tumor function, in order to identify areas of the planning volume which may require additional dosage for improved probability of tumor control. In this respect, major progresses in the next years will likely concern the development and clinical investigation of novel tracers and image processing techniques for reliable thresholding and segmentation, of treatment planning and beam delivery approaches integrating the PET imaging information, as well as improved multimodal clinical instrumentation such as PET/MR. But especially in the rapidly emerging case of ion beam therapy, the usage of PET is not only limited to the imaging of external tracers injected to the patient. In fact, a minor amount of positron emitters is formed in nuclear fragmentation reactions between the impinging ions and the tissue, bearing useful information for confirmation of the delivered treatment during or after therapeutic irradiation. Different implementations of unconventional PET imaging for therapy monitoring are currently being investigated clinically, and major ongoing research aims at new dedicated detector technologies and at challenging applications such as real-time imaging and time-resolved in vivo verification of motion compensated beam delivery. This paper provides an overview of the different areas of application of PET in radiation oncology and discusses the most promising perspectives in the years to come for radiation therapy

  17. The Positron Emission Tomography. A diagnostic technique; Con la PET diagnosi precoce della malattia

    Energy Technology Data Exchange (ETDEWEB)

    Salvadori, P. [Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica, Chimica e Radiofarmaceutica, Gruppo PET/Ciclotrone, Pisa (Italy)

    2001-07-01

    Positron Emission Tomography (PET) is a new imaging modality, which is able to assess non-invasively the biochemical mechanisms, underlying physiological and pathophysiological processes in vivo in humans. The technique relies on the administration of radioactive tracers labeled with short-lived positron emitters, which need to be produced on site via a particle accelerator (cyclotron). Radionuclides are produced upon request and formulated into biologically active organic molecules having precise pharmacokinetics and specificity. The radiotracer can be detected by the PET scanner and represented as tomographic sections (images of body sections) showing its regional distribution and concentration. This makes it possible to address clinical questions concerning occurrence and evolution of many diseases as well as their response to therapy. The ability to image (measure) biological processes and not only anatomy enables PET to explore diseases in the very early stage, including those diseases which are not related to modifications of organ structure (e.g. psychiatric diseases, metabolic disorders, biochemical disfunction). PET plays a major role, in conjunction with the other imaging modalities, to improve diagnosis capabilities and disease mechanism understanding. [Italian] La PET e' correntemente utilizzata come efficace strumento clinico, per l'elevata sensibilita' e specificita', nella valutazione dell'iter diagnostico di pazienti con sospetta cardiopatia ischemica e nel processo di decision making clinico di pazienti con disfunzione ventricolare sinistra e cardiopatia ischemica, in quanto metodica di riferimento per la diagnosi di vitalita' miocardica. In campo oncologico, viene impiegata l'ormai ben documentata capacita' del fluorodesossiglucosio (FDG), un tracciante contenente fluoro-18 ed in grado di permettere la misura del consumo cellulare di glucosio, nel porre in evidenza all'esame PET il tessuto neoplastico

  18. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  19. Magnetic resonance-based motion correction for positron emission tomography imaging.

    Science.gov (United States)

    Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges

    2013-01-01

    Positron emission tomography (PET) image quality is limited by patient motion. Emission data are blurred owing to cardiac and/or respiratory motion. Although spatial resolution is 4 mm for standard clinical whole-body PET scanners, the effective resolution can be as low as 1 cm owing to motion. Additionally, the deformation of attenuation medium causes image artifacts. Previously, gating has been used to "freeze" the motion, but led to significantly increased noise level. Simultaneous PET/magnetic resonance (MR) modality offers a new way to perform PET motion correction. MR can be used to measure 3-dimensional motion fields, which can then be incorporated into the iterative PET reconstruction to obtain motion-corrected PET images. In this report, we present MR imaging techniques to acquire dynamic images, a nonrigid image registration algorithm to extract motion fields from acquired MR images, and a PET reconstruction algorithm with motion correction. We also present results from both phantom and in vivo animal PET/MR studies. We demonstrate that MR-based PET motion correction using simultaneous PET/MR improves image quality and lesion detectability compared with gating and no motion correction. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Positron emission tomography myocardial perfusion imaging in children with suspected coronary abnormalities.

    Science.gov (United States)

    Singh, T P; Muzik, O; Forbes, T F; Di Carli, M F

    2003-01-01

    Positron emission tomography (PET) myocardial perfusion imaging has higher spatial resolution than conventional single photon emission computed tomography (SPECT) imaging and allows accurate and reproducible quantification of myocardial blood flow (MBF). In this article, we describe the role of PET myocardial perfusion imaging in clinical decision making in children with suspected coronary abnormalities. We performed a PET myocardial perfusion study using N-13 ammonia in 10 children (median age, 14 years; range, 1-17 years). The indications included exercise-induced chest pain and ST segment changes during exercise testing, coronary artery ectasia, hypertrophic cardiomyopathy with myocardial bridging of the left anterior descending coronary artery, and suspected left coronary stenosis in an infant with William's syndrome. MBF was assessed at baseline and during adenosine hyperemia in all 10 patients and postexercise in 8 patients. Myocardial perfusion was homogeneous at baseline in all 10 patients, during adenosine perfusion in 9 of 10 patients, and postexercise in all 8 patients. Three patients with homogeneous rest and stress perfusion had impaired myocardial flow reserve. The infant with William's syndrome developed a large, reversible perfusion defect in the left coronary territory during adenosine stress and underwent surgical repair. Myocardial flow reserve findings were valuable for clinical decision making in individual patients. We conclude that MBF quantification with N-13 ammonia and PET provides supplemental perfusion information and is helpful in clinical decision making in children with suspected coronary abnormalities.

  1. Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks

    Energy Technology Data Exchange (ETDEWEB)

    Willekens, Stefanie M.A.; Weehaeghe, Donatienne van [University Hospitals Leuven and KU Leuven, Division of Nuclear Medicine, Department of Imaging and Pathology, Leuven (Belgium); Damme, Philip van [University Hospitals Leuven, Department of Neurology, Leuven (Belgium); KU Leuven, Department of Neurosciences, Experimental Neurology, Leuven (Belgium); Leuven Research Institute for Neuroscience and Disease (LIND), Leuven (Belgium); VIB, Vesalius Research Center, Laboratory of Neurobiology, Leuven (Belgium); Laere, Koen van [University Hospitals Leuven and KU Leuven, Division of Nuclear Medicine, Department of Imaging and Pathology, Leuven (Belgium); Leuven Research Institute for Neuroscience and Disease (LIND), Leuven (Belgium)

    2017-03-15

    During the past decades, extensive efforts have been made to expand the knowledge of amyotrophic lateral sclerosis (ALS). However, clinical translation of this research, in terms of earlier diagnosis and improved therapy, remains challenging. Since more than 30% of motor neurons are lost when symptoms become clinically apparent, techniques allowing non-invasive, in vivo detection of motor neuron degeneration are needed in the early, pre-symptomatic disease stage. Furthermore, it has become apparent that non-motor signs play an important role in the disease and there is an overlap with cognitive disorders, such as frontotemporal dementia (FTD). Radionuclide imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), form an attractive approach to quantitatively monitor the ongoing neurodegenerative processes. Although [{sup 18}F]-FDG has been recently proposed as a potential biomarker for ALS, active targeting of the underlying pathologic molecular processes is likely to unravel further valuable disease information and may help to decipher the pathogenesis of ALS. In this review, we provide an overview of radiotracers that have already been applied in ALS and discuss possible novel targets for in vivo imaging of various pathogenic processes underlying ALS onset and progression. (orig.)

  2. Absolute quantitation of iodine-123 epidepride kinetics using single-photon emission tomography: comparison with carbon-11 epidepride and positron emission tomography.

    Science.gov (United States)

    Almeida, P; Ribeiro, M J; Bottlaender, M; Loc'h, C; Langer, O; Strul, D; Hugonnard, P; Grangeat, P; Mazière, B; Bendriem, B

    1999-12-01

    Epidepride labelled with iodine-123 is a suitable probe for the in vivo imaging of striatal and extrastriatal dopamine D2 receptors using single-photon emission tomography (SPET). Recently, this molecule has also been labelled with carbon-11. The goal of this work was to develop a method allowing the in vivo quantification of radioactivity uptake in baboon brain using SPET and to validate it using positron emission tomography (PET). SPET studies were performed in Papio anubis baboons using 123I-epidepride. Emission and transmission measurements were acquired on a dual-headed system with variable head angulation and low-energy ultra-high resolution (LEUHR) collimation. The imaging protocol consisted of one transmission measurement (24 min, heads at 90 degrees), obtained with two sliding line sources of gadolinium-153 prior to injection of 0.21-0.46 GBq of 123I-epidepride, and 12 emission measurements starting 5 min post injection. For scatter correction (SC) we used a dual-window method adapted to 123I. Collimator blurring correction (CBC) was done by deconvolution in Fourier space and attenuation correction (AT) was applied on a preliminary (CBC) filtered back-projection reconstruction using 12 iterations of a preconditioned, regularized minimal residual algorithm. For each reconstruction, a calibration factor was derived from a uniform cylinder filled with a 123I solution of a known radioactivity concentration. Calibration and baboon images were systematically built with the same reconstruction parameters. Uncorrected (UNC) and (AT), (SC + AT) and (SC + CBC + AT) corrected images were compared. PET acquisitions using 0.11-0.44 GBq of 11C-epidepride were performed on the same baboons and used as a reference. The radioactive concentrations expressed in percent of the injected dose per 100 ml (% ID/100 ml) obtained after (SC + CBC + AT) in SPET are in good agreement with those obtained with PET and 11C-epidepride. A method for the in vivo absolute quantitation of 123

  3. Technical aspects of real time positron emission tracking for gated radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, Marc; Xu, Tong, E-mail: txu@physics.carleton.ca [Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); McEwen, Malcolm R. [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2016-02-15

    Purpose: Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. Methods: The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation–maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers a short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior–superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a {sup 22}Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. Results: The precision of the tracking in the IS

  4. Applications of Beta Particle Detection for Synthesis and Usage of Radiotracers Developed for Positron Emission Tomography

    Science.gov (United States)

    Dooraghi, Alex Abreu

    Positron Emission Tomography (PET) is a noninvasive molecular imaging tool that requires the use of a radioactive compound or radiotracer which targets a molecular pathway of interest. We have developed and employed three beta particle radiation detection systems to advance PET. Specifically, the goals of these systems are to: 1. Automate dispensing of solutions containing a positron emitting isotope. 2. Monitor radioactivity on-chip during synthesis of a positron emitting radiotracer. 3. Assay cellular uptake on-chip of a positron emitting radiotracer. Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing an optimum environment for radiation workers, but also to ensure a quantitatively accurate workflow. For the first project, we describe the development and performance of a system for automated radioactivity distribution of beta particle emitting radioisotopes such as fluorine-18 (F-18). Key to the system is a radiation detector in-line with a peristaltic pump. The system demonstrates volume accuracy within 5 % for volumes of 20 muL or greater. When considering volumes of 20 muL or greater, delivered radioactivity is in agreement with the requested radioactivity as measured with the dose calibrator. The integration of the detector and pump leads to a flexible system that can accurately dispense solutions containing F-18 in radioactivity concentrations directly produced from a cyclotron (~ 0.1-1 mCi/muL), to low activity concentrations intended for preclinical mouse scans (~ 1-10 muCi/muL), and anywhere in between. Electrowetting on dielectric (EWOD) is an attractive microfluidic platform for batch synthesis of PET radiotracers. Visualization of radioisotopes on-chip is critical for synthesis optimization and technological development. For the second project, we describe the development and performance of a Cerenkov/real-time imaging system for PET radiotracer synthesis on EWOD. We also investigate

  5. Modeling clustered activity increase in amyloid-beta positron emission tomographic images with statistical descriptors

    Directory of Open Access Journals (Sweden)

    Shokouhi S

    2015-04-01

    Full Text Available Sepideh Shokouhi,1 Baxter P Rogers,1 Hakmook Kang,2 Zhaohua Ding,1 Daniel O Claassen,3 John W Mckay,1 William R Riddle1On behalf of the Alzheimer’s Disease Neuroimaging Initiative1Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, 2Department of Biostatistics, 3Department of Neurology, Vanderbilt University, Nashville, TN, USABackground: Amyloid-beta (Aβ imaging with positron emission tomography (PET holds promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses focus on regional average measurements of tracer activity distribution; however, considerable additional information is available in the images. Metrics that describe the statistical properties of images, such as the two-point correlation function (S2, have found wide applications in astronomy and materials science. S2 provides a detailed characterization of spatial patterns in images typically referred to as clustering or flocculence. The objective of this study was to translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh compound B (11C-PiB to characterize longitudinal changes in the tracer distribution that may reflect changes in Aβ plaque accumulation.Methods: We modified the conventional S2 metric, which is primarily used for binary images and formulated a weighted two-point correlation function (wS2 to describe nonbinary, real-valued PET images with a single statistical function. Using serial 11C-PiB scans, we calculated wS2 functions from two-dimensional PET images of different cortical regions as well as three-dimensional data from the whole brain. The area under the wS2 functions was calculated and compared with the mean/median of the standardized uptake value ratio (SUVR. For three-dimensional data, we compared the area under the wS2 curves with the subjects’ cerebrospinal fluid measures.Results: Overall, the longitudinal changes in wS2

  6. Second-Generation Triple Reporter for Bioluminescence, Micro–Positron Emission Tomography, and Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Aparna H. Kesarwala

    2006-10-01

    Full Text Available Bioluminescence, positron emission tomography (PET, and fluorescence modalities are currently available for noninvasive imaging in vivo, each with its own merits. To exploit the combined strengths of each and facilitate multimodality imaging, we engineered a dual-reporter construct in which firefly luciferase (FLuc and a 12–amino acid nonstructural linker were fused in frame to the N-terminus of a mutant herpes simplex virus thymidine kinase (mNLS-SR39TK kinetically enhanced for positron emission tomography (PET. Furthermore, a triple-reporter construct was developed in which monster green fluorescent protein (MGFP, a recently available enhanced fluorescent protein, was introduced into the fusion vector downstream of an internal ribosome entry site (IRES to allow analysis by fluorescence microscopy or flow cytometry without compromising the specific activities of the upstream fusion components. FLuc bioluminescence was measured with a cooled charge-coupled device camera and mNLS-SR39TK activity by 9-[4-[18F]fluoro-3-(hydroxymethyl butyl guanine (18F-FHBG microPET or 3H-penciclovir net accumulation. Importantly, HeLa cells transiently transfected with the FLuc-mNLS-SR39TK-IRES-MGFP triple reporter retained the same specific activities of the FLuc-mNLS-SR39TK heteroenzyme and the individual unfused enzymes with no change in protein half-lives. The presence of the IRES-MGFP modestly decreased upstream heteroprotein expression. In living mice, somatic gene transfer of a ubiquitin promoter-driven FLuc-mNLS-SR39TK-IRES-MGFP plasmid showed a > 1,000-fold increase in liver photon flux and a > 2-fold increase in liver retention of 18F-FHBG by microPET compared with mice treated with control plasmid. Multifocal hepatocellular fluorescence was readily observed by standard confocal microscopy. This second-generation triple reporter incorporating enhanced components enables bioluminescence, PET, and fluorescence imaging of cells and living animals.

  7. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    Science.gov (United States)

    Christensen, A. N.; Rydhög, J. S.; Søndergaard, R. V.; Andresen, T. L.; Holm, S.; Munck Af Rosenschöld, P.; Conradsen, K.; Jølck, R. I.

    2016-05-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy (10- and 22 Gy) in a high-energy beam setting (18 MV). The developed silver-nanosensor provided high radiopacity on the planning CT-scans sufficient for patient positioning in image-guided radiotherapy and provided dosimetric information about the absorbed dose with a 10% and 8% standard deviation for the stereotactic regimens, 10 and 22 Gy, respectively.Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive 106Ag, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The

  8. Positron emission tomography with additional γ-ray detectors for multiple-tracer imaging.

    Science.gov (United States)

    Fukuchi, Tomonori; Okauchi, Takashi; Shigeta, Mika; Yamamoto, Seiichi; Watanabe, Yasuyoshi; Enomoto, Shuichi

    2017-06-01

    Positron emission tomography (PET) is a useful imaging modality that quantifies the physiological distributions of radiolabeled tracers in vivo in humans and animals. However, this technique is unsuitable for multiple-tracer imaging because the annihilation photons used for PET imaging have a fixed energy regardless of the selection of the radionuclide tracer. This study developed a multi-isotope PET (MI-PET) system and evaluated its imaging performance. Our MI-PET system is composed of a PET system and additional γ-ray detectors. The PET system consists of pixelized gadolinium orthosilicate (GSO) scintillation detectors and has a ring geometry that is 95 mm in diameter with an axial field of view of 37.5 mm. The additional detectors are eight bismuth germanium oxide (BGO) scintillation detectors, each of which is 50 × 50 × 30 mm(3) , arranged into two rings mounted on each side of the PET ring with a 92-mm-inner diameter. This system can distinguish between different tracers using the additional γ-ray detectors to observe prompt γ-rays, which are emitted after positron emission and have an energy intrinsic to each radionuclide. Our system can simultaneously acquire double- (two annihilation photons) and triple- (two annihilation photons and a prompt γ-ray) coincidence events. The system's efficiency for detecting prompt de-excitation γ-rays was measured using a positron-γ emitter, (22) Na. Dual-radionuclide ((18) F and (22) Na) imaging of a rod phantom and a mouse was performed to demonstrate the performance of the developed system. Our system's basic performance was evaluated by reconstructing two images, one containing both tracers and the other containing just the second tracer, from list-mode data sets that were categorized by the presence or absence of the prompt γ-ray. The maximum detection efficiency for 1275 keV γ-rays emitted from (22) Na was approximately 7% at the scanner's center, and the minimum detection efficiency was 5.1% at the

  9. Imaging of photoassimilates transport in plant tissues by positron emission tomography

    Directory of Open Access Journals (Sweden)

    Partelová Denisa

    2017-06-01

    Full Text Available The current findings show that positron emission tomography (PET, primarily developed for medical diagnostic imaging, can be applied in plant studies to analyze the transport and allocation of wide range of compounds labelled with positronemitting radioisotopes. This work is focused on PET analysis of the uptake and transport of 2-deoxy-2-fluoro[18F]-D-glucose (2-[18F]FDG, as a model of photoassimilates, in tissues of giant reed (Arundo donax L. var. versicolor as a potential energy crop. The absorption of 2-[18F]FDG and its subsequent transport in plant tissues were evaluated in both acropetal and basipetal direction as well. Visualization and quantification of the uptake and transport of 2-[18F]FDG in plants immersed with the root system into a 2-[18F]FDG solution revealed a significant accumulation of 18F radioactivity in the roots. The transport rate in plants was increased in the order of plant exposure through: stem > mechanically damaged root system > intact root system. PET analysis in basipetal direction, when the plant was immersed into the 2-[18F]FDG solution with the cut area of the leaf of whole plant, showed minimal translocation of 2-[18F]FDG into the other plant parts. The PET results were verified by measuring the accumulated radioactivity of 18F by direct gamma-spectrometry.

  10. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foster, N.L.; Gilman, S.; Berent, S.; Morin, E.M.; Brown, M.B.; Koeppe, R.A.

    1988-09-01

    Progressive supranuclear palsy (PSP) is characterized by supranuclear palsy of gaze, axial dystonia, bradykinesia, rigidity, and a progressive dementia. Pathological changes in this disorder are generally restricted to subcortical structures, yet the type and range of cognitive deficits suggest the involvement of many cerebral regions. We examined the extent of functional impairment to cerebral cortical and subcortical structures as measured by the level of glucose metabolic activity at rest. Fourteen patients with PSP were compared to 21 normal volunteers of similar age using 18F-2-fluoro-2-deoxy-D-glucose and positron emission tomography. Glucose metabolism was reduced in the caudate nucleus, putamen, thalamus, pons, and cerebral cortex, but not in the cerebellum in the patients with PSP as compared to the normal subjects. Analysis of individual brain regions revealed significant declines in cerebral glucose utilization in most regions throughout the cerebral cortex, particularly those in the superior half of the frontal lobe. Declines in the most affected regions of cerebral cortex were greater than those in any single subcortical structure. Although using conventional neuropathological techniques the cerebral cortex appears to be unaffected in PSP, significant and pervasive functional impairments in both cortical and subcortical structures are present. These observations help to account for the constellation of cognitive symptoms in individual patients with PSP and the difficulty encountered in identifying a characteristic psychometric profile for this group of patients.

  11. Radiolabelling diverse positron emission tomography (PET) tracers using a single digital microfluidic reactor chip.

    Science.gov (United States)

    Chen, Supin; Javed, Muhammad Rashed; Kim, Hee-Kwon; Lei, Jack; Lazari, Mark; Shah, Gaurav J; van Dam, R Michael; Keng, Pei-Yuin; Kim, Chang-Jin C J

    2014-03-07

    Radiotracer synthesis is an ideal application for microfluidics because only nanogram quantities are needed for positron emission tomography (PET) imaging. Thousands of radiotracers have been developed in research settings but only a few are readily available, severely limiting the biological problems that can be studied in vivo via PET. We report the development of an electrowetting-on-dielectric (EWOD) digital microfluidic chip that can synthesize a variety of (18)F-labeled tracers targeting a range of biological processes by confirming complete syntheses of four radiotracers: a sugar, a DNA nucleoside, a protein labelling compound, and a neurotransmitter. The chip employs concentric multifunctional electrodes that are used for heating, temperature sensing, and EWOD actuation. All of the key synthesis steps for each of the four (18)F-labeled tracers are demonstrated and characterized with the chip: concentration of fluoride ion, solvent exchange, and chemical reactions. The obtained fluorination efficiencies of 90-95% are comparable to, or greater than, those achieved by conventional approaches.

  12. 2-18F-fluoro-2-deoxyglucose positron emission tomography in delirium.

    Science.gov (United States)

    Haggstrom, Lucy R; Nelson, Julia A; Wegner, Eva A; Caplan, Gideon A

    2017-11-01

    Delirium is a common, serious, yet poorly understood syndrome. Growing evidence suggests cerebral metabolism is fundamentally disturbed; however, it has not been investigated using 2-18F-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) in delirium. This prospective study thus explored FDG PET patterns of cerebral glucose metabolism in older inpatients with delirium. A particular emphasis was on the posterior cingulate cortex (PCC), a key region for attention, which is a central feature of delirium. Delirium scans were compared with post-delirium scans using visual analysis and semi-quantitative analysis with NeuroQ; 13 participants (8 female, median 84 y) were scanned during delirium, and 6 scanned again after resolution. On visual analysis, cortical hypometabolism was evident in all participants during delirium (13/13), and improved with delirium resolution (6/6). Using NeuroQ, glucose metabolism was higher post-delirium in the whole brain and bilateral PCC compared to during delirium ( p delirium duration. This research found widespread, reversible cortical hypometabolism during delirium and PCC hypometabolism was associated with inattention during delirium.

  13. 18F-fluorodeoxyglucose positron emission tomography might be useful for diagnosis of hepatic amyloidosis

    Directory of Open Access Journals (Sweden)

    Tawada A

    2014-06-01

    Full Text Available Akinobu Tawada,1 Tatsuo Kanda,1 Takashi Oide,2 Toshio Tsuyuguchi,1 Fumio Imazeki,1,3 Yukio Nakatani,2 Osamu Yokosuka11Department of Gastroenterology, 2Department of Diagnostic Pathology, Chiba University Hospital, Chuo-ku, Chiba, Japan; 3Safety and Health Organization, Chiba University, Inage-ku, Chiba, JapanAbstract: We report on a woman with hepatic involvement of primary systemic (immunoglobulin light chain, AL amyloidosis. Her diagnosis was confirmed by liver biopsy. Clinical symptoms of hepatic amyloidosis are generally mild at its first stage, with most frequent findings being hepatomegaly and alkaline phosphatase elevation. Recent advances in the understanding of the pathophysiology of systemic amyloidosis have made several treatments available. However, its prognosis is occasionally poor. Because liver biopsy is not always safe, other modalities for the diagnosis are needed. Of interest was that fluorodeoxyglucose (FDG uptake into the liver was observed, compared with that into the spleen, in this patient, indicating that FDG positron emission tomography and computed tomography might be useful for the diagnosis of hepatic amyloidosis with mild liver dysfunction.Keywords: amyloidosis, diagnosis, hepatic involvement, FDG PET

  14. Silicon photomultipliers for positron emission tomography detectors with depth of interaction encoding capability

    Energy Technology Data Exchange (ETDEWEB)

    Taghibakhsh, Farhad, E-mail: farhadt@sri.utoronto.ca [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Thunder Bay Regional Health Science Centre, Thunder Bay, ON (Canada); Reznik, Alla [Thunder Bay Regional Health Science Centre, Thunder Bay, ON (Canada); Department of Physics, Lake Head University, Thunder Bay, ON (Canada); Rowlands, John A. [Department of Medical Biophysics, University of Toronto, Toronto, ON (Canada); Thunder Bay Regional Health Science Centre, Thunder Bay, ON (Canada); Department of Physics, Lake Head University, Thunder Bay, ON (Canada)

    2011-05-15

    Silicon photomultipliers (SiPMs) are receiving increasing attention in the field of positron emission tomography (PET) detectors. Compared to photomultiplier tubes, they offer novel detector configurations for the extraction of depth of interaction (DOI) information, or enable emerging medical imaging modalities such as simultaneous PET-magnetic resonant imaging (MRI). In this article, we used 2x2x20 mm{sup 3} LYSO scintillator crystals coupled to SiPMs on both ends (dual-ended readout configuration) to evaluate the detector performance for DOI-PET applications. We investigated the effect of scintillator crystal surface finishing on sensitivity and resolution of DOI, as well as on energy and timing resolution. Measurements indicate DOI sensitivity and resolution of 7.1% mm{sup -1} and 2.1{+-}0.6 mm for saw-cut, and 1.3% mm{sup -1} and 9.0{+-}1.5 mm, for polished scintillator crystals, respectively. Energy resolution varies from 19% when DOI is in the center, to 15% with DOI at either end of the saw-cut crystal, while it remains constant at {approx}14% for polished scintillators. Based on our results we conclude that 2x2x20 mm{sup 3} saw-cut (without any special side wall polishing) LYSO crystals coupled to 2x2 mm{sup 2} silicon photomultipliers are optimal for isotropic 2 mm resolution DOI-PET applications.

  15. Use of Positron Emission Tomography/Computed Tomography in Radiation Treatment Planning for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kezban Berberoğlu

    2016-06-01

    Full Text Available Radiotherapy (RT plays an important role in the treatment of lung cancer. Accurate diagnosis and staging are crucial in the delivery of RT with curative intent. Target miss can be prevented by accurate determination of tumor contours during RT planning. Currently, tumor contours are determined manually by computed tomography (CT during RT planning. This method leads to differences in delineation of tumor volume between users. Given the change in RT tools and methods due to rapidly developing technology, it is now more significant to accurately delineate the tumor tissue. F18 fluorodeoxyglucose positron emission tomography/CT (F18 FDG PET/CT has been established as an accurate method in correctly staging and detecting tumor dissemination in lung cancer. Since it provides both anatomic and biologic information, F18 FDG PET decreases interuser variability in tumor delineation. For instance, tumor volumes may be decreased as atelectasis and malignant tissue can be more accurately differentiated, as well as better evaluation of benign and malignant lymph nodes given the difference in FDG uptake. Using F18 FDG PET/CT, the radiation dose can be escalated without serious adverse effects in lung cancer. In this study, we evaluated the contribution of F18 FDG PET/CT for RT planning in lung cancer.

  16. [Systematic review of the value of positron emission tomography in the diagnosis of Alzheimer's disease].

    Science.gov (United States)

    Carnero-Pardo, C

    A great deal of controversy has arisen about the role positron emission tomography (PET) has to play in the diagnostic assessment of Alzheimer s disease (AD). AIMS. The objective of this study is to review, assess and synthesize existing evidence about the value of PET in the prediction of the progression towards dementia undergone by subjects with mild cognitive impairment and in the differential diagnosis of AD from other types of dementia. We performed a systematic review with explicit search criteria in primary and secondary databases in order to locate documents that could serve our research purposes. Selection and assessment of the quality of the documents found was performed according to a set of pre established criteria. The search for secondary sources yielded nine technical reports, a clinical guideline and a systematic review. To sum up their conclusions it would appear that little work has been published, it is of poor quality and the findings are against the routine use of this technology. The search in primary sources produced three original scientific papers dealing with its value in prediction and two others that referred to differential diagnosis; this new evidence did not, however, modify the previous conclusions. At present, and according to available evidence, the routine use of PET cannot be recommended in the diagnostic assessment of AD. The number of original works available is very low and, generally speaking, they offer important methodological limitations.

  17. Positron Emission Tomography for Serial Imaging of the Contused Adult Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Rishi D.S. Nandoe Tewarie

    2010-03-01

    Full Text Available We investigated whether small-animal positron emission tomography (PET could be used in combination with computed tomography (CT imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6, the ninth thoracic (T9 spinal cord segment was exposed by laminectomy and subsequently contused using the Infinite Horizon impactor (Precision System and Instrumentation, Lexington, KY at 225 kDyn. In control rats (n = 4, the T9 spinal cord was exposed by laminectomy but not contused. At 0.5 hours and 3, 7, and 21 days postinjury, 2-[18F]fluoro-2-deoxy-d-glucose ([18F]FDG was given intravenously followed 1 hour later by sequential PET and CT. Regions of interest (ROIs at T9 (contused and T6 (uninjured spinal cord segments were manually defined on CT images and aided by fiduciary markers superimposed onto the coregistered PET images. Monte Carlo simulation revealed that about 33% of the activity in the ROIs was due to spillover from adjacent hot areas. A simulation-based partial-volume compensation (PVC method was developed and used to correct for this spillover effect. With PET-CT, combined with PVC, we were able to serially measure standardized uptake values of the T9 and T6 spinal cord segments and reveal small, but significant, differences. This approach may become a tool to assess the efficacy of spinal cord repair strategies.

  18. Small-Animal Imaging Using Clinical Positron Emission Tomography/Computed Tomography and Super-Resolution

    Directory of Open Access Journals (Sweden)

    Frank P. DiFilippo

    2012-05-01

    Full Text Available Considering the high cost of dedicated small-animal positron emission tomography/computed tomography (PET/CT, an acceptable alternative in many situations might be clinical PET/CT. However, spatial resolution and image quality are of concern. The utility of clinical PET/CT for small-animal research and image quality improvements from super-resolution (spatial subsampling were investigated. National Electrical Manufacturers Association (NEMA NU 4 phantom and mouse data were acquired with a clinical PET/CT scanner, as both conventional static and stepped scans. Static scans were reconstructed with and without point spread function (PSF modeling. Stepped images were postprocessed with iterative deconvolution to produce super-resolution images. Image quality was markedly improved using the super-resolution technique, avoiding certain artifacts produced by PSF modeling. The 2 mm rod of the NU 4 phantom was visualized with high contrast, and the major structures of the mouse were well resolved. Although not a perfect substitute for a state-of-the-art small-animal PET/CT scanner, a clinical PET/CT scanner with super-resolution produces acceptable small-animal image quality for many preclinical research studies.

  19. Incidental finding of a left over guide wire on a positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Kok Hooi; Lee, Phong Teck; Buch, Mamta; Rammohan, Kandadai Seshadri

    2012-12-15

    The Seldinger technique is commonly used cannulate vessels for radiographical procedures. Loss of a guide wire into the circulation is a rare and preventable complication. It is often noticed by chance during routine radiographs. However, there is a lack of reported cases of incidental fin dings of leftover guide wire on a PET scan. An intravascular foreign body should be retrieved as soon as the diagnosis is made, to prevent complications such as embolisation or vascular damage by fractured wires. Interventional radiology is the method of choice for retrieval. We report a rare case of the coincidental finding of a lost guide wire on a PET scan. A 37 year old man presented with psychotic episodes, thigh weakness, weight gain, increased appetite and leg cramps. He was subsequently diagnosed with cushing syndrome secondary to ectopic adrenocorticotropic secretion from a right lung tumour. He subsequently underwent a staging positron emission tomography (PET) scan. The lung tumour had no uptake on PET bit had increased activity uptake on octreotide scanning. These appearances were suggestive of with carcinoid tumour. The PET scan also revealed an incidental finding of a leftover guide wire used during peripheral inserted central catheter (PICC) recently. The wire extended from right atrium to inferior vena cava. It also showed a high uptake in the adrenal glands, indicating hyperplasia, which was most likely due to adrenocorticotropic hormone stimulation. He underwent a percutaneous wire retrieval via the right femoral vein in a cardiac catheterisation laboratory and was transferred to a thoracic surgical unit for lung tumor resection.

  20. AMG 580: a novel small molecule phosphodiesterase 10A (PDE10A) positron emission tomography tracer.

    Science.gov (United States)

    Chen, Hang; Lester-Zeiner, Dianna; Shi, Jianxia; Miller, Silke; Glaus, Charlie; Hu, Essa; Chen, Ning; Able, Jessica; Biorn, Christopher; Wong, Jamie; Ma, Ji; Michelsen, Klaus; Hill Della Puppa, Geraldine; Kazules, Tim; Dou, Hui Hannah; Talreja, Santosh; Zhao, Xiaoning; Chen, Ada; Rumfelt, Shannon; Kunz, Roxanne K; Ye, Hu; Thiel, Oliver R; Williamson, Toni; Davis, Carl; Porter, Amy; Immke, David; Allen, Jennifer R; Treanor, James

    2015-02-01

    Phosphodiesterase 10A (PDE10A) inhibitors have therapeutic potential for the treatment of psychiatric and neurologic disorders, such as schizophrenia and Huntington's disease. One of the key requirements for successful central nervous system drug development is to demonstrate target coverage of therapeutic candidates in brain for lead optimization in the drug discovery phase and for assisting dose selection in clinical development. Therefore, we identified AMG 580 [1-(4-(3-(4-(1H-benzo[d]imidazole-2-carbonyl)phenoxy)pyrazin-2-yl)piperidin-1-yl)-2-fluoropropan-1-one], a novel, selective small-molecule antagonist with subnanomolar affinity for rat, primate, and human PDE10A. We showed that AMG 580 is suitable as a tracer for lead optimization to determine target coverage by novel PDE10A inhibitors using triple-stage quadrupole liquid chromatography-tandem mass spectrometry technology. [(3)H]AMG 580 bound with high affinity in a specific and saturable manner to both striatal homogenates and brain slices from rats, baboons, and human in vitro. Moreover, [(18)F]AMG 580 demonstrated prominent uptake by positron emission tomography in rats, suggesting that radiolabeled AMG 580 may be suitable for further development as a noninvasive radiotracer for target coverage measurements in clinical studies. These results indicate that AMG 580 is a potential imaging biomarker for mapping PDE10A distribution and ensuring target coverage by therapeutic PDE10A inhibitors in clinical studies. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Positron-emission tomography of brain regions activated by recognition of familiar music.

    Science.gov (United States)

    Satoh, M; Takeda, K; Nagata, K; Shimosegawa, E; Kuzuhara, S

    2006-05-01

    We can easily recognize familiar music by listening to only one or 2 of its opening bars, but the brain regions that participate in this cognitive processing remain undetermined. We used positron-emission tomography (PET) to study changes in regional cerebral blood flow (rCBF) that occur during listening to familiar music. We used a PET subtraction technique to elucidate the brain regions associated with the recognition of familiar melodies such as well-known nursery tunes. Nonmusicians performed 2 kinds of musical tasks: judging the familiarity of musical pieces (familiarity task) and detecting deliberately altered notes in the pieces (alteration-detecting task). During the familiarity task, bilateral anterior portions of bilateral temporal lobes, superior temporal regions, and parahippocampal gyri were activated. The alteration-detecting task bilaterally activated regions in the precunei, superior/inferior parietal lobules, and lateral surface of frontal lobes, which seemed to show a correlation with the analysis of music. We hypothesize that during the familiarity task, activated brain regions participate in retrieval from long-term memory and verbal and emotional processing of familiar melodies. Our results reinforced the hypothesis reported in the literature as a result of group and case studies, that temporal lobe regions participate in the recognition of familiar melodies.

  2. [(18F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma

    Directory of Open Access Journals (Sweden)

    Ratib Osman

    2008-12-01

    Full Text Available Abstract Background To compare morphological gross tumor volumes (GTVs, defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs, defined by the uptake of 18F fluoroethyltyrosine (FET for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET-CT scanner equipped with three triangulation lasers for patient positioning. Methods Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV ∪ BTV and planning target volume (PTV = CTV + 20 mm. First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. Results Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9. Although, BTVs and GTVs were not significantly different (p = 0.9, CTVs (mean 57.8 ± 30.4 cm3 were significantly larger than BTVs (mean 42.1 ± 24.4 cm3; p 3; p Conclusion Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients.

  3. Gliomatosis cerebri evaluated by {sup 18}F{alpha}-methyl tyrosine positron-emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sato, N.; Aoki, J. [Department of Diagnostic Radiology, Gunma University School of Medicine (Japan); Inoue, T. [Department of Radiology, Yokohama City University, Yokohama (Japan); Tomiyoshi, K.; Oriuchi, N.; Endo, K. [Department of Nuclear Medicine, Gunma University School of Medicine, Maebashi, Gunma (Japan); Takahashi, A.; Otani, T.; Kurihara, H.; Sasaki, T. [Department of Neurosurgery, Gunma University School of Medicine, Maebashi, Gunma (Japan)

    2003-10-01

    Gliomatosis cerebri is a rare condition in which an infiltrative glial neoplasm spreads through the brain with preservation of the underlying structure. CT and MRI show diffuse abnormal density or signal, without mass effect, and because these findings are nonspecific, it is difficult to make a definitive diagnosis. Our purpose was to assess the usefulness of a new tumour-detecting amino acid tracer for positron-emission tomography (PET), L-[3-{sup 18}F] {alpha}-methyl tyrosine (FMT), in patients with gliomatosis cerebri. We performed FMT PET, fluorodeoxyglucose FDG PET and MRI eight patients with gliomatosis cerebri and six with non-neoplastic disease, whose MRI also showed diffuse high signal on T2-weighted images. Standardised uptake (SUV) of FMT and FDG in the area of gliomatosis was obtained and the tumour-to-normal cortex (T/N) ratio of this was compared. The tumours were shown on FMT PET as areas of increased uptake, except in one patient with severe intracranial hypertension. There were significant differences between the SUV of FMT and the T/N ratio of FMT in patients and in controls (both P<0.01), and between the T/N ratio of FMT and FDG in patients (P <0.01). Increased uptake of FMT PET strongly suggests neoplasia. FMT PET is valuable for differentiating gliomatosis cerebri from non-neoplastic diseases showing similar diffuse high signal on T2-weighted images and little contrast enhancement. (orig.)

  4. Assessment of myocardial metabolism by positron emission tomography; Stoffwechseluntersuchungen des Herzens mit der Positronenemissionstomographie

    Energy Technology Data Exchange (ETDEWEB)

    Bengel, F.M.; Schwaiger, M. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik und Poliklinik

    1999-06-01

    In combination with a variety of tracers, positron emission tomography does provide noninvasive quantitative information not only about myocardial utilisation of substrates such as glucose or free fatty acids, but also about overall oxidative metabolism. PET studies of myocardial metabolism have substantially contributed to an improved understanding of regulatory mechanism as well as interaction between different substrates under normal conditions as well as under pathologic conditions such as ischemia, heart failure or diabetes mellitus, and will continue to do so in the future. (orig.) [German] Fuer die Positronenemissionstomographie stehen verschiedene Tracer zur Verfuegung, die am menschlichen Herzen nichtinvasive Quantifizierung der Utilisation von Substraten wie Glukose oder freien Fettsaeuren, aber auch des gesamten sauerstoffabhaengigen Metabolismus ermoeglichen. Stoffwechseluntersuchungen des Herzens mit der PET haben zu einem genaueren Verstaendnis von Regulationsmechanismen und Interaktionen zwischen verschiedenen Substraten sowohl im Normalzustand als auch unter pathologischen Bedingungen wie etwa bei ischaemischen Syndromen, Herzinsuffizienz oder Diabetis mellitus beigetragen. Insbesondere durch Untersuchungen von metabolischen Auswirkungen verschiedener Therapieansaetze bei Herzerkrankungen und zur Vorhersage der Effektivitaet solcher therapeutischer Strategien kann die PET auch in Zukunft einen Beitrag zur Weiterentwicklung der Kardiologie leisten. (orig.)

  5. A behavioral and micro positron emission tomography imaging study in a rat model of hypothyroidism.

    Science.gov (United States)

    Yu, Jing; Tang, Yi-Yuang; Feng, Hong-Bo; Cheng, Xiao-Xin

    2014-09-01

    Hypothyroidism leads to somatic, neuropsychological, and psychiatric changes that are similar to depression. The mechanisms underlying the behavioral abnormalities in adult onset hypothyroidism remain ambiguous. Hypothyroidism was induced in adult male Wistar rats by the maintenance of 0.05% propylthiouracil (PTU) in drinking water for 5 weeks (hypothyroid group; HP group); control rats (CON group) received an equivalent amount of water. The open field and sucrose preference tests were employed, and the link between behavioral changes and brain glucose metabolism was evaluated using micro positron emission tomography imaging. The open field test revealed slightly decreased locomotor activity and significantly reduced rearing and defecation in the hypothyroid group. Hypothyroid rats were also characterized by decreased body weight, sucrose preference, and relative sucrose intake compared to control rats. Hypothyroidism induced reduced brain glucose metabolism in the bilateral motor cortex, the caudate putamen, the cortex cingulate, the nucleus accumbens, and the frontal association cortex. A decreased sucrose preference was positively correlated with metabolic glucose changes in the caudate putamen and the nucleus accumbens. The results indicate that the activity pattern in adult onset hypothyroidism is different from the activity pattern when hypothyroidism is induced in the developmental period of the central nervous system. Decreased sucrose preference in hypothyroid rats may be attributed to anhedonia. Furthermore, these findings suggest there may be a common mechanism underlying adult onset hypothyroidism and depression. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Cerebral glucose utilization in pediatric neurological disorders determined by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Kazuhiko; Iinuma, Kazuie; Miyabayashi, Shigeaki; Narisawa, Kuniaki; Tada, Keiya; Matsuzawa, Taiju; Ito, Masatoshi; Yamada, Kenji

    1987-09-01

    We measured local cerebral glucose utilization in 19 patients with Lennox-Gastaut syndrome (LG), partial seizures (PS), atypical and classical phenylketonuria (PKU), Leigh disease, and subacute sclerosing panencephalitis (SSPE), using positron emission tomography (PET). The mean values of regional glucose utilization in interictal scans of LG were significantly reduced in all brain regions when compared with that of PS (P<0.005). PET studies of glucose utilization in LG revealed more widespread hypometabolism than in PS. Two sibling with dihydropteridine reductase deficiency, a patient with classical PKU, and a boy with cytochrome c oxidase deficiency showed reduced glucose utilization in the caudate and putamen. A marked decrease in glucose utilization was found in the cortical gray matter of a patient with rapidly progressive SSPE, despite relatively preserved utilization in the caudate and putamen. The PET study of a patient with slowly progressive SSPE revealed patterns and values of glucose utilization similar to those of the control. Thus, PET provided a useful clue toward understanding brain dysfunction in LG, PS, PKU, Leigh disease, and SSPE.

  7. Detection of unknown primary head and neck tumors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Braams, J.W.; Roodenburg, J.L.N. [Groningen Univ. Hospital, Dept. of Oral and Maxillofacial Surgery, Groningen (Netherlands); Pruim, J.; Vaalburg, W.; Kole, A.C. [Groningen Univ. Hospital, PET center, Groningen (Netherlands); Vermey, A. [Groningen Univ. Hospital, Dept. of Surgical Oncology, Groningen (Netherlands); Nikkels, P.G.J. [Groningen Univ. Hospital, Dept. of Pathology, Groningen (Netherlands)

    1997-04-01

    The purpose of this study was to investigate the potential of using positron emission tomography (PET) with {sup 18}F-labeled fluoro-2-deoxy-D-glucose (FDG) to detect unknown primary tumors of cervical metastases. Thirteen patients with various histologic types of cervical metastases of unknown primary origin were studied. Patients received 185-370 MBq FDG intravenously and were scanned from 30 min after injection onward. Whole-body scans were made with a Siemens ECAT 951/31 PET camera. PET identified the primary tumor in four patients: plasmocytoma, squamous cell cacinoma of the oropharynx, squamous cell carcinoma of the larynx, and bronchial carcinoma, respectively. All known metastatic tumor sites were visualized. PET did not identify a primary tumor in one patient in whom a squamous cell carcinoma at the base of the tongue was found in a latr phase. In the remaining eight patients, a primary lesion was never found. The follow up ranged from 18 to 30 months. A previously unknown primary tumor can be identified with FDG-PET in approximately 30% of patients with cervical metastases. PET can reveal useful information that results in more appropriate treatment, and it can be of value in guiding endoscopic biopsies for histologic diagnosis. (au).

  8. Brain positron emission tomography in patients with myotonic dystrophy type 1 and type 2.

    Science.gov (United States)

    Peric, Stojan; Brajkovic, Leposava; Belanovic, Bozidar; Ilic, Vera; Salak-Djokic, Biljana; Basta, Ivana; Rakocevic Stojanovic, Vidosava

    2017-07-15

    To determine regions of reduced brain metabolism in patients with myotonic dystrophy type 1 (DM1) and type 2 (DM2) using 18F-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET), and to analyse their potential association with cognitive deficit. Study included 29 patients (16 DM1 and 13 DM2). FDG-PET and detailed neuropsychological testing were performed in both groups. The most common cognitive findings were executive, visuospatial, and naming dysfunction in DM1, and executive and naming dysfunction in DM2. FDG-PET showed the most prominent glucose hypometabolism in prefrontal, temporal, and pericentral regions in both DM1 and DM2 patients, with additional affection of insula and subcortical grey matter in DM2. In DM1 patients, we found association between right frontotemporal hypometabolism and executive dysfunction (pDM2 patients attention deficit was in association with prefrontal, insular, and striatal hypometabolism, as well as right frontotemporal hypometabolism (pDM2 was more common in patients with prefrontal and insular hypometabolism, right parietotemporal and frontotemporal hypometabolism, as well as left striatal hypometabolism (pDM2, but this hypothesis will have to be more strongly supported by larger studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cerebello-cerebral functional relationship in spinocerebellar degeneration using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Sakayori, Osamu; Komaba, Yuichi; Terashi, Akiro [Nippon Medical School, Tokyo (Japan)

    1995-07-01

    In order to investigate the laterality of cerebellar ataxia and its influence for the cerebral cortex in spinocerebellar degeneration (SCD), regional cerebral blood flow (rCBF) was measured using positron emission tomography (PET) in 10 patients with sporadic olivopontocerebellar atrophy (sOPCA), 7 patients with hereditary SCD (hSCD), and 10 age matched control subjects. The laterality of cerebellar ataxia was evaluated by the total score of the difference between left and right limbs of three limb-coordination tests. The lateralities of rCBF were calculated by asymmetry indices (AIs) of each region of interest in the cerebellum, thalamus, caudate, putamen, cerebral cortices. The laterality of cerebellar ataxia was significantly correlated with AI in the cerebellum in patients with sOPCA. Furthermore, significant negative correlations were observed between AI in the cerebellum and each AI in the thalamus, frontal cortex in patients with sOPCA. However, no correlations were observed between AI in the cerebellum and the other AIs in controls and patients with h SCD. Duration of illness in patients with sOPCA with laterality is shorter than that in patients without laterality. These results suggest that the existence of crossed cerebello-cerebral diaschisis (CCCD) resulting from transneuronal deactivation through cerebello-thalamo-cerebral pathway in patients with the early stage of sOPCA with laterality. (author).

  10. Function of the shoulder muscles during arm elevation: an assessment using positron emission tomography

    Science.gov (United States)

    Omi, Rei; Sano, Hirotaka; Ohnuma, Masahiro; Kishimoto, Koshi N; Watanuki, Shoichi; Tashiro, Manabu; Itoi, Eiji

    2010-01-01

    Although 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) has been used for the assessment of skeletal muscle activities, its application to the shoulder muscles is only sparse. The purpose of this study was to investigate the activities of the shoulder muscles during arm elevation using PET. Six healthy volunteers performed an arm elevation exercise before and after FDG injection. The exercise consisted of 200 repetitions of arm elevation in the scapular plane with a 0.25-kg weight fixed to the wrist on both arms. PET examination was performed 50 min after FDG injection. For control data, PET scan was repeated for each subject on a separate day without any exercise. The volume of interest was established for each shoulder muscle. The subscapularis was divided into three portions (superior, middle, and inferior). The standardized uptake value (SUV) was calculated in each muscle to quantify its activity. The SUVs increased significantly after exercise in the deltoid, supraspinatus, and the superior portion of subscapularis. Among three divided portions of the subscapularis, the SUV of the superior one-third was significantly greater than the rest of the muscle after exercise. Our current study clearly indicated that there were two functionally different portions in the subscapularis muscle and the superior one-third played an important role during arm elevation in the scapular plane. PMID:20298439

  11. 18F-FDG positron emission tomography in oncology: main indications.

    Science.gov (United States)

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Brain Metabolism of Less-Educated Patients With Alzheimer Dementia Studied by Positron Emission Tomography.

    Science.gov (United States)

    Huang, Yu Ching; Yen, Pao Sheng; Wu, Shwu Tzy; Chen, Jung Tai; Hung, Gung Uei; Kao, Chia Hung; Chen, Tai Yee; Ho, Feng Ming

    2015-07-01

    Alzheimer dementia (AD) is the commonest form of dementia. Although illiteracy is associated with high prevalence of dementia of the Alzheimer type (DAT), their relationship is still unclear. Nevertheless, mild DAT in illiterate participants seems to be due to brain atrophy.In this study, we compared the impact of brain metabolism efficiency in healthy participants and less-educated patients with mild DAT using 2-fluoro-2-deoxy-D-glucose (F-FDG-PET) positron emission tomography. Out of 43 eligible less-educated participants with dementia, only 23 (14 women and 9 men) met Diagnostic and Statistical Manual (DSM)-III-R or DSM-IV criteria for DAT and AD and were included. Participants with intracranial insults were excluded by brain magnetic resonance imaging and participants with metabolic or systemic conditions were excluded by blood sampling. In addition, 16 cognitively normal elderly (age >70 years), including 7 women and 9 men, were enrolled in the sham group. The PET imaging data were analyzed using statistical parametric mapping (SPM8) to determine reliability and specificity.Glucose metabolic rate was low in the DAT group, especially in the middle temporal gyrus, middle frontal gyrus, superior frontal gyrus, inferior frontal gyrus, posterior cingulate gyrus, angular gyrus, parahippocampal gyrus, middle occipital gyrus, rectal gyrus, and lingual gyrus.Our results showed that DAT patients with less education not only have prominent clinical signs and symptoms related to dementia but also decreased gray matter metabolism.

  13. Re-Evaluation of Clinical Dementia Diagnoses with Pittsburgh Compound B Positron Emission Tomography

    Directory of Open Access Journals (Sweden)

    M. Degerman Gunnarsson

    2013-12-01

    Full Text Available Objectives: There is an overlap regarding Pittsburgh compound B (PIB retention in patients clinically diagnosed as Alzheimer's disease (AD and non-AD dementia. The aim of the present study was to investigate whether there are any differences between PIB-positive and PIB-negative patients in a mixed cohort of patients with neurodegenerative dementia of mild severity regarding neuropsychological test performance and regional cerebral glucose metabolism measured with [18F]fluoro-2-deoxy-D-glucose (FDG positron emission tomography (PET. Methods: Eighteen patients clinically diagnosed as probable AD or frontotemporal dementia were examined with PIB PET, FDG PET and neuropsychological tests and followed for 5-9 years in a clinical setting. Results: The PIB-positive patients (7 out of 18 had slower psychomotor speed and more impaired visual episodic memory than the PIB-negative patients; otherwise performance did not differ between the groups. The initial clinical diagnoses were changed in one third of the patients (6 out of 18 during follow-up. Conclusions: The subtle differences in neuropsychological performance, the overlap of hypometabolic patterns and clinical features between AD and non-AD dementia highlight the need for amyloid biomarkers and a readiness to re-evaluate the initial diagnosis.

  14. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    Science.gov (United States)

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  15. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-01-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5 × 10−6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source. PMID:27716640

  16. Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Baum, R. P.; Przetak, C. [Zentralklinik Bad Berka, Clinic of Nuclear Medicine, Center for PET, Bad Berka (Germany)

    2001-09-01

    Positron emission tomography (PET) has the potential to contribute significantly to treatment planning and to the evaluation of response to therapy in patients with cancer. For disease recurrence PET imaging provides information non-invasively. The final goal is to biologically characterize an individual patients' tumor and to predict the response to treatment at the earliest possible time. Quantitative and/or semi-quantitative PET studies yield valuable information in breast cancer regarding prognosis and response to chemohormontherapy in a timely fashion. In ovarian cancer, up to now only few studies have been performed applying PET techniques for the evaluation of treatment response. These preliminary studies indicate that serial assessment of tumor metabolism by FDG-PET early during effective chemotherapy may predict subsequent response to such therapy. PET studies can be repeated without any side-effects and with low radiation exposure and results can be directly correlated with clinical laboratory data and histology. Therapy monitoring by PET could help to optimize neoadjuvant therapy protocols and to avoid ineffective preoperative therapy in non-responders, but this has to be proven in a larger number of patients and in different neoadjuvant settings such as chemotherapy, radiation therapy, hormone therapy or a combination of these.

  17. Cerebral blood flow and glucose metabolism in hypothyroidism: a positron emission tomography study.

    Science.gov (United States)

    Constant, E L; de Volder, A G; Ivanoiu, A; Bol, A; Labar, D; Seghers, A; Cosnard, G; Melin, J; Daumerie, C

    2001-08-01

    Hypothyroidism is often associated with defective memory, psychomotor slowing, and depression. However, the relationship between thyroid status and cognitive or psychiatric disturbances remains unclear. Using psychometric scales, 10 patients who had undergone total thyroidectomy for thyroid carcinoma were evaluated for depression, anxiety, and psychomotor slowing; they were examined both when euthyroid and hypothyroid after thyroid hormone withdrawal. Positron emission tomography was used, with oxygen-15-labeled water and fluorine-18F-labeled 2-deoxy-2fluoro-D-glucose as the tracers, to correlate the regional cerebral blood flow and cerebral glucose metabolism with the mental state in patients. Two different image analysis techniques (regions of interest and statistical parametric maps) were applied. In hypothyroidism, there was a generalized decrease in regional cerebral blood flow (23.4%, P < 0.001) and in cerebral glucose metabolism (12.1%, P < 0.001) and there were no specific local defects. Patients were also significantly more depressed (P < 0.001), anxious (P < 0.001) and psychomotor slowed (P < 0.005) in hypo than in euthyroid status. These results indicate that the brain activity was globally reduced in severe hypothyroidism of short duration without the regional modifications usually observed in primary depression.

  18. FPGA-Based Front-End Electronics for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Dewitt, Don; McDougald, Wendy; Lewellen, Thomas K; Miyaoka, Robert; Hauck, Scott

    2009-02-22

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm.

  19. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Directory of Open Access Journals (Sweden)

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  20. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Qiu eXiangzhe

    2016-05-01

    Full Text Available Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM. However, the DM-related changes in the topological properties in functional brain networks are almost unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs, followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized shortest path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing the functional evidence for the abnormalities of brain networks in DM.

  1. [The Quality Assurance (QA) and the Quality Control (QC) of Positron Emission Tomography (PET) Image].

    Science.gov (United States)

    Iimori, Takashi

    2015-01-01

    Positron emission tomography (PET) is widely used for image diagnostics; making judgments for early diagnostics, differential diagnostics, staging and treatment effect. As for undertaking the large clinical trial and the multicenter study using several diagnostics, the quantitative standardization of PET images is important. We should maintain the safety and the accuracy of daily clinical images. Moreover, we have to develop a safety treatment manual for instruments, apparatus and radiopharmaceuticals in order to produce PET studies of the highest diagnostic accuracy. In addition, daily quality assurance (QA) and quality control (QC) are very important in order to achieve efficiency and safety of PET studies. The importance of the QA and the QC have been recognized from the view of clinical incident protection points. PET will become more advanced in the future, and therefore the QA and the QC for PET images will continue to important in our work. In the view-risk management, we should reaffirm the importance of both QA and QC. Furthermore, we underline the importance of the constant management system and organization in order to gain the quality enhancement of PET imaging.

  2. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring

    Directory of Open Access Journals (Sweden)

    Amarnath eChallapalli

    2016-02-01

    Full Text Available Cancer cells do reprogramme their energy metabolism to enable several functions such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article we review both established and evolving radioprobes developed in association with positron emission tomography (PET to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[18F]-fluoro-D-glucose is well established in the clinic. Analogues of choline including [11C]-choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogrammed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism.

  3. Prospective evaluation of positron emission tomography in the preoperative staging of esophageal carcinoma.

    Science.gov (United States)

    Kneist, Werner; Schreckenberger, Mathias; Bartenstein, Peter; Menzel, Christian; Oberholzer, Katja; Junginger, Theodor

    2004-10-01

    Positron emission tomography (PET) is a useful tool in the selection of patients with esophageal cancer who may not benefit from esophageal resection. Case series. Tertiary care hospital. Eighty-one patients with newly diagnosed esophageal cancer who underwent PET and computer tomography (CT) of the chest and abdomen (and of the neck in 45 patients) within 45 days were included. We calculated the sensitivity and specificity in detecting metastatic sites on the basis of 31 histologically verified lesions. In addition to results obtained on CT, the information provided by PET was evaluated with a view to the choice of management strategies. The PET findings had a higher specificity (89% vs 11%) but a lower sensitivity (38% vs 63%) than CT findings in the detection of metastatic sites. The CT results showed greater agreement with histopathological findings than did PET results. In 8 patients (10%), PET detected distant metastases that were not identified with CT. In 4 patients (5%), PET detected bone metastases only, but in all of these patients metastases in other locations were detected by CT. Although PET led to upstaging (M1) in 2 patients (2%), it did not enable the exclusion of esophageal resection. Preoperative PET was not characterized by greater accuracy in the detection of metastatic sites previously identified by CT. Therefore, PET did not lead to a change in the indication for esophagectomy. An increase in the sensitivity and the combined use of CT and PET may lead to new indications for this staging procedure.

  4. Speech disorders in olivopontocerebellar atrophy correlate with positron emission tomography findings

    Energy Technology Data Exchange (ETDEWEB)

    Kluin, K.J.; Gilman, S.; Markel, D.S.; Koeppe, R.A.; Rosenthal, G.; Junck, L.

    1988-06-01

    We compared the severity of ataxic and spastic dysarthria with local cerebral metabolic rates for glucose (lCMRGlc) in 30 patients with olivopontocerebellar atrophy (OPCA). Perceptual analysis was used to examine the speech disorders, and rating scales were devised to quantitate the degree of ataxia and spasticity in the speech of each patient. lCMRGlc was measured with /sup 18/F-2-fluoro-2-deoxy-D-glucose and positron emission tomography (PET). PET studies revealed marked hypometabolism in the cerebellar hemispheres, cerebellar vermis, and brainstem of OPCA patients compared with 30 control subjects. With data normalized to the cerebral cortex, a significant inverse correlation was found between the severity of ataxia in speech and the lCMRGlc within the cerebellar vermis, cerebellar hemispheres, and brainstem, but not within the thalamus. No significant correlation was found between the severity of spasticity in speech and lCMRGlc in any of these structures. The findings support the view that the severity of ataxia in speech in OPCA is related to the functional activity of the cerebellum and its connections in the brainstem.

  5. INSIDE in-beam positron emission tomography system for particle range monitoring in hadrontherapy.

    Science.gov (United States)

    Bisogni, Maria Giuseppina; Attili, Andrea; Battistoni, Giuseppe; Belcari, Nicola; Camarlinghi, Niccolo'; Cerello, Piergiorgio; Coli, Silvia; Del Guerra, Alberto; Ferrari, Alfredo; Ferrero, Veronica; Fiorina, Elisa; Giraudo, Giuseppe; Kostara, Eleftheria; Morrocchi, Matteo; Pennazio, Francesco; Peroni, Cristiana; Piliero, Maria Antonietta; Pirrone, Giovanni; Rivetti, Angelo; Rolo, Manuel D; Rosso, Valeria; Sala, Paola; Sportelli, Giancarlo; Wheadon, Richard

    2017-01-01

    The quality assurance of particle therapy treatment is a fundamental issue that can be addressed by developing reliable monitoring techniques and indicators of the treatment plan correctness. Among the available imaging techniques, positron emission tomography (PET) has long been investigated and then clinically applied to proton and carbon beams. In 2013, the Innovative Solutions for Dosimetry in Hadrontherapy (INSIDE) collaboration proposed an innovative bimodal imaging concept that combines an in-beam PET scanner with a tracking system for charged particle imaging. This paper presents the general architecture of the INSIDE project but focuses on the in-beam PET scanner that has been designed to reconstruct the particles range with millimetric resolution within a fraction of the dose delivered in a treatment of head and neck tumors. The in-beam PET scanner has been recently installed at the Italian National Center of Oncologic Hadrontherapy (CNAO) in Pavia, Italy, and the commissioning phase has just started. The results of the first beam test with clinical proton beams on phantoms clearly show the capability of the in-beam PET to operate during the irradiation delivery and to reconstruct on-line the beam-induced activity map. The accuracy in the activity distal fall-off determination is millimetric for therapeutic doses.

  6. PETALO, a new concept for a Positron Emission TOF Apparatus based on Liquid xenOn

    CERN Document Server

    Benlloch-Rodriguez, J M

    2016-01-01

    This master thesis presents a new type of Positron Emission TOF Apparatus using Liquid xenOn (PETALO). The detector is based in the Liquid Xenon Scintillating Cell (LXSC). The cell is a box filled with liquid xenon (LXe) whose transverse dimensions are chosen to optimize packing and with a thickness optimized to contain a large fraction of the incoming photons. The entry and exit faces of the box (relative to the incoming gammas direction) are instrumented with large silicon photomultipliers (SiPMs), coated with a wavelength shifter, tetraphenyl butadiene (TPB). The non-instrumented faces are covered by reflecting Teflon coated with TPB. In this thesis we show that the LXSC can display an energy resolution of 5% FWHM, much better than that of conventional solid scintillators such as LSO/LYSO. The LXSC can measure the interaction point of the incoming photon with a resolution in the three coordinates of 1 mm. The very fast scintillation time of LXe (2 ns) and the availability of suitable sensors and electronic...

  7. The value of positron emission tomography in patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kee, Frank [Centre for Public Health, Queen' s University Belfast, Mulhouse Building, Royal Victoria Hospital Site, Grosvenor Road, Belfast BT12 6BJ, Northern Ireland (United Kingdom)], E-mail: f.kee@qub.ac.uk; Erridge, Sara [Edinburgh Cancer Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, Scotland (United Kingdom); Bradbury, Ian [Frontier Science (Scotland) Ltd., Grampian View, Kincraig, Inverness-shire PH21 1NA, Scotland (United Kingdom); Cairns, Karen [School of Maths and Physics, Queen' s University Belfast, David Bates Building, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2010-01-15

    Background: Pre-operative assessment of non-small cell lung cancer (NSCLC) is a major application of positron emission tomography (FDG-PET). Despite substantial evidence of diagnostic accuracy, relatively little attention has been paid to its effects on patient outcomes. This paper addresses this by extending an existing decision model to include patient-elicited utilities. Patients and methods: A decision-tree model of the effect of FDG-PET on pre-operative staging was converted to a Markov model. Utilities for futile and appropriate thoracotomy were elicited from 75 patients undergoing staging investigation for NSCLC. The decision model was then used to estimate the expected value of perfect information (EVPI) associated with three sources of uncertainty-the accuracy of PET, the accuracy of CT and the patient related utility of a futile thoracotomy. Results: The model confirmed the apparent cost-effectiveness of FDG-PET and indicated that the EVPI associated with the utility of futile thoracotomy considerably exceeds that associated with measures of accuracy. Conclusion: The study highlights the importance of patient related utilities in assessing the cost-effectiveness of diagnostic technologies. In the specific case of PET for pre-operative staging of NSCLC, future research effort should focus on such elicitation, rather than further refinement of accuracy estimates.

  8. Function of the shoulder muscles during arm elevation: an assessment using positron emission tomography.

    Science.gov (United States)

    Omi, Rei; Sano, Hirotaka; Ohnuma, Masahiro; Kishimoto, Koshi N; Watanuki, Shoichi; Tashiro, Manabu; Itoi, Eiji

    2010-05-01

    Although 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) positron emission tomography (PET) has been used for the assessment of skeletal muscle activities, its application to the shoulder muscles is only sparse. The purpose of this study was to investigate the activities of the shoulder muscles during arm elevation using PET. Six healthy volunteers performed an arm elevation exercise before and after FDG injection. The exercise consisted of 200 repetitions of arm elevation in the scapular plane with a 0.25-kg weight fixed to the wrist on both arms. PET examination was performed 50 min after FDG injection. For control data, PET scan was repeated for each subject on a separate day without any exercise. The volume of interest was established for each shoulder muscle. The subscapularis was divided into three portions (superior, middle, and inferior). The standardized uptake value (SUV) was calculated in each muscle to quantify its activity. The SUVs increased significantly after exercise in the deltoid, supraspinatus, and the superior portion of subscapularis. Among three divided portions of the subscapularis, the SUV of the superior one-third was significantly greater than the rest of the muscle after exercise. Our current study clearly indicated that there were two functionally different portions in the subscapularis muscle and the superior one-third played an important role during arm elevation in the scapular plane.

  9. Neural correlates of sensorimotor gating: A metabolic positron emission tomography study in awake rats

    Directory of Open Access Journals (Sweden)

    Cathrin eRohleder

    2014-05-01

    Full Text Available Impaired sensorimotor gating occurs in neuropsychiatric disorders such as schizophrenia and can be measured using the prepulse inhibition (PPI paradigm of the acoustic startle response. This assay is frequently used to validate animal models of neuropsychiatric disorders and to explore the therapeutic potential of new drugs. The underlying neural network of PPI has been extensively studied with invasive methods and genetic modifications. However, its relevance for healthy untreated animals and the functional interplay between startle- and PPI-related areas during a PPI session is so far unknown. Therefore, we studied awake rats in a PPI paradigm, startle control and background noise control, combined with behavioral [18F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET. Subtractive analyses between conditions were used to identify brain regions involved in startle and PPI processing in well-hearing Black hooded rats. For correlative analysis with regard to the amount of PPI we also included hearing-impaired Lister hooded rats that startled more often, because their hearing threshold was just below the lowest prepulses. Metabolic imaging showed that the brain areas proposed for startle and PPI mediation are active during PPI paradigms in healthy untreated rats. More importantly, we show for the first time that the whole PPI modulation network is active during passive PPI sessions, where no selective attention to prepulse or startle stimulus is required. We conclude that this reflects ongoing monitoring of stimulus significance and constant adjustment of sensorimotor gating.

  10. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Mark F Smith; Raymond R Raylman; Stan Majewski; Andrew G Weisenberger

    2004-05-01

    Positron emission mammography (PEM) with tomographic acquisition using dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation compared with PEM using stationary detectors. PEM tomography (PEMT) was compared with stationary PEM for point source and compressed breast phantom studies performed with a compact dual detector system. The acquisition geometries were appropriate for the target application of PEM guidance of stereotactic core biopsy. Images were reconstructed with a three-dimensional iterative maximum likelihood expectation maximization algorithm. PEMT eliminated blurring normal to the detectors seen with stationary PEM. Depth of interaction effects distorted the shape of the point spread functions for PEMT as the angular range from normal incidence of lines of response used in image reconstruction increased. Streak artifacts in PEMT for large detector rotation increments led to the development of an expression for the maximum rotation increment that maintains complete angular sampling. Studies with a compressed breast phantom were used to investigate contrast and signal-to-noise ratio (SNR) trade-offs for different sized spherical tumor models. PEMT and PEM both had advantages depending on lesion size and detector separation. The most appropriate acquisition method for specific detection or quantitation tasks requires additional investigation.

  11. Modelling human drug abuse and addiction with dedicated small animal positron emission tomography.

    Science.gov (United States)

    Dalley, Jeffrey W; Fryer, Tim D; Aigbirhio, Franklin I; Brichard, Laurent; Richards, Hugh K; Hong, Young T; Baron, Jean-Claude; Everitt, Barry J; Robbins, Trevor W

    2009-01-01

    Drug addiction is a chronically relapsing brain disorder, which causes substantial harm to the addicted individual and society as a whole. Despite considerable research we still do not understand why some people appear particularly disposed to drug abuse and addiction, nor do we understand how frequently co-morbid brain disorders such as depression and attention-deficit hyperactivity disorder (ADHD) contribute causally to the emergence of addiction-like behaviour. In recent years positron emission tomography (PET) has come of age as a translational neuroimaging technique in the study of drug addiction, ADHD and other psychopathological states in humans. PET provides unparalleled quantitative assessment of the spatial distribution of radiolabelled molecules in the brain and because it is non-invasive permits longitudinal assessment of physiological parameters such as binding potential in the same subject over extended periods of time. However, whilst there are a burgeoning number of human PET experiments in ADHD and drug addiction there is presently a paucity of PET imaging studies in animals despite enormous advances in our understanding of the neurobiology of these disorders based on sophisticated animal models. This article highlights recent examples of successful cross-species convergence of findings from PET studies in the context of drug addiction and ADHD and identifies how small animal PET can more effectively be used to model complex psychiatric disorders involving at their core impaired behavioural self-control.

  12. Energy discrimination for positron emission tomography using the time information of the first detected photons

    Science.gov (United States)

    Therrien, A. C.; Lemaire, W.; Lecoq, P.; Fontaine, R.; Pratte, J.-F.

    2018-01-01

    The advantages of Time-of-Flight positron emission tomography (TOF-PET) have pushed the development of detectors with better time resolution. In particular, Silicon Photomultipliers (SiPM) have evolved tremendously in the past decade and arrays with a fully digital readout are the next logical step (dSiPM). New multi-timestamp methods use the precise time information of multiple photons to estimate the time of a PET event with greater accuracy, resulting in excellent time resolution. We propose a method which uses the same timestamps as the time estimator to perform energy discrimination, thus using data obtained within 5 ns of the beginning of the event. Having collected all the necessary information, the dSiPM could then be disabled for the remaining scintillation while dedicated electronics process the collected data. This would reduce afterpulsing as the SPAD would be turned off for several hundred nanoseconds, emptying the majority of traps. The proposed method uses a strategy based on subtraction and minimal electronics to reject energy below a selected threshold. This method achieves an error rate of less than 3% for photopeak discrimination (threshold at 400 keV) for dark count rates up to 100 cps/μm2, time-to-digital converter resolution up to 50 ps and a photon detection efficiency ranging from 10 to 70%.

  13. Positron emission tomography / computerized tomography evaluation of primary Hodgkin's disease of liver.

    Science.gov (United States)

    Gota, V S; Purandare, N C; Gujral, S; Shah, S; Nair, R; Rangarajan, V

    2009-01-01

    Occurrence of primary Hodgkin's lymphoma (PHL) of the liver is extremely rare. We report on a case of a 60-year-old male who presented with liver mass and B-symptomatology. Hepatoma or hepatic metastasis from a gastrointestinal primary was initially suspected. Tumor markers like AFP, CEA, Total PSA, and CA-19.9 were within normal limits. Positron Emission Tomography / Computerized Tomography (PET/CT) revealed a large hepatic lesion and a nodal mass in the porta hepatis. A liver biopsy was consistent with Hodgkin's lymphoma. There was complete regression of the hepatic lesion and evidence of shrinkage of the nodal mass following four cycles of chemotherapy. 18F Fluro -de-oxy Glucose (FDG) PET / CT in this case helped in establishing a primary hepatic lymphoma by demonstrating the absence of pathologically hypermetabolic foci in any other nodes or organs. PET / CT scan is a useful adjunct to conventional imaging and histopathology, not only to establish the initial diagnosis, but also to monitor treatment response in PHL.

  14. The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson's disease.

    Science.gov (United States)

    Heiss, W-D; Hilker, R

    2004-01-01

    Parkinson's disease (PD) as the most important movement disorder is characterized by a progressive loss of nigral dopamine neurons and a subsequent degeneration within several other transmitter systems. Functional brain imaging with positron emission tomography (PET) and the radiotracer 18-fluorodopa (FDOPA) is capable to quantify the deficiency of dopamine synthesis and storage within pre-synaptic striatal nerve terminals. Therefore, FDOPA-PET allows the diagnosis of PD in early disease stages and the differentiation of clinically unclear cases from other movement disorders, e.g. essential tremor. Additionally, FDOPA-PET imaging permits the follow-up of disease progression, the assessment of medical and surgical PD therapy strategies with possible neuroprotective properties and the detection of pre-clinical disease in subjects at risk for the disorder. The classical domain of morphological magnetic resonance imaging (MRI) is the differentiation of symptomatic Parkinsonism from PD. However, recent advances in MRI data acquisition and analysis techniques demonstrated MRI to be also a valuable tool for detection of nigral pathology in PD and for differentiation of neurodegenerative disorders with atypical Parkinsonism.

  15. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Science.gov (United States)

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  16. 18 F-sodium fluoride positron emission tomography of the equine distal limb: Exploratory study in three horses.

    Science.gov (United States)

    Spriet, M; Espinosa, P; Kyme, A Z; Phillips, K L; Katzman, S A; Galuppo, L D; Stepanov, P; Beylin, D

    2018-01-01

    Positron emission tomography (PET) is a cross-sectional, functional imaging modality that has recently become available to the horse. The use of 18 F-sodium fluoride (18 F-NaF), a PET bone tracer, has not previously been reported in this species. To assess the feasibility of 18 F-NaF PET in the equine distal limb and explore possible applications in the horse in comparison with other imaging modalities. Exploratory descriptive study involving three research horses. Horses were placed under general anaesthesia prior to intravenous (i.v.) administration of 1.5 MBq/kg of 18 F-NaF. Positron emission tomography imaging of both front feet and fetlocks was performed using a portable scanner. Computed tomography (CT) of the distal limb was performed under a separate anaesthetic episode. Bone scintigraphy and magnetic resonance imaging (MRI) were subsequently performed under standing sedation. Images obtained from PET and other imaging modalities were independently assessed and the results correlated. Positron emission tomography images were obtained without complication. The radiation exposure rate was similar to equine bone scintigraphy. Positron emission tomography detected focal 18 F-NaF uptake in areas where other imaging modalities did not identify any abnormalities. This included sites of ligamentous attachment, subchondral compact bone plate and the flexor cortex of the navicular bone. 18 F-NaF uptake was identified in some, but not all, osseous fragments and areas of osseous formation, suggesting a distinction between active and inactive lesions. A small number of horses were included and histopathology was not available. 18 F-NaF PET imaging of the equine distal limb provides useful additional information when compared with CT, MRI and scintigraphy and has the potential for both research and clinical applications in the horse. The Summary is available in Chinese - see Supporting information. © 2017 EVJ Ltd.

  17. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography

    OpenAIRE

    Lammertsma Adriaan A; Molthoff Carla FM; Lubberink Mark; Duijst Suzanne; Boontje Nicky M; Vlasblom Ronald; Huisman Marc C; van den Brom Charissa E; van der Velden Jolanda; Boer Christa; Ouwens D Margriet; Diamant Michaela

    2009-01-01

    Abstract Background In vitro data suggest that changes in myocardial substrate metabolism may contribute to impaired myocardial function in diabetic cardiomyopathy (DCM). The purpose of the present study was to study in a rat model of early DCM, in vivo changes in myocardial substrate metabolism and their association with myocardial function. Methods Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats underwent echocardiography followed by [11C]palmitate positron emission tomography (PET) u...

  18. Measuring brain synaptic vesicle protein 2A with positron emission tomography and [18F]UCB-H

    OpenAIRE

    Bahri, Mohamed Ali; Plenevaux, Alain; Aerts, Joël; Bastin, Christine; Becker, Guillaume; Mercier, Joël; Valade, Anne; Buchanan, Tim; Mestdagh, Nathalie; Ledoux, Didier; Seret, Alain; Luxen, André; Salmon, Eric

    2017-01-01

    Introduction: Brain distribution of synaptic vesicle protein 2Awas measured with fluorine-18 UCBH ([18F]UCB-H) and positron emission tomography (PET). Methods: Images of synaptic density were acquired in healthy volunteers (two young participants and two seniors). Input function was measured by arterial blood sampling (arterial input function) and derived from PET images using carotid activity (image-derived input function). Logan graphical analysis was used to estimate regional synaptic v...

  19. Positron emission tomography/computed tomography imaging features of renal cell carcinoma and pulmonary metastases in a dog.

    Science.gov (United States)

    Song, Sun-Hye; Park, Noh-Won; Eom, Ki-Dong

    2014-05-01

    A 9-year-old spayed female cocker spaniel dog was referred for hematuria. A large abdominal mass and multiple pulmonary nodules were identified radiographically. A whole-body 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography/computed tomography (PET/CT) scan revealed intensely increased uptake in a renal mass and the pulmonary nodules. Renal cell carcinoma was diagnosed on histological examination.

  20. Positron emission tomography/computed tomography imaging features of renal cell carcinoma and pulmonary metastases in a dog

    OpenAIRE

    Song, Sun-Hye; Park, Noh-Won; Eom, Ki-Dong

    2014-01-01

    A 9-year-old spayed female cocker spaniel dog was referred for hematuria. A large abdominal mass and multiple pulmonary nodules were identified radiographically. A whole-body 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/computed tomography (PET/CT) scan revealed intensely increased uptake in a renal mass and the pulmonary nodules. Renal cell carcinoma was diagnosed on histological examination.

  1. Decrease of prefrontal metabolism after subthalamic stimulation in obsessive-compulsive disorder: a positron emission tomography study.

    OpenAIRE

    Le Jeune, Florence; Vérin, Marc; N'Diaye, Karim; Drapier, Dominique; Leray, Emmanuelle; Du Montcel, Sophie Tezenas; Baup, Nicolas; Pelissolo, Antoine; Polosan, Mircea; Mallet, Luc; Yelnik, Jérome; Devaux, Bertrand; Fontaine, Denys; Chereau, Isabelle; Bourguignon, Aurélie

    2010-01-01

    International audience; BACKGROUND: High-frequency bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) is a promising treatment in refractory obsessive-compulsive disorder (OCD). METHOD: Using the crossover, randomized, and double-blind procedure adopted by the STOC study, 10 patients treated with high-frequency bilateral STN DBS underwent am 18-fluorodeoxyglucose positron emission tomography (PET) investigation to highlight the neural substratum of this therapeutic approach. RES...

  2. Primary Retroperitoneal Seminoma Staging and Surveillance by Means of Fluoro-2-Deoxyglucose-Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Liu, Tianye; Aparici, Carina Mari

    2015-01-01

    Primary retroperitoneal seminoma is a very rare entity. We present a case of 39-year-old male with primary retroperitoneal seminoma with staging and surveillance by means of F-18 fluoro-2-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT). The case demonstrates that primary retroperitoneal seminoma can be easy to identify with FDG-PET/CT and potential follow-up on recurrence, or metastatic disease can be performed using this technique.

  3. Impact of F-18-fluorodeoxyglucose positron emission tomography/computed tomography staging in newly diagnosed classical Hodgkin lymphoma

    DEFF Research Database (Denmark)

    El-Galaly, T. C.; Hutchings, M.; Juul Mylam, Karen

    2014-01-01

    F-18-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) is a highly accurate staging method in classical Hodgkin lymphoma (cHL). We retrospectively compared the staging results obtained in two large cohorts of patients with cHL diagnosed before (n = 324) and after (n = 406......%, p Hodgkin Study Group (GHSG) risk classification (early, intermediate, advanced disease) predicted outcome in PET...

  4. Lhermitte-Duclos disease presenting with positron emission tomography-magnetic resonance fusion imaging: a case report

    Directory of Open Access Journals (Sweden)

    Calabria Ferdinando

    2012-03-01

    Full Text Available Abstract Introduction Lhermitte-Duclos disease or dysplastic gangliocytoma of the cerebellum is an extremely rare tumor. It is a slowly enlarging mass within the cerebellar cortex. The majority of cases are diagnosed in the third or fourth decade of life. Case presentation We report the case of a 37-year-old Caucasian woman who underwent positron emission tomography-computed tomography with fluorine-18-fluorodeoxyglucose for evaluation of a solitary lung node. No pathological uptake was detected in the solitary lung node but the positron emission tomography-computed tomography of her brain showed intense tracer uptake, suggestive of a malignant neoplasm, in a mass in her left cerebellar lobe. Our patient had experienced two years of occipital headache and movement disorder. Subsequently, magnetic resonance imaging was performed with contrast agent administration, showing a large subtentorial mass in her left cerebellar hemisphere, with compression and dislocation of the fourth ventricle. Metabolic data provided by positron emission tomography and morphological magnetic resonance imaging views were fused in post-processing, allowing a diagnosis of dysplastic gangliocytoma with increased glucose metabolism. Total resection of the tumor was performed and histological examination confirmed the diagnosis of Lhermitte-Duclos disease. Conclusions Our case indicates that increased uptake of fluorine-18-fluorodeoxyglucose may be misinterpreted as a neoplastic process in the evaluation of patients with Lhermitte-Duclos disease, but supports the usefulness of integrated positron emission tomography-magnetic resonance imaging in the exact pathophysiologic explanation of this disease and in making the correct diagnosis. However, an accurate physical examination and exact knowledge of clinical data is of the utmost importance.

  5. Positron emission tomography: Which indications, which benefits?; Tomographie par emission de positons (TEP): quelles indications, quels benefices?

    Energy Technology Data Exchange (ETDEWEB)

    Chassoux, F. [Ctr Hosp St Anne, Serv Neurochirurg, F-75014 Paris (France); Chassoux, F.; Chiron, C. [CEA, I2BM, Serv Hosp Frederic Joliot, F-91 Orsay (France); Chiron, C. [Hop Necker Enfants Malad, INSERM, U663, F-75015 Paris (France); Chassoux, F.; Chiron, C. [Univ Paris 06, F-75005 Paris (France)

    2008-07-01

    Positron emission tomography (PET) is currently used in the pre-surgical workup for drug-resistant partial epilepsies in addition to MRI. Inter-ictal metabolism is studied in clinical practice using {sup 18}fluoro-desoxy-glucose ({sup 18}FDG). In medial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis, hypo-metabolism ipsilateral to the epileptogenic focus is found in 70-90% of cases. However, hypo-metabolism is larger than the structural lesion observed on MRI and includes the epileptogenic zone and ictal discharge spread areas. Hypo-metabolism is related to surgical outcome and cognitive disturbances in MTLE. Although the usefulness of PET appears less well-established in extra-temporal lobe epilepsy and in children, its sensitivity may be improved by co-registration and superimposition of PET on MRI at any age. Focal hypo-metabolism can be easily detected by visual analysis, allowing detection of minor gyral abnormalities that may correspond to focal cortical dysplasias. Moreover, in cases of negative MRI, focal hypo-metabolism findings may help invasive monitoring planning and deep electrode placement for SEEG, and finally improve surgical outcome. (authors)

  6. Redistribution of myocardial perfusion during permanent dual chamber pacing in symptomatic non-obstructive hypertrophic cardiomyopathy : A quantitative positron emission tomography study

    NARCIS (Netherlands)

    Posma, JL; Blanksma, PK; vanderWall, EE

    Dual chamber pacing causes significant symptomatic improvement in many patients with hypertrophic cardiomyopathy. The mechanism behind this beneficial response is not fully understood. Positron emission tomography showed a redistribution of myocardial flow during pacing in a patient with

  7. Quantification of myocardial perfusion using cardiac magnetic resonance imaging correlates significantly to rubidium-82 positron emission tomography in patients with severe coronary artery disease

    DEFF Research Database (Denmark)

    Qayyum, Abbas A; Hasbak, Philip; Larsson, Henrik B W

    2014-01-01

    INTRODUCTION: Aim was to compare absolute myocardial perfusion using cardiac magnetic resonance imaging (CMRI) based on Tikhonov's procedure of deconvolution and rubidium-82 positron emission tomography (Rb-82 PET). MATERIALS AND METHODS: Fourteen patients with coronary artery stenosis underwent ...

  8. An alteration in the lateral geniculate nucleus of experimental glaucoma monkeys: in vivo positron emission tomography imaging of glial activation.

    Directory of Open Access Journals (Sweden)

    Masamitsu Shimazawa

    Full Text Available We examined lateral geniculate nucleus (LGN degeneration as an indicator for possible diagnosis of glaucoma in experimental glaucoma monkeys using positron emission tomography (PET. Chronic intraocular pressure (IOP elevation was induced by laser trabeculoplasty in the left eyes of 5 cynomolgus monkeys. Glial cell activation was detected by PET imaging with [(11C]PK11195, a PET ligand for peripheral-type benzodiazepine receptor (PBR, before and at 4 weeks after laser treatment (moderate glaucoma stage. At mild, moderate, and advanced experimental glaucoma stages (classified by histological changes based on the extent of axonal loss, brains were stained with cresyl violet, or antibodies against PBR, Iba-1 (a microglial marker, and GFAP (an activated astrocyte marker. In laser-treated eyes, IOP was persistently elevated throughout all observation periods. PET imaging showed increased [(11C]PK11195 binding potential in the bilateral LGN at 4 weeks after laser treatment; the increase in the ipsilateral LGN was statistically significant (P<0.05, n = 4. Immunostaining showed bilateral activations of microglia and astrocytes in LGN layers receiving input from the laser-treated eye. PBR-positive cells were observed in LGN layers receiving input from laser-treated eye at all experimental glaucoma stages including the mild glaucoma stage and their localization coincided with Iba-1 positive microglia and GFAP-positive astrocytes. These data suggest that glial activation occurs in the LGN at a mild glaucoma stage, and that the LGN degeneration could be detected by a PET imaging with [(11C]PK11195 during the moderate experimental glaucoma stage after unilateral ocular hypertension. Therefore, activated glial markers such as PBR in the LGN may be useful in noninvasive molecular imaging for diagnosis of glaucoma.

  9. Examining endogenous dopamine in treated schizophrenia using [¹¹C]-(+)-PHNO positron emission tomography: A pilot study.

    Science.gov (United States)

    Caravaggio, Fernando; Borlido, Carol; Wilson, Alan; Graff-Guerrero, Ariel

    2015-09-20

    Using positron emission tomography (PET) it is possible to estimate endogenous dopamine (DA) occupying D2/3 receptors (D2/3R) in the living human brain. Persons with schizophrenia (SZ) (previously medicated and naïve) have increased endogenous DA occupying D2/3R in the caudate. It is unknown whether currently medicated patients demonstrate increased DA levels at D2/3R. Moreover, DA levels have not been estimated in SZ using agonist radiotracers, which may offer a more sensitive quantification over antagonists. Using the agonist radiotracer [(11)C]-(+)-PHNO, DA levels were estimated at D2/3R (ΔBP(ND)) in three patients with SZ (male, mean age=30±16). Patients were currently being treated long-term with Olanzapine (147±88 nmol/L). Results were compared to ten healthy controls (HCs). Medicated persons with SZ had greater ΔBP(ND) in the left caudate (U=2, Z=-2.20, p=.03) and right putamen (U=2, Z=-2.20, p=.03). No differences were observed in the ventral striatum or globus pallidus. It is possible to estimate endogenous DA at D2/3R in SZ patients currently taking antipsychotics. Despite medication, patients continue to have increased endogenous DA at D2/3R. This lends more biological support to the clinical observation that relapses in symptoms can occur in the face of complete antipsychotic discontinuation. Future studies with larger samples are warranted. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Examining Endogenous Dopamine in Treated Schizophrenia using [11C]-(+)-PHNO Positron Emission Tomography: A Pilot study

    Science.gov (United States)

    Caravaggio, Fernando; Borlido, Carol; Wilson, Alan; Graff-Guerrero, Ariel

    2015-01-01

    Background Using positron emission tomography (PET) it is possible to estimate endogenous dopamine (DA) occupying D2/3 receptors (D2/3R) in the living human brain. Persons with schizophrenia (SZ) (previously medicated and naïve) have increased endogenous DA occupying D2/3R in the caudate. It is unknown whether currently medicated patients demonstrate increased DA levels at D2/3R. Moreover, DA levels have not been estimated in SZ using agonist radiotracers, which may offer a more sensitive quantification over antagonists. Methods Using the agonist radiotracer [11C]-(+)-PHNO, DA levels were estimated at D2/3R (ΔBPND) in three patients with SZ (Male, Mage=30±16). Patients were currently being treated long-term with Olanzapine (147±88 nmol/L). Results were compared to ten healthy controls (HC’s). Results Medicated persons with SZ had greater ΔBPND in the left caudate (U=2, Z=−2.20, p=.03) and right putamen (U=2, Z=−2.20, p=.03). No differences were observed in the ventral striatum or globus pallidus. Conclusions It is possible to estimate endogenous DA at D2/3R in SZ patients currently taking antipsychotics. Despite medication, patients continue to have increased endogenous DA at D2/3R. This lends more biological support to the clinical observation that relapses in symptoms can occur in the face of complete antipsychotic discontinuation. Future studies with larger samples are warranted. PMID:25814099

  11. Imaging TCR-Dependent NFAT-Mediated T-Cell Activation with Positron Emission Tomography In Vivo

    Directory of Open Access Journals (Sweden)

    Vladimir Ponomarev

    2001-01-01

    Full Text Available A noninvasive method for molecular imaging of T-cell activity in vivo would be of considerable value. It would aid in understanding the role of specific genes and signal transduction pathways in the course of normal and pathologic immune responses, could elucidate temporal dynamics and immune regulation at different stages of disease and following therapy. We developed and assessed a novel method for monitoring the T-cell receptor (TCR -dependent nuclear factor of activated T cells (NFAT -mediated activation of T cells by optical fluorescence imaging (OFI and positron emission tomography (PET. The herpes simplex virus type 1 thymidine kinase/green fluorescent protein [HSV1-tk/GFP (TKGFP ] dual reporter gene was used to monitor NFAT-mediated transcriptional activation in human Jurkat cells. A recombinant retrovirus bearing the NFAT-TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting NFAT-specific enhancer. Transduced Jurkat cells were used to establish subcutaneous infiltrates in nude rats. We demonstrated that noninvasive OR and nuclear imaging of T-cell activation is feasible using the NFAT-TKGFP reporter system. PET imaging with [124]FIAU using the NFAT-TKGFP reporter system is sufficiently sensitive to detect T-cell activation in vivo. PET images were confirmed by independent measurements of T-cell activation (e.g., CD69 and induction of GFP fluorescence. PET imaging of TCR-induced NFAT-dependent transcriptional activity may be useful in the assessment of T cell responses, T-cell-based adoptive therapies, vaccination strategies and immunosuppressive drugs.

  12. Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and Correction of Dopamine Neurotransmission after Gene Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph. [1Centre National de la Recherche Scientifique, Unite de Recherche Associee 2210, 91401 Orsay (France); Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph. [2Commissariat a l' energie Atomique (CEA), Biomedical Imaging Institute, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses (France); Bjorklund, T.; Breysse, N.; Carlsson, T.; Kirik, D. [Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, SE-221 84, Lund (Sweden); Dolle, F. [CEA, Biomedical Imaging Institute, Service Hospitalier Frederic Joliot, 91406 Orsay (France); Mandel, R.J. [5Department of Neuroscience, McKnight Brain Institute and Gene Therapy Centre, College of Medicine, University of Florida, Gainesville, Florida 32610 (US); Kirik, D. [LundUniversity Bio-Imaging Center, Faculty of Medicine, SE-221 84 Lund (Sweden)

    2009-07-01

    In vivo gene transfer using viral vectors is an emerging therapy for neuro-degenerative diseases with a clinical impact recently demonstrated in Parkinson's disease patients. Recombinant adeno-associated viral (rAAV) vectors, in particular, provide an excellent tool for long-term expression of therapeutic genes in the brain. Here we used the [{sup 11}C]raclopride [(S)-(-)-3, 5-dichloro-N-((1-ethyl-2-pyrrolidinyl)methyl)-2-hydroxy- 6-methoxybenzamide] micro-positron emission tomography (PET) technique to demonstrate that delivery of the tyrosine hydroxylase (TH) and GTP-cyclohydrolase 1 (GCH1) enzymes using an rAAV5 vector normalizes the increased [{sup 11}C]raclopride binding in hemi-parkinsonian rats. Importantly, we show in vivo by micro-PET imaging and postmortem by classical binding assays performed in the very same animals that the changes in [{sup 11}C]raclopride after viral vector-based enzyme replacement therapy is attributable to a decrease in the affinity of the tracer binding to the D2 receptors, providing evidence for reconstitution of a functional pool of endogenous dopamine in the striatum. Moreover, the extent of the normalization in this non-invasive imaging measure was highly correlated with the functional recovery in motor behavior. The PET imaging protocol used in this study is fully adaptable to humans and thus can serve as an in vivo imaging technique to follow TH+GCH1 gene therapy in PD patients and provide an additional objective measure to a potential clinical trial using rAAV vectors to deliver L-3, 4-dihydroxyphenylalanine in the brain. (authors)

  13. Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers.

    Science.gov (United States)

    Knight, William D; Okello, Aren A; Ryan, Natalie S; Turkheimer, Federico E; Rodríguez Martinez de Llano, Sofia; Edison, Paul; Douglas, Jane; Fox, Nick C; Brooks, David J; Rossor, Martin N

    2011-01-01

    (11)Carbon-Pittsburgh compound B positron emission tomography studies have suggested early and prominent amyloid deposition in the striatum in presenilin 1 mutation carriers. This cross-sectional study examines the (11)Carbon-Pittsburgh compound B positron emission tomography imaging profiles of presymptomatic and mildly affected (mini-mental state examination ≥ 20) carriers of seven presenilin 1 mutations, comparing them with groups of controls and symptomatic sporadic Alzheimer's disease cases. Parametric ratio images representing (11)Carbon-Pittsburgh compound B retention from 60 to 90 min were created using the pons as a reference region and nine regions of interest were studied. We confirmed that increased amyloid load may be detected in presymptomatic presenilin 1 mutation carriers with (11)Carbon-Pittsburgh compound B positron emission tomography and that the pattern of retention is heterogeneous. Comparison of presenilin 1 and sporadic Alzheimer's disease groups revealed significantly greater thalamic retention in the presenilin 1 group and significantly greater frontotemporal retention in the sporadic Alzheimer's disease group. A few individuals with presenilin 1 mutations showed increased cerebellar (11)Carbon-Pittsburgh compound B retention suggesting that this region may not be as suitable a reference region in familial Alzheimer's disease.

  14. An unusual presentation of a sarcoidosis that mimicked lymphatic metastatize non small cell lung carcinoma in positron emission tomography: a case report

    OpenAIRE

    Dzemali, Omer; Papadopoulos, Nestoras; Bakhtiary, Farhad; Therapidis, Panagiotis; Kleine, Peter

    2009-01-01

    In the last decade, several sophisticated and accurate imaging methods such as positron emission tomography have been developed in order to evaluate malignant potential in enlarged mediastinal lymph nodes. This case illustrates an unusual presentation of sarcoidosis that mimicked lymphatic metastases of non small cell lung carcinoma. The reported high specificity and sensitivity of positron emission tomography-Computer Tomography regarding mediastinal staging could lead in same cases of false...

  15. [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study

    DEFF Research Database (Denmark)

    Poulsen, Mads; Bouchelouche, Kirsten; Gerke, Oke

    2010-01-01

    To evaluate prospectively [(18)F]-fluorocholine positron-emission/computed tomography (FCH PET/CT) for lymph node staging of prostate cancer before intended curative therapy, and to determine whether imaging 15 or 60 min after radiotracer injection is preferable.......To evaluate prospectively [(18)F]-fluorocholine positron-emission/computed tomography (FCH PET/CT) for lymph node staging of prostate cancer before intended curative therapy, and to determine whether imaging 15 or 60 min after radiotracer injection is preferable....

  16. A method for comparing intra-tumoural radioactivity uptake heterogeneity in preclinical positron emission tomography studies

    Energy Technology Data Exchange (ETDEWEB)

    Grafström, Jonas; Ahlzén, Hanna-Stina [Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm (Sweden); Stone-Elander, Sharon [Department of Clinical Neuroscience, Karolinska Institutet, SE-17176 Stockholm (Sweden); PET Radiochemistry, Neuroradiology Department, Karolinska University Hospital, SE-17176 Stockholm (Sweden)

    2015-09-08

    Non-uniformity influences the interpretation of nuclear medicine based images and consequently their use in treatment planning and monitoring. However, no standardised method for evaluating and ranking heterogeneity exists. Here, we have developed a general algorithm that provides a ranking and a visualisation of the heterogeneity in small animal positron emission tomography (PET) images. The code of the algorithm was written using the Matrix Laboratory software (MATLAB). Parameters known to influence the heterogeneity (distances between deviating peaks, gradients and size compensations) were incorporated into the algorithm. All data matrices were mathematically constructed in the same format with the aim of maintaining overview and control. Histograms visualising the spread and frequency of contributions to the heterogeneity were also generated. The construction of the algorithm was tested using mathematically generated matrices and by varying post-processing parameters. It was subsequently applied in comparisons of radiotracer uptake in preclinical images in human head and neck carcinoma and endothelial and ovarian carcinoma xenografts. Using the developed algorithm, entire tissue volumes could be assessed and gradients could be handled in an indirect manner. Similar-sized volumes could be compared without modifying the algorithm. Analyses of the distribution of different tracers gave results that were generally in accordance with single plane preclinical images, indicating that it could appropriately handle comparisons of targeting vs. non-targeting tracers and also for different target levels. Altering the reconstruction algorithm, pixel size, tumour ROI volumes and lower cut-off limits affected the calculated heterogeneity factors in expected directions but did not reverse conclusions about which tumour was more or less heterogeneous. The algorithm constructed is an objective and potentially user-friendly tool for one-to-one comparisons of heterogeneity in

  17. Evaluation of Positron Emission Tomographic Tracers for Imaging of Papillomavirus-Induced Tumors in Rabbits

    Directory of Open Access Journals (Sweden)

    Sonja Probst

    2014-01-01

    Full Text Available In this study, simultaneous positron emission tomography (PET/magnetic resonance (MR imaging was employed to evaluate the feasibility of the PET tracers 2-deoxy-2-18F-fluoro-D-glucose (18F-FDG, 11C-choline, and 18F-fluorothymidine (18F-FLT to detect papillomavirus-induced tumors in an established rabbit model system. The combined PET/MR allowed the analysis of tracer uptake of the tumors using the morphologic information acquired by MR. New Zealand White rabbits were infected with cottontail rabbit papillomavirus genomes and were imaged for up to 10 months with a simultaneous PET/MR system during the course of infection. The uptake characteristics of the PET tracers 11C-choline and 18F-FLT of tumors and reference tissues were examined relative to the clinical standard, 18F-FDG. Tracer biodistribution of various organs was measured by gamma-counting after the last PET scan and compared to the in vivo PET/MR 18F-FDG uptake. Increased tracer uptake was found 2 months postinfection in primary tumors with 18F-FDG and 11C-choline, whereas 18F-FLT failed to detect the tumors at all measured time points. Our data show that the PET tracer 18F-FDG is superior for imaging papillomavirus-induced tumors in rabbits compared to 11C-choline and 18F-FLT. However, 11C-choline imaging, which has previously been applied to detect various tumor entities in patients, appears to be an alternative to 18F-FDG.

  18. Digital contrast enhancement of (18)Fluorine-fluorodeoxyglucose positron emission tomography images in hepatocellular carcinoma.

    Science.gov (United States)

    Pandey, Anil Kumar; Sharma, Sanjay Kumar; Agarwal, Krishan Kant; Sharma, Punit; Bal, Chandrasekhar; Kumar, Rakesh

    2016-01-01

    The role of (18)fluorodeoxyglucose positron emission tomography (PET) is limited for detection of primary hepatocellular carcinoma (HCC) due to low contrast to the tumor, and normal hepatocytes (background). The aim of the present study was to improve the contrast between the tumor and background by standardizing the input parameters of a digital contrast enhancement technique. A transverse slice of PET image was adjusted for the best possible contrast, and saved in JPEG 2000 format. We processed this image with a contrast enhancement technique using 847 possible combinations of input parameters (threshold "m" and slope "e"). The input parameters which resulted in an image having a high value of 2(nd) order entropy, and edge content, and low value of absolute mean brightness error, and saturation evaluation metrics, were considered as standardized input parameters. The same process was repeated for total nine PET-computed tomography studies, thus analyzing 7623 images. The selected digital contrast enhancement technique increased the contrast between the HCC tumor and background. In seven out of nine images, the standardized input parameters "m" had values between 150 and 160, and for other two images values were 138 and 175, respectively. The value of slope "e" was 4 in 4 images, 3 in 3 images and 1 in 2 images. It was found that it is important to optimize the input parameters for the best possible contrast for each image; a particular value was not sufficient for all the HCC images. The use of above digital contrast enhancement technique improves the tumor to background ratio in PET images of HCC and appears to be useful. Further clinical validation of this finding is warranted.

  19. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    Science.gov (United States)

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  20. Development of a multiplexed readout with high position resolution for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangwon; Choi, Yong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of); Kang, Jihoon [Department of Biomedical Engineering, Chonnam National University, Yeosu 550-749 (Korea, Republic of); Jung, Jin Ho [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of)

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm{sup 3} LYSO, a 4×4 array of 3×3 mm{sup 2} silicon photomultiplier (SiPM) and 13.4×13.4 mm{sup 2} light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  1. Pre-clinical Positron Emission Tomography Reconstruction Algorithm Effect on Cu-64 ATSM Lesion Hypoxia

    Directory of Open Access Journals (Sweden)

    Bal Sanghera

    2016-02-01

    Full Text Available Objective: Application of distinct positron emission tomography (PET scan reconstruction algorithms can lead to statistically significant differences in measuring lesion functional properties. We looked at the influence of two-dimensional filtered back projection (2D FBP, two-dimensional ordered subset expectation maximization (2D OSEM, three-dimensional ordered subset expectation maximization (3D OSEM without 3D maximum a posteriori and with (3D OSEM MAP on lesion hypoxia tracer uptake using a pre-clinical PET scanner. Methods: Reconstructed images of a rodent tumor model bearing P22 carcinosarcoma injected with hypoxia tracer Copper- 64-Diacetyl-bis (N4-methylthiosemicarbazone (i.e. Cu-64 ATSM were analyzed at 10 minute intervals till 60 minute post injection. Lesion maximum standardized uptake values (SUVmax and SUVmax/background SUVmean (T/B were recorded and investigated after application of multiple algorithm and reconstruction parameters to assess their influence on Cu-64 ATSM measurements and associated trends over time. Results: SUVmax exhibited convergence for OSEM reconstructions while ANOVA results showed a significant difference in SUVmax or T/B between 2D FBP, 2D OSEM, 3D OSEM and 3D OSEM MAP reconstructions across all time frames. SUVmax and T/B were greatest in magnitude for 2D OSEM followed by 3D OSEM MAP, 3D OSEM and then 2D FBP at all time frames respectively. Similarly SUVmax and T/B standard deviations (SD were lowest for 2D OSEM in comparison with other algorithms. Conclusion: Significantly higher magnitude lesion SUVmax and T/B combined with lower SD were observed using 2D OSEM reconstruction in comparison with 2D FBP, 3D OSEM and 3D OSEM MAP algorithms at all time frames. Results are consistent with other published studies however more specimens are required for full validation.

  2. Brain glucose utilization in systemic lupus erythematosus with neuropsychiatric symptoms: a controlled positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Otte, A. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland)]|[Department of Nuclear Medicine, University Hospital Freiburg (Germany); Weiner, S.M. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Peter, H.H. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Mueller-Brand, J. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Goetze, M. [Institute of Nuclear Medicine, University Hospital, Basel (Switzerland); Moser, E. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Gutfleisch, J. [Department of Rheumatology and Immunology, University Hospital Freiburg (Germany); Hoegerle, S. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Juengling, F.D. [Department of Nuclear Medicine, University Hospital Freiburg (Germany); Nitzsche, E.U. [Department of Nuclear Medicine, University Hospital Freiburg (Germany)

    1997-07-01

    In contrast to morphological imaging [such as magnetic resonance imaging (MRI) or computed tomography], functional imaging may be of advantage in the detection of brain abnormalities in cases of neuropsychiatric systemic lupus erythematosus (SLE). Therefore, we studied 13 patients (aged 40{+-}14 years, 11 female, 2 male) with neuropsychiatric SLE who met four of the American Rheumatism Association criteria for the classification of SLE. Ten clinically and neurologically healthy volunteers served as controls (aged 40{+-}12 years, 5 female, 5 male). Both groups were investigated using fluorine-18-labelled fluorodeoxyglucose brain positron emission tomography (PET) and cranial MRI. The normal controls and 11 of the 13 patients showed normal MRI scans. However, PET scan was abnormal in all 13 SLE patients. Significant group-to-group differences in the glucose metabolic index (GMI=region of interest uptake/global uptake at the level of the basal ganglia and thalamus) were found in the parieto-occipital region on both sides: the GMI of the parieto-occipital region on the right side was 0.922{+-}0.045 in patients and 1.066{+-}0.081 in controls (P<0.0001, Mann Whitney U test), while on the left side it was 0.892{+-}0.060 in patients and 1.034{+-}0.051 in controls (P=0.0002). Parieto-occipital hypometabolism is a conspicuous finding in mainly MRI-negative neuropsychiatric SLE. As the parieto-occipital region is located at the boundary of blood supply of all three major arteries, it could be the most vulnerable zone of the cerebrum and may be affected at an early stage of the cerebrovascular disease. (orig.). With 1 fig., 1 tab.

  3. In vivo imaging of schistosomes to assess disease burden using positron emission tomography (PET).

    Science.gov (United States)

    Salem, Nicolas; Balkman, Jason D; Wang, Jing; Wilson, David L; Lee, Zhenghong; King, Christopher L; Basilion, James P

    2010-09-21

    Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite's biology. Schistosoma mansoni (S. mansoni) have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET) imaging with 2-deoxy-2[(18)F]fluoro-D-glucose (FDG). Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5-6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT) imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R(2) =0.58, Pworm burden in mice with more than 50 worms (R(2) = 0.85, Pworms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R(2) = 0.85, Pworm burden in schistosomiasis-infected animals. Future investigations aiming at minimizing non-specific FDG uptake and to improve the recovery of signal from worms located in the lower abdomen will include the development of more specific radiotracers.

  4. Trends in radiation protection of positron emission tomography/computed tomography imaging.

    Science.gov (United States)

    Alenezi, A; Soliman, K

    2015-06-01

    Over the past decade, the number of positron emission tomography/computed tomography (PET/CT) imaging procedures has increased substantially. This imaging technique provides accurate functional and anatomical information, particularly for oncological applications. Separately, both PET and CT are considered as high-dose imaging modalities. With the increased use of PET/CT, one could expect an increase in radiation doses to staff and patients. As such, major efforts have been made to reduce radiation dose in PET/CT facilities. Variations in working techniques have made it difficult to compare published results. This study aimed to review the literature on proposed methods to reduce patient and staff dose in clinical PET/CT imaging. A brief overview of some published information on staff and patient doses will be analysed and presented. Recent trends regarding radiation protection in PET/CT imaging will be discussed, and practical recommendations for reducing radiation doses to staff and patients will be discussed and summarised. Generally, the CT dose component is often higher in magnitude than the dose from PET alone; as such, focusing on CT dose reduction will decrease the overall patient dose in PET/CT imaging studies. The following factors should be considered in order to reduce the patient's dose from CT alone: proper justification for ordering contrast-enhanced CT; use of automatic exposure control features; use of adaptive statistical iterative reconstruction algorithms; and optimisation of scan parameters, especially scan length. The PET dose component can be reduced by administration of lower activity to the patient, optimisation of the workflow, and appropriate use of protective devices and engineered systems. At the international level, there is wide variation in work practices among institutions. The current observed trends are such that the annual dose limits for radiation workers in PET/CT imaging are unlikely to be exceeded. © Author(s) 2014.

  5. Dosage optimization in positron emission tomography: state-of-the-art methods and future prospects.

    Science.gov (United States)

    Karakatsanis, Nicolas A; Fokou, Eleni; Tsoumpas, Charalampos

    2015-01-01

    Positron emission tomography (PET) is widely used nowadays for tumor staging and therapy response in the clinic. However, average PET radiation exposure has increased due to higher PET utilization. This study aims to review state-of-the-art PET tracer dosage optimization methods after accounting for the effects of human body attenuation and scan protocol parameters on the counting rate. In particular, the relationship between the noise equivalent count rate (NECR) and the dosage (NECR-dosage curve) for a range of clinical PET systems and body attenuation sizes will be systematically studied to prospectively estimate the minimum dosage required for sufficiently high NECR. The optimization criterion can be determined either as a function of the peak of the NECR-dosage curve or as a fixed NECR score when NECR uniformity across a patient population is important. In addition, the systematic NECR assessments within a controllable environment of realistic simulations and phantom experiments can lead to a NECR-dosage response model, capable of predicting the optimal dosage for every individual PET scan. Unlike conventional guidelines suggesting considerably large dosage levels for obese patients, NECR-based optimization recommends: i) moderate dosage to achieve 90% of peak NECR for obese patients, ii) considerable dosage reduction for slimmer patients such that uniform NECR is attained across the patient population, and iii) prolongation of scans for PET/MR protocols, where longer PET acquisitions are affordable due to lengthy MR sequences, with motion compensation becoming important then. Finally, the need for continuous adaptation of dosage optimization to emerging technologies will be discussed.

  6. Individual integration of positron emission tomography and high-resolution magnetic resonance imaging.

    Science.gov (United States)

    Steinmetz, H; Huang, Y; Seitz, R J; Knorr, U; Schlaug, G; Herzog, H; Hackländer, T; Freund, H J

    1992-11-01

    We have developed, validated, and employed a technique of retrospective spatial alignment and integrated display of positron emission tomographic (PET) and high-resolution magnetic resonance (MR) brain images. The method was designed to improve the anatomical evaluation of functional images obtained from single subjects. In the first computational step, alignment of PET and MR data sets is achieved by iteratively matching in three orthogonal views the outermost scalp contours derived from front-to-back projections of each data set. This procedure avoids true three-dimensional modeling, runs without user interaction, and tolerates missing parts of the head circumference in the image volume, as usually the case with PET. Thereafter, high-resolution MR sections corresponding to the PET slices are reconstructed from the spatially transformed MR data. In a phantom study of this method, PET/MR alignment of the phantom's surface was accurate with average residual misfits of 2.17 to 2.32 mm as determined in three orthogonal planes. In-plane alignment of the phantom's insertion holes was accurate with an average residual misfit of 2.30 mm. In vivo application in six subjects allowed the individual anatomical localization of regional CBF (rCBF) responses obtained during unilateral manual exploration. In each subject, the maxima of the rCBF activations in the hand area were precisely allocated to gray matter in the anterior or posterior wall of the central sulcus. The configuration of the rCBF responses closely followed the gyral structures. The technique provided a better topographical understanding of rCBF changes in subtraction images of PET activation studies. It opens the perspective for studies of structural-functional relationships in individual subjects.

  7. Development of an angled Si-PM-based detector unit for positron emission mammography (PEM) system

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Kouhei, E-mail: nakanishi.kouhei@c.mbox.nagoya-u.ac.jp; Yamamoto, Seiichi

    2016-11-21

    Positron emission mammography (PEM) systems have higher sensitivity than clinical whole body PET systems because they have a smaller ring diameter. However, the spatial resolution of PEM systems is not high enough to detect early stage breast cancer. To solve this problem, we developed a silicon photomultiplier (Si-PM) based detector unit for the development of a PEM system. Since a Si-PM's channel is small, Si-PM can resolve small scintillator pixels to improve the spatial resolution. Also Si-PM based detectors have inherently high timing resolution and are able to reduce the random coincidence events by reducing the time window. We used 1.5×1.9×15 mm LGSO scintillation pixels and arranged them in an 8×24 matrix to form scintillator blocks. Four scintillator blocks were optically coupled to Si-PM arrays with an angled light guide to form a detector unit. Since the light guide has angles of 5.625°, we can arrange 64 scintillator blocks in a nearly circular shape (a regular 64-sided polygon) using 16 detector units. We clearly resolved the pixels of the scintillator blocks in a 2-dimensional position histogram where the averages of the peak-to-valley ratios (P/Vs) were 3.7±0.3 and 5.7±0.8 in the transverse and axial directions, respectively. The average energy resolution was 14.2±2.1% full-width at half-maximum (FWHM). By including the temperature dependent gain control electronics, the photo-peak channel shifts were controlled within ±1.5% with the temperature from 23 °C to 28 °C. With these results, in addition to the potential high timing performance of Si-PM based detectors, our developed detector unit is promising for the development of a high-resolution PEM system.

  8. Potential requirement of positron emission tomography apparatuses in Asia and latin america including Mexico.

    Science.gov (United States)

    Watanabe, Naoyuki; Padhy, Ajit Kumar; Oku, Shinya; Sasaki, Yasuhito

    2013-01-01

    The number of positron emission tomography (PET) machines has been increasing in regions of East-, Southeast-, and South-Asia as well as in Latin America including Mexico. This study was performed to assess the potential requirement of PET machines in 19 countries which already use PET in the aforementioned regions. Data on the number of PET machines and internationally available characteristics of the restrictive countries such as the land area, the total population, the gross national income (GNI), and the average life span of inhabitants were obtained from IAEA, UN, WB, and WHO. Correlation between the number of PET machines and the characteristics of each country was evaluated. The potentially required number of PET machines, which was obtained by adjusting the number of PET machines with statistically significant, correlative characteristics of each country, standardized on the state of Japan, were compared. The number of PET machines could be significantly correlated to the GNI of a country and the average life span of its inhabitants (P machines. With installation of the potentially required number of PET machines in each of the countries, the number of PET machine per 10(6) population would increase by 1.1- to 12-fold, in comparison with the current situation. With regards to the potentially required number of PET machines, most of the countries in these regions may require a considerable increase of PET machines. Nevertheless, some countries in the Asia seem to require outside assistance such as international support in order to introduce PET and enhance the efficacy of their health services.

  9. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography.

    Science.gov (United States)

    Schwaiger, M; Kalff, V; Rosenspire, K; Haka, M S; Molina, E; Hutchins, G D; Deeb, M; Wolfe, E; Wieland, D M

    1990-08-01

    The noninvasive functional characterization of the cardiac sympathetic nervous system by imaging techniques may provide important pathophysiological information in various cardiac disease states. Hydroxyephedrine labeled with carbon 11 has been developed as a new catecholamine analogue to be used in the in vivo evaluation of presynaptic adrenergic nerve terminals by positron emission tomography (PET). To determine the feasibility of this imaging approach in the human heart, six normal volunteers and five patients with recent cardiac transplants underwent dynamic PET imaging after intravenous injection of 20 mCi [11C]hydroxyephedrine. Blood and myocardial tracer kinetics were assessed using a regions-of-interest approach. In normal volunteers, blood 11C activity cleared rapidly, whereas myocardium retained 11C activity with a long tissue half-life. Relative tracer retention in the myocardium averaged 79 +/- 31% of peak activity at 60 minutes after tracer injection. The heart-to-blood 11C activity ratio exceeded 6:1 as soon as 30 minutes after tracer injection, yielding excellent image quality. Little regional variation of tracer retention was observed, indicating homogeneous sympathetic innervation throughout the left ventricle. In the transplant recipients, myocardial [11C]hydroxyephedrine retention at 60 minutes was significantly less (-82%) than that of normal volunteers, indicating only little non-neuronal binding of the tracer in the denervated human heart. Thus, [11C]hydroxyephedrine, in combination with dynamic PET imaging, allows the noninvasive delineation of myocardial adrenergic nerve terminals. Tracer kinetic modeling may permit quantitative assessment of myocardial catecholamine uptake, which will in turn provide insights into the effects of various disease processes on the neuronal integrity of the heart.

  10. Cerebral lesions and event-related potential P300 using positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yasujiro; Okamoto, Kazuma; Tanaka, Makoto; Kondoh, Susumu; Hirai, Shunsaku (Gunma Univ., Maebashi (Japan). School of Medicine)

    1993-06-01

    To determine what lesions are involved in prolonging event-related potential P300 latency, regional cerebral blood flow (rCBF) and metabolism were investigated by positron emission tomography (PET) in a total of 40 patients with neurologic diseases (12 with chronic cerebrovascular disorder, 9 with spino-cerebellar degeneration, 4 with Alzheimer's type dementia, 4 with amyotrophic lateral sclerosis, and 11 with miscellaneous diseases). There was inverse correlation between rCBF and P300 latency in terms of any of the whole, left, and right hemispheres: P300 latency was associated with decreased rCBF. This was more noticeable in the cerebral cortex than white matter and in the right than left hemisphere, although there was no significant difference between them. In none of the regions, however, was there significant correlation between cerebral oxygen consumption and P300 latency. When the right and left frontal, temporal, parietal and occipital cortexes, thalamus, putamen, and caudatum were examined as regions of interest, there was significantly inverse correlation between rCBF and P300 latency in all regions except for the occipital cortex. This was more noticeable on the right than the left side, although no significant difference was observed. Cerebral oxygen consumption in these lesions did not correlate with P300 latency. In the study on bilateral rCBF difference, decreased rCBF confined to the right parietal lobe, bilateral thalamus and bilateral temporal lobes was found to be associated with a significantly prolonged P300 latency. Thus, rCBF in these regions seemed to be particularly responsible for P300 latency. (N.K.).

  11. Positron emission tomography quantification of serotonin transporter in suicide attempters with major depressive disorder.

    Science.gov (United States)

    Miller, Jeffrey M; Hesselgrave, Natalie; Ogden, R Todd; Sullivan, Gregory M; Oquendo, Maria A; Mann, J John; Parsey, Ramin V

    2013-08-15

    Several lines of evidence implicate abnormal serotonergic function in suicidal behavior and completed suicide, including low serotonin transporter binding in postmortem studies of completed suicide. We have also reported low in vivo serotonin transporter binding in major depressive disorder (MDD) during a major depressive episode using positron emission tomography (PET) with [(11)C]McN5652. We quantified regional brain serotonin transporter binding in vivo in depressed suicide attempters, depressed nonattempters, and healthy controls using PET and a superior radiotracer, [(11)C]DASB. Fifty-one subjects with DSM-IV current MDD, 15 of whom were past suicide attempters, and 32 healthy control subjects underwent PET scanning with [(11)C]DASB to quantify in vivo regional brain serotonin transporter binding. Metabolite-corrected arterial input functions and plasma free-fraction were acquired to improve quantification. Depressed suicide attempters had lower serotonin transporter binding in midbrain compared with depressed nonattempters (p = .031) and control subjects (p = .0093). There was no difference in serotonin transporter binding comparing all depressed subjects with healthy control subjects considering six a priori regions of interest simultaneously (p = .41). Low midbrain serotonin transporter binding appears to be related to the pathophysiology of suicidal behavior rather than of major depressive disorder. This is consistent with postmortem work showing low midbrain serotonin transporter binding capacity in depressed suicides and may partially explain discrepant in vivo findings quantifying serotonin transporter in depression. Future studies should investigate midbrain serotonin transporter binding as a predictor of suicidal behavior in MDD and determine the cause of low binding. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Differentiating cardiomyopathy of coronary artery disease from nonischemic dilated cardiomyopathy utilizing positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mody, F.V.; Brunken, R.C.; Stevenson, L.W.; Nienaber, C.A.; Phelps, M.E.; Schelbert, H.R. (Univ. of California, Los Angeles (USA))

    1991-02-01

    To determine if imaging of blood flow (using N-13 ammonia) and glucose metabolism (using F-18 2-deoxyglucose) with positron emission tomography can distinguish cardiomyopathy of coronary artery disease from nonischemic dilated cardiomyopathy, 21 patients with severe left ventricular dysfunction who were evaluated for cardiac transplantation were studied. The origin of left ventricular dysfunction had been previously determined by coronary angiography to be ischemic (11 patients) or nonischemic (10 patients). Images were visually analyzed by three observers on a graded scale in seven left ventricular segments and revealed fewer defects in dilated cardiomyopathy compared with ischemic cardiomyopathy for N-13 ammonia (2.7 +/- 1.6 versus 5 +/- 0.6; p less than 0.03) and F-18 deoxyglucose (2.8 +/- 2.1 versus 4.6 +/- 1.1; p less than 0.03). An index incorporating extent and severity of defects revealed more homogeneity with fewer and less severe defects in subjects with nonischemic than in those with ischemic cardiomyopathy as assessed by imaging of flow (2.8 +/- 1.8 versus 9.2 +/- 3; p less than 0.001) and metabolism (3.8 +/- 3.3 versus 8.5 +/- 3.6; p less than 0.005). Diagnostic accuracy for distinguishing the two subgroups by visual image analysis was 85%. Using previously published circumferential count profile criteria, patients with dilated cardiomyopathy had fewer ischemic segments (0.4 +/- 0.8 versus 2.5 +/- 2 per patient; p less than 0.01) and infarcted segments (0.1 +/- 0.3 versus 2.4 +/- 1.4 per patient; p less than 0.001) than did patients with cardiomyopathy of coronary artery disease. The sensitivity for differentiating the two clinical subgroups using circumferential profile analysis was 100% and the specificity 80%.

  13. {sup 18}F-fluorodeoxyglucose uptake on positron emission tomography in mucinous adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Shuji, E-mail: murakamis@kcch.jp [Department of Thoracic Oncology, Kanagawa Cancer Center Hospital (Japan); Saito, Haruhiro; Karino, Fumi; Kondo, Tetsuro; Oshita, Fumihiro; Ito, Hiroyuki; Nakayama, Haruhiko [Department of Thoracic Oncology, Kanagawa Cancer Center Hospital (Japan); Yokose, Tomoyuki [Department of Pathology, Kanagawa Cancer Center Hospital (Japan); Yamada, Kouzo [Department of Thoracic Oncology, Kanagawa Cancer Center Hospital (Japan)

    2013-11-01

    Background: The prognostic value of maximum standardized uptake value (maxSUV) on {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) is known for localized pulmonary adenocarcinoma, which is most commonly non-mucinous adenocarcinoma. We examined the validity of thin-section computed tomography (TS-CT) and FDG-PET findings in mucinous adenocarcinoma. Materials and Methods: TS-CT and FDG-PET were performed on 25 patients with mucinous lung adenocarcinoma that was subsequently resected between January 2009 and March 2013. Based on the percentage reduction of maximum tumor diameter on the mediastinal window image compared with the diameter on the lung window image on TS-CT, tumors were classified as air-type (≥50%) or solid-type (<50%). All resected specimens were pathologically diagnosed according to the International Association for the Study of Lung Cancer (IASLC) classification, and the diameter of the pathological invasive area was assessed. Results: Most mucinous adenocarcinomas were located in the lower lobe. All except two were classified as solid-type tumor on TS-CT. Multiple regression analysis revealed the correlation of maxSUV with pathological tumor size and diameter of pathological invasive area; these two parameters showed no significant correlation with each other (r = 0.354, p = 0.083). maxSUV was significantly lower for tumors with invasive area ≤5 mm than for tumors with invasive area >5 mm (1.62 vs. 3.77, p = 0.01), but no statistically significant difference was found in terms of other pathological invasive findings such as the presence of lymphatic or vascular invasion, pleural involvement, or predominant histological subtype. Conclusions: Most mucinous adenocarcinomas had appearances of solid-type tumor on TS-CT. maxSUV on FDG-PET indicates the pathological invasive area in mucinous adenocarcinoma as well as non-mucinous adenocarcinoma.

  14. [Nationwide survey on radioactive waste management related to positron emission tomography in Japan].

    Science.gov (United States)

    Nagaoka, Hiroaki; Watanabe, Hiroshi; Yamaguchi, Ichiro; Fujibuchi, Toshioh; Kida, Tetsuo; Tanaka, Shinji

    2009-12-20

    A clearance system for medical radioactive solid waste has not yet been implemented in Japan. Since 2004 new regulations have allowed institutions using positron emission tomography(PET)to handle totally decayed radioactive waste as non-radioactive waste after decay-in-storage. It was expected that this new regulation would mediate the installation of clearance systems in Japan. In order to assess the current situation of radiation safety management in PET institutions, we conducted a nationwide survey. The study design was a cross-sectional descriptive study conducted by questionnaire. The subjects of this survey were all the PET institutions in Japan. Among 224 institutes, 128 institutes are equipped with cyclotrons and 96 institutes are not. The number of returned questionnaires was 138. Among institutes that are using delivered radiopharmaceuticals, 80% treat their waste as non-radioactive according to the new regulation. The impact of new regulations for reducing radioactive waste in PET institutes without a cyclotron was estimated at about $400 thousand per year. The main concern of medical institutes was assessment of the contamination caused by by-products of radioactive nuclides generated in target water during the operation of a cyclotron. It was thought that a rational rule based on scientific risk management should be established because these by-products of radioactive nuclides are negligible for radiation safety. New regulation has had a good influence on medical PET institutes, and it is expected that a clearance system for medical radioactive waste will be introduced in the near future, following these recent experiences in PET institutes.

  15. HaloTag: a novel reporter gene for positron emission tomography.

    Science.gov (United States)

    Hong, Hao; Benink, Hélène A; Zhang, Yin; Yang, Yunan; Uyeda, H Tetsuo; Engle, Jonathan W; Severin, Gregory W; McDougall, Mark G; Barnhart, Todd E; Klaubert, Dieter H; Nickles, Robert J; Fan, Frank; Cai, Weibo

    2011-08-15

    Among the many molecular imaging techniques, reporter gene imaging has been a dynamic area of research. The HaloTag protein is a modified haloalkane dehalogenase which was designed to covalently bind to synthetic ligands (i.e. the HaloTag ligands [HTL]). Covalent bond formation between the HaloTag protein and the chloroal-kane within the HTL occurs rapidly under physiological conditions, which is highly specific and essentially irreversible. Over the years, HaloTag technology has been investigated for various applications such as in vitro/in vivo imaging, protein purification/trafficking, high-throughput assays, among others. The goal of this study is to explore the use of the HaloTag protein as a novel reporter gene for positron emission tomography (PET) imaging. By attaching a HaloTag -reactive chloroalkane to 1, 4, 7-triazacyclononane-N, N', N"-triacetic acid (NOTA) through hydrophilic linkers, the resulting NOTA-conjugated HTLs were labeled with (64)Cu and tested for PET imaging in living mice bearing 4T1-HaloTag-ECS tumors, which stably express the HaloTag protein on the cell surface. Significantly higher uptake of (64)Cu-NOTA-HTL-S (which contains a short hydrophilic linker) in the 4T1-HaloTag-ECS than the non-HaloTag-expressing 4T1 tumors was observed, which demonstrated the HaloTag specificity of (64)Cu-NOTA-HTL-S and warranted future investigation of the HaloTag protein as a PET reporter gene.

  16. Activity-based costing evaluation of a [(18)F]-fludeoxyglucose positron emission tomography study.

    Science.gov (United States)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Borght, Thierry Vander

    2009-10-01

    The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. The cost data were obtained from the hospital administration, personnel and vendor interviews as well as from structured questionnaires. A process map separates the process in 16 patient- and non-patient-related activities, to which the detailed cost data are related. One-way sensitivity analyses shows to which degree of uncertainty the different parameters affect the individual cost and evaluate the impact of possible resource or practice changes like the acquisition of a hybrid PET/CT device, the patient throughput or the sales price of a 370MBq (18)F-FDG patient dose. The PET centre spends 73% of time in clinical activities and the resting time after injection of the tracer (42%) is the single largest departmental cost element. The tracer cost and the operational time have the most influence on cost per procedure. The analysis shows a total cost per FDG-PET ranging from 859 Euro for a BGO PET camera to 1142 Euro for a 16 slices PET-CT system, with a distribution of the resource costs in decreasing order: materials (44%), equipment (24%), wage (16%), space (6%) and hospital overhead (10%). The cost of FDG-PET is mainly influenced by the cost of the radiopharmaceutical. Therefore, the latter rather than the operational time should be reduced in order to improve its cost-effectiveness.

  17. {sup 18}F-FDG positron emission tomography in the early diagnosis of enterocolitis: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kresnik, E.; Gallowitsch, H.J.; Igerc, I.; Kumnig, G.; Gomez, I.; Lind, P. [Nuclear Medicine and Special Endocrinology, PET Centre, General Hospital, St. Veiterstrasse 47, 9020 Klagenfurt (Austria); Mikosch, P.; Alberer, D.; Hebenstreit, A. [Department of Internal Medicine and Gastroenterology, General Hospital, Klagenfurt (Austria); Wuertz, F. [Department of Pathology, General Hospital, Klagenfurt (Austria); Kogler, D.; Gasser, J. [Department of Radiology, General Hospital, Klagenfurt (Austria)

    2002-10-01

    Collagenous and eosinophilic colitis are rare diseases characterised by chronic watery diarrhoea. Radiographic evaluation of the gastrointestinal tract and colonoscopy are usually non-diagnostic since as many as one-third of patients will have minor abnormalities. To date a few investigators have reported increased fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) uptake on positron emission tomography (PET) in patients with acute enterocolitis, but there have been no reports on the use of {sup 18}F-FDG PET for the diagnosis of collagenous or eosinophilic colitis in an early clinical stage. The aim of this preliminary study was to evaluate the usefulness of {sup 18}F-FDG PET in the early diagnosis of patients with colitis. We investigated five women (mean age 61.2{+-}12.1 years) who had been diagnosed as having colitis in an early clinical stage. In all but one of the patients, the diagnosis of colitis was based on biopsy. Magnetic resonance colonography, ultrasonography and colonoscopy were performed in all but one of the patients. Two women were identified as having collagenous colitis in an early clinical stage. Another two patients had eosinophilic colitis. The morphological imaging methods, magnetic resonance colonography and ultrasonography, yielded no suspicious findings, and the results of colonoscopy similarly showed no abnormalities. One patient had colitis due to bacterial infection. In all patients {sup 18}F-FDG PET showed a pathological increase in tracer uptake in the large bowel, suggestive of colitis. In four of the five patients, colitis was confirmed by histology, and in one, by bacterial analysis. {sup 18}F-FDG PET was able to detect colitis in an early clinical stage, when morphological imaging methods and colonoscopy were non-diagnostic. The early performance of {sup 18}F-FDG PET imaging in patients with possible colitis is encouraging. (orig.)

  18. Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study

    Science.gov (United States)

    Mínguez‐Castellanos, Adolfo; Escamilla‐Sevilla, Francisco; Hotton, Gary R; Toledo‐Aral, Juan J; Ortega‐Moreno, Ángel; Méndez‐Ferrer, Simón; Martín‐Linares, José M; Katati, Majed J; Mir, Pablo; Villadiego, Javier; Meersmans, Miguel; Pérez‐García, Miguel; Brooks, David J; Arjona, Ventura; López‐Barneo, José

    2007-01-01

    Background Carotid body (CB) glomus cells are highly dopaminergic and express the glial cell line derived neurotrophic factor. The intrastriatal grafting of CB cell aggregates exerts neurotrophic actions on nigrostriatal neurons in animal models of Parkinson disease (PD). Objective We conducted a phase I–II clinical study to assess the feasibility, long term safety, clinical and neurochemical effects of intrastriatal CB autotransplantation in patients with PD. Methods Thirteen patients with advanced PD underwent bilateral stereotactic implantation of CB cell aggregates into the striatum. They were assessed before surgery and up to 1–3 years after surgery according to CAPIT (Core Assessment Programme for Intracerebral Transplantation) and CAPSIT‐PD (Core Assessment Programme for Surgical Interventional Therapies in Parkinson's Disease) protocols. The primary outcome measure was the change in video blinded Unified Parkinson's Disease Rating Scale III score in the off‐medication state. Seven patients had 18F‐dopa positron emission tomography scans before and 1 year after transplantation. Results Clinical amelioration in the primary outcome measure was observed in 10 of 12 blindly analysed patients, which was maximal at 6–12 months after transplantation (5–74%). Overall, mean improvement at 6 months was 23%. In the long term (3 years), 3 of 6 patients still maintained improvement (15–48%). None of the patients developed off‐period dyskinesias. The main predictive factors for motor improvement were the histological integrity of the CB and a milder disease severity. We observed a non‐significant 5% increase in mean putaminal 18F‐dopa uptake but there was an inverse relationship between clinical amelioration and annual decline in putaminal 18F‐dopa uptake (r = −0.829; p = 0.042). Conclusions CB autotransplantation may induce clinical effects in patients with advanced PD which seem partly related to the biological properties of

  19. Concept of an upright wearable positron emission tomography imager in humans.

    Science.gov (United States)

    Bauer, Christopher E; Brefczynski-Lewis, Julie; Marano, Gary; Mandich, Mary-Beth; Stolin, Alexander; Martone, Peter; Lewis, James W; Jaliparthi, Gangadhar; Raylman, Raymond R; Majewski, Stan

    2016-09-01

    Positron Emission Tomography (PET) is traditionally used to image patients in restrictive positions, with few devices allowing for upright, brain-dedicated imaging. Our team has explored the concept of wearable PET imagers which could provide functional brain imaging of freely moving subjects. To test feasibility and determine future considerations for development, we built a rudimentary proof-of-concept prototype (Helmet_PET) and conducted tests in phantoms and four human volunteers. Twelve Silicon Photomultiplier-based detectors were assembled in a ring with exterior weight support and an interior mechanism that could be adjustably fitted to the head. We conducted brain phantom tests as well as scanned four patients scheduled for diagnostic F(18-) FDG PET/CT imaging. For human subjects the imager was angled such that field of view included basal ganglia and visual cortex to test for typical resting-state pattern. Imaging in two subjects was performed ~4 hr after PET/CT imaging to simulate lower injected F(18-) FDG dose by taking advantage of the natural radioactive decay of the tracer (F(18) half-life of 110 min), with an estimated imaging dosage of 25% of the standard. We found that imaging with a simple lightweight ring of detectors was feasible using a fraction of the standard radioligand dose. Activity levels in the human participants were quantitatively similar to standard PET in a set of anatomical ROIs. Typical resting-state brain pattern activation was demonstrated even in a 1 min scan of active head rotation. To our knowledge, this is the first demonstration of imaging a human subject with a novel wearable PET imager that moves with robust head movements. We discuss potential research and clinical applications that will drive the design of a fully functional device. Designs will need to consider trade-offs between a low weight device with high mobility and a heavier device with greater sensitivity and larger field of view.

  20. Cerebral blood flow and metabolism for Broca's aphasia using positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Toshiaki

    1987-12-01

    A total of 11 patients with Broca's aphasia (BA) underwent positron emission tomography (PET) with the purpose of investigating the responsible region and the symptomatic flow and metabolism thresholds for BA. Computed tomography (CT) was concurrently performed. In the group of 3 patients undergoing PET with C-11 glucose, both PET and CT provided abnormal findings in the region that is thought to be responsible for BA (Broca's area), including the cortex and subcortex in the anterior region to Sylvian fissure. The Broca's area in the remaining one was shown as low C-11 accumulation area on PET and as isodensity on CT. The second group, consisting of 8 BA patients and 30 control patients without BA, underwent PET using O-15 steady method. PET showed reduction of regional cerebral blood flow (rCBF) and oxygen metabolic rate (rCMRO/sub 2/) in the Broca's area in all BA patients. Computed tomography showed abnormal low density in the Broca's area in 3 patients, and abnormal findings in the basal ganglionic region and subcortex without evidence for abnormal low density in the Broca's area in the other 5 patients. Comparison of rCBF and rCMRO/sub 2/ in BA patients with those in control patients may show the symptomatic thresholds to be 20 - 27 ml100 gmin for rCBF and 2.0 ml100 gmin for rCMRO/sub 2/. (Namekawa, K.).

  1. [Positron emission tomography for preoperative lymph node diagnosis in esophageal carcinoma].

    Science.gov (United States)

    Kneist, W; Schreckenberger, M; Bartenstein, P; Grünwald, F; Oberholzer, K; Junginger, Th

    2003-10-01

    Exact preoperative staging is a prerequisite for the indication and the choice of appropriate operative technique for patients with esophageal carcinoma. The objective of this prospective study was to assess whether positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) increases the accuracy of preoperative lymph node staging with standard computed tomography (CT) and thus leads to a different surgical approach. Fifty-eight patients with carcinoma of the esophagus (46 men and 12 women) with a median age of 61 years underwent FDG-PET imaging of the neck, chest, and abdomen as well as CT of the chest and abdomen. Sensitivity, specificity, and accuracy were calculated for both imaging techniques to evaluate the detection of histologically verified lymph node metastases. The FDG-PET showed higher specificity, whereas CT proved to be more accurate for detecting lymph node metastases not only of the abdomen (73% vs 59%) but also of the thorax (73% vs 63%). Resections were transhiatal in 23 patients and transthoracal in 16. As a supplement to conventional CT diagnostic procedure, FDG-PET was not decisive for the surgical approach. Altogether, pretherapeutical PET imaging did not increase the accuracy of lymph node staging for our patients with esophageal carcinoma, which had already been defined through CT. Therefore, no new consequences resulted for the surgical procedure. Due to the high costs involved with PET investigation, lymph node staging with it is momentarily indicated mainly for clinical studies and when CT does not offer unequivocal results. Increased sensitivity of the already advantageous whole-body FDG-PET imaging by means of tumor-affinitive radiopharmaceuticals and optimized apparatus resolution could lead to new indications for this staging procedure.

  2. Positron emission tomography for staging esophageal cancer: does it lead to a different therapeutic approach?

    Science.gov (United States)

    Kneist, Werner; Schreckenberger, Mathias; Bartenstein, Peter; Grünwald, Frank; Oberholzer, Katja; Junginger, Theodor

    2003-10-01

    Accurate preoperative staging is essential for the indication and selection of the appropriate surgical procedure in patients with esophageal cancer. The present prospective study was designed to determine if the preoperative use of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) increases the accuracy of staging esophageal cancer compared with computed tomography (CT) and if it thereby leads to a different therapeutic approach. A total of 58 patients, 46 men and 12 women (mean age 61 years), with histologic proof of esophageal carcinoma underwent FDG-PET of the neck, chest, and abdomen, as well as CT of the chest and abdomen, to determine tumor stage. FDG-PET and CT data were compared with each other and with pathohistologic findings. Sensitivity, specificity, and overall accuracy for detecting histologically verified lymph node and distant metastases were calculated for FDG-PET and CT. FDG-PET showed a higher specificity, whereas CT had higher accuracy for detecting both abdominal (73% vs. 59%) and thoracic (73% vs. 63%) lymph node metastases. The accuracy of detecting blood-borne and lymphatic distant metastases was identical for CT and FDG-PET imaging (50%). FDG-PET had a higher specificity than CT (87% vs. 13%) but lower sensitivity (35% vs. 67%). FDG-PET did not provide new information on the indication for surgery, nor was it helpful for choosing the appropriate surgical procedure in patients with esophageal carcinoma. In view of the relatively high cost of FDG-PET examinations, the use of this modality is indicated primarily in patients with inconclusive CT findings or for scientific research projects. Higher sensitivity as a result of tumor-affinity radiopharmaceuticals and optimized apparatus resolution, in addition to the advantages offered by whole-body PET scanning, may lead to new indications for this staging procedure in the future.

  3. Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Moharir, Mahendranath [Hospital for Sick Children, Division of Neurology, Ontario (Canada); London, Kevin [Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney (Australia); Howman-Giles, Robert [University of Sydney, Discipline of Imaging, Faculty of Medicine, Sydney (Australia); North, Kathryn [Children' s Hospital at Westmead, Institute for Neuroscience and Muscle Research, Sydney, NSW (Australia)

    2010-07-15

    There is little consensus regarding optimal surveillance of optic pathway glioma (OPG) and plexiform neurofibroma (PNF) in childhood neurofibromatosis type 1 (NF1). {sup 18}F-2-Fluoro-2-deoxy-D-glucose (FDG) positron emission tomography and computed tomography (PET/CT) is employed in the surveillance of adult PNFs; but its utility has neither been specifically studied in children with PNFs nor in children with OPG. Review of PET/CT studies was performed in NF1 children with OPG or PNF. FDG-avidity of tumours was semi-quantitatively analysed and graded by calculating the maximum standardised uptake value (SUV{sub max}) [grade 1: <3 (low), grade 2: >3-<4 (intermediate), grade 3: >4 (intense)]. Eighteen children (ten girls; median age: 8.5-years) had PET/CT. Nineteen OPGs were imaged. The SUV{sub max} could be measured in 16. Ten were grade 1 and three each were grade 2 and grade 3. FDG-avidity reduced from grade 3 to grade 1 in two symptomatic OPGs following chemotherapy and this was associated with clinical improvement. PET/CT diagnosed symptomatic OPGs with a sensitivity of 0.625 [95% confidence interval (CI): 0.259-0.897] and specificity of 0.875 (95% CI: 0.466-0.993). Sixteen PNFs were imaged. Twelve were grade 1 and two each were grade 2 and grade 3. The two grade 3 PNFs were confirmed malignant peripheral nerve sheath tumours. PET/CT diagnosed malignant transformation with a sensitivity of 1.0 (95% CI: 0.197-1.0) and specificity of 0.857 (95% CI: 0.561-0.974). PET/CT may contribute useful information to the surveillance of OPG in childhood NF1 - particularly to identify progressive, symptomatic tumours. As in adults, PET/CT is useful for the detection of malignant transformation in PNFs in children with NF1. (orig.)

  4. Localized fetomaternal hyperglycemia: spatial and kinetic definition by positron emission tomography.

    Directory of Open Access Journals (Sweden)

    Jianrong Yao

    2010-08-01

    Full Text Available Complex but common maternal diseases such as diabetes and obesity contribute to adverse fetal outcomes. Understanding of the mechanisms involved is hampered by difficulty in isolating individual elements of complex maternal states in vivo. We approached this problem in the context of maternal diabetes and sought an approach to expose the developing fetus in vivo to isolated hyperglycemia in the pregnant rat.We hypothesized that glucose infused into the arterial supply of one uterine horn would more highly expose fetuses in the ipsilateral versus contralateral uterine horn. To test this, the glucose tracer [18F]fluorodeoxyglucose (FDG was infused via the left uterine artery. Regional glucose uptake into maternal tissues and fetuses was quantified using positron emission tomography (PET. Upon infusion, FDG accumulation began in the left-sided placentae, subsequently spreading to the fetuses. Over two hours after completion of the infusion, FDG accumulation was significantly greater in left compared to right uterine horn fetuses, favoring the left by 1.9+/-0.1 and 2.8+/-0.3 fold under fasted and hyperinsulinemic conditions (p<10(-11 n=32-35 and p<10(-12 n=27-45 respectively. By contrast, centrally administered [3H]-2-deoxyglucose accumulated equally between the fetuses of the two uterine horns. Induction of significant hyperglycemia (10(3 mg/dL localized to the left uterine artery was sustained for at least 48 hours while maternal euglycemia was maintained.This approach exposes selected fetuses to localized hyperglycemia in vivo, minimizing exposure of the mother and thus secondary effects. Additionally, a set of less exposed internal control fetuses are maintained for comparison, allowing direct study of the in vivo fetal effects of isolated hyperglycemia. Broadly, this approach can be extended to study a variety of maternal-sided perturbations suspected to directly affect fetal health.

  5. F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome.

    Science.gov (United States)

    Masciari, Serena; Van den Abbeele, Annick D; Diller, Lisa R; Rastarhuyeva, Iryna; Yap, Jeffrey; Schneider, Katherine; Digianni, Lisa; Li, Frederick P; Fraumeni, Joseph F; Syngal, Sapna; Garber, Judy E

    2008-03-19

    Individuals with Li-Fraumeni syndrome (LFS) have an inherited cancer predisposition to a diverse array of malignancies beginning early in life; survivors of one cancer have a markedly elevated risk of additional primary tumors. The underlying genetic defect in the majority of the families is a germline mutation in the TP53 tumor suppressor gene. The diversity of tumors and rarity of families have contributed to the difficulty in devising effective screening recommendations for members of LFS kindreds. To gather preliminary data with which to evaluate F18-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) imaging as a potential surveillance modality to detect early malignancies in asymptomatic members of LFS kindreds. Members of LFS families with documented germline TP53 mutations or obligate carrier status, no history of cancer within 5 years of enrollment, and no symptoms of cancer or ill-health were offered FDG-PET/CT scanning as a screening test in a comprehensive US cancer center from 2006 to 2007. Scans were initially reviewed clinically, then centrally reviewed by an expert radiologist. The primary outcome was the detection of new primary cancers using FDG-PET/CT scanning. Of 15 individuals, baseline FDG-PET/CT scan identified asymptomatic cancers in 3 (20%). Two individuals had papillary thyroid cancers (stage II and stage III) and one individual had stage II esophageal adenocarcinoma. These preliminary data provide the first evidence for a potential cancer surveillance strategy that may be worthy of further investigation for patients with LFS. Concerns about radiation exposure and other challenges inherent in screening high-risk patients will require further consideration.

  6. The clinical utility of fluorodeoxyglucose-positron emission tomography for investigation of fever in immunocompromised children.

    Science.gov (United States)

    Wang, Shiqi Stacie; Mechinaud, Francoise; Thursky, Karin; Cain, Timothy; Lau, Eddie; Haeusler, Gabrielle M

    2017-12-13

    Fever in immunocompromised children presents significant challenges. We aimed to determine the clinical impact of fluorodeoxyglucose-positron emission tomography (FDG-PET) in combination with computed tomography (CT) in children with malignancy or following haematopoietic stem cell transplantation with prolonged or recurrent fever. Immunocompromised children who underwent FDG-PET/CT for investigation of prolonged or recurrent fever were identified from hospital databases. The clinical impact of the FDG-PET/CT was considered 'high' if it contributed to any of the following: diagnosis of a new site infection/inflammation, change to antimicrobials or chemotherapy, or additional investigations or specialist consult contributing to final diagnosis. Fourteen patients underwent an FDG-PET/CT for prolonged or recurrent fever. Median age was 11 years and 46% had diagnosis of acute lymphoblastic leukaemia. The median absolute neutrophil count on the day of FDG-PET/CT was 0.47 cells/μL. The clinical impact of FDG-PET/CT was 'high' in 11 (79%) patients, contributing to rationalisation of antimicrobials in three, and cessation of antimicrobials in five. Compared to conventional imaging, FDG PET/CT identified seven additional sites of clinically significant infection/inflammation in seven patients. Of the 10 patients who had a cause of fever identified, FDG-PET/CT contributed to the final diagnosis in six (60%). This study has identified potential utility for FDG-PET/CT in immunocompromised children with prolonged or recurrent fever. Further prospective studies are needed to compare FDG-PET/CT versus conventional imaging, to identify the optimal timing of FDG-PET/CT and to study the role of subsequent scans to monitor response to therapy. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  7. Quantification of regional myocardial oxygenation by magnetic resonance imaging: validation with positron emission tomography.

    Science.gov (United States)

    McCommis, Kyle S; Goldstein, Thomas A; Abendschein, Dana R; Herrero, Pilar; Misselwitz, Bernd; Gropler, Robert J; Zheng, Jie

    2010-01-01

    A comprehensive evaluation of myocardial ischemia requires measures of both oxygen supply and demand. Positron emission tomography (PET) is currently the gold standard for such evaluations, but its use is limited because of its ionizing radiation, limited availability, and high cost. A cardiac MRI method was developed for assessing myocardial oxygenation. The purpose of this study was to evaluate and validate this technique compared with PET during pharmacological stress in a canine model of coronary artery stenosis. Twenty-one beagles and small mongrel dogs without coronary artery stenosis (controls) or with moderate to severe acute coronary artery stenosis underwent MRI and PET imaging at rest and during dipyridamole vasodilation or dobutamine stress to induce a wide range of changes in cardiac perfusion and oxygenation. MRI first-pass perfusion imaging was performed to quantify myocardial blood flow and volume. The MRI blood oxygen level-dependent technique was used to determine the myocardial oxygen extraction fraction during pharmacological hyperemia. Myocardial oxygen consumption was determined by the Fick law. In the same dogs, (15)O-water and (11)C-acetate were used to measure myocardial blood flow and myocardial oxygen consumption, respectively, by PET. Regional assessments were performed for both MR and PET. MRI data correlated nicely with PET values for myocardial blood flow (R(2)=0.79, P<0.001), myocardial oxygen consumption (R(2)=0.74, P<0.001), and oxygen extraction fraction (R(2)=0.66, P<0.01). Cardiac MRI methods may provide an alternative to radionuclide imaging in settings of myocardial ischemia. Our newly developed quantitative MRI oxygenation imaging technique may be a valuable noninvasive tool to directly evaluate myocardial energetics and efficiency.

  8. Positron Emission Tomography with [18F]FLT Revealed Sevoflurane-induced Inhibition of Neural Progenitor Cell Expansion in vivo

    Directory of Open Access Journals (Sweden)

    Shuliang eLiu

    2014-11-01

    Full Text Available Neural progenitor cell expansion is critical for normal brain development and an appropriate response to injury. During the brain growth spurt, exposures to general anesthetics which either block the N-methyl D-aspartate receptor or enhance the γ-aminobutyric acid receptor type A can disturb neuronal transduction. This effect can be detrimental to brain development. Until now, the effects of anesthetic exposure on neural progenitor cell expansion in vivo had seldom been reported. Here, minimally invasive micro positron emission tomography (microPET coupled with 3'-deoxy-3' [18F] fluoro-L-thymidine ([18F]FLT was utilized to assess the effects of sevoflurane exposure on neural progenitor cell proliferation. FLT, a thymidine analogue, is taken up by proliferating cells and phosphorylated in the cytoplasm, leading to its intracellular trapping. Intracellular retention of [18F]FLT, thus, represents an observable in vivo marker of cell proliferation. Here, postnatal day (PND 7 rats (n = 11/ group were exposed to 2.5% sevoflurane or room air for 9 hr. For up to two weeks following the exposure, standard uptake values (SUVs for [18F]-FLT in the hippocampal formation were significantly attenuated in the sevoflurane-exposed rats (p <0.0001, suggesting decreased uptake and retention of [18F]FLT (decreased proliferation in these regions. Four weeks following exposure, SUVs for [18F]FLT were comparable in the sevoflurane-exposed rats and in controls. Co-administration of 7-nitroindazole (7-NI, 30 mg/kg, n = 5, a selective inhibitor of neuronal nitric oxide synthase, significantly attenuated the SUVs for [18F]FLT in both the air-exposed (p = 0.00006 and sevoflurane-exposed rats (p = 0.0427 in the first week following the exposure. These findings suggested that microPET in couple with [18F]FLT as cell proliferation marker could be used as a non-invasive modality to monitor the sevoflurane-induced inhibition of neural progenitor cell proliferation in vivo.

  9. What have positron emission tomography and ‘Zippy’ told us about the neuropharmacology of drug addiction?

    Science.gov (United States)

    Cumming, Paul; Caprioli, Daniele; Dalley, Jeffrey W

    2011-01-01

    Translational molecular imaging with positron emission tomography (PET) and allied technologies offer unrivalled applications in the discovery of biomarkers and aetiological mechanisms relevant to human disease. Foremost among clinical PET findings during the past two decades of addiction research is the seminal discovery of reduced dopamine D2/3 receptor expression in the striatum of drug addicts, which could indicate a predisposing factor and/or compensatory reaction to the chronic abuse of stimulant drugs. In parallel, recent years have witnessed significant improvements in the performance of small animal tomographs (microPET) and a refinement of animal models of addiction based on clinically relevant diagnostic criteria. This review surveys the utility of PET in the elucidation of neuropharmacological mechanisms underlying drug addiction. It considers the consequences of chronic drug exposure on regional brain metabolism and neurotransmitter function and identifies those areas where further research is needed, especially concerning the implementation of PET tracers targeting neurotransmitter systems other than dopamine, which increasingly have been implicated in the pathophysiology of drug addiction. In addition, this review considers the causal effects of behavioural traits such as impulsivity and novelty/sensation-seeking on the emergence of compulsive drug-taking. Previous research indicates that spontaneously high-impulsive rats – as exemplified by ‘Zippy’– are pre-disposed to escalate intravenous cocaine self-administration, and subsequently to develop compulsive drug taking tendencies that endure despite concurrent adverse consequences of such behaviour, just as in human addiction. The discovery using microPET of pre-existing differences in dopamine D2/3 receptor expression in the striatum of high-impulsive rats suggests a neural endophenotype that may likewise pre-dispose to stimulant addiction in humans. LINKED ARTICLES This article is part of a

  10. New techniques for positron emission tomography in the study of human neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.

    1992-07-01

    The general goals of the physics and kinetic modeling projects are to: (1) improve the quantitative information extractable from PET images, and (2) develop, implement and optimize tracer kinetic models for new PET neurotransmitter/receptor ligands aided by computer simulations. Work towards improving PET quantification has included projects evaluating: (1) iterative reconstruction algorithms using supplemental boundary information, (2) automated registration of dynamic PET emission and transmission data using sinogram edge detection, and (3) automated registration of multiple subjects to a common coordinate system, including the use of non-linear warping methods. Simulation routines have been developed providing more accurate representation of data generated from neurotransmitter/receptor studies. Routines consider data generated from complex compartmental models, high or low specific activity administrations, non-specific binding, pre- or post-injection of cold or competing ligands, temporal resolution of the data, and radiolabeled metabolites. Computer simulations and human PET studies have been performed to optimize kinetic models for four new neurotransmitter/receptor ligands, [{sup 11}C]TRB (muscarinic), [{sup 11}C]flumazenil (benzodiazepine), [{sup 18}F]GBR12909, (dopamine), and [{sup 11}C]NMPB (muscarinic).

  11. New techniques for positron emission tomography in the study of human neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.

    1992-01-01

    The general goals of the physics and kinetic modeling projects are to: (1) improve the quantitative information extractable from PET images, and (2) develop, implement and optimize tracer kinetic models for new PET neurotransmitter/receptor ligands aided by computer simulations. Work towards improving PET quantification has included projects evaluating: (1) iterative reconstruction algorithms using supplemental boundary information, (2) automated registration of dynamic PET emission and transmission data using sinogram edge detection, and (3) automated registration of multiple subjects to a common coordinate system, including the use of non-linear warping methods. Simulation routines have been developed providing more accurate representation of data generated from neurotransmitter/receptor studies. Routines consider data generated from complex compartmental models, high or low specific activity administrations, non-specific binding, pre- or post-injection of cold or competing ligands, temporal resolution of the data, and radiolabeled metabolites. Computer simulations and human PET studies have been performed to optimize kinetic models for four new neurotransmitter/receptor ligands, ({sup 11}C)TRB (muscarinic), ({sup 11}C)flumazenil (benzodiazepine), ({sup 18}F)GBR12909, (dopamine), and ({sup 11}C)NMPB (muscarinic).

  12. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    Science.gov (United States)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  13. Dose absorbed by technologists in positron emission tomography procedures with FDG

    Directory of Open Access Journals (Sweden)

    Ademir Amaral

    2007-09-01

    Full Text Available The objective of this work was to evaluate radiation doses delivered to technologists engaged in different tasks involving positron emission tomography (PET studies with FDG (fluorodeoxyglucose. This investigation was performed in two French nuclear medicine departments, which presented significant differences in their arrangements and radiation safety conditions. Both centers administered about 300 MBq per PET/CT study, although only one of them is a dedicated clinical PET center. Dose equivalent Hp(10 and skin dose Hp(0.07 were measured using Siemens electronic personnel dosimeters. For assessment dose absorbed by hands during drawing up of tracer and injection into the patient, a Polimaster wristwatch gamma dosimeter was employed. Absorbed dose and the time spent during each investigated task were recorded for a total of 180 whole-body PET studies. In this report, the methodology employed, the results and their radioprotection issues are presented as well as discussed.O objetivo deste trabalho foi o de avaliar doses absorvidas por profissionais de saúde em diferentes tarefas relacionadas à tomografia por emissão de pósitrons com [18F]-FDG (fluordesoxiglicose. Esta pesquisa foi realizada em dois centros de medicina nuclear na França, os quais apresentavam diferenças significativas em sua organização e radioproteção. Esses centros aplicavam aproximadamente 300 MBq por exame PET/CT, embora apenas um deles correspondesse a um serviço de medicina nuclear dedicado a exames por PET. A dose equivalente (Hp(10 e a dose na pele Hp(0,07 foram medidas usando dosímetros eletrônicos (Siemens. Para avaliação da dose nas mãos do tecnologista durante a preparação do radiofármaco e durante injeção no paciente, um dosímetro tipo relógio de pulso (Polimaster foi empregado. A dose absorvida e o tempo empregado durante cada tarefa foram registrados para um total de 180 exames de corpo inteiro através da PET. Neste trabalho, a metodologia

  14. Intrinsic spatial resolution limitations due to differences between positron emission position and annihilation detection localization; Limitacoes da resolucao espacial intrinseca devido as diferencas entre a posicao da emissao do positron e a deteccao da localizacao de aniquilacao

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Pedro; Malano, Francisco; Valente, Mauro, E-mail: valente@famaf.unc.edu.ar [Universidad Nacional de Cordoba, Cordoba (Argentina). Fac. de Matematica, Astronomia y Fisica (FaMAF)

    2012-07-01

    Since its successful implementation for clinical diagnostic, positron emission tomography (PET) represents the most promising medical imaging technique. The recent major growth of PET imaging is mainly due to its ability to trace the biologic pathways of different compounds in the patient's body, assuming the patient can be labeled with some PET isotope. Regardless of the type of isotope, the PET imaging method is based on the detection of two 511-keV gamma photons being emitted in opposite directions, with almost 180 deg between them, as a consequence of electron-positron annihilation. Therefore, this imaging method is intrinsically limited by random uncertainties in spatial resolutions, related with differences between the actual position of positron emission and the location of the detected annihilation. This study presents an approach with the Monte Carlo method to analyze the influence of this effect on different isotopes of potential implementation in PET. (author)

  15. Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer: A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging.

    Science.gov (United States)

    Grueneisen, Johannes; Nagarajah, James; Buchbender, Christian; Hoffmann, Oliver; Schaarschmidt, Benedikt Michael; Poeppel, Thorsten; Forsting, Michael; Quick, Harald H; Umutlu, Lale; Kinner, Sonja

    2015-08-01

    This study aimed to assess the diagnostic performance of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) of the breast for lesion detection and local tumor staging of patients with primary breast cancer in comparison to PET/computed tomography (CT) and MRI. The study was approved by the local institutional review board. Forty-nine patients with biopsy-proven invasive breast cancer were prospectively enrolled in our study. All patients underwent a PET/CT, and subsequently, a contrast-enhanced PET/MRI of the breast after written informed consent was obtained before each examination. Two radiologists independently evaluated the corresponding data sets (PET/CT, PET/MRI, and MRI) and were instructed to identify primary tumors lesions as well as multifocal/multicentric and bilateral disease. Furthermore, the occurrence of lymph node metastases was assessed, and the T-stage for each patient was determined. Histopathological verification of the local tumor extent and the axillary lymph node status was available for 30 of 49 and 48 of 49 patients, respectively. For the remaining patients, a consensus characterization was performed for the determination of the T-stage and nodal status, taking into account the results of clinical staging, PET/CT, and PET/MRI examinations. Statistical analysis was performed to test for differences in diagnostic performance between the different imaging procedures. P values less than 0.05 were considered to be statistically significant. Positron emission tomography/MRI and MRI correctly identified 47 (96%) of the 49 patients with primary breast cancer, whereas PET/CT enabled detection of 46 (94%) of 49 breast cancer patients and missed a synchronous carcinoma in the contralateral breast in 1 patient. In a lesion-by-lesion analysis, no significant differences could be obtained between the 3 imaging procedures for the identification of primary breast cancer lesions (P > 0.05). Positron emission tomography/MRI and

  16. Diagnosis of abnormal biliary copper excretion by positron emission tomography with targeting of (64)Copper-asialofetuin complex in LEC rat model of Wilson's disease.

    Science.gov (United States)

    Bahde, Ralf; Kapoor, Sorabh; Bhargava, Kuldeep K; Palestro, Christopher J; Gupta, Sanjeev

    2014-01-01

    Identification by molecular imaging of key processes in handling of transition state metals, such as copper (Cu), will be of considerable clinical value. For instance, the ability to diagnose Wilson's disease with molecular imaging by identifying copper excretion in an ATP7B-dependent manner will be very significant. To develop highly effective diagnostic approaches, we hypothesized that targeting of radiocopper via the asialoglycoprotein receptor will be appropriate for positron emission tomography, and examined this approach in a rat model of Wilson's disease. After complexing (64)Cu to asialofetuin we studied handling of this complex compared with (64)Cu in healthy LEA rats and diseased homozygous LEC rats lacking ATP7B and exhibiting hepatic copper toxicosis. We analyzed radiotracer clearance from blood, organ uptake, and biliary excretion, including sixty minute dynamic positron emission tomography recordings. In LEA rats, (64)Cu-asialofetuin was better cleared from blood followed by liver uptake and greater biliary excretion than (64)Cu. In LEC rats, (64)Cu-asialofetuin activity cleared even more rapidly from blood followed by greater uptake in liver, but neither (64)Cu-asialofetuin nor (64)Cu appeared in bile. Image analysis demonstrated rapid visualization of liver after (64)Cu-asialofetuin administration followed by decreased liver activity in LEA rats while liver activity progressively increased in LEC rats. Image analysis resolved this difference in hepatic activity within one hour. We concluded that (64)Cu-asialofetuin complex was successfully targeted to the liver and radiocopper was then excreted into bile in an ATP7B-dependent manner. Therefore, hepatic targeting of radiocopper will be appropriate for improving molecular diagnosis and for developing drug/cell/gene therapies in Wilson's disease.

  17. Evaluation of 68Ga-Glutamate Carboxypeptidase II Ligand Positron Emission Tomography for Clinical Molecular Imaging of Atherosclerotic Plaque Neovascularization.

    Science.gov (United States)

    Derlin, Thorsten; Thiele, Johannes; Weiberg, Desiree; Thackeray, James T; Püschel, Klaus; Wester, Hans-Jürgen; Aguirre Dávila, Lukas; Larena-Avellaneda, Axel; Daum, Günter; Bengel, Frank M; Schumacher, Udo

    2016-11-01

    Intraplaque neovascularization contributes to the progression and rupture of atherosclerotic lesions. Glutamate carboxypeptidase II (GCPII) is strongly expressed by endothelial cells of tumor neovasculature and plays a major role in hypoxia-induced neovascularization in rodent models of benign diseases. We hypothesized that GCPII expression may play a role in intraplaque neovascularization and may represent a target for imaging of atherosclerotic lesions. The aim of this study was to determine frequency, pattern, and clinical correlates of vessel wall uptake of a (68)Ga-GCPII ligand for positron emission tomographic imaging. Data from 150 patients undergoing (68)Ga-GCPII ligand positron emission tomography were evaluated. Tracer uptake in various arterial segments was analyzed and was compared with calcified plaque burden, cardiovascular risk factors, and immunohistochemistry of carotid specimens. Focal arterial uptake of (68)Ga-GCPII ligand was identified at 5776 sites in 99.3% of patients. The prevalence of uptake sites was highest in the thoracic aorta; 18.4% of lesions with tracer uptake were colocalized with calcified plaque. High injected dose (P=0.0005) and obesity (P=0.007) were significantly associated with (68)Ga-GCPII ligand accumulation, but other cardiovascular risk factors showed no association. The number of (68)Ga-GCPII ligand uptake sites was significantly associated with overweight condition (P=0.0154). Immunohistochemistry did not show GCPII expression. Autoradiographic blocking studies indicated nonspecific tracer binding. (68)Ga-GCPII ligand positron emission tomography does not identify vascular lesions associated with atherosclerotic risk. Foci of tracer accumulation are likely caused by nonspecific tracer binding and are in part noise-related. Taken together, GCPII may not be a priority target for imaging of atherosclerotic lesions. © 2016 American Heart Association, Inc.

  18. In vivo molecular imaging of thrombosis and thrombolysis using a fibrin-binding positron emission tomographic probe.

    Science.gov (United States)

    Ay, Ilknur; Blasi, Francesco; Rietz, Tyson A; Rotile, Nicholas J; Kura, Sreekanth; Brownell, Anna Liisa; Day, Helen; Oliveira, Bruno L; Looby, Richard J; Caravan, Peter

    2014-07-01

    Fibrin is a major component of arterial and venous thrombi and represents an ideal candidate for molecular imaging of thrombosis. Here, we describe imaging properties and target uptake of a new fibrin-specific positron emission tomographic probe for thrombus detection and therapy monitoring in 2 rat thrombosis models. The fibrin-binding probe FBP7 was synthesized by conjugation of a known short cyclic peptide to a cross-bridged chelator (CB-TE2A), followed by labeling with copper-64. Adult male Wistar rats (n=26) underwent either carotid crush injury (mural thrombosis model) or embolic stroke (occlusive thrombosis model) followed by recombinant tissue-type plasminogen activator treatment (10 mg/kg, IV). FBP7 detected thrombus location in both animal models with a high positron emission tomographic target-to-background ratio that increased over time (>5-fold at 30-90 minutes, >15-fold at 240-285 minutes). In the carotid crush injury animals, biodistribution analysis confirmed high probe uptake in the thrombotic artery (≈0.5%ID/g; >5-fold greater than blood and other tissues of the head and thorax). Similar results were obtained from ex vivo autoradiography of the ipsilateral versus contralateral carotid arteries. In embolic stroke animals, positron emission tomographic-computed tomographic imaging localized the clot in the internal carotid/middle cerebral artery segment of all rats. Time-dependent reduction of activity at the level of the thrombus was detected in recombinant tissue-type plasminogen activator-treated rats but not in vehicle-injected animals. Brain autoradiography confirmed clot dissolution in recombinant tissue-type plasminogen activator-treated animals, but enduring high thrombus activity in control rats. We demonstrated that FBP7 is suitable for molecular imaging of thrombosis and thrombolysis in vivo and represents a promising candidate for bench-to-bedside translation. © 2014 American Heart Association, Inc.

  19. Metabolic patterns associated with the clinical response to galantamine therapy: a fludeoxyglucose f 18 positron emission tomographic study.

    Science.gov (United States)

    Mega, Michael S; Dinov, Ivo D; Porter, Verna; Chow, George; Reback, Erin; Davoodi, Paras; O'Connor, Susan M; Carter, Michele F; Amezcua, Herminia; Cummings, Jeffrey L

    2005-05-01

    Regional brain correlates of treatment with cholinesterase inhibitors in those with Alzheimer disease are unknown. To map brain metabolism associated with the treatment response to galantamine with fludeoxyglucose F 18 positron emission tomography in patients with Alzheimer disease. This is a hypothesis-driven, prospective, open-label study of 19 patients with mild to moderate Alzheimer disease examined before and after treatment with the cholinesterase inhibitor galantamine. Clinical examinations included the cognitive portion of the Alzheimer Disease Assessment Scale, the Mini-Mental State Examination, and the Neuropsychiatric Inventory. Imaging was performed using fludeoxyglucose F 18 positron emission tomography. The positron emission tomographic data, registered to a probabilistic anatomical atlas, were subjected to a voxel-based analysis of 3 subgroups: total patient analysis, cognitive analysis, and behavioral analysis. Subvolume thresholding corrected random lobar noise to produce 3-dimensional significance maps. The total group analysis showed an increase in left caudate metabolism with no significant change in clinical outcomes for the total group with treatment. Subgroup analysis of cognitive and behavioral responders demonstrated a significant activation of a striatal-thalamofrontal network with galantamine treatment that was not present in patients whose condition worsened or was unchanged by therapy. In cognitive subgroups, change in left anterior cingulate metabolism significantly correlated with change in the cognitive portion of the Alzheimer Disease Assessment Scale (r = 0.70, P = .02); in behavioral subgroups, right cingulate metabolic change significantly correlated with improvement in depression and right ventral putamen metabolic change with improvement in apathy (r = 0.63, P<.05 for both). Cognitive and behavioral responders to galantamine therapy show clinically related improvements in prefrontal network metabolism along with thalamic

  20. Correlation of PUV and SUV in the extremities while using PEM as a high-resolution positron emission scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Sania [The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); MD Anderson Cancer Center, Houston, TX (United States); Mawlawi, Osama; Taylor, Shree; Millican, Richelle; Swanston, Nancy M.; Rohren, Eric M. [The University of Texas MD Anderson Cancer Center, Division of Diagnostic Imaging, Houston, TX (United States); Fox, Patricia [The University of Texas MD Anderson Cancer Center, Division of Biostatistics, Houston, TX (United States); Brown, J.E. [Yale University Hospital, Department of Radiology, New Haven, CT (United States)

    2014-04-15

    Owing to its unique configuration of two adjustable plate detectors positron emission mammography, or PEM, could theoretically also function as a high-resolution positron emission scanner for the extremities or neck. PEM quantitates its activity via a ''PEM uptake value,'' or PUV, and although its relationship to the standardized uptake value, or SUV, has been demonstrated in the breasts, to our knowledge there are no studies validating PUV in other sites such as the extremities. This was a retrospective chart review of two separate protocols of a total of 15 patients. The patients all had hypermetabolic lesions in the extremities or neck on imaging with PET/CT and were sent after their PET/CT to PEM for further imaging. Owing to the sequential nature of these examinations no additional radiotracer was administered. Spearman's rank order correlation was calculated between the PUVmax obtained from PEM images, and the SUVmax for all. Spearman's rank order correlation for all sites was 0.42, which is not significantly different from 0 (p = 0.13). When neck lesions were excluded from the group, there was a strong and statistically significant correlation between PUVmax and SUVmax, with Spearman's rank correlation of 0.73, and significantly different from 0 (p = 0.0068). The correlation of PUV and SUV in the extremities indicates the potential use of PEM as a semiquantitative, high-resolution positron emission scanner and warrants further investigation, especially in the realms of disease processes that often present in the extremities, such as melanoma, osteomyelitis, and arthritis, as well as playing a role in the imaging of patients with metallic hardware post-limb salvage surgery. (orig.)

  1. [11C]-(R)-PK11195 positron emission tomography in patients with complex regional pain syndrome

    Science.gov (United States)

    Jeon, So Yeon; Seo, Seongho; Lee, Jae Sung; Choi, Soo-Hee; Lee, Do-Hyeong; Jung, Ye-Ha; Song, Man-Kyu; Lee, Kyung-Jun; Kim, Yong Chul; Kwon, Hyun Woo; Im, Hyung-Jun; Lee, Dong Soo; Cheon, Gi Jeong; Kang, Do-Hyung

    2017-01-01

    Abstract Complex regional pain syndrome (CRPS) is characterized by severe and chronic pain, but the pathophysiology of this disease are not clearly understood. The primary aim of our case–control study was to explore neuroinflammation in patients with CRPS using positron emission tomography (PET), with an 18-kDa translocator protein specific radioligand [11C]-(R)-PK11195. [11C]-(R)-PK11195 PET scans were acquired for 11 patients with CRPS (30–55 years) and 12 control subjects (30–52 years). Parametric image of distribution volume ratio (DVR) for each participant was generated by applying a relative equilibrium-based graphical analysis. The DVR of [11C]-(R)-PK11195 in the caudate nucleus (t(21) = −3.209, P = 0.004), putamen (t(21) = −2.492, P = 0.022), nucleus accumbens (t(21) = −2.218, P = 0.040), and thalamus (t(21) = −2.395, P = 0.026) were significantly higher in CRPS patients than in healthy controls. Those of globus pallidus (t(21) = −2.045, P = 0.054) tended to be higher in CRPS patients than in healthy controls. In patients with CRPS, there was a positive correlation between the DVR of [11C]-(R)-PK11195 in the caudate nucleus and the pain score, the visual analog scale (r = 0.661, P = 0.026, R2 = 0.408) and affective subscales of McGill Pain Questionnaire (r = 0.604, P = 0.049, R2 = 0.364). We demonstrated that neuroinflammation of CRPS patients in basal ganglia. Our results suggest that microglial pathology can be an important pathophysiology of CRPS. Association between the level of caudate nucleus and pain severity indicated that neuroinflammation in this region might play a key role. These results may be essential for developing effective medical treatments. PMID:28072713

  2. Image reconstruction for a Positron Emission Tomograph optimized for breast cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Virador, Patrick R.G. [Univ. of California, Berkeley, CA (United States)

    2000-04-01

    The author performs image reconstruction for a novel Positron Emission Tomography camera that is optimized for breast cancer imaging. This work addresses for the first time, the problem of fully-3D, tomographic reconstruction using a septa-less, stationary, (i.e. no rotation or linear motion), and rectangular camera whose Field of View (FOV) encompasses the entire volume enclosed by detector modules capable of measuring Depth of Interaction (DOI) information. The camera is rectangular in shape in order to accommodate breasts of varying sizes while allowing for soft compression of the breast during the scan. This non-standard geometry of the camera exacerbates two problems: (a) radial elongation due to crystal penetration and (b) reconstructing images from irregularly sampled data. Packing considerations also give rise to regions in projection space that are not sampled which lead to missing information. The author presents new Fourier Methods based image reconstruction algorithms that incorporate DOI information and accommodate the irregular sampling of the camera in a consistent manner by defining lines of responses (LORs) between the measured interaction points instead of rebinning the events into predefined crystal face LORs which is the only other method to handle DOI information proposed thus far. The new procedures maximize the use of the increased sampling provided by the DOI while minimizing interpolation in the data. The new algorithms use fixed-width evenly spaced radial bins in order to take advantage of the speed of the Fast Fourier Transform (FFT), which necessitates the use of irregular angular sampling in order to minimize the number of unnormalizable Zero-Efficiency Bins (ZEBs). In order to address the persisting ZEBs and the issue of missing information originating from packing considerations, the algorithms (a) perform nearest neighbor smoothing in 2D in the radial bins (b) employ a semi-iterative procedure in order to estimate the unsampled data

  3. Hybrid Magnetic Resonance Imaging and Positron Emission Tomography With Fluorodeoxyglucose to Diagnose Active Cardiac Sarcoidosis.

    Science.gov (United States)

    Dweck, Marc R; Abgral, Ronan; Trivieri, Maria Giovanna; Robson, Philip M; Karakatsanis, Nicolas; Mani, Venkatesh; Palmisano, Anna; Miller, Marc A; Lala, Anuradha; Chang, Helena L; Sanz, Javier; Contreras, Johanna; Narula, Jagat; Fuster, Valentin; Padilla, Maria; Fayad, Zahi A; Kovacic, Jason C

    2017-06-09

    The purpose of this study was to explore the diagnostic usefulness of hybrid cardiac magnetic resonance (CMR) and positron emission tomography (PET) using 18F-fluorodeoxyglucose (FDG) for active cardiac sarcoidosis. Active cardiac sarcoidosis (aCS) is underdiagnosed and has a high mortality. Patients with clinical suspicion of aCS underwent hybrid CMR/PET with late gadolinium enhancement (LGE) and FDG to assess the pattern of injury and disease activity, respectively. Patients were categorized visually as magnetic resonance (MR)+PET+ (characteristic LGE aligning exactly with increased FDG uptake), MR+PET- (characteristic LGE but no increased FDG), MR-PET- (neither characteristic LGE nor increased FDG), and MR-PET+ (increased FDG uptake in absence of characteristic LGE) and further characterized as aCS+ (MR+PET+) or aCS- (MR+PET-, MR-PET-, MR-PET+). FDG uptake was quantified using maximum target-to-normal-myocardium ratio and the net uptake rate (Ki) from dynamic Patlak analysis. Receiver operating characteristic methods were used to identify imaging biomarkers for aCS. FDG PET was assessed using computed tomography/PET in 19 control subjects with healthy myocardium. A total of 25 patients (12 males; 54.9 ± 9.8 years of age) were recruited prospectively; 8 were MR+PET+, suggestive of aCS; 1 was MR+PET-, consistent with inactive cardiac sarcoidosis; and 8 were MR-PET-, with no imaging evidence of cardiac sarcoidosis. Eight patients were MR-PET+ (6 with global myocardial FDG uptake, 2 with focal-on-diffuse uptake); they demonstrated distinct Ki values and hyperintense maximum standardized uptake value compared with MR+PET+ patients. Similar hyperintense patterns of global (n = 9) and focal-on-diffuse (n = 2) FDG uptake were also observed in control patients, suggesting physiological myocardial uptake. Maximum target-to-normal-myocardium ratio values were higher in the aCS+ group (p < 0.001), demonstrating an area under the curve of 0.98 on receiver operating

  4. Simplifications in analyzing positron emission tomography data: effects on outcome measures

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jean [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: logan@bnl.gov; Alexoff, David; Kriplani, Aarti [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2007-10-15

    Initial validation studies of new radiotracers generally involve kinetic models that require a measured arterial input function. This allows for the separation of tissue binding from delivery and blood flow effects. However, when using a tracer in a clinical setting, it is necessary to eliminate arterial blood sampling due to its invasiveness and the extra burden of counting and analyzing the blood samples for metabolites. In some cases, it may also be necessary to replace dynamic scanning with a shortened scanning period some time after tracer injection, as is done with FDG (F-18 fluorodeoxyglucose). These approximations represent loss of information. In this work, we considered several questions related to this: (1) Do differences in experimental conditions (drug treatments) or populations affect the input function, and what effect, if any, does this have on the final outcome measure? (2) How do errors in metabolite measurements enter into results? (3) What errors are incurred if the uptake ratio is used in place of the distribution volume ratio? (4) Is one- or two-point blood sampling any better for FDG data than the standardized uptake value? and (5) If blood sampling is necessary, what alternatives are there to arterial blood sampling? The first three questions were considered in terms of data from human dynamic positron emission tomography (PET) studies under conditions of baseline and drug pretreatment. Data from [{sup 11}C]raclopride studies and those from the norepinephrine transporter tracer (S,S)-[{sup 11}C]O-methyl reboxetine were used. Calculation of a metabolic rate for FDG using the operational equation requires a measured input function. We tested a procedure based on two blood samples to estimate the plasma integral and convolution that occur in the operational equation. There are some tracers for which blood sampling is necessary. Strategies for brain studies involve using the internal carotids in estimating the radioactivity after correcting for

  5. Optimal transformations leading to normal distributions of positron emission tomography standardized uptake values

    Science.gov (United States)

    Scarpelli, Matthew; Eickhoff, Jens; Cuna, Enrique; Perlman, Scott; Jeraj, Robert

    2018-02-01

    The statistical analysis of positron emission tomography (PET) standardized uptake value (SUV) measurements is challenging due to the skewed nature of SUV distributions. This limits utilization of powerful parametric statistical models for analyzing SUV measurements. An ad-hoc approach, which is frequently used in practice, is to blindly use a log transformation, which may or may not result in normal SUV distributions. This study sought to identify optimal transformations leading to normally distributed PET SUVs extracted from tumors and assess the effects of therapy on the optimal transformations. Methods. The optimal transformation for producing normal distributions of tumor SUVs was identified by iterating the Box–Cox transformation parameter (λ) and selecting the parameter that maximized the Shapiro–Wilk P-value. Optimal transformations were identified for tumor SUVmax distributions at both pre and post treatment. This study included 57 patients that underwent 18F-fluorodeoxyglucose (18F-FDG) PET scans (publically available dataset). In addition, to test the generality of our transformation methodology, we included analysis of 27 patients that underwent 18F-Fluorothymidine (18F-FLT) PET scans at our institution. Results. After applying the optimal Box–Cox transformations, neither the pre nor the post treatment 18F-FDG SUV distributions deviated significantly from normality (P  >  0.10). Similar results were found for 18F-FLT PET SUV distributions (P  >  0.10). For both 18F-FDG and 18F-FLT SUV distributions, the skewness and kurtosis increased from pre to post treatment, leading to a decrease in the optimal Box–Cox transformation parameter from pre to post treatment. There were types of distributions encountered for both 18F-FDG and 18F-FLT where a log transformation was not optimal for providing normal SUV distributions. Conclusion. Optimization of the Box–Cox transformation, offers a solution for identifying normal SUV

  6. Characteristics of Smoothing Filters to Achieve the Guideline Recommended Positron Emission Tomography Image without Harmonization

    Directory of Open Access Journals (Sweden)

    Yuji Tsutsui

    2018-01-01

    Full Text Available Objective(s: The aim of this study is to examine the effect of different smoothing filters on the image quality and SUVmax to achieve the guideline recommended positron emission tomography (PET image without harmonization. Methods: We used a Biograph mCT PET scanner. A National Electrical Manufacturers Association (NEMA the International Electrotechnical Commission (IEC body phantom was filled with 18F solution with a background activity of 2.65 kBq/mL and a sphere-to-background ratio of 4. PET images obtained with the Biograph mCT PET scanner were reconstructed using the ordered subsets-expectation maximization (OSEM algorithm with time-of-flight (TOF models (iteration, 2; subset, 21; smoothing filters including the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters with various full width at half maximum (FWHM values (1-15 mm were applied. The image quality was physically assessed according to the percent contrast (QH,10, background variability (N10, standardized uptake value (SUV, and recovery coefficient (RC. The results were compared with the guideline recommended range proposed by the Japanese Society of Nuclear Medicine and the Japanese Society of Nuclear Medicine Technology. The PET digital phantom was developed from the digital reference object (DRO of the NEMA IEC body phantom smoothed using a Gaussian filter with a 10-mm FWHM and defined as the reference image. The difference in the SUV between the PET image and the reference image was evaluated according to the root mean squared error (RMSE. Results: The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that satisfied the image quality of the FDG-PET/CT standardization guideline criteria were 8-12 mm, 9-11 mm, 9-13 mm, 10-13 mm, 9-11 mm, and 12- 15 mm, respectively. The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that provided the smallest RMSE between the PET images and the 3D digital phantom

  7. In vivo imaging of schistosomes to assess disease burden using positron emission tomography (PET.

    Directory of Open Access Journals (Sweden)

    Nicolas Salem

    2010-09-01

    Full Text Available Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite's biology. Schistosoma mansoni (S. mansoni have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET imaging with 2-deoxy-2[(18F]fluoro-D-glucose (FDG.Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5-6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R(2 =0.58, P<0.001, n = 40. FDG uptake showed a stronger correlation with the worm burden in mice with more than 50 worms (R(2 = 0.85, P<0.001, n = 17. Cryomicrotome imaging confirmed that most of the worms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R(2 = 0.85, P<0.001, n = 21. Infected mice showed a 32% average decrease in total FDG uptake after three days of praziquantel treatment (P = 0.12. The total FDG uptake in untreated mice increased

  8. Radiolabeling human peripheral blood stem cells for positron emission tomography (PET imaging in young rhesus monkeys.

    Directory of Open Access Journals (Sweden)

    Alice F Tarantal

    Full Text Available These studies focused on a new radiolabeling technique with copper ((64Cu and zirconium ((89Zr for positron emission tomography (PET imaging using a CD45 antibody. Synthesis of (64Cu-CD45 and (89Zr-CD45 immunoconjugates was performed and the evaluation of the potential toxicity of radiolabeling human peripheral blood stem cells (hPBSC was assessed in vitro (viability, population doubling times, colony forming units. hPBSC viability was maintained as the dose of (64Cu-TETA-CD45 increased from 0 (92% to 160 µCi/mL (76%, p>0.05. Radiolabeling efficiency was not significantly increased with concentrations of (64Cu-TETA-CD45 >20 µCi/mL (p>0.50. Toxicity affecting both growth and colony formation was observed with hPBSC radiolabeled with ≥40 µCi/mL (p0.05, and a trend towards increased radiolabeling efficiency was noted as the dose of (89Zr-Df-CD45 increased, with a greater level of radiolabeling with 160 µCi/mL compared to 0-40 µCi/mL (p<0.05. A greater than 2,000 fold-increase in the level of (89Zr-Df-CD45 labeling efficiency was observed when compared to (64Cu-TETA-CD45. Similar to (64Cu-TETA-CD45, toxicity was noted when hPBSC were radiolabeled with ≥40 µCi/mL (p<0.05 (growth, colony formation. Taken together, 20 µCi/mL resulted in the highest level of radiolabeling efficiency without altering cell function. Young rhesus monkeys that had been transplanted prenatally with 25×10(6 hPBSC expressing firefly luciferase were assessed with bioluminescence imaging (BLI, then 0.3 mCi of (89Zr-Df-CD45, which showed the best radiolabeling efficiency, was injected intravenously for PET imaging. Results suggest that (89Zr-Df-CD45 was able to identify engrafted hPBSC in the same locations identified by BLI, although the background was high.

  9. Development of a prototype Open-close positron emission tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Okumura, Satoshi; Komori, Masataka; Ogata, Yoshimune; Kato, Katsuhiko [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka (Japan)

    2015-08-15

    We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of {sup 18}F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.

  10. Transfer of learning with an application to the physics of positron emission tomography

    Science.gov (United States)

    Aryal, Bijaya

    2007-12-01

    A series of teaching activities using physical models was developed to present some portions of physics of Positron Emission Tomography (PET) and investigate students' understanding and transfer of learning in physics to a medical technology. A teaching interview protocol consistent with a qualitative research methodology was developed and administered to the students enrolled in an algebra-based introductory level physics course. 16 students participated in individual interviews and another 21 students participated in the group sessions. The major objectives of the teaching interviews were to investigate students' transfer of physics learning from their prior experiences to the provided physical models, from one model to the other and from the models to the PET problems. The study adapted phenomenological research methodology in analyzing students' use of cognitive resources and cognitive strategies during knowledge construction and reconstruction. A resource based transfer model framed under the cognitive theory of learning and consistent with contemporary views of transfer was used to describe the transfer of physics learning. Results of the study indicated both appropriate and inappropriate use of the students' prior conceptual resources in novel contexts. Scaffolding and questioning were found to be effective in activating appropriate and suppressing the inappropriate resources. The physical models used as analogies were found useful in transferring physics learning to understand image construction in PET. Positive transfer was possible when the models were introduced in an appropriate sequence. The results of the study indicate the occurrence of three types of non-scaffolded transfer---spontaneous, semi spontaneous and non-spontaneous. The research found connections between sequencing of hints and phrasing of information in activating students' different conceptual resources. A qualitative investigation based on Vygotsky's Zone of Proximal Development (ZPD

  11. Multitracer study with positron emission tomography in Creutzfeldt-Jakob disease

    Energy Technology Data Exchange (ETDEWEB)

    Engler, Henry [Uppsala University PET Centre, Uppsala University Hospital, SE 751 85 Uppsala (Sweden); Department of Neurology, Uppsala University Hospital, Uppsala (Sweden); Lundberg, Per Olov [Department of Neurology, Uppsala University Hospital, Uppsala (Sweden); Ekbom, Karl [Department of Neurology, Huddinge University Hospital, Stockholm (Sweden); Nennesmo, Inger [Department of Pathology, Huddinge University Hospital, Stockholm (Sweden); Nilsson, Anna; Bergstroem, Mats; Hartvig, Per; Laangstroem, Bengt [Uppsala University PET Centre, Uppsala University Hospital, SE 751 85 Uppsala (Sweden); Tsukada, Hideo [Hamamatsu Photonics K.K.Central Research Lab, Hamakita City (Japan)

    2003-01-01

    During the period February 1997 to April 2000, 15 patients with clinical symptoms of Creutzfeldt-Jakob disease (CJD) were referred to Uppsala University PET Centre. Positron emission tomography (PET) was performed to detect characteristic signs of the disease, e.g. neuronal death and/or astrocytosis in the brain. The examinations were performed in one session starting with oxygen-15 labelled water scan to measure regional cerebral blood flow, followed by imaging with the monoamine oxidase B inhibitor N-[{sup 11}C-methyl]-L-deuterodeprenyl (DED) to assess astrocytosis in the brain and finally imaging with fluorine-18 2-fluorodeoxyglucose (FDG) to assess regional cerebral glucose metabolism (rCMR{sub glu}). Nine of the patients fulfilled the clinical criteria of probable CJD. In eight of them, FDG and DED imaging revealed, in comparison with normal controls, a typical pattern characterized by a pronounced regional decrease (<2SD) in glucose brain metabolism, indicative of neuronal dysfunction; this was accompanied by a similar increase (>2SD) in DED binding, indicating astrocytosis. These changes were most pronounced in the cerebellum and the frontal, occipital and parietal cortices, whereas the pons, the thalamus and the putamen were less affected and the temporal cortex appeared unaffected. The cerebral blood flow showed a pattern similar to that observed with FDG. In the ninth patient, analysis with DED was not possible. The diagnosis of definite CJD according to international consensus criteria was confirmed in six of these patients. In one patient with probable CJD, protease-resistant prion protein (PrPres) could not be demonstrated. In two patients with probable CJD, autopsy was not allowed. Computed tomography and magnetic resonance imaging, performed in four and seven of these nine patients respectively, showed unspecific, mainly atrophic changes. In six other patients, the PET examinations gave a different pattern. In three of them, high rCMR{sub glu} was

  12. Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec)

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Kun-Eek [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States); Ding Yushin [Department of Radiology, Yale University School of Medicine, New Haven, CT 06520-8048 (United States); Lin Kuoshyan [Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Alexoff, David [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kim, Sung Won [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States); Shea, Colleen [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Xu Youwen [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Muench, Lisa [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Fowler, Joanna S. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States) and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States)]. E-mail: fowler@bnl.gov

    2007-02-15

    Introduction: Imatinib mesylate (Gleevec) is a well known drug for treating chronic myeloid leukemia and gastrointestinal stromal tumors. Its active ingredient, imatinib ([4-[(4-methyl-1-piperazinyl)methyl]-N-[4-methyl-3-[[4-(3-pyridyl) -2-pyrimidinyl]amino]phenyl]benzamide), blocks the activity of several tyrosine kinases. Here we labeled imatinib with carbon-11 as a tool for determining the drug distribution and pharmacokinetics of imatinib, and we carried out positron emission tomography (PET) studies in baboons. Methods: [N-{sup 11}C-methyl]imatinib was synthesized from [{sup 11}C]methyl iodide and norimatinib was synthesized by the demethylation of imatinib (isolated from Gleevec tablets) according to a patent procedure [Collins JM, Klecker RW Jr, Anderson LW. Imaging of drug accumulation as a guide to antitumor therapy. US Patent 20030198594A1, 2003]. Norimatinib was also synthesized from the corresponding amine and acid. PET studies were carried out in three baboons to measure pharmacokinetics in the brain and peripheral organs and to determine the effect of a therapeutic dose of imatinib. Log D and plasma protein binding were also measured. Results: [N-{sup 11}C-methyl]imatinib uptake in the brain is negligible (consistent with P-glycoprotein-mediated efflux); it peaks and clears rapidly from the heart, lungs and spleen. Peak uptake and clearance occur more slowly in the liver and kidneys, followed by accumulation in the gallbladder and urinary bladder. Pretreatment with imatinib did not change uptake in the heart, lungs, kidneys and spleen, and increased uptake in the liver and gallbladder. Conclusions: [N-{sup 11}C-methyl]imatinib has potential for assessing the regional distribution and kinetics of imatinib in the human body to determine whether the drug targets tumors and to identify other organs to which the drug or its labeled metabolites distribute. Paired with tracers such as 2'deoxy-2'-[{sup 18}F]fluoro-D-glucose ({sup 18}FDG) and 3&apos

  13. Role of Positron Emission Tomography-Computed Tomography in the Management of Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mistrangelo, Massimiliano, E-mail: mistrangelo@katamail.com [Digestive and Colorectal Surgical Department, Centre of Minimal Invasive Surgery, University of Turin, Molinette Hospital, Turin (Italy); Pelosi, Ettore [PET Center IRMET spa, Turin (Italy); Bello, Marilena [Department of Nuclear Medicine, University of Turin, Molinette Hospital (Italy); Ricardi, Umberto [Department of Radiotherapy, University of Turin, Molinette Hospital (Italy); Milanesi, Enrica [Oncological Centre for Gastrointestinal Neoplasms, University of Turin, Molinette Hospital (Italy); Cassoni, Paola [Department of Biomedical Sciences and Human Oncology, University of Turin, Molinette Hospital (Italy); Baccega, Massimo [Department of Nuclear Medicine, Molinette Hospital (Italy); Filippini, Claudia [Anaesthesia and Intensive Care Unit, University of Turin, Molinette Hospital (Italy); Racca, Patrizia [Oncological Centre for Gastrointestinal Neoplasms, University of Turin, Molinette Hospital (Italy); Lesca, Adriana [Department of Nuclear Medicine, Molinette Hospital (Italy); Munoz, Fernando H. [Department of Radiotherapy, University of Turin, Molinette Hospital (Italy); Fora, Gianluca [Oncological Centre for Gastrointestinal Neoplasms, University of Turin, Molinette Hospital (Italy); Skanjeti, Andrea [Department of Nuclear Medicine, University of Turin, Molinette Hospital (Italy); Cravero, Francesca; Morino, Mario [Digestive and Colorectal Surgical Department, Centre of Minimal Invasive Surgery, University of Turin, Molinette Hospital, Turin (Italy)

    2012-09-01

    Purpose: Pre- and post-treatment staging of anal cancer are often inaccurate. The role of positron emission tomograpy-computed tomography (PET-CT) in anal cancer is yet to be defined. The aim of the study was to compare PET-CT with CT scan, sentinel node biopsy results of inguinal lymph nodes, and anal biopsy results in staging and in follow-up of anal cancer. Methods and Materials: Fifty-three consecutive patients diagnosed with anal cancer underwent PET-CT. Results were compared with computed tomography (CT), performed in 40 patients, and with sentinel node biopsy (SNB) (41 patients) at pretreatment workup. Early follow-up consisted of a digital rectal examination, an anoscopy, a PET-CT scan, and anal biopsies performed at 1 and 3 months after the end of treatment. Data sets were then compared. Results: At pretreatment assessment, anal cancer was identified by PET-CT in 47 patients (88.7%) and by CT in 30 patients (75%). The detection rates rose to 97.9% with PET-CT and to 82.9% with CT (P=.042) when the 5 patients who had undergone surgery prior to this assessment and whose margins were positive at histological examination were censored. Perirectal and/or pelvic nodes were considered metastatic by PET-CT in 14 of 53 patients (26.4%) and by CT in 7 of 40 patients (17.5%). SNB was superior to both PET-CT and CT in detecting inguinal lymph nodes. PET-CT upstaged 37.5% of patients and downstaged 25% of patients. Radiation fields were changed in 12.6% of patients. PET-CT at 3 months was more accurate than PET-CT at 1 month in evaluating outcomes after chemoradiation therapy treatment: sensitivity was 100% vs 66.6%, and specificity was 97.4% vs 92.5%, respectively. Median follow-up was 20.3 months. Conclusions: In this series, PET-CT detected the primary tumor more often than CT. Staging of perirectal/pelvic or inguinal lymph nodes was better with PET-CT. SNB was more accurate in staging inguinal lymph nodes.

  14. Uses and limitations of FDG positron emission tomography in patients with head and neck cancer.

    Science.gov (United States)

    Hanasono, M M; Kunda, L D; Segall, G M; Ku, G H; Terris, D J

    1999-06-01

    Numerous authors have reported the potential usefulness of positron emission tomography (PET). These studies have had conflicting results, at least partly owing to limited sample sizes. The objective of this study is to define not only the uses, but also the limitations of PET in patients with head and neck cancer. Nonrandomized, retrospective analysis of PET at an academic institution. The authors performed 146 PET scans on 133 patients with head and neck cancer. Eighteen patients (19 PET scans) with thyroid disorders were excluded. A minimum 1 year of follow-up was available in 84 patients, who were separated into groups based on whether the PET was used to detect unknown primary cancers (n = 20), stage neck nodal and distant metastases (n = 8), monitor response to nonsurgical therapy (n = 22), or detect recurrent or residual cancers (n = 34). The results of PET were compared with results from computed tomography (CT) and magnetic resonance imaging (MRI) performed in the same patients. Of the unknown primary cancers, PET correctly identified 7 of 20 primary sites, giving a sensitivity of 35%. When combined with CT or MRI, the sensitivity increased to 40%. When used for detection of metastatic disease, PET demonstrated five of five nodal metastases (100%) and two of four distant metastases (50%). In evaluating the response to nonsurgical therapy, PET had a sensitivity of 50% and a specificity of 83% for detecting tumor at the primary site and a sensitivity of 86% and a specificity of 73% for detecting nodal disease. When used for evaluation of recurrent/residual disease, PET identified seven of seven cases of local recurrences/residual disease and had a specificity of 85%. PET also detected seven of seven cases of nodal disease and had a specificity of 89%. For staging purposes, PET is limited by its lack of anatomic detail. However, PET compares favorably with CT and MRI in detecting recurrent/residual cancers. PET imaging complements the more traditional imaging

  15. Ventilation/Perfusion Positron Emission Tomography--Based Assessment of Radiation Injury to Lung.

    Science.gov (United States)

    Siva, Shankar; Hardcastle, Nicholas; Kron, Tomas; Bressel, Mathias; Callahan, Jason; MacManus, Michael P; Shaw, Mark; Plumridge, Nikki; Hicks, Rodney J; Steinfort, Daniel; Ball, David L; Hofman, Michael S

    2015-10-01

    To investigate (68)Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r(2)=0.99, Pfit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET/CT imaging. These findings may inform future studies of functional lung avoidance using V/Q PET/CT. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  16. Measurement of acetylcholinesterase (AChE) activity in living brain by positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Irie, Toshiaki [National Inst. of Radiological Sciences, Chiba (Japan)

    1999-07-01

    Central cholinergic neuronal system has been known to be related to learning and memory, and its deficit is found in the brain of Alzheimer's disease (AD) and other degenerative disorders. Postmortem studies have shown that acetylcholinesterase (AChE), one of biochemical markers of central cholinergic nerve system, is consistently reduced in the cerebral cortex of patients with Alzheimer's disease (AD). Non-invasive mapping and/or measuring AChE activity in the living brain by positron emission tomography (PET) would be a useful tool for assessment of cholinergic dysfunction in AD and other disorders, and provide a direct method for validation of therapeutic efficacy of drugs, AChE inhibitors. We have challenged to measure AChE activity using tracers of substrate type, radiolabelled acetylcholine analogs, which are lipophilic enough to go across blood brain barrier and are metabolically trapped by AChE in the brain. The analogs designed, N-methylpiperidyl esters, were evaluated in terms of their metabolic rate and specificity against AChE. Studies examining the response to AChE activity showed metabolic accumulation of some analogs responded well to changes in cortical AChE activity in an animal model of AD. The study was further applied to living human by PET using [{sup 11}C]N-methylpiperidyl-4-acetate (MP4A), which was chosen on the basis of its reactivity and specificity suitable for the human cortical AChE. Regional cerebral metabolic rate of MP4A reflecting AChE activity was quantitatively determined using three compartment model analysis of dynamic PET data and the arterial input function obtained by TLC-radioluminography or plasma samples. The kinetic analyses showed that AChE activities estimated were well agree with those of postmortem examination in cerebral cortices and thalamus in healthy subjects, and that there was significant reduction of cortical AChE activity in patients with AD. The results suggest feasibility of the present method for

  17. Development of Traceable Phantoms for Improved Image Quantification in Positron Emission Tomography

    Science.gov (United States)

    Zimmerman, Brian

    2014-03-01

    Clinical trials for new drugs increasingly rely on imaging data to monitor patient response to the therapy being studied. In the case of radiopharmaceutical applications, imaging data are also used to estimate organ and tumor doses in order to arrive at the optimal dosage for safe and effective treatment. Positron Emission Tomography (PET) is one of the most commonly used imaging modalities for these types of applications. In large, multicenter trials it is crucial to minimize as much as possible the variability that arises due to use of different types of scanners and other instrumentation so that the biological response can be more readily evaluated. This can be achieved by ensuring that all the instruments are calibrated to a common standard and that their performance is continuously monitored throughout the trial. Maintaining links to a single standard also enables the comparability of data acquired on a heterogeneous collection of instruments in different clinical settings. As the standards laboratory for the United States, the National Institute of Standards and Technology (NIST) has been developing a suite of phantoms having traceable activity content to enable scanner calibration and performance testing. The configurations range from small solid cylindrical sources having volumes from 1 mL to 23 mL to large cylinders having a total volume of 9 L. The phantoms are constructed with 68Ge as a long-lived substitute for the more clinically useful radionuclide 18F. The contained activity values are traceable to the national standard for 68Ge and are also linked to the standard for 18F through a careful series of comparisons. The techniques that have been developed are being applied to a variety of new phantom configurations using different radionuclides. Image-based additive manufacturing techniques are also being investigated to create fillable phantoms having irregular shapes which can better mimic actual organs and tumors while still maintaining traceability

  18. Multimodality Imaging Probe for Positron Emission Tomography and Fluorescence Imaging Studies

    Directory of Open Access Journals (Sweden)

    Suresh K. Pandey

    2014-05-01

    Full Text Available Our goal is to develop multimodality imaging agents for use in cell tracking studies by positron emission tomography (PET and optical imaging (OI. For this purpose, bovine serum albumin (BSA was complexed with biotin (histologic studies, 5(6- carboxyfluorescein, succinimidyl ester (FAM SE (OI studies, and diethylenetriamine pentaacetic acid (DTPA for chelating gallium 68 (PET studies. For synthesis of BSA-biotin-FAM-DTPA, BSA was coupled to (+-biotin N-hydroxysuccinimide ester (biotin-NHSI. BSA- biotin was treated with DTPA-anhydride and biotin-BSA-DTPA was reacted with FAM. The biotin-BSA-DTPA-FAM was reacted with gallium chloride 3 to 5 mCi eluted from the generator using 0.1 N HCl and was passed through basic resin (AG 11 A8 and 150 mCi (100 μL, pH 7–8 was incubated with 0.1 mg of FAM conjugate (100 μL at room temperature for 15 minutes to give 66Ga-BSA-biotin-DTPA-FAM. A shaved C57 black mouse was injected with FAM conjugate (50 μL at one flank and FAM-68Ga (50 μL, 30 mCi at the other. Immediately after injection, the mouse was placed in a fluorescence imaging system (Kodak In-Vivo F, Bruker Biospin Co., Woodbridge, CT and imaged (Λex: 465 nm, Λem: 535 nm, time: 8 seconds, Xenon Light Source, Kodak. The same mouse was then placed under an Inveon microPET scanner (Siemens Medical Solutions, Knoxville, TN injected (intravenously with 25 μCi of 18F and after a half-hour (to allow sufficient bone uptake was imaged for 30 minutes. Molecular weight determined using matrix-associated laser desorption ionization (MALDI for the BSA sample was 66,485 Da and for biotin-BSA was 67,116 Da, indicating two biotin moieties per BSA molecule; for biotin-BSA-DTPA was 81,584 Da, indicating an average of 30 DTPA moieties per BSA molecule; and for FAM conjugate was 82,383 Da, indicating an average of 1.7 fluorescent moieties per BSA molecule. Fluorescence imaging clearly showed localization of FAM conjugate and FAM-68Ga at respective flanks of the mouse

  19. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.

    Science.gov (United States)

    Schmidt, Gerwin P; Kramer, Harald; Reiser, Maximilian F; Glaser, Christian

    2007-06-01

    The advent of positron emission tomography-computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) has introduced tumor imaging with a systemic and functional approach compared with established sequential, multimodal diagnostic algorithms.Whole-body PET with [18F]-fluoro-2-desoxy-glucose is a useful imaging procedure for tumor staging and monitoring that can visualize active tumor tissue by detecting pathological glucose metabolism. The combination of PET with the detailed anatomical information of multislice computed tomography as dual-modality scanners has markedly increased lesion localization and diagnostic accuracy compared with both modalities as standalone applications.Hardware innovations, such as the introduction of multi-receiver channel whole-body MRI scanners at 1.5 and, recently, 3 T, combined with acquisition acceleration techniques, have made high-resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution, and contrast media dynamics can be combined with whole-body anatomical coverage in a multiplanar imaging approach. More flexible protocols (eg, T1-weighted turbo spin-echo and short inversion recovery imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen) can be performed within 45 minutes.Whole-body magnetic resonance imaging has recently been proposed for tumor screening of asymptomatic individuals, and potentially life-changing diagnoses, such as formerly unknown malignancy, have been reported. However, larger patient cohort studies will have to show the cost efficiency and the clinical effectiveness of such an approach.For initial tumor staging, PET-CT has proved more accurate for the definition of T-stage and lymph node assessment, mainly because of the missing metabolic information in WB-MRI. However, new applications, such as magnetic resonance whole-body diffusion-weighted imaging or lymphotropic contrast

  20. Development of a prototype Open-close positron emission tomography system

    Science.gov (United States)

    Yamamoto, Seiichi; Okumura, Satoshi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Toshito, Toshiyuki; Komori, Masataka; Ogata, Yoshimune; Kato, Katsuhiko; Hatazawa, Jun

    2015-08-01

    We developed a prototype positron emission tomography (PET) system based on a new concept called Open-close PET, which has two modes: open and close-modes. In the open-mode, the detector ring is separated into two halved rings and subject is imaged with the open space and projection image is formed. In the close-mode, the detector ring is closed to be a regular circular ring, and the subject can be imaged without an open space, and so reconstructed images can be made without artifacts. The block detector of the Open-close PET system consists of two scintillator blocks that use two types of gadolinium orthosilicate (GSO) scintillators with different decay times, angled optical fiber-based image guides, and a flat panel photomultiplier tube. The GSO pixel size was 1.6 × 2.4 × 7 mm and 8 mm for fast (35 ns) and slow (60 ns) GSOs, respectively. These GSOs were arranged into an 11 × 15 matrix and optically coupled in the depth direction to form a depth-of-interaction detector. The angled optical fiber-based image guides were used to arrange the two scintillator blocks at 22.5° so that they can be arranged in a hexadecagonal shape with eight block detectors to simplify the reconstruction algorithm. The detector ring was divided into two halves to realize the open-mode and set on a mechanical stand with which the distance between the two parts can be manually changed. The spatial resolution in the close-mode was 2.4-mm FWHM, and the sensitivity was 1.7% at the center of the field-of-view. In both the close- and open-modes, we made sagittal (y-z plane) projection images between the two halved detector rings. We obtained reconstructed and projection images of 18F-NaF rat studies and proton-irradiated phantom images. These results indicate that our developed Open-close PET is useful for some applications such as proton therapy as well as other applications such as molecular imaging.

  1. Spatiotemporal Stability of Cu-ATSM and FLT Positron Emission Tomography Distributions During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States); Forrest, Lisa J. [Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin (United States); Jeraj, Robert, E-mail: rjeraj@wisc.edu [Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States); Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin (United States)

    2014-06-01

    Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeated after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies

  2. Molecular Imaging Probes for Positron Emission Tomography and Optical Imaging of Sentinel Lymph Node and Tumor

    Science.gov (United States)

    Qin, Zhengtao

    Molecular imaging is visualizations and measurements of in vivo biological processes at the molecular or cellular level using specific imaging probes. As an emerging technology, biocompatible macromolecular or nanoparticle based targeted imaging probes have gained increasing popularities. Those complexes consist of a carrier, an imaging reporter, and a targeting ligand. The active targeting ability dramatically increases the specificity. And the multivalency effect may further reduce the dose while providing a decent signal. In this thesis, sentinel lymph node (SLN) mapping and cancer imaging are two research topics. The focus is to develop molecular imaging probes with high specificity and sensitivity, for Positron Emission Tomography (PET) and optical imaging. The objective of this thesis is to explore dextran radiopharmaceuticals and porous silicon nanoparticles based molecular imaging agents. Dextran polymers are excellent carriers to deliver imaging reporters or therapeutic agents due to its well established safety profile and oligosaccharide conjugation chemistry. There is also a wide selection of dextran polymers with different lengths. On the other hand, Silicon nanoparticles represent another class of biodegradable materials for imaging and drug delivery. The success in fluorescence lifetime imaging and enhancements of the immune activation potency was briefly discussed. Chapter 1 begins with an overview on current molecular imaging techniques and imaging probes. Chapter 2 presents a near-IR dye conjugated probe, IRDye 800CW-tilmanocept. Fluorophore density was optimized to generate the maximum brightness. It was labeled with 68Ga and 99mTc and in vivo SLN mapping was successfully performed in different animals, such as mice, rabbits, dogs and pigs. With 99mTc labeled IRDye 800CW-tilmanocept, chapter 3 introduces a two-day imaging protocol with a hand-held imager. Chapter 4 proposed a method to dual radiolabel the IRDye 800CW-tilmanocept with both 68Ga and

  3. 18F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Other Thyroid Cancers: Medullary, Anaplastic, Lymphoma and So Forth.

    Science.gov (United States)

    Araz, Mine; Çayır, Derya

    2017-02-05

    Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (FDG) is used in staging, restaging, and evaluation of therapy response in many cancers as well as differentiated thyroid carcinomas especially in non-iodine avid variants. Its potential in less frequent thyroid tumors like medullary, anaplastic thyroid cancers, thyroid lymphoma and metastatic tumors of the thyroid however, is not well established yet. The aim of this review is to provide an overview on the recent applications and indications of 18F-FDG PET/CT in these tumors and to focus on the controversies in the clinical setting.

  4. 18F-fluoride Positron Emission Tomography Measurements of Regional Bone Formation in Hemodialysis Patients with Suspected Adynamic Bone Disease

    OpenAIRE

    Frost, Michelle L.; Compston, Juliet E.; Goldsmith, David; Moore, Amelia; Blake, Glen M; Siddique, Musib; Skingle, Linda; Fogelman, Ignac

    2013-01-01

    18F-fluoride positron emission tomography ((18)F-PET) allows the assessment of regional bone formation and could have a role in the diagnosis of adynamic bone disease (ABD) in patients with chronic kidney disease (CKD). The purpose of this study was to examine bone formation at multiple sites of the skeleton in hemodialysis patients (CKD5D) and assess the correlation with bone biopsy. Seven CKD5D patients with suspected ABD and 12 osteoporotic postmenopausal women underwent an (18)F-PET scan,...

  5. Multiple pulmonary sclerosing hemangiomas (pneumocytoma) mimicking lung metastasis detected in fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    Science.gov (United States)

    Kamaleshwaran, Koramadai Karuppusamy; Rajan, Firoz; Mehta, Sangita; Mohanan, Vyshakh; Shinto, Ajit Sugunan

    2014-07-01

    Pulmonary sclerosing hemangioma (PSH), or the alternative name of "sclerosing pneumocytoma," is a rare benign neoplasm. PSH is often asymptomatic and presents as a solitary or multiple pulmonary nodules on radiologic imaging studies. Few articles have been reported to describe the fluorodeoxyglucose positron emission tomography (FDG PET) findings about PSH. The authors describe an interesting but uncommonly encountered cause of false positive FDG PET scan in the thorax in a 25-year-old woman, a known case of arteriovenous malformation of oral cavity who underwent embolization and presented with incidental detection of bilateral lung nodules. She is asymptomatic and is on follow-up.

  6. Adequacy of compartmental model for positron emission tomography examinations; Adequacao de modelo compartimental para exames de tomografia por emissao de positrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Eduardo Maeda Moreira da; Furuie, Sergio Shiguemi [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia de Telecomunicacoes e Controle. Lab. de Engenharia Biomedica

    2011-12-15

    The objective of this work is the determination of the most adequate compartmental model for the study of physiological dynamics based on positron emission tomography exams. We propose the use of Akaike's information criterion for the optimal model selection, and Levenberg-Marquardt algorithm with sensitivity equations for the task of estimating the characteristic parameters of the differential equations describing the models. We have considered three compartmental structures represented, respectively, by two compartments and two characteristic constants, three compartments and four characteristic constants and four compartments and six characteristics constants. The data considered in this work were synthesized taking into account key features of a real tomography exam, such as type and level of noise and morphology of the input function of the system. Applying the proposed methodology with three noise levels (low, medium and high), we obtained agreement of the best model with strong and considerable degrees (with Kappa indexes equal to 0.95, 0.93 and 0.63, respectively). It was observed that, with high noise level and more complex models (four compartments), the classification is deteriorated due to lack of data for the decision. Programs have been developed and a graphical interface that can be used in research, development, simulation and parameter identification of compartmental models, supporting analysis of clinical diagnostics and scientific practices. (author)

  7. Micro tomography prototype by positron emission. Spatial resolution and metabolic studies;Prototipo de microtomografo por emision de positrones. Resolucion espacial y estudios metabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Alva S, H.; Murrieta, T.; Ruiz T, C.; Brandan, M. E.; Martinez D, A.; Rodriguez V, M., E-mail: halva@fisica.unam.m [UNAM, Instituto de Fisica, Circuito de la Investigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2010-07-01

    During the past 4 years, the Medical Physics and Dosimetry Group at the Physics Institute, UNAM, has developed a positron emission tomography prototype for small-animal imaging (micro PET). The system is composed of pix elated, cerium-doped lutetium yttrium oxy orthosilicate scintillation crystal arrays coupled to position-sensitive photomultiplier tubes. Detector electronic signals are processed by nuclear instrumentation modules and are digitized by a multichannel data acquisition board. The tomographic reconstruction is performed by filtered backprojection from a set of distortion- and nonuniformity- corrected projections taken at different angles. In this work, the reconstructed spatial resolution was evaluated from the line spread function with a mean value of 2.36 +- 0.44 mm. In addition, the first metabolic studies of 30 g, healthy mice, injected with {sup 1}8{sup F} labeled fluorodeoxyglucose and sodium fluoride are reported. They display normal glucose uptake and skeletal structure, respectively. The micro PET can be a useful tool for radiation detector physics research and its applications in nuclear medicine. (Author)

  8. Fabrication of polycrystalline scintillators for the positron emission tomography (PET); Herstellung polykristalliner Szintillatoren fuer die Positronen-Emissions-Tomographie (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Kamran Said

    2010-07-01

    Transparent ceramics are becoming more and more important for two new types of applications. On the one hand in cases where high mechanical and thermal demands in combination with optical properties are required, on the other hand where the optical properties of transparent materials like glass are not sufficient e.g. in positron-emission-tomography (PET) diagnostics. Most state of the art PET-scanners are using high-priced single crystals as scintillator material. The technological challenge is to replace single crystal by cost-efficient transparent ceramics. Producing transparent ceramics is ordered in synthesis of the powders and in manufacturing of these into transparent ceramics. The aim of this work was to synthesize single phase yttrium-alumina-and Luthetiumalumina-garnet (YAG, LuAG) powders partially doped with neodymium or praseodymium by four different synthesis routes (Pechini-synthesis, sol-gel-route, coprecipitation and solid state reactions). Additionally industrial LuAG and LuPO{sub 4} powders were characterized and manufactured. The powders were processed as submicron- and nanopowders. The compaction of nanopowder greenbodies sintered at high temperatures leads to a ''cross-over'' between both manufacturing route. Newly produced single-phase powders were homogenized with additions of sintering additives like tetraethyl orthosilicate (TEOS) and binders like polyvinyl alcohol (PVA). Moulding the powders were carried out by uniaxial pressing, cold isostatic pressing and in individual cases also by slip casting. The achieved green densities were in a range of 25-42 %. Examination of calcination behaviour leads to a calcination temperature of 1000 C with 2 hours dwell time in air atmosphere. Only solid state reactions resulted into transparent YAG, YAG:Pr, LuAG, LuAG:Pr ceramics. Solid state reactions of nanopowders resulted in heterogeneously transparent samples. Ceramics made by powders of other synthetic routes gave nontransparent

  9. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M. [Austin and Repatriation Medical Centre, Melbourne, VIC (Australia). Centre for Positron Emission Tomography

    1997-10-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient`s body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t,{sub 1/2}=2min), nitrogen-13 (t{sub 1/2}= 10 min), carbon-11 (t{sub 1/2}=20 min) and fluorine-18 (t{sub 1/2}= 110 min). These radiopharmaceuticals include [{sup 15}O]oxygen, [{sup 15}O]carbon monoxide, [{sup 15}O]carbon dioxide, [{sup 15}O]water, [{sup 13}N]ammonia, [{sup 11}C]flumazenil, [{sup 11}C]SCH23390, [{sup 18}F]fluoromisonidazole and [{sup 18}F]fluoro-deoxy-glucose ([{sup 18}F]FDG). In addition, since the half life of [{sup 18}F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [{sup 18}F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [{sup 18}F]thymidine analog to measure cell proliferation and a [{sup 11}C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors) 23 refs., 2 tabs.

  10. New techniques for positron emission tomography in the study of human neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, D.E.

    1993-01-01

    This progress report describes accomplishments of four programs. The four programs are entitled (1) Faster,simpler processing of positron-computing precursors: New physicochemical approaches, (2) Novel solid phase reagents and methods to improve radiosynthesis and isotope production, (3) Quantitative evaluation of the extraction of information from PET images, and (4) Optimization of tracer kinetic methods for radioligand studies in PET.

  11. SU-E-T-230: Measurement of Proton-Activated Positron Emission with PRESAGE 3-D Dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M; Mawlawi, O; Ibbott, G [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Adamovics, J [John Adamovics, Skillman, NJ (United States)

    2014-06-01

    Purpose: Measurement of positron emission following proton beam irradiation of a target has been studied as a method of in-vivo dosimetry. Relative dosimetry studies between a phantom and treatment plan are susceptible to range uncertainties from material heterogeneities and setup error. By using the radiochromic polyurethane dosimeter PRESAGE, we can correlate the proton dose distribution to the PET activity measurement within a single detector. The PRESAGE formulation used was developed for high-LET proton radiotherapy, has similar density and RLSP to tissue, and consists of a greater carbon component, which gives it a higher positron signal than many other 3D detectors. Methods: Three cylindrical PRESAGE dosimeters were irradiated semi-uniformly to 500 cGy with 180- MeV protons. The beam was directed along the dosimeter axis and delivered a 2-cm SOBP at the center of the dosimeter. The dosimeters were rushed to a nearby PET/CT where imaging began within 15 minutes, less than a single half-life of 11C. A 3-hr measurement captured the full activation decay. Afterwards, the dose profiles were measured by optical-CT. A direct comparison between the measured dose and the positron emission was performed using CERR software. Results: The correlations between dose distributions and PET activity were consistent with previous studies in that the proximal region of the SOBP displayed the highest activity. The spatial distributions between the dose and activity were similar. Along the central axis of the beam, we found a shift in the distal 80% of 1 cm. The lateral profile showed good agreement between dose and activity. PET imaging times between 30-min and 3-hrs showed <5% discrepancy. Conclusion: PRESAGE dosimeters offer a strong and unique potential to accurately correlate dosimetric and PET activation information. Implementation in an anthropomorphic phantom could be used to study representative treatment plans. NIH grant 5R01CA100835.

  12. Use of fluorine-18 fluorodeoxyglucose positron emission tomography in the detection of silent metastases from malignant melanoma

    DEFF Research Database (Denmark)

    Jakobsen, Annika Loft; Andersson, A P; Dahlstrøm, K

    2000-01-01

    Correct staging is crucial for the management and prognosis of patients with malignant melanoma. The aim of this prospective study was to compare staging by whole-body positron emission tomography using fluorine-18 fluorodeoxyglucose (18F-FDG) with staging by conventional methods. Thirty-eight pa......Correct staging is crucial for the management and prognosis of patients with malignant melanoma. The aim of this prospective study was to compare staging by whole-body positron emission tomography using fluorine-18 fluorodeoxyglucose (18F-FDG) with staging by conventional methods. Thirty......-eight patients with malignant melanoma of clinical stage II (local recurrence, in-transit and regional lymph node metastases) or III (metastases to other sites than in stage II) were included in the study. The results of the PET scans were compared with those obtained by clinical examination, computed tomography...... method superior to conventional methods for detecting widespread metastases from malignant melanoma. Mutilating surgery of no benefit can thereby be avoided. 18F-FDG PET is useful as a supplement to clinical examination in melanoma staging....

  13. {sup 18}F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Kenji; Shiga, Tohru; Tamaki, Nagara [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo, Hokkaido (Japan); Terasaka, Shunsuke; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro [Graduate School of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Hattori, Naoya [Graduate School of Medicine, Hokkaido University, Department of Molecular Imaging, Sapporo (Japan); Magota, Keiichi [Hokkaido University Hospital, Department of Radiology, Sapporo (Japan); Tanaka, Shinya [Graduate School of Medicine, Hokkaido University, Department of Cancer Pathology, Sapporo (Japan); Kuge, Yuji [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan)

    2012-05-15

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that {sup 18}F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and {sup 18}F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p {<=} 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 {+-} 0.60, range 1.71-3.81) than in non-GBM patients (1.22 {+-} 0.06, range 1.09-1.29, p {<=} 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also

  14. 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma

    Science.gov (United States)

    Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.

    2016-01-01

    Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0

  15. Mechanisms for the recovery of aphasia following stroke. A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, E

    1998-07-01

    Language disorders following stroke are common and are a major source of distress and disability. Most patients show some recovery with time implying the potential for neuronal plasticity within the brain for recovery of language. The mechanisms underlying recovery are poorly understood, making strategies for speech therapy and further investigation of potential therapeutic agents difficult. These studies were designed to explore the cortical re-organisation which underlies at least some language recovery using positron emission tomography (PET). With the rapid developments in PET technology and advances in image data processing it is now well established that language tasks can be studied in terms of responses within brain regions, and interactions between regions. The results can be interpreted with reference to neuropsychological theory and models. Many language activation studies have been performed in the normal brain. Thestudies reported here concentrated on one behavioural task - the verbal fluency task - the strategy being to compare patterns of activation in normal subjects with those in recovered aphasic patients performing the same fluency task. In the first part of this thesis, a detailed PET study of a verb retrieval task was made using different control tasks in normal volunteers. The results show that this task engages a widespread network of regions, predominantly in the left hemisphere i.e. the dorsolateral temporal cortex, the inferolateral temporal cortex and inferior parietal cortex, an extensive area of the dorsolateral prefrontal cortex (LDLPFC), the anterior cingulate and the supplementary motor area (SMA). The experiments using different control tasks suggest that the dorsolateral temporal cortex is involved with auditory and lexical processing of the stimulus nouns and it is demonstrated that observation of an activation in this region is dependent on the particular control task used with the retrieval task. This explains discrepancies

  16. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update

    Directory of Open Access Journals (Sweden)

    Karim Farid

    2017-01-01

    Full Text Available Sporadic cerebral amyloid angiopathy (CAA is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH, dementia and ‘amyloid spells’ - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria – the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers in sporadic CAA. We focus on two key areas: (a the diagnostic utility of amyloid-PET in CAA and (b the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth

  17. Depressed cerebral oxygen metabolism in patients with chronic renal failure. A positron emission tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Hirakata, Hideki; Kanai, Hidetoshi; Nakane, Hiroshi; Fujii, Ken-ichiro; Hirakata, Eriko; Ibayashi, Setsuro; Kuwabara, Yasuo; Deenitchna, S.S.; Fujishima, Masatoshi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2001-07-01

    In order to elucidate brain oxygen metabolism in uremic patients, the regional cerebral blood flow (rCBF), oxygen extraction (rOEF) and oxygen metabolism (rCMRO{sub 2}) were measured by positron emission tomography (PET) in both 10 hemodialysis patients (HD: male [m]/female [f]=2/8, age of 49{+-}3 [SEM] years old, HD duration of 113{+-}26 months) and 13 pre-dialysis renal failure patients (CRF: m/f=10/3, age of 61{+-}2 years old, serum creatinine (SCr) of 6.3{+-}1.0 mg/dl). Data were compared with 20 non-uremic subjects (Control: m/f=7/13, age of 62{+-}2 years old, SCr of 0.9{+-}0.1 mg/dl). They had no neurological abnormalities, congestive heart failure, history of cerebrovascular accident, diabetes mellitus, or symptomatic brain lesion on magnetic resonance imaging. The age of HD was significantly younger than the other groups (p<0.02) and the hemoglobin (Hb) levels in both HD (10.5{+-}0.5 g/dl) and CRF (9.8{+-}0.9) were significantly lower than that in Control (13.3{+-}0.3) (p<0.02). In the hemisphere, rCMRO{sub 2} in both HD (1.82{+-}0.10 ml/min/100 g) and CRF (1.95{+-}0.09) showed significantly lower values as compared to Control (2.23{+-}0.05) (p<0.01, respectively). Hemispheric rCBF in HD (35.6{+-}2.1 ml/100 g/min) and in CRF (36.1{+-}2.1) were not different from that in Control (31.8{+-}1.4). Hemispheric rOEF in CRF (45.7{+-}1.6%) was significantly higher than that in Control (40.5{+-}1.2%) (p<0.02), but that in HD (43.7{+-}1.9%) did not increase significantly. These tendencies were similar in all regions of interest, especially in the cerebral cortices, but not in the cerebellum. All PET parameters in the frontal cortices tended to show the lowest value in renal failure patients. For all HD patients, rCBF in both the frontal cortex and the white matter correlated inversely with HD duration (frontal cortex: r=-0.649, p<0.05; white matter: r=-0.706, p<0.02). Based on these data, it is concluded that brain oxygen metabolism is depressed in renal failure

  18. The positrons emission tomography in cardiology on expecting for the rubidium 82; La tomographie par emission de positons en cardiologie en attendant le rubidium-82

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, D. [Societe Francaise de Cardiologie Nucleaire et IRM, 75 - Paris (France)

    2005-11-15

    The positron emission tomography in cardiology has an important place in France. A new tracer, the rubidium 82 can be used for the detection of myocardium ischemia among the patients where the SPECT was ineffective or not very useful, it will be necessary to propose a permit to market the tracer in the two next years.Recently, the Food drug administration in Usa has allowed the repayment of the rubidium 82 for the myocardium detection as normal or abnormal in the post myocardium infarction. (N.C.)

  19. (/sup 11/C)clorgyline and (/sup 11/C)-L-deprenyl and their use in measuring functional monoamine oxidase activity in the brain using positron emission tomography

    Science.gov (United States)

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1986-04-17

    This invention involves a new strategy for imaging the activity of the enzyme monoamine oxidase in the living body by using /sup 11/C-labeled enzyme inhibitors which bind irreversibly to an enzyme as a result of catalysis. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  20. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  1. The neurobiology of glucocerebrosidase-associated parkinsonism: a positron emission tomography study of dopamine synthesis and regional cerebral blood flow

    Science.gov (United States)

    Goker-Alpan, Ozlem; Masdeu, Joseph C.; Kohn, Philip D.; Ianni, Angela; Lopez, Grisel; Groden, Catherine; Chapman, Molly C.; Cropp, Brett; Eisenberg, Daniel P.; Maniwang, Emerson D.; Davis, Joie; Wiggs, Edythe; Berman, Karen F.

    2012-01-01

    Mutations in GBA, the gene encoding glucocerebrosidase, the enzyme deficient in Gaucher disease, are common risk factors for Parkinson disease, as patients with Parkinson disease are over five times more likely to carry GBA mutations than healthy controls. Patients with GBA mutations generally have an earlier onset of Parkinson disease and more cognitive impairment than those without GBA mutations. We investigated whether GBA mutations alter the neurobiology of Parkinson disease, studying brain dopamine synthesis and resting regional cerebral blood flow in 107 subjects (38 women, 69 men). We measured dopamine synthesis with 18F-fluorodopa positron emission tomography, and resting regional cerebral blood flow with H215O positron emission tomography in the wakeful, resting state in four study groups: (i) patients with Parkinson disease and Gaucher disease (n = 7, average age = 56.6 ± 9.2 years); (ii) patients with Parkinson disease without GBA mutations (n = 11, 62.1 ± 7.1 years); (iii) patients with Gaucher disease without parkinsonism, but with a family history of Parkinson disease (n = 14, 52.6 ± 12.4 years); and (iv) healthy GBA-mutation carriers with a family history of Parkinson disease (n = 7, 50.1 ± 18 years). We compared each study group with a matched control group. Data were analysed with region of interest and voxel-based methods. Disease duration and Parkinson disease functional and staging scores were similar in the two groups with parkinsonism, as was striatal dopamine synthesis: both had greatest loss in the caudal striatum (putamen Ki loss: 44 and 42%, respectively), with less reduction in the caudate (20 and 18% loss). However, the group with both Parkinson and Gaucher diseases showed decreased resting regional cerebral blood flow in the lateral parieto-occipital association cortex and precuneus bilaterally. Furthermore, two subjects with Gaucher disease without parkinsonian manifestations showed diminished striatal dopamine. In conclusion, the

  2. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging.

    Science.gov (United States)

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna

    2016-04-15

    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and (64)Cu isotope can serve as a positron emitter (t1/2=12.7h). The other advantage of (64)Cu is its decay characteristics that facilitates the use of (64)Cu-porphyrin complex as a therapeutic agent. Thus, (64)Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH9 with the addition of 10-fold molar excess, with respect to Cu(2+) ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. No difference in cardiac event-free survival between positron emission tomography-guided and single-photon emission computed tomography-guided patient management - A prospective, randomized comparison of patients with suspicion of jeopardized myocardium

    NARCIS (Netherlands)

    Siebelink, HMJ; Blanksma, PK; Crijns, HJGM; Bax, JJ; van Boven, AJ; Kingma, T; Piers, DA; Pruim, J; Jager, PL; Vaalburg, W; van der Wall, EE

    OBJECTIVES We sought to prospectively compare nitrogen-13 (N-13)-ammonia/(18)fluorodeoxyglucose ((18)FDG) positron emission tomography (PET)-guided management with stress/rest technetium-99m (Tc-99m)-sestamibi single-photon emission computed tomography (SPECT)-guided management BACKGROUND Patients

  4. Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012

    Directory of Open Access Journals (Sweden)

    Susann Schröder

    2016-05-01

    Full Text Available Cyclic nucleotide phosphodiesterases (PDEs are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP. Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.

  5. [18F]Fluorodeoxyglucose (FDG)-Positron Emission Tomography (PET)/Computed Tomography (CT) in Suspected Recurrent Breast Cancer

    DEFF Research Database (Denmark)

    Hildebrandt, Malene Grubbe; Gerke, Oke; Baun, Christina

    2016-01-01

    PURPOSE: To prospectively investigate the diagnostic accuracy of [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) with dual-time-point imaging, contrast-enhanced CT (ceCT), and bone scintigraphy (BS) in patients with suspected breast cancer recurrence....... PATIENTS AND METHODS: One hundred women with suspected recurrence of breast cancer underwent 1-hour and 3-hour FDG-PET/CT, ceCT, and BS within approximately 10 days. The study was powered to estimate the precision of the individual imaging tests. Images were visually interpreted using a four...... the receiver operating curve and higher sensitivity, specificity, and superior likelihood ratios. CONCLUSION: FDG-PET/CT was accurate in diagnosing recurrence in breast cancer patients. It allowed for distant recurrence to be correctly ruled out and resulted in only a small number of false-positive cases...

  6. Positron emission tomography (PET) study of the alterations in brain pharmacokinetics of methamphetamine in methamphetamine sensitized animals

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hitoshi [Tohoku Univ., Sendai (Japan). Hospital

    2001-08-01

    I investigated the differences in brain pharmacokinetics of [{sup 11}C]methamphetamine ([{sup 11}C]MAP) in normal and MAP sensitized animals using positron emission tomography (PET). [{sup 11}C]MAP was synthesized by an automated on-line [{sup 11}C]methylation system. I newly produced MAP sensitized dog and monkey by repeated MAP treatment. The maximal level of accumulation of [{sup 11}C]MAP in the sensitized dog brain was 1.4 times higher than that in the control. This result suggests the changes in the pharmacokinetic profile of MAP in the brain affect the development or expression of MAP-induced behavioral sensitization. However, the overaccumulation of [{sup 11}C]MAP in the sensitized monkey brain was not observed due to the influence of anesthesia. (author)

  7. Methods for (11) C- and (18) F-labelling of amino acids and derivatives for positron emission tomography imaging.

    Science.gov (United States)

    Ermert, Johannes; Coenen, Heinz H

    2013-01-01

    The different concepts realized for the synthesis of (11) C- and (18) F-labelled amino acids are summarized. Carbon-11 enables principally authentic radiolabelling of natural occurring amino acids by substituting one of the skeleton carbons by the radionuclide. Fluorine-18 is a foreign element for natural amino acids. Because of its advantageous nuclidic properties for positron emission tomography, however, it becomes increasingly important in molecular imaging, also with amino acid analogues. Especially in the last decade, considerable progress has been made with the radiosynthesis of (18) F-labelled amino acids that are now clinically approved, and thus assure their availability. In contrast, the synthetic possibilities with (11) C-labelled amino acids are more limited because of the short half-life of carbon-11 which also hampers their wide spread use. Copyright © 2013 John Wiley & Sons, Ltd.

  8. The emerging role of whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with sarcoidosis

    Directory of Open Access Journals (Sweden)

    Silvia Taralli

    2012-01-01

    Full Text Available IntroductionThe purpose of this article is to examine the emerging role of whole-body positron emission tomography (PET with 18F-fluorodeoxyglucose (FDG in patients with sarcoidosis.Materials and methodsWe reviewed the literature on the use of FDG-PET in patients with sarcoidosis to identify how this technique is being applied in clinical practice.Results and discussionOur review shows that: 1 sarcoidosis is commonly associated with increased FDG uptake. Therefore, positive findings should be interpreted with caution when FDG-PET is being used to distinguish benign from malignant abnormalities; 2 FDG-PET seems to be a very useful molecular imaging method for staging sarcoidosis, identification of occult sites of involvement, guiding biopsy procedures, and monitoring patients’ responses to treatment; and 3 in patients with sarcoidosis, the diagnostic accuracy of FDG-PET is superior to that of 67Ga scintigraphy.

  9. Benign thyroid and neck lesions mimicking malignancy with false positive findings on positron emission tomography-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ye Ri; Kim, Shin Young; Lee, Sang Mi [Soonchunhyang University Cheonan Hospital, Cheonan (Korea, Republic of); Lee, Deuk Young [Dept. of Surgery, Younsei Angelot Women' s Clinic, Cheonan (Korea, Republic of)

    2017-02-15

    The increasing use of positron emission tomography-computed tomography (PET/CT) has led to the frequent detection of incidental thyroid and neck lesions with increased 18F-deoxyglucose (FDG) uptake. Although lesions with increased FDG uptake are commonly assumed to be malignant, benign lesions may also exhibit increased uptake. The purpose of this pictorial essay is to demonstrate that benign thyroid and neck lesions can produce false-positive findings on PET/CT, and to identify various difficulties in interpretation. It is crucial to be aware that differentiating between benign and malignant lesions is difficult in a considerable proportion of cases, when relying only on PET/CT findings. Correlation of PET/CT findings with additional imaging modalities is essential to avoid misdiagnosis.

  10. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  11. Brady-tachycardia syndrome after radiotherapy for lung cancer. Assessment by computed tomography and carbon-11 methionine positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Takuya; Michihata, Tetsuo; Katagiri, Takashi [Showa Univ., Tokyo (Japan). School of Medicine; Okazaki, Osamu; Izumo, Kazuhide; Harumi, Kenichi

    1999-09-01

    A 74-year-old male who had received radiotherapy (total 54 Gy) for right lung cancer 7 months earlier developed a symptomatic brady-tachycardia syndrome requiring the implantation of a permanent pacemaker. Chest CT showed a pulmonary tumor of 2-cm diameter in the right lower lobe with direct extension into the surrounding tissue, suggesting the possibility of cardiac invasion. Carbon-11 methionine positron emission tomography (PET) indicated the absence of visible invasion of the heart with lung cancer. The brady-tachycardia syndrome, therefore, was considered to be associated with sinus node injury due to radiation. Carbon-11 methionine PET metabolic imaging might play an important role in evaluating noninvasively the cause of the arrhythmia in this patient. (author)

  12. Lynch Syndrome Associated Colon Adenocarcinoma Resembling Lymphoma on Fluoro-Deoxyglucose-Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Aparici, Carina Mari; Win, Aung Zaw

    2015-01-01

    The patient was a 46-year-old Asian male diagnosed with lynch syndrome associated colon adenocarcinoma in the right ascending colon. A presurgical staging 18-fluoro-deoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) found increased metabolic activity in the cervical, axillary, mediastinal, supraclavicular, para-aortic and mesenteric lymph nodes. This pattern of metastasis was very unusual for lynch syndrome associated colon adenocarcinoma and the involvement of those lymph nodes resembles the pattern of spread of lymphoma. He underwent right hemicolectomy and he was subsequently treated with 12 cycles of folinic acid (leucovorin), fluorouracil (5-FU), irinotecan. A restaging FDG-PET/CT at the end of the chemotherapy showed interval decrease in size and metabolic activity in the affected lymph nodes. FDG-PET/CT is a useful imaging modality in following-up the treatment response in colon adenocarcinoma.

  13. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Aparici, Carina Mari; Win, Aung Zaw

    2016-01-01

    We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT) showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG)-positron emission tomography (PET)/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results.

  14. Positron emission tomography in at risk patients and in the progression of mild cognitive impairment to Alzheimer's disease

    DEFF Research Database (Denmark)

    Rinne, Juha O; Någren, Kjell

    2010-01-01

    Mild cognitive impairment (MCI) is considered a transitional state between the cognitive changes of normal aging and the earliest clinical features of Alzheimer's disease (AD). An important goal is to find features that predict which MCI patients will later convert to AD. Identification....... In the future, multi-tracer imaging or development of agents enabling imaging of other protein aggregations in neurodegenerative diseases could further help in the early and differential diagnostics and evaluation of novel treatments....... of such features will be increasingly important when treatments slowing down the progression of AD become available enabling early intervention. Brain imaging might be one possible predictor of conversion to AD. Functional imaging with positron emission tomography (PET) has shown that either normal elderly people...

  15. Relation of EEG alpha background to parietal lobe function in Alzheimer's disease as measured by positron emission tomography and psychometry.

    Science.gov (United States)

    Sheridan, P H; Sato, S; Foster, N; Bruno, G; Cox, C; Fedio, P; Chase, T N

    1988-05-01

    Fourteen patients with Alzheimer's disease were evaluated by psychometric testing, fluorodeoxyglucose positron emission tomography (PET), and EEG. They were divided into two groups according to the EEG findings. Group A (seven patients) had normal alpha backgrounds and group B (seven patients) had decreased alpha backgrounds. Group A had significantly higher WAIS Performance IQ scores (p = 0.005) than group B. Group A also had higher Weschler Memory Scale scores (p = 0.047) and parietal glucose metabolic rates (p = 0.038) than group B, but these differences are not statistically significant given the multiple comparisons made between the two groups. Relative intactness of parietal lobe function, as measured by psychometric testing and PET, appears to correlate with preservation of EEG alpha background. The EEG may be useful in assessing regional cortical involvement or the clinical stage in Alzheimer's disease.

  16. Acute Calculous Cholecystitis Missed on Computed Tomography and Ultrasound but Diagnosed with Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography

    Directory of Open Access Journals (Sweden)

    Carina Mari Aparici

    2016-01-01

    Full Text Available We present a case of a 69-year-old patient who underwent ascending aortic aneurysm repair with aortic valve replacement. On postsurgical day 12, he developed leukocytosis and low-grade fevers. The chest computed tomography (CT showed a periaortic hematoma which represents a postsurgical change from aortic aneurysm repair, and a small pericardial effusion. The abdominal ultrasound showed cholelithiasis without any sign of cholecystitis. Finally, a fluorodeoxyglucose (FDG-positron emission tomography (PET/CT examination was ordered to find the cause of fever of unknown origin, and it showed increased FDG uptake in the gallbladder wall, with no uptake in the lumen. FDG-PET/CT can diagnose acute cholecystitis in patients with nonspecific clinical symptoms and laboratory results.

  17. Data on analysis of coronary atherosclerosis on computed tomography and 18F-sodium fluoride positron emission tomography

    Directory of Open Access Journals (Sweden)

    Toshiro Kitagawa

    2017-08-01

    Full Text Available This article contains the data showing illustrative examples of plaque classification on coronary computed tomography angiography (CCTA and measurement of 18F-sodium fluoride (18F-NaF uptake in coronary atherosclerotic lesions on positron emission tomography (PET. We divided the lesions into one of three plaque types on CCTA (calcified plaque, non-calcified plaque, partially calcified plaque. Focal 18F-NaF uptake of each lesion was quantified using maximum tissue-to-background ratio. This article also provides a representative case with a non-calcified coronary plaque detected on CCTA and identified on 18F-NaF PET/non-contrast computed tomography based on a location of a vessel branch as a landmark. These complement the data reported by Kitagawa et al. (2017 [1].

  18. [Positron emission tomography with fluorine-deoxyglucose in sarcomas and non-sarcoma non-epithelial tumors].

    Science.gov (United States)

    Massardo, Teresa; Jofré, María Josefina; Sierralta, María Paulina; Canessa, José; Castro, Gabriel; Berrocal, Isabel; Gallegos, Iván

    2012-09-01

    The usefulness of positron emission tomography (PET) with fluorine-deoxyglucose (FDG) in sarcomas and non-sarcoma non-epithelial (NSNE) tumors is not clearly defined. To report a Chilean experience with NSNE tumors evaluated using PET with FDG. Retrospective review of the database of a PET laboratory. Demographic data, indications and metabolic findings were compared with conventional imaging in 88 adults and children with diverse bone and soft tissue sarcomas as well as 24 gastrointestinal stromal tumors (GIST), 6 pleural malignant mesotheliomas in adults, and 9 medulloblastomas in children. FDG showed good concordance with conventional imaging in NSNE tumors. It was helpful for staging, restaging, follow-up after treatment and for the detection of new not previously suspected lesions. PET with FDG could have a prognostic role and help in patient management, mainly in musculoskeletal and high grade or less differentiated sarcomas. In GIST, it was a good tool for immunotherapy control.

  19. Sensitive determination of specific radioactivity of positron emission tomography radiopharmaceuticals by radio high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Nakao, Ryuji; Furutsuka, Kenji; Yamaguchi, Masatoshi; Suzuki, Kazutoshi

    2008-10-01

    A sensitive quality control method is often required in positron emission tomography (PET) radiopharmaceutical analysis due to the high specific radioactivity of synthetic products. The applicability of a radio high-performance liquid chromatography (HPLC) method with fluorescence detection was evaluated for a wide variety of PET radiopharmaceuticals. In 29 different radiopharmaceuticals studied, 20 compounds exhibited native fluorescence. These properties enabled sensitive determination of their chemical masses by direct fluorimetric detection after separation by HPLC. For some substances, detection limits were below nanograms per milliliter level, at least 40 times better than current UV absorbance detection. Sufficient reproducibility and linearity were obtained for the analysis of pharmaceutical fluid. Post-column fluorimetric derivatization was also established for the quantitative determination of FDG and ClDG in [(18)F]FDG samples. These methods could be applied successfully to the analysis of PET radiopharmaceuticals with ultra-high specific radioactivity.

  20. Neural correlates of apathy in late-life depression: a pilot [(18) F]FDDNP positron emission tomography study.

    Science.gov (United States)

    Eyre, Harris A; Siddarth, Prabha; van Dyk, Kathleen; St Cyr, Natalie; Baune, Bernhard T; Barrio, Jorge R; Small, Gary W; Lavretsky, Helen

    2017-05-01

    Neurotoxicity associated with amyloid and tau protein aggregation could represent a pathophysiological cascade that, along with vascular compromise, may predispose individuals to late-life depression (LLD). In LLD, apathy is common, leads to worsening of functioning, and responds poorly to antidepressant treatment. Better understanding of the pathophysiological mechanisms of apathy in LLD would facilitate development of more effective diagnostic and treatment approaches. In this cross-sectional pilot study, we performed positron emission tomography scans after injection of 2-(1-{6-[(2-[(18) F]fluoroethyl)(methyl)-amino]-2-naphthyl}ethylidene) malononitrile ([(18) F]FDDNP), an in vivo amyloid and tau neuroimaging study, in patients with LLD to explore neural correlates of apathy. Sixteen depressed elderly volunteers received clinical assessments and [(18) F]FDDNP positron emission tomography scans. The cross-sectional relationship of [(18) F]FDDNP binding levels with depression (Hamilton Depression Rating Scale) and apathy (Apathy Evaluation Scale) were studied using Spearman's correlation analyses because of the relatively small sample size. Age, sex, and years of education were partialed out. Significance levels were set at P ≤ 0.05. [(18) F]FDDNP binding in the anterior cingulate cortex was negatively associated with the Apathy Evaluation Scale total (r = -0.62, P = 0.02; where low Apathy Evaluation Scale score equals greater severity of apathy). This suggests that apathy in LLD is associated with higher amyloid and/or tau levels in the anterior cingulate cortex. None of the regional [(18) F]FDDNP binding levels was significantly associated with the Hamilton Depression Rating Scale total. This pilot study suggests that increased apathy in subjects with LLD may be associated with greater amyloid and/or tau burden in certain brain regions. Future studies in larger samples would elucidate the generalizability of these results, which eventually could lead to

  1. Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility.

    Science.gov (United States)

    Al Faraj, Achraf; Alotaibi, Basem; Shaik, Abjal Pasha; Shamma, Khaled Z; Al Jammaz, Ibrahim; Gerl, Jürgen

    2015-01-01

    Despite their advantageous chemical properties for nuclear imaging, radioactive sodium-22 ((22)Na) tracers have been excluded for biomedical applications because of their extremely long lifetime. In the current study, we proposed, for the first time, the use of (22)Na radiotracers for pre-clinical applications by efficiently loading with silica nanoparticles (SiNPs) and thus offering a new life for this radiotracer. Crown-ether-conjugated SiNPs (300 nm; -0.18±0.1 mV) were successfully loaded with (22)Na with a loading efficacy of 98.1%±1.4%. Noninvasive positron emission tomography imaging revealed a transient accumulation of (22)Na-loaded SiNPs in the liver and to a lower extent in the spleen, kidneys, and lung. However, the signal gradually decreased in a time-dependent manner to become not detectable starting from 2 weeks postinjection. These observations were confirmed ex vivo by quantifying (22)Na radioactivity using γ-counter and silicon content using inductively coupled plasma-mass spectrometry in the blood and the different organs of interest. Quantification of Si content in the urine and feces revealed that SiNPs accumulated in the organs were cleared from the body within a period of 2 weeks and completely in 1 month. Biocompatibility evaluations performed during the 1-month follow-up study to assess the possibility of synthesized nanocarriers to induce oxidative stress or DNA damage confirmed their safety for pre-clinical applications. (22)Na-loaded nanocarriers can thus provide an innovative diagnostic agent allowing ultra-sensitive positron emission tomography imaging. On the other hand, with its long lifetime, onsite generators or cyclotrons will not be required as (22)Na can be easily stored in the nuclear medicine department and be used on-demand.

  2. [{sup 89}Zr]Oxinate{sub 4} for long-term in vivo cell tracking by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Charoenphun, Putthiporn; Meszaros, Levente K.; Chuamsaamarkkee, Krisanat; Sharif-Paghaleh, Ehsan; Ballinger, James R.; Mullen, Gregory E.D. [St Thomas' Hospital, King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Ferris, Trevor J.; Went, Michael J. [University of Kent, School of Physical Sciences, Canterbury (United Kingdom); Blower, Philip J. [St Thomas' Hospital, King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); King' s College London, Division of Chemistry, London (United Kingdom)

    2014-10-31

    {sup 111}In (typically as [{sup 111}In]oxinate{sub 3}) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an {sup 89}Zr PET tracer for cell labelling and compare it with [{sup 111}In]oxinate{sub 3} single photon emission computed tomography (SPECT). [{sup 89}Zr]Oxinate{sub 4} was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [{sup 89}Zr]oxinate{sub 4} or [{sup 111}In]oxinate{sub 3} was monitored for up to 14 days. {sup 89}Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. Zr labelling was effective in all cell types with yields comparable with {sup 111}In labelling. Retention of {sup 89}Zr in cells in vitro after 24 h was significantly better (range 71 to >90 %) than {sup 111}In (43-52 %). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with {sup 111}In or {sup 89}Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for {sup 111}In. In liver, spleen and bone marrow at least 92 % of {sup 89}Zr remained associated with eGFP-positive cells after 7 days in vivo. [{sup 89}Zr]Oxinate{sub 4} offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types. (orig.)

  3. Perineural Spread of Mucoepidermoid Carcinoma of Parotid Gland Involving V, VI, and VII Cranial Nerves Demonstrated on Positron Emission Tomography/Computed Tomography.

    Science.gov (United States)

    Chandra, Piyush; Nath, Satish

    2017-01-01

    Perineural spread (PNS) in head and neck malignancies has been associated with extremely poor prognosis. Through this interesting case, we demonstrate the PNS of a mucoepidermoid carcinoma of parotid gland with simultaneous involvement of V, VI, and VII cranial nerves identified on positron emission tomography/computed tomography.

  4. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy

    NARCIS (Netherlands)

    Parodi, Katia; Paganetti, Harald; Shih, Helen A; Michaud, Susan; Loeffler, Jay S; DeLaney, Thomas F; Liebsch, Norbert J; Munzenrider, John E; Fischman, Alan J; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    PURPOSE: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. METHODS AND MATERIALS: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3

  5. Muscle Activity during Walking Measured Using 3D MRI Segmentations and [18F]-Fluorodeoxyglucose in Combination with Positron Emission Tomography

    NARCIS (Netherlands)

    Kolk, S.; Klawer, E.M.E.; Schepers, J.; Weerdesteyn, V.G.M.; Visser, E.P.; Verdonschot, N.J.

    2015-01-01

    PURPOSE: This study aimed to determine the contribution of each muscle of the lower limb to walking using positron emission tomography (PET) with [F]-fluorodeoxyglucose (FDG). Furthermore, we compared our results obtained using volumetric analysis of entire muscles with those obtained using a more

  6. /sup 18/F-2-deoxy-2-fluoro-D-glucose as a tracer in the positron emission tomographic study of senile dementia

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, T.; Ferris, S.H.; Wolf, A.P.; De Leon, M.J.; Christman, D.R.; Reisberg, B.; Alavi, A.; Fowler, J.S.; George, A.E.; Reivich, M.

    1982-03-01

    Using /sup 18/F-2-deoxy-2-fluoro-D-glucose as a tracer, the authors obtained positron emission tomographic scans of 11 patients with senile dementia and 6 age-matched controls. The rate of glucose metabolism was significantly lower in the patients with senile dementia and significantly correlated with the degree of cognitive impairment.

  7. Comparison of Global Cerebral Blood Flow Measured by Phase-Contrast Mapping MRI with O-15-H2O Positron Emission Tomography

    DEFF Research Database (Denmark)

    Vestergaard, Mark Bitsch; Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob

    2017-01-01

    Purpose To compare mean global cerebral blood flow (CBF) measured by phase-contrast mapping magnetic resonance imaging (PCM MRI) and by 15O-H2O positron emission tomography (PET) in healthy subjects. PCM MRI is increasingly being used to measure mean global CBF, but has not been validated in vivo...

  8. Detection of unknown primary tumours in patients with cerebral metastases using whole-body 18F-flouorodeoxyglucose positron emission tomography

    DEFF Research Database (Denmark)

    Klee, B; Law, I; Højgaard, L

    2002-01-01

    was to evaluate the use of whole-body 18-F-fluorodeoxyglucose positron emission tomography (18FDG PET) scanning in this pursuit. Sixteen patients aged 34-74 years, with histologically confirmed metastatic brain tumours, were included in the study. Whole-body 18FDG PET identified pulmonary foci of probable primary...

  9. Reduction in coronary and peripheral vasomotor function in patients with HIV after initiation of antiretroviral therapy: a longitudinal study with positron emission tomography and flow-mediated dilation

    DEFF Research Database (Denmark)

    Kristoffersen, Ulrik Sloth; Wiinberg, Niels; Petersen, Claus Leth

    2010-01-01

    The mechanisms underlying the increased cardiovascular risk in patients with HIV on antiretroviral therapy (ART) are not known. Our aim was to study the endothelial function of the coronary arteries by cardiac perfusion positron emission tomography (PET) in patients with HIV initiating ART. In ad....... In addition, flow-mediated dilation (FMD) of the brachial artery was measured....

  10. The impact of optimal respiratory gating and image noise on evaluation of intra-tumor heterogeneity in 18F-FDG positron emission tomography imaging of lung cancer

    NARCIS (Netherlands)

    Grootjans, W.; Tixier, F.; Vos, C.S. van der; Vriens, D.; Rest, C.C. Le; Bussink, J.; Oyen, W.J.G.; Geus-Oei, L.-F. de; Visvikis, D.; Visser, E.P.

    2016-01-01

    Assessment of measurement accuracy of intra-tumor heterogeneity using texture features in positron emission tomography (PET) images is essential to characterize cancer lesions with high precision. In this study, we investigated the influence of respiratory motion and varying noise levels on

  11. CONTRIBUTION OF MAGNETIC-RESONANCE SPECTROSCOPIC IMAGING AND L-[1-C-11]TYROSINE POSITRON EMISSION TOMOGRAPHY TO LOCALIZATION OF CEREBRAL GLIOMAS FOR BIOPSY

    NARCIS (Netherlands)

    GO, KG; KEUTER, EJW; KAMMAN, RL; PRUIM, J; Metzemaekers, JDM; STAAL, MJ; PAANS, AMJ; VAALBURG, W

    PROTON MAGNETIC RESONANCE spectroscopic imaging (H-1-MRSI) and positron emission tomography with the tracer L-[1-C-11]tyrosine (C-11-TYR) were used to localize gliomas for biopsy or resection. This is especially helpful in cases of low-grade gliomas, if these lesions are not visualized by

  12. Occupancy of Norepinephrine Transporter by Duloxetine in Human Brains Measured by Positron Emission Tomography with (S,S)-[18F]FMeNER-D2.

    Science.gov (United States)

    Moriguchi, Sho; Takano, Harumasa; Kimura, Yasuyuki; Nagashima, Tomohisa; Takahata, Keisuke; Kubota, Manabu; Kitamura, Soichiro; Ishii, Tatsuya; Ichise, Masanori; Zhang, Ming-Rong; Shimada, Hitoshi; Mimura, Masaru; Meyer, Jeffrey H; Higuchi, Makoto; Suhara, Tetsuya

    2017-12-01

    The norepinephrine transporter in the brain has been targeted in the treatment of psychiatric disorders. Duloxetine is a serotonin and norepinephrine reuptake inhibitor that has been widely used for the treatment of depression. However, the relationship between dose and plasma concentration of duloxetine and norepinephrine transporter occupancy in the human brain has not been determined. In this study, we examined norepinephrine transporter occupancy by different doses of duloxetine. We calculated norepinephrine transporter occupancies from 2 positron emission tomography scans using (S,S)-[18F]FMeNER-D2 before and after a single oral dose of duloxetine (20 mg, n = 3; 40 mg, n = 3; 60 mg, n =2). Positron emission tomography scans were performed from 120 to 180 minutes after an i.v. bolus injection of (S,S)-[18F]FMeNER-D2. Venous blood samples were taken to measure the plasma concentration of duloxetine just before and after the second positron emission tomography scan. Norepinephrine transporter occupancy by duloxetine was 29.7% at 20 mg, 30.5% at 40 mg, and 40.0% at 60 mg. The estimated dose of duloxetine inducing 50% norepinephrine transporter occupancy was 76.8 mg, and the estimated plasma drug concentration inducing 50% norepinephrine transporter occupancy was 58.0 ng/mL. Norepinephrine transporter occupancy by clinical doses of duloxetine was approximately 30% to 40% in human brain as estimated using positron emission tomography with (S,S)-[18F]FMeNER-D2.

  13. Organ hierarchy during low blood flow on-pump: a randomized experimental positron emission tomography study

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Kjærgaard, Benedict; Frøkiær, Jørgen

    knowledge this is the first study investigating organ hierarchy with dynamic PET-CT during profound systemic ischemia due to suboptimal blood flows during normothermic CPB. References 1. Murphy JM, Hessel II EA, Groom RC. Optimal perfusion during cardiopulmonary bypass: an Evidence-based approach. Anesth......].The purpose of this animal study is to investigate the organ hierarchy of brain, liver, kidney and muscle at normal and low blood flows by using dynamic positron tomography (PET-CT) during CPB. Methods CPB at different blood flows will be investigated in an experimental model of six 70 kg pigs...... will be measured with dynamic PET-CT before CPB and during the different blood flows. Systemic oxygen consumption will be estimated by measurement of mixed venous saturation and lactate, and regional muscle oxygen saturation (tSO2) with near infrared spectroscopy at the lower limb. Result: Preliminary data...

  14. Synthesis and in vitro and in vivo evaluation of SiFA-tagged bombesin and RGD peptides as tumor imaging probes for positron emission tomography.

    Science.gov (United States)

    Lindner, Simon; Michler, Christina; Leidner, Stephanie; Rensch, Christian; Wängler, Carmen; Schirrmacher, Ralf; Bartenstein, Peter; Wängler, Björn

    2014-04-16

    Gastrin-releasing-peptide (GRP)-receptors and αvβ3-integrins are widely discussed as potential target structures for oncological imaging with positron emission tomography (PET). Favored by the overexpression of receptors on the surface of tumor cells good imaging characteristics can be achieved with highly specific radiolabeled receptor ligands. PEGylated bombesin (PESIN) derivatives as specific GRP receptor ligands and RGD (one-letter codes for arginine-glycine-aspartic acid) peptides as specific αvβ3 binders were synthesized and tagged with a silicon-fluorine-acceptor (SiFA) moiety. The SiFA synthon allows for a fast and highly efficient isotopic exchange reaction at room temperature giving the [(18)F]fluoride labeled peptides in up to 62% radiochemical yields (d.c.) and ≥99% radiochemical purity in a total synthesis time of less than 20 min. Using nanomolar quantities of precursor high specific activities of up to 60 GBq μmol(-1) were obtained. To compensate the high lipophilicity of the SiFA moiety various hydrophilic structure modifications were introduced leading to significantly reduced logD values. Competitive displacement experiments with the PESIN derivatives showed a 32 to 6 nM affinity to the GRP receptor on PC3 cells, and with the RGD peptides a 7 to 3 μM affinity to the αvβ3 integrins on U87MG cells. All derivatives proved to be stable in human plasma over at least 120 min. Small animal PET measurements and biodistribution studies revealed an enhanced and specific accumulation of the RGD peptide (18)F-SiFA-LysMe3-γ-carboxy-d-Glu-RGD (17) in the tumor tissue of U87MG tumor-bearing mice of 5.3% ID/g whereas the PESIN derivatives showed a high liver uptake and only a low accumulation in the tumor tissue of PC3 xenografts. Stability studies with compound 17 provided further information on its metabolism in vivo. These results altogether demonstrate that the reduction of the overall lipophilicity of SiFA tagged RGD peptides is a promising

  15. ⁶⁴Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment.

    Science.gov (United States)

    Pang, Bo; Zhao, Yongfeng; Luehmann, Hannah; Yang, Xuan; Detering, Lisa; You, Meng; Zhang, Chao; Zhang, Lei; Li, Zhi-Yuan; Ren, Qiushi; Liu, Yongjian; Xia, Younan

    2016-03-22

    This article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy.

  16. Value of positron emission tomography and computer tomography (PET/CT) for urologic malignancies; Interet de la tomographie par emission de positons couplee a la scanographie (TEP/TDM) dans les cancers urologiques

    Energy Technology Data Exchange (ETDEWEB)

    Boujelbene, N.; Mirimanoff, R.O.; Ozsahin, M.; Zouhair, A. [Service de radio-oncologie, CHU Vaudois (CHUV), rue du Bugnon 46, CH-1011 Lausanne (Switzerland); Prior, J.O.; Boubaker, A. [Service de medecine nucleaire, CHU Vaudois (CHUV), rue du Bugnon 46, CH-1011 Lausanne (Switzerland); Azria, D. [Service de radio-oncologie, CRLC Val d' Aurelle-Paul-Lamarque, rue Croix-Verte, parc Euromedecine, 34298 Montpellier cedex 5 (France); Universite Montpellier I, 5, boulevard Henri-IV, CS 19044, 34967 Montpellier cedex (France); Schaffer, M. [Service de radio-oncologie, Ludwig-Maximilians-Universitaet Muenchen, Marchioninistr. 15, 81377 Munich (Germany); Gez, E. [Service de radio-oncologie, The Tel Aviv Sourasky Medical Center, 6 Weizmann Street, Tel Aviv 64239 (Israel); Jichlinski, P. [Service d' urologie, CHU Vaudois (CHUV), rue du Bugnon 46, CH-1011 Lausanne (Switzerland); Meuwly, J.Y. [Service de radiologie, CHU Vaudois (CHUV), rue du Bugnon 46, CH-1011 Lausanne (Switzerland)

    2011-07-15

    Positron emission tomography is a functional imaging technique that allows the detection of the regional metabolic rate, and is often coupled with other morphological imaging technique such as computed tomography. The rationale for its use is based on the clearly demonstrated fact that functional changes in tumor processes happen before morphological changes. Its introduction to the clinical practice added a new dimension in conventional imaging techniques. This review presents the current and proposed indications of the use of positron emission/computed tomography for prostate, bladder and testes, and the potential role of this exam in radiotherapy planning. (authors)

  17. Non-oncological positron emission tomography (PET): brain imaging; La tomographie par emission de positons (TEP) hors oncologie: l'exploration du cerveau

    Energy Technology Data Exchange (ETDEWEB)

    Lomena, F. [Centro de Diagnostico por la imagen (CDIC), Hospital Clinic, Servicio de medicina nuclear, Barcelona (Spain)

    2008-10-15

    Positron emission tomography (PET) allows evaluation of the central nervous system function. Imaging of regional cerebral blood flow and metabolism, and of several neurotransmission systems may be obtained using PET. PET quantification is accurate and has good test-retest reliability. For research purposes, PET has been used to study brain physiology, to explore neurological and psychiatric diseases pathophysiology and for the new drugs research and development. F.D.G. is the only PET radioligand with clinical application. Following criteria of evidence-based medicine, the clinical indications of F.D.G.-PET are: evaluation of treated gliomas, pre surgical study of partial refractory epilepsy and diagnosis of Alzheimer's disease when it is impossible to differentiate clinically from fronto-temporal dementia.

  18. Focal cortical malformations can show asymmetrically higher uptake on interictal fluorine-18 fluorodeoxyglucose positron emission tomography (PET).

    Science.gov (United States)

    Poduri, Annapurna; Golja, Anna; Takeoka, Masanori; Bourgeois, Blaise F D; Connolly, Leonard; Riviello, James J

    2007-02-01

    Interictal fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) is a component of the presurgical evaluation of patients with medically intractable epilepsy, including patients with malformations of cortical development. The authors describe 3 cases of focal cortical malformations that displayed asymmetrically higher uptake on FDG-PET performed in the interictal state in patients undergoing evaluation for possible focal resection for refractory localization-related epilepsy. The evaluation included routine and prolonged video electroencephalography (EEG), magnetic resonance imaging (MRI), interictal FDG-PET with concurrent EEG, and single-photon emission computed tomography (SPECT). All 3 patients had focal cortical malformations on MRI corresponding to regions of asymmetrically higher uptake on FDG-PET. EEG confirmed that the FDG-PET studies were performed in the interictal state. The lesions included a large region of subcortical heterotopia in the right frontal lobe, a left temporal lobe dysplasia, and a region of subcortical heterotopia in the right occipital lobe. In both patien